Sample records for immune complex mediated

  1. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.

    PubMed

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.

  2. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702

  3. Signals of monocyte activation in patients with SLE.

    PubMed Central

    Kávai, M; Zsindely, A; Sonkoly, I; Major, M; Demján, I; Szegedi, G

    1983-01-01

    The Fc receptor mediated reaction, the beta-glucuronidase and the lactic dehydrogenase activities of monocytes and the serum lysozyme level were tested together with the circulating immune complex content of patients with systemic lupus erythematosus. Simultaneously with the increasing FC receptor-mediated reaction and the elevated enzyme activities of patient monocytes, the secretion of lysozyme and the immune complex content of the sera were higher than those of the controls. A positive correlation was demonstrated between the Fc receptor-mediated reaction, the beta-glucuronidase activity, the lysozyme secretion and the immune complex content of the sera. Thus, the monocytes of patients appeared to be activated by the circulating immune complexes. PMID:6839541

  4. De novo immune complex deposition in kidney allografts: a series of 32 patients.

    PubMed

    Lloyd, Isaac E; Ahmed, Faris; Revelo, Monica P; Khalighi, Mazdak A

    2018-01-01

    Immune complex deposition in kidney allografts can include both recurrent and de novo processes. Recurrent glomerulonephritis is a well-recognized phenomenon and has been shown to be a common cause of allograft failure. De novo immune complex-mediated disease remains relatively poorly characterized, likely owing to the less frequent use of immunofluorescence and electron microscopy in the transplant setting. We performed a retrospective review of kidney allograft biopsies showing glomerular immune complex deposition. Cases with de novo deposits were identified and further organized into two groups depending on whether the immune complex deposition could be clinically and/or histologically classified. Thirty-two patients with de novo immune complex deposition were identified over a 7-year period. A broad range of immune complex-mediated injuries were observed, the majority (63%) of which could be readily classified either clinically or histologically. These included cases of membranous glomerulonephropathy, IgA nephropathy, infection-related glomerulonephritis and glomerulonephritis related to an underlying autoimmune process. A smaller subset of patients (37%) demonstrated immune complex deposition that was difficult to histologically or clinically classify. These patients typically showed mild mesangial immune complex deposition with co-dominant IgG and IgM staining by immunofluorescence microscopy. The presence of concurrent antibody-mediated rejection and donor-specific antibody positivity was significantly higher in the unclassifiable group. The significance of these deposits and their possible relationship to allograft rejection deserves further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  6. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215; Weller, Peter F.

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombreromore » Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.« less

  7. Cross-presentation of IgG-containing immune complexes

    PubMed Central

    Baker, Kristi; Rath, Timo; Lencer, Wayne I.; Fiebiger, Edda

    2012-01-01

    IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells. PMID:22847331

  8. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    PubMed Central

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  9. Immune complex-induced human monocyte procoagulant activity. I. a rapid unidirectional lymphocyte-instructed pathway.

    PubMed

    Schwartz, B S; Edgington, T S

    1981-09-01

    It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.

  10. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    PubMed Central

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix

    2017-01-01

    Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066

  11. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    PubMed

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  12. The role of the immune system in kidney disease.

    PubMed

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  13. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.

    PubMed

    Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter

    2011-12-09

    Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.

  14. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Jiang, Qiufen; Wang, Lingling; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-01-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca 2+ This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the 'nervous-haemocyte' NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network. © 2017 The Authors.

  15. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy.

    PubMed

    Melo, Rossana C N; Weller, Peter F

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response.

    PubMed

    Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef

    2017-08-03

    The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications

    PubMed Central

    Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu

    2017-01-01

    The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809

  18. Recent progress in the understanding of host immunity to avian coccidiosis: IL-17 family cytokines as the sentinels on the intestinal mucosa

    USDA-ARS?s Scientific Manuscript database

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. Innate immunity is mediated by various subpopulations of innate immune cells through the secretion of soluble factors with diverse functi...

  19. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    PubMed

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  20. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  1. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.

    PubMed

    Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten

    2015-10-05

    Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.

  2. Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense.

    PubMed

    Wiermer, Marcel; Cheng, Yu Ti; Imkampe, Julia; Li, Meilan; Wang, Dongmei; Lipka, Volker; Li, Xin

    2012-06-01

    In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de-regulated Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107-160 nuclear pore sub-complex, and implicated in immunity-related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107-160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL-type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil-type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL-triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1-conditioned resistance pathways in Arabidopsis. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  3. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  4. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

    PubMed

    Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

    2017-08-01

    We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

  5. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    PubMed

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  7. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review

    PubMed Central

    Famakin, Bolanle M.

    2014-01-01

    It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490

  8. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  9. Towards understanding the pathology of erythema nodosum leprosum.

    PubMed

    Kahawita, I P; Lockwood, D N J

    2008-04-01

    Erythema nodosum leprosum (ENL) is an immune-mediated complication of leprosy presenting with inflammatory skin nodules and involvement of multiple organ systems, often running a protracted course. Immune complex production and deposition as well as complement activation have long been regarded as the principal aetiology of ENL. However, new data show that cell-mediated immunity is also important. We have performed a critical analysis of studies on the pathology of ENL. Our main findings are as follows. ENL is characterised by an inflammatory infiltrate of neutrophils with vasculitis and/or panniculitis. There is deposition of immune complexes and complement together with Mycobacterium leprae antigens in the skin. Changes in serum levels of Igs indicate a transient, localised immune response. The major T-cell subtype in ENL is the CD4 cell, in contrast to lepromatous leprosy where CD8 cells predominate. The cytokines TNFalpha and IL-6 are consistently found whilst IL-4 is low or absent in ENL lesions, indicating a T(H)1 type response. Keratinocyte 1a and intercellular adhesion molecule-1 (ICAM-1) have been shown to be present in the epidermis in ENL, which is evidence of a cell-mediated immune response. Co-stimulatory molecules such as B7-1 have also been studied but further work is needed to draw strong conclusions. We also highlight potential areas for future research.

  10. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  11. A Cohort Study Comparing Women with Autism Spectrum Disorder with and without Generalized Joint Hypermobility

    PubMed Central

    Sharp, Julia L.; Edelson, Stephen M.; Kelly, Desmond P.; Casanova, Manuel F.

    2018-01-01

    Reports suggest comorbidity between autism spectrum disorder (ASD) and the connective tissue disorder, Ehlers-Danlos syndrome (EDS). People with EDS and the broader spectrum of Generalized Joint Hypermobility (GJH) often present with immune- and endocrine-mediated conditions. Meanwhile, immune/endocrine dysregulation is a popular theme in autism research. We surveyed a group of ASD women with/without GJH to determine differences in immune/endocrine exophenotypes. ASD women 25 years or older were invited to participate in an online survey. Respondents completed a questionnaire concerning diagnoses, immune/endocrine symptom history, experiences with pain, and seizure history. ASD women with GJH (ASD/GJH) reported more immune- and endocrine-mediated conditions than their non-GJH counterparts (p = 0.001). Autoimmune conditions were especially prominent in the ASD/GJH group (p = 0.027). Presence of immune-mediated symptoms often co-occurred with one another (p < 0.001–0.020), as did endocrine-mediated symptoms (p < 0.001–0.045), irrespective of the group. Finally, the numbers of immune- and endocrine-mediated symptoms shared a strong inter-relationship (p < 0.001), suggesting potential system crosstalk. While our results cannot estimate comorbidity, they reinforce concepts of an etiological relationship between ASD and GJH. Meanwhile, women with ASD/GJH have complex immune/endocrine exophenotypes compared to their non-GJH counterparts. Further, we discuss how connective tissue regulates the immune system and how the immune/endocrine systems in turn may modulate collagen synthesis, potentially leading to higher rates of GJH in this subpopulation. PMID:29562607

  12. Designing bovine T-cell vaccines via reverse immunology

    USDA-ARS?s Scientific Manuscript database

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  13. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    PubMed Central

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  15. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  16. MHC class II is an important genetic risk factor for canine systemic lupus erythematosus (SLE)-related disease: implications for reproductive success.

    PubMed

    Wilbe, M; Andersson, G

    2012-01-01

    Major histocompatibility complex (MHC) class II genes are important genetic risk factors for development of immune-mediated diseases in mammals. Recently, the dog (Canis lupus familiaris) has emerged as a useful model organism to identify critical MHC class II genotypes that contribute to development of these diseases. Therefore, a study aimed to evaluate a potential genetic association between the dog leukocyte antigen (DLA) class II region and an immune-mediated disease complex in dogs of the Nova Scotia duck tolling retriever breed was performed. We show that DLA is one of several genetic risk factors for this disease complex and that homozygosity of the risk haplotype is disadvantageous. Importantly, the disease is complex and has many genetic risk factors and therefore we cannot provide recommendations for breeders exclusively on the basis of genetic testing for DLA class II genotype. © 2012 Blackwell Verlag GmbH.

  17. Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections.

    PubMed

    Tam, Vincent C

    2013-10-31

    Bioactive lipid mediators play crucial roles in promoting the induction and resolution of inflammation. Eicosanoids and other related unsaturated fatty acids have long been known to induce inflammation. These signaling molecules can modulate the circulatory system and stimulate immune cell infiltration into the site of infection. Recently, DHA- and EPA-derived metabolites have been discovered to promote the resolution of inflammation, an active process. Not only do these molecules stop the further infiltration of immune cells, they prompt non-phlogistic phagocytosis of apoptotic neutrophils, stimulating the tissue to return to homeostasis. After the rapid release of lipid precursors from the plasma membrane upon stimulation, families of enzymes in a complex network metabolize them to produce a large array of lipid metabolites. With current advances in mass spectrometry, the entire lipidome can be accurately quantified to assess the immune response upon microbial infection. In this review, we discuss the various lipid metabolism pathways in the context of the immune response to microbial pathogens, as well as their complex network interactions. With the advancement of mass spectrometry, these approaches have also been used to characterize the lipid mediator response of macrophages and neutrophils upon immune stimulation in vitro. Lastly, we describe the recent efforts to apply systems biology approaches to dissect the role of lipid mediators during bacterial and viral infections in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Arthritis secondary to meningococcal disease: A case series of 7 patients.

    PubMed

    Masson-Behar, Vanina; Jacquier, Hervé; Richette, Pascal; Ziza, Jean-Marc; Zeller, Valérie; Rioux, Christophe; Coustet, Baptiste; Dieudé, Philippe; Ottaviani, Sébastien

    2017-07-01

    Arthritis secondary to invasive meningococcemia is rare and has been described as a direct result of bacteremia or as immunoallergic-type arthritis, related to the immune complex. Only a few case series have been reported.This multicenter study aimed to describe the clinical characteristics and therapeutic outcomes of arthritis secondary to meningococcal infection.We performed a 5-year retrospective study. We included all patients with inflammatory joint symptoms and proven meningococcal disease defined by the identification of Neisseria meningitidis in blood, cerebrospinal fluid, or synovial fluid. Septic arthritis was defined by the identification of N meningitidis in joint fluid. Immune-mediated arthritis was considered to be arthritis occurring after at least 1 day of invasive meningococcal disease without positive joint fluid culture.A total of 7 patients (5 males) with joint symptoms and meningococcal disease were identified. The clinical presentation was mainly oligoarticular and the knee was the most frequent joint site. Five patients had septic arthritis and 4 had immune-mediated arthritis; 2 had septic arthritis followed by immune-mediated arthritis. Immune-mediated arthritis occurred 3 to 7 days after meningococcal meningitis, and treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) led to improvement without complications.Physicians must be vigilant to the different clinical presentations in patients with arthritis associated with invasive meningococcal disease. If immune-mediated arthritis is suspected, NSAIDs are usually efficient.

  19. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  20. An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors

    PubMed Central

    Chen, Xuewei; Zuo, Shimin; Schwessinger, Benjamin; Chern, Mawsheng; Canlas, Patrick E.; Ruan, Deling; Zhou, Xiaogang; Wang, Jing; Daudi, Arsalan; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.

    2014-01-01

    The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR. PMID:24482436

  1. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.

    PubMed

    Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.

  2. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    PubMed Central

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  3. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    PubMed

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases.

    PubMed

    Mang, Hyunggon; Feng, Baomin; Hu, Zhangjian; Boisson-Dernier, Aurélien; Franck, Christina M; Meng, Xiangzong; Huang, Yanyan; Zhou, Jinggeng; Xu, Guangyuan; Wang, Taotao; Shan, Libo; He, Ping

    2017-12-01

    Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction. © 2017 American Society of Plant Biologists. All rights reserved.

  5. Decreased complement mediated binding of antibody//sup 3/-dsDNA immune complexes to the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.P.; Horgan, C.; Buschbacher, R.

    1983-06-01

    The complement mediated binding of prepared antibody//sup 3/H-dsDNA immune complexes to the red blood cells obtained from a number of patient populations has been investigated. Patients with solid tumors have binding activity similar to that seen in a normal group of individuals. However, a significant fraction of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies have lowered binding activity compared with normal subjects. Quantitative studies indicate the lowered activity probably arises due to a decrease in complement receptors on the respective red blood cells. The potential importance and implications of these findings are briefly discussed.

  6. Cross-immunity between strains explains the dynamical pattern of paramyxoviruses

    PubMed Central

    Bhattacharyya, Samit; Gesteland, Per H.; Korgenski, Kent; Bjørnstad, Ottar N.; Adler, Frederick R.

    2015-01-01

    Viral respiratory tract diseases pose serious public health problems. Our ability to predict and thus, be able to prepare for outbreaks is strained by the complex factors driving the prevalence and severity of these diseases. The abundance of diseases and transmission dynamics of strains are not only affected by external factors, such as weather, but also driven by interactions among viruses mediated by human behavior and immunity. To untangle the complex out-of-phase annual and biennial pattern of three common paramyxoviruses, Respiratory Syncytial Virus (RSV), Human Parainfluenza Virus (HPIV), and Human Metapneumovirus (hMPV), we adopt a theoretical approach that integrates ecological and immunological mechanisms of disease interactions. By estimating parameters from multiyear time series of laboratory-confirmed cases from the intermountain west region of the United States and using statistical inference, we show that models of immune-mediated interactions better explain the data than those based on ecological competition by convalescence. The strength of cross-protective immunity among viruses is correlated with their genetic distance in the phylogenetic tree of the paramyxovirus family. PMID:26460003

  7. JAKs and STATs in Immunoregulation and Immune-Mediated Disease

    PubMed Central

    O’Shea, John J.; Plenge, Robert

    2012-01-01

    Summary A landmark in cell biology, the discovery of the JAK-STAT pathway provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genomewide views. As we celebrate the 20th anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genomewide association studies demonstrated that this pathway is highly relevant to human autoimmunity but targeting JAKs is now a reality in immune-mediated disease. PMID:22520847

  8. Nutritionally Mediated Programming of the Developing Immune System12

    PubMed Central

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080

  9. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    PubMed

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusuf, Nabiha; Skin Diseases Research Center, University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, AL 35294-0009; Timares, Laura

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8{sup +} T cells are effector cells in the response, whereasmore » CD4{sup +} T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents.« less

  11. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.

    PubMed

    Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.

  12. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis

    PubMed Central

    Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233

  13. A novel immunization method to induce cytotoxic T-lymphocyte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D.

    PubMed

    Cruz, P E; Khalil, P L; Dryden, T D; Chiou, H C; Fink, P S; Berberich, S J; Bigley, N J

    1999-03-05

    DNA molecules complexed with an asialoglycoprotein-polycation conjugate, consisting of asialoorosomucoid (ASOR) coupled to poly-L-lysine, can enter hepatocytes which bear receptors for ASOR. We used this receptor-mediated DNA delivery system to deliver plasmid DNA encoding glycoprotein D (gD) of herpes simplex virus type 1 to ASOR-positive cells. Maximum expression of gD protein was seen at 3 days after injection of this preparation in approximately 13% of cells from BALB/c mice [hepatocytes from mice injected intravenously (i.v.) or peritoneal exudate cells from mice injected intraperitoneally (i.p.)]. In comparison with mice injected with either the plasmid vector alone or the gD-containing plasmid uncomplexed to ASOR, mice immunized with gD-containing plasmid complexed with ASOR-poly-L-lysine induced marked antigen-specific CTL responses. BALB/c mice immunized with gD-DNA developed a T-cell-mediated CTL response against target cells expressing gD and MHC class II glycoproteins, but not against cells expressing only gD and MHC class I molecules. In C3H mice, gD-DNA induced a T-cell-mediated CTL response against target cells expressing gD and class I MHC molecules. Serum anti-gD antibody in low titers were produced in both strains of mice. DNA complexed with ASOR-poly-L-lysine induced CTL responses in mice.

  14. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse

    PubMed Central

    Miraghazadeh, Bahar; Cook, Matthew C.

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease. PMID:29686669

  15. Adjuvant effects of saponins on animal immune responses*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Xiao, Chen-wen; Arijo, Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed. PMID:17323426

  16. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope.

    PubMed

    Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W

    2005-05-31

    Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.

  17. Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation

    PubMed Central

    Khan, Shahida A.; Khan, Sarah A.; Zahran, Solafa A.; Damanhouri, Ghazi

    2014-01-01

    Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs) and G protein coupled receptors (GPCRs). In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators. PMID:25258478

  18. Immunological consequences of vasectomy.

    PubMed

    Shahani, S K; Hattikudur, N S

    1981-09-01

    In more than 50% of men, vasectomy leads to auto-immune pathology. The auto-immune response to sperms following vasectomy is triggered by the phagocytosis of sperm in the epididymis. In the humoral immune response, sperm agglutinating, sperm immobilizing, and antibodies to sperm nuclear protamines occur, as early as 3-4 days after vasectomy. The incidence reaches 60-70% within 1 year and remains almost the same even after 20 years. Presence and effects of circulating immune complexes following vasectomy are discussed with reference to reported increased incidence of atherosclerosis and auto-immune orchitis in experimental animals. There is no positive conclusion whether vasectomy leads to cell mediated immunity to spermatozoa.

  19. Involvement of NK cells against tumors and parasites.

    PubMed

    Papazahariadou, M; Athanasiadis, G I; Papadopoulos, E; Symeonidou, I; Hatzistilianou, M; Castellani, M L; Bhattacharya, K; Shanmugham, L N; Conti, P; Frydas, S

    2007-01-01

    Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.

  20. Defining dysbiosis and its influence on host immunity and disease

    PubMed Central

    Petersen, Charisse; Round, June L

    2014-01-01

    Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal–host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases. PMID:24798552

  1. Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes.

    PubMed

    Wang, Xiaomei; Malawista, Anna; Qian, Feng; Ramsey, Christine; Allore, Heather G; Montgomery, Ruth R

    2018-02-09

    The multifactorial immune deterioration in aging--termed "inflamm-aging"--is comprised of a state of low-grade, chronic inflammation and complex dysregulation of responses to immune stimulation. The TAM family (Tyro 3, Axl, and Mer) of receptor tyrosine kinases are negative regulators of Toll like receptor-mediated immune responses that broadly inhibit cytokine receptor cascades to inhibit inflammation. Here we demonstrate elevated expression of TAM receptors in monocytes of older adults, and an age-dependent difference in signaling mediator AKT resulting in dysregulated responses to signaling though Mer. Our results may be especially significant in tissue, where levels of Mer are highest, and may present avenues for modulation of chronic tissue inflammation noted in aging.

  2. Complex Immune Correlates of Protection in HIV-1 Vaccine Efficacy Trials

    PubMed Central

    Tomaras, Georgia D.; Plotkin, Stanley A.

    2016-01-01

    Summary Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate—thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine. PMID:28133811

  3. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization

    PubMed Central

    Kombrink, Anja; Hansen, Guido; Valkenburg, Dirk-Jan

    2013-01-01

    While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI: http://dx.doi.org/10.7554/eLife.00790.001 PMID:23840930

  4. Mast cells contribute to the mucosal adjuvant effect of CTA1-DD after IgG-complex formation.

    PubMed

    Fang, Yu; Larsson, Lisa; Mattsson, Johan; Lycke, Nils; Xiang, Zou

    2010-09-01

    Mast cell activation is one of the most dramatic immune-mediated responses the body can encounter. In the worst scenario (i.e., anaphylaxis), this response is fatal. However, the importance of mast cells as initiators and effectors of both innate and adaptive immunity in healthy individuals has recently been appreciated. It was reported that mast cell activation can be used as an adjuvant to promote Ag-specific humoral immune responses upon vaccination. In this study, we have used a clinically relevant mucosal adjuvant, cholera toxin A1 subunit (CTA1)-DD, which is a fusion protein composed of CTA1, the ADP-ribosylating part of cholera toxin, and DD, two Ig-binding domains derived from Staphylococcus aureus protein A. CTA1-DD in combination with polyclonal IgG induced degranulation and production of TNF-alpha from mouse mast cells. Furthermore, CTA1-DD and polyclonal IgG complex induced mast cell degranulation in mouse skin tissue and nasal mucosa. We also found that intranasal immunization with hapten (4-hydroxy-3-nitrophenyl) acetyl (NP) coupled to chicken gammaglobulin admixed with CTA1-DD complexed with polyclonal IgG greatly enhanced serum IgG anti-NP Ab responses and stimulated higher numbers of NP-specific plasma cells in the bone marrow as compared with that observed in mice immunized with NP-chicken gammaglobulin with CTA1-DD alone. This CTA1-DD/IgG complex-mediated enhancement was mast cell dependent because it was absent in mast cell-deficient Kit(W-sh/W-sh) mice. In conclusion, our data suggest that a clinically relevant adjuvant, CTA1-DD, exerts additional augmenting effects through activation of mucosal mast cells, clearly demonstrating that mast cells could be further exploited for improving the efficacy of mucosal vaccines.

  5. Antigen Cross-Presentation of Immune Complexes

    PubMed Central

    Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda

    2014-01-01

    The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8− DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets. PMID:24744762

  6. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  7. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. B cell biology: implications for treatment of systemic lupus erythematosus.

    PubMed

    Anolik, J H

    2013-04-01

    B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.

  9. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  10. Roles of small RNAs in plant disease resistance.

    PubMed

    Yang, Li; Huang, Hai

    2014-10-01

    The interaction between plants and pathogens represents a dynamic competition between a robust immune system and efficient infectious strategies. Plant innate immunity is composed of complex and highly regulated molecular networks, which can be triggered by the perception of either conserved or race-specific pathogenic molecular signatures. Small RNAs are emerging as versatile regulators of plant development, growth and response to biotic and abiotic stresses. They act in different tiers of plant immunity, including the pathogen-associated molecular pattern-triggered and the effector-triggered immunity. On the other hand, pathogens have evolved effector molecules to suppress or hijack the host small RNA pathways. This leads to an arms race between plants and pathogens at the level of small RNA-mediated defense. Here, we review recent advances in small RNA-mediated defense responses and discuss the challenging questions in this area. © 2014 Institute of Botany, Chinese Academy of Sciences.

  11. Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators.

    PubMed

    Wiermer, Marcel; Germain, Hugo; Cheng, Yu Ti; García, Ana V; Parker, Jane E; Li, Xin

    2010-01-01

    Controlled nucleocytoplasmic trafficking is an important feature for fine-tuning signaling pathways in eukaryotic organisms. Nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups) are essential for the exchange of macromolecules across the nuclear envelope. A recent genetic screen in our laboratory identified a partial loss-of-function mutation in Arabidopsis MOS7/Nup88 that causes defects in basal immunity, Resistance (R) protein-mediated defense and systemic acquired resistance. In Drosophila and mammalian cells, exportin-mediated nuclear export of activated Rel/NFκB transcription factors is enhanced in nup88 mutants resulting in immune response failure. Consistent with Nup88 promoting nuclear retention of NFκB, our functional analyses revealed that MOS7/Nup88 is required for appropriate nuclear accumulation of the autoactivated R protein snc1, as well as the key immune regulators EDS1 and NPR1. These results suggest that controlling the nuclear concentrations of specific immune regulators is fundamental for defining defense outputs.

  12. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    PubMed

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be construed to represent any Agency determination or policy. Published by Elsevier Ltd.

  13. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword.

    PubMed

    Cooper, Paul R; Holder, Michelle J; Smith, Anthony J

    2014-04-01

    Dental tissue infection and disease result in acute and chronic activation of the innate immune response, which is mediated by molecular and cellular signaling. Different cell types within the dentin-pulp complex are able to detect invading bacteria at all stages of the infection. Indeed, at relatively early disease stages, odontoblasts will respond to bacterial components, and as the disease progresses, core pulpal cells including fibroblasts, stems cells, endothelial cells, and immune cells will become involved. Pattern recognition receptors, such as Toll-like receptors expressed on these cell types, are responsible for detecting bacterial components, and their ligand binding leads to the activation of the nuclear factor-kappa B and p38 mitogen-activated protein (MAP) kinase intracellular signaling cascades. Subsequent nuclear translocation of the transcription factor subunits from these pathways will lead to proinflammatory mediator expression, including increases in cytokines and chemokines, which trigger host cellular defense mechanisms. The complex molecular signaling will result in the recruitment of immune system cells targeted at combating the invading microbes; however, the trafficking and antibacterial activity of these cells can lead to collateral tissue damage. Recent evidence suggests that if inflammation is resolved relatively low levels of proinflammatory mediators may promote tissue repair, whereas if chronic inflammation ensues repair mechanisms become inhibited. Thus, the effects of mediators are temporal context dependent. Although containment and removal of the infection are keys to enable dental tissue repair, it is feasible that the development of anti-inflammatory and immunomodulatory approaches, based on molecular, epigenetic, and photobiomodulatory technologies, may also be beneficial for future endodontic treatments. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  14. IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    PubMed Central

    Dahlin, Joakim S.; Ivarsson, Martin A.; Heyman, Birgitta; Hallgren, Jenny

    2011-01-01

    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma. PMID:21625525

  15. Infectious and autoantibody-associated encephalitis: clinical features and long-term outcome.

    PubMed

    Pillai, Sekhar C; Hacohen, Yael; Tantsis, Esther; Prelog, Kristina; Merheb, Vera; Kesson, Alison; Barnes, Elizabeth; Gill, Deepak; Webster, Richard; Menezes, Manoj; Ardern-Holmes, Simone; Gupta, Sachin; Procopis, Peter; Troedson, Christopher; Antony, Jayne; Ouvrier, Robert A; Polfrit, Yann; Davies, Nicholas W S; Waters, Patrick; Lang, Bethan; Lim, Ming J; Brilot, Fabienne; Vincent, Angela; Dale, Russell C

    2015-04-01

    Pediatric encephalitis has a wide range of etiologies, clinical presentations, and outcomes. This study seeks to classify and characterize infectious, immune-mediated/autoantibody-associated and unknown forms of encephalitis, including relative frequencies, clinical and radiologic phenotypes, and long-term outcome. By using consensus definitions and a retrospective single-center cohort of 164 Australian children, we performed clinical and radiologic phenotyping blinded to etiology and outcomes, and we tested archived acute sera for autoantibodies to N-methyl-D-aspartate receptor, voltage-gated potassium channel complex, and other neuronal antigens. Through telephone interviews, we defined outcomes by using the Liverpool Outcome Score (for encephalitis). An infectious encephalitis occurred in 30%, infection-associated encephalopathy in 8%, immune-mediated/autoantibody-associated encephalitis in 34%, and unknown encephalitis in 28%. In descending order of frequency, the larger subgroups were acute disseminated encephalomyelitis (21%), enterovirus (12%), Mycoplasma pneumoniae (7%), N-methyl-D-aspartate receptor antibody (6%), herpes simplex virus (5%), and voltage-gated potassium channel complex antibody (4%). Movement disorders, psychiatric symptoms, agitation, speech dysfunction, cerebrospinal fluid oligoclonal bands, MRI limbic encephalitis, and clinical relapse were more common in patients with autoantibodies. An abnormal outcome occurred in 49% of patients after a median follow-up of 5.8 years. Herpes simplex virus and unknown forms had the worst outcomes. According to our multivariate analysis, an abnormal outcome was more common in patients with status epilepticus, magnetic resonance diffusion restriction, and ICU admission. We have defined clinical and radiologic phenotypes of infectious and immune-mediated/autoantibody-associated encephalitis. In this resource-rich cohort, immune-mediated/autoantibody-associated etiologies are common, and the recognition and treatment of these entities should be a clinical priority. Copyright © 2015 by the American Academy of Pediatrics.

  16. Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems.

    PubMed

    Morse, Robert P; Nikolakakis, Kiel C; Willett, Julia L E; Gerrick, Elias; Low, David A; Hayes, Christopher S; Goulding, Celia W

    2012-12-26

    Contact-dependent growth inhibition (CDI) systems encode polymorphic toxin/immunity proteins that mediate competition between neighboring bacterial cells. We present crystal structures of CDI toxin/immunity complexes from Escherichia coli EC869 and Burkholderia pseudomallei 1026b. Despite sharing little sequence identity, the toxin domains are structurally similar and have homology to endonucleases. The EC869 toxin is a Zn(2+)-dependent DNase capable of completely degrading the genomes of target cells, whereas the Bp1026b toxin cleaves the aminoacyl acceptor stems of tRNA molecules. Each immunity protein binds and inactivates its cognate toxin in a unique manner. The EC869 toxin/immunity complex is stabilized through an unusual β-augmentation interaction. In contrast, the Bp1026b immunity protein exploits shape and charge complementarity to occlude the toxin active site. These structures represent the initial glimpse into the CDI toxin/immunity network, illustrating how sequence-diverse toxins adopt convergent folds yet retain distinct binding interactions with cognate immunity proteins. Moreover, we present visual demonstration of CDI toxin delivery into a target cell.

  17. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  18. Complex pattern of immune evasion in MSI colorectal cancer.

    PubMed

    Ozcan, Mine; Janikovits, Jonas; von Knebel Doeberitz, Magnus; Kloor, Matthias

    2018-01-01

    Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.

  19. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria.

    PubMed

    Gong, Lauren; Parikh, Sunil; Rosenthal, Philip J; Greenhouse, Bryan

    2013-09-11

    Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria.

  20. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria

    PubMed Central

    2013-01-01

    Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria. PMID:24025776

  1. Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi

    2016-01-01

    Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jinghua; Marnell, Lorraine L.; Marjon, Kristopher D.

    Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q. More recently, members of the pentraxin family were found to interact with cell-surface Fc{gamma} receptors (Fc{gamma}R) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to Fc{gamma}R and its functional activation of Fc{gamma}R-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and Fc{gamma}RIIa reveals a diagonallymore » bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and Fc{gamma}RIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for Fc{gamma}R isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for Fc{gamma}R binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the Fc{gamma}R pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.« less

  3. Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure.

    PubMed

    Yekondi, Shweta; Liang, Fu-Chun; Okuma, Eiji; Radziejwoski, Amandine; Mai, Hsien-Wei; Swain, Swadhin; Singh, Prashant; Gauthier, Mathieu; Chien, Hsiao-Chiao; Murata, Yoshiyuki; Zimmerli, Laurent

    2018-04-01

    Stomatal immunity restricts bacterial entry to leaves through the recognition of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs) and downstream abscisic acid and salicylic acid signaling. Through a reverse genetics approach, we characterized the function of the L-type lectin receptor kinase-V.2 (LecRK-V.2) and -VII.1 (LecRK-VII.1). Analyses of interactions with the PRR FLAGELLIN SENSING2 (FLS2) were performed by co-immunoprecipitation and bimolecular fluorescence complementation and whole-cell patch-clamp analyses were used to evaluate guard cell Ca 2+ -permeable cation channels. The Arabidopsis thaliana LecRK-V.2 and LecRK-VII.1 and notably their kinase activities were required for full activation of stomatal immunity. Knockout lecrk-V.2 and lecrk-VII.1 mutants were hyper-susceptible to Pseudomonas syringae infection and showed defective stomatal closure in response to bacteria or to the MAMPs flagellin and EF-Tu. By contrast, Arabidopsis over-expressing LecRK-V.2 or LecRK-VII.1 demonstrated a potentiated stomatal immunity. LecRK-V.2 and LecRK-VII.1 are shown to be part of the FLS2 PRR complex. In addition, LecRK-V.2 and LecRK-VII.1 were critical for methyl jasmonate (MeJA)-mediated stomatal closure, notably for MeJA-induced activation of guard cell Ca 2+ -permeable cation channels. This study highlights the role of LecRK-V.2 and LecRK-VII.1 in stomatal immunity at the FLS2 PRR complex and in MeJA-mediated stomatal closure. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Animal Models of Inflammasomopathies Reveal Roles for Innate but not Adaptive Immunity

    PubMed Central

    Brydges, Susannah D; Mueller, James L; McGeough, Matthew D; Pena, Carla A; Misaghi, Amirhossein; Gandhi, Chhavi; Putnam, Chris D; Boyle, David L; Firestein, Gary S; Horner, Anthony A; Soroosh, Pejman; Watford, Wendy T; O’Shea, John J; Kastner, Daniel L; Hoffman, Hal M

    2009-01-01

    SUMMARY Cryopyrin (NALP3) mediates formation of the inflammasome, a protein complex responsible for cleavage of pro-IL-1β to its active form. Mutations in the cryopyrin gene, NLRP3, cause the autoinflammatory disease spectrum: cryopyrin-associated periodic syndromes (CAPS). The central role of IL-1β in CAPS is supported by the remarkable response to IL-1 targeted therapy. We developed two novel Nlrp3 mutant knock-in mouse strains to model CAPS to examine the role of other inflammatory mediators and adaptive immune responses in an innate immune driven disease. These mice had systemic inflammation and poor growth, similar to some human CAPS patients, and demonstrated early mortality, primarily mediated by myeloid cells. Mating these mutant mice to various knock-out backgrounds confirmed the mouse disease phenotype required an intact inflammasome, was only partially dependent on IL-1β, and was independent of T cells. This data suggests CAPS are true inflammasomopathies and provide insight for more common inflammatory disorders. PMID:19501000

  5. Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin

    PubMed Central

    Foley, Jonathan H.; Walton, Bethany L.; Aleman, Maria M.; O'Byrne, Alice M.; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A.; Wolberg, Alisa S.; Conway, Edward M.

    2016-01-01

    Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125

  6. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex.

    PubMed

    Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D G

    2013-12-01

    Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.

  7. A Downy Mildew Effector Attenuates Salicylic Acid–Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex

    PubMed Central

    Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D. G.

    2013-01-01

    Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. PMID:24339748

  8. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non-FcgammaR-expressing cells. The data indicate that complexes formed from Ad and anti-Ad neutralizing antibodies, while compromised with respect to infection of non-FcgammaR-expressing target cells, maintain the potential to transfer genes to FcgammaR-expressing cells, with consequent expression of the transgene. The formation of Ad-immune complexes that can target viable virus to antigen-presenting cells may account for the success of Ad-based vaccines administered in the presence of low levels of neutralizing anti-Ad antibody.

  9. Ocular Immune Privilege and Ocular Melanoma: Parallel Universes or Immunological Plagiarism?

    PubMed Central

    Niederkorn, Jerry Y.

    2012-01-01

    Evidence of immune privilege in the eye was recorded almost 140 years ago, yet interest in immune privilege languished for almost a century. However, the past 35 years have witnessed a plethora of research and a rekindled interest in the mechanisms responsible for immune privilege in the anterior chamber of the eye. This research has demonstrated that multiple anatomical, structural, physiological, and immunoregulatory processes contribute to immune privilege and remind us of the enormous complexity of this phenomenon. It is widely accepted that immune privilege is an adaptation for reducing the risk of immune-mediated inflammation in organs such as the eye and brain whose tissues have a limited capacity to regenerate. Recent findings suggest that immune privilege also occurs in sites where stem cells reside and raise the possibility that immune privilege is also designed to prevent the unwitting elimination of stem cells by immune-mediated inflammation at these sites. Uveal melanoma arises within the eye and as such, benefits from ocular immune privilege. A significant body of research reveals an intriguing parallel between the mechanisms that contribute to immune privilege in the eye and those strategies used by uveal melanoma cells to evade immune elimination once they have disseminated from the eye and establish metastatic foci in the liver. Uveal melanoma metastases seem to have “plagiarized” the blueprints used for ocular immune privilege to create “ad hoc immune privileged sites” in the liver. PMID:22707951

  10. Importance of tyrosine phosphorylation in receptor kinase complexes.

    PubMed

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Immunopathology of inflammatory bowel disease

    PubMed Central

    Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q

    2014-01-01

    Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed. PMID:24415853

  12. Immunopathology of inflammatory bowel disease.

    PubMed

    Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q

    2014-01-07

    Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed.

  13. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions.

    PubMed

    Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng

    2016-05-19

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met(5)]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met(5)]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.

  14. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng

    2016-05-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.

  15. Immunomodulatory therapies for acute pancreatitis

    PubMed Central

    Li, Jing; Yang, Wen-Juan; Huang, Lu-Ming; Tang, Cheng-Wei

    2014-01-01

    It is currently difficult for conventional treatments of acute pancreatitis (AP), which primarily consist of anti-inflammatory therapies, to prevent the progression of AP or to improve its outcome. This may be because the occurrence and progression of AP, which involves various inflammatory cells and cytokines, includes a series of complex immune events. Considering the complex immune system alterations during the course of AP, it is necessary to monitor the indicators related to immune cells and inflammatory mediators and to develop more individualized interventions for AP patients using immunomodulatory therapy. This review discusses the recent advances in immunomodulatory therapies. It has been suggested that overactive inflammatory responses should be inhibited and excessive immunosuppression should be avoided in the early stages of AP. The optimal duration of anti-inflammatory therapy may be shorter than previously expected (< 24 h), and appropriate immunostimulatory therapies should be administered during the period from the 3rd d to the 14th d in the course of AP. A combination therapy of anti-inflammatory and immune-stimulating drugs would hopefully constitute an alternative to anti-inflammatory drug monotherapy. Additionally, the detection of the genotypes of critical inflammatory mediators may be useful for screening populations of AP patients at high risk of severe infections to enable the administration of early interventions to improve their prognosis. PMID:25493006

  16. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure.

    PubMed

    Dekaban, Gregory A; Dikeakos, Jimmy D

    2017-09-12

    The success of many current vaccines relies on a formulation that incorporates an immune activating adjuvant. This will hold true for the design of a successful therapeutic HIV vaccine targeted at controlling reactivated virus following cessation of combined antiretroviral therapy (cART). The HIV accessory protein Nef functions by interfering with HIV antigen presentation through the major histocompatibility complex I (MHC-I) pathway thereby suppressing CD8 + cytotoxic T cell (CTL)-mediated killing of HIV infected cells. Thus, this important impediment to HIV vaccine success must be circumvented. This review covers our current knowledge of Nef inhibitors that may serve as immune adjuvants that will specifically restore and enhance CTL-mediated killing of reactivated HIV infected cells as part of an overall vaccine strategy to affect a cure for HIV infection.

  17. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI. PMID:25848767

  18. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  19. Neuroendocrine-Immune Circuits, Phenotypes, and Interactions

    PubMed Central

    Ashley, Noah T.; Demas, Gregory E.

    2016-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499

  20. Neuroendocrine-immune circuits, phenotypes, and interactions.

    PubMed

    Ashley, Noah T; Demas, Gregory E

    2017-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Vascular Hyperactivity in the Rat Renal Aorta Participates in the Association between Immune Complex-Mediated Glomerulonephritis and Systemic Hypertension.

    PubMed

    Pérez-Torres, Israel; Moguel-González, Bernardo; Soria-Castro, Elizabeth; Guarner-Lans, Verónica; Avila-Casado, María Del Carmen; Goes, Teresa Imelda Fortoul Vander

    2018-06-03

    Introduction : systemic hypertension (SH) involving endothelial dysfunction contributes to immune complex-mediated glomerulonephritis (ICGN). Objective, we demonstrate a relationship between ICGN and SH by analyzing vascular reactivity in renal aortic rings. Methods : 48 male Wistar rats were divided into four groups: (a) control (C); (b) injected with bovine serum albumin (BSA); (c) receiving 200 mg/L NAME (an analog of arginine that inhibits NO production) in drinking water; and (d) receiving BSA and 200 mg/L NAME. Rats were pre-immunized subcutaneously with BSA and Freund's adjuvant. After 10 days, groups (b) and (c) received 1 mg/mL of BSA in saline intravenous (IV) daily for 35 days. The urine of 24 h was measured at days 0, 15, 30 and 45. Results : vascular reactivity to norepinephrine (NE), acetylcholine (Ach) and NAME were tested. Creatinine clearance, vasodilatation, eNOS and elastic fibers were diminished ( p ≤ 0.001). Blood pressure, vasoconstriction, iNOS were increased, and glomerular alterations were observed in groups (b), (c) and (d) when compared to group (a) ( p ≤ 0.001). Conclusions: SH contributes to the development of progressive renal disease in ICGN. Alterations of the vascular reactivity are mediated by the endothelium in the renal aorta. Thus, the endothelium plays a determinant role in the production of vasoactive substances such as NO during this process.

  2. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.

    PubMed

    Bien, Christian G; Vincent, Angela; Barnett, Michael H; Becker, Albert J; Blümcke, Ingmar; Graus, Francesc; Jellinger, Kurt A; Reuss, David E; Ribalta, Teresa; Schlegel, Jürgen; Sutton, Ian; Lassmann, Hans; Bauer, Jan

    2012-05-01

    Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.

  3. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane-association and innate antiviral immunity

    PubMed Central

    Liu, Helene Minyi; Loo, Yueh-Ming; Horner, Stacy M.; Zornetzer, Gregory A.; Katze, Michael G.; Gale, Michael

    2012-01-01

    Summary RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, anti-viral signalling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or “translocon” containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signalling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity. PMID:22607805

  4. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity.

    PubMed

    Liu, Helene Minyi; Loo, Yueh-Ming; Horner, Stacy M; Zornetzer, Gregory A; Katze, Michael G; Gale, Michael

    2012-05-17

    RIG-I is a cytosolic pathogen recognition receptor that initiates immune responses against RNA viruses. Upon viral RNA recognition, antiviral signaling requires RIG-I redistribution from the cytosol to membranes where it binds the adaptor protein, MAVS. Here we identify the mitochondrial targeting chaperone protein, 14-3-3ε, as a RIG-I-binding partner and essential component of a translocation complex or "translocon" containing RIG-I, 14-3-3ε, and the TRIM25 ubiquitin ligase. The RIG-I translocon directs RIG-I redistribution from the cytosol to membranes where it mediates MAVS-dependent innate immune signaling during acute RNA virus infection. 14-3-3ε is essential for the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of innate immunity against hepatitis C virus and other pathogenic RNA viruses. Our results define 14-3-3ε as a key component of a RIG-I translocon required for innate antiviral immunity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis.

    PubMed

    Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K

    2011-11-01

    Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.

  6. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology

    PubMed Central

    Michael, Benedict D.; Griffiths, Michael J.; Granerod, Julia; Brown, David; Davies, Nicholas W. S.; Borrow, Ray; Solomon, Tom

    2016-01-01

    Background Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15–60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. Methods We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Results Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Conclusions Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation. PMID:26808276

  7. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology.

    PubMed

    Michael, Benedict D; Griffiths, Michael J; Granerod, Julia; Brown, David; Davies, Nicholas W S; Borrow, Ray; Solomon, Tom

    2016-01-01

    Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15-60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation.

  8. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity.

    PubMed

    Dong, Oliver X; Meteignier, Louis-Valentin; Plourde, Melodie B; Ahmed, Bulbul; Wang, Ming; Jensen, Cassandra; Jin, Hailing; Moffett, Peter; Li, Xin; Germain, Hugo

    2016-04-01

    In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.

  9. Prevention of immune-mediated transfusion-related acute lung injury; from bloodbank to patient.

    PubMed

    Műller, Marcella C A; Porcelijn, Leendert; Vlaar, Alexander P J

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion related morbidity and mortality. Immune-mediated TRALI is caused by leucocyte and neutrophil antibodies in the transfused blood products that react with white blood cell antigens of the recipient, hereby inducing endothelial damage and lung injury. About two thirds of TRALI cases are thought to be immune-mediated. Both Human Leucocyte Antibodies (HLA Class I and II) and Human Neutrophil Antibodies (HNA) are involved in TRALI. Most antibodies result from allo-exposure of the blood donor, with multiparous donors having the highest incidence of antibodies. Detection of anti-leucocyte and anti-neutrophil antibodies is complex and many uncertainties still exist regarding the interpretation of the test results. In this review we discuss the evidence and effectiveness of measurements to prevent immune-mediated TRALI from a bloodbank and bedside perspective. From a bloodbank perspective various preventive measures have been implicated. In some countries bloodbanks have successfully implemented donor selection strategies, ranging from testing of allo-exposed donors for leucocyte antibodies to the exclusion of all females from donating high plasma volume products. Another strategy involves dilution of antibodies present by pooling of plasma donations of multiple donors. From a bedside view, the most important measure to prevent TRALI is to limit patients' exposure to allogenic bloodproducts. Furthermore recognition and awareness of the syndrome need to be heightened among clinicians.

  10. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity

    PubMed Central

    Pedros, Christophe; Canonigo-Balancio, Ann J.; Kong, Kok-Fai

    2017-01-01

    The ability of Tregs to control the development of immune responses is essential for maintaining immune system homeostasis. However, Tregs also inhibit the development of efficient antitumor responses. Here, we explored the characteristics and mechanistic basis of the Treg-intrinsic CTLA4/PKCη signaling pathway that we recently found to be required for contact-dependent Treg-mediated suppression. We show that PKCη is required for the Treg-mediated suppression of tumor immunity in vivo. The presence of PKCη-deficient (Prkch–/–) Tregs in the tumor microenvironment was associated with a significantly increased expression of the costimulatory molecule CD86 on intratumoral CD103+ DCs, enhanced priming of antigen-specific CD8+ T cells, and greater levels of effector cytokines produced by these cells. Similar to mouse Tregs, the GIT/PAK/PIX complex also operated downstream of CTLA4 and PKCη in human Tregs, and GIT2 knockdown in Tregs promoted antitumor immunity. Collectively, our data suggest that targeting the CTLA4/PKCη/GIT/PAK/PIX signaling pathway in Tregs could represent a novel immunotherapeutic strategy to alleviate the negative impact of Tregs on antitumor immune responses. PMID:29212947

  11. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    PubMed

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection.

    PubMed

    Liebrand, Thomas W H; van den Berg, Grardy C M; Zhang, Zhao; Smit, Patrick; Cordewener, Jan H G; America, Antoine H P; America, Antione H P; Sklenar, Jan; Jones, Alexandra M E; Tameling, Wladimir I L; Robatzek, Silke; Thomma, Bart P H J; Joosten, Matthieu H A J

    2013-06-11

    The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.

  13. Dynamics of cytokines and immunoglobulins serum profiles in primary and secondary Cryptosporidium parvum infection: usefulness of Luminex® xMAP technology.

    PubMed

    Codices, Vera; Martins, Catarina; Novo, Carlos; de Sousa, Bruno; Lopes, Ângela; Borrego, Miguel; Matos, Olga

    2013-01-01

    Infection by Cryptosporidium parvum triggers a complex array of innate and adaptive cell mediated immune response, playing an important role in controlling the infection. To date, there are no studies applying the Luminex® xMAP technology to determine profiles of cytokines and immunoglobulins in the context of an infection by C. parvum. In this study, we analyzed these immune mediators in the serum of immunocompetent mice inoculated with C. parvum oocysts, using Luminex, to understand how the immune system responds to an infection by this parasite. Animal sera were also analyzed by ELISA to determine the expressed immunoglobulin isotype profile, and compare the obtained trend with data obtained by Luminex. Specific-pathogen-free BALB/C mice were inoculated with oocysts of C. parvum at days 0 and 22. Peripheral blood was aseptically collected from sacrificed mice on several time points, and immune mediators were evaluated in serum samples. Infection was confirmed by the presence of C. parvum DNA in feces by a nested-PCR assay (60-kDa glycoprotein). Luminex results showed predominance in the secretion of IgG1 and IgG2a, confirmed by ELISA, which also showed that IgG1 is the major immunoglobulin isotype produced during the infection. The analysis of cytokines suggests a preferential Th(1) over the Th(2) response, with increased production of TNF-α, IFN-γ and GM-CSF. This work contributed to a better understanding of the immune response to the infection by C. parvum, as well as demonstrated the advantage of Luminex® xMAP technology to study immune mediators, using small sample volumes. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. NOD1CARD Might Be Using Multiple Interfaces for RIP2-Mediated CARD-CARD Interaction: Insights from Molecular Dynamics Simulation

    PubMed Central

    Pradhan, Sukanta Kumar; De, Sachinandan

    2017-01-01

    The nucleotide-binding and oligomerization domain (NOD)-containing protein 1 (NOD1) plays the pivotal role in host-pathogen interface of innate immunity and triggers immune signalling pathways for the maturation and release of pro-inflammatory cytokines. Upon the recognition of iE-DAP, NOD1 self-oligomerizes in an ATP-dependent fashion and interacts with adaptor molecule receptor-interacting protein 2 (RIP2) for the propagation of innate immune signalling and initiation of pro-inflammatory immune responses. This interaction (mediated by NOD1 and RIP2) helps in transmitting the downstream signals for the activation of NF-κB signalling pathway, and has been arbitrated by respective caspase-recruitment domains (CARDs). The so-called CARD-CARD interaction still remained contradictory due to inconsistent results. Henceforth, to understand the mode and the nature of the interaction, structural bioinformatics approaches were employed. MD simulation of modelled 1:1 heterodimeric complexes revealed that the type-Ia interface of NOD1CARD and the type-Ib interface of RIP2CARD might be the suitable interfaces for the said interaction. Moreover, we perceived three dynamically stable heterotrimeric complexes with an NOD1:RIP2 ratio of 1:2 (two numbers) and 2:1. Out of which, in the first trimeric complex, a type-I NOD1-RIP2 heterodimer was found interacting with an RIP2CARD using their type-IIa and IIIa interfaces. However, in the second and third heterotrimer, we observed type-I homodimers of NOD1 and RIP2 CARDs were interacting individually with RIP2CARD and NOD1CARD (in type-II and type-III interface), respectively. Overall, this study provides structural and dynamic insights into the NOD1-RIP2 oligomer formation, which will be crucial in understanding the molecular basis of NOD1-mediated CARD-CARD interaction in higher and lower eukaryotes. PMID:28114344

  15. Defense Against Pathogens: Structural Insights into the Mechanism of Chitin Induced Activation of Innate Immunity.

    PubMed

    Squeglia, Flavia; Berisio, Rita; Shibuya, Naoto; Kaku, Hanae

    2017-11-24

    Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Biomarkers for nonclinical infusion reactions in marketed biotherapeutics and considerations for study design.

    PubMed

    Mease, Kirsten M; Kimzey, Amy L; Lansita, Janice A

    2017-06-01

    The observation of an infusion reaction (IR) in a nonclinical study can cause concern among investigators and regulators in the development of biotherapeutics. Biomarkers can be informative to determine whether the reactions are immune-mediated or test-article related and if there is a potential risk to human subjects. IRs encompass a broad range of adverse events with a variety of triggers; the focus of this paper is IRs due to cytokine release syndrome or immune complex formation and the associated biomarkers. Such reactions generally do not preclude clinical development or marketing approval, because it is widely accepted that immune-mediated reactions in nonclinical species are not predictive of human outcomes. Several US approved products (from 2004 to 2016) have documented IRs in nonclinical species. This review article discusses recent examples, the biomarkers evaluated, and implications for study design and conduct.

  17. Characterization of immune response to Eimeria tenella antigens in a natural immunity model with hosts which differ serologically at the B locus of the major histocompatibility complex.

    PubMed Central

    Brake, D A; Fedor, C H; Werner, B W; Miller, T J; Taylor, R L; Clare, R A

    1997-01-01

    A model to simulate natural immunity to Eimeria tenella was developed in three chicken lines which differ at the B locus of the major histocompatibility complex. Homozygous, 1-day-old chicks of the B19B19, B24B24, or B30B30 genotype were trickle immunized by being orally fed a small infectious dose of E. tenella oocysts for 5 consecutive days. These naturally exposed birds were then challenged at different times between 5 and 24 days after the final dose, and the level of protection was assessed 6 days after challenge, using body weight gain and intestinal lesion scores. The duration of immunity in naturally exposed birds differed among the major histocompatibility complex lines. Trickle immunization of the B19B19 haplotype afforded the longest and strongest level of protection compared to the other two haplotypes tested. In addition, in vitro splenic and peripheral blood lymphocyte proliferative responses in trickle-immunized birds were measured against sporozoite, merozoite, and tissue culture-derived E. tenella parasite antigens isolated from the recently described SB-CEV-1/F7 established cell line. The lymphocytes obtained from B19B19 birds trickle immunized responded in vitro to the E. tenella-infected SB-CEV-1/F7 tissue culture-derived parasite antigen. Furthermore, antigen-specific immune responses appeared earlier in immune, challenged B19B19 birds than in their naive, challenged counterparts. The development of a model simulating natural immunization will serve as a foundation to further characterize both humoral and cell-mediated responses to E. tenella tissue culture-derived parasite antigens and to better understand host protective immune responses to avian coccidiosis. PMID:9119452

  18. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration.

    PubMed

    Cloutier, Nathalie; Allaeys, Isabelle; Marcoux, Genevieve; Machlus, Kellie R; Mailhot, Benoit; Zufferey, Anne; Levesque, Tania; Becker, Yann; Tessandier, Nicolas; Melki, Imene; Zhi, Huiying; Poirier, Guy; Rondina, Matthew T; Italiano, Joseph E; Flamand, Louis; McKenzie, Steven E; Cote, Francine; Nieswandt, Bernhard; Khan, Waliul I; Flick, Matthew J; Newman, Peter J; Lacroix, Steve; Fortin, Paul R; Boilard, Eric

    2018-02-13

    There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.

  19. Tuning cancer fate: the unremitting role of host immunity

    PubMed Central

    Molon, B.; Viola, A.

    2017-01-01

    Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers. PMID:28404796

  20. Breaking self-tolerance during autoimmunity and cancer immunity: Myeloid cells and type I IFN response regulation.

    PubMed

    Tarbell, Kristin V; Egen, Jackson G

    2018-02-02

    The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction. ©2018 Society for Leukocyte Biology.

  1. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity.

    PubMed

    Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B

    2013-12-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.

  2. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell–mediated cytotoxicity

    PubMed Central

    Tuli, Amit; Thiery, Jerome; James, Ashley M.; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B.; Orange, Jordan S.; Lieberman, Judy; Brenner, Michael B.

    2013-01-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity. PMID:24088571

  3. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  4. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    PubMed

    Broce, Iris; Karch, Celeste M; Wen, Natalie; Fan, Chun C; Wang, Yunpeng; Tan, Chin Hong; Kouri, Naomi; Ross, Owen A; Höglinger, Günter U; Muller, Ulrich; Hardy, John; Momeni, Parastoo; Hess, Christopher P; Dillon, William P; Miller, Zachary A; Bonham, Luke W; Rabinovici, Gil D; Rosen, Howard J; Schellenberg, Gerard D; Franke, Andre; Karlsen, Tom H; Veldink, Jan H; Ferrari, Raffaele; Yokoyama, Jennifer S; Miller, Bruce L; Andreassen, Ole A; Dale, Anders M; Desikan, Rahul S; Sugrue, Leo P

    2018-01-01

    Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA) region on Chromosome (Chr) 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2), TBKBP1 (TBK1 binding protein 1), and PGBD5 (piggyBac transposable element derived 5). Functionally, we found that the expression of FTD-immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with FTD and is enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. We show immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to FTD risk. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD.

  5. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection

    PubMed Central

    Kubinak, Jason L.; Stephens, W. Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J.; Petrosino, Joseph F.; Morrison, Linda; Potts, Wayne K.; Jensen, Peter E.; O'Connell, Ryan M.; Round, June L.

    2015-01-01

    The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419

  6. Immunoregulatory effects of covalent antigen-antibody complexes. III. Enhancement or suppression depending on the time of administration of complex relative to a T-independent antigen.

    PubMed Central

    Tite, J P; Morrison, C A; Taylor, R B

    1981-01-01

    The photosensitive affinity label NAP (4-azido-2-nitrophenyl) was used to make a stable covalent-bonded monomeric immune complex (Ag2Ab) between rabbit anti-NAP antibody and a bihaptenic compound containing NAP linked to fluorescein (NAP-aminocaproyl-lysyl-Fl). This complex injected into mice had marked effects on their subsequent response to fluorescein coupled to a thymus-independent carrier (Fl-ficoll). Depending on the time at which the complex was administered relative to challenge, it was possible to obtain either enhancing or suppressive effects. The enhancing but not the suppressive effect of complex was dependent on immune recognition of the rabbit IgG carrier. While the suppressive effect probably results from complex-mediated inactivation of T-independent B cells, it is suggested that the enhancing effect results from priming of the T-dependent B cells by Fl-Ficoll followed by their triggering into antibody production by rabbit IgG-specific helper cells. PMID:7007223

  7. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes

    PubMed Central

    Monsalvo, Ana Clara; Batalle, Juan P.; Lopez, M. Florencia; Krause, Jens C.; Klemenc, Jennifer; Zea, Johanna; Maskin, Bernardo; Bugna, Jimena; Rubinstein, Carlos; Aguilar, Leandro; Dalurzo, Liliana; Libster, Romina; Savy, Vilma; Baumeister, Elsa; Aguilar, Liliana; Cabral, Graciela; Font, Julia; Solari, Liliana; Weller, Kevin P.; Johnson, Joyce; Echavarria, Marcela; Edwards, Kathryn M.; Chappell, James D.; Crowe, James E.; Williams, John V.; Melendi, Guillermina A.; Polack, Fernando P.

    2010-01-01

    Pandemic influenza viruses often cause severe disease in middle-aged adults without preexistent co-morbidities. The mechanism of illness associated with severe disease in this age group is not well understood1–10. Here, we demonstrate preexisting serum antibody that cross-reacts with, but does not protect against 2009 H1N1 influenza virus in middle-aged adults. Non-protective antibody is associated with immune complex(IC)-mediated disease after infection. High titers of serum antibody of low avidity for H1-2009 antigen, and low avidity pulmonary ICs against the same protein were detected in severely ill patients. Moreover, C4d deposition - a sensitive marker of complement activation mediated by ICs- was present in lung sections of fatal cases. Archived lung sections from adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a novel biological mechanism for the unusual age distribution of severe cases during influenza pandemics. PMID:21131958

  8. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    PubMed

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  9. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium.

    PubMed

    Finetti, Francesca; Onnis, Anna; Baldari, Cosima T

    2015-03-01

    The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The interplay between the gut microbiota and the immune system.

    PubMed

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

  11. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    PubMed

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  12. Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen

    PubMed Central

    Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E

    2017-01-01

    The inducible innate immune response to infection requires a concerted process of gene expression that is regulated at multiple levels. Most global analyses of the innate immune response have focused on transcription induced by defined immunostimulatory ligands, such as lipopolysaccharide. However, the response to pathogens involves additional complexity, as pathogens interfere with virtually every step of gene expression. How cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate protective responses remains unclear. We previously discovered that a pathogen-mediated blockade of host protein synthesis provokes the production of specific pro-inflammatory cytokines. It remains unclear how these cytokines are produced despite the global pathogen-induced block of translation. We addressed this question by using parallel RNAseq and ribosome profiling to characterize the response of macrophages to infection with the intracellular bacterial pathogen Legionella pneumophila. Our results reveal that mRNA superinduction is required for the inducible immune response to a bacterial pathogen. DOI: http://dx.doi.org/10.7554/eLife.22707.001 PMID:28383283

  13. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Sarkadi, Adrien Katalin; Erdős, Melinda; Maródi, László

    2015-01-01

    The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.

  14. The role of the microbiota in shaping infectious immunity

    PubMed Central

    Hand, Timothy W.

    2016-01-01

    Humans are meta-organisms that maintain a diverse population of microorganisms on their barrier surfaces, collectively named the microbiota. Since most pathogens either cross or inhabit barrier surfaces, the microbiota plays a critical and often protective role during infections, both by modulating immune system responses and by mediating colonization resistance. However, the microbiota can also act as a reservoir for opportunistic micro-organisms that can ‘bloom’, significantly complicating diseases of barrier surfaces by contributing to inflammatory immune responses. Here, we review our current understanding of the complex interactions between the host, its microbiota and pathogenic organisms, focusing in particular on the intestinal mucosa. PMID:27616558

  15. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benach, J.L.; Fleit, H.B.; Habicht, G.S.

    1984-10-01

    The phagocytic capacity of murine and human mononuclear and polymorphonuclear phagocytes (including peripheral blood monocytes and neutrophils), rabbit and murine peritoneal exudate cells, and the murine macrophage cell line P388D1 against the Lyme disease spirochete was studied. All of these cells were capable of phagocytosing the spirochete; phagocytosis was measured by the uptake of radiolabeled spirochetes, the appearance of immunofluorescent bodies in phagocytic cells, and electron microscopy. Both opsonized and nonopsonized organisms were phagocytosed. The uptake of opsonized organisms by neutrophils was blocked by a monoclonal antibody specific for the Fc receptor and by immune complexes; these findings suggested thatmore » most phagocytosis is mediated by the Fc receptor. Similarly, the uptake of opsonized organisms by human monocytes was inhibited by human monomeric IgG1 and by immune complexes. These results illustrate the role of immune phagocytosis of spirochetes in host defense against Lyme disease.« less

  16. Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells

    NASA Technical Reports Server (NTRS)

    Towmey, J. J.

    1976-01-01

    Some immune response are effected through immunoglobulins (Ig), of which five classes have been recognized, namely, IgA, IgD, IgE, IgG, and IgM. Auto-antibodies associated with rheumatoid arthritis, termed rheumatoid factors (RF) react with antigenic determinants on IgG heavy chains. RF has predominant but not complete IgM specificity. This auto-antibody response was not detected in treated patients with primary brain tumors (where tissue is sequestered from the immune system by an intact bloodbrain barrier) or with multiple myeloma where humoral immunity is usually impaired. In addition, the prevalence of RF is not increased with solid tumors prior to initiation of chemotherapy or radiotherapy. It is proposed that RF is related to prior chemotherapy or radiotherapy of tumors anatomically accessible to immunologic tissues capable of antibody responses. A primary IgG response occurs, antigen-antibody complexes form, complexed IgG becomes immunologic, and an RF response results.

  17. More than just immune evasion: Hijacking complement by Plasmodium falciparum.

    PubMed

    Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong

    2015-09-01

    Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Role of FcRn in Antigen Presentation

    PubMed Central

    Baker, Kristi; Rath, Timo; Pyzik, Michal; Blumberg, Richard S.

    2014-01-01

    Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors that bind IgG at the cell surface, the neonatal Fc receptor (FcRn) is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC). Cross-linking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells initiates specific mechanisms that result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both major histocompatibility complex class I and II molecules. In turn, this enables the synchronous activation of both CD4+ and CD8+ T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and cancer. PMID:25221553

  19. Immune-mediated steroid-responsive epileptic spasms and epileptic encephalopathy associated with VGKC-complex antibodies.

    PubMed

    Suleiman, Jehan; Brenner, Tanja; Gill, Deepak; Troedson, Christopher; Sinclair, Adriane J; Brilot, Fabienne; Vincent, Angela; Lang, Bethan; Dale, Russell C

    2011-11-01

    Autoantibodies that bind to voltage-gated potassium-channel complex proteins (VGKC-complex antibodies) occur frequently in adults with limbic encephalitis presenting with cognitive impairment and seizures. Recently, VGKC-complex antibodies have been described in a few children with limbic encephalitis, and children with unexplained encephalitis presenting with status epilepticus. We report a case of infantile-onset epileptic spasms and developmental delay compatible with epileptic encephalopathy. Our patient was a female infant, aged 4 months at presentation. She had evidence of immune activation in the central nervous system with elevated cerebrospinal fluid neopterin and mirrored oligoclonal bands, which prompted testing for autoantibodies. VGKC-complex antibodies were elevated (201 pmol/L, normal<100), but extended antibody testing, including leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein 2 (CASPR2), was negative. The patient showed a partial response to steroid treatment, which was started late in the disease course. On review at 13 months of age, her development was consistent with an age of 5 to 6 months. These results suggest that VGKC-complex antibodies might represent a marker of immune therapy responsiveness in a subgroup of patients with infantile epileptic encephalopathy. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  20. From bench to pet shop to bedside? The environment and immune function in mice.

    PubMed

    Kitching, A Richard; Ooi, Joshua D

    2016-12-01

    The generation of inbred mouse strains in the late 19th and early 20th centuries, coupled with the later establishment of specific pathogen-free animal research facilities created a powerful biological platform for exploration of the immune system in health and disease. Studies in this setting have been responsible for huge advances in our understanding of immunobiology and disease, including immune-mediated kidney disease. However, whereas this reductionist and relatively standardized approach allows us to make sense of complex disease biology, it takes place in controlled environments that clearly differ from those that we humans encounter in everyday life. Recent studies comparing the immune systems of wild mice, pet shop mice, and laboratory mice suggest ways in which the murine immune system can be influenced to behave more like the human immune system. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. The Mediator Complex Subunits MED14, MED15, and MED16 Are Involved in Defense Signaling Crosstalk in Arabidopsis.

    PubMed

    Wang, Chenggang; Du, Xuezhu; Mou, Zhonglin

    2016-01-01

    Mediator is a highly conserved protein complex that functions as a transcriptional coactivator in RNA polymerase II (RNAPII)-mediated transcription. The Arabidopsis Mediator complex has recently been implicated in plant immune responses. Here, we compared salicylic acid (SA)-, methyl jasmonate (MeJA)-, and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-induced defense and/or wound-responsive gene expression in 14 Arabidopsis Mediator subunit mutants. Our results show that MED14, MED15, and MED16 are required for SA-activated expression of the defense marker gene PATHOEGNESIS-RELATED GENE1 , MED25 is required for MeJA-induced expression of the wound-responsive marker gene VEGATATIVE STORAGE PROTEIN1 ( VSP1 ), MED8, MED14, MED15, MED16, MED18, MED20a, MED25, MED31, and MED33A/B (MED33a and MED33B) are required for MeJA-induced expression of the defense maker gene PLANT DEFENSIN1.2 ( PDF1.2 ), and MED8, MED14, MED15, MED16, MED25, and MED33A/B are also required for ACC-triggered expression of PDF1.2 . Furthermore, we investigated the involvement of MED14, MED15, and MED16 in plant defense signaling crosstalk and found that MED14, MED15, and MED16 are required for SA- and ET-mediated suppression of MeJA-induced VSP1 expression. This result suggests that MED14, MED15, and MED16 not only relay defense signaling from the SA and JA/ET defense pathways to the RNAPII transcription machinery, but also fine-tune defense signaling crosstalk. Finally, we show that MED33A/B contributes to the necrotrophic fungal pathogen Botrytis cinerea- induced expression of the defense genes PDF1.2, HEVEIN-LIKE , and BASIC CHITINASE and is required for full-scale basal resistance to B. cinerea , demonstrating a positive role for MED33 in plant immunity against necrotrophic fungal pathogens.

  2. Human innate lymphoid cells.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  4. Evaluation of a DLA-79 allele associated with multiple immune-mediated diseases in dogs.

    PubMed

    Friedenberg, Steven G; Buhrman, Greg; Chdid, Lhoucine; Olby, Natasha J; Olivry, Thierry; Guillaumin, Julien; O'Toole, Theresa; Goggs, Robert; Kennedy, Lorna J; Rose, Robert B; Meurs, Kathryn M

    2016-03-01

    Immune-mediated diseases are common and life-threatening disorders in dogs. Many canine immune-mediated diseases have strong breed predispositions and are believed to be inherited. However, the genetic mutations that cause these diseases are mostly unknown. As many immune-mediated diseases in humans share polymorphisms among a common set of genes, we conducted a candidate gene study of 15 of these genes across four immune-mediated diseases (immune-mediated hemolytic anemia, immune-mediated thrombocytopenia, immune-mediated polyarthritis (IMPA), and atopic dermatitis) in 195 affected and 206 unaffected dogs to assess whether causative or predictive polymorphisms might exist in similar genes in dogs. We demonstrate a strong association (Fisher's exact p = 0.0004 for allelic association, p = 0.0035 for genotypic association) between two polymorphic positions (10 bp apart) in exon 2 of one allele in DLA-79, DLA-79*001:02, and multiple immune-mediated diseases. The frequency of this allele was significantly higher in dogs with immune-mediated disease than in control dogs (0.21 vs. 0.12) and ranged from 0.28 in dogs with IMPA to 0.15 in dogs with atopic dermatitis. This allele has two non-synonymous substitutions (compared with the reference allele, DLA-79*001:01), resulting in F33L and N37D amino acid changes. These mutations occur in the peptide-binding pocket of the protein, and based upon our computational modeling studies, are likely to affect critical interactions with the peptide N-terminus. Further studies are warranted to confirm these findings more broadly and to determine the specific mechanism by which the identified variants alter canine immune system function.

  5. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity?

    PubMed

    Correa, Silvia G; Maccioni, Mariana; Rivero, Virginia E; Iribarren, Pablo; Sotomayor, Claudia E; Riera, Clelia M

    2007-01-01

    The initial view of the neuroendocrine-immune communication as the brake of immune activation is changing. Recent evidence suggests that the optimization of the body's overall response to infection could be actually the role of the immune-endocrine network. In gradually more complex organisms, the multiplicity of host-pathogen interfaces forced the development of efficient and protective responses. Molecules such as cytokines and Toll-like receptors (TLRs) are distributed both in the periphery and in the brain to participate in a coordinated adaptive function. When sustained release of inflammatory mediators occurs, as in autoimmune diseases, undesirable pathological consequences become evident with different manifestations and outcomes. Clearly, organisms are not well adapted to that disregulated condition yet, suggesting that additional partners within neuroendocrine-immune interactions might emerge from the evolutionary road.

  7. ‘Nodophagy’

    PubMed Central

    Travassos, Leonardo H

    2010-01-01

    Autophagy is a homeostatic pathway that processes and recycles damaged organelles and other cytoplasmic contents. While studies have implicated autophagy in the immune response to infection, the understanding of how the autophagic machinery specifically targets intracellular pathogens has remained elusive. Two recent studies have uncovered an autophagy-mediated immune response to bacteria through their detection by Nod receptors. In particular, Nod1 and Nod2 recruit the autophagic protein ATG16L1 to the plasma membrane at the bacterial entry site to promote an autophagy-dependent elimination of bacteria. In addition, Nod2 and ATG16L1 synergize to initiate an adaptive immune response to bacterial invasion by enhancing major histocompatibility complex (MHC) class II antigen presentation. These findings link two Crohn disease-associated susceptibility genes and reveal that cells expressing the risk-associated variants of ATG16L1 are defective in autophagy-mediated bacterial handling and antigen presentation. This could lead to bacterial persistence and contribute to the pathogenesis of the disease. PMID:21327039

  8. Acquired cutis laxa following urticarial vasculitis associated with IgA myeloma.

    PubMed

    Turner, Ryan B; Haynes, Harley A; Granter, Scott R; Miller, Danielle M

    2009-06-01

    Cutis laxa (CL) is an inherited or acquired connective tissue disorder characterized clinically by loosely hanging skin folds. There is often preceding cutaneous inflammatory eruption (ie, urticaria, eczema, erythema multiforme), and there is frequently internal organ involvement of the gastrointestinal, urogenital, pulmonary, and cardiovascular systems. Histologically, there are degenerative changes in the dermal elastic fibers. Of the few reports on this rare disorder, authors have speculated about an immune-mediated destruction of elastic fibers, and monoclonal gammopathies, such as multiple myeloma or heavy chain deposition disease, have a recognized association with CL. We report an unusual case of rapidly progressing acquired CL associated with leukocytoclastic vasculitis, IgA myeloma, and an immune complex-mediated glomerulonephritis. Light microscopy of the lax skin revealed complete absence of elastic fibers in areas of vasculitis.

  9. Addictive drugs and their relationship with infectious diseases.

    PubMed

    Friedman, Herman; Pross, Susan; Klein, Thomas W

    2006-08-01

    The use of drugs of abuse, both recreationally and medicinally, may be related to serious public health concerns. There is a relationship between addictive drugs of abuse such as alcohol and nicotine in cigarette smoke, as well as illegal drugs such as opiates, cocaine and marijuana, and increased susceptibility to infections. The nature and mechanisms of immunomodulation induced by such drugs of abuse are described in this review. The effects of opiates and marijuana, using animal models as well as in vitro studies with immune cells from experimental animals and humans, have shown that immunomodulation induced by these drugs is mainly receptor-mediated, either directly by interaction with specific receptors on immune cells or indirectly by reaction with similar receptors on cells of the nervous system. Similar studies also show that cocaine and nicotine have marked immunomodulatory effects, which are mainly receptor-mediated. Both cocaine, an illegal drug, and nicotine, a widely used legal addictive component of cigarettes, are markedly immunomodulatory and increase susceptibility to infection. The nature and mechanism of immunomodulation induced by alcohol, the most widely used addictive substance of abuse, are similar but immunomodulatory effects, although not receptor-mediated. The many research studies on the effects of these drugs on immunity and increased susceptibility to infectious diseases, including AIDS, are providing a better understanding of the complex interactions between immunity, infections and substance abuse.

  10. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth.

    PubMed

    Lozano-Durán, Rosa; Macho, Alberto P; Boutrot, Freddy; Segonzac, Cécile; Somssich, Imre E; Zipfel, Cyril

    2013-12-31

    The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001.

  11. Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling

    PubMed Central

    Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki

    2010-01-01

    Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428

  12. Disabling Cas9 by an anti-CRISPR DNA mimic.

    PubMed

    Shin, Jiyung; Jiang, Fuguo; Liu, Jun-Jie; Bray, Nicolas L; Rauch, Benjamin J; Baik, Seung Hyun; Nogales, Eva; Bondy-Denomy, Joseph; Corn, Jacob E; Doudna, Jennifer A

    2017-07-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 gene editing technology is derived from a microbial adaptive immune system, where bacteriophages are often the intended target. Natural inhibitors of CRISPR-Cas9 enable phages to evade immunity and show promise in controlling Cas9-mediated gene editing in human cells. However, the mechanism of CRISPR-Cas9 inhibition is not known, and the potential applications for Cas9 inhibitor proteins in mammalian cells have not been fully established. We show that the anti-CRISPR protein AcrIIA4 binds only to assembled Cas9-single-guide RNA (sgRNA) complexes and not to Cas9 protein alone. A 3.9 Å resolution cryo-electron microscopy structure of the Cas9-sgRNA-AcrIIA4 complex revealed that the surface of AcrIIA4 is highly acidic and binds with a 1:1 stoichiometry to a region of Cas9 that normally engages the DNA protospacer adjacent motif. Consistent with this binding mode, order-of-addition experiments showed that AcrIIA4 interferes with DNA recognition but has no effect on preformed Cas9-sgRNA-DNA complexes. Timed delivery of AcrIIA4 into human cells as either protein or expression plasmid allows on-target Cas9-mediated gene editing while reducing off-target edits. These results provide a mechanistic understanding of AcrIIA4 function and demonstrate that inhibitors can modulate the extent and outcomes of Cas9-mediated gene editing.

  13. Cell-Mediated Immunity and Its Role in Resistance to Infection

    PubMed Central

    Wing, Edward J.; Remington, Jack S.

    1977-01-01

    The recently acquired knowledge of the importance of cell-mediated immunity in many illnesses and the discovery of a variety of substances that can restore certain cell-mediated immune functions has served to focus the attention of physicians on this area of immunity. It is important for practicing physicians to have a clear understanding of current knowledge of the role of cell-mediated immunity in resistance to infection and how this arm of the immune system relates to the diagnosis and therapy of infectious diseases. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:318786

  14. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a detectable immune response in green turtles.

  15. Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex.

    PubMed

    Guo, Tai Wei; Bartesaghi, Alberto; Yang, Hui; Falconieri, Veronica; Rao, Prashant; Merk, Alan; Eng, Edward T; Raczkowski, Ashleigh M; Fox, Tara; Earl, Lesley A; Patel, Dinshaw J; Subramaniam, Sriram

    2017-10-05

    Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition. Published by Elsevier Inc.

  16. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission.

    PubMed

    Hermance, Meghan E; Santos, Rodrigo I; Kelly, Brent C; Valbuena, Gustavo; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host's skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.

  17. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    PubMed Central

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the functional properties of HIV-1-specific IgG, more studies are needed on the functional attributes of HIV-1-specific IgA, specifically for vaccine-elicited IgA. Characterization of the functional properties of HIV-1 Env-specific IgA monoclonal antibodies from human vaccine clinical trials are critical toward understanding the capacity of the host immune response to block HIV-1 acquisition. PMID:29321320

  18. Clinical data, clinicopathologic findings and outcome in dogs with amegakaryocytic thrombocytopenia and primary immune-mediated thrombocytopenia.

    PubMed

    Cooper, S A; Huang, A A; Raskin, R E; Weng, H-Y; Scott-Moncrieff, J C

    2016-03-01

    The aim of this study was to identify distinguishing characteristics between dogs diagnosed with amegakaryocytic thrombocytopenia and those diagnosed with presumed primary peripheral immune-mediated thrombocytopenia. Presenting clinical and clinicopathologic data and outcomes were compared between the two groups. Retrospective study performed on seven client-owned dogs diagnosed with amegakaryocytic thrombocytopenia and 34 client-owned dogs with primary peripheral immune-mediated thrombocytopenia. All dogs in the amegakaryocytic thrombocytopenia group were anaemic on presentation with a median haematocrit of 23% (range 9·4 to 36), while the primary peripheral immune-mediated thrombocytopoenia group had a median presenting haematocrit of 35% (range 10 to 53). Dogs with amegakaryocytic thrombocytopenia had a median of five (range 4 to 7) clinical signs of bleeding compared to a median of three (range 0 to 6) in the primary peripheral immune-mediated thrombocytopenia group with 86% (6 of 7) of amegakaryocytic thrombocytopenia dogs requiring a blood transfusion compared to 41% (14 of 34) of primary peripheral immune-mediated thrombocytopenia dogs. Six of the seven amegakaryocytic thrombocytopenia dogs did not survive to discharge, while only five of the 34 primary peripheral immune-mediated thrombocytopenia dogs did not survive to discharge. The clinical presentation of dogs with amegakaryocytic thrombocytopenia and primary peripheral immune-mediated thrombocytopenia is similar, but dogs with amegakaryocytic thrombocytopenia had a more severe clinical course compared to primary peripheral immune-mediated thrombocytopenia dogs. The prognosis for dogs with amegakaryocytic thrombocytopenia is poor. © 2016 British Small Animal Veterinary Association.

  19. P-glycoprotein regulates blood–testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK)

    PubMed Central

    Su, Linlin; Mruk, Dolores D.; Lui, Wing-Yee; Lee, Will M.; Cheng, C. Yan

    2011-01-01

    The blood–testis barrier (BTB), one of the tightest blood–tissue barriers in the mammalian body, creates an immune-privileged site for postmeiotic spermatid development to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. However, the BTB undergoes extensive restructuring at stage VIII of the epithelial cycle to facilitate the transit of preleptotene spermatocytes and to prepare for meiosis. This action thus prompted us to investigate whether this stage can be a physiological window for the delivery of therapeutic and/or contraceptive drugs across the BTB to exert their effects at the immune-privileged site. Herein, we report findings that P-glycoprotein, an ATP-dependent efflux drug transporter and an integrated component of the occludin/zonula occludens 1 (ZO-1) adhesion complex at the BTB, structurally interacted with focal adhesion kinase (FAK), creating the occludin/ZO-1/FAK/P-glycoprotein regulatory complex. Interestingly, a knockdown of P-glycoprotein by RNAi was found to impede Sertoli cell BTB function, making the tight junction (TJ) barrier “leaky.” This effect was mediated by changes in the protein phosphorylation status of occludin via the action of FAK, thereby affecting the endocytic vesicle-mediated protein trafficking events that destabilized the TJ barrier. However, the silencing of P-glycoprotein, although capable of impeding drug transport across the BTB and TJ permeability barrier function, was not able to induce the BTB to be “freely” permeable to adjudin. These findings indicate that P-glycoprotein is involved in BTB restructuring during spermatogenesis but that P-glycoprotein–mediated restructuring does not “open up” the BTB to make it freely permeable to drugs. PMID:22106313

  20. Homeostatic Immunity and the Microbiota.

    PubMed

    Belkaid, Yasmine; Harrison, Oliver J

    2017-04-18

    The microbiota plays a fundamental role in the induction, education, and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. Here we review the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. Published by Elsevier Inc.

  1. Homeostatic immunity and the microbiota

    PubMed Central

    Belkaid, Yasmine; Harrison, Oliver J.

    2017-01-01

    The microbiota plays a fundamental role in the induction, education and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. In this review, we will highlight the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. PMID:28423337

  2. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    NASA Astrophysics Data System (ADS)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  3. Activating KIR molecules and their cognate ligands prevail in children with a diagnosis of ASD and in their mothers.

    PubMed

    Guerini, Franca R; Bolognesi, Elisabetta; Chiappedi, Matteo; Manca, Salvatorica; Ghezzo, Alessandro; Agliardi, Cristina; Zanette, Michela; Littera, Roberto; Carcassi, Carlo; Sotgiu, Stefano; Clerici, Mario

    2014-02-01

    The activity of natural killer (NK) cells is modulated by the interaction between killer-cell immune globulin-like receptor (KIR) proteins and their cognate HLA ligands; activated NK cells produce inflammatory cytokines and mediate innate immune responses. Activating KIR/HLA complexes (aKIR/HLA) were recently suggested to prevail in children with autism spectrum disorders (ASD), a neurodevelopmental syndrome characterized by brain and behavioral abnormalities and associated with a degree of inflammation. We verified whether such findings could be confirmed by analyzing two sample cohorts of Sardinian and continental Italian ASD children and their mothers. Results showed that aKIR/HLA are increased whereas inhibitory KIR/HLA complexes are reduced in ASD children; notably this skewing was even more significant in their mothers. KIR and HLA molecules are expressed by placental cells and by the trophoblast and their interactions result in immune activation and influence fetal, as well as central nervous system development and plasticity. Data herein suggest that in utero KIR/HLA immune interactions favor immune activation in ASD; this may play a role in the pathogenesis of the disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Hydrodynamic delivery of plasmid DNA encoding human FcγR-Ig dimers blocks immune-complex mediated inflammation in mice.

    PubMed

    Shashidharamurthy, R; Machiah, D; Bozeman, E N; Srivatsan, S; Patel, J; Cho, A; Jacob, J; Selvaraj, P

    2012-09-01

    Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcγ receptor-Ig fusion molecules (FcγR-Igs) in mice by administering FcγR-Ig plasmid DNAs hydrodynamically and compared their effectiveness with purified molecules in blocking immune-complex (IC)-mediated inflammation in mice. The concentration of hydrodynamically expressed FcγR-Igs (CD16A(F)-Ig, CD32A(R)-Ig and CD32A(H)-Ig) reached a maximum of 130 μg ml(-1) of blood within 24 h after plasmid DNA administration. The in vivo half-life of FcγR-Igs was found to be 9-16 days and western blot analysis showed that the FcγR-Igs were expressed as a homodimer. The hydrodynamically expressed FcγR-Igs blocked 50-80% of IC-mediated inflammation up to 3 days in a reverse passive Arthus reaction model. Comparative analysis with purified molecules showed that hydrodynamically expressed FcγR-Igs are more efficient than purified molecules in blocking IC-mediated inflammation and had a higher half-life. In summary, these results suggest that the administration of a plasmid vector with the FcγR-Ig gene can be used to study the consequences of blocking IC binding to FcγRs during the development of inflammatory diseases. This approach may have potential therapeutic value in treating IC-mediated inflammatory autoimmune diseases such as lupus, arthritis and autoimmune vasculitis.

  5. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

    PubMed

    Yuba, Eiji; Kanda, Yuhei; Yoshizaki, Yuta; Teranishi, Ryoma; Harada, Atsushi; Sugiura, Kikuya; Izawa, Takeshi; Yamate, Jyoji; Sakaguchi, Naoki; Koiwai, Kazunori; Kono, Kenji

    2015-10-01

    Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization and mucosal responses of interleukin 17 family ligand and receptor genes in channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Interleukin (IL) 17 family cytokines are important mediators of mucosal immune responses, tightly regulated by signals from the complex milieu of pathogenic and commensal microbes, epithelial cells and innate and adaptive leukocytes found at tissue barriers. In mammals, IL17 ligand expression has be...

  7. Autoimmune Addison's disease - An update on pathogenesis.

    PubMed

    Hellesen, Alexander; Bratland, Eirik; Husebye, Eystein S

    2018-06-01

    Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2.

    PubMed

    Laman, Alexander G; Lathe, Richard; Shepelyakovskaya, Anna O; Gartseva, Alexandra; Brovko, Feodor A; Guryanova, Svetlana; Alekseeva, Ludmila; Meshcheryakova, Elena A; Ivanov, Vadim T

    2016-11-01

    Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity. Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1 pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-κB expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2 co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1 and NOD2, a major recombinant fragment of NOD2 (NACHT-LRR) bound to YB1, and complex formation was stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an interaction between YB1 and NOD2.

  9. Immunomodulation: the future cure for allergic diseases.

    PubMed

    Tsitoura, Daphne C; Tassios, Yannis

    2006-11-01

    Allergies are the result of aberrant immune reactivity against common innocuous environmental proteins (allergens). A pivotal component of allergic pathogenesis is the generation of allergen-specific Th cells with an effector phenotype. These Th cells activate a complex immune cascade that triggers the release of potent mediators and enhances the mobilization of several inflammatory cells types, which in turn elicit the acute allergic reactions and promote the development of chronic inflammation. The current therapies for allergic diseases focus primarily on pharmacological control of symptoms and suppression of inflammation. This approach is beneficial, but not curative, since the underlying immune pathology is not inhibited. In an attempt to develop more effective therapeutic strategies, the scientific interest has been directed toward methods down-modulating the immune mechanisms that initiate and maintain the allergic cascade. Today, the only widely used disease-modifying form of allergy treatment is the specific immunotherapy with allergen extracts. More recently the use of anti-IgE has been approved for patients with allergic asthma. Other immunomodulatory methods being currently explored are the administration of microbial adjuvants that inhibit Th2 reactivity and the design of molecules that interrupt the activity of key allergic cytokines, chemokines, or other Th2 effector mediators.

  10. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.

    PubMed

    Momtazi-Borojeni, Amir Abbas; Haftcheshmeh, Saeed Mohammadian; Esmaeili, Seyed-Alireza; Johnston, Thomas P; Abdollahi, Elham; Sahebkar, Amirhossein

    2018-02-01

    Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor.

    PubMed

    Liu, Jun; Elmore, James Mitch; Lin, Zuh-Jyh Daniel; Coaker, Gitta

    2011-02-17

    Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. [Impairment of the immune system caused by drugs].

    PubMed

    Pichler, W J

    1987-03-21

    The immune response and the ensuing inflammation relies on a complex interaction of cells and mediators. Various drugs can interfere with individual steps of the immune response, and in so doing they often imitate regulatory mechanisms of the immune system itself. The immunosuppressive effect of corticosteroids is based on changes in cell migration, reduced responsiveness of monocytes/macrophages to various stimuli and diminished production of interleukin-2. Cyclosporin A appears to block prolactin binding to prolactin receptors on lymphocytes, thus interfering with the immunostimulatory effect of prolactin. It also appears to have a Calmodulin antagonism and might thus block lymphokine production. Anticoagulants may block delayed type hypersensitivity reactions, since activation of the coagulation cascade is involved in this type of immune reaction. Attempts to use calcium channel blockers as immunosuppressive agents, or to take advantage of the immunoregulatory effects of adrenergic substances/blockers or other neurotransmitters, are of experimental value only.

  13. Spleen Tyrosine Kinase (Syk) Mediates IL-1β Induction by Primary Human Monocytes during Antibody-enhanced Dengue Virus Infection*

    PubMed Central

    Callaway, Justin B.; Smith, Scott A.; McKinnon, Karen P.; de Silva, Aravinda M.; Crowe, James E.; Ting, Jenny P.-Y.

    2015-01-01

    Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to elevated cytokine production are not elucidated. IL-1β is a potent inflammatory cytokine that is frequently elevated during severe dengue, and the unique dual regulation of IL-1β provides an informative model to study ADE-induced cytokines. This work utilizes patient-derived anti-DENV mAbs and primary human monocytes to study ADE-induced IL-1β and other cytokines. ADE of DENV serotype 2 (DENV-2) elevates mature IL-1β secretion by monocytes independent of DENV replication by 4 h postinoculation (hpi). Prior to this, DENV immune complexes activate spleen tyrosine kinase (Syk) within 1 hpi. Syk induces elevated IL1B, TNF, and IL6 mRNA by 2 hpi. Syk mediates elevated IL-1β secretion by activating ERK1/2, and both Syk and ERK1/2 inhibitors ablated ADE-induced IL-1β secretion. Maturation of pro-IL-1β during ADE requires caspase-1 and NLRP3, but caspase-1 is suboptimally increased by ADE and can be significantly enhanced by a typical inflammasome agonist, ATP. Importantly, this inflammatory Syk-ERK signaling axis requires DENV immune complexes, because DENV-2 in the presence of serotype-matched anti-DENV-2 mAb, but not anti-DENV-1 mAb, activates Syk, ERK, and IL-1β secretion. This study provides evidence that DENV-2 immune complexes activate Syk to mediate elevated expression of inflammatory cytokines. Syk and ERK may serve as new therapeutic targets for interfering with ADE-induced cytokine expression during severe dengue. PMID:26032420

  14. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  15. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  16. Fallen Angels or Risen Apes? A Tale of the Intricate Complexities of Imbalanced Immune Responses in the Pathogenesis and Progression of Immune-Mediated and Viral Cancers

    PubMed Central

    Ondondo, Beatrice Omusiro

    2014-01-01

    Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes. PMID:24639678

  17. Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation

    PubMed Central

    Nikolaev, Alexander

    2016-01-01

    To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074

  18. Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl

    PubMed Central

    Zuk, M.; Johnsen, T. S.

    1998-01-01

    Resistance to disease is frequently suggested to be important in mate choice, but information about how immune status can be conveyed is lacking. During the breeding season, male red jungle fowl with large combs, a sexually selected trait, have lower levels of lymphocytes, but greater cell-mediated immunity, indicated by a cutaneous hypersensitivity response. Before the breeding season, however, both cell-mediated immunity and proportion of lymphocytes are positively correlated with comb length. Cell-mediated immunity is particularly important to jungle fowl during the breeding season, because the likelihood of injury during sexual competition is high and cell-mediated immunity is essential for healing wounds and resisting infection. This seasonal change in one aspect of immunity but not another suggests that the birds adaptively maintain certain immune system abilities, and that it can be misleading to use a single aspect of immune response in evaluating immunocompetence.

  19. The RNA silencing enzyme RNA polymerase v is required for plant immunity.

    PubMed

    López, Ana; Ramírez, Vicente; García-Andrade, Javier; Flors, Victor; Vera, Pablo

    2011-12-01

    RNA-directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)-mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)-mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA-related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear.

  20. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  1. Review of somatic symptoms in post-traumatic stress disorder.

    PubMed

    Gupta, Madhulika A

    2013-02-01

    Post-traumatic stress disorder (PTSD) is associated with both (1) 'ill-defined' or 'medically unexplained' somatic syndromes, e.g. unexplained dizziness, tinnitus and blurry vision, and syndromes that can be classified as somatoform disorders (DSM-IV-TR); and (2) a range of medical conditions, with a preponderance of cardiovascular, respiratory, musculoskeletal, neurological, and gastrointestinal disorders, diabetes, chronic pain, sleep disorders and other immune-mediated disorders in various studies. Frequently reported medical co-morbidities with PTSD across various studies include cardiovascular disease, especially hypertension, and immune-mediated disorders. PTSD is associated with limbic instability and alterations in both the hypothalamic- pituitary-adrenal and sympatho-adrenal medullary axes, which affect neuroendocrine and immune functions, have central nervous system effects resulting in pseudo-neurological symptoms and disorders of sleep-wake regulation, and result in autonomic nervous system dysregulation. Hypervigilance, a central feature of PTSD, can lead to 'local sleep' or regional arousal states, when the patient is partially asleep and partially awake, and manifests as complex motor and/or verbal behaviours in a partially conscious state. The few studies of the effects of standard PTSD treatments (medications, CBT) on PTSD-associated somatic syndromes report a reduction in the severity of ill-defined and autonomically mediated somatic symptoms, self-reported physical health problems, and some chronic pain syndromes.

  2. CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus

    PubMed Central

    Manica, Andrea; Schleper, Christa

    2013-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-mediated virus defense based on small RNAs is a hallmark of archaea and also found in many bacteria. Archaeal genomes and, in particular, organisms of the extremely thermoacidophilic genus Sulfolobus, carry extensive CRISPR loci each with dozens of sequence signatures (spacers) able to mediate targeting and degradation of complementary invading nucleic acids. The diversity of CRISPR systems and their associated protein complexes indicates an extensive functional breadth and versatility of this adaptive immune system. Sulfolobus solfataricus and S. islandicus represent two of the best characterized genetic model organisms in the archaea not only with respect to the CRISPR system. Here we address and discuss in a broader context particularly recent progress made in understanding spacer recruitment from foreign DNA, production of small RNAs, in vitro activity of CRISPR-associated protein complexes and attack of viruses and plasmids in in vivo test systems. PMID:23535277

  3. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA.

    PubMed

    Luo, Wei-Wei; Li, Shu; Li, Chen; Zheng, Zhou-Qin; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing; Wang, Yan-Yi

    2017-11-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus.

  4. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA

    PubMed Central

    Luo, Wei-Wei; Li, Shu; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing

    2017-01-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus. PMID:29155878

  5. Skin Immune Landscape: Inside and Outside the Organism.

    PubMed

    Abdallah, Florence; Mijouin, Lily; Pichon, Chantal

    2017-01-01

    The skin is an essential organ to the human body protecting it from external aggressions and pathogens. Over the years, the skin was proven to have a crucial immunological role, not only being a passive protective barrier but a network of effector cells and molecular mediators that constitute a highly sophisticated compound known as the "skin immune system" (SIS). Studies of skin immune sentinels provided essential insights of a complex and dynamic immunity, which was achieved through interaction between the external and internal cutaneous compartments. In fact, the skin surface is cohabited by microorganisms recognized as skin microbiota that live in complete harmony with the immune sentinels and contribute to the epithelial barrier reinforcement. However, under stress, the symbiotic relationship changes into a dysbiotic one resulting in skin disorders. Hence, the skin microbiota may have either positive or negative influence on the immune system. This review aims at providing basic background information on the cutaneous immune system from major cellular and molecular players and the impact of its microbiota on the well-coordinated immune responses in host defense.

  6. Altered IFN-γ-mediated immunity and transcriptional expression patterns in N-Ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease.

    PubMed

    Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle

    2014-01-01

    Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.

  7. The Role of Brain Inflammation in Epileptogenesis in TSC

    DTIC Science & Technology

    2013-07-01

    and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy . Neurobiol...tissue obtained from epilepsy patients, such as with mesial temporal sclerosis. Different types of inflammatory mediators and pathways have been...13. SUPPLEMENTARY NOTES 14. ABSTRACT Epilepsy is a common, disabling problem in patients with tuberous sclerosis complex (TSC) and

  8. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains.

    PubMed

    Bücherl, Christoph A; Jarsch, Iris K; Schudoma, Christian; Segonzac, Cécile; Mbengue, Malick; Robatzek, Silke; MacLean, Daniel; Ott, Thomas; Zipfel, Cyril

    2017-03-06

    Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.

  9. Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune-Mediated Myositis.

    PubMed

    Durward-Akhurst, S A; Finno, C J; Barnes, N; Shivers, J; Guo, L T; Shelton, G D; Valberg, S J

    2016-07-01

    Major histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune-mediated myositis (IMM) of humans and dogs and in dysferlin-deficient muscular dystrophy. To determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM. Twenty-one IMM horses of Quarter Horse-related breeds, 3 healthy and 6 disease controls (3 pasture myopathy, 3 amylase-resistant polysaccharide storage myopathy [PSSM]). Immunohistochemical staining for MHC I, II, and CD4+, CD8+, CD20+ lymphocytes was performed on archived muscle of IMM and control horses. Scores were given for MHC I, II, and lymphocytic subtypes. Immunofluorescent staining for dysferlin, dystrophin, and a-sarcoglycan was performed. Sarcolemmal MHC I and II expression was detected in 17/21 and 15/21 of IMM horses, respectively, and in specific fibers of PSSM horses, but not healthy or pasture myopathy controls. The CD4+, CD8+, and CD20+ cells were present in 20/21 IMM muscles with CD4+ predominance in 10/21 and CD8+ predominance in 6/21 of IMM horses. Dysferlin, dystrophin, and a-sarcoglycan staining were similar in IMM and control muscles. Deficiencies of dysferlin, dystrophin, and a-sarcoglycan are not associated with IMM. Sarcolemmal MHC I and II expression in a proportion of myofibers of IMM horses in conjunction with lymphocytic infiltration supports an immune-mediated etiology for IMM. The MHC expression also occured in specific myofibers in PSSM horses in the absence of lymphocytic infiltrates. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    PubMed Central

    Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony

    2016-01-01

    Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334

  11. Feline Glycoprotein A Repetitions Predominant Anchors Transforming Growth Factor Beta on the Surface of Activated CD4+CD25+ Regulatory T Cells and Mediates AIDS Lentivirus-Induced T Cell Immunodeficiency

    PubMed Central

    Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter

    2013-01-01

    Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523

  12. Feline glycoprotein A repetitions predominant anchors transforming growth factor beta on the surface of activated CD4(+)CD25(+) regulatory T cells and mediates AIDS lentivirus-induced T cell immunodeficiency.

    PubMed

    Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B

    2013-04-01

    Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.

  13. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.

    PubMed

    Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R

    2015-10-01

    Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Analysis of PAMP-Triggered ROS Burst in Plant Immunity.

    PubMed

    Sang, Yuying; Macho, Alberto P

    2017-01-01

    The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.

  15. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    NASA Astrophysics Data System (ADS)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  16. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].

    PubMed

    Sun, Dongchang; Qiu, Juanping

    2016-01-04

    To better adapt to the environment, prokaryocyte can take up exogenous genes (from bacteriophages, plasmids or genomes of other species) through horizontal gene transfer. Accompanied by the acquisition of exogenous genes, prokaryocyte is challenged by the invasion of 'selfish genes'. Therefore, to protect against the risk of gene transfer, prokaryocyte needs to establish mechanisms for selectively taking up or degrading exogenous DNA. In recent years, researchers discovered an adaptive immunity, which is mediated by the small RNA guided DNA degradation, prevents the invasion of exogenous genes in prokaryocyte. During the immune process, partial DNA fragments are firstly integrated.to the clustered regularly interspaced short palindromic repeats (CRISPR) located within the genome DNA, and then the mature CRISPR RNA transcript and the CRISPR associated proteins (Cas) form a complex CRISPR/Cas for degrading exogenous DNA. In this review, we will first briefly describe the CRISPR/Cas systems and then mainly focus on the recent advances of the function mechanism and the regulation mechanism of the type I-E CRISPR/Cas system in Escherichia coli.

  17. Cutaneous defenses against dermatophytes and yeasts.

    PubMed Central

    Wagner, D K; Sohnle, P G

    1995-01-01

    Predispositions to the superficial mycoses include warmth and moisture, natural or iatrogenic immunosuppression, and perhaps some degree of inherited susceptibility. Some of these infections elicit a greater inflammatory response than others, and the noninflammatory ones are generally more chronic. The immune system is involved in the defense against these infections, and cell-mediated immunity appears to be particularly important. The mechanisms involved in generating immunologic reactions in the skin are complex, with epidermal Langerhans cells, other dendritic cells, lymphocytes, microvascular endothelial cells, and the keratinocytes themselves all participating in one way or another. A variety of defects in the immunologic response to the superficial mycoses have been described. In some cases the defect may be preexistent, whereas in others the infection itself may interfere with protective cell-mediated immune responses against the organisms. A number of different mechanisms may underlie these immunologic defects and lead to the development of chronic superficial fungal infection in individual patients. Although the immunologic defects appear to be involved in the chronicity of certain types of cutaneous fungal infections, treatment of these defects remains experimental at the present time. PMID:7553568

  18. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis.

    PubMed

    Kimura, Yoshitaka; Inoue, Asuka; Hangai, Sho; Saijo, Shinobu; Negishi, Hideo; Nishio, Junko; Yamasaki, Sho; Iwakura, Yoichiro; Yanai, Hideyuki; Taniguchi, Tadatsugu

    2016-12-06

    Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.

  19. Innexin AGAP001476 Is Critical for Mediating Anti-Plasmodium Responses in Anopheles Mosquitoes

    PubMed Central

    Li, Michelle W. M.; Wang, Jiuling; Zhao, Yang O.; Fikrig, Erol

    2014-01-01

    The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes. PMID:25035430

  20. The Innate Immune System in Acute and Chronic Wounds

    PubMed Central

    MacLeod, Amanda S.; Mansbridge, Jonathan N.

    2016-01-01

    Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464

  1. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy

    PubMed Central

    Van Acker, Heleen H; Anguille, Sébastien; Van Tendeloo, Viggo F; Lion, Eva

    2015-01-01

    Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists. PMID:26405575

  2. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    PubMed

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  3. Binding of Free and Immune Complex-Associated Hepatitis C Virus to Erythrocytes Is Mediated by the Complement System.

    PubMed

    Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D

    2018-05-09

    Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  4. Helminthic therapy: using worms to treat immune-mediated disease.

    PubMed

    Elliott, David E; Weinstock, Joel V

    2009-01-01

    There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.

  5. Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk.

    PubMed

    Honjoh, Chisato; Chihara, Kazuyasu; Yoshiki, Hatsumi; Yamauchi, Shota; Takeuchi, Kenji; Kato, Yuji; Hida, Yukio; Ishizuka, Tamotsu; Sada, Kiyonao

    2017-04-10

    Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6'-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex.

  6. Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing.

    PubMed

    Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum

    2017-01-01

    The clustered, regularly interspaced, short palindromic repeat (CRISPR)-associated (Cas) system represents an efficient tool for genome editing. It consists of two components: the Cas9 protein and a guide RNA. To date, delivery of these two components has been achieved using either plasmid or viral vectors or direct delivery of protein and RNA. Plasmid- and virus-free direct delivery of Cas9 protein and guide RNA has several advantages over the conventional plasmid-mediated approach. Direct delivery results in shorter exposure time at the cellular level, which in turn leads to lower toxicity and fewer off-target mutations with reduced host immune responses, whereas plasmid- or viral vector-mediated delivery can result in uncontrolled integration of the vector sequence into the host genome and unwanted immune responses. Cell-penetrating peptide (CPP), a peptide that has an intrinsic ability to translocate across cell membranes, has been adopted as a means of achieving efficient Cas9 protein and guide RNA delivery. We developed a method for treating human cell lines with CPP-conjugated recombinant Cas9 protein and CPP-complexed guide RNAs that leads to endogenous gene disruption. Here we describe a protocol for preparing an efficient CPP-conjugated recombinant Cas9 protein and CPP-complexed guide RNAs, as well as treatment methods to achieve safe genome editing in human cell lines.

  7. Dysregulation of Innate and Adaptive Serum Mediators Precedes Systemic Lupus Erythematosus Classification and Improves Prognostic Accuracy of Autoantibodies

    PubMed Central

    Guthridge, Joel M.; Bean, Krista M.; Fife, Dustin A.; Chen, Hua; Slight-Webb, Samantha R.; Keith, Michael P.; Harley, John B.; James, Judith A.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a poorly understood preclinical stage of immune dysregulation and symptom accrual. Accumulation of antinuclear autoantibody (ANA) specificities is a hallmark of impending clinical disease. Yet, many ANA-positive individuals remain healthy, suggesting that additional immune dysregulation underlies SLE pathogenesis. Indeed, we have recently demonstrated that interferon (IFN) pathways are dysregulated in preclinical SLE. To determine if other forms of immune dysregulation contribute to preclinical SLE pathogenesis, we measured SLE-associated autoantibodies and soluble mediators in samples from 84 individuals collected prior to SLE classification (average timespan = 5.98 years), compared to unaffected, healthy control samples matched by race, gender, age (± 5 years), and time of sample procurement. We found that multiple soluble mediators, including interleukin (IL)-5, IL-6, and IFN-γ, were significantly elevated in cases compared to controls more than 3.5 years pre-classification, prior to or concurrent with autoantibody positivity. Additional mediators, including innate cytokines, IFN-associated chemokines, and soluble tumor necrosis factor (TNF) superfamily mediators increased longitudinally in cases approaching SLE classification, but not in controls. In particular, levels of B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) were comparable in cases and controls until less than 10 months pre-classification. Over the entire pre-classification period, random forest models incorporating ANA and anti-Ro/SSA positivity with levels of IL-5, IL-6, and the IFN-γ-induced chemokine, MIG, distinguished future SLE patients with 92% (± 1.8%) accuracy, compared to 78% accuracy utilizing ANA positivity alone. These data suggest that immune dysregulation involving multiple pathways contributes to SLE pathogenesis. Importantly, distinct immunological profiles are predictive for individuals who will develop clinical SLE and may be useful for delineating early pathogenesis, discovering therapeutic targets, and designing prevention trials. PMID:27338520

  8. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  9. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  10. RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses

    PubMed Central

    Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji

    2018-01-01

    The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431

  11. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  12. Leptin and zinc relation: In regulation of food intake and immunity

    PubMed Central

    Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim

    2012-01-01

    Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD+4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity. PMID:23565497

  13. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism.

    PubMed

    Oleskin, Alexander V; Shenderov, Boris A; Rogovsky, Vladimir S

    2017-09-01

    This work is concerned with the role of evolutionary conserved substances, neurotransmitters, and neurohormones, within the complex framework of the microbial consortium-immune system-nervous system axis in the human or animal organism. Although the operation of each of these systems per se is relatively well understood, their combined effects on the host organism still await further research. Drawing on recent research on host-produced and microbial low-molecular-weight neurochemicals such as biogenic amines, amino acids, and short-chain fatty acids (SCFAs), we suggest that these mediators form a part of a universal neurochemical "language." It mediates the whole gamut of harmonious and disharmonious interactions between (a) the intestinal microbial consortium, (b) local and systemic immune cells, and (c) the central and peripheral nervous system. Importantly, the ongoing microbiota-host interactivity is bidirectional. We present evidence that a large number of microbially produced low-molecular-weight compounds are identical or homologous to mediators that are synthesized by immune or nervous cells and, therefore, can bind to the corresponding host receptors. In addition, microbial cells specifically respond to host-produced neuromediators/neurohormones because they have adapted to them during the course of many millions of years of microbiota-host coevolution. We emphasize that the terms "microbiota" and "microbial consortium" are to be used in the broadest sense, so as to include, apart from bacteria, also eukaryotic microorganisms. These are exemplified by the mycobiota whose role in the microbial consortium-immune system-nervous system axis researchers are only beginning to elucidate. In light of the above, it is imperative to reform the current strategies of using probiotic microorganisms and their metabolites for treating and preventing dysbiosis-related diseases. The review demonstrates, in the example of novel probiotics (psychobiotics), that many target-oriented probiotic preparations produce important side effects on a wide variety of processes in the host organism. In particular, we should take into account probiotics' capacity to produce mediators that can considerably modify the operation of the microecological, immune, and nervous system of the human organism.

  14. Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania

    PubMed Central

    KAWAI, K.; MEYDANI, S. N.; URASSA, W.; WU, D.; MUGUSI, F. M.; SAATHOFF, E.; BOSCH, R. J.; VILLAMOR, E.; SPIEGELMAN, D.; FAWZI, W. W.

    2017-01-01

    SUMMARY Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examined the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T-cell mitogens in a randomized trial conducted on 423 patients with pulmonary TB. Eligible participants were randomly assigned to receive a daily dose of micronutrients (vitamins A, B-complex, C, E, and selenium) or placebo at the time of initiation of TB treatment. We found no overall effect of micronutrient supplements on lymphocyte proliferative responses to phytohaemagglutinin or purified protein derivatives in HIV-negative and HIV-positive TB patients. Of HIV-negative TB patients, the micronutrient group tended to show higher proliferative responses to concanavalin A than the placebo group, although the clinical relevance of this finding is not readily notable. The role of nutritional intervention in this vulnerable population remains an important area of future research. PMID:24093552

  15. Targeting interleukin-6 for noninfectious uveitis

    PubMed Central

    Lin, Phoebe

    2015-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine implicated in the pathogenesis of many immune-mediated disorders including several types of non-infectious uveitis. These uveitic conditions include Vogt-Koyanagi-Harada syndrome, uveitis associated with Behçet disease, and sarcoidosis. This review summarizes the role of IL-6 in immunity, highlighting its effect on Th17, Th1, and plasmablast differentiation. It reviews the downstream mediators activated in the process of IL-6 binding to its receptor complex. This review also summarizes the biologics targeting either IL-6 or the IL-6 receptor, including tocilizumab, sarilumab, sirukumab, olokizumab, clazakizumab, and siltuximab. The target, dosage, potential side effects, and potential uses of these biologics are summarized in this article based on the existing literature. In summary, anti-IL-6 therapy for non-infectious uveitis shows promise in terms of efficacy and side effect profile. PMID:26392750

  16. IMPDHII Protein Inhibits Toll-like Receptor 2-mediated Activation of NF-κB*

    PubMed Central

    Toubiana, Julie; Rossi, Anne-Lise; Grimaldi, David; Belaidouni, Nadia; Chafey, Philippe; Clary, Guilhem; Courtine, Emilie; Pene, Frederic; Mira, Jean-Paul; Claessens, Yann-Erick; Chiche, Jean-Daniel

    2011-01-01

    Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K. PMID:21460227

  17. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less

  18. Microbiota as a mediator of cancer progression and therapy.

    PubMed

    Pope, Jillian L; Tomkovich, Sarah; Yang, Ye; Jobin, Christian

    2017-01-01

    Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Microbiota as a mediator of cancer progression and therapy

    PubMed Central

    Pope, Jillian L.; Tomkovich, Sarah; Yang, Ye; Jobin, Christian

    2017-01-01

    Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. PMID:27554797

  20. [Systemic lupus erythematosus and pregnancy].

    PubMed

    Basheva, S; Nikolov, A; Stoilov, R; Stoilov, N

    2012-01-01

    Connective-tissue disorders, also referred to as collagen-vascular disorders, are characterized by autoantibody-mediated connective-tissue abnormalities. These are also called immune-complex diseases because many involve deposition of immune complexes in specific organ or tissue sites. Some of these disorders are characterized by sterile inflammation, especially of the skin, joints, blood vessels, and kidneys, and are referred to as rheumatic diseases. For inexplicable reasons, many rheumatic diseases primarily affect women. Another major category of connective-tissue diseases includes inherited disorders of bone, skin, cartilage, blood vessels. Examples include Marfan syndrome, osteogenesis imperfecta, and Ehlers-Danlos syndrome. Lupus erythematosus (LE) is the main and most important disease in the group of systemic connective tissue diseases. It is heterogeneous, multiple organs autoimmune inflammatory disease with complex pathogenesis, which is the result of interaction between the susceptible genes and environmental factors that lead to abnormal immune response. In this review will consider: its incidence, pathogenesis, clinical forms and clinical features and diagnosis set based on generally accepted clinical criteria developed by the American College of Rheumatology (ACR), the course of pregnancy in patients suffering from LE, the most common complications of LE during pregnancy and antiphospholipid syndrome as part of LE.

  1. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.

    PubMed

    Martin, Roland; Sospedra, Mireia; Rosito, Maria; Engelhardt, Britta

    2016-09-01

    Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Suppression of adenoviral gene expression in the liver: role of innate vs adaptive immunity and their cell lysis mechanisms.

    PubMed

    Minagawa, Masahiro; Kawamura, Hiroki; Liu, Zhangxu; Govindarajan, Sugantha; Dennert, Gunther

    2005-06-01

    Injection of adenoviral constructs causes liver infection prompting immunity, which suppress viral gene expression. Innate and adaptive immunity mediate these processes raising the question which pathways are the most prominent. Adenovirus expressing the beta-galactosidase (beta-gal) gene was injected into normal and immunodeficient mice. Elimination of beta-gal-expressing hepatocytes and increases in liver enzymes were assayed. Major histocompatibility complex (MHC) class I densities, perforin channel insertion and apoptosis by Fas and tumor necrosis factor (TNF)-alpha were assayed. At high virus doses, suppression of viral gene expression was as efficient in immunodeficient as in normal mice, while at low doses effects of cytotoxic T lymphocytes (CTL) were demonstrable. Despite CTL priming and elimination of infected hepatocytes no liver injury is detected. Hepatocyte MHC I densities were able to trigger CTL granule exocytosis and perforin lysis in vitro but not in vivo. This is we show is because of decreased sensitivity of hepatocytes from infected mice to perforin and increased sensitivity to Fas and TNF-alpha lysis. Effector cells of the innate immune system are exceedingly effective in suppressing adenoviral gene expression. Perforin-independent pathways, those mediated by TNF-alpha and Fas are very efficient in hepatocytes from virus-infected livers.

  3. 5'-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells.

    PubMed

    Li, Dengzhe; Gale, Robert Peter; Liu, Yanfeng; Lei, Baoxia; Wang, Yuan; Diao, Dongmei; Zhang, Mei

    2017-07-01

    Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5'-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evasion of adaptive immunity by HIV through the action of host APOBEC3G/F enzymes.

    PubMed

    Grant, Michael; Larijani, Mani

    2017-09-12

    APOBEC3G (A3G) and APOBEC3F (A3F) are DNA-mutating enzymes expressed in T cells, dendritic cells and macrophages. A3G/F have been considered innate immune host factors, based on reports that they lethally mutate the HIV genome in vitro. In vivo, A3G/F effectiveness is limited by viral proteins, entrapment in inactive complexes and filtration of mutations during viral life cycle. We hypothesized that the impact of sub-lethal A3G/F action could extend beyond the realm of innate immunity confined to the cytoplasm of infected cells. We measured recognition of wild type and A3G/F-mutated epitopes by cytotoxic T lymphocytes (CTL) from HIV-infected individuals and found that A3G/F-induced mutations overwhelmingly diminished CTL recognition of HIV peptides, in a human histocompatibility-linked leukocyte antigen (HLA)-dependent manner. Furthermore, we found corresponding enrichment of A3G/F-favored motifs in CTL epitope-encoding sequences within the HIV genome. These findings illustrate that A3G/F-mediated mutations mediate immune evasion by HIV in vivo. Therefore, we suggest that vaccine strategies target T cell or antibody epitopes that are not poised for mutation into escape variants by A3G/F action.

  5. Uptake of apoptotic leukocytes by synovial lining macrophages inhibits immune complex-mediated arthritis.

    PubMed

    van Lent, P L; Licht, R; Dijkman, H; Holthuysen, A E; Berden, J H; van den Berg, W B

    2001-11-01

    Previously we have shown that synovial lining macrophages (SLMs) determine the onset of experimental immune complex-mediated arthritis (ICA). During joint inflammation, many leukocytes undergo apoptosis, and removal of leukocytes by SLMs may regulate resolution of inflammation. In this study we investigated binding and uptake of apoptotic leukocytes by SLMs and its impact on the onset of murine experimental arthritis. We used an in vitro model to evaluate phagocytosis of apoptotic cells on chemotaxis. Phagocytosis of apoptotic thymocytes resulted in a significant decrease (58%) of chemotactic activity for polymorphonuclear neutrophils (PMNs). If apoptotic cells were injected directly into a normal murine knee joint, SLMs resulted in a prominent uptake of cells. After ICA induction, electron micrographs showed that apoptotic leukocytes were evidently present in SLMs on days 1 and 2. Injection of apoptotic leukocytes into the knee joint 1 h before induction of ICA significantly inhibited PMN infiltration into the knee joint at 24 h (61% decrease). This study indicates that uptake of apoptotic leukocytes by SLM reduces chemotactic activity and inhibits the onset of experimental arthritis. These findings indicate an important mechanism in the resolution of joint inflammation.

  6. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy

    PubMed Central

    Ganesan, Raja; Hos, Nina Judith; Gutierrez, Saray; Fischer, Julia; Stepek, Joanna Magdalena; Daglidu, Evmorphia; Krönke, Martin

    2017-01-01

    During intracellular infections, autophagy significantly contributes to the elimination of pathogens, regulation of pro-inflammatory signaling, secretion of immune mediators and in coordinating the adaptive immune system. Intracellular pathogens such as S. Typhimurium have evolved mechanisms to circumvent autophagy. However, the regulatory mechanisms targeted by S. Typhimurium to modulate autophagy have not been fully resolved. Here we report that cytosolic energy loss during S. Typhimurium infection triggers transient activation of AMPK, an important checkpoint of mTOR activity and autophagy. The activation of AMPK is regulated by LKB1 in a cytosolic complex containing Sirt1 and LKB1, where Sirt1 is required for deacetylation and subsequent activation of LKB1. S. Typhimurium infection targets Sirt1, LKB1 and AMPK to lysosomes for rapid degradation resulting in the disruption of the AMPK-mediated regulation of mTOR and autophagy. The degradation of cytosolic Sirt1/LKB1/AMPK complex was not observed with two mutant strains of S. Typhimurium, ΔssrB and ΔssaV, both compromising the pathogenicity island 2 (SPI2). The results highlight virulence factor-dependent degradation of host cell proteins as a previously unrecognized strategy of S. Typhimurium to evade autophagy. PMID:28192515

  7. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus

    PubMed Central

    Nogusa, Shoko; Thapa, Roshan J.; Dillon, Christopher P.; Liedmann, Swantje; Oguin, Thomas H.; Ingram, Justin P.; Rodriguez, Diego A.; Kosoff, Rachelle; Sharma, Shalini; Sturm, Oliver; Verbist, Katherine; Gough, Peter J.; Bertin, John; Hartmann, Boris M.; Sealfon, Stuart C.; Kaiser, William J.; Mocarski, Edward S.; López, Carolina B.; Thomas, Paul G.; Oberst, Andrew; Green, Douglas R.; Balachandran, Siddharth

    2016-01-01

    Summary Influenza A virus (IAV) is a lytic virus in primary cultures of many cell types and in vivo. We report that the kinase RIPK3 is essential for IAV-induced lysis of mammalian fibroblasts and lung epithelial cells. Replicating IAV drives assembly of a RIPK3-containing complex that includes the kinase RIPK1, the pseudokinase MLKL, and the adaptor protein FADD, and forms independently of signaling by RNA-sensing innate immune receptors (RLRs, TLRs, PKR), or the cytokines type I interferons and TNF-α. Downstream of RIPK3, IAV activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis, with the former reliant on RIPK3 kinase activity and neither on RIPK1 activity. Mice deficient in RIPK3 or doubly-deficient in MLKL and FADD, but not MLKL alone, are more susceptible to IAV than their wild-type counterparts, revealing an important role for RIPK3-mediated apoptosis in antiviral immunity. Collectively, these results outline RIPK3-activated cytolytic mechanisms essential for controlling respiratory IAV infection. PMID:27321907

  8. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia

    PubMed Central

    Li, June; van der Wal, Dianne E.; Zhu, Guangheng; Xu, Miao; Yougbare, Issaka; Ma, Li; Vadasz, Brian; Carrim, Naadiya; Grozovsky, Renata; Ruan, Min; Zhu, Lingyan; Zeng, Qingshu; Tao, Lili; Zhai, Zhi-min; Peng, Jun; Hou, Ming; Leytin, Valery; Freedman, John; Hoffmeister, Karin M.; Ni, Heyu

    2015-01-01

    Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc–FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell–Morell receptors, which is fundamentally different from the classical Fc–FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP. PMID:26185093

  9. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    PubMed

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  10. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus.

    PubMed

    Voisset, Cécile; Daskalogianni, Chrysoula; Contesse, Marie-Astrid; Mazars, Anne; Arbach, Hratch; Le Cann, Marie; Soubigou, Flavie; Apcher, Sébastien; Fåhraeus, Robin; Blondel, Marc

    2014-04-01

    Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.

  11. HLA Immune Function Genes in Autism

    PubMed Central

    Torres, Anthony R.; Westover, Jonna B.; Rosenspire, Allen J.

    2012-01-01

    The human leukocyte antigen (HLA) genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects. PMID:22928105

  12. Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen.

    PubMed

    Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya

    2006-08-01

    In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.

  13. Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators.

    PubMed

    Harizi, Hedi; Gualde, Norbert

    2006-08-01

    Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO). Many secreted products of activated APC can act by themselves in an autocrine manner and modulate their function. Moreover, the cross-interaction between endogenous bioactive molecules regulates the function of professional APC with important consequences for their ability to activate and sustain immune and inflammatory responses, and to regulate immune homeostasis. Although neglected for many years when compared to their role in cardiovascular homeostasis, cancer and inflammation, the importance of eicosanoids in immunology is becoming more defined. The role of prostaglandin (PG) E2 (PGE2), one of the best known and most well studied eicosanoids, is of particular interest. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. Uniquely among haematopoietic cytokines, interleukin-10 (IL-10) is a pleiotropic molecule that displays both immunostimulatory and immunoregulatory activities. IL-10 has attached much attention because of its anti-inflammatory properties. It modulates expression of cytokines, soluble mediators and cell surface molecules by cells of myeloid origin, particularly macrophages and DC. We previously reported that PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may be considered as an important model to study complex interactions between endogenous mediators, and autocrine IL-10 plays a pivotal role in the crossregulation of AA-derived lipid mediators, cytokines, and NO, with critical effects on immune and inflammatory responses.

  14. Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense.

    PubMed

    Muñoz-Pinedo, Cristina

    2012-01-01

    Programmed Cell Death is essential for the life cycle of many organisms. Cell death in multicellular organisms can occur as a consequence of massive damage (necrosis) or in a controlled form, through engagement of diverse biochemical programs. The best well known form of programmed cell death is apoptosis. Apoptosis occurs in animals as a consequence of a variety of stimuli including stress and social signals and it plays essential roles in morphogenesis and immune defense. The machinery of apoptosis is well conserved among animals and it is composed of caspases (the proteases which execute cell death), adapter proteins (caspase activators), Bcl-2 family proteins and Inhibitor of Apoptosis Proteins (IAPs). We will describe in this chapter the main apoptotic pathways in animals: the extrinsic (death receptor-mediated), the intrinsic/mitochondrial and the Granzyme B pathway. Other forms of non-apoptotic Programmed Cell Death which occur in animals will also be discussed. We will summarize the current knowledge about apoptotic-like and other forms of cell death in other organisms such as plants and protists.Additionally, we will discuss the hypothesis that apoptosis originated as part of a host defense mechanism. We will explore the similarities between the protein complexes which mediate apoptosis (apoptosomes) and complexes involved in immunity: inflammasomes. Additional functions of apoptotic proteins related to immune function will be summarized, in an effort to explore the evolutionary origins of cell death.

  15. The Innate Immunity in Alzheimer Disease- Relevance to Pathogenesis and Therapy.

    PubMed

    Blach-Olszewska, Zofia; Zaczynska, Ewa; Gustaw-Rothenberg, Kasia; Avila-Rodrigues, Marco; Barreto, George E; Leszek, Jerzy; Aliev, Gjumrakch

    2015-01-01

    The genetic, cellular, and molecular changes associated with Alzheimer disease provide evidence of immune and inflammatory processes involvement in its pathogenesis. These are supported by epidemiological studies, which show some benefit of long-term use of NSAID. The hypothesis that AD is in fact an immunologically mediated and even inflammatory pathological process may be in fact scientifically intriguing. There are several obstacles that suggest the need for more complex view, in the process of targeting inflammation and immunity in AD. In our previous studies we proposed a reliable methodology to assess innate immunity in Alzheimer patients and controls. The methodology is based on the phenomenon of human leukocytes being resistant to viral infection. The unspecific character of the resistance, dependent on interferons and tumor necrosis factor, and occurrence in cells ex vivo indicate that an in vivo mechanism of innate immunity may be involved. The above mentioned resistance could be estimated in a test based on peripheral blood leukocytes infection by vesicular stomachs virus.

  16. Priming anticancer active specific immunotherapy with dendritic cells.

    PubMed

    Mocellin, Simone

    2005-06-01

    Dendritic cells (DCs) probably represent the most powerful naturally occurring immunological adjuvant for anticancer vaccines. However, the initial enthusiasm for DC-based vaccines is being tempered by clinical results not meeting expectations. The partial failure of current vaccine formulations is explained by the extraordinary complexity of the immune system, which makes the task of exploiting the potential of such a biotherapeutic approach highly challenging. Clinical findings obtained in humans so far indicate that the immune system can be actively polarized against malignant cells by means of DC-based active specific immunotherapy, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally 'dormant' immune effectors can actually be employed as endogenous weapons against malignant cells. Only the thorough understanding of DC biology and tumor-host immune system interactions will allow researchers to reproduce, in a larger set of patients, the cellular/molecular conditions leading to an effective immune-mediated eradication of cancer.

  17. Fungal mediated innate immune memory, what have we learned?

    PubMed

    Quintin, Jessica

    2018-05-30

    The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.

  18. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission

    PubMed Central

    Hermance, Meghan E.; Santos, Rodrigo I.; Kelly, Brent C.; Valbuena, Gustavo; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host’s skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation. PMID:27203436

  19. KH-type splicing regulatory protein is regulated by nuclear factor-κB signaling to mediate innate immunity in Caco-2 cells infected by Salmonella enteritidis.

    PubMed

    Nie, Yuanyang; Cao, Mei; Wu, Daoyan; Li, Ningzhe; Peng, Jingshan; Yi, Sijun; Yang, Xiaofan; Zhang, Mao; Hu, Guoku; Zhao, Jian

    2018-05-04

    Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.

  20. Glycomaterials for probing host–pathogen interactions and the immune response

    PubMed Central

    Huang, Mia L; Fisher, Christopher J

    2016-01-01

    The initial engagement of host cells by pathogens is often mediated by glycan structures presented on the cell surface. Various components of the glycocalyx can be targeted by pathogens for adhesion to facilitate infection. Glycans also play integral roles in the modulation of the host immune response to infection. Therefore, understanding the parameters that define glycan interactions with both pathogens and the various components of the host immune system can aid in the development of strategies to prevent, interrupt, or manage infection. Glycomaterials provide a unique and powerful tool with which to interrogate the compositional and functional complexity of the glycocalyx. The objective of this review is to highlight some key contributions from this area of research in deciphering the mechanisms of pathogenesis and the associated host response. PMID:27190259

  1. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    PubMed

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  2. Innate immune signalling at intestinal mucosal surfaces: a fine line between host protection and destruction.

    PubMed

    Cario, Elke

    2008-11-01

    Emerging evidence underscores that inappropriate innate immune responses driven by commensals contribute to the pathogenesis of chronic inflammatory bowel diseases in genetically susceptible hosts. The present review focuses on defining the recently described mechanistic functions through which the innate immune signalling apparatus shapes mucosal homeostasis of the intestine in health and disease. Commensal-induced innate immune signalling actively drives at least six major interdependent functions to control homeostasis in the healthy intestinal mucosa: 1) barrier preservation, 2) inhibition of apoptosis and inflammation, 3) acceleration of wound repair and tissue regeneration, 4) exclusion of harmful pathogens through autophagy and other antimicrobial defenses, while 5) maintaining immune tolerance towards harmless commensals, and 6) linkage to adaptive immunity. Any disturbance of this peaceful and mutually beneficial host-commensal relationship may imbalance innate immune signalling, which predisposes to chronic intestinal inflammation and associated tumourigenesis in inflammatory bowel diseases. Recent advances have highlighted the complex mechanistics and functional diversity of innate immunity that paradoxically mediate both protective and destructive responses in the intestinal mucosa. Related signalling targets may offer novel therapeutic approaches in the treatment of inflammatory bowel diseases and inflammation-related cancer.

  3. Mediated Plastid RNA Editing in Plant Immunity

    PubMed Central

    García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo

    2013-01-01

    Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264

  4. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  5. Inflammation and cancer: advances and new agents.

    PubMed

    Crusz, Shanthini M; Balkwill, Frances R

    2015-10-01

    Tumour-promoting inflammation is considered one of the enabling characteristics of cancer development. Chronic inflammatory disease increases the risk of some cancers, and strong epidemiological evidence exists that NSAIDs, particularly aspirin, are powerful chemopreventive agents. Tumour microenvironments contain many different inflammatory cells and mediators; targeting these factors in genetic, transplantable and inducible murine models of cancer substantially reduces the development, growth and spread of disease. Thus, this complex network of inflammation offers targets for prevention and treatment of malignant disease. Much potential exists in this area for novel cancer prevention and treatment strategies, although clinical research to support targeting of cancer-related inflammation and innate immunity in patients with advanced-stage cancer remains in its infancy. Following the initial successes of immunotherapies that modulate the adaptive immune system, we assert that inflammation and innate immunity are important targets in patients with cancer on the basis of extensive preclinical and epidemiological data. The adaptive immune response is heavily dependent on innate immunity, therefore, inhibiting some of the tumour-promoting immunosuppressive actions of the innate immune system might enhance the potential of immunotherapies that activate a nascent antitumour response.

  6. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis.

    PubMed

    Matak, Pavle; Heinis, Mylène; Mathieu, Jacques R R; Corriden, Ross; Cuvellier, Sylvain; Delga, Stéphanie; Mounier, Rémi; Rouquette, Alexandre; Raymond, Josette; Lamarque, Dominique; Emile, Jean-François; Nizet, Victor; Touati, Eliette; Peyssonnaux, Carole

    2015-04-01

    Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Influence of antigen on immune complex behavior in mice.

    PubMed

    Finbloom, D S; Magilavy, D B; Harford, J B; Rifai, A; Plotz, P H

    1981-07-01

    To explore the possibility that the behavior of immune complexes can, under some circumstances, be directed by the antigen, we have studied the behavior of complexes of identical size made with the glycoproteins, orosomucoid (OR), and ceruloplasmin: or with their desialylated derivatives, asialo-orosomucoid (ASOR) and asialo-ceruloplasmin. Such desialylated proteins are rapidly removed from the circulation by a hepatic cell receptor for galactose, the sugar exposed upon removal of sialic acid. Mixtures of 125I-goat anti-ASOR with either ASOR or OR and mixtures of 125I-rabbit anti-OR with either ASOR or OR form complexes identically. The complexes were separated by density gradient centrifugation and injected intravenously into C3H mice. Blood clearance and hepatic uptake of the OR complexes and ASOR complexes were markedly different. T 1/2 for the goat OR complexes exceeded 300 min, whereas that for the ASOR complexes was 15 min. More detailed studies using rabbit complexes of various sizes revealed that light rabbit complexes behaved similarly to the goat complexes. The light rabbit OR complexes were cleared slowly, with only 18% found in the liver at 60 min, whereas the light rabbit ASOR complexes were cleared much more rapidly, with 62% found within the liver by 30 min. This rapid clearance was completely suppressed by a prior injection of a blocking dose of ASOR, which implies uptake by a galactose-mediated mechanism on hepatocytes. As the size of the rabbit complexes increased, so did the rate of Fc receptor-mediated clearance. Heavy rabbit OR complexes were cleared more rapidly than light OR complexes but not so rapidly as heavy ASOR complexes. The clearance and hepatic uptake of the heavy OR complexes were markedly suppressed by a prior injection of heat-aggregated gamma globulin, a known Fc receptor-blocking agent (45% hepatic uptake without and 6% with aggregated gamma globulin). The heavy rabbit ASOR complexes exhibited inhibition of blood clearance and hepatic uptake by both galactose receptor-blocking and Fc receptor-blocking agents. A blocking dose of ASOR reduced the hepatic uptake at 30 min from 75 to 49%, and heat-aggregated gamma globulin reduced it from 75 to 39%, which suggests that these heavy complexes were removed from the circulation by receptors both for the immunoglobulin and for the antigen. Cell separation studies and autoradiographs confirmed that those complexes cleared primarily by galactose-mediated mechanism were within hepatocytes, and those cleared by Fc receptors were within the nonparenchymal cells of the liver. It seems probable, therefore, the some antigen-antibody complexes may be removed from the circulation via receptors not only for immunoglobulin but also for antigen.

  8. Protein S is inducible by interleukin 4 in T cells and inhibits lymphoid cell procoagulant activity

    PubMed Central

    Smiley, Stephen T.; Boyer, Sarah N.; Heeb, Mary J.; Griffin, John H.; Grusby, Michael J.

    1997-01-01

    Extravascular procoagulant activity often accompanies cell-mediated immune responses and systemic administration of pharmacologic anticoagulants prevents cell-mediated delayed-type hypersensitivity reactions. These observations suggest a direct association between coagulation and cell-mediated immunity. The cytokine interleukin (IL)-4 potently suppresses cell-mediated immune responses, but its mechanism of action remains to be determined. Herein we demonstrate that the physiologic anticoagulant protein S is IL-4-inducible in primary T cells. Although protein S was known to inhibit the classic factor Va-dependent prothrombinase assembled by endothelial cells and platelets, we found that protein S also inhibits the factor Va-independent prothrombinase assembled by lymphoid cells. Thus, protein S-mediated down-regulation of lymphoid cell procoagulant activity may be one mechanism by which IL-4 antagonizes cell-mediated immunity. PMID:9326636

  9. An update on pathobiologic roles of anti-glycan antibodies in Guillain-Barré syndrome

    PubMed Central

    Zhang, Gang

    2010-01-01

    Anti-glycan antibodies directed against gangliosides are now considered the major immune effectors that induce damage to intact nerve fibers in some variants of the monophasic neuropathic disorders that comprise Guillain-Barré syndrome. Recent experimental studies elucidating the complexity of anti-glycan antibody-mediated pathobiologic effects on intact and injured nerves undergoing repair are discussed. PMID:20948812

  10. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  11. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  12. Immune mediated disorders in women with a fragile X expansion and FXTAS.

    PubMed

    Jalnapurkar, Isha; Rafika, Nuva; Tassone, Flora; Hagerman, Randi

    2015-01-01

    Premutation alleles in fragile X mental retardation 1 (FMR1) can cause the late-onset neurodegenerative disorder, fragile X-associated tremor ataxia syndrome (FXTAS) and/or the fragile X-associated primary ovarian insufficiency in approximately 20% of heterozygotes. Heterozygotes of the FMR1 premutation have a higher incidence of immune mediated disorders such as autoimmune thyroid disorder, especially when accompanied by FXTAS motor signs. We describe the time course of symptoms of immune mediated disorders and the subsequent development of FXTAS in four women with an FMR1 CGG expansion, including three with the premutation and one with a gray zone expansion. These patients developed an immune mediated disorder followed by neurological symptoms that become consistent with FXTAS. In all patients we observed a pattern involving an initial appearance of disease symptoms-often after a period of heightened stress (depression, anxiety, divorce, general surgery) followed by the onset of tremor and/or ataxia. Immune mediated diseases are associated with the manifestations of FXTAS temporally, although further studies are needed to clarify this association. If a cause and effect relationship can be established, treatment of pre-existing immune mediated disorders may benefit patients with pathogenic FMR1 mutations. © 2014 Wiley Periodicals, Inc.

  13. Investigating Relationships between Reproduction, Immune Defenses, and Cortisol in Dall Sheep.

    PubMed

    Downs, Cynthia J; Boan, Brianne V; Lohuis, Thomas D; Stewart, Kelley M

    2018-01-01

    Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep ( Ovis dalli dalli ) in Southcentral Alaska. Specifically, we (i) tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii) tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness.

  14. Experimental studies on possible regulatory role of nitric oxide on the differential effects of chronic predictable and unpredictable stress on adaptive immune responses.

    PubMed

    Thakur, Tarun; Gulati, Kavita; Rai, Nishant; Ray, Arunabha

    2017-09-01

    The present study was designed to investigate the effects of chronic predictable stress (CPS) and chronic unpredictable stress (CUS) on immunological responses in KLH-sensitized rats and involvement of NOergic signaling pathways mediating such responses. Male Wistar rats (200-250g) were exposed to either CPS or CUS for 14days and IgG antibody levels and delayed type hypersensitivity (DTH) response was determined to assess changes in adaptive immunity. To evaluate the role of nitric oxide during such immunomodulation, biochemical estimation of stable metabolite of nitric oxide (NOx) and 3-nitrotyrosine (3-NT, a marker of peroxynitrite formation) were done in both blood and brain. Chronic stress exposure resulted in suppression of IgG and DTH response and elevated NOx and 3-NT levels, with a difference in magnitude of response in CPS vs CUS. Pretreatment with aminoguanidine (iNOS inhibitor) caused further reduction of adaptive immune responses and attenuated the increased NOx and 3-NT levels in CPS or CUS exposed rats. On the other hand 7-NI (nNOS inhibitor) did not significantly affect these estimated parameters. The results suggest involvement of iNOS and lesser/no role of nNOS during modulation of adaptive immunity to stress. Thus, the result showed that predictability of stressors results in differential degree of modulation of immune responses and complex NO-mediated signaling mechanisms may be involved during responses. Copyright © 2017. Published by Elsevier B.V.

  15. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    PubMed

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. Immunomodulatory Effects of Dietary Seaweeds in LPS Challenged Atlantic Salmon Salmo salar as Determined by Deep RNA Sequencing of the Head Kidney Transcriptome

    PubMed Central

    Palstra, Arjan P.; Kals, Jeroen; Blanco Garcia, Ainhoa; Dirks, Ron P.; Poelman, Marnix

    2018-01-01

    Seaweeds may represent immuno-stimulants that could be used as health-promoting fish feed components. This study was performed to gain insights into the immunomodulatory effects of dietary seaweeds in Atlantic salmon. Specifically tested were 10% inclusion levels of Laminaria digitata (SW1) and a commercial blend of seaweeds (Oceanfeed®) (SW2) against a fishmeal based control diet (FMC). Differences between groups were assessed in growth, feed conversion ratio and blood parameters hematocrit and hemoglobin. After a LPS challenge of fish representing each of the three groups, RNAseq was performed on the head kidney as major immune organ to determine transcriptomic differences in response to the immune activation. Atlantic salmon fed with dietary seaweeds did not show major differences in performance in comparison with fishmeal fed fish. RNAseq resulted in ∼154 million reads which were mapped against a NCBI Salmo salar reference and against a de novo assembled S. salar reference for analyses of expression of immune genes and ontology of immune processes among the 87,600 cDNA contigs. The dietary seaweeds provoked a more efficient immune response which involved more efficient identification of the infection site, and processing and presentation of antigens. More specifically, chemotaxis and the chemokine-mediated signaling were improved and therewith the defense response to Gram-positive bacterium reduced. Specific Laminaria digitata effects included reduction of the interferon-gamma-mediated signaling. Highly upregulated and specific for this diet was the expression of major histocompatibility complex class I-related gene protein. The commercial blend of seaweeds caused more differential expression than Laminaria digitata and improved immune processes such as receptor-mediated endocytosis and cell adhesion, and increased the expression of genes involved in response to lipopolysaccharide and inflammatory response. Particularly, expression of many important immune receptors was up-regulated illustrating increased responsiveness. NF-kappa-B inhibitor alpha is an important gene that marked the difference between both seaweed diets as Laminaria digitata inhibits the expression for this cytokine while the blend of seaweeds stimulates it. It can be concluded that the inclusion of seaweeds such as Laminaria digitata can have important modulatory effects on the immune capacity of Atlantic salmon resulting in a more efficient immune response. PMID:29910738

  17. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  18. Membranoproliferative glomerulonephritis associated with autoimmune diseases.

    PubMed

    Zand, Ladan; Fervenza, Fernando C; Nasr, Samih H; Sethi, Sanjeev

    2014-04-01

    Membranoproliferative glomerulonephritis (MPGN) has been classified based on its pathogenesis into immune complex-mediated and complement-mediated MPGN. The immune complex-mediated type is secondary to chronic infections, autoimmune diseases or monoclonal gammopathy. There is a paucity of data on MPGN associated with autoimmune diseases. We reviewed the Mayo Clinic database over a 10-year period and identified 12 patients with MPGN associated with autoimmune diseases, after exclusion of systemic lupus erythematosus. The autoimmune diseases included rheumatoid arthritis, primary Sjögren's syndrome, undifferentiated connective tissue disease, primary sclerosing cholangitis and Graves' disease. Nine of the 12 patients were female, and the mean age was 57.9 years. C4 levels were decreased in nine of 12 patients tested. The serum creatinine at time of renal biopsy was 2.2 ± 1.0 mg/dl and the urinary protein was 2,850 ± 3,543 mg/24 h. Three patients required dialysis at the time of renal biopsy. Renal biopsy showed an MPGN in all cases, with features of cryoglobulins in six cases; immunoglobulin (Ig)M was the dominant Ig, and both subendothelial and mesangial electron dense deposits were noted. Median follow-up was 10.9 months. Serum creatinine and proteinuria improved to 1.6 ± 0.8 mg/dl and 428 ± 677 mg/24 h, respectively, except in 3 patients with end-stage renal disease. In summary, this study describes the clinical features, renal biopsy findings, laboratory evaluation, treatment and prognosis of MPGN associated with autoimmune diseases.

  19. Cancer Immunology at the Crossroads: Killer immunoglobulin-like receptors and tumor immunity

    PubMed Central

    Benson, Don M; Caligiuri, Michael A

    2014-01-01

    Natural killer (NK) cells, large granular lymphocytes comprising a key cellular subset of innate immunity, were originally named for their capacity to elicit potent cytotoxicity against tumor cells independent of prior sensitization or gene rearrangement. This process is facilitated through the expression of activating and inhibitory receptors that provide for NK cell “education” and a subsequent ability to survey, recognize and lyse infected or transformed cells, especially those lacking or possessing mutated major histocompatibility complex (MHC) class I expression. Since these original observations were made, how NK cells recognize candidate target cells continues to be the topic of ongoing investigation. It is now appreciated that NK cells express a diverse repertoire of activating and inhibitory receptors of which killer immunoglobulin-like receptors (KIR) appear to play a critical role in mediating self-tolerance as well as facilitating cytotoxicity against infected or transformed cells. Additionally, in the presence of an activating signal, the absence or mismatch of MHC class I molecules on such targets (which serve as inhibitory KIR ligands) promotes NK cell-mediated lysis. An increasing understanding of the complexities of KIR biology has provided recent opportunities to leverage the NK cell versus tumor effect as a novel avenue of therapeutic immunotherapy for cancer. The present review seeks to summarize the current understanding of KIR expression and function and highlight ongoing efforts to translate these discoveries into novel NK cell-mediated immunotherapies for cancer. PMID:24592397

  20. Cyclophilin C Participates in the US2-Mediated Degradation of Major Histocompatibility Complex Class I Molecules.

    PubMed

    Chapman, Daniel C; Stocki, Pawel; Williams, David B

    2015-01-01

    Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin.

  1. Cyclophilin C Participates in the US2-Mediated Degradation of Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Chapman, Daniel C.; Stocki, Pawel; Williams, David B.

    2015-01-01

    Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin. PMID:26691022

  2. Toward an understanding of immune cell sociology: real-time monitoring of cytokine secretion at the single-cell level.

    PubMed

    Shirasaki, Yoshitaka; Yamagishi, Mai; Shimura, Nanako; Hijikata, Atsushi; Ohara, Osamu

    2013-01-01

    The immune system is a very complex and dynamic cellular system, and its intricacies are considered akin to those of human society. Disturbance of homeostasis of the immune system results in various types of diseases; therefore, the homeostatic mechanism of the immune system has long been a subject of great interest in biology, and a lot of information has been accumulated at the cellular and the molecular levels. However, the sociological aspects of the immune system remain too abstract to address because of its high complexity, which mainly originates from a large number and variety of cell-cell interactions. As long-range interactions mediated by cytokines play a key role in the homeostasis of the immune system, cytokine secretion analyses, ranging from analyses of the micro level of individual cells to the macro level of a bulk of cell ensembles, provide us with a solid basis of a sociological viewpoint of the immune system. In this review, as the first step toward a comprehensive understanding of immune cell sociology, cytokine secretion of immune cells is surveyed with a special emphasis on the single-cell level, which has been overlooked but should serve as a basis of immune cell sociology. Now that it has become evident that large cell-to-cell variations in cytokine secretion exist at the single-cell level, we face a tricky yet interesting question: How is homeostasis maintained when the system is composed of intrinsically noisy agents? In this context, we discuss how the heterogeneity of cytokine secretion at the single-cell level affects our view of immune cell sociology. While the apparent inconsistency between homeostasis and cell-to-cell heterogeneity is difficult to address by a conventional reductive approach, comparison and integration of single-cell data with macroscopic data will offer us a new direction for the comprehensive understanding of immune cell sociology. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  3. The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity

    PubMed Central

    López, Ana; Ramírez, Vicente; García-Andrade, Javier; Flors, Victor; Vera, Pablo

    2011-01-01

    RNA–directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)–mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)–mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA–related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear. PMID:22242006

  4. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    PubMed

    Bennett, M W; O'connell, J; O'sullivan, G C; Roche, D; Brady, C; Kelly, J; Collins, J K; Shanahan, F

    1999-02-01

    Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. Thirty paraffin wax embedded human gastric adenocarcinomas. FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  5. A Proinflammatory Role of Type 2 Innate Lymphoid Cells in Murine Immune-Mediated Hepatitis.

    PubMed

    Neumann, Katrin; Karimi, Khalil; Meiners, Jana; Voetlause, Ruth; Steinmann, Silja; Dammermann, Werner; Lüth, Stefan; Asghari, Farahnaz; Wegscheid, Claudia; Horst, Andrea K; Tiegs, Gisa

    2017-01-01

    Type 2 innate lymphoid cells (ILC2) mediate inflammatory immune responses in the context of diseases triggered by the alarmin IL-33. In recent years, IL-33 has been implicated in the pathogenesis of immune-mediated liver diseases. However, the immunoregulatory function of ILC2s in the inflamed liver remains elusive. Using the murine model of Con A-induced immune-mediated hepatitis, we showed that selective expansion of ILC2s in the liver was associated with highly elevated hepatic IL-33 expression, severe liver inflammation, and infiltration of eosinophils. CD4 + T cell-mediated tissue damage and subsequent IL-33 release were responsible for the activation of hepatic ILC2s that produced the type 2 cytokines IL-5 and IL-13 during liver inflammation. Interestingly, ILC2 depletion correlated with less severe hepatitis and reduced accumulation of eosinophils in the liver, whereas adoptive transfer of hepatic ILC2s aggravated liver inflammation and tissue damage. We further showed that, despite expansion of hepatic ILC2s, 3-d IL-33 treatment before Con A challenge potently suppressed development of immune-mediated hepatitis. We found that IL-33 not only activated hepatic ILC2s but also expanded CD4 + Foxp3 + regulatory T cells (Treg) expressing the IL-33 receptor ST2 in the liver. This Treg subset also accumulated in the liver during resolution of immune-mediated hepatitis. In summary, hepatic ILC2s are poised to respond to the release of IL-33 upon liver tissue damage through expression of type 2 cytokines thereby participating in the pathogenesis of immune-mediated hepatitis. Inflammatory activity of ILC2s might be regulated by IL-33-elicited ST2 + Tregs that also arise in immune-mediated hepatitis. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing

    PubMed Central

    Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D; LoGerfo, Frank W; Veves, Aristidis

    2013-01-01

    This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization are essential phases of wound healing. The link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30–50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. The bidirectional connection between the nervous and the immune systems and the role it plays in wound healing has emerged as one of the focal features of the wound healing dogma. The mediators of this connection include neuropeptides and the cytokines released from different cells including immune and cutaneous cells. Therefore, to develop successful wound healing therapies, it is vital to understand in depth the signaling pathways in the neuro-immune axis and their implication in diabetic wound healing. PMID:19138453

  7. Complement and the control of HIV infection: an evolving story.

    PubMed

    Frank, Michael M; Hester, Christopher; Jiang, Haixiang

    2014-05-01

    Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.

  8. Advances in cholangiocyte immunobiology

    PubMed Central

    Syal, Gaurav; Fausther, Michel

    2012-01-01

    Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis. PMID:22961800

  9. Advances in cholangiocyte immunobiology.

    PubMed

    Syal, Gaurav; Fausther, Michel; Dranoff, Jonathan A

    2012-11-15

    Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis.

  10. Prognostic Significance of Circulating Immune Complexes in Cancer Patients

    PubMed Central

    Dass, Tushar Kanti; Ashok, Ashok

    1991-01-01

    Circulating immune complexes (CIC) were estimated in 100 cancer patients and 25 healthy control volunteers by means of the polyethylene glycol (PEG) precipitation test and latex agglutination inhibition (LAI) test. Pathological levels of CIC were found in 47% of the patients by PEG precipitation test and in 59% of the patients by LAI test; both tests were positive in 33% of the patients. Consequently, the use of the two assays resulted in 73% seropositivity for CIC. The PEG precipitation test detects antigen‐antibody complexes formed in the ratio of 2:1 (Ag2Ab), while the LAI test could detect immune complexes formed over an extended range of antigen‐antibody ratio including complexes as small as SS. CIC values were significantly higher by combined assays (P < 0.001) as compared to individual assays (P < 0.01) when compared with the control group. It was found that 75% of post‐operative follow‐up patients became seronegative for CIC in the combined assays, whereas the 25% of post‐operative patients who remained seropositive for CIC showed recurrence within three months after surgery. Immune‐complex deposition was demonstrated on malignant cells in vitro by direct immunofluorescence studies in 73.3% of patients, while 60% of patients revealed complement‐fixing antigen‐antibody complexes. It was found that 20% of patients showing positive immunofluorescence with anti‐C3‐antisera had decreased levels of CIC. Complement‐mediated cytotoxic injury results in reduction of tumor cell mass and subsequent decrease in CIC. Necrotizing and leucocytoclastic vasculitis in the tumor mass was initiated by raised CIC levels in vivo in 71% of patients. Necrosis of malignant tumors was seen in 58% of patients, and hemorrhage in 36% of patients. These changes were considered to be an aftermath of immuno‐complex vasculitis initiated by CIC. PMID:1752784

  11. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  12. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA).

    PubMed

    Neiser, Susann; Koskenkorva, Taija S; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna

    2016-07-21

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions.

  13. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  14. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.

    PubMed

    Tschirren, B; Råberg, L; Westerdahl, H

    2011-06-01

    Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  15. Helminths as governors of immune-mediated inflammation.

    PubMed

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  16. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli.

    PubMed

    He, Xuesong; Cao, Xiaolong; He, Yan; Bhattarai, Krishna; Rogers, Janet; Hartson, Steve; Jiang, Haobo

    2017-09-01

    Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Acrally distributed dermatoses: Vascular dermatoses (purpura and vasculitis).

    PubMed

    Kazandjieva, Jana; Antonov, Dimitar; Kamarashev, Jivko; Tsankov, Nikolai

    Purpuric lesions appear in acral distribution in a variety of conditions and often provide clues to the clinical diagnosis. Purpuric means "hemorrhagic"-that is, the lesions do not blanch from pressure. This review focuses on dermatoses that produce hemorrhagic lesions in acral distribution from the large groups of the vasculitic diseases and their mimics. Cutaneous small vessel vasculitis is confined to the skin, involves mainly postcapillary venules, and has the hallmark manifestation of palpable purpura. Henoch-Schönlein purpura is an immune complex-mediated systemic vasculitis of the small vessels with manifestations from the skin, joints, kidneys, and gastrointestinal system. Only cases where the immune complexes contain immunoglobulin A type are classified as Henoch-Schönlein purpura. Cryoglobulinemic vasculitis is induced by the deposition of cold-precipitated immune complexes in the small vessels. Urticarial vasculitis comprises a spectrum of conditions with the characteristic course of chronic urticaria, with wheals that persist longer than 24 hours, leave hyperpigmentation, and have leukocytoclastic vasculitis on histologic examination. Polyarteritis nodosa is a rare multisystem, segmental necrotizing vasculitis of mainly the medium-sized vessels. Pigmented purpuric dermatoses are chronic benign dermatoses characterized by petechiae, purpura, and increased skin pigmentation. The hallmark of pigmented purpuric dermatoses is their orange-brown, speckled, cayenne pepper-like discoloration. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Limbic encephalitis presenting as a post-partum psychiatric condition.

    PubMed

    Gotkine, Marc; Ben-Hur, Tamir; Vincent, Angela; Vaknin-Dembinsky, Adi

    2011-09-15

    We describe a woman who presented with a psychiatric disorder post-partum and subsequently developed seizures and cognitive dysfunction prompting further investigation. A diagnosis of limbic encephalitis (LE) was made and antibodies to voltage-gated potassium channel complex (VGKC) detected. These antibodies are found in many non-paraneoplastic patients with LE. Although antibody-mediated conditions tend to present or relapse post-partum, VGKC-LE in the post-partum period has not been described. Case report. Clinical and imaging data were consistent with limbic encephalitis. High titres of anti-VGKC-complex antibodies confirmed the diagnosis of VGKC-LE. The similarities between the psychiatric symptomatology of VGKC-LE and post-partum psychiatric disorders raise the possibility that some instances of post-partum psychiatric conditions are manifestations of immune-mediated, non-paraneoplastic LE. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A Cysteine-Rich Protein Kinase Associates with a Membrane Immune Complex and the Cysteine Residues Are Required for Cell Death1[OPEN

    PubMed Central

    Elmore, James M.; Creer, Athena Y.; Feng, Baomin; Franco, Jessica Y.; He, Ping; Phinney, Brett

    2017-01-01

    Membrane-localized proteins perceive and respond to biotic and abiotic stresses. We performed quantitative proteomics on plasma membrane-enriched samples from Arabidopsis (Arabidopsis thaliana) treated with bacterial flagellin. We identified multiple receptor-like protein kinases changing in abundance, including cysteine (Cys)-rich receptor-like kinases (CRKs) that are up-regulated upon the perception of flagellin. CRKs possess extracellular Cys-rich domains and constitute a gene family consisting of 46 members in Arabidopsis. The single transfer DNA insertion lines CRK28 and CRK29, two CRKs induced in response to flagellin perception, did not exhibit robust alterations in immune responses. In contrast, silencing of multiple bacterial flagellin-induced CRKs resulted in enhanced susceptibility to pathogenic Pseudomonas syringae, indicating functional redundancy in this large gene family. Enhanced expression of CRK28 in Arabidopsis increased disease resistance to P. syringae. Expression of CRK28 in Nicotiana benthamiana induced cell death, which required intact extracellular Cys residues and a conserved kinase active site. CRK28-mediated cell death required the common receptor-like protein kinase coreceptor BAK1. CRK28 associated with BAK1 as well as the activated FLAGELLIN-SENSING2 (FLS2) immune receptor complex. CRK28 self-associated as well as associated with the closely related CRK29. These data support a model where Arabidopsis CRKs are synthesized upon pathogen perception, associate with the FLS2 complex, and coordinately act to enhance plant immune responses. PMID:27852951

  20. Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease

    PubMed Central

    Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.

    2016-01-01

    Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630

  1. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity

    PubMed Central

    Anel, Alberto; Aguiló, Juan I.; Catalán, Elena; Garaude, Johan; Rathore, Moeez G.; Pardo, Julián; Villalba, Martín

    2012-01-01

    The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized. PMID:22783260

  2. Aryl hydrocarbon receptor

    PubMed Central

    Kiss, Elina A.; Vonarbourg, Cedric

    2012-01-01

    Intestinal homeostasis results from a complex mutualism between gut microbiota and host cells. Defining the molecular network regulating such mutualism is currently of increasing interest, as its deregulation is reported to lead to increased susceptibility to infections, chronic inflammatory bowel diseases and cancer. Until now, the focus has been on the mechanism, by which the composition of indigenous microbiota shapes the immune system. In a recent study, we have shown that dietary compounds have also the ability to affect innate immune system. This regulation involves aryl hydrocarbon receptor (AhR), a sensor of plant-derived phytochemicals, which mediates the maintenance of Retinoic acid related orphan receptor γ t-expressing innate lymphoid cells (RORγt+ ILC) in the gut and consequently formation of postnatal lymphoid follicles. Thus, AhR represents the first evidence of a molecular link between diet and immunity at intestinal mucosal surfaces. PMID:22909905

  3. Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells.

    PubMed

    Nam, Jutaek; Son, Sejin; Moon, James J

    2017-10-01

    Gold nanoparticles are versatile carriers for delivery of biomacromolecules. Here, we have developed spiky gold nanoparticles (SGNPs) that can efficiently deliver immunostimulatory agents. Our goal was to develop a platform technology for co-delivery of multiple adjuvant molecules for synergistic stimulation and maturation of innate immune cells. SGNPs were synthesized by a seed-mediated, surfactant-free synthesis method and incorporated with polyinosinic-polycytidylic acid (pIC) and DNA oligonucleotide containing unmethylated CpG motif (CpG) by an electrostatic layer-by-layer approach. Adjuvant-loaded SGNP nano-complexes were examined for their biophysical and biochemical properties and studied for immune activation using bone marrow-derived dendritic cells (BMDCs). We have synthesized SGNPs with branched nano-spikes layered with pIC and/or CpG. Adjuvant-loaded SGNP nano-complexes promoted cellular uptake of the adjuvants. Importantly, we achieved spatio-temporal control over co-delivery of pIC and CpG via SGNPs, which produced synergistic enhancement in cytokine release (IL-6, TNF-α) and upregulation of co-stimulatory markers (CD40, CD80, CD86) in BMDCs, compared with pIC, CpG, or their admixtures. SGNPs serve as a versatile delivery platform that allows flexible and on-demand cargo fabrication for strong activation of innate immune cells.

  4. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling

    PubMed Central

    Mace, Thomas A.; King, Samantha A.; Ameen, Zeenath; Elnaggar, Omar; Young, Gregory; Riedl, Kenneth M.; Schwartz, Steven J.; Clinton, Steven K.; Knobloch, Thomas J.; Weghorst, Christopher M.; Lesinski, Gregory B.

    2014-01-01

    Bioactive phyotochemicals from natural products, such as black raspberries (BRB; Rubus occidentalis) have direct anti-cancer properties on malignant cells in culture and in xenograft models. BRB components inhibit cancer progression in more complex rodent carcinogenesis models. Although mechanistic targets for BRB phytochemicals in cancer cells are beginning to emerge, the potential role in modulating host immune processes impacting cancer have not been systematically examined. We hypothesized that BRB contain compounds capable of eliciting potent immunomodulatory properties that impact cellular mediators relevant to chronic inflammation and tumor progression. We studied both an ethanol extract from black raspberries (BRB-E) containing a diverse mixture of phytochemicals and two abundant phytochemical metabolites of BRB produced upon ingestion (Cyanidin-3-Rutinoside, C3R; Quercitin-3-Rutinoside, Q3R). BRB-E inhibited proliferation and viability of CD3/CD28 activated human CD4+ and CD8+ T lymphocytes. BRB-E also limited in vitro expansion of myeloid-derived suppressor cells (MDSC) and their suppressive capacity. Pre-treatment of immune cells with BRB-E attenuated IL-6-mediated phosphorylation of signal transducer and activator of transcription-3 (STAT3) and IL-2 induced STAT5 phosphorylation. In contrast, pre-treatment of immune cells with the C3R and Q3R metabolites inhibited MDSC expansion, IL-6-mediated STAT3 signaling, but not IL-2 induced STAT5 phosphorylation and were less potent inhibitors of T cell viability. Together these data indicate that BRB extracts and their physiologically-relevant metabolites contain phytochemicals that affect immune processes relevant to carcinogenesis and immunotherapy. Furthermore, specific BRB components and their metabolites may be a source of lead compounds for drug development that exhibit targeted immunological outcomes or inhibition of specific STAT-regulated signaling pathways. PMID:24893859

  5. Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence

    PubMed Central

    Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe

    2018-01-01

    Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4+ T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs. PMID:29740348

  6. Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence.

    PubMed

    Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe

    2018-01-01

    Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4 + T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs.

  7. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.

    PubMed

    Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel

    2012-07-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.

  8. Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells

    PubMed Central

    Jayakumar, Asha; Hickerson, Suzanne; Mostrom, Janet; Turco, Salvatore J.; Beverley, Stephen M.; McDowell, Mary Ann

    2015-01-01

    Background Leishmania major infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction. Methodology/Principal Findings Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-), or generally deficient for all PGs, (FV1 lpg2-). Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription. Conclusions/Significance These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12. PMID:26630499

  9. Hypothesis: Leukocyte Endogenous Mediator/Endogenous Pyrogen/Lymphocyte-Activating Factor Modulates the Development of Nonspecific and Specific Immunity and Affects Nutritional Status

    DTIC Science & Technology

    1982-04-01

    Hypothesis: leukocyte endogenous mediator/ endogenous pyrogen /lymphocyte-activating factor modulates the development of nonspecific and specific... endogenous pyrogen /lympho- NI cyte-activating factor (LEM/EP/LAF) integrates the host’s nonspecific and specific immune responses to infection by...mediator/ endogenous pyrogen /lymphocyte-activating factor, nonspecific and specific immunity, infection, metabolism, nutrition. Introduction LAF which lead

  10. Toll-like receptors and gastrointestinal diseases: from bench to bedside?

    PubMed

    Cario, Elke

    2002-11-01

    The family of Toll-like receptors (TLRs) plays a key role in mediating innate immune responses to numerous luminal commensal- and pathogen-derived pattern molecules by the intestinal mucosa. Recent findings have identified several ligands recognized by TLRs as well as the complex downstream signaling effects resulting from activation of these receptors. Understanding is emerging of the importance of TLRs in mucosal host defense-potentially triggering gastrointestinal diseases.

  11. The genetics of Takayasu arteritis.

    PubMed

    Renauer, Paul; Sawalha, Amr H

    Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies.

    PubMed

    Rojko, Jennifer L; Evans, Mark G; Price, Shari A; Han, Bora; Waine, Gary; DeWitte, Mark; Haynes, Jill; Freimark, Bruce; Martin, Pauline; Raymond, James T; Evering, Winston; Rebelatto, Marlon C; Schenck, Emanuel; Horvath, Christopher

    2014-06-01

    Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans. © 2014 by The Author(s).

  13. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.

    PubMed

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne

    2014-12-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection

    PubMed Central

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne

    2014-01-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990

  15. Biosimilars for Immune-Mediated Chronic Diseases in Primary Care: What a Practicing Physician Needs to Know.

    PubMed

    Feldman, Steven R; Bagel, Jerry; Namak, Shahla

    2018-05-01

    The introduction of biologics has revolutionized the treatment of immune-mediated diseases, but high cost and limited patient access remain hurdles, and some physicians are concerned that biosimilars are not similar enough. The purpose of this narrative review is to describe biosimilar safety, efficacy, nomenclature, extrapolation and interchangeability. In the United States, the Biologics Price Competition and Innovation Act created an abbreviated pathway for licensing of a biologic that is biosimilar to another licensed product (i.e., the reference product). This approval pathway differs from that of generic small-molecule drugs because biologics are too complex to be perfectly duplicated, and follows a process designed to demonstrate that any differences between the biosimilar and its reference product have no significant impact on safety and efficacy. The US approval process requires extensive analytical assessments, animal studies and clinical trials, assuring that biosimilar products provide clinical results similar to those of the reference product. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death

    PubMed Central

    Sanman, Laura E; Qian, Yu; Eisele, Nicholas A; Ng, Tessie M; van der Linden, Wouter A; Monack, Denise M; Weerapana, Eranthie; Bogyo, Matthew

    2016-01-01

    When innate immune cells such as macrophages are challenged with environmental stresses or infection by pathogens, they trigger the rapid assembly of multi-protein complexes called inflammasomes that are responsible for initiating pro-inflammatory responses and a form of cell death termed pyroptosis. We describe here the identification of an intracellular trigger of NLRP3-mediated inflammatory signaling, IL-1β production and pyroptosis in primed murine bone marrow-derived macrophages that is mediated by the disruption of glycolytic flux. This signal results from a drop of NADH levels and induction of mitochondrial ROS production and can be rescued by addition of products that restore NADH production. This signal is also important for host-cell response to the intracellular pathogen Salmonella typhimurium, which can disrupt metabolism by uptake of host-cell glucose. These results reveal an important inflammatory signaling network used by immune cells to sense metabolic dysfunction or infection by intracellular pathogens. DOI: http://dx.doi.org/10.7554/eLife.13663.001 PMID:27011353

  17. The complex pathophysiology of acquired aplastic anaemia

    PubMed Central

    Zeng, Y; Katsanis, E

    2015-01-01

    Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8+ cytotoxic T cells, CD4+ T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure. PMID:25683099

  18. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  19. Siblings Promote a Type 1/Type 17-oriented immune response in the airways of asymptomatic neonates.

    PubMed

    Wolsk, H M; Chawes, B L; Følsgaard, N V; Rasmussen, M A; Brix, S; Bisgaard, H

    2016-06-01

    Siblings have been shown to reduce the risk of childhood asthma and allergy, but the mechanism driving this association is unknown. The objective was to study whether siblings affect the airway immune response in healthy neonates, which could represent an underlying immune modulatory pathway. We measured 20 immune mediators related to the Type 1, Type 2, Type 17, or regulatory immune pathways in the airway mucosa of 571 one-month-old asymptomatic neonates from the Copenhagen Prospective Studies on Asthma in Childhood2010 birth cohort (COPSAC2010 ). The association between airway mediator levels and presence of siblings was investigated using conventional statistics and principle component analysis (PCA). Neonates with siblings had an upregulated level of airway immune mediators, with predominance of Type 1- and Type 17-related mediators. This was supported by the PCA showing a highly significant difference between children with vs without siblings: P < 10(-10) , which persisted after adjustment for potential confounders including pathogenic airway bacteria and viruses: P < 0.0001. The immune priming effect was inversely associated with time since last childbirth: P = 0.0015. Siblings mediate a Type 1/Type 17-related immune-stimulatory effect in the airways of asymptomatic neonates, also after adjustment for pathogenic bacteria and viruses, indicating that siblings exert a transferable early immune modulatory effect. These findings may represent an in utero immune priming effect of the fetal immune system caused by previous pregnancies as the effect was attenuated with time since last childbirth, or it could relate to the presence of unidentified microbes, but further studies are needed to confirm our findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling.

    PubMed

    Chiang, Cindy; Pauli, Eva-Katharina; Biryukov, Jennifer; Feister, Katharina F; Meng, Melissa; White, Elizabeth A; Münger, Karl; Howley, Peter M; Meyers, Craig; Gack, Michaela U

    2018-03-15

    Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-β, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection. IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade is important for an antiviral innate immune response to HPV16 infection, providing evidence that RIG-I, whose role in sensing RNA virus infections has been well characterized, also plays a crucial role in the antiviral host response to small DNA viruses of the Papillomaviridae family. Copyright © 2018 American Society for Microbiology.

  1. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes

    PubMed Central

    Liao, Shih-Fen; Liang, Chi-Hui; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S.-Y.; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-01-01

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans. PMID:23908400

  2. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes.

    PubMed

    Liao, Shih-Fen; Liang, Chi-Hui; Ho, Ming-Yi; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S-Y; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-08-20

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.

  3. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    PubMed

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Attenuation of S. aureus-induced bacteremia by human mini-antibodies targeting the complement inhibitory protein Efb

    PubMed Central

    Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L.; Geisbrecht, Brian V.; Foukas, Periklis G.; Lambris, John D.; Mastellos, Dimitrios C.; Sfyroera, Georgia

    2015-01-01

    Staphylococcus aureus (S. aureus) can cause a broad range of potentially fatal inflammatory complications (e.g. sepsis, endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular Fibrinogen-binding Protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for monoclonal antibody (mAb)-based antimicrobial therapeutics. Herein we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mAbs (miniAbs) that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface Plasmon Resonance-based kinetic analysis enabled the selection of miniAbs with favorable Efb-binding profiles as therapeutic leads. MiniAb-mediated blockade of Efb attenuated S aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release and modulation of IL-6 secretion. Finally, these miniAbs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way towards novel antibody-based therapeutics for S. aureus-related diseases. PMID:26342032

  5. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells

    PubMed Central

    Eichholz, Karsten; Bru, Thierry; Tran, Thi Thu Phuong; Fernandes, Paulo; Mennechet, Franck J. D.; Manel, Nicolas; Alves, Paula; Perreau, Matthieu

    2016-01-01

    Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs. PMID:27636895

  6. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation.

    PubMed

    Bardhan, Kankana; Anagnostou, Theodora; Boussiotis, Vassiliki A

    2016-01-01

    The immune system maintains a critically organized network to defend against foreign particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors and play an important regulatory role to orchestrate the immune signals. Although central tolerance mechanism results in the removal of the most of the autoreactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and pose a threat to cause autoimmunity. The immune system evolved various mechanisms to constrain such autoreactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (T Regs ). These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role in the induction and maintenance of peripheral tolerance and for the maintenance of the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, and their consequences on the function of T effector cells.

  7. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation

    PubMed Central

    Bardhan, Kankana; Anagnostou, Theodora; Boussiotis, Vassiliki A.

    2016-01-01

    The immune system maintains a critically organized network to defend against foreign particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors and play an important regulatory role to orchestrate the immune signals. Although central tolerance mechanism results in the removal of the most of the autoreactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and pose a threat to cause autoimmunity. The immune system evolved various mechanisms to constrain such autoreactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (TRegs). These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role in the induction and maintenance of peripheral tolerance and for the maintenance of the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, and their consequences on the function of T effector cells. PMID:28018338

  8. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    USDA-ARS?s Scientific Manuscript database

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  9. Trypanosome resistance to human innate immunity: targeting Achilles’ heel

    PubMed Central

    Stephens, Natalie A.; Kieft, Rudo; MacLeod, Annette; Hajduk, Stephen L.

    2015-01-01

    Trypanosome lytic factors (TLFs) are powerful, naturally-occurring toxins in humans that provide sterile protection against infection by several African trypanosomes. These trypanocidal complexes predominantly enter the parasite by binding to the trypanosome haptoglobin/hemoglobin receptor (HpHbR), trafficking to the lysosome, causing membrane damage and ultimately, cell lysis. Despite TLF-mediated immunity, the parasites that cause human African Trypanosomiasis (HAT), Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have developed independent mechanisms of resistance to TLF killing. Here we describe the parasite defenses that allow trypanosome infections of humans and discuss how targeting these apparent strengths of the parasite may reveal their Achilles’ heel, leading to new approaches in the treatment of HAT. PMID:23059119

  10. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    PubMed Central

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  11. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  12. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector

    PubMed Central

    Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.

    2008-01-01

    Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075

  13. Immunometabolism in systemic lupus erythematosus.

    PubMed

    Morel, Laurence

    2017-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4 + T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4 + T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.

  14. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing

    PubMed Central

    Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin

    2013-01-01

    Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355

  15. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  16. Pathogenesis of Systemic Sclerosis

    PubMed Central

    Pattanaik, Debendra; Brown, Monica; Postlethwaite, Bradley C.; Postlethwaite, Arnold E.

    2015-01-01

    Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc. PMID:26106387

  17. Immunomodulatory and Inhibitory Effect of Immulina®, and Immunloges® in the Ig-E Mediated Activation of RBL-2H3 Cells. A New Role in Allergic Inflammatory Responses.

    PubMed

    Appel, Kurt; Munoz, Eduardo; Navarrete, Carmen; Cruz-Teno, Cristina; Biller, Andreas; Thiemann, Eva

    2018-02-26

    Immulina ® , a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis ( Spirulina ) is a potent activator of innate immune cells. On the other hand, it is well documented that Spirulina exerts anti-inflammatory effects and showed promising effects with respect to the relief of allergic rhinitis symptoms. Taking into account these findings, we decided to elucidate whether Immulina ® , and immunLoges ® (a commercial available multicomponent nutraceutical with Immulina ® as a main ingredient) beyond immune-enhancing effects, might also exert inhibitory effects in the induced allergic inflammatory response and on histamine release from RBL-2H3 mast cells. Our findings show that Immulina ® and immunLoges ® inhibited the IgE-antigen complex-induced production of TNF-α, IL-4, leukotrienes and histamine. The compound 48/80 stimulated histamine release in RBL-2H3 cells was also inhibited. Taken together, our results showed that Immulina ® and immunLoges ® exhibit anti-inflammatory properties and inhibited the release of histamine from mast cells.

  18. Clinical implications of basic science discoveries: nociceptive neurons as targets to control immunity--potential relevance for transplantation.

    PubMed

    Larregina, A T; Divito, S J; Morelli, A E

    2015-06-01

    Increasing evidence indicates the existence of a complex cross-regulation between the most important biosensors of the human body: The immune and nervous systems. Cytokines control body temperature and trigger autoimmune disorders in the central nervous system, whereas neuropeptides released in peripheral tissues and lymphoid organs modulate inflammatory (innate) and adaptive immune responses. Surprisingly, the effects of nerve fibers and the antidromic release of its pro-inflammatory neuropeptides on the leukocytes of the immune system that mediate graft rejection are practically unknown. In the transplantation field, such area of research remains practically unexplored. A recent study by Riol-Blanco et al has revealed new details on how nociceptive nerves regulate the pro-inflammatory function of leukocytes in peripheral tissues. Although the mechanism(s) by which neuroinflammation affects the immune response against the allograft remains unknown, recent data suggest that this new area of research is worth exploring for potential development of novel complementary therapies for prevention/treatment of graft rejection. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Pathogenesis and treatment of immune-mediated neuropathies.

    PubMed

    Lehmann, Helmar C; Meyer Zu Horste, Gerd; Kieseier, Bernd C; Hartung, Hans-Peter

    2009-07-01

    Immune-mediated neuropathies represent a heterogeneous spectrum of peripheral nerve disorders that can be classified according to time course, predominant involvement of motor/sensory fibers, distribution of deficits and paraclinical parameters such as electrophysiology and serum antibodies. In the last few years, significant advances have been achieved in elucidating underlying pathomechanisms, which made it possible to identify potential therapeutic targets. In this review, we discuss the latest development in pathogenesis and treatment of immune-mediated neuropathies.

  20. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    PubMed Central

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  1. IL-9-producing cells in the development of IgE-mediated food allergy.

    PubMed

    Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi

    2017-01-01

    Food allergy is a harmful immune reaction driven by uncontrolled type 2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4 + TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type 2 innate lymphoid cells (ILC2s) and CD4 + TH2 cells, which perpetuate allergic reactions from the skin to the gut. IL-4 and cross-linking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9-producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy-triggered anaphylaxis.

  2. IL-9–producing cells in the development of IgE-mediated food allergy

    PubMed Central

    Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi

    2016-01-01

    Food allergy is a harmful immune reaction driven by uncontrolled type-2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4+TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type-2 innate lymphoid cells (ILC2s) and CD4+TH2 cells, which perpetuate allergic reactions from skin to the gut. IL-4 and crosslinking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9–producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy–triggered anaphylaxis. PMID:27909880

  3. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    PubMed

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  4. Altered Immune Regulation in Type 1 Diabetes

    PubMed Central

    Zóka, András; Műzes, Györgyi; Somogyi, Anikó; Varga, Tímea; Szémán, Barbara; Al-Aissa, Zahra; Hadarits, Orsolya; Firneisz, Gábor

    2013-01-01

    Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β-cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development. PMID:24285974

  5. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α -Galactosylceramide-Stimulated Natural Killer T Cells.

    PubMed

    Lee, Sung Won; Park, Hyun Jung; Kim, Nayoung; Hong, Seokmann

    2013-01-01

    Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited by α -galactosylceramide ( α -GC) in mice. The rapid and strong expression of interferon- γ by NKDCs after α -GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α -GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α -GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α -GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  6. The Pathogenesis of Autoimmune Liver Disease.

    PubMed

    Arndtz, Katherine; Hirschfield, Gideon M

    Autoimmune liver disease (AILD) encompasses 3 main distinct clinical diseases: autoimmune hepatitis, primary biliary cholangitis (formally known as cirrhosis, PBC) and primary sclerosing cholangitis (PSC). These conditions are an important, yet under-appreciated cause of patient morbidity and mortality with ongoing unmet needs for further research and clinical advances. There is observational evidence for genetic predisposition, with all 3 conditions being more common in first degree relatives. AILD is associated with the presence of auto-antibodies and higher risks of other non-hepatic auto-immune conditions. Genetic risk association studies have identified HLA and non-HLA risk loci for the development of disease, with some HLA loci providing prognostic information. This re-enforces the concept that genetic predisposition to autoimmunity is important, likely in the context of environmental exposures. Such environmental triggers are unclear but relevant risks include smoking, drug and xenobiotic exposure as well as the complexities of the microbiome. There is evidence for a loss of immune tolerance to self-antigens playing a part in the development of these conditions. In particular the IL-2 and IL-12 regulatory pathways have been implicated in pre-disposing to an unopposed inflammatory response within the liver. Main immunological themes revolve around loss of immune tolerance leading to T-cell mediated injury, imbalance in the regulation of immune cells and defective immune response to foreign antigens. For PBC and PSC, there is then the added complexity of the consequences of cholestasis on hepato-biliary injury, immune regulation and liver fibrosis. Whilst specific disease causes and triggers are still lacking, AILD arises on the background of collective genetic and environmental risk, leading to chronic and abnormal hepato-biliary immune responses. Effective and more rational therapy will ultimately be developed when the multiple pathways to liver injury are better understood. © 2016 S. Karger AG, Basel.

  7. The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia

    DTIC Science & Technology

    2017-03-01

    anemia (AA) is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated...is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated disorder...GVHD) 2.11. Bone marrow transplantation 2.12. NSG mice 2.13. xGVHD 2.14. Hematopoietic stem cells (HSCs) 3. ACCOMPLISHMENTS: The PI is

  8. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and

  9. Anti-thymocyte serum as part of an immunosuppressive regimen in treating haematological immune-mediated diseases in dogs.

    PubMed

    Cuq, B; Blois, S L; Mathews, K A

    2017-06-01

    To report the outcomes associated with the use of rabbit anti-dog thymocyte serum in dogs with haematological immune-mediated diseases. Medical records from 2000 to 2016 of patients diagnosed with immune-mediated haemolytic anaemia, immune-mediated thrombocytopenia, pancytopenia and myelofibrosis were reviewed. All dogs had a severe or refractory disease and received rabbit anti-dog thymocyte serum. Lymphocyte counts were used to monitor the immediate anti-thymocyte effect of therapy; long-term patient outcome was recorded. A total of 10 dogs were included. All dogs except one had a notable decrease in their lymphocyte count after rabbit anti-dog thymocyte serum; four of nine had a decrease to less than 10% of the initial lymphocyte count and one dog reached 10·8%. All dogs were discharged from the hospital following their treatment. The dog with no alteration of lymphocyte count following therapy with rabbit anti-dog thymocyte serum had refractory immune mediated haemolytic anemia and was euthanised within two weeks. All other cases achieved clinical remission with immunosuppressive therapy eventually being tapered (3 of 10) or discontinued (6 of 10). Rabbit anti-dog thymocyte serum therapy might be of interest as an adjunctive therapy in refractory immune-mediated diseases and suppressed lymphocyte counts in most dogs. © 2017 British Small Animal Veterinary Association.

  10. How Does Optimism Suppress Immunity? Evaluation of Three Affective Pathways

    PubMed Central

    Segerstrom, Suzanne C.

    2005-01-01

    Studies have linked optimism to poorer immunity during difficult stressors. In the present report, when first-year law students (N = 46) relocated to attend law school, reducing conflict among curricular and extracurricular goals, optimism predicted larger delayed type hypersensitivity responses, indicating more robust in vivo cellular immunity. However, when students did not relocate, increasing goal conflict, optimism predicted smaller responses. Although this effect has been attributed to negative affect when difficult stressors violate optimistic expectancies, distress did not mediate optimism’s effects on immunity. Alternative affective mediators related to engagement – engaged affect and fatigue – likewise failed to mediate optimism’s effects, although all three types of affect independently influenced in vivo immunity. Alternative pathways include effort or self-regulatory depletion. PMID:17014284

  11. Differentiating food allergies from food intolerances.

    PubMed

    Guandalini, Stefano; Newland, Catherine

    2011-10-01

    Adverse reactions to foods are extremely common, and generally they are attributed to allergy. However, clinical manifestations of various degrees of severity related to ingestion of foods can arise as a result of a number of disorders, only some of which can be defined as allergic, implying an immune mechanism. Recent epidemiological data in North America showed that the prevalence of food allergy in children has increased. The most common food allergens in the United States include egg, milk, peanut, tree nuts, wheat, crustacean shellfish, and soy. This review examines the various forms of food intolerances (immunoglobulin E [IgE] and non-IgE mediated), including celiac disease and gluten sensitivity. Immune mediated reactions can be either IgE mediated or non-IgE mediated. Among the first group, Immediate GI hypersensitivity and oral allergy syndrome are the best described. Often, but not always, IgE-mediated food allergies are entities such as eosinophilic esophagitis and eosinophilic gastroenteropathy. Non IgE-mediated immune mediated food reactions include celiac disease and gluten sensitivity, two increasingly recognized disorders. Finally, non-immune mediated reactions encompass different categories such as disorders of digestion and absorption, inborn errors of metabolism, as well as pharmacological and toxic reactions.

  12. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    PubMed

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    PubMed Central

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  14. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    PubMed Central

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183

  15. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  16. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  17. Prenatal programing: at the intersection of maternal stress and immune activation.

    PubMed

    Howerton, Christopher L; Bale, Tracy L

    2012-08-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Prenatal programing: At the intersection of maternal stress and immune activation

    PubMed Central

    Howerton, Christopher L.; Bale, Tracy L.

    2013-01-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. PMID:22465455

  19. Vaccination with a feline immunodeficiency virus multiepitopic peptide induces cell-mediated and humoral immune responses in cats, but does not confer protection.

    PubMed Central

    Flynn, J N; Cannon, C A; Neil, J C; Jarrett, O

    1997-01-01

    Cats were immunized with a 46-residue multiepitopic synthetic peptide of feline immunodeficiency virus (FIV) comprising immunodominant epitopes present in the third variable domain of the envelope glycoprotein, transmembrane glycoprotein (TM), and p24 Gag core protein, using Quil A as an adjuvant. All vaccinated cats developed a humoral response which recognized the synthetic peptide immunogen and the intact viral core and envelope proteins. A FIV Gag- and Env-specific effector cytotoxic T-lymphocyte response was also detected in the peripheral blood of vaccinated cats, which peaked at week 30. This response appeared to be major histocompatibility complex restricted. Epitope mapping studies revealed that both the cellular and humoral immune responses were directed principally to a peptide within the TM glycoprotein, CNQNQFFCK. However, vaccination did not confer protection when cats were challenged with the Petaluma isolate of FIV at week 35. PMID:9311839

  20. Innate Immune Control of West Nile Virus Infection

    PubMed Central

    Arjona, Alvaro; Wang, Penghua; Montgomery, Ruth R.; Fikrig, Erol

    2011-01-01

    West Nile virus (WNV), from the Flaviviridae family, is a re-emerging zoonotic pathogen of medical importance. In humans, WNV infection may cause life-threatening meningoencephalitis or long-term neurologic sequelae. WNV is transmitted by Culex spp mosquitoes and both the arthropod vector and the mammalian host are equipped with antiviral innate immune mechanisms sharing a common phylogeny. As far as the current evidence is able to demonstrate, mosquitoes primarily rely on RNA interference, Toll, Imd and JAK-STAT signaling pathways for limiting viral infection, while mammals are provided with these and other more complex antiviral mechanisms involving antiviral effectors, inflammatory mediators, and cellular responses triggered by highly specialized pathogen detection mechanisms that often resemble their invertebrate ancestry. This mini-review summarizes our current understanding of how the innate immune systems of the vector and the mammalian host react to WNV infection and shape its pathogenesis. PMID:21790942

  1. Synthetic Studies of Complex Immunostimulants from Quillaja saponaria: Synthesis of the Potent Clinical Immunoadjuvant QS-21Aapi

    PubMed Central

    Kim, Yong-Jae; Wang, Pengfei; Navarro-Villalobos, Mauricio; Rohde, Bridget D.; Derryberry, JohnMark; Gin, David Y.

    2008-01-01

    QS-21 is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing vaccine therapy clinical trials involving QS-21 as a critical adjuvant component for immune response augmentation. QS-21 is a natural product immunostimulatory adjuvant, eliciting both T-cell- and antibody-mediated immune responses with microgram doses. Herein is reported the synthesis of QS-21Aapi in a highly modular strategy, applying novel glycosylation methodologies to a convergent construction of the potent saponin immunostimulant. The chemical synthesis of QS-21 offers unique opportunities to probe its mode of biological action through the preparation of otherwise unattainable nonnatural saponin analogues. PMID:16953631

  2. Mechanisms Underlying Helper T cell Plasticity: Implications for Immune-mediated Disease

    PubMed Central

    Hirahara, Kiyoshi; Poholek, Amanda; Vahedi, Golnaz; Laurence, Arian; Kanno, Yuka; Milner, Joshua D.; O’Shea, John J.

    2013-01-01

    CD4 helper T cells are critical for proper immune cell homeostasis and host defense, but are also major contributes to immune and inflammatory disease. Arising from a simple, biphasic model of differentiation, Th1 and Th2 cells, a bewildering number of fates seem to possible for helper T cells. To what extent different helper cell subsets maintain their characteristic gene expression profiles or exhibit functional plasticity is a hotly debated topic. In this review, we will discuss how the expression of “signature cytokines” and “master regulator” transcription factors do not neatly conform to a simple T helper paradigm. While this may seem confusing, the good news is that the newly recognized complexity fits better with our understanding of immunopathogenesis. Finally, we will discuss factors include epigenetic regulation and metabolic alterations that contribute to helper cell specific and plasticity. PMID:23622118

  3. Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity

    PubMed Central

    Lee, Eun-Young; Lee, Hyun-Cheol; Kim, Hyun-Kwan; Jang, Song Yee; Park, Seong-Jun; Kim, Yong-Hoon; Kim, Jong Hwan; Hwang, Jungwon; Kim, Jae-Hoon; Kim, Tae-Hwan; Arif, Abul; Kim, Seon-Young; Choi, Young-Ki; Lee, Cheolju; Lee, Chul-Ho; Jung, Jae U; Fox, Paul L; Kim, Sunghoon; Lee, Jong-Soo; Kim, Myung Hee

    2016-01-01

    The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/−) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection. PMID:27595231

  4. Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia.

    PubMed

    Nakatsuka, Yoshinari; Vandenbon, Alexis; Mino, Takashi; Yoshinaga, Masanori; Uehata, Takuya; Cui, Xiaotong; Sato, Ayuko; Tsujimura, Tohru; Suzuki, Yutaka; Sato, Atsuyasu; Handa, Tomohiro; Chin, Kazuo; Sawa, Teiji; Hirai, Toyohiro; Takeuchi, Osamu

    2018-04-25

    Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.

  5. [Immunosuppressive therapy in dogs and cats. Properties of drugs and their use in various immune-mediated diseases].

    PubMed

    Rieder, Johanna; Mischke, Reinhard

    2018-04-01

    Veterinarians are regularly faced with the diagnosis and therapy of immune-mediated diseases. More frequently occurring immune-mediated diseases are immune-mediated hemolytic anemia, immunemediated thrombocytopenia and polyarthritis. Glucocorticoids are commonly used as first-line treatment because of their availability, efficacy and rapid action. Nevertheless, some patients do not respond to glucocorticoid therapy alone. Others require a rapid dose reduction because of severe side effects from glucocorticoid treatment. These patients benefit from adjuvant therapies. Ciclosporin preparations are licensed for use in veterinary medicine. The use of azathioprine, mycophenolate mofetil and human immunoglobulin therapy has also been documented. This article describes the mode of action of certain immunosuppressive agents and their use in selected diseases from recent literature. Schattauer GmbH.

  6. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    PubMed Central

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  7. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion

    USDA-ARS?s Scientific Manuscript database

    The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...

  8. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles.

    PubMed

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-10-28

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Whey acidic proteins (WAPs): novel modulators of innate immunity to HIV infection.

    PubMed

    Reading, James L; Meyers, Adrienne F A; Vyakarnam, Annapurna

    2012-03-01

    To discuss how whey acidic proteins (WAPs), a new class of immunomodulatory soluble mediators, impact innate immunity to HIV infection. Innate immunity to HIV infection is increasingly being recognized as critical in determining initial virus transmission and dissemination and may, therefore, be exploited in vaccine and microbicide intervention strategies to combat HIV infection. Several important innate immune mediators have recently been shown to regulate HIV infection in vitro and are, thus, implicated in in vivo immunity to the virus. These include soluble mediators, such as type I interferon, the defensins and more recently WAPs. Recent evidence is discussed, which show that WAPs are pleiotropic soluble mediators that may impact the course of HIV infection in two ways: as regulators of HIV replication and as regulators of innate and adaptive immunity. A better understanding of host factors that regulate HIV transmission is essential in the development of novel therapeutic strategies. This review focuses on recent findings that highlight the HIV regulatory and anti-inflammatory function of WAPs and assesses their potential to be exploited as novel therapeutics.

  10. Bench-to-bedside review: Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis

    PubMed Central

    Opal, Steven M; Esmon, Charles T

    2003-01-01

    The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. The innate immune system is able to eradicate many microbial pathogens directly, or innate immunity may indirectly facilitate the removal of pathogens by activation of specific elements of the adaptive immune response (cell-mediated and humoral immunity by T cells and B cells). The coagulation system has traditionally been viewed as an entirely separate system that has arisen to prevent or limit loss of blood volume and blood components following mechanical injury to the circulatory system. It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review. PMID:12617738

  11. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    PubMed Central

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-01-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268

  12. Innate Immune Mechanisms in Transplant Allograft Vasculopathy

    PubMed Central

    Jane-wit, D; Fang, C; Goldstein, DR

    2016-01-01

    Purpose of Review Allograft vasculopathy (AV) is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury (IRI) and donor specific antibody (DSA)-induced complement activation confer heightened risk for AV via numerous innate immune mechanisms including MyD88, HMGB1, and complement induced non-canonical NF-kB signaling. Recent Findings The role of MyD88, a signal adaptor downstream of the toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced AV. Importantly, triggering receptor on myeloid receptor 1(Trem1), a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of AV in mice. HMGB1, a nuclear protein that activates TLRs, also enhanced the development of AV. Complement activation elicits assembly of membrane attack complexes (MAC) on endothelial cells which activate non-canonical NF-kB signaling, a novel complement effector pathway that induces pro-inflammatory genes and potentiates endothelial cell mediated alloimmune T cell activation, processes which enhance AV. Summary Innate immune mediators including HMGB1, MyD88, and non-canonical NFκB signaling via complement activation contribute to AV. These pathways represent potential therapeutic targets to reduce AV after solid organ transplantation. PMID:27077602

  13. Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    PubMed Central

    Moreno-Rueda, Gregorio; Redondo, Tomás; Trenzado, Cristina E.; Sanz, Ana; Zúñiga, Jesús M.

    2012-01-01

    Background Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. Methodology/Principal Findings We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. Conclusions/Significance These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability. PMID:22808144

  14. Silymarin impacts on immune system as an immunomodulator: One key for many locks.

    PubMed

    Esmaeil, Nafiseh; Anaraki, Sima Balouchi; Gharagozloo, Marjan; Moayedi, Behjat

    2017-09-01

    Silymarin is a flavonoid complex extracted from the Silybum marianum plant. It acts as a strong antioxidant and free radical scavenger by different mechanisms. But in addition to antioxidant effects, silymarin/silybin reveals immunomodulatory affects with both immunostimulatory and immunosuppression activities. Different studies have shown that silymarin has the anti-inflammatory effect through the suppression of NF-κB signaling pathway and TNF-α activation. It also has different immunomodulatory activities in a dose and time-dependent manner. As an immunomodulator agent, silymarin inhibits T-lymphocyte function at low doses while stimulates inflammatory processes at high doses. Studies have shown that silymarin has attenuated autoimmune, allergic, preeclampsia, cancer, and immune-mediated liver diseases and also has suppressed oxidative and nitrosative immunotoxicity. Silymarin also has indicated dual effects on proliferation and apoptosis of different cells. In conclusion, based on the current review, silymarin has a broad spectrum of immunomodulatory functions under different conditions. Recognizing the exact mechanisms of silymarin on cellular and molecular pathways would be very valuable for treatment of immune-mediated diseases. Also further studies are needed to assess the utility of silymarin in protection against autoimmune, cancer, allergic and other diseases in human subjects. Copyright © 2017. Published by Elsevier B.V.

  15. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  16. Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes

    PubMed Central

    Sánchez-Aparicio, M. T.; Ayllón, J.; Leo-Macias, A.; Wolff, T.

    2016-01-01

    ABSTRACT The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins. IMPORTANCE The first line of defense against viral infections is the innate immune response. Viruses are recognized by pathogen recognition receptors, such as the RIG-I like receptor family, that activate a signaling cascade that induces IFN production. In the present study, we visualized, for the first time in cells, both in overexpression and endogenous levels, complexes formed among key proteins involved in this innate immune signaling pathway. Through different techniques we were able to analyze how these proteins are distributed and reorganized spatially within the cell in order to transmit the signal, leading to an efficient antiviral state. In addition, this work presents a new means by how, when, and where viral proteins can target these pathways and act against the host immune system in order to counteract the activation of the immune response. PMID:27807226

  17. Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.

    PubMed

    Sánchez-Aparicio, M T; Ayllón, J; Leo-Macias, A; Wolff, T; García-Sastre, A

    2017-01-15

    The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins. The first line of defense against viral infections is the innate immune response. Viruses are recognized by pathogen recognition receptors, such as the RIG-I like receptor family, that activate a signaling cascade that induces IFN production. In the present study, we visualized, for the first time in cells, both in overexpression and endogenous levels, complexes formed among key proteins involved in this innate immune signaling pathway. Through different techniques we were able to analyze how these proteins are distributed and reorganized spatially within the cell in order to transmit the signal, leading to an efficient antiviral state. In addition, this work presents a new means by how, when, and where viral proteins can target these pathways and act against the host immune system in order to counteract the activation of the immune response. Copyright © 2017 American Society for Microbiology.

  18. Toll-like receptor signaling in vertebrates: testing the integration of protein, complex, and pathway data in the protein ontology framework.

    PubMed

    Arighi, Cecilia; Shamovsky, Veronica; Masci, Anna Maria; Ruttenberg, Alan; Smith, Barry; Natale, Darren A; Wu, Cathy; D'Eustachio, Peter

    2015-01-01

    The Protein Ontology (PRO) provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has allowed us to identify species-specific gaps in experimental data and possible functional differences between species, and to employ inferred structural and functional relationships to suggest plausible resolutions of these discrepancies and gaps.

  19. Functional basis for complement evasion by staphylococcal superantigen-like 7.

    PubMed

    Bestebroer, Jovanka; Aerts, Piet C; Rooijakkers, Suzan H M; Pandey, Manoj K; Köhl, Jörg; van Strijp, Jos A G; de Haas, Carla J C

    2010-10-01

    The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen-like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA-FcαRI binding and serum killing of Escherichia coli. As C5a generation, in contrast to C5b-9-mediated lysis, is crucial for immune defence against staphylococci, we investigated the impact of SSL7 on staphylococcal-induced C5a-mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA-binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a-induced phagocytosis of S. aureus and oxidative burst in an in vitro whole-blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a-driven influx of neutrophils in mouse peritoneum. © 2010 Blackwell Publishing Ltd.

  20. Functional basis for complement evasion by staphylococcal superantigen-like 7

    PubMed Central

    Bestebroer, Jovanka; Aerts, Piet C.; Rooijakkers, Suzan H.M.; Pandey, Manoj K.; Köhl, Jörg; van Strijp, Jos A. G.; de Haas, Carla J. C.

    2010-01-01

    Summary The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen-like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA-FcαRI binding and serum killing of E. coli. As C5a generation, in contrast to C5b-9-mediated lysis, is crucial for immune defense against staphylococci, we investigated the impact of SSL7 on staphylococcal-induced C5a-mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA-binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a-induced phagocytosis of S. aureus and oxidative burst in an in vitro whole blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a-driven influx of neutrophils in mouse peritoneum. PMID:20545943

  1. The Therapeutic Effect of Anti-HER2/neu Antibody Depends on Both Innate and Adaptive Immunity

    PubMed Central

    Park, SaeGwang; Jiang, Zhujun; Mortenson, Eric D.; Deng, Liufu; Radkevich-Brown, Olga; Yang, Xuanming; Sattar, Husain; Wang, Yang; Brown, Nicholas K.; Greene, Mark; Liu, Yang; Tang, Jie; Wang, Shengdian; Fu, Yang-Xin

    2010-01-01

    SUMMARY Anti-HER2/neu antibody therapy is reported to mediate tumor regression by interrupting oncogenic signals and/or inducing FcR-mediated cytotoxicity. Here, we demonstrate that the mechanisms of tumor regression by this therapy also require the adaptive immune response. Activation of innate immunity and T cells, initiated by antibody treatment, was necessary. Intriguingly, the addition of chemotherapeutic drugs, while capable of enhancing the reduction of tumor burden, could abrogate antibody-initiated immunity leading to decreased resistance to re-challenge or earlier relapse. Increased influx of both innate and adaptive immune cells into the tumor microenvironment by a selected immunotherapy further enhanced subsequent antibody-induced immunity, leading to increased tumor eradication and resistance to re-challenge. Therefore, this study proposes a model and strategy for anti-HER2/neu antibody-mediated tumor clearance. PMID:20708157

  2. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology.

    PubMed

    Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong

    2017-03-22

    This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.

  3. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water.

    PubMed

    Frawley, Rachel P; Smith, Matthew J; White, Kimber L; Elmore, Susan A; Herbert, Ron; Moore, Rebecca; Staska, Lauren M; Behl, Mamta; Hooth, Michelle J; Kissling, Grace E; Germolec, Dori R

    2016-09-01

    Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.

  4. Immunotoxic Effects of Sodium Tungstate Dihydrate on Female B6C3F1/N Mice When Administered in Drinking Water

    PubMed Central

    Frawley, Rachel P.; Smith, Matthew J.; White, Kimber L; Elmore, Susan; Herbert, Ron; Moore, Rebecca; Staska, Lauren M.; Behl, Mamta; Hooth, Michelle J.; Kissling, Grace E.; Germolec, Dori R.

    2018-01-01

    Tungsten is a naturally occurring, high tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0–2000 mg STD/L in their drinking water for 28 days, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3+ T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely effect cell-mediated immunity. PMID:27223060

  5. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    PubMed Central

    Hedi, Harizi

    2004-01-01

    5-lipoxygenase (5-LO) pathway is the major source of potent proinflammatory leukotrienes (LTs) issued from the metabolism of arachidonic acid (AA), and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC)-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity. PMID:15240920

  6. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes

    PubMed Central

    Clatworthy, Menna R.; Aronin, Caren E. Petrie; Mathews, Rebeccah J.; Morgan, Nicole; Smith, Kenneth G.C.; Germain, Ronald N.

    2014-01-01

    Antibodies are critical for defence against a variety of microbes but may also be pathogenic in some autoimmune diseases. Many effector functions of antibody are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs). DCs are important antigen presenting cells and play a central role in inducing antigen-specific tolerance or immunity1,2. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via lymphatics to present antigen to T cells. In this study we demonstrate that FcγR engagement by IgG immune complexes (IC) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated murine and human DCs showed enhanced directional migration in a CCL19 gradient and increased CCR7 expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilisation. We confirmed that dermal DC migration to lymph nodes was CCR7-dependent and increased in the absence of the inhibitory receptor, FcγRIIb. These observations have relevance to autoimmunity, because autoantibody-containing serum from mice and humans with SLE also increased dermal DC migration to lymph nodes in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localisation of autoantigen-bearing DCs. PMID:25384086

  7. Induction of cell-mediated immunity against B16-BL6 melanoma in mice vaccinated with cells modified by hydrostatic pressure and chemical crosslinking.

    PubMed

    Eisenthal, A; Ramakrishna, V; Skornick, Y; Shinitzky, M

    1993-05-01

    In the preceding paper we have demonstrated an increase in presentation of both major histocompatibility complex antigens (MHC) and a tumor-associated antigen of the weakly immunogenic B16 melanoma by a straight-forward technique. The method consists in modulating the tumor cell membrane by hydrostatic pressure and simultaneous chemical crosslinking of the cell-surface proteins. In B16-BL6 melanoma, the induced antigenic modulation was found to persist for over 48 h, which permitted the evaluation of the ability of modified B16-BL6 cells to induce immunity against unmodified B16-BL6 cells. In the present study, we have shown that a significant systemic immunity was induced only in mice that were immunized with modified B16-BL6 melanoma cells, whereas immunization with unmodified B16-BL6 cells had only a marginal effect when compared to the results in control sham-immunized mice. The induced immunity was specific since a single immunization affected the growth of B16-BL6 tumors but had no effect on MCA 106, an antigenically unrelated tumor. The addition of interleukin-2 to the immunization regimen had no effect on the antitumor responses induced by the modified B16-BL6 cells. The cell-mediated immunity conferred by immunization with treated B16-BL6 cells was confirmed in experiments in vitro where splenocytes from immunized mice could be sensitized to proliferate by the presence of B16-BL6 cells. In addition, the altered antigenicity of these melanoma cells appeared to correlate with their increased susceptibility to specific effectors. Thus, 51Cr-labeled B16-BL6 target cells, modified by pressure and crosslinking, in comparison to control labeled target cells, were lysed in much greater numbers by effectors such as lymphokine-activated killer cells and allogeneic cytotoxic lymphocytes (anti-H-2b), while such cells remained resistant to lysis by natural killer cells. Our findings indicate that the physical and chemical modifications of the tumor cells that are described here may be considered as a simple yet effective method for the preparation of tumor vaccines, which could be applied in tumor-bearing hosts.

  8. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling

    PubMed Central

    Sadekuzzaman, Md.

    2018-01-01

    Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge. PMID:29466449

  9. Caloric Restriction reduces inflammation and improves T cell-mediated immune response in obese mice but concomitant consumption of curcumin/piperine adds no further benefit

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with low-grade inflammation and impaired immune response. Caloric restriction (CR) has been shown to inhibit inflammatory response and enhance cell-mediated immune function. Curcumin, the bioactive phenolic component of turmeric spice, is proposed to have anti-obesity and anti-...

  10. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    PubMed Central

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  11. Osteoimmunology and Beyond

    PubMed Central

    Ginaldi, Lia; De Martinis, Massimo

    2016-01-01

    Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity. PMID:27604089

  12. Enemy at the gates: traffic at the plant cell pathogen interface.

    PubMed

    Hoefle, Caroline; Hückelhoven, Ralph

    2008-12-01

    The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.

  13. Antibodies and Their Receptors: Different Potential Roles in Mucosal Defense

    PubMed Central

    Horton, Rachel E.; Vidarsson, Gestur

    2013-01-01

    Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity. PMID:23882268

  14. Intestinal Microbiota: Facts and Fiction.

    PubMed

    Kverka, Miloslav; Tlaskalová-Hogenová, Helena

    2017-01-01

    In humans, the gut microbiota forms a complex ecosystem consisting of a vast number of bacteria, Archaea, fungi and viruses. It represents a major stimulus to the development of the immune system and many other physiological functions, so that it may shape the individual's susceptibility to infectious and immune-mediated diseases. The emergence of new '-omics' methods recently revolutionized the way we study the host-microbe interactions, but they also raised new questions and issues. In this review, we discuss the impact of these new data on the current and future therapies for chronic inflammatory diseases. We also outline the major conceptual, technical and interpretational issues that recently led to some misleading conclusions and discuss in brief the current research directions in the field. © 2017 S. Karger AG, Basel.

  15. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells

    PubMed Central

    McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S

    2015-01-01

    Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis, there is a stress-induced shift in the balance of pro- and anti-inflammatory mediator expression in dural immune cells that is more pronounced in females, and is dependent, at least in part, on sympathetic post-ganglionic innervation in females. This shift in the balance of inflammatory mediator expression may not only play an important role in triggering migraine attacks, but suggests it may be possible, if not necessary to employ different strategies to most effectively treat migraine in men and women. PMID:26126992

  16. Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia.

    PubMed

    Wong, Sarah Sze Wah; Aimanianda, Vishukumar

    2017-12-24

    Aspergillus fumigatus produce airborne spores (conidia), which are inhaled in abundant quantity. In an immunocompromised population, the host immune system fails to clear the inhaled conidia, which then germinate and invade, leading to pulmonary aspergillosis. In an immunocompetent population, the inhaled conidia are efficiently cleared by the host immune system. Soluble mediators of the innate immunity, that involve the complement system, acute-phase proteins, antimicrobial peptides and cytokines, are often considered to play a complementary role in the defense of the fungal pathogen. In fact, the soluble mediators are essential in achieving an efficient clearance of the dormant conidia, which is the morphotype of the fungus upon inhalation by the host. Importantly, harnessing the host soluble mediators challenges the immunological inertness of the dormant conidia due to the presence of the rodlet and melanin layers. In the review, we summarized the major soluble mediators in the lung that are involved in the recognition of the dormant conidia. This knowledge is essential in the complete understanding of the immune defense against A. fumigatus .

  17. Attenuation of Staphylococcus aureus-Induced Bacteremia by Human Mini-Antibodies Targeting the Complement Inhibitory Protein Efb.

    PubMed

    Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L; Geisbrecht, Brian V; Foukas, Periklis G; Lambris, John D; Mastellos, Dimitrios C; Sfyroera, Georgia

    2015-10-15

    Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Diabetic Retinopathy: Vascular and Inflammatory Disease

    PubMed Central

    Semeraro, F.; Cancarini, A.; dell'Omo, R.; Rezzola, S.; Romano, M. R.; Costagliola, C.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted. PMID:26137497

  20. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

    PubMed Central

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-01-01

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950

  1. Receptor Complex Mediated Regulation of Symplastic Traffic.

    PubMed

    Stahl, Yvonne; Faulkner, Christine

    2016-05-01

    Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2015-10-01

    reduction in the number of regulatory T cells (Tregs) in STING2/2 lpr/lpr secondary lymphoid organs. Apoptotic debris induces the production of IDO...DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol. 184: 4338–4348... cells remain relatively unchanged. Nevertheless, nearly all peripheral lymphoid pools exhibit altered dynamics, shifts in functional subset representation

  3. Therapeutic Blockade of Immune Complex-Mediated Glomerulonephritis by Highly Selective Inhibition of Bruton’s Tyrosine Kinase

    PubMed Central

    Chalmers, Samantha A.; Doerner, Jessica; Bosanac, Todd; Khalil, Sara; Smith, Dustin; Harcken, Christian; Dimock, Janice; Der, Evan; Herlitz, Leal; Webb, Deborah; Seccareccia, Elise; Feng, Di; Fine, Jay S.; Ramanujam, Meera; Klein, Elliott; Putterman, Chaim

    2016-01-01

    Lupus nephritis (LN) is a potentially dangerous end organ pathology that affects upwards of 60% of lupus patients. Bruton’s tyrosine kinase (BTK) is important for B cell development, Fc receptor signaling, and macrophage polarization. In this study, we investigated the effects of a novel, highly selective and potent BTK inhibitor, BI-BTK-1, in an inducible model of LN in which mice receive nephrotoxic serum (NTS) containing anti-glomerular antibodies. Mice were treated once daily with vehicle alone or BI-BTK-1, either prophylactically or therapeutically. When compared with control treated mice, NTS-challenged mice treated prophylactically with BI-BTK-1 exhibited significantly attenuated kidney disease, which was dose dependent. BI-BTK-1 treatment resulted in decreased infiltrating IBA-1+ cells, as well as C3 deposition within the kidney. RT-PCR on whole kidney RNA and serum profiling indicated that BTK inhibition significantly decreased levels of LN-relevant inflammatory cytokines and chemokines. Renal RNA expression profiling by RNA-seq revealed that BI-BTK-1 dramatically modulated pathways related to inflammation and glomerular injury. Importantly, when administered therapeutically, BI-BTK-1 reversed established proteinuria and improved renal histopathology. Our results highlight the important role for BTK in the pathogenesis of immune complex-mediated nephritis, and BTK inhibition as a promising therapeutic target for LN. PMID:27192942

  4. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex

    PubMed Central

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-01-01

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured—qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection. PMID:21733902

  5. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    PubMed

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  6. Regulatory T cells: mechanisms of differentiation and function.

    PubMed

    Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y

    2012-01-01

    The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.

  7. Nitric Oxide and KLF4 Protein Epigenetically Modify Class II Transactivator to Repress Major Histocompatibility Complex II Expression during Mycobacterium bovis Bacillus Calmette-Guérin Infection*

    PubMed Central

    Ghorpade, Devram Sampat; Holla, Sahana; Sinha, Akhauri Yash; Alagesan, Senthil Kumar; Balaji, Kithiganahalli Narayanaswamy

    2013-01-01

    Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance. PMID:23733190

  8. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation.

    PubMed

    van de Weijer, Michael L; Schuren, Anouk B C; van den Boomen, Dick J H; Mulder, Arend; Claas, Frans H J; Lehner, Paul J; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2017-09-01

    Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system. © 2017. Published by The Company of Biologists Ltd.

  9. Preterm Birth Affects the Risk of Developing Immune-Mediated Diseases

    PubMed Central

    Goedicke-Fritz, Sybelle; Härtel, Christoph; Krasteva-Christ, Gabriela; Kopp, Matthias V.; Meyer, Sascha; Zemlin, Michael

    2017-01-01

    Prematurity affects approximately 10% of all children, resulting in drastically altered antigen exposure due to premature confrontation with microbes, nutritional antigens, and other environmental factors. During the last trimester of pregnancy, the fetal immune system adapts to tolerate maternal and self-antigens, while also preparing for postnatal immune defense by acquiring passive immunity from the mother. Since the perinatal period is regarded as the most important “window of opportunity” for imprinting metabolism and immunity, preterm birth may have long-term consequences for the development of immune-mediated diseases. Intriguingly, preterm neonates appear to develop bronchial asthma more frequently, but atopic dermatitis less frequently in comparison to term neonates. The longitudinal study of preterm neonates could offer important insights into the process of imprinting for immune-mediated diseases. On the one hand, preterm birth may interrupt influences of the intrauterine environment on the fetus that increase or decrease the risk of later immune disease (e.g., maternal antibodies and placenta-derived factors), whereas on the other hand, it may lead to the premature exposure to protective or harmful extrauterine factors such as microbiota and nutritional antigen. Solving this puzzle may help unravel new preventive and therapeutic approaches for immune diseases. PMID:29062316

  10. [Food allergy or food intolerance?].

    PubMed

    Maître, S; Maniu, C-M; Buss, G; Maillard, M H; Spertini, F; Ribi, C

    2014-04-16

    Adverse food reactions can be classified into two main categories depending on wether an immune mechanism is involved or not. The first category includes immune mediated reactions like IgE mediated food allergy, eosinophilic oesophagitis, food protein-induced enterocolitis syndrome and celiac disease. The second category implies non-immune mediated adverse food reactions, also called food intolerances. Intoxications, pharmacologic reactions, metabolic reactions, physiologic, psychologic or reactions with an unknown mechanism belong to this category. We present a classification of adverse food reactions based on the pathophysiologic mechanism that can be useful for both diagnostic approach and management.

  11. Lameness associated with tarsal haemarthrosis as the sole clinical sign of idiopathic immune-mediated thrombocytopenia in a dog.

    PubMed

    Walton, M B; Mardell, E; Spoor, M; Innes, J

    2014-01-01

    A four-year-old, male Cocker Spaniel was presented for investigation of pelvic limb stiffness. There was palpable effusion of both tarsi, and analysis of synovial fluid from these joints indicated previous haemorrhage. After further investigation a diagnosis of idiopathic immune-mediated thrombocytopenia was made. The dog responded to treatment with prednisolone and azathioprine. To the authors' knowledge, this is the first reported case of confirmed haemarthrosis as the sole presenting clinical sign for canine idiopathic immune-mediated thrombocytopenia.

  12. The relationship of autoantibodies to depression of cell-mediated immunity in infectious mononucleosis.

    PubMed Central

    Russell, A S; Percy, J S; Grace, M

    1975-01-01

    It has been postulated that autoantibody formation occurs as a consequence of a depression of function of certain thymus-derived lymphocytes (T cells). We have examined cell-mediated immunity, a T-cell function, in infectious mononucleosis, a condition in which autoantibodies are known to develop. We have shown some evidence of depressed cell-mediated immunity in patients with infectious mononucleosis but have been unable to correlate this with autoantibody production. These results do not support the hypothesis that depression of T-cell function leads to autoantibody formation. PMID:1081930

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libregts, Sten F.W.M.; Nolte, Martijn A., E-mail: m.nolte@sanquin.nl

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines onmore » the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.« less

  14. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals.

    PubMed

    Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi

    2005-12-01

    Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.

  15. Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation

    PubMed Central

    Gawanbacht, Ali; Van Driessche, Benoît; Van Lint, Carine; Peeters, Martine; Kirchhoff, Frank

    2017-01-01

    Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes. PMID:28859166

  16. Molecular And Structural Basis of Cytokine Receptor Pleiotropy in the Interleukin-4/13 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.

    2009-05-20

    Interleukin-4 and Interleukin-13 are cytokines critical to the development of T cell-mediated humoral immune responses, which are associated with allergy and asthma, and exert their actions through three different combinations of shared receptors. Here we present the crystal structures of the complete set of type I (IL-4R{alpha}/{gamma}{sub c}/IL-4) and type II (IL-4R/IL-13R{alpha}1/IL-4, IL-4R{alpha}/IL-13R{alpha}1/IL-13) ternary signaling complexes. The type I complex reveals a structural basis for {gamma}{sub c}'s ability to recognize six different {gamma}{sub c}-cytokines. The two type II complexes utilize an unusual top-mounted Ig-like domain on IL-13R{alpha}1 for a novel mode of cytokine engagement that contributes to a reversal inmore » the IL-4 versus IL-13 ternary complex assembly sequences, which are mediated through substantially different recognition chemistries. We also show that the type II receptor heterodimer signals with different potencies in response to IL-4 versus IL-13 and suggest that the extracellular cytokine-receptor interactions are modulating intracellular membrane-proximal signaling events.« less

  17. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir

    PubMed Central

    Montaner, Luis J.

    2017-01-01

    Abstract Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. PMID:28520969

  18. Host protective roles of type 2 immunity: Parasite killing and tissue repair, flip sides of the same coin

    PubMed Central

    Allen, Judith E.; Sutherland, Tara E.

    2014-01-01

    Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4Rα that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340

  19. Potentiation of T-cell mediated immunity by levamisole.

    PubMed Central

    Renoux, G; Renoux, M; Teller, M N; McMahon, S; Guillaumin, J M

    1976-01-01

    Cell-mediated immunity is a requirement for recognition and elimination of cells and for prevention or treatment of a variety of diseases. Therefore, the development of a product potentially active in increasing immunity involves its testing in assays specific for cell-mediated immunity. The effectiveness of a single administration of levamisole was demonstrated in the rejection of isografts in a male to female C57BL/6 system, and on the enhancement of levels of the delayed type hypersensitivity (DTH) to sheep red cells (SRBC). Indeed, in five on nine tests, an injection of 25 mg/kg of levamisole to female recipients either on the day of grafting or 7 days after grafting resulted in a RT50% rejection time of 25 days, compared with 46 days in untreated controls. Levamisole administered at the time of immunization with various doses of SRBC elicited earlier, higher and more sustained DTH levels than in untreated controls. Such induction of T-cell activation was accompanied by a switch on anti-SRBC antibodies from IgM to IgG. These findings confirm and extend data evidencing the ability of levamisole to recruit and activate T cells for an increased or restored cell-mediated immunity. PMID:782749

  20. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    PubMed

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    PubMed

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice.

    PubMed

    Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick

    2008-03-01

    A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.

  3. Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation

    PubMed Central

    Siniscalco, Dario; Bradstreet, James Jeffrey; Antonucci, Nicola

    2013-01-01

    Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders. PMID:23772227

  4. Targeting complement-mediated immunoregulation for cancer immunotherapy.

    PubMed

    Kolev, Martin; Markiewski, Maciej M

    2018-06-01

    Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Immunomodulatory and Inhibitory Effect of Immulina®, and Immunloges® in the Ig-E Mediated Activation of RBL-2H3 Cells. A New Role in Allergic Inflammatory Responses

    PubMed Central

    Appel, Kurt; Munoz, Eduardo; Navarrete, Carmen; Cruz-Teno, Cristina; Biller, Andreas

    2018-01-01

    Immulina®, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis (Spirulina) is a potent activator of innate immune cells. On the other hand, it is well documented that Spirulina exerts anti-inflammatory effects and showed promising effects with respect to the relief of allergic rhinitis symptoms. Taking into account these findings, we decided to elucidate whether Immulina®, and immunLoges® (a commercial available multicomponent nutraceutical with Immulina® as a main ingredient) beyond immune-enhancing effects, might also exert inhibitory effects in the induced allergic inflammatory response and on histamine release from RBL-2H3 mast cells. Our findings show that Immulina® and immunLoges® inhibited the IgE-antigen complex-induced production of TNF-α, IL-4, leukotrienes and histamine. The compound 48/80 stimulated histamine release in RBL-2H3 cells was also inhibited. Taken together, our results showed that Immulina® and immunLoges® exhibit anti-inflammatory properties and inhibited the release of histamine from mast cells. PMID:29495393

  6. Multigenic Control of Measles Vaccine Immunity Mediated by Polymorphisms in Measles Receptor, Innate Pathway, and Cytokine Genes

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; O’Byrne, Megan; Jacobson, Robert M.; Pankratz, V. Shane; Poland, Gregory A.

    2012-01-01

    Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In the current study we report the findings of a multigenic analysis of measles vaccine immunity, indicating a role for the measles virus receptor CD46, innate pattern-recognition receptors (DDX58, TLR2, 4, 5,7 and 8) and intracellular signaling intermediates (MAP3K7, NFKBIA), and key antiviral molecules (VISA, OAS2, MX1, PKR) as well as cytokines (IFNA1, IL4, IL6, IL8, IL12B) and cytokine receptor genes (IL2RB, IL6R, IL8RA) in the genetic control of both humoral and cellular immune responses. This multivariate approach provided additional insights into the genetic control of measles vaccine responses over and above the information gained by our previous univariate SNP association analyses. PMID:22265947

  7. Isolation of circulating immune complexes using Raji cells. Separation of antigens from immune complexes and production of antiserum.

    PubMed Central

    Theofilopoulos, A N; Eisenberg, R A; Dixon, F J

    1978-01-01

    Raji cells were used for the isolation of complement-fixing antigen-antibody complexes from serum. Immune complexes bound to these cells were radiolabeled at the cell surface with lactoperoxidase. The complexes were then eluted from the cells with isotonic citrate buffer pH 3.2 or recovered by immunoprecipitation of cell lysates. The antigen and antibody moieties of the complexes were isolated by dissociating sucrose density gradient centrifugation or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A variety of preformed immune complexes were successfully isolated from serum with this approach. In addition, these techniques were used to isolate and identify the antigens in immune complexes in the serum of rabbits with chronic serum sickness and rats with Moloney virus-induced sarcomas. Methods were also developed for the production of antisera against the antigenic moiety of immune complexes isolated from serum. Repeated challenge of rabbits with whole Raji cells with bound complexes or eluates from such cells resulted in antibody production against the antigens of the immune complexes, although reactivity against cellular and serum components was also elicited. Monospecific antisera against the antigens in immune complexes were produced by immunizing rabbits with the alum-precipitated antigen isolated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These techniques may be useful in isolating antigens in immune complex-associated diseases of unknown etiology. Images PMID:659616

  8. The complex pathophysiology of acquired aplastic anaemia.

    PubMed

    Zeng, Y; Katsanis, E

    2015-06-01

    Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8(+) cytotoxic T cells, CD4(+) T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure. © 2015 British Society for Immunology.

  9. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella

    PubMed Central

    Andree, Maria; Seeger, Jens M; Schüll, Stephan; Coutelle, Oliver; Wagner-Stippich, Diana; Wiegmann, Katja; Wunderlich, Claudia M; Brinkmann, Kerstin; Broxtermann, Pia; Witt, Axel; Fritsch, Melanie; Martinelli, Paola; Bielig, Harald; Lamkemeyer, Tobias; Rugarli, Elena I; Kaufmann, Thomas; Sterner-Kock, Anja; Wunderlich, F Thomas; Villunger, Andreas; Martins, L Miguel; Krönke, Martin; Kufer, Thomas A; Utermöhlen, Olaf; Kashkar, Hamid

    2014-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization. PMID:25056906

  10. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    PubMed

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Maternal education and child immunization: the mediating roles of maternal literacy and socioeconomic status.

    PubMed

    Balogun, Saliu Adejumobi; Yusuff, Hakeem Abiola; Yusuf, Kehinde Quasim; Al-Shenqiti, Abdulah Mohammed; Balogun, Mariam Temitope; Tettey, Prudence

    2017-01-01

    Previous studies in Nigeria have documented significant association between maternal education and child immunization. However, little is known about the pathway through which maternal education improves immunization uptake. This study aims to examine whether maternal literacy and socioeconomic status mediates the relationship between maternal education and complete immunization coverage in children. Nationally representative data from the first wave of the Nigeria General Household Survey-Panel were used, which includes 661 children aged one year and below. Regression analyses were used to model the association between maternal education and child's immunization uptake; we then examined whether maternal literacy and household economic status mediates this association. Of the 661 children, 40% had complete immunization. The prevalence ratio (PR) of complete immunization in children whose mothers were educated versus those whose mothers were not educated was 1.44 (95% CI: 1.16-1.77). Maternal literacy substantially reduced the estimated association between maternal education and complete immunization by 90%, whereas household economic status reduced the estimates by 27%. These findings suggest that complete immunization was higher in children whose mothers were educated, partly because maternal education leads to acquisition of literacy skills and better health-seeking behavior which then improves immunization uptake for their children. Socioeconomic status is an alternative pathway but with less substantial indirect effect.

  12. Bruton’s tyrosine kinase deficiency inhibits autoimmune arthritis but fails to block immune complex-mediated inflammatory arthritis

    PubMed Central

    Nyhoff, Lindsay E.; Barron, Bridgette; Johnson, Elizabeth M.; Bonami, Rachel H.; Maseda, Damian; Fensterheim, Benjamin A.; Han, Wei; Blackwell, Timothy S.; Crofford, Leslie J.; Kendall, Peggy L.

    2017-01-01

    Objective Bruton’s Tyrosine Kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK-inhibitors prevent autoimmune arthritis, but have off-target effects, and the mechanisms of protection remain unknown. These studies used genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. Methods Btk-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. Results Btk-deficiency conferred disease protection to K/BxN mice, confirming BTK-inhibitor outcomes. B lymphocytes were profoundly reduced, more than in other Btk-deficient models. Subset analysis revealed loss at all developmental stages. Germinal center B cells were also decreased, with downstream effects on T follicular helper numbers, and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, Btk-deficiency had no effect on the serum transfer model of arthritis. Conclusions BTK contributes to autoimmune arthritis primarily via its role in B cell signaling, not innate immune components. PMID:26945549

  13. Viral degradasome hijacks mitochondria to suppress innate immunity

    PubMed Central

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  14. Gut microbes and adverse food reactions: Focus on gluten related disorders.

    PubMed

    Galipeau, Heather J; Verdu, Elena F

    2014-01-01

    Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions.

  15. Gut microbes and adverse food reactions: Focus on gluten related disorders

    PubMed Central

    Galipeau, Heather J; Verdu, Elena F

    2014-01-01

    Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions. PMID:25483329

  16. Dehydroepiandrosterone and multiple measures of functional immunity in young adults.

    PubMed

    Prall, Sean P; Muehlenbein, Michael P

    2015-01-01

    Human immune function is strongly influenced by variation in hormone concentrations. The adrenal androgens dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) are thought to be beneficial to immune function and disease resistance, but physiologically interact with testosterone and cortisol. We predict that DHEA and DHEA-S will interact with these other hormones in determining immunological outcomes. Understanding the interactive effects of these hormones will aid in understanding variability in immunocompetence and clarify discrepancies in human studies of androgen-immune interactions. Thirty-eight participants collected morning saliva over three days, from which concentrations of DHEA, DHEA-S, testosterone, and cortisol were measured, as well as salivary bacteria killing ability to measure innate immune function. From blood collection, serum was collected to measure innate immune function via a hemolytic complement assay, and whole blood collected and processed to measure proliferative responses of lymphocytes in the presence of mitogens. DHEA was negatively correlated with T cell proliferation, and positively correlated with salivary bacteria killing in male participants. Additionally, using regression models, DHEA-S was negatively associated with hemolytic complement activity, but interaction variables did not yield statistically significant relationships for any other outcome measure. While interactions with other hormones did not significantly relate with immune function measures in this sample, DHEA and DHEA-S did differentially impact multiple branches of the immune system. Generally characterized as immunosupportive in action, DHEA is shown to inhibit certain facets of innate and cell-mediated immunity, suggesting a more complex role in regulating immunocompetence. © 2015 Wiley Periodicals, Inc.

  17. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection.

    PubMed

    Angaswamy, Nataraju; Tiriveedhi, Venkataswarup; Sarma, Nayan J; Subramanian, Vijay; Klein, Christina; Wellen, Jason; Shenoy, Surendra; Chapman, William C; Mohanakumar, T

    2013-11-01

    Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Vitamin D, the immune system and asthma

    PubMed Central

    Lange, Nancy E; Litonjua, Augusto; Hawrylowicz, Catherine M; Weiss, Scott

    2010-01-01

    The effects of vitamin D on bone metabolism and calcium homeostasis have long been recognized. Emerging evidence has implicated vitamin D as a critical regulator of immunity, playing a role in both the innate and cell-mediated immune systems. Vitamin D deficiency has been found to be associated with several immune-mediated diseases, susceptibility to infection and cancer. Recently, there has been increasing interest in the possible link between vitamin D and asthma. Further elucidation of the role of vitamin D in lung development and immune system function may hold profound implications for the prevention and treatment of asthma. PMID:20161622

  19. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    PubMed Central

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  20. Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease.

    PubMed

    Vallejo, Abbe N

    2007-03-01

    Immunological studies of aging and of patients with chronic immune-mediated diseases document overlap of immune phenotypes. Here, the term "immune remodeling" refers to these phenotypes that are indicative of biological processes of deterioration and repair. This concept is explored through lessons from studies about the changes in the T-cell repertoire and the functional diversity of otherwise oligoclonal, senescent T cells. Immune remodeling suggests a gradual process that occurs throughout life. However, similar but more drastic remodeling occurs disproportionately among young patients with chronic disease. In this article, I propose that immune remodeling is a beneficial adaptation of aging to promote healthy survival beyond reproductive performance, but acute remodeling poses risk of premature exhaustion of the immune repertoire and, thus, is detrimental in young individuals.

  1. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Neiser, Susann; Koskenkorva, Taija S.; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna

    2016-01-01

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions. PMID:27455240

  2. Uptake routes of tumor-antigen MAGE-A3 by dendritic cells determine priming of naïve T-cell subtypes.

    PubMed

    Moeller, Ines; Spagnoli, Giulio C; Finke, Jürgen; Veelken, Hendrik; Houet, Leonora

    2012-11-01

    Induction of tumor-antigen-specific T cells in active cancer immunotherapy is generally difficult due to the very low anti-tumoral precursor cytotoxic T cells. By improving tumor-antigen uptake and presentation by dendritic cells (DCs), this problem can be overcome. Focusing on MAGE-A3 protein, frequently expressed in many types of tumors, we analyzed different DC-uptake routes after additional coating the recombinant MAGE-A3 protein with either a specific monoclonal antibody or an immune complex formulation. Opsonization of the protein with antibody resulted in increased DC-uptake compared to the uncoated rhMAGE-A3 protein. This was partly due to Fcγ receptor-dependent internalization. However, unspecific antigen internalization via macropinocytosis also played a role. When analyzing DC-uptake of MAGE-A3 antigen expressed in multiple myeloma cell line U266, pretreatment with proteasome inhibitor bortezomib resulted in increased apoptosis compared to γ-irradiation. Bortezomib-mediated immunogenic apoptosis, characterized by elevated surface expression of hsp90, triggered higher phagocytosis of U266 cells by DCs involving specific DC-derived receptors. We further investigated the impact of antigen delivery on T-cell priming. Induction of CD8(+) T-cell response was favored by stimulating naïve T cells with either antibody-opsonized MAGE-A3 protein or with the bortezomib-pretreated U266 cells, indicating that receptor-mediated uptake favors cross-presentation of antigens. In contrast, CD4(+) T cells were preferentially induced after stimulation with the uncoated protein or protein in the immune complex, both antigen formulations were preferentially internalized by DCs via macropinocytosis. In summary, receptor-mediated DC-uptake mechanisms favored the induction of CD8(+) T cells, relevant for clinical anti-tumor response.

  3. Cluster Analysis Identifies Distinct Pathogenetic Patterns in C3 Glomerulopathies/Immune Complex-Mediated Membranoproliferative GN.

    PubMed

    Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe

    2018-01-01

    Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.

  4. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing

    PubMed Central

    Stalder, Lukas; Heusermann, Wolf; Sokol, Lena; Trojer, Dominic; Wirz, Joel; Hean, Justin; Fritzsche, Anja; Aeschimann, Florian; Pfanzagl, Vera; Basselet, Pascal; Weiler, Jan; Hintersteiner, Martin; Morrissey, David V; Meisner-Kober, Nicole C

    2013-01-01

    Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing. PMID:23511973

  5. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis.

    PubMed

    Zhu, Yingfang; Schluttenhoffer, Craig M; Wang, Pengcheng; Fu, Fuyou; Thimmapuram, Jyothi; Zhu, Jian-Kang; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2014-10-01

    CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Eicosanoid-mediated immunity in insects

    USDA-ARS?s Scientific Manuscript database

    Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are ...

  7. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis.

    PubMed

    van Sonderen, Agnes; Petit-Pedrol, Mar; Dalmau, Josep; Titulaer, Maarten J

    2017-05-01

    The discovery, in 2010, of autoantibodies against the extracellular proteins LGI1 and Caspr2 facilitated a change of view regarding the clinical importance of voltage-gated potassium channel (VGKC) antibodies. Currently, these antibodies are all classified as VGKC-complex antibodies, and are commonly considered to have a similar clinical value. However, studies from the past few years show that the immune responses mediated by these antibodies have differing clinical relevance. Here, we review the clinical importance of these immune responses in three settings: patients with anti-LGI1 antibodies, patients with anti-Caspr2 antibodies, and patients with antibodies against the VGKC complex that lack LGI1 and Caspr2 specificity. Antibodies against LGI1 and Caspr2 are associated with different but well-defined syndromes, whereas the clinical importance of VGKC-complex antibodies without LGI1 and Caspr2 specificity is questionable. We describe each of these syndromes, discuss the function of the target antigens and review the limited paediatric literature on the topic. The findings emphasize the importance of defining these disorders according to the molecular identity of the targets (LGI1 or Caspr2), and caution against the use of VGKC-complex antibodies for the diagnosis and treatment of patients without further definition of the antigen.

  8. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  9. Immune Interventions to Eliminate the HIV Reservoir.

    PubMed

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  10. Barrier Epithelial Cells and the Control of Type 2 Immunity.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N

    2015-07-21

    Type-2-cell-mediated immunity, rich in eosinophils, basophils, mast cells, CD4(+) T helper 2 (Th2) cells, and type 2 innate lymphoid cells (ILC2s), protects the host from helminth infection but also drives chronic allergic diseases like asthma and atopic dermatitis. Barrier epithelial cells (ECs) represent the very first line of defense and express pattern recognition receptors to recognize type-2-cell-mediated immune insults like proteolytic allergens or helminths. These ECs mount a prototypical response made up of chemokines, innate cytokines such as interleukin-1 (IL-1), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), as well as the alarmins uric acid, ATP, HMGB1, and S100 proteins. These signals program dendritic cells (DCs) to mount Th2-cell-mediated immunity and in so doing boost ILC2, basophil, and mast cell function. Here we review the general mechanisms of how different stimuli trigger type-2-cell-mediated immunity at mucosal barriers and how this leads to protection or disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform

    PubMed Central

    Nguyen, Nhung T.H.; Now, Hesung; Kim, Woo-Jong; Kim, Nari; Yoo, Joo-Yeon

    2016-01-01

    RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation. PMID:26996158

  12. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform.

    PubMed

    Nguyen, Nhung T H; Now, Hesung; Kim, Woo-Jong; Kim, Nari; Yoo, Joo-Yeon

    2016-03-21

    RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation.

  13. Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum Immune receptor R2 to mediate disease resistance.

    PubMed

    Saunders, Diane G O; Breen, Susan; Win, Joe; Schornack, Sebastian; Hein, Ingo; Bozkurt, Tolga O; Champouret, Nicolas; Vleeshouwers, Vivianne G A A; Birch, Paul R J; Gilroy, Eleanor M; Kamoun, Sophien

    2012-08-01

    Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.

  14. Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review.

    PubMed

    Doherty, Alice M; Lodge, Caroline J; Dharmage, Shyamali C; Dai, Xin; Bode, Lars; Lowe, Adrian J

    2018-01-01

    Complex sugars found in breastmilk, human milk oligosaccharides (HMOs), may assist in early-life immune programming and prevention against infectious diseases. This study aimed to systematically review the associations between maternal levels of HMOs and development of immune-mediated or infectious diseases in the offspring. PubMed and EMBASE databases were searched (last search on 22 February 2018) according to a predetermined search strategy. Original studies published in English examining the effect of HMOs on immune-mediated and infectious disease were eligible for inclusion. Of 847 identified records, 10 articles from 6 original studies were included, with study quality ranging from low to high. Of three studies to examine allergic disease outcomes, one reported a protective effect against cow's milk allergy (CMA) by 18 months of age associated with lower lacto- N -fucopentaose (LNFP) III concentrations (OR: 6.7, 95% CI 2.0-22). Another study found higher relative abundance of fucosyloligosaccharides was associated with reduced diarrhea incidence by 2 years, due to (i) stable toxin- E. coli infection ( p  = 0.04) and (ii) "all causes" ( p  = 0.042). Higher LNFP-II concentrations were associated with (i) reduced cases of gastroenteritis and respiratory tract infections at 6 weeks ( p  = 0.004, p  = 0.010) and 12 weeks ( p  = 0.038, p  = 0.038) and (ii) reduced HIV transmission (OR: 0.45; 95% CI: 0.21-0.97) and mortality risk among HIV-exposed, uninfected infants (HR: 0.33; 95% CI: 0.14-0.74) by 24 months. Due to heterogeneity of the outcomes reported, pooling of results was not possible. There was limited evidence that low concentrations of LNFP-III are associated with CMA and that higher fucosyloligosaccharide levels protect infants against infectious disease. Further research is needed.

  15. Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review

    PubMed Central

    Doherty, Alice M.; Lodge, Caroline J.; Dharmage, Shyamali C.; Dai, Xin; Bode, Lars; Lowe, Adrian J.

    2018-01-01

    Complex sugars found in breastmilk, human milk oligosaccharides (HMOs), may assist in early-life immune programming and prevention against infectious diseases. This study aimed to systematically review the associations between maternal levels of HMOs and development of immune-mediated or infectious diseases in the offspring. PubMed and EMBASE databases were searched (last search on 22 February 2018) according to a predetermined search strategy. Original studies published in English examining the effect of HMOs on immune-mediated and infectious disease were eligible for inclusion. Of 847 identified records, 10 articles from 6 original studies were included, with study quality ranging from low to high. Of three studies to examine allergic disease outcomes, one reported a protective effect against cow’s milk allergy (CMA) by 18 months of age associated with lower lacto-N-fucopentaose (LNFP) III concentrations (OR: 6.7, 95% CI 2.0–22). Another study found higher relative abundance of fucosyloligosaccharides was associated with reduced diarrhea incidence by 2 years, due to (i) stable toxin-E. coli infection (p = 0.04) and (ii) “all causes” (p = 0.042). Higher LNFP-II concentrations were associated with (i) reduced cases of gastroenteritis and respiratory tract infections at 6 weeks (p = 0.004, p = 0.010) and 12 weeks (p = 0.038, p = 0.038) and (ii) reduced HIV transmission (OR: 0.45; 95% CI: 0.21–0.97) and mortality risk among HIV-exposed, uninfected infants (HR: 0.33; 95% CI: 0.14–0.74) by 24 months. Due to heterogeneity of the outcomes reported, pooling of results was not possible. There was limited evidence that low concentrations of LNFP-III are associated with CMA and that higher fucosyloligosaccharide levels protect infants against infectious disease. Further research is needed. PMID:29732363

  16. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  17. Immune Reconstitution Inflammatory Syndrome (IRIS): What pathologists should know.

    PubMed

    Nelson, Ann Marie; Manabe, Yukari C; Lucas, Sebastian B

    2017-07-01

    Antiretroviral therapy has significantly improved the quality and length of life for those patients able to access effective and sustained treatment. The resulting restoration of the immune response is associated with a change in the clinical presentation of opportunistic infections, and the histologic reaction to pathogens. A complex combination of alterations in host response across the stages of HIV infection has been documented over the past 3 decades. The defects are seen in both acute and chronic phases of inflammation and involve innate and adaptive immunity. In advanced stages of HIV infection, the marked disruption of lymphoid tissue and loss of follicular dendritic cells limits the host's ability to process antigen and mount specific responses to pathogens. There are qualitative and quantitative defects in CD4 T cells due to HIV infection. The resulting indirect effects include loss of cytokine production, dysregulation of B-cell function, loss of cellular mediated immunity and "holes" in the immunologic repertoire that may not be restored with the use of antiretroviral therapy. Immune reconstitution allows the host to respond to and control infection, but a significant number of patients will have atypical inflammatory syndromes during the recovery period. We briefly discuss the impact of HIV infection on the immune system and give an overview of the spectrum of conditions attributed to the Immune Reconstitution Inflammatory syndrome (IRIS). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems.

    PubMed

    Okuda, Ken-ichi; Yanagihara, Sae; Sugayama, Tomomichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-06-01

    Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.

  19. Association of canine hypothyroidism with a common major histocompatibility complex DLA class II allele.

    PubMed

    Kennedy, L J; Quarmby, S; Happ, G M; Barnes, A; Ramsey, I K; Dixon, R M; Catchpole, B; Rusbridge, C; Graham, P A; Hillbertz, N S; Roethel, C; Dodds, W J; Carmichael, N G; Ollier, W E R

    2006-07-01

    Dogs exhibit a range of immune-mediated conditions including a lymphocytic thyroiditis which has many similarities to Hashimoto's thyroiditis in man. We have recently reported an association in Doberman Pinschers between canine hypothyroidism and a rare DLA class II haplotype that contains the DLA-DQA1*00101 allele. We now report a further series of 173 hypothyroid dogs in a range of breeds where a significant association with DLA-DQA1*00101 is shown.

  20. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.

    PubMed

    Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E

    2018-04-17

    This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.

  1. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses.

    PubMed

    Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2009-07-01

    The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.

  2. Anti-IL-23 and Anti-IL-17 Biologic Agents for the Treatment of Immune-Mediated Inflammatory Conditions.

    PubMed

    Frieder, Jillian; Kivelevitch, Dario; Haugh, Isabel; Watson, Ian; Menter, Alan

    2018-01-01

    Advancements in the immunopathogenesis of psoriasis have identified interleukin (IL)-23 and IL-17 as fundamental contributors in the immune pathways of the disease. Leveraging these promising therapeutic targets has led to the emergence of a number of anti-IL-23 and -17 biologic agents with the potential to treat multiple conditions with common underlying pathology. The unprecedented clinical efficacy of these agents in the treatment of psoriasis has paved way for their evaluation in diseases such as psoriatic arthritis, Crohn's disease, rheumatoid arthritis, in addition to other immune-mediated conditions. Here we review the IL-23/IL-17 immune pathways and discuss the key clinical and safety data of the anti-IL-23 and anti-IL-17 biologic agents in psoriasis and other immune-mediated diseases. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  3. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  4. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity

    PubMed Central

    López, Ana; Castelló, María José; Gil, María José; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-01-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  5. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruochan; Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Fu, Sha

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis andmore » necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.« less

  6. The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells

    PubMed Central

    Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W.; Rudd, Christopher E.

    2015-01-01

    Summary While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. PMID:26321253

  7. The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells.

    PubMed

    Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W; Rudd, Christopher E

    2015-09-03

    While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons.

    PubMed

    Reilly, Joanne M; Dharmalingam, Backialakshmi; Marsh, Stephen J; Thompson, Victoria; Goebel, Andreas; Brown, David A

    2016-03-01

    Complex regional pain syndrome (CRPS) is thought to have an auto-immune component. One such target recently proposed from the effects of auto-immune IgGs on Ca(2+) transients in cardiac myocytes and cell lines is the α1-adrenoceptor. We have tested whether such IgGs exerted comparable effects on nociceptive sensory neurons isolated from rat dorsal root ganglia. Depolarisation-induced [Ca(2+)]i transients were generated by applying 30 mM KCl for 2 min and monitored by Fura-2 fluorescence imaging. No IgGs tested (including 3 from CRPS patients) had any significant effect on these [Ca(2+)]i transients. However, IgG from one CRPS patient consistently and significantly reduced the K(+)-induced response of cells that had been pre-incubated for 24h with a mixture of inflammatory mediators (1 μM histamine, 5-hydroxytryptamine, bradykinin and PGE2). Since this pre-incubation also appeared to induce a comparable inhibitory response to the α1-agonist phenylephrine, this is compatible with the α1-adrenoceptor as a target for CRPS auto-immunity. A mechanism whereby this might enhance pain is suggested. Copyright © 2015. Published by Elsevier Inc.

  9. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway.

    PubMed

    Kelly, Ronan M; Kowle, Ronald L; Lian, Zhirui; Strifler, Beth A; Witcher, Derrick R; Parekh, Bhavin S; Wang, Tongtong; Frye, Christopher C

    2018-03-01

    Cross-linking of the Fcγ receptors expressed on the surface of hematopoietic cells by IgG immune complexes triggers the activation of key immune effector mechanisms, including antibody-dependent cell mediated cytotoxicity (ADCC). A conserved N-glycan positioned at the N-terminal region of the IgG C H 2 domain is critical in maintaining the quaternary structure of the molecule for Fcγ receptor engagement. The removal of a single core fucose residue from the N-glycan results in a considerable increase in affinity for FcγRIIIa leading to an enhanced receptor-mediated immunoeffector function. The enhanced potency of the molecule translates into a number of distinct advantages in the development of IgG antibodies for cancer therapy. In an effort to significantly increase the potency of an anti-CD20, IgG1 molecule, we selectively targeted the de novo GDP-fucose biosynthesis pathway of the host CHO cell line to generate >80% afucosylated IgG1 resulting in enhanced FcγRIIIa binding (13-fold) and in vitro ADCC cell-based activity (11-fold). In addition, this effective glycoengineering strategy also allowed for the utilization of the alternate GDP-fucose salvage pathway to provide a fast and efficient mechanism to manipulate the N-glycan fucosylation level to modulate IgG immune effector function. © 2017 Wiley Periodicals, Inc.

  11. The serine protease homolog CLIPA14 modulates the intensity of the immune response in the mosquito Anopheles gambiae

    PubMed Central

    Nakhleh, Johnny; Christophides, George K.; Osta, Mike A.

    2017-01-01

    Clip domain serine protease homologs (SPHs) are positive and negative regulators of Anopheles gambiae immune responses mediated by the complement-like protein TEP1 against Plasmodium malaria parasites and other microbial infections. We have previously reported that the SPH CLIPA2 is a negative regulator of the TEP1-mediated response by showing that CLIPA2 knockdown (kd) enhances mosquito resistance to infections with fungi, bacteria, and Plasmodium parasites. Here, we identify another SPH, CLIPA14, as a novel regulator of mosquito immunity. We found that CLIPA14 is a hemolymph protein that is rapidly cleaved following a systemic infection. CLIPA14 kd mosquitoes elicited a potent melanization response against Plasmodium berghei ookinetes and exhibited significantly increased resistance to Plasmodium infections as well as to systemic and oral bacterial infections. The activity of the enzyme phenoloxidase, which initiates melanin biosynthesis, dramatically increased in the hemolymph of CLIPA14 kd mosquitoes in response to systemic bacterial infections. Ookinete melanization and hemolymph phenoloxidase activity were further increased after cosilencing CLIPA14 and CLIPA2, suggesting that these two SPHs act in concert to control the melanization response. Interestingly, CLIPA14 RNAi phenotypes and its infection-induced cleavage were abolished in a TEP1 loss-of-function background. Our results suggest that a complex network of SPHs functions downstream of TEP1 to regulate the melanization reaction. PMID:28928218

  12. Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies

    PubMed Central

    Haselmayer, Philipp; Camps, Montserrat; Muzerelle, Mathilde; El Bawab, Samer; Waltzinger, Caroline; Bruns, Lisa; Abla, Nada; Polokoff, Mark A.; Jond-Necand, Carole; Gaudet, Marilène; Benoit, Audrey; Bertschy Meier, Dominique; Martin, Catherine; Gretener, Denise; Lombardi, Maria Stella; Grenningloh, Roland; Ladel, Christoph; Petersen, Jørgen Søberg; Gaillard, Pascale; Ji, Hong

    2014-01-01

    SLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T–B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human. We report the identification of selective PI3Kδ inhibitors that blocked B-, T-, and plasmacytoid dendritic cell activities in human peripheral blood and in primary cell co-cultures (BioMAP®) without detecting signs of undesired toxicity. In an IFNα-accelerated mouse SLE model, our PI3Kδ inhibitors blocked nephritis development, whether administered at the onset of autoantibody appearance or the onset of proteinuria. Disease amelioration correlated with normalized immune cell numbers in the spleen, reduced immune-complex deposition as well as reduced inflammation, fibrosis, and tissue damage in the kidney. Improvements were similar to those achieved with a frequently prescribed drug for lupus nephritis, the potent immunosuppressant mycophenolate mofetil. Finally, we established a pharmacodynamics/pharmacokinetic/efficacy model that revealed that a sustained PI3Kδ inhibition of 50% is sufficient to achieve full efficacy in our disease model. These data demonstrate the therapeutic potential of PI3Kδ inhibitors in SLE and lupus nephritis. PMID:24904582

  13. Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies.

    PubMed

    Haselmayer, Philipp; Camps, Montserrat; Muzerelle, Mathilde; El Bawab, Samer; Waltzinger, Caroline; Bruns, Lisa; Abla, Nada; Polokoff, Mark A; Jond-Necand, Carole; Gaudet, Marilène; Benoit, Audrey; Bertschy Meier, Dominique; Martin, Catherine; Gretener, Denise; Lombardi, Maria Stella; Grenningloh, Roland; Ladel, Christoph; Petersen, Jørgen Søberg; Gaillard, Pascale; Ji, Hong

    2014-01-01

    SLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T-B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human. We report the identification of selective PI3Kδ inhibitors that blocked B-, T-, and plasmacytoid dendritic cell activities in human peripheral blood and in primary cell co-cultures (BioMAP(®)) without detecting signs of undesired toxicity. In an IFNα-accelerated mouse SLE model, our PI3Kδ inhibitors blocked nephritis development, whether administered at the onset of autoantibody appearance or the onset of proteinuria. Disease amelioration correlated with normalized immune cell numbers in the spleen, reduced immune-complex deposition as well as reduced inflammation, fibrosis, and tissue damage in the kidney. Improvements were similar to those achieved with a frequently prescribed drug for lupus nephritis, the potent immunosuppressant mycophenolate mofetil. Finally, we established a pharmacodynamics/pharmacokinetic/efficacy model that revealed that a sustained PI3Kδ inhibition of 50% is sufficient to achieve full efficacy in our disease model. These data demonstrate the therapeutic potential of PI3Kδ inhibitors in SLE and lupus nephritis.

  14. Psychoneuroimmunology in Pregnancy: Immune Pathways Linking Stress with Maternal Health, Adverse Birth Outcomes, and Fetal Development

    PubMed Central

    Christian, Lisa M.

    2011-01-01

    It is well-established that psychological stress promotes immune dysregulation in nonpregnant humans and animals. Stress promotes inflammation, impairs antibody responses to vaccination, slows wound healing, and suppresses cell-mediated immune function. Importantly, the immune system changes substantially to support healthy pregnancy, with attenuation of inflammatory responses and impairment of cell-mediated immunity. This adaptation is postulated to protect the fetus from rejection by the maternal immune system. Thus, stress-induced immune dysregulation during pregnancy has unique implications for both maternal and fetal health, particularly preterm birth. However, very limited research has examined stress-immune relationships in pregnancy. The application of psychoneuroimmunology research models to the perinatal period holds great promise for elucidating biological pathways by which stress may affect adverse pregnancy outcomes, maternal health, and fetal development. PMID:21787802

  15. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection.

    PubMed

    Senba, Masachika; Mori, Naoki

    2012-10-02

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.

  16. DAMPs as mediators of sterile inflammation in aging-related pathologies.

    PubMed

    Feldman, Noa; Rotter-Maskowitz, Aviva; Okun, Eitan

    2015-11-01

    Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. E2F1 and NF-κB: Key Mediators of Inflammation-associated Cancers and Potential Therapeutic Targets.

    PubMed

    Huang, Yulin; Chen, Rui; Zhou, Jianwei

    2016-01-01

    Inflammation is the fundamental protective response; however disordered immuno-response can cause chronic human disease, including cancer. Inflammatory cells and mediators are essential to the tumor microenvironment and dissection of this complex molecular and cellular milieu may elucidate a connection between cancer and inflammation and help to identify potential novel therapeutic targets. Thus, focusing on transcription factor NF-κB and E2F1 in inflammation-associated cancer is urgent. NF-κB activation is prevalent in carcinomas, mainly driven by inflammatory cytokines in the tumor microenvironment. E2F1 is also involved in regulating immune responses. Understanding the crosstalk between the two pathways may contribute to the development of novel anti-cancer drugs.

  18. Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes.

    PubMed

    Schultze, Tilman; Izar, Benjamin; Qing, Xiaoxing; Mannala, Gopala K; Hain, Torsten

    2014-01-01

    Listeria monocytogenes is a Gram-positive human-pathogen bacterium that served as an experimental model for investigating fundamental processes of adaptive immunity and virulence. Recent novel technologies allowed the identification of several hundred non-coding RNAs (ncRNAs) in the Listeria genome and provided insight into an unexpected complex transcriptional machinery. In this review, we discuss ncRNAs that are encoded on the opposite strand of the target gene and are therefore termed antisense RNAs (asRNAs). We highlight mechanistic and functional concepts of asRNAs in L. monocytogenes and put these in context of asRNAs in other bacteria. Understanding asRNAs will further broaden our knowledge of RNA-mediated gene regulation and may provide targets for diagnostic and antimicrobial development.

  19. Secretion of leukotriene C and other arachidonic acid metabolites by macrophages challenged with immunoglobulin E immune complexes

    PubMed Central

    1982-01-01

    Resident mouse peritoneal macrophages release the slow-reacting substance leukotriene C (LTC) on exposure to particulate IgE immune complexes. Because these cells lose their responsiveness to an IgE stimulus after 4 h in culture, maximum release of 20:4 metabolites is observed before this time. However, a similar diminution in 20:4 metabolism was not observed with a zymosan stimulus. Freshly explanted cells are deficient in intracellular glutathione (GSH) (12.4 +/- 0.4 pmol/micrograms cell protein), but GSH increases to a steady state value of 30-35 pmol/micrograms of cell protein between 3 and 9 h of culture. Because GSH is required for the synthesis of LTC and prostaglandin (PG)E2, cultures challenged immediately after explanation have a diminished capacity to synthesize these 20:4 metabolites and release prostacyclin as the major product. By 4-5 h in culture, macrophages form significant amounts of LTC and PGE2. Under optimum conditions of maximum responsiveness to an IgE stimulus and GSH content (after 4 h of culture), macrophages challenged with latex beads coated with IgE immune complexes synthesize 1.0 +/- 0.3 pmol of LTC/microgram cell protein (60 +/- 18 pmol/10(6) cells) in addition to prostacyclin (8.2 +/- 0.8 pmol/micrograms cell protein) and PGE2 (4.7 +/- 1.5 pmol/micrograms cell protein). These amounts are quantitatively similar to the arachidonic acid metabolites produced by macrophages challenged with IgG immune complex-coated latex beads or zymosan. These data demonstrate that macrophages produce large quantities of LTC and other 20:4 metabolites in response to particle-bound IgE and antigen, provided that the appropriate in vitro conditions are met. The macrophage might, therefore, be a major source of slow-reacting substance and other 20:4 metabolites generated during IgE-mediated reactions in vivo. PMID:6759607

  20. Lepidotol A from Mesua lepidota Inhibits Inflammatory and Immune Mediators in Human Endothelial Cells.

    PubMed

    Rouger, Caroline; Derbré, Séverine; Charreau, Béatrice; Pabois, Angélique; Cauchy, Thomas; Litaudon, Marc; Awang, Khalijah; Richomme, Pascal

    2015-09-25

    Phytochemical investigation on the fruits of Mesua lepidota (Calophyllaceae) led to the isolation of seven new phenylcoumarin derivatives named lepidotols A-E (1-5) and lepidotins A and B (6, 7). These structures were elucidated by spectroscopic and spectrometric methods including UV, NMR, and HRMS. Lepidotol A (1), the major compound, was evaluated for its inhibitory effect on inflammation and immunity using endothelial cell-based cellular assays. At 10 μM, 1 exhibited an anti-inflammatory activity, with a significant inhibition of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression induced by tumor necrosis factor-α. Lepidotol A also showed a mild immunosuppressive effect, with inhibition of the major histocompatibility complex molecules, namely, human leukocyte antigen (HLA)-DR and HLA-E.

  1. Dengue vaccines: recent developments, ongoing challenges and current candidates

    PubMed Central

    McArthur, Monica A.; Sztein, Marcelo B.; Edelman, Robert

    2013-01-01

    Summary Dengue is among the most prevalent and important arbovirus diseases of humans. In order to effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in pre-clinical and clinical development. Here we review the recent advances in dengue virus vaccine development and briefly discuss the challenges associated with the use of these vaccines as a public health tool. PMID:23984962

  2. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine

  3. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    PubMed

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself.

  4. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  5. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir.

    PubMed

    Riley, James L; Montaner, Luis J

    2017-03-15

    Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Immunomodulation of enteric neural function in irritable bowel syndrome.

    PubMed

    O'Malley, Dervla

    2015-06-28

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder which is characterised by symptoms such as bloating, altered bowel habit and visceral pain. It's generally accepted that miscommunication between the brain and gut underlies the changes in motility, absorpto-secretory function and pain sensitivity associated with IBS. However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. Anecdotally, IBS patients have noted that periods of stress can result in symptom flares and many patients exhibit co-morbid stress-related mood disorders such as anxiety and depression. However, in addition to psychosocial stressors, infection-related stress has also been linked with the initiation, persistence and severity of symptom flares. Indeed, prior gastrointestinal infection is one of the strongest predictors of developing IBS. Despite a lack of overt morphological inflammation, the importance of immune factors in the pathophysiology of IBS is gaining acceptance. Subtle changes in the numbers of mucosal immune cell infiltrates and elevated levels of circulating pro-inflammatory cytokines have been reproducibly demonstrated in IBS populations. Moreover, these immune mediators directly affect neural signalling. An exciting new area of research is the role of luminal microbiota in the modulation of neuro-immune signalling, resulting in local changes in gastrointestinal function and alterations in central neural functioning. Progress in this area has begun to unravel some of the complexities of neuroimmune and neuroendocrine interactions and how these molecular exchanges contribute to GI dysfunction.

  7. A simple method for determining polymeric IgA-containing immune complexes.

    PubMed

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  8. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance.

    PubMed

    Zhang, Jinfang; Bu, Xia; Wang, Haizhen; Zhu, Yasheng; Geng, Yan; Nihira, Naoe Taira; Tan, Yuyong; Ci, Yanpeng; Wu, Fei; Dai, Xiangpeng; Guo, Jianping; Huang, Yu-Han; Fan, Caoqi; Ren, Shancheng; Sun, Yinghao; Freeman, Gordon J; Sicinski, Piotr; Wei, Wenyi

    2018-01-04

    Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.

  9. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice.

    PubMed

    Wang, Hui; Zhang, Jia-Xiang; Ye, Liang-Ping; Li, Shu-Long; Wang, Feng; Zha, Wan-Sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-Xing

    2016-07-01

    Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage.

  10. The innate immune response to RSV: Advances in our understanding of critical viral and host factors.

    PubMed

    Sun, Yan; López, Carolina B

    2017-01-11

    Respiratory syncytial virus (RSV) causes mild to severe respiratory illness in humans and is a major cause of hospitalizations of infants and the elderly. Both the innate and the adaptive immune responses contribute to the control of RSV infection, but despite successful viral clearance, protective immunity against RSV re-infection is usually suboptimal and infections recur. Poor understanding of the mechanisms limiting the induction of long-lasting immunity has delayed the development of an effective vaccine. The innate immune response plays a critical role in driving the development of adaptive immunity and is thus a crucial determinant of the infection outcome. Advances in recent years have improved our understanding of cellular and viral factors that influence the onset and quality of the innate immune response to RSV. These advances include the identification of a complex system of cellular sensors that mediate RSV detection and stimulate transcriptome changes that lead to virus control and the discovery that cell stress and apoptosis participate in the control of RSV infection. In addition, it was recently demonstrated that defective viral genomes (DVGs) generated during RSV replication are the primary inducers of the innate immune response. Newly discovered host pathways involved in the innate response to RSV, together with the potential generation of DVG-derived oligonucleotides, present various novel opportunities for the design of vaccine adjuvants able to induce a protective response against RSV and similar viruses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nutritional strategies to optimize dairy cattle immunity.

    PubMed

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    PubMed Central

    Buckley, Katherine M.; Rast, Jonathan P.

    2017-01-01

    The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism. PMID:29109720

  13. Maternal education and child immunization: the mediating roles of maternal literacy and socioeconomic status

    PubMed Central

    Balogun, Saliu Adejumobi; Yusuff, Hakeem Abiola; Yusuf, Kehinde Quasim; Al-Shenqiti, Abdulah Mohammed; Balogun, Mariam Temitope; Tettey, Prudence

    2017-01-01

    Introduction Previous studies in Nigeria have documented significant association between maternal education and child immunization. However, little is known about the pathway through which maternal education improves immunization uptake. This study aims to examine whether maternal literacy and socioeconomic status mediates the relationship between maternal education and complete immunization coverage in children. Methods Nationally representative data from the first wave of the Nigeria General Household Survey-Panel were used, which includes 661 children aged one year and below. Regression analyses were used to model the association between maternal education and child's immunization uptake; we then examined whether maternal literacy and household economic status mediates this association. Results Of the 661 children, 40% had complete immunization. The prevalence ratio (PR) of complete immunization in children whose mothers were educated versus those whose mothers were not educated was 1.44 (95% CI: 1.16-1.77). Maternal literacy substantially reduced the estimated association between maternal education and complete immunization by 90%, whereas household economic status reduced the estimates by 27%. Conclusion These findings suggest that complete immunization was higher in children whose mothers were educated, partly because maternal education leads to acquisition of literacy skills and better health-seeking behavior which then improves immunization uptake for their children. Socioeconomic status is an alternative pathway but with less substantial indirect effect. PMID:28690731

  14. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    PubMed

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  15. Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin-lipid oligomeric assemblies and membrane permeabilization.

    PubMed

    Kvansakul, Marc; Lay, Fung T; Adda, Christopher G; Veneer, Prem K; Baxter, Amy A; Phan, Thanh Kha; Poon, Ivan K H; Hulett, Mark D

    2016-10-04

    Defensins are cationic antimicrobial peptides that serve as important components of host innate immune defenses, often by targeting cell membranes of pathogens. Oligomerization of defensins has been linked to their antimicrobial activity; however, the molecular basis underpinning this process remains largely unclear. Here we show that the plant defensin NsD7 targets the phospholipid phosphatidic acid (PA) to form oligomeric complexes that permeabilize PA-containing membranes. The crystal structure of the NsD7-PA complex reveals a striking double helix of two right-handed coiled oligomeric defensin fibrils, the assembly of which is dependent upon the interaction with PA at the interface between NsD7 dimers. Using site-directed mutagenesis, we demonstrate that key residues in this PA-binding site are required for PA-mediated NsD7 oligomerization and coil formation, as well as permeabilization of PA-containing liposomes. These data suggest that multiple lipids can be targeted to induce oligomerization of defensins during membrane permeabilization and demonstrate the existence of a "phospholipid code" that identifies target membranes for defensin-mediated attack as part of a first line of defense across multiple species.

  16. Transduction of a Foreign Histocompatibility Gene into the Arterial Wall Induces Vasculitis

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Nabel, Gary J.

    1992-06-01

    Autoimmune vasculitis represents a disease characterized by focal inflammation within arteries at multiple sites in the vasculature. Therapeutic interventions in this disease are empirical and often unsuccessful, and the mechanisms of immune injury are not well-defined. The direct transfer of recombinant genes and their expression in the arterial wall provides an opportunity to explore the pathogenesis and treatment of vascular disease. In this report, an animal model for vasculitis has been developed. Inflammation has been elicited by direct gene transfer of a foreign class I major histocompatibility complex gene, HLA-B7, to specific sites in porcine arteries. Transfer and expression of this recombinant gene was confirmed by a polymerase chain reaction and immunohistochemistry, and cytolytic T cells specific for HLA-B7 were detected. These findings demonstrate that expression of a recombinant gene in the vessel wall can induce a focal immune response and suggest that vessel damage induced by cell-mediated immune injury can initiate vasculitis.

  17. Dendritic cells and macrophages in the kidney: a spectrum of good and evil

    PubMed Central

    Rogers, NM; Ferenbach, DA; Isenberg, JS; Thomson, AW; Hughes, J

    2015-01-01

    Renal dendritic cells (DC) and macrophages (Mac) represent a constitutive, extensive and contiguous network of innate immune cells that provide sentinel and immune intelligence function. They induce and regulate inflammatory responses to freely-filtered antigenic material and protect the kidney from infection. Tissue–resident or infiltrating DC and Mac are key to the initiation and propagation of renal disease, as well as essential contributors to subsequent tissue regeneration regardless of its etiology and pathogenesis. Their identification, functional and phenotypic distinction, interplay and relationship with effector and regulatory adaptive immune cells is complex and incompletely understood. This review discusses both the common and distinct characteristics of these cells, as well as recent key advances in the field that have identified renal-specific functions of DC and Mac that enable these important, phagocytic, antigen-presenting, cells to mediate or mitigate intrinsic kidney disease. We also identify priority areas for further investigation and prospects for translational and therapeutic application of acquired knowledge. PMID:25266210

  18. Inherited variation in immune response genes in follicular lymphoma and diffuse large B-cell lymphoma.

    PubMed

    Nielsen, Kaspar Rene; Steffensen, Rudi; Haunstrup, Thure Mors; Bødker, Julie Støve; Dybkær, Karen; Baech, John; Bøgsted, Martin; Johnsen, Hans Erik

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) both depend on immune-mediated survival and proliferation signals from the tumor microenvironment. Inherited genetic variation influences this complex interaction. A total of 89 studies investigating immune-response genes in DLBCL and FL were critically reviewed. Relatively consistent association exists for variation in the tumor necrosis factor alpha (TNFA) and interleukin-10 loci and DLBCL risk; for DLBCL outcome association with the TNFA locus exists. Variations at chromosome 6p31-32 were associated with FL risk. Importantly, individual risk alleles have been shown to interact with each other. We suggest that the pathogenetic impact of polymorphic genes should include gene-gene interaction analysis and should be validated in preclinical model systems of normal B lymphopoiesis and B-cell malignancies. In the future, large cohort studies of interactions and genome-wide association studies are needed to extend the present findings and explore new risk alleles to be studied in preclinical models.

  19. The immunological synapse as a pharmacological target.

    PubMed

    Francesca, Finetti; Baldari, Cosima T

    2018-06-10

    The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response. Copyright © 2018. Published by Elsevier Ltd.

  20. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    PubMed Central

    Thomas, David C.; Clare, Simon; Sowerby, John M.; Juss, Jatinder K.; Goulding, David A.; van der Weyden, Louise; Prakash, Ananth; Harcourt, Katherine; Mukhopadhyay, Subhankar; Antrobus, Robin; Bateman, Alex

    2017-01-01

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. PMID:28351984

  1. [Two-year incidence of new immune-mediated inflammatory diseases in patients with inflammatory bowel disease: A study in the AQUILES cohort].

    PubMed

    Marín-Jiménez, Ignacio; Gisbert, Javier P; Pérez-Calle, José L; García-Sánchez, Valle; Tabernero, Susana; García-Vicuña, Rosario; Romero, Cristina; Juliá, Berta; Vanaclocha, Francisco; Cea-Calvo, Luis

    2015-12-01

    To describe the 2-year incidence of new immune-mediated inflammatory diseases (spondylarthritis, uveitis, psoriasis) in the cohort of patients with inflammatory bowel disease (IBD) included in the AQUILES study. Over a 2-year period, 341 patients with IBD (53% women, mean age 40 years) diagnosed with Crohn's disease (60.5%), ulcerative colitis (38.1%) and indeterminate colitis (1.4%) were followed up. New diagnoses made during follow-up were based on reports of the corresponding specialists (rheumatologists, ophthalmologists, and dermatologists). A total of 22 new diagnoses of immune-mediated inflammatory diseases were established in 21 patients (cumulative incidence of 6.5%, 95% confidence interval [CI] 3.7-9.2, incidence rate of 26 cases per 10,000 patient-years). Most diagnoses were new cases of spondylarthritis (n=15). The cumulative incidence of new diagnoses of immune-mediated inflammatory diseases was similar in patients with Crohn's disease (5.8%, 95% CI 3.4-9.9) and in patients with ulcerative colitis (7.7%, 95% CI 4.2-13.6). On multivariate analysis, the incidence of new immune-mediated inflammatory diseases was significantly associated with a family history of IBD (odds ratio=3.6, 95% CI 1.4-9.4) and the presence of extraintestinal manifestations of IBD (odds ratio=1.8, 95% CI .7-5.2). In patients with IBD, the incidence of new immune-mediated inflammatory diseases at 2 years of follow-up was 6.5%. These diseases were more frequent in patients with extraintestinal manifestations of IBD and a family history of IBD. Copyright © 2015 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  2. Tumor immune evasion arises through loss of TNF sensitivity.

    PubMed

    Kearney, Conor J; Vervoort, Stephin J; Hogg, Simon J; Ramsbottom, Kelly M; Freeman, Andrew J; Lalaoui, Najoua; Pijpers, Lizzy; Michie, Jessica; Brown, Kristin K; Knight, Deborah A; Sutton, Vivien; Beavis, Paul A; Voskoboinik, Ilia; Darcy, Phil K; Silke, John; Trapani, Joseph A; Johnstone, Ricky W; Oliaro, Jane

    2018-05-18

    Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 + T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 + T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8 + T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8 + T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Therapeutic Targeting of IL-17 and IL-23 Cytokines in Immune-Mediated Diseases.

    PubMed

    Fragoulis, George E; Siebert, Stefan; McInnes, Iain B

    2016-01-01

    The discovery of the biological functions of the interleukin-23/-17 axis led to the identification of IL-23 and IL-17 as important participants in the pathogenesis of several immune-mediated diseases. Therapeutic agents targeting these cytokines and/or their receptors have now been developed as potential treatment strategies for common immune-mediated diseases. Anti-IL-17 and anti-IL-12/-23 regimens appear particularly effective in psoriasis, with promising results in spondyloarthropathies also emerging. Overall, these agents appear well tolerated, with adverse-event rates that are commensurate with those in other biologic treatment programs. The strategic utility of these new agents, however, remains uncertain, and further studies will be required to determine their place in the context of existing conventional and biologic immune-modifying agents.

  4. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.

    PubMed Central

    Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H

    1994-01-01

    Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312

  5. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  6. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity.

    PubMed

    Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi

    2017-07-11

    Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.

  7. LPS-treated bone marrow-derived dendritic cells induce immune tolerance through modulating differentiation of CD4+ regulatory T cell subpopulations mediated by 3G11 and CD127.

    PubMed

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2017-06-01

    Intravenous transfer of LPS-treated bone marrow-derived dendritic cells blocks development of autoimmunity induced by CD4 + T cells in vivo. However, cellular mechanisms of dendritic cell-mediated immune tolerance have not yet been fully elucidated. Here, we report that there are two new subpopulations of CD4 + CD25 + FoxP3 + GITR + regulatory T cells (CD127 + 3G11 + and CD127 + 3G11 - cells). LPS-treated dendritic cells facilitate development of CD4 + CD127 + 3G11 - regulatory T cells but inhibit that of CD4 + CD127 + 3G11 + regulatory T cells. LPS-induced tolerogenic dendritic cells may cause immune tolerance through modulating balance of different subsets of CD4 + regulatory T cells mediated by CD127 and 3G11. Our results imply a new potential cellular mechanism of dendritic cell-mediated immune tolerance.

  8. Early childhood poverty, immune-mediated disease processes, and adult productivity.

    PubMed

    Ziol-Guest, Kathleen M; Duncan, Greg J; Kalil, Ariel; Boyce, W Thomas

    2012-10-16

    This study seeks to understand whether poverty very early in life is associated with early-onset adult conditions related to immune-mediated chronic diseases. It also tests the role that these immune-mediated chronic diseases may play in accounting for the associations between early poverty and adult productivity. Data (n = 1,070) come from the US Panel Study of Income Dynamics and include economic conditions in utero and throughout childhood and adolescence coupled with adult (age 30-41 y) self-reports of health and economic productivity. Results show that low income, particularly in very early childhood (between the prenatal and second year of life), is associated with increases in early-adult hypertension, arthritis, and limitations on activities of daily living. Moreover, these relationships and particularly arthritis partially account for the associations between early childhood poverty and adult productivity as measured by adult work hours and earnings. The results suggest that the associations between early childhood poverty and these adult disease states may be immune-mediated.

  9. Immune-mediated diseases: what can be found in the oral cavity?

    PubMed

    Bascones-Martínez, Antonio; García-García, Virginia; Meurman, Jukka H; Requena-Caballero, Luis

    2015-03-01

    Immune-mediated diseases frequently affect oral mucosa, which may often be the first site of clinical manifestation. In this review, we describe the most important oral lesions related to inflammatory disorders and present their management and novel therapies. The review is based on an open PubMed literature search from 1980 to 2012 with relevant keywords. Pemphigus vulgaris, oral lichen planus, cicatricial pemphigoid, erythema multiforme, Stevens-Johnson syndrome, systemic lupus erythematosus, Sjögren's syndrome, and linear IgA dermatosis are the immune-mediated diseases with oral manifestations discussed. Etiology is unknown in most of these diseases, but recently some of them have been found to share common genes. Modern treatment of these diseases is based on drugs that interfere along the pathogenic mechanisms instead of the still commonly used palliative measures. However, the immunomodulatory drugs may also cause oral side effects, complicating the clinical picture. Therefore, consulting dental or oral medicine specialists can be necessary in some cases with various immune-mediated diseases. © 2014 The International Society of Dermatology.

  10. HIV neuropathogenesis: a tight rope walk of innate immunity.

    PubMed

    Yao, Honghong; Bethel-Brown, Crystal; Li, Cicy Zidong; Buch, Shilpa J

    2010-12-01

    During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.

  11. Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1β Production

    PubMed Central

    2016-01-01

    IL-1β is one of the main proinflammatory cytokines that regulates a broad range of immune responses and also participates in several physiological processes. The canonical production of IL-1β requires multiprotein complexes called inflammasomes. One of the most intensively studied inflammasome complexes is the NLRP3 inflammasome. Its activation requires two signals: one signal “primes” the cells and induces the expression of NLRP3 and pro-IL-1β, while the other signal leads to the assembly and activation of the complex. Several stimuli were reported to function as the second signal including reactive oxygen species, lysosomal rupture, or cytosolic ion perturbation. Despite very intensive studies, the precise function and regulation of the NLRP3 inflammasome are still not clear. However, many chronic inflammatory diseases are related to the overproduction of IL-1β that is mediated via the NLRP3 inflammasome. In this review, we aimed to provide an overview of studies that demonstrated the effect of plant-derived natural compounds on NLRP3 inflammasome-mediated IL-1β production. Although many of these studies lack the mechanistic explanation of their action, these compounds may be considered as complementary supplements in the treatment of chronic inflammatory diseases, consumed as preventive agents, and may also be considered as molecular tools to study NLRP3 function. PMID:27672241

  12. Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches

    PubMed Central

    Hawley, Dana M; Sydenstricker, Keila V; Kollias, George V; Dhondt, André A

    2005-01-01

    Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity. PMID:17148199

  13. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  14. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  15. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes

    PubMed Central

    Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D.; Bullens, Dominique M.; Pinxteren, Jef; Verfaillie, Catherine M.; Van Gool, Stefaan W.

    2016-01-01

    MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was—even after major histocompatibility complex class I upregulation—insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8−CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Significance Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. PMID:27465071

  16. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes.

    PubMed

    Plessers, Jeroen; Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D; Bullens, Dominique M; Pinxteren, Jef; Verfaillie, Catherine M; Van Gool, Stefaan W

    2016-12-01

    : MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8 + cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8 - CD69 + T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8 + T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. ©AlphaMed Press.

  17. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs?

    PubMed

    Segner, Helmut; Verburg-van Kemenade, B M Lidy; Chadzinska, Magdalena

    2017-01-01

    The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Patient with Grave's Disease and Tuberculous Lymphadenitis.

    PubMed

    Rahaman, M F; Chowdhury, M H; Khan, A H; Rahman, M; Barman, T K; Chowdhury, M J

    2016-04-01

    Immune reactivity between Mycobacteria and human antigens can play an important role in the pathogenesis of autoimmune disease. We report a case of Graves's disease and tuberculous lymphadenitis to explain the mechanism of correlation between immune-mediated diseases and tuberculosis and to raise awareness of the importance of screening for TB in this context, especially in endemic country. Screening for latent TB at immune mediated disease diagnosis and regular timely screening thereafter may be beneficial.

  19. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation

    PubMed Central

    Shaikh, Saame Raza; Fessler, Michael B.

    2016-01-01

    Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n-3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection. PMID:27286794

  20. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    PubMed

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

Top