Sample records for immune defense strategies

  1. Immune defense and reproductive pace of life in Peromyscus mice.

    PubMed

    Martin, Lynn B; Weil, Zachary M; Nelson, Randy J

    2007-10-01

    Immune activity is variable within and among vertebrates despite the potentially large fitness costs of pathogens to their hosts. From the perspective of life history theory, immunological variability may be the consequence of counterbalancing investments in immune defense against other expensive physiological processes, namely, reproduction. In the present study, we tested the hypothesis that immune defense among captive-bred, disease-free Peromyscus mice would be influenced by their reproductive life history strategies. Specifically, we expected that small species that reproduce prolifically and mature rapidly (i.e., fast pace of life) would favor inexpensive, nonspecific immune defenses to promote reproductive proclivity. Alternatively, we expected that large species that mature slowly and invest modestly in reproduction over multiple events (i.e., slow pace of life) would favor developmentally expensive, specific immune defenses and avoid cheap, nonspecific ones because such defenses are predisposed to self-damage. We found that species exhibited either strong ability to kill (gram-negative) bacteria, a developmentally inexpensive defense, or strong ability to produce antibodies against a novel protein, a developmentally expensive defense, but not both. Cell-mediated inflammation also varied significantly among species, but in a unique fashion relative to bacteria killing or antibody production; wound healing was comparatively similar among species. These results indicate that Peromyscus species use immune strategies that are constrained to a dominant axis, but this axis is not determined solely by reproductive pace of life. Further comparisons, ideally with broader phylogenetic coverage, could identify what ecological and evolutionary forces produce the pattern we detected. Importantly, our study indicates that species may not be differentially immunocompetent; rather, they use unique defense strategies to prevent infection.

  2. Evasion of Host Immune Defenses by Human Papillomavirus

    PubMed Central

    Westrich, Joseph A.; Warren, Cody J.; Pyeon, Dohun

    2016-01-01

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. PMID:27890631

  3. Evasion of host immune defenses by human papillomavirus.

    PubMed

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Immune defense and host life history.

    PubMed

    Zuk, Marlene; Stoehr, Andrew M

    2002-10-01

    Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.

  5. Correlates of immune defenses in golden eagle nestlings

    USGS Publications Warehouse

    MacColl, Elisabeth; Vanesky, Kris; Buck, Jeremy A.; Dudek, Benjamin; Eagles-Smith, Collin A.; Heath, Julie A.; Herring, Garth; Vennum, Chris; Downs, Cynthia J.

    2017-01-01

    An individual's investment in constitutive immune defenses depends on both intrinsic and extrinsic factors. We examined how Leucocytozoon parasite presence, body condition (scaled mass), heterophil-to-lymphocyte (H:L) ratio, sex, and age affected immune defenses in golden eagle (Aquila chrysaetos) nestlings from three regions: California, Oregon, and Idaho. We quantified hemolytic-complement activity and bacterial killing ability, two measures of constitutive immunity. Body condition and age did not affect immune defenses. However, eagles with lower H:L ratios had lower complement activity, corroborating other findings that animals in better condition sometimes invest less in constitutive immunity. In addition, eagles with Leucocytozoon infections had higher concentrations of circulating complement proteins but not elevated opsonizing proteins for all microbes, and eagles from Oregon had significantly higher constitutive immunity than those from California or Idaho. We posit that Oregon eagles might have elevated immune defenses because they are exposed to more endoparasites than eagles from California or Idaho, and our results confirmed that the OR region has the highest rate of Leucocytozoon infections. Our study examined immune function in a free-living, long-lived raptor species, whereas most avian ecoimmunological research focuses on passerines. Thus, our research informs a broad perspective regarding the evolutionary and environmental pressures on immune function in birds.

  6. Plant innate immunity: an updated insight into defense mechanism.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  7. Testicular defense systems: immune privilege and innate immunity

    PubMed Central

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  8. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  9. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity.

    PubMed

    Liu, Guangwei; Bi, Yujing; Wang, Ruoning; Wang, Xianghui

    2013-04-01

    Autophagy (macroautophagy; "self-eating") is a degradation process, in which cytoplasmic content is engulfed and degraded by the lysosome. And, immunity is an important mechanism of the "self-defense" system. Autophagy has long been recognized as a stress response to nutrient deprivation. This will provide energy and anabolic building blocks to maintain cellular bioenergetic homeostasis. Thus, autophagy plays critical roles in regulating a wide variety of pathophysiological processes, including tumorigenesis, embryo development, tissue remodeling, and most recently, immunity. The latter shows that a self-eating (autophagy) process could regulate a self-defense (immune) system. In this review, we summarize the recent findings regarding the regulatory and mechanistic insights of the autophagy pathway in immunity.

  10. Immune defense in leaf-cutting ants: a cross-fostering approach.

    PubMed

    Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández; Nash, David R; Boomsma, Jacobus J

    2011-06-01

    To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily social defense, a Pseudonocardia bacteria that helps to control pathogens in the ants' fungus garden, showed a significant colony of origin by rearing environment interaction, whereby ants that acquired the bacteria of a foster colony obtained a less abundant cover of bacteria: one explanation for this pattern would be co-adaptation between host colonies and their vertically transmitted mutualist. These results illustrate the complexity of the selection pressures that affect the expression of multilevel immune defenses. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  11. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor).

    PubMed

    Jacobs, Chris G C; Gallagher, Joe D; Evison, Sophie E F; Heckel, David G; Vilcinskas, Andreas; Vogel, Heiko

    2017-05-01

    In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effector-triggered immunity: from pathogen perception to robust defense.

    PubMed

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  13. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    PubMed Central

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  14. Natural selection on immune defense: A field experiment.

    PubMed

    Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto

    2017-02-01

    Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  16. [Study of defense styles, defenses and coping strategies in alcohol-dependent population].

    PubMed

    Ribadier, A; Varescon, I

    2017-05-01

    Defense mechanisms have been seen to greatly change over time and across different definitions made by different theoretical currents. Recently with the definition provided by the DSM IV, defense mechanisms have integrated the concept of coping as a defensive factor. These mechanisms are no longer considered just through a psychodynamic approach but also through a cognitive and behavioral one. In recent years, new theories have therefore integrated these two components of the defensive operation. According to Chabrol and Callahan (2013), defense mechanisms precede coping strategies. In individuals with psychopathological disorders, these authors indicate a relative stability of these mechanisms. Also, we asked about the presence of unique characteristics among people with alcohol dependence. Indeed, studies conducted with people with alcohol dependence highlight the presence of a neurotic defense style and some highly immature defenses (projection, acting out, splitting and somatization). In terms of coping strategies, persons with alcohol dependence preferentially use avoidant strategies and strategies focused on emotion. However, although several studies have been conducted to assess coping strategies and defense styles within a population of individuals with an alcohol problem, at the present time none of them has taken into account all these aspects of defense mechanisms. The aim of this study is therefore to study the defenses and defense styles and coping strategies in an alcohol-dependent population. This multicenter study (3 CHU, 1 center of supportive care and prevention in addiction and 1 clinic) received a favorable opinion of an Institutional Review Board (IRB Registration #: 00001072). Eighty alcohol-dependent individuals responded to a questionnaire assessing sociodemographic characteristics and elements related to the course of consumption. Coping strategies were assessed by means of a questionnaire validated in French: the Brief Cope. The Defense

  17. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  18. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster.

    PubMed

    Kutch, Ian C; Sevgili, Hasan; Wittman, Tyler; Fedorka, Kenneth M

    2014-10-15

    As temperatures change, insects alter the amount of melanin in their cuticle to improve thermoregulation. However, melanin is also central to insect immunity, suggesting that thermoregulatory strategy may indirectly impact immune defense by altering the abundance of melanin pathway components (a hypothesis we refer to as thermoregulatory-dependent immune investment). This may be the case in the cricket Allonemobius socius, where warm environments (both seasonal and geographical) produced crickets with lighter cuticles and increased pathogen susceptibility. Unfortunately, the potential for thermoregulatory strategy to influence insect immunity has not been widely explored. Here we address the relationships between temperature, thermoregulatory strategy and immunity in the fruit fly Drosophila melanogaster. To this end, flies from two separate Canadian populations were reared in either a summer- or autumn-like environment. Shortly after adult eclosion, flies were moved to a common environment where their cuticle color and susceptibility to a bacterial pathogen (Pseudomonas aeruginosa) were measured. As with A. socius, individuals from summer-like environments exhibited lighter cuticles and increased pathogen susceptibility, suggesting that the thermoregulatory-immunity relationship is evolutionarily conserved across the hemimetabolous and holometabolous clades. If global temperatures continue to rise as expected, then thermoregulation might play an important role in host infection and mortality rates in systems that provide critical ecosystem services (e.g. pollination), or influence the prevalence of insect-vectored disease (e.g. malaria). © 2014. Published by The Company of Biologists Ltd.

  19. Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens

    PubMed Central

    Randow, Felix; MacMicking, John D.; James, Leo C.

    2013-01-01

    Our prevailing view of vertebrate host defense is strongly shaped by the notion of a specialized set of immune cells as sole guardians of antimicrobial resistance. Yet this view greatly underestimates a capacity for most cell lineages—the majority of which fall outside the traditional province of the immune system—to defend themselves against infection. This ancient and ubiquitous form of host protection is termed cell-autonomous immunity and operates across all three domains of life. Here, we discuss the organizing principles that govern cellular self-defense and how intracellular compartmentalization has shaped its activities to provide effective protection against a wide variety of microbial pathogens. PMID:23661752

  20. Cellular self-defense: how cell-autonomous immunity protects against pathogens.

    PubMed

    Randow, Felix; MacMicking, John D; James, Leo C

    2013-05-10

    Our prevailing view of vertebrate host defense is strongly shaped by the notion of a specialized set of immune cells as sole guardians of antimicrobial resistance. Yet this view greatly underestimates a capacity for most cell lineages-the majority of which fall outside the traditional province of the immune system-to defend themselves against infection. This ancient and ubiquitous form of host protection is termed cell-autonomous immunity and operates across all three domains of life. Here, we discuss the organizing principles that govern cellular self-defense and how intracellular compartmentalization has shaped its activities to provide effective protection against a wide variety of microbial pathogens.

  1. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.

    PubMed

    Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C; Lazzaro, Brian P

    2015-05-13

    The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.

  2. West European and East Asian Perspectives on Defense, Deterrence and Strategy. Volume 6. South Korean Perspectives on Defense, Deterrence and Strategy.

    DTIC Science & Technology

    1984-04-11

    8217IN.2 AD-A166 115 DNA-TR-84-109-V6 ’’ WEST EUROPEAN AND EAST ASIAN PERSPECTIVES ON DEFENSE, DETERRENCE AND STRATEGY Volume VI-South Korean Perspectives...on Defense, Deterrence and J. Strategy Institute for Foreign Policy Analysis Central Plaza Building 675 Massachusetts Avenue Cambridge, MA 02139...PERSPECTIVES ON DEFENSE, DETERRENCE AND STRATEGY Volume VI-South Korean Perspectives on Defense, Deterrence and Strategy 12 PERSONALAUTHOR(S

  3. Antiviral Defense and Innate Immune Memory in the Oyster.

    PubMed

    Green, Timothy J; Speck, Peter

    2018-03-16

    The Pacific oyster, Crassostrea gigas , is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.

  4. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    PubMed

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  5. Salivary Defense Proteins: Their Network and Role in Innate and Acquired Oral Immunity

    PubMed Central

    Fábián, Tibor Károly; Hermann, Péter; Beck, Anita; Fejérdy, Pál; Fábián, Gábor

    2012-01-01

    There are numerous defense proteins present in the saliva. Although some of these molecules are present in rather low concentrations, their effects are additive and/or synergistic, resulting in an efficient molecular defense network of the oral cavity. Moreover, local concentrations of these proteins near the mucosal surfaces (mucosal transudate), periodontal sulcus (gingival crevicular fluid) and oral wounds and ulcers (transudate) may be much greater, and in many cases reinforced by immune and/or inflammatory reactions of the oral mucosa. Some defense proteins, like salivary immunoglobulins and salivary chaperokine HSP70/HSPAs (70 kDa heat shock proteins), are involved in both innate and acquired immunity. Cationic peptides and other defense proteins like lysozyme, bactericidal/permeability increasing protein (BPI), BPI-like proteins, PLUNC (palate lung and nasal epithelial clone) proteins, salivary amylase, cystatins, prolin-rich proteins, mucins, peroxidases, statherin and others are primarily responsible for innate immunity. In this paper, this complex system and function of the salivary defense proteins will be reviewed. PMID:22605979

  6. Neuro-immune interactions in inflammation and host defense: Implications for transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2018-03-01

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Self/nonself perception in plants in innate immunity and defense

    PubMed Central

    Sanabria, Natasha M; Huang, Ju-Chi

    2010-01-01

    The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176

  8. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  9. Evolutionary Genomics of Defense Systems in Archaea and Bacteria*

    PubMed Central

    Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.

    2018-01-01

    Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death. PMID:28657885

  10. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1.

    PubMed

    Nakad, Rania; Snoek, L Basten; Yang, Wentao; Ellendt, Sunna; Schneider, Franziska; Mohr, Timm G; Rösingh, Lone; Masche, Anna C; Rosenstiel, Philip C; Dierking, Katja; Kammenga, Jan E; Schulenburg, Hinrich

    2016-04-11

    The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes

  11. Helicobacter pylori Persistence: an Overview of Interactions between H. pylori and Host Immune Defenses

    PubMed Central

    Algood, Holly M. Scott; Cover, Timothy L.

    2006-01-01

    Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma). PMID:17041136

  12. [Relationships between defense mechanisms and coping strategies, facing exam anxiety performance].

    PubMed

    Grebot, E; Paty, B; Girarddephanix, N

    2006-01-01

    Defence mechanisms and coping strategies rely on different theoretical backgrounds and describe distinct psychological processes. Cramer has based a distinction on the following dimensions: conscious processes vs. not; intentionality vs. not; hierarchical conception vs. not. On the contrary to these distinctions, the two notions of defense mechanisms and coping strategies are defined as similar in the Diagnostical and Statistical Manual (DSM IV). This assimilation between coping and defenses in the DSM IV is not confirmed by some researches, namely the one by Callahan and Chabrol. It indeed proves a relationship between adaptive coping and mature defenses, as well as between maladaptive coping and immature defenses. Similarly, Plutchik offered theoretical correspondences between eight defense mechanisms and eight coping strategies: (a) Defenses: repression, isolation, introjection and Coping escape; (b) Defense denial and Coping minimalization; (c) Defense undoing and coping substitution; (d) Defenses: regression, acting out and coping social support; (e) Defenses: compensation, identification, fantasy and coping replacement; (f) Defenses: intellectualization, sublimation, annulation, rationalisation and coping: planification; (g) Defense projection and coping blame; (h) Defense: reactional formation and coping inversion. this research aims at testing the relations observed by Callahan and Chabrol and some theoretical correspondences proposed by Plutchik between defences and coping strategies in a population of students similar to the one used by Callahan and Chabrol. It also aims at studying the relationships between coping strategies and conscious derives of defense mechanisms, such as defined by Bond (1995). Defenses were evaluated the first day of the examination week. the population includes 184 women students in human sciences (sociology and psychology). defenses were evaluated with the Defense Style Questionnaire by Bond (DSQ 40). Its French version is made

  13. Efficient immunization strategies to prevent financial contagion

    NASA Astrophysics Data System (ADS)

    Kobayashi, Teruyoshi; Hasui, Kohei

    2014-01-01

    Many immunization strategies have been proposed to prevent infectious viruses from spreading through a network. In this work, we study efficient immunization strategies to prevent a default contagion that might occur in a financial network. An essential difference from the previous studies on immunization strategy is that we take into account the possibility of serious side effects. Uniform immunization refers to a situation in which banks are ``vaccinated'' with a common low-risk asset. The riskiness of immunized banks will decrease significantly, but the level of systemic risk may increase due to the de-diversification effect. To overcome this side effect, we propose another immunization strategy, called counteractive immunization, which prevents pairs of banks from failing simultaneously. We find that counteractive immunization can efficiently reduce systemic risk without altering the riskiness of individual banks.

  14. Anti-Immune Strategies of Pathogenic Fungi

    PubMed Central

    Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220

  15. Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor

    PubMed Central

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-01-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  16. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    PubMed

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  17. Immune evasion, immunopathology and the regulation of the immune system.

    PubMed

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-02-13

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  18. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants.

    PubMed

    Gouveia, Bianca C; Calil, Iara P; Machado, João Paulo B; Santos, Anésia A; Fontes, Elizabeth P B

    2016-01-01

    Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of

  19. Interaction of entomopathogenic fungi with the host immune system.

    PubMed

    Qu, Shuang; Wang, Sibao

    2018-06-01

    Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Silencing and innate immunity in plant defense against viral and non-viral pathogens.

    PubMed

    Zvereva, Anna S; Pooggin, Mikhail M

    2012-10-29

    The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA

  1. Optimal defense strategies in an idealized microbial food web under trade-off between competition and defense.

    PubMed

    Våge, Selina; Storesund, Julia E; Giske, Jarl; Thingstad, T Frede

    2014-01-01

    Trophic mechanisms that can generate biodiversity in food webs include bottom-up (growth rate regulating) and top-down (biomass regulating) factors. The top-down control has traditionally been analyzed using the concepts of "Keystone Predation" (KP) and "Killing-the-Winner" (KtW), predominately occuring in discussions of macro- and micro-biological ecology, respectively. Here we combine the classical diamond-shaped food web structure frequently discussed in KP analyses and the KtW concept by introducing a defense strategist capable of partial defense. A formalized description of a trade-off between the defense-strategist's competitive and defensive ability is included. The analysis reveals a complex topology of the steady state solution with strong relationships between food web structure and the combination of trade-off, defense strategy and the system's nutrient content. Among the results is a difference in defense strategies corresponding to maximum biomass, production, or net growth rate of invading individuals. The analysis thus summons awareness that biomass or production, parameters typically measured in field studies to infer success of particular biota, are not directly acted upon by natural selection. Under coexistence with a competition specialist, a balance of competitive and defensive ability of the defense strategist was found to be evolutionarily stable, whereas stronger defense was optimal under increased nutrient levels in the absence of the pure competition specialist. The findings of success of different defense strategies are discussed with respect to SAR11, a highly successful bacterial clade in the pelagic ocean.

  2. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense

    PubMed Central

    Price, Aryn A.; Grakoui, Arash; Weiss, David S.

    2016-01-01

    Clustered, regularly interspaced, short palindromic repeats - CRISPR associated (CRISPR-Cas) systems are sequence specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268

  3. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  4. Optimal Defense Strategies in an Idealized Microbial Food Web under Trade-Off between Competition and Defense

    PubMed Central

    Våge, Selina; Storesund, Julia E.; Giske, Jarl; Thingstad, T. Frede

    2014-01-01

    Trophic mechanisms that can generate biodiversity in food webs include bottom-up (growth rate regulating) and top-down (biomass regulating) factors. The top-down control has traditionally been analyzed using the concepts of “Keystone Predation” (KP) and “Killing-the-Winner” (KtW), predominately occuring in discussions of macro- and micro-biological ecology, respectively. Here we combine the classical diamond-shaped food web structure frequently discussed in KP analyses and the KtW concept by introducing a defense strategist capable of partial defense. A formalized description of a trade-off between the defense-strategist's competitive and defensive ability is included. The analysis reveals a complex topology of the steady state solution with strong relationships between food web structure and the combination of trade-off, defense strategy and the system's nutrient content. Among the results is a difference in defense strategies corresponding to maximum biomass, production, or net growth rate of invading individuals. The analysis thus summons awareness that biomass or production, parameters typically measured in field studies to infer success of particular biota, are not directly acted upon by natural selection. Under coexistence with a competition specialist, a balance of competitive and defensive ability of the defense strategist was found to be evolutionarily stable, whereas stronger defense was optimal under increased nutrient levels in the absence of the pure competition specialist. The findings of success of different defense strategies are discussed with respect to SAR11, a highly successful bacterial clade in the pelagic ocean. PMID:24999739

  5. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    PubMed

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  6. SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis.

    PubMed

    Chezem, William R; Memon, Altamash; Li, Fu-Shuang; Weng, Jing-Ke; Clay, Nicole K

    2017-08-01

    Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae , consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops. © 2017 American Society of Plant Biologists. All rights reserved.

  7. Quantitative proteomics of the human skin secretome reveal a reduction in immune defense mediators in ectodermal dysplasia patients.

    PubMed

    Burian, Marc; Velic, Ana; Matic, Katarina; Günther, Stephanie; Kraft, Beatrice; Gonser, Lena; Forchhammer, Stephan; Tiffert, Yvonne; Naumer, Christian; Krohn, Michael; Berneburg, Mark; Yazdi, Amir S; Maček, Boris; Schittek, Birgit

    2015-03-01

    In healthy human skin host defense molecules such as antimicrobial peptides (AMPs) contribute to skin immune homeostasis. In patients with the congenital disease ectodermal dysplasia (ED) skin integrity is disturbed and as a result patients have recurrent skin infections. The disease is characterized by developmental abnormalities of ectodermal derivatives and absent or reduced sweating. We hypothesized that ED patients have a reduced skin immune defense because of the reduced ability to sweat. Therefore, we performed a label-free quantitative proteome analysis of wash solution of human skin from ED patients or healthy individuals. A clear-cut difference between both cohorts could be observed in cellular processes related to immunity and host defense. In line with the extensive underrepresentation of proteins of the immune system, dermcidin, a sweat-derived AMP, was reduced in its abundance in the skin secretome of ED patients. In contrast, proteins involved in metabolic/catabolic and biosynthetic processes were enriched in the skin secretome of ED patients. In summary, our proteome profiling provides insights into the actual situation of healthy versus diseased skin. The systematic reduction in immune system and defense-related proteins may contribute to the high susceptibility of ED patients to skin infections and altered skin colonization.

  8. Inverse targeting —An effective immunization strategy

    NASA Astrophysics Data System (ADS)

    Schneider, C. M.; Mihaljev, T.; Herrmann, H. J.

    2012-05-01

    We propose a new method to immunize populations or computer networks against epidemics which is more efficient than any continuous immunization method considered before. The novelty of our method resides in the way of determining the immunization targets. First we identify those individuals or computers that contribute the least to the disease spreading measured through their contribution to the size of the largest connected cluster in the social or a computer network. The immunization process follows the list of identified individuals or computers in inverse order, immunizing first those which are most relevant for the epidemic spreading. We have applied our immunization strategy to several model networks and two real networks, the Internet and the collaboration network of high-energy physicists. We find that our new immunization strategy is in the case of model networks up to 14%, and for real networks up to 33% more efficient than immunizing dynamically the most connected nodes in a network. Our strategy is also numerically efficient and can therefore be applied to large systems.

  9. Investigating Relationships between Reproduction, Immune Defenses, and Cortisol in Dall Sheep.

    PubMed

    Downs, Cynthia J; Boan, Brianne V; Lohuis, Thomas D; Stewart, Kelley M

    2018-01-01

    Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep ( Ovis dalli dalli ) in Southcentral Alaska. Specifically, we (i) tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii) tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness.

  10. Under Secretary of Defense for Policy > OUSDP Offices > ASD for Strategy

    Science.gov Websites

    Defense for Policy Search Search Office of the Under Secretary of Defense for Policy: Search Search Office of the Under Secretary of Defense for Policy: Search Under Secretary of Defense for Policy U.S . Department of Defense Under Secretary of Defense for Policy Home National Defense Strategy Commission OUSDP

  11. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  12. Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators.

    PubMed

    Wiermer, Marcel; Germain, Hugo; Cheng, Yu Ti; García, Ana V; Parker, Jane E; Li, Xin

    2010-01-01

    Controlled nucleocytoplasmic trafficking is an important feature for fine-tuning signaling pathways in eukaryotic organisms. Nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups) are essential for the exchange of macromolecules across the nuclear envelope. A recent genetic screen in our laboratory identified a partial loss-of-function mutation in Arabidopsis MOS7/Nup88 that causes defects in basal immunity, Resistance (R) protein-mediated defense and systemic acquired resistance. In Drosophila and mammalian cells, exportin-mediated nuclear export of activated Rel/NFκB transcription factors is enhanced in nup88 mutants resulting in immune response failure. Consistent with Nup88 promoting nuclear retention of NFκB, our functional analyses revealed that MOS7/Nup88 is required for appropriate nuclear accumulation of the autoactivated R protein snc1, as well as the key immune regulators EDS1 and NPR1. These results suggest that controlling the nuclear concentrations of specific immune regulators is fundamental for defining defense outputs.

  13. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  14. Complex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild.

    PubMed

    Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M

    2013-01-01

    The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.

  15. An experimental heat wave changes immune defense and life history traits in a freshwater snail.

    PubMed

    Leicht, Katja; Jokela, Jukka; Seppälä, Otto

    2013-12-01

    The predicted increase in frequency and severity of heat waves due to climate change is expected to alter disease dynamics by reducing hosts' ability to resist infections. This could take place via two different mechanisms: (1) through general reduction in hosts' performance under harsh environmental conditions and/or (2) through altered resource allocation that reduces expression of defense traits in order to maintain other traits. We tested these alternative hypotheses by measuring the effect of an experimental heat wave (25 vs. 15°C) on the constitutive level of immune defense (hemocyte concentration, phenoloxidase [PO]-like activity, antibacterial activity of hemolymph), and life history traits (growth and number of oviposited eggs) of the great pond snail Lymnaea stagnalis. We also manipulated the exposure time to high temperature (1, 3, 5, 7, 9, or 11 days). We found that if the exposure to high temperature lasted <1 week, immune function was not affected. However, when the exposure lasted longer than that, the level of snails' immune function (hemocyte concentration and PO-like activity) was reduced. Snails' growth and reproduction increased within the first week of exposure to high temperature. However, longer exposures did not lead to a further increase in cumulative reproductive output. Our results show that short experimental heat waves do not alter immune function but lead to plastic responses that increase snails' growth and reproduction. Thus, although the relative expression of traits changes, short experimental heat waves do not impair snails' defenses. Negative effects on performance get pronounced when the heat waves are prolonged suggesting that high performance cannot be maintained over long time periods. This ultimately reduces the levels of defense traits.

  16. An Immunization Strategy for Hidden Populations.

    PubMed

    Chen, Saran; Lu, Xin

    2017-06-12

    Hidden populations, such as injecting drug users (IDUs), sex workers (SWs) and men who have sex with men (MSM), are considered at high risk of contracting and transmitting infectious diseases such as AIDS, gonorrhea, syphilis etc. However, public health interventions to such groups are prohibited due to strong privacy concerns and lack of global information, which is a necessity for traditional strategies such as targeted immunization and acquaintance immunization. In this study, we introduce an innovative intervention strategy to be used in combination with a sampling approach that is widely used for hidden populations, Respondent-driven Sampling (RDS). The RDS strategy is implemented in two steps: First, RDS is used to estimate the average degree (personal network size) and degree distribution of the target population with sample data. Second, a cut-off threshold is calculated and used to screen the respondents to be immunized. Simulations on model networks and real-world networks reveal that the efficiency of the RDS strategy is close to that of the targeted strategy. As the new strategy can be implemented with the RDS sampling process, it provides a cost-efficient and feasible approach for disease intervention and control for hidden populations.

  17. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  18. Passive Antibody Administration (Immediate Immunity) as a Specific Defense Against Biological Weapons

    PubMed Central

    2002-01-01

    The potential threat of biological warfare with a specific agent is proportional to the susceptibility of the population to that agent. Preventing disease after exposure to a biological agent is partially a function of the immunity of the exposed individual. The only available countermeasure that can provide immediate immunity against a biological agent is passive antibody. Unlike vaccines, which require time to induce protective immunity and depend on the host’s ability to mount an immune response, passive antibody can theoretically confer protection regardless of the immune status of the host. Passive antibody therapy has substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague. This article proposes a biological defense initiative based on developing, producing, and stockpiling specific antibody reagents that can be used to protect the population against biological warfare threats. PMID:12141970

  19. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Roles of small RNAs in the immune defense mechanisms of crustaceans.

    PubMed

    He, Yaodong; Ju, Chenyu; Zhang, Xiaobo

    2015-12-01

    Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    PubMed

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  2. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways

    PubMed Central

    2018-01-01

    ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902

  3. Effects of dietary L-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine.

    PubMed

    Chen, Shuai; Liu, Shuping; Zhang, Fengmei; Ren, Wenkai; Li, Nengzhang; Yin, Jie; Duan, Jielin; Peng, Yuanyi; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2014-10-01

    Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.

  4. Task Force on Defense Strategies for Ensuring the Resilience of National Space Capabilities. Executive Summary

    DTIC Science & Technology

    2017-03-21

    March 2017 Task Force on Defense Strategies for Ensuring the Resilience of National Space Capabilities OFFICE OF THE UNDER SECRETARY OF...the Department of Defense. The DSB Task Force on Defense Strategies for Ensuring the Resilience of National Space Capabilities completed its formal...Ensuring the Resilience of National Space Capabilities | i DSB Task Force on Defense Strategies for Ensuring the

  5. Post-translational regulation of plant immunity.

    PubMed

    Withers, John; Dong, Xinnian

    2017-08-01

    Plants have evolved multi-layered molecular defense strategies to protect against pathogens. Plant immune signaling largely relies on post-translational modifications (PTMs) to induce rapid alterations of signaling pathways to achieve a response that is appropriate to the type of pathogen and infection pressure. In host cells, dynamic PTMs have emerged as powerful regulatory mechanisms that cells use to adjust their immune response. PTM is also a virulence strategy used by pathogens to subvert host immunity through the activities of effector proteins secreted into the host cell. Recent studies focusing on deciphering post-translational mechanisms underlying plant immunity have offered an in-depth view of how PTMs facilitate efficient immune responses and have provided a more dynamic and holistic view of plant immunity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Immunization strategy for epidemic spreading on multilayer networks

    NASA Astrophysics Data System (ADS)

    Buono, C.; Braunstein, L. A.

    2015-01-01

    In many real-world complex systems, individuals have many kinds of interactions among them, suggesting that it is necessary to consider a layered-structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this letter we study a targeted immunization strategy for epidemic spreading over a multilayer network. We apply the strategy in one of the layers and study its effect in all layers of the network disregarding degree-degree correlation among layers. We found that the targeted strategy is not as efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease it is necessary to immunize more than 80% of the individuals. However, the size of the epidemic is drastically reduced in the layer where the immunization strategy is applied compared to the case with no mitigation strategy. Thus, the immunization strategy has a major effect on the layer were it is applied, but does not efficiently protect the individuals of other layers.

  7. Natural History of Innate Host Defense Peptides.

    PubMed

    Linde, A; Wachter, B; Höner, O P; Dib, L; Ross, C; Tamayo, A R; Blecha, F; Melgarejo, T

    2009-12-01

    Host defense peptides act on the forefront of innate immunity, thus playing a central role in the survival of animals and plants. Despite vast morphological changes in species through evolutionary history, all animals examined to date share common features in their innate immune defense strategies, hereunder expression of host defense peptides (HDPs). Most studies on HDPs have focused on humans, domestic and laboratory animals. More than a thousand different sequences have been identified, yet data on HDPs in wild-living animals are sparse. The biological functions of HDPs include broad-spectrum antimicrobial activity and immunomodulation. Natural selection and coevolutionary host-pathogen arms race theory suggest that the extent and specificity of the microbial load influences the spectrum and potency of HDPs in different species. Individuals of extant species-that have lived for an extended period in evolutionary history amid populations with intact processes of natural selection-likely possess the most powerful and well-adapted "natural antibiotics". Research on the evolutionary history of the innate defense system and the host in context of the consequences of challenges as well as the efficacy of the innate immune system under natural conditions is therefore of immediate interest. This review focuses on evolutionary aspects of immunophysiology, with emphasis on innate effector molecules. Studies on host defense in wild-living animals may significantly enhance our understanding of inborn immune mechanisms, and help identify molecules that may assist us to cope better with the increasing microbial challenges that likely follow from the continuous amplification of biodiversity levels on Earth.

  8. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.

    PubMed

    Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne

    2017-02-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes

    PubMed Central

    Ramirez, Jose L.; Dimopoulos, George

    2010-01-01

    Dengue virus has become one of the most important arboviral pathogens affecting the world today. The virus is transmitted among humans by the mosquitoes Aedes aegypti and Ae. albopictus. Like other vector-borne pathogens, this virus encounters innate immune defenses within the mosquito vector that limit infection. We have previously demonstrated the involvement of the Toll pathway in the anti-dengue defense at 7 days after infection. In the present study, we have investigated the activity of this immune signaling pathway against different dengue virus serotypes at the early stages of infection in laboratory and field-derived mosquito strains. Our studies corroborate the importance of the Toll pathway in the anti-dengue defense repertoire at 3 days after an infectious blood meal, when new virions are released from the midgut for dissemination and infection of other mosquito tissues. These immune defenses are furthermore conserved among different Ae. aegypti strains and can act against a broad range of dengue virus serotypes. PMID:20079370

  10. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor.

    PubMed

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-08-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits.

  11. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Sarkadi, Adrien Katalin; Erdős, Melinda; Maródi, László

    2015-01-01

    The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.

  12. A biologically inspired immunization strategy for network epidemiology.

    PubMed

    Liu, Yang; Deng, Yong; Jusup, Marko; Wang, Zhen

    2016-07-07

    Well-known immunization strategies, based on degree centrality, betweenness centrality, or closeness centrality, either neglect the structural significance of a node or require global information about the network. We propose a biologically inspired immunization strategy that circumvents both of these problems by considering the number of links of a focal node and the way the neighbors are connected among themselves. The strategy thus measures the dependence of the neighbors on the focal node, identifying the ability of this node to spread the disease. Nodes with the highest ability in the network are the first to be immunized. To test the performance of our method, we conduct numerical simulations on several computer-generated and empirical networks, using the susceptible-infected-recovered (SIR) model. The results show that the proposed strategy largely outperforms the existing well-known strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor

    PubMed Central

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-01-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits. PMID:23572120

  14. Fungal Strategies to Evade the Host Immune Recognition.

    PubMed

    Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M

    2017-09-23

    The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.

  15. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses.

    PubMed

    Hastie, Kathryn M; Bale, Shridhar; Kimberlin, Christopher R; Saphire, Erica Ollmann

    2012-04-01

    The innate immune system is one of the first lines of defense against invading pathogens. Pathogens have, in turn, evolved different strategies to counteract these responses. Recent studies have illuminated how the hemorrhagic fever viruses Ebola and Lassa fever prevent host sensing of double-stranded RNA (dsRNA), a key hallmark of viral infection. The ebolavirus protein VP35 adopts a unique bimodal configuration to mask key cellular recognition sites on dsRNA. Conversely, the Lassa fever virus nucleoprotein actually digests the dsRNA signature. Collectively, these structural and functional studies shed new light on the mechanisms of pathogenesis of these viruses and provide new targets for therapeutic intervention. Copyright © 2012. Published by Elsevier B.V.

  16. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  17. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  18. Improved targeted immunization strategies based on two rounds of selection

    NASA Astrophysics Data System (ADS)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  19. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...

  20. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.

    PubMed

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.

  1. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases

    PubMed Central

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927

  2. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia.

    PubMed

    Davids, Barbara J; Palm, J E Daniel; Housley, Michael P; Smith, Jennifer R; Andersen, Yolanda S; Martin, Martin G; Hendrickson, Barbara A; Johansen, Finn-Eirik; Svärd, Staffan G; Gillin, Frances D; Eckmann, Lars

    2006-11-01

    The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.

  3. The Complex Contributions of Genetics and Nutrition to Immunity in Drosophila melanogaster

    PubMed Central

    Unckless, Robert L.; Rottschaefer, Susan M.; Lazzaro, Brian P.

    2015-01-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and “nutritional immunology” has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional “immune system” that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to

  4. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.

    PubMed

    Unckless, Robert L; Rottschaefer, Susan M; Lazzaro, Brian P

    2015-03-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and "nutritional immunology" has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional "immune system" that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen

  5. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  6. The Structure of the Human Vaginal Stratum Corneum and its Role in Immune Defense

    PubMed Central

    Anderson, Deborah J.; Marathe, Jai; Pudney, Jeffrey

    2014-01-01

    The superficial layers of the human vaginal epithelium, which form an interface between host and environment, are comprised of dead flattened cells that have undergone a terminal cell differentiation program called cornification. This entails extrusion of nuclei and intercellular organelles, and the depletion of functional DNA and RNA precluding the synthesis of new proteins. As a consequence, the terminally differentiated cells do not maintain robust intercellular junctions and have a diminished capacity to actively respond to microbial exposure, yet the vaginal stratum corneum (SC) mounts an effective defense against invasive microbial infections. The vaginal SC in reproductive aged women is comprised of loosely connected glycogen-filled cells which are permeable to bacterial and viral microbes as well as molecular and cellular mediators of immune defense. We propose here that the vaginal SC provides a unique microenvironment that maintains vaginal health by fostering endogenous lactobacillii and retaining critical mediators of acquired and innate immunity. A better understanding of the molecular and physicochemical properties of the vaginal SC could promote the design of more effective topical drugs and microbicides. PMID:24661416

  7. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  8. Evolution Of The Operational Energy Strategy And Its Consideration In The Defense Acquisition Process

    DTIC Science & Technology

    2016-09-01

    OPERATIONAL ENERGY STRATEGY AND ITS CONSIDERATION IN THE DEFENSE ACQUISITION PROCESS by Richard J. Kendig Ashley D. Seaton Robert J. Rodgers...project 4. TITLE AND SUBTITLE EVOLUTION OF THE OPERATIONAL ENERGY STRATEGY AND ITS CONSIDERATION IN THE DEFENSE ACQUISITION PROCESS 5. FUNDING...looked at the DOD Operational Energy Strategy evolution and how it applies to new and modified weapon systems, considering the three-legged table of the

  9. Phylogenetic escalation and decline of plant defense strategies

    PubMed Central

    Agrawal, Anurag A.; Fishbein, Mark

    2008-01-01

    As the basal resource in most food webs, plants have evolved myriad strategies to battle consumption by herbivores. Over the past 50 years, plant defense theories have been formulated to explain the remarkable variation in abundance, distribution, and diversity of secondary chemistry and other defensive traits. For example, classic theories of enemy-driven evolutionary dynamics have hypothesized that defensive traits escalate through the diversification process. Despite the fact that macroevolutionary patterns are an explicit part of defense theories, phylogenetic analyses have not been previously attempted to disentangle specific predictions concerning (i) investment in resistance traits, (ii) recovery after damage, and (iii) plant growth rate. We constructed a molecular phylogeny of 38 species of milkweed and tested four major predictions of defense theory using maximum-likelihood methods. We did not find support for the growth-rate hypothesis. Our key finding was a pattern of phyletic decline in the three most potent resistance traits (cardenolides, latex, and trichomes) and an escalation of regrowth ability. Our neontological approach complements more common paleontological approaches to discover directional trends in the evolution of life and points to the importance of natural enemies in the macroevolution of species. The finding of macroevolutionary escalating regowth ability and declining resistance provides a window into the ongoing coevolutionary dynamics between plants and herbivores and suggests a revision of classic plant defense theory. Where plants are primarily consumed by specialist herbivores, regrowth (or tolerance) may be favored over resistance traits during the diversification process. PMID:18645183

  10. Natural killer cells in host defense against veterinary pathogens.

    PubMed

    Shekhar, Sudhanshu; Yang, Xi

    2015-11-15

    Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Department of Defense International Space Cooperation Strategy

    DTIC Science & Technology

    2017-01-01

    Secretary of Defense on .January 18. 2017. the unclassified version provides DoD’s approach for invigorating cooperation and collaboration with trusted ...Cooperation Strategy (ISCS) establishes DoD’ s approach for invigorating cooperation and collaboration with trusted allies and partners across the...collaborating with trusted allies and partners to address shared security challenges by leveraging allies’ and partners ’ capabilities to enhance space mission

  12. Immune Evasion Strategies and Persistence of Helicobacter pylori.

    PubMed

    Mejías-Luque, Raquel; Gerhard, Markus

    Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.

  13. Barriers to Immunizations and Strategies to Enhance Immunization Rates in Adults with Autoimmune Inflammatory Diseases.

    PubMed

    Kirchner, Elizabeth; Ruffing, Victoria

    2017-02-01

    For as long as there have been immunizations, there have been barriers to them. Immunization rates in the United States are below target. Rheumatologists and rheumatology practitioners need to understand the issues of immunizations in patients with autoimmune inflammatory disease to identify and overcome barriers to immunization. Several strategies for overcoming these barriers are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Neisseria gonorrhoeae Modulates Iron-Limiting Innate Immune Defenses in Macrophages

    PubMed Central

    Zughaier, Susu M.; Kandler, Justin L.; Shafer, William M.

    2014-01-01

    Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival. PMID:24489950

  15. Innate immunity in the control of HIV/AIDS: recent advances and open questions.

    PubMed

    Ploquin, Mickaël J-Y; Jacquelin, Béatrice; Jochems, Simon P; Barré-Sinoussi, Françoise; Müller-Trutwin, Michaela C

    2012-06-19

    From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.

  16. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  17. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  18. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  19. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  20. Jasmonate-triggered plant immunity.

    PubMed

    Campos, Marcelo L; Kang, Jin-Ho; Howe, Gregg A

    2014-07-01

    The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.

  1. Responses of innate immune cells to group A Streptococcus

    PubMed Central

    Fieber, Christina; Kovarik, Pavel

    2014-01-01

    Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies. PMID:25325020

  2. West European and East Asian Perspectives on Defense, Deterrence and Strategy. Volume 2. Western European Perspectives on Defense, Deterrence and Strategy.

    DTIC Science & Technology

    1984-05-16

    3a - vDE Or 4EPORT 13b 󈨋M COvERED :W)AE OF REPOR~ r or ay 5~ COu.N. *Technical :ROM 821201 -o 8451" 1984, May 16"a 238" 0y 5-I o. * 6 Su POLEMETARY...34 International Defense Review, Vol. 12, No. 3 (1979). 82. Geneste, Colonel Marc. ’La Bataille Terrestre Nuc1~aire,5 Strategie, (July-September 1976). 83.t, u...Strategi- gues, Nucl~aires Tactiques, Terrestres Maritimes et Aeriennes,’ Le Figaro, April 21, 1983. 182. Everts, Philip P. ’Reviving Unilateralism

  3. Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens.

    PubMed

    Grayfer, Leon; Andino, Francisco De Jesús; Chen, Guangchun; Chinchar, Gregory V; Robert, Jacques

    2012-07-01

    Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95-100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections.

  4. Optimistic and defensive-pessimist students: differences in their academic motivation and learning strategies.

    PubMed

    Suárez Riveiro, José Manuel

    2014-01-01

    In addition to cognitive and behavioral strategies, students can also use affective-motivational strategies to facilitate their learning process. In this way, the strategies of defensive-pessimism and generation of positive expectations have been widely related to conceptual models of pessimism-optimism. The aim of this study was to describe the use of these strategies in 1753 secondary school students, and to study the motivational and strategic characteristics which differentiated between the student typologies identified as a result of their use. The results indicated a higher use of the generation of positive expectations strategy (optimism) (M = 3.40, SD = .78) than the use of the defensive pessimism strategy (M = 3.00, SD = .78); a positive and significant correlation between the two strategies (r = .372, p = .001); their relationship with adequate academic motivation and with the use of learning strategies. Furthermore, four student typologies were identified based on the use of both strategies. Lastly, we propose a new approach for future work in this line of research.

  5. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity.

    PubMed

    Peng, Yujun; van Wersch, Rowan; Zhang, Yuelin

    2018-04-01

    Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.

  6. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses

    PubMed Central

    Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.

    2016-01-01

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455

  7. Optimization strategies with resource scarcity: From immunization of networks to the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Agliari, Elena; Cassi, Davide

    2015-10-01

    The best strategy to immunize a complex network is usually evaluated in terms of the percolation threshold, i.e. the number of vaccine doses which make the largest connected cluster (LCC) vanish. The strategy inducing the minimum percolation threshold represents the optimal way to immunize the network. Here we show that the efficacy of the immunization strategies can change during the immunization process. This means that, if the number of doses is limited, the best strategy is not necessarily the one leading to the smallest percolation threshold. This outcome should warn about the adoption of global measures in order to evaluate the best immunization strategy.

  8. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Bacterial 'immunity' against bacteriophages.

    PubMed

    Abedon, Stephen T

    2012-01-01

    Vertebrate animals possess multiple anti-pathogen defenses. Individual mechanisms usually are differentiated into those that are immunologically adaptive vs. more "primitive" anti-pathogen phenomena described as innate responses. Here I frame defenses used by bacteria against bacteriophages as analogous to these animal immune functions. Included are numerous anti-phage defenses in addition to the adaptive immunity associated with CRISPR/cas systems. As these other anti-pathogen mechanisms are non-adaptive they can be described as making up an innate bacterial immunity. This exercise was undertaken in light of the recent excitement over the discovery that CRISPR/cas systems can serve, as noted, as a form of bacterial adaptive immunity. The broader goal, however, is to gain novel insight into bacterial defenses against phages by fitting these mechanisms into considerations of how multicellular organisms also defend themselves against pathogens. This commentary can be viewed in addition as a bid toward integrating these numerous bacterial anti-phage defenses into a more unified immunology.

  10. Immunity to betanodavirus infections of marine fish.

    PubMed

    Chen, Young-Mao; Wang, Ting-Yu; Chen, Tzong-Yueh

    2014-04-01

    Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Innate immunity against HIV-1 infection.

    PubMed

    Altfeld, Marcus; Gale, Michael

    2015-06-01

    During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.

  12. Robustness trade-offs and host–microbial symbiosis in the immune system

    PubMed Central

    Kitano, Hiroaki; Oda, Kanae

    2006-01-01

    The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567

  13. Strategy alternatives for homeland air and cruise missile defense.

    PubMed

    Murphy, Eric M; Payne, Michael D; Vanderwoude, Glenn W

    2010-10-01

    Air and cruise missile defense of the U.S. homeland is characterized by a requirement to protect a large number of critical assets nonuniformly dispersed over a vast area with relatively few defensive systems. In this article, we explore strategy alternatives to make the best use of existing defense resources and suggest this approach as a means of reducing risk while mitigating the cost of developing and acquiring new systems. We frame the issue as an attacker-defender problem with simultaneous moves. First, we outline and examine the relatively simple problem of defending comparatively few locations with two surveillance systems. Second, we present our analysis and findings for a more realistic scenario that includes a representative list of U.S. critical assets. Third, we investigate sensitivity to defensive strategic choices in the more realistic scenario. As part of this investigation, we describe two complementary computational methods that, under certain circumstances, allow one to reduce large computational problems to a more manageable size. Finally, we demonstrate that strategic choices can be an important supplement to material solutions and can, in some cases, be a more cost-effective alternative. © 2010 Society for Risk Analysis.

  14. Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities

    PubMed Central

    Hohl, Tobias M.

    2017-01-01

    Purpose of review Invasive aspergillosis is a worldwide disease that primarily affects immune-compromised patients, agricultural workers with corneal abrasions, individuals with structural lung disease, and patients with primary immune deficiency. The critical function of the immune system is to prevent the germination of airborne conidia into tissue-invasive hyphae. This review covers recent advances that shape our understanding of anti-Aspergillus immunity at the molecular and cellular level. Recent findings Host defense against conidia and hyphae occurs via distinct molecular mechanisms that involve intracellular and extracellular killing pathways, as well as cooperation between different myeloid cell subsets. The strength and efficacy of the host response is shaped by the tissue microenvironment. In preclinical models of disease, host immune augmentation strategies have yielded benefits, yet translating these insights into therapeutic strategies in humans remains challenging. Summary Although advances in early diagnostic strategies and in antifungal drugs have ameliorated clinical outcomes of invasive aspergillosis, further improvements depend on gaining deeper insight into and translating advances in anti-Aspergillus immunity. PMID:28509673

  15. Evolutionary plasticity of insect immunity.

    PubMed

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Complex Immune Evasion Strategies in Classical Hodgkin Lymphoma.

    PubMed

    Wein, Frederik; Weniger, Marc A; Höing, Benedikt; Arnolds, Judith; Hüttmann, Andreas; Hansmann, Martin-Leo; Hartmann, Sylvia; Küppers, Ralf

    2017-12-01

    The cellular microenvironment in classical Hodgkin lymphoma (cHL) is dominated by a mixed infiltrate of inflammatory cells with typically only about 1% Hodgkin and Reed/Sternberg (HRS) tumor cells. T cells are usually the largest population of cells in the cHL microenvironment, encompassing T helper (Th) cells, regulatory T cells (Tregs), and cytotoxic T cells. Th cells and Tregs presumably provide essential survival signals for HRS cells. Tregs are also involved in rescuing HRS cells from antitumor immune responses. An understanding of the immune evasion strategies of HRS cells is not only relevant for a characterization of the pathophysiology of cHL but is also clinically relevant, given the current treatment approaches targeting checkpoint inhibitors. Here, we characterized the cHL-specific CD4 + T-cell infiltrate regarding its role in immune evasion. Global gene expression analysis of CD4 + Th cells and Tregs isolated from cHL lymph nodes and reactive tonsils revealed that Treg signatures were enriched in CD4 + Th cells of cHL. Hence, HRS cells may induce Treg differentiation in Th cells, a conclusion supported by in vitro studies with Th cells and cHL cell lines. We also found evidence for immune-suppressive purinergic signaling and a role of the inhibitory receptor-ligand pairs B- and T-cell lymphocyte attenuator-herpesvirus entry mediator and CD200R-CD200 in promoting immune evasion. Taken together, this study highlights the relevance of Treg induction and reveals new immune checkpoint-driven immune evasion strategies in cHL. Cancer Immunol Res; 5(12); 1122-32. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Developing an institutional strategy for transporting defense transuranic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Kresny, H.S.

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less

  18. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon.

    PubMed

    Aas, Ida Bergva; Austbø, Lars; Falk, Knut; Hordvik, Ivar; Koppang, Erling Olaf

    2017-11-01

    Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The role of pilin protein of Xenorhabdus nematophila against immune defense reactions of insects.

    PubMed

    Darsouei, Reyhaneh; Karimi, Javad; Dunphy, Gary B

    2017-08-01

    Xenorhabdus nematophila is a symbiotic bacterium of the entomopathogenic nematode Steinernema carpocapsae (Weiser). It produces several toxic proteins which interfere with the immune system of insects. The current study shows that purified pilin protein could be a virulence trait of X. nematophila. The fifth instar larvae of Spodoptera exigua (Hübner) was injected with purified pilin. Changes in the cellular defenses in terms of total haemocyte counts and granulocyte percentage and humoral factors including total protease, phospholipase A 2 , and phenoloxidase activities (humoral defense) as well as the expression of the three main antimicrobial peptides attacin, cecropin, and spodoptericin were measured at specific times. The level of THC and granulocytes in larvae with different concentrations of pilin protein were less than the negative control. Also agglutination of haemocytes was observed 8-16h post-injection. The pilin protein activated phenoloxidase in the initial hour post-injection, by 2hpi, activity was stable. The activities of phospholipase A2 and protease activities reached maximum levels at 12 and 4hpi, respectively, and then decreased. The expressions of attacin, cecropin, and spodoptericin in larvae treated with pilin protein were up-regulated above that of the normal sample. The overexpression of cecropin was greater than the other antimicrobial protein mRNA transcripts. The spodoptericin expression had an irregular trend while expressions of attacin and cecropin reached maximum levels at 4hpi and then decreased. Generally, after the injection of pilin protein, the cellular and humoral immune system of S. exigua is activated but this toxin was able to inhibit them. This is the first report of the role of pilin protein when the bacterial symbiont of S. carpocapsae encounters the humoral defense of an insect. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. [Plant immune system: the basal immunity].

    PubMed

    Shamraĭ, S N

    2014-01-01

    Plants have an efficient system of innate immunity which is based on the effective detection of potentially harmful microorganisms and rapid induction of defense responses. The first level of plant immunity is the basal immunity which is induced by the conserved molecular structures of microbes such as bacterial flagellins or fungal chitin, or molecules that result from the interaction of plants with pathogens, for example oligosaccharides and peptides ("danger signals"). Plants recognize these inducers through receptors localized to the plasma membrane, represented mainly receptor-like protein kinases or receptor-like proteins. Activation of the receptor by a ligand triggers a complex network of signaling events which eventually cause an array of plant defense responses to prevent further spread of the pathogen.

  1. Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks.

    PubMed

    Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie

    2014-01-01

    The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies-acquaintance immunization, community-bridge immunization, and ring vaccination-were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures). However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice.

  2. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    PubMed

    Sohn, Kee Hoon; Segonzac, Cécile; Rallapalli, Ghanasyam; Sarris, Panagiotis F; Woo, Joo Yong; Williams, Simon J; Newman, Toby E; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D G

    2014-10-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light

  3. The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana

    PubMed Central

    Sarris, Panagiotis F.; Woo, Joo Yong; Williams, Simon J.; Newman, Toby E.; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D. G.

    2014-01-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific “avirulent” pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new

  4. Age-specific strategies for immunization reminders and recalls: a registry-based randomized trial.

    PubMed

    Dombkowski, Kevin J; Costello, Lauren E; Harrington, Laura B; Dong, Shiming; Kolasa, Maureen; Clark, Sarah J

    2014-07-01

    Although previous studies have found reminder/recall to be effective in increasing immunization rates, little guidance exists regarding the specific ages at which it is optimal to send reminder/recall notices. To assess the relative effectiveness of centralized reminder/recall strategies targeting age-specific vaccination milestones among children in urban areas during June 2008-June 2009. Three reminder/recall strategies used capabilities of the Michigan Care Improvement Registry (MCIR), a statewide immunization information system: a 7-month recall strategy, a 12-month reminder strategy, and a 19-month recall strategy. Eligible children were randomized to notification (intervention) or no notification groups (control). Primary study outcomes included MCIR-recorded immunization activity (administration of ≥1 new dose, entry of ≥1 historic dose, entry of immunization waiver) within 60 days following each notification cycle. A total of 10,175 children were included: 2,072 for the 7-month recall, 3,502 for the 12-month reminder, and 4,601 for the 19-month recall. Immunization activity was similar between notification versus no notification groups at both 7 and 12 months. Significantly more 19-month-old children in the recall group (26%) had immunization activity compared to their counterparts who did not receive a recall notification (19%). Although recall notifications can positively affect immunization activity, the effect may vary by targeted age group. Many 7- and 12-month-olds had immunization activity following reminder/recall; however, levels of activity were similar irrespective of notification, suggesting that these groups were likely to receive medical care or immunization services without prompting. Copyright © 2014 American Journal of Preventive Medicine. All rights reserved.

  5. Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly.

    PubMed

    Fritzsche McKay, Alexa; Ezenwa, Vanessa O; Altizer, Sonia

    2016-08-01

    Migratory animals undergo extreme physiological changes to prepare for and sustain energetically costly movements; one potential change is reduced investment in immune defenses. However, because some migrants have evolved to minimize the energetic demands of movement (for example, through the temporary atrophy of non-essential organs such as those involved in reproduction), migratory animals could potentially avoid immunosuppression during long-distance journeys. In this study, we used a tethered flight mill to examine immune consequences of experimentally induced powered flight in eastern North American monarch butterflies. These butterflies undergo an annual two-way long-distance migration each year from as far north as Canada to wintering sites in Central Mexico. We quantified immune measures as a function of categorical flight treatment (flown versus control groups) and continuous measures of flight effort (e.g., flight distance, duration, and measures of efficiency). We also examined whether relationships between flight and immune measures depended on reproductive investment by experimentally controlling whether monarchs were reproductive or in state of reproductive diapause (having atrophied reproductive organs) prior to flight. Of the three immune responses we measured, hemocyte concentration (the number of immune cells) was lower in flown monarchs relative to controls but increased with flight distance among flown monarchs; the other two immune measures showed no relationship to monarch flight. We also found that monarchs that were reproductively active were less efficient fliers, as they exerted more power during flight than monarchs in reproductive diapause. However, reproductive status did not modify relationships between flight and immune measures. Results of this study add to a growing body of work suggesting that migratory monarchs-like some other animals that travel vast distances-can complete their journeys with efficient use of resources and

  6. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S

  7. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis.

    PubMed

    Cheng, Yu Ti; Germain, Hugo; Wiermer, Marcel; Bi, Dongling; Xu, Fang; García, Ana V; Wirthmueller, Lennart; Després, Charles; Parker, Jane E; Zhang, Yuelin; Li, Xin

    2009-08-01

    Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.

  8. Health Risk Communication in the Anthrax Vaccine Immunization Program: Lessons for the Future

    DTIC Science & Technology

    2001-04-01

    HEALTH RISK COMMUNICATION IN THE ANTHRAX VACCINE IMMUNIZATION PROGRAM: Lessons for the Future Colonel Bradley D. Freeman April 2001 AEPI-IFP-0901...REPORT TYPE AND DATES COVERED Strategy Research Project 4. TITLE AND SUBTITLE Health Risk Communication in the Anthrax Vaccine Immunization Program...Maximum 200 words) When Secretary of Defense William Cohen announced that all military service members would be vaccinated with the anthrax vaccine , few

  9. Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells following Streptococcus uberis Infection of Sheep

    PubMed Central

    Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano

    2013-01-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals. PMID:23774600

  10. Production and release of antimicrobial and immune defense proteins by mammary epithelial cells following Streptococcus uberis infection of sheep.

    PubMed

    Addis, Maria Filippa; Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano; Uzzau, Sergio

    2013-09-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals.

  11. Defense Technology and Trade Initiative: Ashton Carter’s Strategy in India

    DTIC Science & Technology

    2016-03-01

    Defense AT&L: March-April 2016 26 Defense Technology and Trade Initiative Ashton Carter’s Strategy in India Amit K. Maitra Maitra is a founding...officials to work on initiatives that were set in motion during President Obama’s January 2015 visit to India . During that visit, Obama and Indian Prime...engine technology. Modi, who has a broad vision of India as a global power, has a noticeably great affinity for the United States. Also, in the wake

  12. Defensive applications of gene transfer technology in the face of bioterrorism: DNA-based vaccines and immune targeting.

    PubMed

    Ackley, Catherine J; Greene, Michael R; Lowrey, Christopher H

    2003-12-01

    Gene transfer involves the introduction of an engineered gene into a person's cells with the expectation that the protein expressed from the gene will produce a therapeutic benefit. Strategies based on this principle have led to the approval of > 600 clinical trials and enrollment of approximately 3500 subjects worldwide in attempts to treat diseases ranging from cancer to AIDS to cystic fibrosis. While gene therapy has met with limited success and still has many hurdles to overcome before it sees wide application, it may be useful as a defensive strategy against bioterrorism agents including infectious microbes and toxins. Although many defensive strategies are possible, immunological strategies are currently the most developed and are being actively applied to the development of strategies against several of the most virulent potential bio-weapons. While most of these strategies are not yet ready for human application, DNA-based vaccines appear to be among the most promising in the fight against bioterrorism.

  13. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria

    PubMed Central

    Bletz, Molly C.; Myers, Jillian; Woodhams, Douglas C.; Rabemananjara, Falitiana C. E.; Rakotonirina, Angela; Weldon, Che; Edmonds, Devin; Vences, Miguel; Harris, Reid N.

    2017-01-01

    For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be below

  14. Socioecological predictors of immune defences in wild spotted hyenas

    PubMed Central

    Flies, Andrew S.; Mansfield, Linda S.; Flies, Emily J.; Grant, Chris K.; Holekamp, Kay E.

    2016-01-01

    Summary Social rank can profoundly affect many aspects of mammalian reproduction and stress physiology, but little is known about how immune function is affected by rank and other socio-ecological factors in free-living animals.In this study we examine the effects of sex, social rank, and reproductive status on immune function in long-lived carnivores that are routinely exposed to a plethora of pathogens, yet rarely show signs of disease.Here we show that two types of immune defenses, complement-mediated bacterial killing capacity (BKC) and total IgM, are positively correlated with social rank in wild hyenas, but that a third type, total IgG, does not vary with rank.Female spotted hyenas, which are socially dominant to males in this species, have higher BKC, and higher IgG and IgM concentrations, than do males.Immune defenses are lower in lactating than pregnant females, suggesting the immune defenses may be energetically costly.Serum cortisol and testosterone concentrations are not reliable predictors of basic immune defenses in wild female spotted hyenas.These results suggest that immune defenses are costly and multiple socioecological variables are important determinants of basic immune defenses among wild hyenas. Effects of these variables should be accounted for when attempting to understand disease ecology and immune function. PMID:27833242

  15. Stop or move: Defensive strategies in humans.

    PubMed

    Bastos, Aline F; Vieira, Andre S; Oliveira, Jose M; Oliveira, Leticia; Pereira, Mirtes G; Figueira, Ivan; Erthal, Fatima S; Volchan, Eliane

    2016-04-01

    Threatening cues and surrounding contexts trigger specific defensive response patterns. Potential threat evokes attentive immobility; attack evokes flight when escape is available and immobility when escape is blocked. Tonic immobility installs when threat is overwhelming and life-risky. In humans, reduced body sway characterizes attentive and tonic immobility, the former with bradycardia, and the later with expressive tachycardia. Here, we investigate human defensive strategies in the presence or absence of an escape route. We employed pictures depicting a man carrying a gun and worked with participants exposed to urban violence. In pictures simulating more possibility of escape, the gun was directed away from the observer; in those simulating higher risk and less chance of escape, the gun was directed toward the observer. Matched control pictures depicted similar layouts, but a non-lethal object substituted the gun. Posturographic and electrocardiographic recordings were collected. Amplitude of sway and heart rate were higher for gun directed-away and lower for gun direct-toward. Compared to their respective matched controls, there was a general increase in the amplitude of sway for the gun directed-away pictures; and a reduction in back-and-forth sway and in heart rate for gun directed-toward pictures. Taken together, those measures suggest that, when exposed to threat invading their margin of safety in a context indicating possible escape route, humans, as non-human species, engage in active escape, resembling the flight stage of the defensive cascade. When facing threat indicating less possibility of escape, humans present an immobile response with bradycardia. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    PubMed

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  17. Coping strategies and immune neglect in affective forecasting: Direct evidence and key moderators

    PubMed Central

    Hoerger, Michael

    2012-01-01

    Affective forecasting skills have important implications for decision making. However, recent research suggests that immune neglect – the tendency to overlook coping strategies that reduce future distress – may lead to affective forecasting problems. Prior evidence for immune neglect has been indirect. More direct evidence and a deeper understanding of immune neglect are vital to informing the design of future decision-support interventions. In the current study, young adults (N = 325) supplied predicted, actual, and recollected reactions to an emotionally-evocative interpersonal event, Valentine’s Day. Based on participants’ qualitative descriptions of the holiday, a team of raters reliably coded the effectiveness of their coping strategies. Supporting the immune neglect hypothesis, participants overlooked the powerful role of coping strategies when predicting their emotional reactions. Immune neglect was present not only for those experiencing the holiday negatively (non-daters) but also for those experiencing it positively (daters), suggesting that the bias may be more robust than originally theorized. Immune neglect was greater for immediate emotional reactions than more enduring reactions. Further, immune neglect was conspicuously absent from recollected emotional reactions. Implications for decision-support interventions are discussed. PMID:22375161

  18. Mucosal immunization: a review of strategies and challenges.

    PubMed

    Patel, Hinal; Yewale, Chetan; Rathi, Mohan N; Misra, Ambikanandan

    2014-01-01

    The vast majority of pathogens enter the human body via the mucosal surfaces of the gastrointestinal, respiratory, and urogenital tracts, where they initiate mucosal infections that lead to systemic infections. Despite strong evidence that a good mucosal immune response can effectively prevent systemic infection too, only a few mucosal vaccines are available due to their low efficiency. Most current immunization techniques involve systemic injection, but they are ineffective to induce immunization at a mucosal site. It is a great challenge to target a mucosal compartment that can induce protective immunity at mucosal sites as well as systemic sites. A better understanding of cellular and molecular factors involved in the regulation of mucosal immunity will aid in the design of safer mucosal vaccines that elicit the desired protective immunity against infectious diseases such as HIV. The development of mucosal vaccines, whether for prevention of infectious diseases or for immunotherapy, requires antigen delivery and adjuvant systems that can effectively present vaccine or immunotherapeutic antigens to the mucosal sites. In this review, we examine the mechanism of mucosal protection, induction of mucosal immune response, types of vaccines, current status of marketed vaccines, and novel strategies for protection against infections and for treatment of inflammatory disorders. Additionally, we offer perspectives on future challenges and research directions.

  19. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification.

    PubMed

    Locato, Vittoria; Cimini, Sara; Gara, Laura De

    2013-01-01

    Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by "classical" breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses.

  20. Epidemic spreading and immunization strategy in multiplex networks

    NASA Astrophysics Data System (ADS)

    Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.

    2015-09-01

    A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.

  1. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  2. Social marketing as a strategy to increase immunization rates.

    PubMed

    Opel, Douglas J; Diekema, Douglas S; Lee, Nancy R; Marcuse, Edgar K

    2009-05-01

    Today in the United States, outbreaks of vaccine-preventable disease are often traced to susceptible children whose parents have claimed an exemption from school or child care immunization regulations. The origins of this immunization hesitancy and resistance have roots in the decline of the threat of vaccine-preventable disease coupled with an increase in concerns about the adverse effects of vaccines, the emergence of mass media and the Internet, and the intrinsic limitations of modern medicine. Appeals to emotion have drowned out thoughtful discussion in public forums, and overall, public trust in immunizations has declined. We present an often overlooked behavior change strategy-social marketing-as a way to improve immunization rates by addressing the important roots of immunization hesitancy and effectively engaging emotions. As an example, we provide a synopsis of a social marketing campaign that is currently in development in Washington state and that is aimed at increasing timely immunizations in children from birth to age 24 months.

  3. Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event.

    PubMed

    Mydlarz, Laura D; Couch, Courtney S; Weil, Ernesto; Smith, Garriet; Harvell, C Drew

    2009-11-16

    One prominent hypothesis regarding climate change and scleractinian corals is that thermal stress compromises immune competence. To test this hypothesis we tracked how the immune defenses of bleached, apparently healthy and yellow band disease (YBD) diseased Montastraea faveolata colonies varied with natural thermal stress in southwestern Puerto Rico. Colonies were monitored for 21 mo from the peak of the bleaching event in October 2005 to August 2007. Since sea surface temperature was significantly higher in summer and fall 2005 than 2006, year of collection was used as a proxy for temperature stress, and colony fragments collected in 2005 were compared with those collected in 2006. Mortality rate was high (43% overall) and all colonies (except one) either died or became infected with YBD by August 2007. YBD-infected tissue did not bleach (i.e. expel zooxanthellae) during the 2005 bleaching event, even when healthy tissue of these colonies bleached. Immune activity was assayed by measuring prophenoloxidase (PPO), peroxidase (POX), lysozyme-like (LYS) and antibacterial (AB) activity. Immune activity was variable between all coral samples, but there was a significant elevation of PPO activity in bleached colonies collected in 2005 relative to apparently healthy and YBD-diseased corals in 2006. In YBD-diseased colonies, LYS and AB activity were elevated in both healthy and infected tissue, indicating a systemic response; activity levels in these colonies were higher compared to those that appeared healthy. In both these immune parameters, there was a trend for suppression of activity in corals that were bleached in 2005. These data, while complicated by between-genet variability, illustrate the complex interaction between disease and temperature stress on immune function.

  4. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin.

    PubMed

    Bitschar, Katharina; Wolz, Christiane; Krismer, Bernhard; Peschel, Andreas; Schittek, Birgit

    2017-09-01

    Healthy human skin provides an effective mechanical as well as immunologic barrier against pathogenic microorganisms with keratinocytes as the main cell type in the epidermis actively participating and orchestrating the innate immune response of the skin. As constituent of the outermost layer encountering potential pathogens they have to sense signals from the environment and must be able to initiate a differential immune response to harmless commensals and harmful pathogens. Staphylococci are among the most abundant colonizers of the skin: Whereas Staphylococcus epidermidis is part of the skin microbiota and ubiquitously colonizes human skin, Staphylococcus aureus is only rarely found on healthy human skin, but frequently colonizes the skin of atopic dermatitis (AD) patients. This review highlights recent advances in understanding how keratinocytes as sessile innate immune cells orchestrate an effective defense against S. aureus in healthy skin and the mechanisms leading to an impaired keratinocyte function in AD patients. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  5. Sources Of Evolution Of The Japan Air Self Defense Force’s Strategy

    DTIC Science & Technology

    2016-12-01

    has built an air defense operation based air power .2 However, some argue that it is difficult to call JASDF’s strategy defensive when analyzing...offensively. He asserted that air power should continue the offensive operations because the enemy is overwhelmed with psychological nervousness by just...naval activities in the East China Sea when the JASDF fails to maintain the air superiority capability balance in the region. In fact, while the most of

  6. The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy

    PubMed Central

    Amara, Suneetha; Tiriveedhi, Venkataswarup

    2017-01-01

    DNA-based vaccine strategy is increasingly realized as a viable cancer treatment approach. Strategies to enhance immunogenicity utilizing tumor associated antigens have been investigated in several pre-clinical and clinical studies. The promising outcomes of these studies have suggested that DNA-based vaccines induce potent T-cell effector responses and at the same time cause only minimal side-effects to cancer patients. However, the immune evasive tumor microenvironment is still an important hindrance to a long-term vaccine success. Several options are currently under various stages of study to overcome immune inhibitory effect in tumor microenvironment. Some of these approaches include, but are not limited to, identification of neoantigens, mutanome studies, designing fusion plasmids, vaccine adjuvant modifications, and co-treatment with immune-checkpoint inhibitors. In this review, we follow a Porter’s analysis analogy, otherwise commonly used in business models, to analyze various immune-forces that determine the potential success and sustainable positive outcomes following DNA vaccination using non-viral tumor associated antigens in treatment against cancer. PMID:28304339

  7. Adenoviral Vector Immunity: Its Implications and circumvention strategies

    PubMed Central

    Ahi, Yadvinder S.; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations. PMID:21453277

  8. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  9. Host Defense Versus Immunosuppression: Unisexual Infection With Male or Female Schistosoma mansoni Differentially Impacts the Immune Response Against Invading Cercariae.

    PubMed

    Sombetzki, Martina; Koslowski, Nicole; Rabes, Anne; Seneberg, Sonja; Winkelmann, Franziska; Fritzsche, Carlos; Loebermann, Micha; Reisinger, Emil C

    2018-01-01

    Infection with the intravascular diecious trematode Schistosoma spp . remains a serious tropical disease and public health problem in the developing world, affecting over 258 million people worldwide. During chronic Schistosoma mansoni infection, complex immune responses to tissue-entrapped parasite eggs provoke granulomatous inflammation which leads to serious damage of the liver and intestine. The suppression of protective host immune mechanisms by helminths promotes parasite survival and benefits the host by reducing tissue damage. However, immune-suppressive cytokines may reduce vaccine-induced immune responses. By combining a single-sex infection system with a murine air pouch model, we were able to demonstrate that male and female schistosomes play opposing roles in modulating the host's immune response. Female schistosomes suppress early innate immune responses to invading cercariae in the skin and upregulate anergy-associated genes. In contrast, male schistosomes trigger strong innate immune reactions which lead to a reduction in worm and egg burden in the liver. Our data suggest that the female worm is a neglected player in the dampening of the host's immune defense system and is therefore a promising target for new immune modulatory therapies.

  10. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity.

    PubMed

    Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen

    2012-12-01

    Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.

  11. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism

    PubMed Central

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites. PMID:23874972

  12. Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation.

    PubMed

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena

    2018-03-01

    Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Innate immune sensing and response to influenza.

    PubMed

    Pulendran, Bali; Maddur, Mohan S

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.

  14. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11.

    PubMed

    Santos, Diego M; Carneiro, Marcia W; de Moura, Tatiana R; Fukutani, Kiyoshi; Clarencio, Jorge; Soto, Manuel; Espuelas, Socorro; Brodskyn, Claudia; Barral, Aldina; Barral-Netto, Manoel; de Oliveira, Camila I

    2012-01-01

    Vaccine development has been a priority in the fight against leishmaniases, which are vector-borne diseases caused by Leishmania protozoa. Among the different immunization strategies employed to date is inoculation of plasmid DNA coding for parasite antigens, which has a demonstrated ability to induce humoral and cellular immune responses. In this sense, inoculation of plasmid DNA encoding Leishmania kinetoplasmid membrane protein-11 (KMP-11) was able to confer protection against visceral leishmaniasis. However, recently the use of antigen delivery systems such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles has also proven effective for eliciting protective immune responses. In the present work, we tested two immunization strategies with the goal of obtaining protection, in terms of lesion development and parasite load, against cutaneous leishmaniasis caused by L. braziliensis. One strategy involved immunization with plasmid DNA encoding L. infantum chagasi KMP-11. Alternatively, mice were primed with PLGA nanoparticles loaded with the recombinant plasmid DNA and boosted using PLGA nanoparticles loaded with recombinant KMP-11. Both immunization strategies elicited detectable cellular immune responses with the presence of both proinflammatory and anti-inflammatory cytokines; mice receiving the recombinant PLGA nanoparticle formulations also demonstrated anti-KMP-11 IgG1 and IgG2a. Mice were then challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development was not inhibited following either immunization strategy. However, immunization with PLGA nanoparticles resulted in a more prominent reduction in parasite load at the infection site when compared with immunization using plasmid DNA alone. This effect was associated with a local increase in interferon-gamma and in tumor necrosis factor-alpha. Both immunization strategies also resulted in a lower parasite load in the draining lymph nodes, albeit not significantly. Our results

  15. Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies

    PubMed Central

    2013-01-01

    Background Many insects are chemically defended against predatory vertebrates and invertebrates. Nevertheless, our understanding of the evolution and diversity of insect defenses remains limited, since most studies have focused on visual signaling of defenses against birds, thereby implicitly underestimating the impact of insectivorous insects. In the larvae of sawflies in the family Tenthredinidae (Hymenoptera), which feed on various plants and show diverse lifestyles, two distinct defensive strategies are found: easy bleeding of deterrent hemolymph, and emission of volatiles by ventral glands. Here, we used phylogenetic information to identify phylogenetic correlations among various ecological and defensive traits in order to estimate the relative importance of avian versus invertebrate predation. Results The mapping of 12 ecological and defensive traits on phylogenetic trees inferred from DNA sequences reveals the discrete distribution of easy bleeding that occurs, among others, in the genus Athalia and the tribe Phymatocerini. By contrast, occurrence of ventral glands is restricted to the monophyletic subfamily Nematinae, which are never easy bleeders. Both strategies are especially effective towards insectivorous insects such as ants, while only Nematinae species are frequently brightly colored and truly gregarious. Among ten tests of phylogenetic correlation between traits, only a few are significant. None of these involves morphological traits enhancing visual signals, but easy bleeding is associated with the absence of defensive body movements and with toxins occurring in the host plant. Easy bleeding functions through a combination of attributes, which is corroborated by an independent contrasts test indicating a statistically significant negative correlation between species-level integument mechanical resistance and hemolymph feeding deterrence against ants. Conclusions Our analyses evidence a repeated occurrence of easy bleeding, and no phylogenetic

  16. Extraribosomal L13a Is a Specific Innate Immune Factor for Antiviral Defense

    PubMed Central

    Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina

    2014-01-01

    ABSTRACT We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3′untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal

  17. Evolutionary genetics of insect innate immunity.

    PubMed

    Viljakainen, Lumi

    2015-11-01

    Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. © The Author 2015. Published by Oxford University Press.

  18. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense.

    PubMed

    Wirthmueller, Lennart; Zhang, Yan; Jones, Jonathan D G; Parker, Jane E

    2007-12-04

    Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death. The sites and modes of action of NB-LRR receptors are, however, poorly understood. Arabidopsis Toll/Interleukin-1 (TIR) type NB-LRR receptor RPS4 recognizes the bacterial type III effector AvrRps4. We show that epitope-tagged RPS4 expressed under its native regulatory sequences distributes between endomembranes and nuclei in healthy and AvrRps4-triggered tissues. RPS4 accumulation in the nucleus, mediated by a bipartite nuclear localization sequence (NLS) at its C terminus, is necessary for triggering immunity through authentic activation by AvrRps4 in Arabidopsis or as an effector-independent "deregulated" receptor in tobacco. A strikingly conserved feature of TIR-NB-LRR receptors is their recruitment of the nucleocytoplasmic basal-defense regulator EDS1 in resistance to diverse pathogens. We find that EDS1 is an indispensable component of RPS4 signaling and that it functions downstream of RPS4 activation but upstream of RPS4-mediated transcriptional reprogramming in the nucleus.

  19. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  20. Protein trafficking during plant innate immunity.

    PubMed

    Wang, Wen-Ming; Liu, Peng-Qiang; Xu, Yong-Ju; Xiao, Shunyuan

    2016-04-01

    Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged. © 2015 Institute of Botany, Chinese Academy of Sciences.

  1. Which is more effective for suppressing an infectious disease: imperfect vaccination or defense against contagion?

    NASA Astrophysics Data System (ADS)

    Kuga, Kazuki; Tanimoto, Jun

    2018-02-01

    We consider two imperfect ways to protect against an infectious disease such as influenza, namely vaccination giving only partial immunity and a defense against contagion such as wearing a mask. We build up a new analytic framework considering those two cases instead of perfect vaccination, conventionally assumed as a premise, with the assumption of an infinite and well-mixed population. Our framework also considers three different strategy-updating rules based on evolutionary game theory: conventional pairwise comparison with one randomly selected agent, another concept of pairwise comparison referring to a social average, and direct alternative selection not depending on the usual copying concept. We successfully obtain a phase diagram in which vaccination coverage at equilibrium can be compared when assuming the model of either imperfect vaccination or a defense against contagion. The obtained phase diagram reveals that a defense against contagion is marginally inferior to an imperfect vaccination as long as the same coefficient value is used. Highlights - We build a new analytical framework for a vaccination game combined with the susceptible-infected-recovered (SIR) model. - Our model can evaluate imperfect provisions such as vaccination giving only partial immunity and a defense against contagion. - We obtain a phase diagram with which to compare the quantitative effects of partial vaccination and a defense against contagion.

  2. Tick Tock: Circadian Regulation of Plant Innate Immunity.

    PubMed

    Lu, Hua; McClung, C Robertson; Zhang, Chong

    2017-08-04

    Many living organisms on Earth have evolved the ability to integrate environmental and internal signals to determine time and thereafter adjust appropriately their metabolism, physiology, and behavior. The circadian clock is the endogenous timekeeper critical for multiple biological processes in many organisms. A growing body of evidence supports the importance of the circadian clock for plant health. Plants activate timed defense with various strategies to anticipate daily attacks of pathogens and pests and to modulate responses to specific invaders in a time-of-day-dependent manner (gating). Pathogen infection is also known to reciprocally modulate clock activity. Such a cross talk likely reflects the adaptive nature of plants to coordinate limited resources for growth, development, and defense. This review summarizes recent progress in circadian regulation of plant innate immunity with a focus on the molecular events linking the circadian clock and defense. More and better knowledge of clock-defense cross talk could help to improve disease resistance and productivity in economically important crops.

  3. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    PubMed Central

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  4. RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses

    PubMed Central

    Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji

    2018-01-01

    The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431

  5. Infectious Agents as Stimuli of Trained Innate Immunity.

    PubMed

    Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek

    2018-02-03

    The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  6. Eosinophils in mucosal immune responses

    PubMed Central

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  7. The cGAS-STING Defense Pathway and Its Counteraction by Viruses.

    PubMed

    Ma, Zhe; Damania, Blossom

    2016-02-10

    Upon virus infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently, cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis, and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.

    PubMed

    Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F

    2013-12-15

    Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparative genomics of defense systems in archaea and bacteria

    PubMed Central

    Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    Our knowledge of prokaryotic defense systems has vastly expanded as the result of comparative genomic analysis, followed by experimental validation. This expansion is both quantitative, including the discovery of diverse new examples of known types of defense systems, such as restriction-modification or toxin-antitoxin systems, and qualitative, including the discovery of fundamentally new defense mechanisms, such as the CRISPR-Cas immunity system. Large-scale statistical analysis reveals that the distribution of different defense systems in bacterial and archaeal taxa is non-uniform, with four groups of organisms distinguishable with respect to the overall abundance and the balance between specific types of defense systems. The genes encoding defense system components in bacterial and archaea typically cluster in defense islands. In addition to genes encoding known defense systems, these islands contain numerous uncharacterized genes, which are candidates for new types of defense systems. The tight association of the genes encoding immunity systems and dormancy- or cell death-inducing defense systems in prokaryotic genomes suggests that these two major types of defense are functionally coupled, providing for effective protection at the population level. PMID:23470997

  10. Stability and Topology of Scale-Free Networks under Attack and Defense Strategies

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Cohen, Reuven; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo

    2005-05-01

    We study tolerance and topology of random scale-free networks under attack and defense strategies that depend on the degree k of the nodes. This situation occurs, for example, when the robustness of a node depends on its degree or in an intentional attack with insufficient knowledge of the network. We determine, for all strategies, the critical fraction pc of nodes that must be removed for disintegrating the network. We find that, for an intentional attack, little knowledge of the well-connected sites is sufficient to strongly reduce pc. At criticality, the topology of the network depends on the removal strategy, implying that different strategies may lead to different kinds of percolation transitions.

  11. Bench-to-bedside review: Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis

    PubMed Central

    Opal, Steven M; Esmon, Charles T

    2003-01-01

    The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. The innate immune system is able to eradicate many microbial pathogens directly, or innate immunity may indirectly facilitate the removal of pathogens by activation of specific elements of the adaptive immune response (cell-mediated and humoral immunity by T cells and B cells). The coagulation system has traditionally been viewed as an entirely separate system that has arisen to prevent or limit loss of blood volume and blood components following mechanical injury to the circulatory system. It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review. PMID:12617738

  12. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    PubMed

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  14. [Immunization delay determinants: a study in a place attended by Family Health Strategy].

    PubMed

    Tertuliano, Gisele Cristina; Stein, Airton Tetelbom

    2011-02-01

    It is relevant to understand every aspect, regarding to strategies that will determine immunization coverage. Thus the main objective in this research is to identify the prevalence of depressive symptoms as well as low immunization uptake, identifying the caretakers' profile, considering his/her level of education, social-demographic character, marital status and also knowledge about immunization in which a Beck Inventory questionnaire was applied to the children's caretakers. Children's age ranged from 0 to 5 years and the number of subjects was 339 enrolled in a group of Family Health Strategy at the city of Cachoeirinha, in the state of Rio Grande do Sul, Brazil. The depression symptoms prevalence was 38.6%. The association between depression symptoms and the low immunization uptake was not statistical significant (OR=1.0, CI 95%, 0.62-1.73). The low immunization uptake rate was 23.3%. The high prevalence of depressive symptoms between mothers and the high percentage of immunization delay means the need of social help and the search of better effectivity of primary attention in health.

  15. Control Systems Cyber Security:Defense in Depth Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less

  16. Control Systems Cyber Security: Defense-in-Depth Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Fabro

    2007-10-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less

  17. Plasticity in early immune evasion strategies of a bacterial pathogen.

    PubMed

    Bernard, Quentin; Smith, Alexis A; Yang, Xiuli; Koci, Juraj; Foor, Shelby D; Cramer, Sarah D; Zhuang, Xuran; Dwyer, Jennifer E; Lin, Yi-Pin; Mongodin, Emmanuel F; Marques, Adriana; Leong, John M; Anguita, Juan; Pal, Utpal

    2018-04-17

    Borrelia burgdorferi is one of the few extracellular pathogens capable of establishing persistent infection in mammals. The mechanisms that sustain long-term survival of this bacterium are largely unknown. Here we report a unique innate immune evasion strategy of B. burgdorferi , orchestrated by a surface protein annotated as BBA57, through its modulation of multiple spirochete virulent determinants. BBA57 function is critical for early infection but largely redundant for later stages of spirochetal persistence, either in mammals or in ticks. The protein influences host IFN responses as well as suppresses multiple host microbicidal activities involving serum complement, neutrophils, and antimicrobial peptides. We also discovered a remarkable plasticity in BBA57-mediated spirochete immune evasion strategy because its loss, although resulting in near clearance of pathogens at the inoculum site, triggers nonheritable adaptive changes that exclude detectable nucleotide alterations in the genome but incorporate transcriptional reprograming events. Understanding the malleability in spirochetal immune evasion mechanisms that ensures their host persistence is critical for the development of novel therapeutic and preventive approaches to combat long-term infections like Lyme borreliosis.

  18. The immune strategies of mosquito Aedes aegypti against microbial infection.

    PubMed

    Wang, Yan-Hong; Chang, Meng-Meng; Wang, Xue-Li; Zheng, Ai-Hua; Zou, Zhen

    2018-06-01

    Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Extraribosomal l13a is a specific innate immune factor for antiviral defense.

    PubMed

    Mazumder, Barsanjit; Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina; Barik, Sailen

    2014-08-01

    We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released

  1. Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma.

    PubMed

    Negri, Pedro; Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin

    2017-08-15

    Many biotic and abiotic stressors impact bees' health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees' fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera ( A. mellifera ). Here we show results supporting that the supplementation of bee larvae's diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection.

  2. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  3. India’s Emerging Security Strategy, Missile Defense, and Arms Control

    DTIC Science & Technology

    2004-06-01

    and contemplate a security strategy. Starting in July 1998, a series of negotiations between Foreign Minister Jaswant Singh and US envoy Strobe...arms control.46 The Singh -Talbott discussions eventually led to the reaffirmation of civilian command-and-control and a doctrine of “minimum...Council (NSC), including Prime Minister Vajpayee, Minister of Foreign Affairs Singh , and Minister of Defense Fernandes, and appointed a National Security

  4. A local immunization strategy for networks with overlapping community structure

    NASA Astrophysics Data System (ADS)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  5. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine.

    PubMed

    Hartl, Dominik; Tirouvanziam, Rabindra; Laval, Julie; Greene, Catherine M; Habiel, David; Sharma, Lokesh; Yildirim, Ali Önder; Dela Cruz, Charles S; Hogaboam, Cory M

    2018-02-13

    The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract. © 2018 S. Karger AG, Basel.

  6. Life history linked to immune investment in developing amphibians.

    PubMed

    Woodhams, Douglas C; Bell, Sara C; Bigler, Laurent; Caprioli, Richard M; Chaurand, Pierre; Lam, Brianna A; Reinert, Laura K; Stalder, Urs; Vazquez, Victoria M; Schliep, Klaus; Hertz, Andreas; Rollins-Smith, Louise A

    2016-01-01

    The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval periods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A complete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period, whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.

  7. Dendritic Cell Immune Responses in HIV-1 Controllers.

    PubMed

    Martin-Gayo, Enrique; Yu, Xu G

    2017-02-01

    Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.

  8. Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity[W

    PubMed Central

    Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen

    2012-01-01

    Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR. PMID:23221596

  9. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.

    PubMed

    Ouaissi, Ali; Ouaissi, Mehdi

    2005-01-01

    A number of features occurring during host-parasite interactions in Chagas disease caused by the protozoan parasite, Trypanosoma cruzi, and Leishmaniasis, caused by a group of kinetoplastid protozoan parasites are reminiscent of those observed in cancer diseases. In fact,although the cancer is not a single disease, and that T.cruzi and Leishmania are sophisticated eukaryotic parasites presenting a high level of genotypic variability the growth of the parasites in their host and that of cancer cells share at least one common feature, that is their mutual capacity for rapid cell division. Surprisingly, the parasitic diseases and cancers share some immune evasion strategies. Consideration of these immunological alterations must be added to the evaluation of the pathogenic processes. The molecular and functional characterization of virulence factors and the study of their effect on the arms of the immune system have greatly improved understanding of the regulation of immune effectors functions. The purpose of this review is to analyze some of the current data related to the regulatory components or processes originating from the parasite that control or interfere with host cell physiology. Attempts are also made to delineate some similarities between the immune evasion strategies that parasites and tumors employ. The elucidation of the mode of action of parasite virulence factors toward the host cell allow not only provide us with a more comprehensive view of the host-parasite relationships but may also represent a step forward in efforts aimed to identify new target molecules for therapeutic intervention.

  10. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice

    USDA-ARS?s Scientific Manuscript database

    Despite the availability of vaccines, influenza is a significant public health problem, emphasizing the need for development of additional strategies to enhance host defense against influenza. Wolfberry or Goji berry, long used as a medicinal food in China, has recently been shown to improve immune ...

  11. Innate Immune sensing of DNA viruses

    PubMed Central

    Rathinam, Vijay A. K.; Fitzgerald, Katherine A.

    2011-01-01

    DNA viruses are a significant contributor to human morbidity and mortality. The immune system protects against viral infections through coordinated innate and adaptive immune responses. While the antigen-specific adaptive mechanisms have been extensively studied, the critical contributions of innate immunity to anti-viral defenses have only been revealed in the very recent past. Central to these anti-viral defenses is the recognition of viral pathogens by a diverse set of germ-line encoded receptors that survey nearly all cellular compartments for the presence of pathogens. In this review, we discuss the recent advances in the innate immune sensing of DNA viruses and focus on the recognition mechanisms involved. PMID:21334037

  12. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    PubMed

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Costs of polio immunization days in China: implications for mass immunization campaign strategies.

    PubMed

    Zhang, J; Yu, J J; Zhang, R Z; Zhang, X L; Zhou, J; Wing, J S; Schnur, A; Wang, K A

    1998-01-01

    Ten provinces of China were selected to estimate the cost per immunization of the 1994-95 national immunization days (NIDs) at five levels (e.g. province, prefecture, county, township and village). Personnel costs accounted for the largest overall share of costs (39 per cent), followed by publicity and promotion costs (27 per cent), and logistic costs (15 per cent). Without consideration of vaccine costs, the major part of NID expenses were shouldered at the township level, which paid for 47 per cent of all incremental costs, while county and village level covered 28 per cent and 18 per cent respectively. Estimation of average costs per immunization was 2.86 RMB yuan, or $0.34, including vaccine costs, buildings and equipment amortization and salaries at all levels. The factors affecting average cost of NID included the output volume, socio-economic development and geographic features. Various approaches were recommended: to intensify the productivity of time and staff, to employ alternative inexpensive manpower resources, to make the best use of publicity and social promotion, the expansion of the age groups and utilization of multi-intervention strategies. Good planning at township level was a decisive factor to ensure an effective NID conducted in an efficient manner. The average cost of China's NID was the lowest among all mass immunization campaigns ever documented. Much of the reduced average cost was attributable to economies of scale.

  14. Electronic Warfare: Comprehensive Strategy Still Needed for Suppressing Enemy Air Defenses

    NASA Astrophysics Data System (ADS)

    2002-11-01

    U.S. military aircraft are often at great risk from enemy air defenses, and the services use specialized aircraft to neutralize or destroy them. In January 2001, GAO reported that a gap existed between the services' suppression capabilities and their needs and recommended that a comprehensive strategy was needed to fix the situation. In response to GAO's report, DOD emphasized that a major study underway at the time would provide the basis for a Department-wide strategy and lead to a balanced set of acquisition programs between the services. This report updates our previous work and assesses actions that DOD has taken to improve its suppression capabilities.

  15. Multi-granularity immunization strategy based on SIRS model in scale-free network

    NASA Astrophysics Data System (ADS)

    Nian, Fuzhong; Wang, Ke

    2015-04-01

    In this paper, a new immunization strategy was established to prevent the epidemic spreading based on the principle of "Multi-granularity" and "Pre-warning Mechanism", which send different pre-warning signal with the risk rank of the susceptible node to be infected. The pre-warning means there is a higher risk that the susceptible node is more likely to be infected. The multi-granularity means the susceptible node is linked with multi-infected nodes. In our model, the effect of the different situation of the multi-granularity immunizations is compared and different spreading rates are adopted to describe the epidemic behavior of nodes. In addition the threshold value of epidemic outbreak is investigated, which makes the result more convincing. The theoretical analysis and the simulations indicate that the proposed immunization strategy is effective and it is also economic and feasible.

  16. Sex-specific consequences of an induced immune response on reproduction in a moth.

    PubMed

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  17. Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma

    PubMed Central

    Ramirez, Leonor; Quintana, Silvina; Szawarski, Nicolás; Maggi, Matías; Le Conte, Yves; Lamattina, Lorenzo; Eguaras, Martin

    2017-01-01

    Many biotic and abiotic stressors impact bees’ health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees’ fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera (A. mellifera). Here we show results supporting that the supplementation of bee larvae’s diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection. PMID:28809782

  18. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing

  19. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    PubMed Central

    Schaible, Ulrich E.; Linnemann, Lara; Redinger, Natalja; Patin, Emmanuel C.; Dallenga, Tobias

    2017-01-01

    The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines. PMID:29312298

  20. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity.

    PubMed

    Schaible, Ulrich E; Linnemann, Lara; Redinger, Natalja; Patin, Emmanuel C; Dallenga, Tobias

    2017-01-01

    The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  1. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    PubMed

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Analytical connection between thresholds and immunization strategies of SIS model in random networks

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Yang; Xiong, Wen-Man; Liao, Hao; Wang, Tong; Wei, Zong-Wen; Fu, Zhong-Qian

    2018-05-01

    Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.

  3. Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate.

    PubMed

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Kavandi, Morteza

    2016-12-01

    The present study explores the effect of dietary sodium propionate on mucosal immune response and expression of antioxidant enzyme genes in zebra fish (Danio rerio). Six hundred healthy zebra fish (0.42 ± 0.06 g) supplied, randomly stocked in 12 aquariums and fed on basal diets supplemented with different levels of sodium propionate [0 (control), 5, 10 and 20 g kg -1 ] for 8 weeks. At the end of the feeding trial, mucosal immune parameters (TNF-α, IL-1β, Lyz), antioxidant enzyme (SOD, CAT) as well as heat shock protein 70 (HSP70) gene expression were measured. The results revealed feeding on sodium propionate significantly up-regulated inflammatory response genes (TNF-α, IL-1β, Lyz) in a dose-dependent manner (P < 0.05). However, antioxidant enzyme genes significantly down-regulated in the treated group compared with control (P < 0.05). Also, HSP70 gene expression was higher in the liver of fish fed the basal diet and deceased with elevation of sodium propionate levels in the diet. These results showed beneficial effects of dietary sodium propionate on mucosal immune response as well as the antioxidant defense of zebra fish.

  4. The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses

    PubMed Central

    Chang, Peixi; Li, Weitian; Shi, Guolin; Li, Huan; Yang, Xiaoqing; Xia, Zechen; Ren, Yuan; Li, Zhiwei; Chen, Huanchun; Bei, Weicheng

    2018-01-01

    ABSTRACT Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity. PMID:29471718

  5. Understanding the main barriers to immunization in Colombia to better tailor communication strategies.

    PubMed

    García L, Diego Alejandro; Velandia-González, Martha; Trumbo, Silas Pierson; Pedreira, M Cristina; Bravo-Alcántara, Pamela; Danovaro-Holliday, M Carolina

    2014-06-30

    The Expanded Program on Immunization (EPI) in Colombia has made great advances since its inception in 1979; however, by 2010 vaccination coverage rates had been declining. In 2010, the EPI commissioned a nationwide study on practices on immunization, attitudes and knowledge, perceived service quality, and barriers to childhood immunization in order to tailor EPI communication strategies. Colombia's 32 geographical departments were divided into 10 regions. Interviewers from an independent polling company administered a survey to 4802 parents and guardians of children aged <5 years in these regions. To better assess barriers to vaccination, the study was designed to have 70% of participants who had children with incomplete vaccination schedules. Explanatory factorial, principal component, and cluster analyses were performed to place participants into a group (segment) representing the primary category of reasons respondents offered for not vaccinating their children. Types of barriers were then compared to other variables, such as service quality, communication preferences, and parental attitudes on vaccination. Although all respondents indicated that vaccines have health benefits, and 4738 (98.7%) possessed vaccination cards for their children, attitudes and knowledge were not always favorable to immunization. Six groups of immunization barriers were identified: 1) factors related to caregivers (24.4%), 2) vaccinators (19.7%), 3) health centers (18.0%), 4) the health system (13.4%), 5) concerns about adverse events (13.1%), and 6) cultural and religious beliefs (11.4%); groups 1, 5 and 6 together represented almost half (48.9%) of users, indicating problems related to the demand for vaccines as the primary barriers to immunization. Differences in demographics, communication preferences, and reported service quality were found among participants in the six groups and among participants in the 10 regions. Additionally, differences between how participants reported

  6. Innate Immune Recognition of HIV-1

    PubMed Central

    Iwasaki, Akiko

    2012-01-01

    In contrast to the extraordinary body of knowledge gained over the past three decades on the virology, pathogenesis, and immunology of HIV-1 infection, innate sensors that detect HIV-1 had remained elusive until recently. By virtue of integration, retroviridae makes up a substantial portion of our genome. Thus, immune strategies that deal with endogenous retroviruses are, by necessity, those of self-preservation and not of virus elimination. Some of the principles of such strategies may also apply for defense against exogenous retroviruses including HIV-1. Here, I highlight several sensors that have recently been revealed to be capable of recognizing distinct features of HIV-1 infection, while taking into account the host-retrovirus relationship that converges on avoiding pathogenic inflammatory consequences. PMID:22999945

  7. Promoting pneumococcal immunizations among rural Medicare beneficiaries using multiple strategies.

    PubMed

    Johnson, Elizabeth A; Harwell, Todd S; Donahue, Peg M; Weisner, M'liss A; McInerney, Michael J; Holzman, Greg S; Helgerson, Steven D

    2003-01-01

    Vaccine-preventable diseases among adults are major contributing causes of morbidity and mortality in the United States. However, adult immunizations continue to be underutilized in both urban and rural areas. To evaluate the effectiveness of a community-wide education campaign and mailed reminders promoting pneumococcal immunizations to rural Medicare beneficiaries. We implemented a community-wide education campaign, and mailed reminders were sent to Medicare beneficiaries in 1 media market in Montana to increase pneumococcal immunizations. In a second distinct media market, mailed reminders only were sent to beneficiaries. The proportion of respondents aged 65 years and older aware of pneumococcal immunizations increased significantly from baseline to follow-up among respondents both in the education-plus-reminder (63% to 78%, P = 0.04) and the reminder-only (64% to 74%, P = 0.05) markets. Overall from 1998 to 1999, there was a 3.7-percentage-point increase in pneumococcal immunization claims for Medicare beneficiaries in the education-plus-reminder market and a 1.5-percentage-point increase in the reminder-only market. Medicare beneficiaries sent reminders in the education-plus-reminder market compared to those in the reminder-only market were more likely to have a claim for pneumococcal immunization in 1999 (odds ratio 1.18, 95% confidence interval 1.08 to 1.28). The results suggest that these quality improvement strategies (community education plus reminders and reminders alone) modestly increased pneumococcal immunization awareness and pneumococcal immunization among rural adults. Mailed reminder exposure was associated with an increased prevalence of pneumococcal immunizations between 1998 and 1999 and was augmented somewhat by the education campaign.

  8. Strategies of immunization against mucosal infections.

    PubMed

    Russell, M W; Martin, M H; Wu, H Y; Hollingshead, S K; Moldoveanu, Z; Mestecky, J

    2000-12-08

    The presence of secretory (S-) IgA in middle-ear fluid and localization of IgA-secreting cells in its mucosae suggest that the middle ear is an effector site of the mucosal immune system. Several strategies have been devised to induce potent, long-lasting, and recallable mucosal S-IgA antibodies, as well as circulating IgG antibodies and Th1- or Th2-type help, according to the most appropriate responses for a particular infection. Application of immunogens to inductive sites in the upper respiratory tract may be most effective for generating responses in the middle ear and nasopharynx for protection against the organisms responsible for otitis media.

  9. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  10. Immunity and Nutrition.

    ERIC Educational Resources Information Center

    Dupin, Henri; Guerin, Nicole

    1990-01-01

    The three articles in this issue of a periodical focussed on various aspects of the life and health of children in the tropics concern: (1) immune defenses; (2) interactions between nutrition disorders and infection; and (3) immunity and vaccination. The science of immunology has progressed rapidly in recent years. A brief review of present…

  11. The Department of Defense Chemical and Biological Defense Program: An Enabler of the Third Offset Strategy.

    PubMed

    Roos, Jason; Chue, Calvin; DiEuliis, Diane; Emanuel, Peter

    The US Department of Defense (DOD) established programs to defend against chemical and biological weapons 100 years ago because military leaders understood that the operational capability of the US military is diminished when service member health is compromised. These threats to operational readiness can be from an overt attack using chemical and biological threats but may also arise from natural exposures. In the current era of rapidly emerging technologies, adversaries are not only rediscovering chemical and biological weapons; they are also displaying an increased propensity to employ them to cause strategic instability among deployed forces or nations undergoing conflict. The United States's investments in its Chemical and Biological Defense Program (CBDP) can be a critical enabler of the third offset strategy, which is a DOD initiative that seeks to maximize force capability to offset emerging threats. To realize this vision, the CBDP must make fundamental changes in acquiring and employing effective technologies so that enemy use of chemical and biological agents against US assets is no longer a viable option. Maximization of US force health status will provide a strategic advantage over theater opponents more vulnerable to operational degradation from chemical and biological threats.

  12. Improved immunization strategy to reduce energy consumption on nodes traffic

    NASA Astrophysics Data System (ADS)

    Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong

    2017-04-01

    The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.

  13. Hepatitis C virus and antiviral innate immunity: who wins at tug-of-war?

    PubMed

    Yang, Da-Rong; Zhu, Hai-Zhen

    2015-04-07

    Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.

  14. Adaptive Immunity to Fungi

    PubMed Central

    Wüthrich, Marcel; Deepe, George S.; Klein, Bruce

    2013-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780

  15. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  16. Defense Logistics: DOD Has Addressed Most Reporting Requirements and Continues to Refine Its Asset Visibility Strategy

    DTIC Science & Technology

    2015-12-01

    Development, Test, and Evaluation RFID Radio Frequency Identification SEP Supporting Execution Plan Strategy Strategy to Improve Asset...migration of active Radio Frequency Identification ( RFID )19 from a proprietary communication standard protocol to an international standard to...technologies enabling hands-off processing of materiel deploying through the Defense Transportation System. Materiel marked with RFID tags may be remotely

  17. Can investments in health systems strategies lead to changes in immunization coverage?

    PubMed

    Brenzel, Logan

    2014-04-01

    National immunization programs in developing countries have made major strides to immunize the world's children, increasing full coverage to 83% of children. However, the World Health Organization estimates that 22 million children less than five years of age are left unvaccinated, and coverage levels have been plateauing for nearly a decade. This paper describes the evidence on factors contributing to low vaccination uptake, and describes the connection between these factors and the documented strategies and interventions that can lead to changes in immunization outcomes. The author suggests that investments in these areas may contribute more effectively to immunization coverage and also have positive spill-over benefits for health systems. The paper concludes that while some good quality evidence exists of what works and may contribute to immunization outcomes, the quality of evidence needs to improve and major gaps need to be addressed.

  18. NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn's Disease

    PubMed Central

    Strober, Warren; Watanabe, Tomohiro

    2013-01-01

    Nucleotide binding oligomerization domain 2 (NOD2) is an intracellular sensor for small peptides derived from the bacterial cell wall component, peptidoglycan. Recent studies have uncovered unexpected functions of NOD2 in innate immune responses such as induction of type I IFN and facilitation of autophagy; moreover, they have disclosed extensive cross-talk between NOD2 and Toll-like receptors which plays an indispensable role both in host defense against microbial infection and in the development of autoimmunity. Of particular interest, polymorphisms of CARD15 encoding NOD2 are associated with Crohn's disease and other autoimmune states such as graft versus host disease. In this review, we summarize recent findings regarding normal functions of NOD2 and discuss the mechanisms by which NOD2 polymorphisms associated with Crohn's disease lead to intestinal inflammation. PMID:21750585

  19. Sexual Dimorphism of Immune Responses: A New Perspective in Cancer Immunotherapy

    PubMed Central

    Capone, Imerio; Marchetti, Paolo; Ascierto, Paolo Antonio; Malorni, Walter; Gabriele, Lucia

    2018-01-01

    Nowadays, several types of tumors can benefit from the new frontier of immunotherapy, due to the recent increasing knowledge of the role of the immune system in cancer control. Among the new therapeutic strategies, there is the immune checkpoint blockade (ICB), able to restore an efficacious antitumor immunity and significantly prolong the overall survival (OS) of patients with advanced tumors such as melanoma and non-small cell lung cancer (NSCLC). Despite the impressive efficacy of these agents in some patients, treatment failure and resistance are frequently observed. In this regard, the signaling governed by IFN type I (IFN-I) has emerged as pivotal in orchestrating host defense. This pathway displays different activation between sexes, thus potentially contributing to sexual dimorphic differences in the immune responses to immunotherapy. This perspective article aims to critically consider the immune signals, with particular attention to IFN-I, that may differently affect female and male antitumor responses upon immunotherapy. PMID:29619026

  20. Sexual Dimorphism of Immune Responses: A New Perspective in Cancer Immunotherapy.

    PubMed

    Capone, Imerio; Marchetti, Paolo; Ascierto, Paolo Antonio; Malorni, Walter; Gabriele, Lucia

    2018-01-01

    Nowadays, several types of tumors can benefit from the new frontier of immunotherapy, due to the recent increasing knowledge of the role of the immune system in cancer control. Among the new therapeutic strategies, there is the immune checkpoint blockade (ICB), able to restore an efficacious antitumor immunity and significantly prolong the overall survival (OS) of patients with advanced tumors such as melanoma and non-small cell lung cancer (NSCLC). Despite the impressive efficacy of these agents in some patients, treatment failure and resistance are frequently observed. In this regard, the signaling governed by IFN type I (IFN-I) has emerged as pivotal in orchestrating host defense. This pathway displays different activation between sexes, thus potentially contributing to sexual dimorphic differences in the immune responses to immunotherapy. This perspective article aims to critically consider the immune signals, with particular attention to IFN-I, that may differently affect female and male antitumor responses upon immunotherapy.

  1. Herpesvirus microRNAs for use in gene therapy immune-evasion strategies.

    PubMed

    Bots, S T F; Hoeben, R C

    2017-07-01

    Transplantation of allogeneic cells as well as of genetically corrected autologous cells are potent approaches to restore cellular functions in patients suffering from genetic diseases. The recipient's immune responses against non-self-antigens may compromise the survival of the grafted cells. Recipients of the graft may therefore require lifelong treatment with immunosuppressive drugs. An alternative approach to reduce graft rejection could involve the use of immune-evasion molecules. Expression of such molecules in cells of the graft may subvert recognition by the host's immune system. Viruses in particular are masters of exploitation and modulation of their hosts immune response. The Herpesviridae family provides a proof of concept for this as these viruses are capable to establish latency and a lifelong persistence in the infected hosts. While several viral proteins involved in immune evasion have been characterized, the Herpesviridae also encode a multitude of viral microRNA (miRNAs). Several of these miRNAs have been demonstrated to reduce the sensitivity of the infected cells to the destructive action of the host's immune cells. In this review, the miRNAs of some common herpesviruses that are associated with immune modulation will be discussed with a focus on their potential use in strategies aiming at generating non-immunogenic cells for transplantation.

  2. Whither Ballistic Missile Defense?

    DTIC Science & Technology

    1992-11-30

    Conference on Technical Marketing 2000: Opportunities and Strategies for a Changing World) I intend to discuss the prospects for SDI in a changing...Technical Marketing 2000: Opportunities and Strategies for a Changing World) Descriptors, Keywords: Cooper Speech Ballistic Missile Defense...WHITHER BALLISTIC MISSILE DEFENSE? BY AMBASSADOR HENRY F. COOPER NOVEMBER 30,1992 TECHNICAL MARKETING SOCIETY OF AMERICA WASHINGTON, DC

  3. Aging and Immune Function: Molecular Mechanisms to Interventions

    PubMed Central

    Ponnappan, Subramaniam

    2011-01-01

    Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785

  4. Understanding the main barriers to immunization in Colombia to better tailor communication strategies

    PubMed Central

    2014-01-01

    Background The Expanded Program on Immunization (EPI) in Colombia has made great advances since its inception in 1979; however, by 2010 vaccination coverage rates had been declining. In 2010, the EPI commissioned a nationwide study on practices on immunization, attitudes and knowledge, perceived service quality, and barriers to childhood immunization in order to tailor EPI communication strategies. Methods Colombia’s 32 geographical departments were divided into 10 regions. Interviewers from an independent polling company administered a survey to 4802 parents and guardians of children aged <5 years in these regions. To better assess barriers to vaccination, the study was designed to have 70% of participants who had children with incomplete vaccination schedules. Explanatory factorial, principal component, and cluster analyses were performed to place participants into a group (segment) representing the primary category of reasons respondents offered for not vaccinating their children. Types of barriers were then compared to other variables, such as service quality, communication preferences, and parental attitudes on vaccination. Results Although all respondents indicated that vaccines have health benefits, and 4738 (98.7%) possessed vaccination cards for their children, attitudes and knowledge were not always favorable to immunization. Six groups of immunization barriers were identified: 1) factors related to caregivers (24.4%), 2) vaccinators (19.7%), 3) health centers (18.0%), 4) the health system (13.4%), 5) concerns about adverse events (13.1%), and 6) cultural and religious beliefs (11.4%); groups 1, 5 and 6 together represented almost half (48.9%) of users, indicating problems related to the demand for vaccines as the primary barriers to immunization. Differences in demographics, communication preferences, and reported service quality were found among participants in the six groups and among participants in the 10 regions. Additionally, differences between

  5. Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense.

    PubMed

    Guillon, Antoine; Brea, Deborah; Morello, Eric; Tang, Aihua; Jouan, Youenn; Ramphal, Reuben; Korkmaz, Brice; Perez-Cruz, Magdiel; Trottein, Francois; O'Callaghan, Richard J; Gosset, Philippe; Si-Tahar, Mustapha

    2017-08-18

    The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.

  6. Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Ya-Qi; Li, Ming

    2017-12-01

    In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumors. Considering the facts that there is always a delay time between rumor spreading and implementing immunization, and that the truth of rumors can also be spread out, this paper constructs a novel susceptible-infected-removed (SIR) model. The propagation dynamical behaviors of the SIR model on homogeneous networks are investigated by using the mean-field theory and the Monte Carlo method. Research shows that the greater the delay time, the worse the immune effect of the immunization strategy. It is also found that the spread of the truth can inhibit to some extent the propagation of rumors, and the trend will become more obvious with the increase of reliability of the truth. Moreover, under the influence of delay time, the existence of nodes’ identification force still slightly reduces the propagation degree of rumors. Supported by the National Natural Science Foundation of China under Grant No. 61402531, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant Nos. 2014JQ8358, 2015JQ6231, and 2014JQ8307, the China Postdoctoral Science Foundation under Grant No. 2015M582910, and the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force under Grant Nos. WJY201419, WJY201605 and JLX201686

  7. Emerging role of mesenchymal stem cells during tuberculosis: The fifth element in cell mediated immunity.

    PubMed

    Khan, Arshad; Hunter, Robert L; Jagannath, Chinnaswamy

    2016-12-01

    Mesenchymal stem cells (MSCs) are non-hematopoietic cells that occur in almost all human tissues and can be cultured and expanded to large numbers in vitro. They secrete growth factors, cytokines, and chemokines and express Toll-like receptors on their surface, although multiple cell biological mechanisms remain unclear. MSCs are multi-potent and can differentiate into many cell types including adipocytes, neuronal cells and osteoclasts. Despite gaps in cell biology, because of their immunomodulatory and regenerative capacity, several hundred clinical trials have used MSCs for therapy of cancer, autoimmune diseases and control of inflammation during organ transplantation. MSCs secrete immune-modulatory factors and are able to skew T cell responses and shift M1 to M2 differentiation of macrophages. We review the emerging role of MSCs to act as phagocytes for Mycobacterium tuberculosis and its role during the persistence of M. tuberculosis and spread of infection. Paradoxically, MSCs use innate defense mechanisms of autophagy and nitric oxide to inhibit the growth of intracellular M. tuberculosis. In addition, transplantation with autologous MSCs improved the clinical condition of patients with multi-drug resistant tuberculosis. Thus, in addition to the well-known immune defense played by macrophages, DCs, classical T cells and non-classical immune cells, MSCs have emerged as a fifth element capable of regulating immune responses during tuberculosis. We discuss their immunomodulatory properties and innate defense mechanisms in the context of developing immunotherapeutic strategies for tuberculosis. Published by Elsevier Ltd.

  8. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.

    PubMed

    Silva, Marilia Santos; Arraes, Fabrício Barbosa Monteiro; Campos, Magnólia de Araújo; Grossi-de-Sa, Maira; Fernandez, Diana; Cândido, Elizabete de Souza; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima

    2018-05-01

    This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  10. Immune-based strategies for mood disorders: facts and challenges.

    PubMed

    Colpo, Gabriela D; Leboyer, Marion; Dantzer, Robert; Trivedi, Mahdukar H; Teixeira, Antonio L

    2018-02-01

    Inflammation seems to play a role in the pathophysiology of mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD). In the last years several studies have shown increased levels of inflammatory and/or immune markers in patients with mood disorders. Accordingly, the immune system has become a target of interest for the development of biomarkers and therapeutics for mood disorders. Areas covered: Here, we review the evidence showing low-grade inflammation in mood disorders and the studies evaluating immune-based strategies for the treatment of these conditions. Expert commentary: Clinical trials with non-steroidal anti-inflammatory drugs, polyunsaturated acids, N-acetylcysteine, anti-cytokines, physical activity and probiotics have provided promising results in terms of antidepressant efficacy in patients with MDD and BD. Regarding stem cells, only studies with animal models have been performed so far with interesting pre-clinical results. Due to the preliminary nature of the results, most of the clinical studies need to be replicated and/or confirmed in larger clinical settings, embracing the highly heterogeneous pathophysiology of mood disorders.

  11. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.

    PubMed

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne

    2014-12-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection

    PubMed Central

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne

    2014-01-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990

  13. Too much of a good thing: How modulating LTB4 actions restore host defense in homeostasis or disease.

    PubMed

    Brandt, Stephanie L; Serezani, C Henrique

    2017-10-01

    The ability to regulate inflammatory pathways and host defense mechanisms is critical for maintaining homeostasis and responding to infections and tissue injury. While unbalanced inflammation is detrimental to the host; inadequate inflammation might not provide effective signals required to eliminate pathogens. On the other hand, aberrant inflammation could result in organ damage and impair host defense. The lipid mediator leukotriene B 4 (LTB 4 ) is a potent neutrophil chemoattractant and recently, its role as a dominant molecule that amplifies many arms of phagocyte antimicrobial effector function has been unveiled. However, excessive LTB 4 production contributes to disease severity in chronic inflammatory diseases such as diabetes and arthritis, which could potentially be involved in poor host defense in these groups of patients. In this review we discuss the cellular and molecular programs elicited during LTB 4 production and actions on innate immunity host defense mechanisms as well as potential therapeutic strategies to improve host defense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice.

    PubMed

    Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang

    2012-09-01

    Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.

  15. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  16. Plant Immunity

    USDA-ARS?s Scientific Manuscript database

    Plants are faced with defending themselves against a multitude of pathogens, including bacteria, fungi, viruses, nematodes, etc. Immunity is multi-layered and complex. Plants can induce defenses when they recognize small peptides, proteins or double-stranded RNA associated with pathogens. Recognitio...

  17. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability

    PubMed Central

    Jiang, Hao; Zhang, Sheng; Lei, Yanbao; Xu, Gang; Zhang, Dan

    2016-01-01

    Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification. PMID:27489556

  19. The SOF Experience in the Philippines and the Implications for Future Defense Strategy

    DTIC Science & Technology

    2016-12-07

    developed communications products including leaflets that advertised rewards for information on local insurgents and the various programs that were...and intelligence (2) Conducting civil–military operations (CMO) (3) Conducting information operations ( IO ) PRISM 6, no. 3 FROM THE FIELD | 155 THE...FUTURE DEFENSE STRATEGY the development of an intelligence fusion cen- ter and campaign assessment products . At Fort Magsaysay, U.S. SOF helped establish

  20. Primer on the Immune System.

    PubMed

    Spiering, Martin J

    2015-01-01

    The human body regularly encounters and combats many pathogenic organisms and toxic molecules. Its ensuing responses to these disease-causing agents involve two interrelated systems: innate immunity and adaptive (or acquired) immunity. Innate immunity is active at several levels, both at potential points of entry and inside the body (see figure). For example, the skin represents a physical barrier preventing pathogens from invading internal tissues. Digestive enzymes destroy microbes that enter the stomach with food. Macrophages and lymphocytes, equipped with molecular detectors, such as Toll-like receptors (TLRs), which latch onto foreign structures and activate cellular defenses, patrol the inside of the body. These immune cells sense and devour microbes, damaged cells, and other foreign materials in the body. Certain proteins in the blood (such as proteins of the complement system and those released by natural killer cells, along with antimicrobial host-defense peptides) attach to foreign organisms and toxins to initiate their destruction.

  1. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death.

    PubMed

    Philip, Naomi H; DeLaney, Alexandra; Peterson, Lance W; Santos-Marrero, Melanie; Grier, Jennifer T; Sun, Yan; Wynosky-Dolfi, Meghan A; Zwack, Erin E; Hu, Baofeng; Olsen, Tayla M; Rongvaux, Anthony; Pope, Scott D; López, Carolina B; Oberst, Andrew; Beiting, Daniel P; Henao-Mejia, Jorge; Brodsky, Igor E

    2016-10-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

  2. Defense system shortcuts and limits of scope.

    PubMed

    Rewald, E; Francischetti, M M

    2000-10-01

    Defense, as a key factor of life, shares the biological tendencies of simplicity and energy saving. We propose that, like the mind, defense tends to rely on shortcuts via immune memes. Also, response repetition may induce the formation of virtual 'modules' [toolkits] to simplify and perfect performance. Engaged modules may expand by proliferating or by capturing immune components from the 'dormant' and even perhaps from active ones. With regard to recovery and/or survival, complexity of the integrated defense system (IDS) (1) requires to be inside of what we call the 'functional window'. In contrast to the physiological and common disease repair, energy is squandered when IDS perceives real danger. Our concern is the uncertain transition to conditions that do not fit into the IDS routine and, even worse, that are outside the functional window where the system is lacking. Copyright 2000 Harcourt Publishers Ltd.

  3. Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community.

    PubMed

    Chauvin, K McManus; Asner, G P; Martin, R E; Kress, W J; Wright, S J; Field, C B

    2018-03-01

    Trade-offs among plant functional traits indicate diversity in plant strategies of growth and survival. The leaf economics spectrum (LES) reflects a trade-off between short-term carbon gain and long-term leaf persistence. A related trade-off, between foliar growth and anti-herbivore defense, occurs among plants growing in contrasting resource regimes, but it is unclear whether this trade-off is maintained within plant communities, where resource gradients are minimized. The LES and the growth-defense trade-off involve related traits, but the extent to which these trade-off dimensions are correlated is poorly understood. We assessed the relationship between leaf economic and anti-herbivore defense traits among sunlit foliage of 345 canopy trees in 83 species on Barro Colorado Island, Panama. We quantified ten traits related to resource allocation and defense, and identified patterns of trait co-variation using multivariate ordination. We tested whether traits and ordination axes were correlated with patterns of phylogenetic relatedness, juvenile demographic trade-offs, or topo-edaphic variation. Two independent axes described ~ 60% of the variation among canopy trees. Axis 1 revealed a trade-off between leaf nutritional and structural investment, consistent with the LES. Physical defense traits were largely oriented along this axis. Axis 2 revealed a trade-off between investments in phenolic defenses versus other foliar defenses, which we term the leaf defense spectrum. Phylogenetic relationships and topo-edaphic variation largely did not explain trait co-variation. Our results suggest that some trade-offs among the growth and defense traits of outer-canopy trees may be captured by the LES, while others may occur along additional resource allocation dimensions.

  4. Molecular mechanisms of aging and immune system regulation in Drosophila.

    PubMed

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  5. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Oehmen, Christopher S.

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF canmore » be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.« less

  6. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination

    NASA Astrophysics Data System (ADS)

    de Santo, Carmela; Serafini, Paolo; Marigo, Ilaria; Dolcetti, Luigi; Bolla, Manlio; del Soldato, Piero; Melani, Cecilia; Guiducci, Cristiana; Colombo, Mario P.; Iezzi, Manuela; Musiani, Piero; Zanovello, Paola; Bronte, Vincenzo

    2005-03-01

    Active suppression of tumor-specific T lymphocytes can limit the immune-mediated destruction of cancer cells. Of the various strategies used by tumors to counteract immune attacks, myeloid suppressors recruited by growing cancers are particularly efficient, often resulting in the induction of systemic T lymphocyte dysfunction. We have previously shown that the mechanism by which myeloid cells from tumor-bearing hosts block immune defense strategies involves two enzymes that metabolize L-arginine: arginase and nitric oxide (NO) synthase. NO-releasing aspirin is a classic aspirin molecule covalently linked to a NO donor group. NO aspirin does not possess direct antitumor activity. However, by interfering with the inhibitory enzymatic activities of myeloid cells, orally administered NO aspirin normalized the immune status of tumor-bearing hosts, increased the number and function of tumor-antigen-specific T lymphocytes, and enhanced the preventive and therapeutic effectiveness of the antitumor immunity elicited by cancer vaccination. Because cancer vaccines and NO aspirin are currently being investigated in independent phase I/II clinical trials, these findings offer a rationale to combine these treatments in subjects with advanced neoplastic diseases. arginase | immunosuppression | myeloid cells | nitric oxide | immunotherapy

  7. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.

    PubMed

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-05-29

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.

  8. Immune Evasion by Epstein-Barr Virus.

    PubMed

    Ressing, Maaike E; van Gent, Michiel; Gram, Anna M; Hooykaas, Marjolein J G; Piersma, Sytse J; Wiertz, Emmanuel J H J

    2015-01-01

    Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.

  9. West European and East Asian perspectives on defense, deterrence, and strategy. Volume 2. Western European perspectives on defense, deterrence, and strategy. Technical report, 1 December 1982-15 May 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaltzgraff, R.L.; Davis, J.K.; Dougherty, J.E.

    1984-05-16

    A survey of contemporary West European perspectives on defense, deterrence, and strategy, with special emphasis on the role of nuclear weapons deployed in, or assigned to, the NATO area. Changes have occurred during the past decade in the relative military strength of NATO and the Warsaw Pact, particularly as a result of the substantial growth in Soviet nuclear-capable systems and conventional forces assigned to Europe, and the momentum manifested by the Soviet Union in its deployments of intercontinental ballistic missiles. There has also been a substantial shift in West European thinking and attitudes about security and strategy. Together, these trendsmore » have created a need to reassess the posture of NATO forces generally, and especially nuclear weapons, both in a broader Euro-strategic framework and on the Central Front in the 1980s. The survey is on such issues as the future of the British and French national strategic nuclear forces; the role of the U.S.-strategic nuclear forces in the deterrence of conflict in Europe; the prospects of raising the nuclear threshold by the deployment of new conventional technologies; the impact of strategic defense initiatives on U.S.-NATO security; and the modernization of NATO intermediate-range nuclear capabilities, especially in light of the continuing deployment of the Soviet Union of new generation Euro-strategic forces targeted against Western Europe.« less

  10. Interleukin-36 cytokines may overcome microbial immune evasion strategies that inhibit interleukin-1 family signaling.

    PubMed

    Jensen, Liselotte E

    2017-08-15

    Pathogens deploy immune evasion strategies to successfully establish infections within their hosts. Naturally, the host responds by acquiring mechanisms to counter these strategies. There is increasing evidence that the three interleukin-36 (IL-36) cytokines, IL-36α, IL-36β and IL-36γ, play important roles in host immunity. With a focus on the skin as a target for microbial and viral invasion, the current knowledge of IL-36 functions is reviewed. Furthermore, the hypothesis that the IL-36s have evolved to counteract virulence factors is presented using viruses as an example. The IL-36s are related to IL-1α, IL-1β, IL-18, and IL-33. Numerous viruses affecting the skin have developed immune evasion strategies that neutralize IL-1α, IL-1β, or IL-18 signaling or combinations of these pathways. Through small differences in activation mechanisms and receptor utilization, it is possible that IL-36 signaling may proceed unhindered in the presence of these viral inhibitors. Thus, one physiological function of the IL-36s may be to counteract microbial immune evasion. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Independently evolved virulence effectors converge onto hubs in a plant immune system network.

    PubMed

    Mukhtar, M Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T; Pevzner, Samuel J; Donovan, Susan E; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M; Gebreab, Fana; Gutierrez, Bryan J; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P; Hill, David E; Ecker, Joseph R; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L

    2011-07-29

    Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.

  12. Defense without aggression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, H.

    1988-09-01

    In introducing this group of articles on nonoffensive defense the author notes that the prospect of nuclear disarmament in Europe is boosting ideas, which have been around for a decade, from theory to politics. This special section of articles looks at an emerging theory that may reduce reliance on nuclear weapons by bringing stability to the conventional standoff in central Europe. The idea is to rearrange conventional forces so that they can defend but not attack. Under such monikers as nonoffensive defense (the main term used in these articles), nonprovocative defense, defensive defense, reasonable sufficiency, and mutual defensive superiority, thesemore » proposals suggest that nations can restructure weapons, personnel, and strategy to assure their own military security without posing a threat to other nations. 5 refs.« less

  13. Protected by fumigants: beetle perfumes in antimicrobial defense.

    PubMed

    Gross, Jürgen; Schumacher, Kerstin; Schmidtberg, Henrike; Vilcinskas, Andreas

    2008-02-01

    Beetles share with other eukaryotes an innate immune system that mediates endogenous defense against pathogens. In addition, larvae of some taxa produce fluid exocrine secretions that contain antimicrobial compounds. In this paper, we provide evidence that larvae of the brassy willow leaf beetle Phratora vitellinae constitutively release volatile glandular secretions that combat pathogens in their microenvironment. We identified salicylaldehyde as the major component of their enveloping perfume cloud, which is emitted by furrow-shaped openings of larval glandular reservoirs and which inhibits in vitro the growth of the bacterial entomopathogen Bacillus thuringiensis. The suggested role of salicylaldehyde as a fumigant in exogenous antimicrobial defense was confirmed in vivo by its removal from glandular reservoirs. This resulted in an enhanced susceptibility of the larvae to infection with the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae. Consequently, we established the hypothesis that antimicrobial defense in beetles can be expanded beyond innate immunity to include external disinfection of their microenvironment, and we report for the first time the contribution of fumigants to antimicrobial defense in animals.

  14. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  15. Strategies for Enhanced Crop Resistance to Insect Pests.

    PubMed

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  16. Immunity: plants as effective mediators.

    PubMed

    Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul

    2014-01-01

    In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.

  17. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection.

    PubMed

    Yajima, Toshitaka

    2011-05-01

    Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity.

  18. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    PubMed

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  19. Looming Discontinuities in U.S. Military Strategy and Defense Planning: Colliding RMAs Necessitate a New Strategy

    DTIC Science & Technology

    2011-01-01

    CARE INFRASTRUCTURE AND TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND...research was conducted within the International Security and Defense Policy Center of the RAND National Defense Research Institute, a federally funded...Marine Corps, the defense agencies, and the defense Intelligence Community. For more information on the International Security and Defense Policy

  20. Regulatory T cells and the immune pathogenesis of prenatal infection

    PubMed Central

    Rowe, Jared H.; Ertelt, James M.; Xin, Lijun; Way, Sing Sing

    2013-01-01

    Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and elimination of metabolic waste for the developing fetus. However, these advantages also require durable strategies to mitigate maternal rejection of fetal tissue expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infection have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells in pregnancy induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal regulatory T cell suppression may become exploited by pathogens that cause prenatal infection, and the perilous potential of infection induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment. PMID:23929902

  1. Retrieving infinite numbers of patterns in a spin-glass model of immune networks

    NASA Astrophysics Data System (ADS)

    Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.

    2017-01-01

    The similarity between neural and (adaptive) immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies in parallel. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, and described by graphs with finite connectivity. In this paper we use replica techniques to solve a statistical mechanical immune network model with “coordinator branches” (T-cells) and “effector branches” (B-cells), and show how the finite connectivity enables the coordinators to manage an extensive number of effectors simultaneously, even above the percolation threshold (where clonal cross-talk is not negligible). A consequence of its underlying topological sparsity is that the adaptive immune system exhibits only weak ergodicity breaking, so that also spontaneous switch-like effects as bi-stabilities are present: the latter may play a significant role in the maintenance of immune homeostasis.

  2. Innate Immunity and Saliva in Candida albicans–mediated Oral Diseases

    PubMed Central

    Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M.

    2016-01-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  3. Phytochrome regulation of plant immunity in vegetation canopies.

    PubMed

    Moreno, Javier E; Ballaré, Carlos L

    2014-07-01

    Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.

  4. Rab GTPases in Immunity and Inflammation.

    PubMed

    Prashar, Akriti; Schnettger, Laura; Bernard, Elliott M; Gutierrez, Maximiliano G

    2017-01-01

    Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.

  5. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  6. Bacillus anthracis Interacts with Plasmin(ogen) to Evade C3b-Dependent Innate Immunity

    PubMed Central

    Chung, Myung-Chul; Tonry, Jessica H.; Narayanan, Aarthi; Manes, Nathan P.; Mackie, Ryan S.; Gutting, Bradford; Mukherjee, Dhritiman V.; Popova, Taissia G.; Kashanchi, Fatah; Bailey, Charles L.; Popov, Serguei G.

    2011-01-01

    The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen. PMID:21464960

  7. Evaluation of a time efficient immunization strategy for anti-PAH antibody development

    PubMed Central

    Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary Ann; Unger, Michael A.

    2016-01-01

    The development of monoclonal antibodies (mAb) with affinity to small molecules can be a time-consuming process. To evaluate shortening the time for mAb production, we examined mouse antisera at different time points post-immunization to measure titer and to evaluate the affinity to the immunogen PBA (pyrene butyric acid). Fusions were also conducted temporally to evaluate antibody production success at various time periods. We produced anti-PBA antibodies 7 weeks post-immunization and selected for anti-PAH reactivity during the hybridoma screening process. Moreover, there were no obvious sensitivity differences relative to antibodies screened from a more traditional 18 week schedule. Our results demonstrate a more time efficient immunization strategy for anti-PAH antibody development that may be applied to other small molecules. PMID:27282486

  8. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action or...

  9. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action or...

  10. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action or...

  11. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action or...

  12. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity from...

  13. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity from...

  14. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity from...

  15. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity from...

  16. 14 CFR 297.23 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 297.23... of sovereign immunity. By accepting an approval registration form under this part, a carrier waives any right it may possess to assert any defense of sovereign immunity from suit in any action or...

  17. 14 CFR 375.26 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 375.26... Applicable § 375.26 Waiver of sovereign immunity. Owners and operators of aircraft operated under this part that are engaged in proprietary of commercial activities waive any defense of sovereign immunity from...

  18. Mechanism-based strategies for the management of autoimmunity and immune dysregulation in primary immunodeficiencies

    PubMed Central

    Walter, Jolan E; Farmer, Jocelyn R; Foldvari, Zsofia; Torgerson, Troy R; Cooper, Megan A

    2016-01-01

    A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population. PMID:27836058

  19. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    PubMed Central

    Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  20. Molecular Mechanisms of Aging and Immune System Regulation in Drosophila

    PubMed Central

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span. PMID:22949833

  1. [Protective immunity against Mycobacterium tuberculosis].

    PubMed

    Kawamura, Ikuo

    2006-11-01

    Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate M. tuberculosis on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-gamma and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-gamma plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-gamma-producing CD4+T cells. Since antigen-specific CD8+ T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.

  2. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it, in...

  3. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in any...

  4. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in any...

  5. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it, in...

  6. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in any...

  7. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it, in...

  8. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in any...

  9. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it, in...

  10. 14 CFR 380.67 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waiver of sovereign immunity. 380.67... sovereign immunity. By accepting an approved registration form under this subpart, an operator waives any right it may have to assert any defense of sovereign immunity from suit in any proceeding against it, in...

  11. 14 CFR 294.80 - Waiver of sovereign immunity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waiver of sovereign immunity. 294.80... This Part § 294.80 Waiver of sovereign immunity. By accepting an approved registration under this part, a registrant waives any right it may possess to assert any defense of sovereign immunity in any...

  12. Innate and intrinsic antiviral immunity in Drosophila.

    PubMed

    Mussabekova, Assel; Daeffler, Laurent; Imler, Jean-Luc

    2017-06-01

    The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.

  13. Control of epithelial immune-response genes and implications for airway immunity and inflammation.

    PubMed

    Holtzman, M J; Look, D C; Sampath, D; Castro, M; Koga, T; Walter, M J

    1998-01-01

    A major goal of our research is to understand how immune cells (especially T cells) infiltrate the pulmonary airway during host defense and inflammatory disease (especially asthma). In that context, we have proposed that epithelial cells lining the airway provide critical biochemical signals for immune-cell influx and activation and that this epithelial-immune cell interaction is a critical feature of airway inflammation and hyperreactivity. In this brief report, we describe our progress in defining a subset of epithelial immune-response genes the expression of which is coordinated for viral defense both directly in response to replicating virus and indirectly under the control of a specific interferon-gamma signal transduction pathway featuring the Stat1 transcription factor as a critical relay signal between cytoplasm and nucleus. Unexpectedly, the same pathway is also activated during asthmatic airway inflammation in a setting where there is no apparent infection and no increase in interferon-gamma levels. The findings provide the first evidence of an overactive Stat1-dependent gene network in asthmatic airways and a novel molecular link between mucosal immunity and inflammation. The findings also offer the possibility that overactivity of Stat1-dependent genes might augment a subsequent T helper cell (Th1)-type response to virus or might combine with a heightened Th2-type response to allergen to account for more severe exacerbations of asthma.

  14. The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense

    DTIC Science & Technology

    2016-03-24

    Climate Change Effects: Issues for International and US National Security (Alexandria, VA: The Institute for Defense Analyses, 2009), 3. 3 in...Security Needs Assessment, (New York: United Nations, 2012), 7. 50 Christine Youngblut, Climate Change Effects: Issues for International and US National...Master’s Thesis 3. DATES COVERED (From - To) 10-01-2015 - 03-19-2016 4. TITLE AND SUBTITLE The Climate Change Strategy Gap: Crafting a Strategic 5a

  15. The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense

    DTIC Science & Technology

    2016-03-23

    Climate Change Effects: Issues for International and US National Security (Alexandria, VA: The Institute for Defense Analyses, 2009), 3. 3 in...Security Needs Assessment, (New York: United Nations, 2012), 7. 50 Christine Youngblut, Climate Change Effects: Issues for International and US National...Master’s Thesis 3. DATES COVERED (From - To) 10-01-2015 - 03-19-2016 4. TITLE AND SUBTITLE The Climate Change Strategy Gap: Crafting a Strategic 5a

  16. Tricking the balance: NK cells in anti-cancer immunity.

    PubMed

    Pahl, Jens; Cerwenka, Adelheid

    2017-01-01

    Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids.

    PubMed

    Blanc, Landry; Gilleron, Martine; Prandi, Jacques; Song, Ok-Ryul; Jang, Mi-Seon; Gicquel, Brigitte; Drocourt, Daniel; Neyrolles, Olivier; Brodin, Priscille; Tiraby, Gérard; Vercellone, Alain; Nigou, Jérôme

    2017-10-17

    Mycobacterium tuberculosis is a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by which M. tuberculosis circumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate of M. tuberculosis of the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified several M. tuberculosis mutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition of M. tuberculosis by this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used by M. tuberculosis to undermine innate immune defense. Sulfoglycolipids are major and specific lipids of M. tuberculosis , considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute to M. tuberculosis virulence.

  18. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

    PubMed Central

    Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. PMID:23818851

  19. An extracellular subtilase switch for immune priming in Arabidopsis.

    PubMed

    Ramírez, Vicente; López, Ana; Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  20. Co-immunization with DNA and protein mixture: a safe and efficacious immunotherapeutic strategy for Alzheimer's disease in PDAPP mice.

    PubMed

    Liu, Si; Shi, DanYang; Wang, Hai-Chao; Yu, Yun-Zhou; Xu, Qing; Sun, Zhi-Wei

    2015-01-14

    Active immunotherapy targeting β-amyloid (Aβ) is the most promising strategy to prevent or treat Alzheimer's disease (AD). Based on pre-clinical studies and clinical trials, a safe and effective AD vaccine requires a delicate balance between providing therapeutically adequate anti-Aβ antibodies and eliminating or suppressing unwanted adverse T cell-mediated inflammatory reactions. We describe here the immunological characterization and protective efficacy of co-immunization with a 6Aβ15-T DNA and protein mixture without adjuvant as an AD immunotherapeutic strategy. Impressively, this co-immunization induced robust Th2-polarized Aβ-specific antibodies while simultaneously suppressed unwanted inflammatory T cell reactions and avoiding Aβ42-specific T cell-mediated autoimmune responses in immunized mice. Co-immunization with the DNA + protein vaccine could overcome Aβ42-associated hypo-responsiveness and elicit long-term Aβ-specific antibody responses, which helped to maintain antibody-mediated clearance of amyloid and accordingly alleviated AD symptoms in co-immunized PDAPP mice. Our DNA and protein combined vaccine, which could induce an anti-inflammatory Th2 immune response with high level Aβ-specific antibodies and low level IFN-γ production, also demonstrated the capacity to inhibit amyloid accumulation and prevent cognitive dysfunction. Hence, co-immunization with antigen-matched DNA and protein may represent a novel and efficacious strategy for AD immunotherapy to eliminate T cell inflammatory reactions while retaining high level antibody responses.

  1. Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees.

    PubMed

    Shackleton, Kyle; Al Toufailia, Hasan; Balfour, Nicholas J; Nascimento, Fabio S; Alves, Denise A; Ratnieks, Francis L W

    Self-sacrificial behavior represents an extreme and relatively uncommon form of altruism in worker insects. It can occur, however, when inclusive fitness benefits are high, such as when defending the nest. We studied nest defense behaviors in stingless bees, which live in eusocial colonies subject to predation. We introduced a target flag to nest entrances to elicit defensive responses and quantified four measures of defensivity in 12 stingless bee species in São Paulo State, Brazil. These included three Trigona species, which are locally known for their aggression. Species varied significantly in their attack probability (cross species range = 0-1, P  < 0.001), attack latency (7.0-23.5 s, P  = 0.002), biting duration of individual bees (3.5-508.7 s, P  < 0.001), and number of attackers (1.0-10.8, P  < 0.001). A "suicide" bioassay on the six most aggressive species determined the proportion of workers willing to suffer fatal damage rather than disengage from an intruder. All six species had at least some suicidal individuals (7-83 %, P  < 0.001), reaching 83 % in Trigona hyalinata . Biting pain was positively correlated with an index of overall aggression ( P  = 0.002). Microscopic examination revealed that all three Trigona species had five sharp teeth per mandible, a possible defensive adaptation and cause of increased pain. Suicidal defense via biting is a new example of self-sacrificial altruism and has both parallels and differences with other self-sacrificial worker insects, such as the honey bee. Our results indicate that suicidal biting may be a widespread defense strategy in stingless bees, but it is not universal.

  2. Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung

    PubMed Central

    Dutta, Orchi; Kasahara, Shinji; Donnelly, Robert; Du, Peicheng; Rosenfeld, Jeffrey; Leiner, Ingrid; Chen, Chiann-Chyi; Ron, Yacov; Hohl, Tobias M.; Rivera, Amariliz

    2014-01-01

    Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. PMID:24586155

  3. Plant Immunity Inducer Development and Application.

    PubMed

    Dewen, Qiu; Yijie, Dong; Yi, Zhang; Shupeng, Li; Fachao, Shi

    2017-05-01

    Plant immunity inducers represent a new and rapidly developing field in plant-protection research. In this paper, we discuss recent research on plant immunity inducers and their development and applications in China. Plant immunity inducers include plant immunity-inducing proteins, chitosan oligosaccharides, and microbial inducers. These compounds and microorganisms can trigger defense responses and confer disease resistance in plants. We also describe the mechanisms of plant immunity inducers and how they promote plant health. Furthermore, we summarize the current situation in plant immunity inducer development in China and the global marketplace. Finally, we also deeply analyze the development trends and application prospects of plant immunity inducers in environmental protection and food safety.

  4. Strategy for Homeland Defense and Defense Support of Civil Authorities

    DTIC Science & Technology

    2013-02-01

    1 As defined by “Sustaining U.S. Global Leadership : Priorities for the 21st Century Defense,” January...and nuclear (CBRN) consequence management response forces in recognition of the proliferation of destructive technologies and the potent ideologies...the wake of Hurricane Katrina. Although DoD is always in a support role to civilian authorities (primarily the Federal Emergency Management Agency, or

  5. Maternal uptake of pertussis cocooning strategy and other pregnancy related recommended immunizations.

    PubMed

    Wong, C Y; Thomas, N J; Clarke, M; Boros, C; Tuckerman, J; Marshall, H S

    2015-01-01

    Maternal immunization is an important strategy to prevent severe morbidity and mortality in mothers and their offspring. This study aimed to identify whether new parents were following immunization recommendations prior to pregnancy, during pregnancy, and postnatally. A cross-sectional survey was conducted by a questionnaire administered antenatally to pregnant women attending a maternity hospital with a follow-up telephone interview at 8-10 weeks post-delivery. Factors associated with uptake of pertussis vaccination within the previous 5 y or postnatally and influenza vaccination during pregnancy were explored using log binomial regression models. A total of 297 pregnant women completed the questionnaire. For influenza vaccine, 20.3% were immunized during pregnancy and 3.0% postnatally. For pertussis vaccine, 13.1% were vaccinated within 5 y prior to pregnancy and 31 women received the vaccine postnatally, 16 (51.6%) received the vaccine >4 weeks after delivery. Receiving a recommendation from a healthcare provider (HCP) was an independent predictor for receipt of both pertussis (RR 2.07, p < 0.001) and influenza vaccine (RR 2.26, p = 0.001). Non-English speaking mothers were significantly less likely to have received pertussis vaccination prior to pregnancy or postnatally (RR 0.24, p = 0.011). Multiparous pregnant women were less likely to have received an influenza vaccine during their current pregnancy (p = 0.015). Uptake of pregnancy related immunization is low and likely due to poor knowledge of availability, language barriers and lack of recommendations from HCPs. Strategies to improve maternal vaccine uptake should include education about recommended vaccines for both HCPs and parents and written information in a variety of languages.

  6. A common origin for immunity and digestion.

    PubMed

    Broderick, Nichole A

    2015-01-01

    Historically, the digestive and immune systems were viewed and studied as separate entities. However, there are remarkable similarities and shared functions in both nutrient acquisition and host defense. Here, I propose a common origin for both systems. This association provides a new prism for viewing the emergence and evolution of host defense mechanisms.

  7. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence.

    PubMed

    Koonin, Eugene V

    2017-02-10

    Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.

  8. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection

    PubMed Central

    Ortega-Prieto, Ana Maria; Dorner, Marcus

    2017-01-01

    Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a “stealth” virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses. PMID:28862649

  9. Innate and intrinsic antiviral immunity in Drosophila

    PubMed Central

    Mussabekova, Assel; Daeffler, Laurent; Imler, Jean-Luc

    2017-01-01

    The fruitfly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host-defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations. PMID:28102430

  10. Novel Nipah virus immune-antagonism strategy revealed by experimental and computational study.

    PubMed

    Seto, Jeremy; Qiao, Liang; Guenzel, Carolin A; Xiao, Sa; Shaw, Megan L; Hayot, Fernand; Sealfon, Stuart C

    2010-11-01

    Nipah virus is an emerging pathogen that causes severe disease in humans. It expresses several antagonist proteins that subvert the immune response and that may contribute to its pathogenicity. Studies of its biology are difficult due to its high pathogenicity and requirement for biosafety level 4 containment. We integrated experimental and computational methods to elucidate the effects of Nipah virus immune antagonists. Individual Nipah virus immune antagonists (phosphoprotein and V and W proteins) were expressed from recombinant Newcastle disease viruses, and the responses of infected human monocyte-derived dendritic cells were determined. We developed an ordinary differential equation model of the infectious process that that produced results with a high degree of correlation with these experimental results. In order to simulate the effects of wild-type virus, the model was extended to incorporate published experimental data on the time trajectories of immune-antagonist production. These data showed that the RNA-editing mechanism utilized by the wild-type Nipah virus to produce immune antagonists leads to a delay in the production of the most effective immune antagonists, V and W. Model simulations indicated that this delay caused a disconnection between attenuation of the antiviral response and suppression of inflammation. While the antiviral cytokines were efficiently suppressed at early time points, some early inflammatory cytokine production occurred, which would be expected to increase vascular permeability and promote virus spread and pathogenesis. These results suggest that Nipah virus has evolved a unique immune-antagonist strategy that benefits from controlled expression of multiple antagonist proteins with various potencies.

  11. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inducible defense against pathogens and parasites: optimal choice among multiple options.

    PubMed

    Shudo, E; Iwasa, Y

    2001-03-21

    Defense against pathogen, parasites and herbivores is often enhanced after their invasion into the host's body. Sometimes different options are adopted depending on the identity and the quantity of the pathogen, exemplified by the switch between Th1 and Th2 systems in mammalian immunity. In this paper, we study the optimal defense of the host when two alternative responses are available, which differ in the effectiveness of suppressing the growth of pathogen (parasite, or herbivore), the damage to the host caused by the defense response, and the magnitude of time delay before the defense response becomes fully effective. The optimal defense is the one that minimizes the sum of the damages caused by the pathogen and the cost due to defense activities. The damage by pathogens increases in proportion to the time integral of the pathogen abundance, and the cost is proportional to the defense activity. We can prove that a single globally optimal combination of defense options always exists and there is no other local optimum. Depending on the parameters, the optimal is to adopt only the early response, only the late response, or both responses. The defense response with a shorter time delay is more heavily used when the pathogen grows fast, the initial pathogen abundance is large, and the difference in time delay is long. We also study the host's optimal choice between constitutive and inducible defenses. In the constitutive defense, the response to pathogen attack works without delay, but it causes the cost even when the pathogen attack does not occur. We discuss mammalian immunity and the plant chemical defense from the model's viewpoint. Copyright 2001 Academic Press.

  13. Effect of intermediate defense measures in voluntary vaccination games

    NASA Astrophysics Data System (ADS)

    Iwamura, Yoshiro; Tanimoto, Jun; Fukuda, Eriko

    2016-09-01

    We build a model to reproduce the decision-making process of getting a vaccination based on the evolutionary game theory dovetailed with the SIR model for epidemic spreading. Unlike the two extreme options of whether or not getting a vaccination leads to perfect immunity, we consider whether ‘intermediate defense measures’ including masking, gargling, and hand-washing lead to imperfect effects of preventing infection. We consider introducing not only a ‘third strategy’ as a discrete intermediate measure but also a continuous strategy space connecting the cases of getting and not getting a vaccination. Interestingly, our evolutionary analysis suggests that the introduction of intermediate measures makes no difference for the case of a 2-strategy system in which only either getting or not getting a vaccination is allowed, even does not ameliorate, or say, gets worse to prevent spreading a disease. This seems quite different from what was observed in 2-player and 2-strategy (2  ×  2) prisoner’s dilemma (PD) games with relatively stronger chicken-type dilemma than the stag-hunt one in which the introduction of middle-course strategies significantly enhances cooperation.

  14. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  15. The Interface between Fungal Biofilms and Innate Immunity.

    PubMed

    Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E

    2017-01-01

    Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  16. Effects of parental care on resource allocation into immune defense and buccal microbiota in mouthbrooding cichlid fishes.

    PubMed

    Keller, Isabel S; Bayer, Till; Salzburger, Walter; Roth, Olivia

    2018-05-01

    Sexual dimorphism is founded upon a resource allocation trade-off between investments in reproduction versus other life-history traits including the immune system. In species with conventional parental care roles, theory predicts that males maximize their lifetime reproductive success by allocating resources toward sexual selection, while females achieve this through prolonging their lifespan. Here, we examine the interrelation between sexual dimorphism and parental care strategies in closely related maternal and biparental mouthbrooding cichlid fishes from East African Lake Tanganyika. We measured cellular immune parameters, examined the relative expression of 28 immune system and life history-related candidate genes and analyzed the microbiota composition in the buccal cavity. According to our predictions, maternal mouthbrooders are more sexually dimorphic in immune parameters than biparental mouthbrooders, which has possibly arisen through a differential resource allocation into parental care versus secondary sexual traits. Biparental mouthbrooders, on the other hand, which share the costs of parental care, feature an upregulated adaptive immune response and stronger antiviral properties, while their inflammation response is reduced. Overall, our results suggest a differential resource allocation trade-off between the two modes of parental investment. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  17. Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest.

    PubMed

    Silva, Farley W S; Elliot, Simon L

    2016-06-01

    Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature-dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host-pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis . Upon egg hatching, caterpillars were reared in thermostat-controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone- and group-reared caterpillars, although the lone-reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group-reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean

  18. Immune effector mechanisms against schistosomiasis: looking for a chink in the parasite's armour

    PubMed Central

    Wilson, R Alan; Coulson, Patricia S

    2009-01-01

    A recombinant antigen vaccine against Schistosoma mansoni remains elusive, in part because the parasite deploys complex defensive and offensive strategies to combat immune attack. Nevertheless, research on rodent and primate models has shown that schistosomes can be defeated when appropriate responses are elicited. Acquired protection appears to involve protracted inhibition of larval migration or key molecular processes at the adult surfaces, not rapid cytolytic killing mechanisms. A successful vaccine will likely require a cocktail of antigens rather than a single recombinant protein. In addition, ways need to be found of keeping the immune system on permanent alert, either to achieve adequate inhibition of protein function in adults, or because a trickle of incoming parasites does not amplify the secondary response. PMID:19717340

  19. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.

    PubMed

    Swarupa, V; Ravishankar, K V; Rekha, A

    2014-04-01

    Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.

  20. Genetics of immune recognition and response in Drosophila host defense.

    PubMed

    Ligoxygakis, Petros

    2013-01-01

    Due to the evolutionary conservation of innate immune mechanisms, Drosophila has been extensively used as a model for the dissection in genetic terms of innate host immunity to infection. Genetic screening in fruit flies has set the stage for the pathways and systems required for responding to immune challenge and the dynamics of the progression of bacterial and fungal infection. In addition, fruit flies have been used as infection models to dissect host-pathogen interactions from both sides of this equation. This chapter describes our current understanding of the genetics of the fruit fly immune response and summarizes the most important findings in this area during the past decade. © 2013 Elsevier Inc. All rights reserved.

  1. Th17 cell cytokine secretion profile in host defense and autoimmunity.

    PubMed

    Graeber, Kristen E; Olsen, Nancy J

    2012-02-01

    The goal of this review is to examine the effector functions of Th17 cells in host defense and autoimmunity. Published literature on Th17 cells was reviewed with a focus on the secreted products that mediate effector activities of these cells. Th17 cells secrete an array of cytokines that contribute to host defense and that bridge the innate and adaptive arms of the immune response. When this subset of T cells is dysregulated, autoimmune phenomena develop that contribute to the manifestations of many autoimmune diseases. Th17 cells are positioned at a crossroads between innate and adaptive immunity and provide mediators that are essential for host defense. Current interest in harnessing this system for treatment of autoimmune disease will be challenged by the need to avoid abrogating these many protective functions.

  2. An alternative pathway to eusociality: Exploring the molecular and functional basis of fortress defense.

    PubMed

    Lawson, Sarah P; Sigle, Leah T; Lind, Abigail L; Legan, Andrew W; Mezzanotte, Jessica N; Honegger, Hans-Willi; Abbot, Patrick

    2017-08-01

    Some animals express a form of eusociality known as "fortress defense," in which defense rather than brood care is the primary social act. Aphids are small plant-feeding insects, but like termites, some species express division of labor and castes of aggressive juvenile "soldiers." What is the functional basis of fortress defense eusociality in aphids? Previous work showed that the acquisition of venoms might be a key innovation in aphid social evolution. We show that the lethality of aphid soldiers derives in part from the induction of exaggerated immune responses in insects they attack. Comparisons between closely related social and nonsocial species identified a number of secreted effector molecules that are candidates for immune modulation, including a convergently recruited protease described in unrelated aphid species with venom-like functions. These results suggest that aphids are capable of antagonizing conserved features of the insect immune response, and provide new insights into the mechanisms underlying the evolution of fortress defense eusociality in aphids. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. Hemolin-A lepidopteran anti-viral defense factor?

    PubMed

    Terenius, Olle

    2008-01-01

    Immunity in insects has largely focused on responses towards bacteria and fungi, but recently the study of immune responses against viral infections has also received attention. In Lepidoptera, phagocytosis and encapsulation mediated by hemocytes, and apoptosis are part of the response against virus infection; however, many studies also suggest the presence of unknown factors involved in the anti-viral defense. An up-regulation of the lepidopteran-specific pattern recognition protein Hemolin after baculovirus infection in the Chinese oak silkmoth and discovery of putative virus responsive elements in the up-stream regions of Hemolin in the Cecropia moth and the Tobacco horn worm could suggest that Hemolin is involved in virus defense. In this paper, a number of studies investigating baculovirus pathogenesis, and others analyzing Hemolin expression have been revisited leading to the speculation that Hemolin could be engaged in several anti-viral processes.

  4. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  5. Light-dependent expression of flg22-induced defense genes in Arabidopsis.

    PubMed

    Sano, Satoshi; Aoyama, Mayu; Nakai, Kana; Shimotani, Koji; Yamasaki, Kanako; Sato, Masa H; Tojo, Daisuke; Suwastika, I Nengah; Nomura, Hironari; Shiina, Takashi

    2014-01-01

    Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30%) genes strongly induced by flg22 (>4.0) require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid (SA), indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB). Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controlling the light-dependent expression of flg22-inducible defense genes.

  6. 32 CFR 719.112 - Authority to grant immunity from prosecution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Authority to grant immunity from prosecution... immunity from prosecution. (a) General. In certain cases involving more than one participant, the interests of justice may make it advisable to grant immunity, either transactional or testimonial, to one or...

  7. 32 CFR 719.112 - Authority to grant immunity from prosecution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Authority to grant immunity from prosecution... immunity from prosecution. (a) General. In certain cases involving more than one participant, the interests of justice may make it advisable to grant immunity, either transactional or testimonial, to one or...

  8. 32 CFR 719.112 - Authority to grant immunity from prosecution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Authority to grant immunity from prosecution... immunity from prosecution. (a) General. In certain cases involving more than one participant, the interests of justice may make it advisable to grant immunity, either transactional or testimonial, to one or...

  9. 32 CFR 719.112 - Authority to grant immunity from prosecution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Authority to grant immunity from prosecution... immunity from prosecution. (a) General. In certain cases involving more than one participant, the interests of justice may make it advisable to grant immunity, either transactional or testimonial, to one or...

  10. 32 CFR 719.112 - Authority to grant immunity from prosecution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Authority to grant immunity from prosecution... immunity from prosecution. (a) General. In certain cases involving more than one participant, the interests of justice may make it advisable to grant immunity, either transactional or testimonial, to one or...

  11. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    NASA Astrophysics Data System (ADS)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-10-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation.

  12. Indispensable Role of Proteases in Plant Innate Immunity.

    PubMed

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  13. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus

    PubMed Central

    Flannagan, Ronald S.; Heit, Bryan; Heinrichs, David E.

    2015-01-01

    Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing. PMID:26633519

  14. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  15. Bivalve immunity and response to infections: Are we looking at the right place?

    PubMed

    Allam, Bassem; Pales Espinosa, Emmanuelle

    2016-06-01

    Significant progress has been made in the understanding of cellular and molecular mediators of immunity in invertebrates in general and bivalve mollusks in particular. Despite this information, there is a lack of understanding of factors affecting animal resistance and specific responses to infections. This in part results from limited consideration of the spatial (and to some extent temporal) heterogeneity of immune responses and very limited information on host-pathogen (and microbes in general) interactions at initial encounter/colonization sites. Of great concern is the fact that most studies on molluscan immunity focus on the circulating hemocytes and the humoral defense factors in the plasma while most relevant host-microbe interactions occur at mucosal interfaces. This paper summarizes information available on the contrasting value of information available on focal and systemic immune responses in infected bivalves, and highlights the role of mucosal immune factors in host-pathogen interactions. Available information underlines the diversity of immune effectors at molluscan mucosal interfaces and highlights the tailored immune response to pathogen stimuli. This context raises fascinating basic research questions around host-microbe crosstalk and feedback controls of these interactions and may lead to novel disease mitigation strategies and improve the assessment of resistant crops or the screening of probiotic candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An Evidence-Based Project Demonstrating Increased School Immunization Compliance Following a School Nurse-Initiated Vaccine Compliance Strategy

    ERIC Educational Resources Information Center

    Swallow, Wendy; Roberts, Jill C.

    2016-01-01

    During the 2012-2013 school year, only 66% of students at a Northern Indiana High School were in compliance with school immunization requirements. We report here successful implementation of evidence-based, time, and cost-effective methods aimed at increasing school immunization compliance. A three-stage strategy initiated by the school nurse was…

  17. The Defense Acquisition Workforce Improvement Strategy. Appendix 1: DOD Strategic Human Capital Plan Update. The Defense Acquisition Workforce

    DTIC Science & Technology

    2010-04-01

    Frank J . Anderson, Jr., April 5, 2010. A Message from the Under Secretary of Defense For Acquisition, Technology and Logistics The importance of...Defense agencies. The Deputy Secretary of Defense, the Honorable William J . Lynn III, recently emphasized that the acquisition workforce rebalancing...20 Asch B., Haider S., and Zizzimopoulos, J . (2003) The Effects of Workforce-Shaping Incentives

  18. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    PubMed

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  19. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    PubMed

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    PubMed

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants.

  1. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    PubMed Central

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; de Oliveira Ferreira, Dalton; Weraduwage, Sarathi M.; Froehlich, John E.; Johnson, Brendan F.; Kramer, David M.; Jander, Georg; Sharkey, Thomas D.; Howe, Gregg A.

    2016-01-01

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways. PMID:27573094

  2. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE PAGES

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; ...

    2016-08-30

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  3. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  4. Immunization Strategies Targeting Newly Arrived Migrants in Non-EU Countries of the Mediterranean Basin and Black Sea

    PubMed Central

    Giambi, Cristina; Del Manso, Martina; Dente, Maria Grazia; Napoli, Christian; Montaño-Remacha, Carmen; Riccardo, Flavia; Declich, Silvia

    2017-01-01

    Background: The World Health Organization recommends that host countries ensure appropriate vaccinations to refugees, asylum seekers and migrants. However, information on vaccination strategies targeting migrants in host countries is limited. Methods: In 2015–2016 we carried out a survey among national experts from governmental bodies of 15 non-EU countries of the Mediterranean and Black Sea in order to document and share national vaccination strategies targeting newly arrived migrants. Results: Four countries reported having regulations/procedures supporting the immunization of migrants at national level, one at sub-national level and three only targeting specific population groups. Eight countries offer migrant children all the vaccinations included in their national immunization schedule; three provide only selected vaccinations, mainly measles and polio vaccines. Ten and eight countries also offer selected vaccinations to adolescents and adults respectively. Eight countries provide vaccinations at the community level; seven give priority vaccines in holding centres or at entry sites. Data on administered vaccines are recorded in immunization registries in nine countries. Conclusions: Although differing among countries, indications for immunizing migrants are in place in most of them. However, we cannot infer from our findings whether those strategies are currently functioning and whether barriers to their implementation are being faced. Further studies focusing on these aspects are needed to develop concrete and targeted recommendations for action. Since migrants are moving across countries, development of on-line registries and cooperation between countries could allow keeping track of administered vaccines in order to appropriately plan immunization series and avoid unnecessary vaccinations. PMID:28441361

  5. Immunization Strategies Targeting Newly Arrived Migrants in Non-EU Countries of the Mediterranean Basin and Black Sea.

    PubMed

    Giambi, Cristina; Del Manso, Martina; Dente, Maria Grazia; Napoli, Christian; Montaño-Remacha, Carmen; Riccardo, Flavia; Declich, Silvia; Network For The Control Of Cross-Border Health Threats In The Mediterranean Basin And Black Sea For The ProVacMed Project

    2017-04-25

    Background : The World Health Organization recommends that host countries ensure appropriate vaccinations to refugees, asylum seekers and migrants. However, information on vaccination strategies targeting migrants in host countries is limited. Methods : In 2015-2016 we carried out a survey among national experts from governmental bodies of 15 non-EU countries of the Mediterranean and Black Sea in order to document and share national vaccination strategies targeting newly arrived migrants. Results : Four countries reported having regulations/procedures supporting the immunization of migrants at national level, one at sub-national level and three only targeting specific population groups. Eight countries offer migrant children all the vaccinations included in their national immunization schedule; three provide only selected vaccinations, mainly measles and polio vaccines. Ten and eight countries also offer selected vaccinations to adolescents and adults respectively. Eight countries provide vaccinations at the community level; seven give priority vaccines in holding centres or at entry sites. Data on administered vaccines are recorded in immunization registries in nine countries. Conclusions : Although differing among countries, indications for immunizing migrants are in place in most of them. However, we cannot infer from our findings whether those strategies are currently functioning and whether barriers to their implementation are being faced. Further studies focusing on these aspects are needed to develop concrete and targeted recommendations for action. Since migrants are moving across countries, development of on-line registries and cooperation between countries could allow keeping track of administered vaccines in order to appropriately plan immunization series and avoid unnecessary vaccinations.

  6. 78 FR 79469 - Strategies To Address Hemolytic Complications of Immune Globulin Infusions; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ...] Strategies To Address Hemolytic Complications of Immune Globulin Infusions; Public Workshop AGENCY: Food and... Infusions.'' The purpose of the public workshop is to identify and discuss potential risk mitigation...) (Human) infusion. Complications of hemolysis include severe anemia requiring transfusion, renal failure...

  7. Chromatin versus pathogens: the function of epigenetics in plant immunity

    PubMed Central

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  8. Chromatin versus pathogens: the function of epigenetics in plant immunity.

    PubMed

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.

  9. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida).

    PubMed

    Mastore, Maristella; Arizza, Vincenzo; Manachini, Barbara; Brivio, Maurizio F

    2015-12-01

    Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase-phenoloxidase (proPO) system, involved in melanization of not-self and hemocytes recognition processes responsible for not-self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell-mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body-surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  10. "Beauty contest" indicator of cognitive ability and free riding strategies. Results from a scenario experiment about pandemic flu immunization.

    PubMed

    Rönnerstrand, Björn

    2017-03-01

    High immunization coverage rates are desirable in order to reduce total morbidity and mortality rates, but it may also provide an incentive for herd immunity free riding strategies. The aim of this paper was to investigate the link between cognitive ability and vaccination intention in a hypothetical scenario experiment about Avian Flu immunization. A between-subject scenario experiment was utilized to examine the willingness to undergo vaccination when the vaccination coverage was proclaimed to be 36, 62 and 88%. Respondents were later assigned to a "Beauty contest" experiment, an experimental game commonly used to investigate individual's cognitive ability. Results show that there was a significant negative effect of the proclaimed vaccination uptake among others on the vaccination intention. However, there were no significant association between the "Beauty contest" indicator of cognitive ability and the use of herd immunity free riding strategies.

  11. The Identification and Modification of Defense Mechanisms in Counseling.

    ERIC Educational Resources Information Center

    Clark, Arthur J.

    1991-01-01

    Suggests considerations and strategies for identifying and modifying a client's defense mechanisms in counseling. Provides definitions of individual defenses and indicators for identifying the mechanisms. Literature review focuses on counseling implications of defenses. Process of defense mechanism modification is illustrated through case example.…

  12. Identification of a Serine Proteinase Homolog (Sp-SPH) Involved in Immune Defense in the Mud Crab Scylla paramamosain

    PubMed Central

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001

  13. Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain.

    PubMed

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  14. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  15. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense.

    PubMed

    Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi

    2017-01-01

    Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known

  16. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense

    PubMed Central

    Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi

    2017-01-01

    Retroviral infections are ‘mini-symbiotic’ events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all

  17. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves

    PubMed Central

    2017-01-01

    Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant’s flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission. PMID:29253890

  18. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Loveren, H.; Rombout, P.J.; Wagenaar, S.S.

    1988-07-01

    We have investigated the effect of exposure to ozone on defense mechanisms to a respiratory infection with Listeria monocytogenes in the rat. For this purpose rats were continuously exposed to O/sub 3/ concentrations ranging from 0.25 to 2.0 mg/m3 for a period of 1 week. In this model defense to a respiratory infection with Listeria depends on acquired specific cellular immune responses, as well as on natural nonspecific defense mechanisms. The results confirm earlier findings that show that ozone exposure can suppress the capacity of macrophages to ingest and kill Listeria. Moreover, the results show that ozone can also havemore » a suppressive effect on the development of cellular immune responses to a respiratory Listeria infection, i.e., on T/B ratios in lung draining lymph nodes, delayed-type hypersensitivity responses to Listeria antigen, and lymphoproliferative responses in spleen and lung draining lymph nodes to Listeria antigen. The effects on the specific immune responses are especially overt if exposure to the oxidant gas occurs during an ongoing primary infection. The pathological lesions induced by a pulmonary Listeria monocytogenes infection were characterized by multifocal infiltrates of histiocytic and lymphoid cells. The foci sometimes had a granulomatous appearance. Moreover, the cellularity of the interstitial tissues was increased. In the lung many diffuse alveolar macrophages could be seen in the alveoli. Ozone exposure greatly increased the severity of the lung lesions and also of liver lesions resulting from the pulmonary infection. A prominent finding was the formation of granulomas in ozone-exposed and Listeria-infected rats.« less

  19. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense.

    PubMed

    Yu, Agnès; Lepère, Gersende; Jay, Florence; Wang, Jingyu; Bapaume, Laure; Wang, Yu; Abraham, Anne-Laure; Penterman, Jon; Fischer, Robert L; Voinnet, Olivier; Navarro, Lionel

    2013-02-05

    DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is correlated with the down-regulation of key transcriptional gene silencing factors and is partly dependent on an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoter regions, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to TEs/repeats.

  20. AtNUDT7, a Negative Regulator of Basal Immunity in Arabidopsis, Modulates Two Distinct Defense Response Pathways and Is Involved in Maintaining Redox Homeostasis1[C][OA

    PubMed Central

    Ge, Xiaochun; Li, Guo-Jing; Wang, Sheng-Bing; Zhu, Huifen; Zhu, Tong; Wang, Xun; Xia, Yiji

    2007-01-01

    Plants have evolved complicated regulatory systems to control immune responses. Both positive and negative signaling pathways interplay to coordinate development of a resistance response with the appropriate amplitude and duration. AtNUDT7, a Nudix domain-containing protein in Arabidopsis (Arabidopsis thaliana) that hydrolyzes nucleotide derivatives, was found to be a negative regulator of the basal defense response, and its loss-of-function mutation results in enhanced resistance to infection by Pseudomonas syringae. The nudt7 mutation does not cause a strong constitutive disease resistance phenotype, but it leads to a heightened defense response, including accelerated activation of defense-related genes that can be triggered by pathogenic and nonpathogenic microorganisms. The nudt7 mutation enhances two distinct defense response pathways: one independent of and the other dependent on NPR1 and salicylic acid accumulation. In vitro enzymatic assays revealed that ADP-ribose and NADH are preferred substrates of NUDT7, and the hydrolysis activity of NUDT7 is essential for its biological function and is sensitive to inhibition by Ca2+. Further analyses indicate that ADP-ribose is not likely the physiological substrate of NUDT7. However, the nudt7 mutation leads to perturbation of cellular redox homeostasis and a higher level of NADH in pathogen-challenged leaves. The study suggests that the alteration in cellular antioxidant status caused by the nudt7 mutation primes the cells for the amplified defense response and NUDT7 functions to modulate the defense response to prevent excessive stimulation. PMID:17660350

  1. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  2. Impact of Childhood Malnutrition on Host Defense and Infection.

    PubMed

    Ibrahim, Marwa K; Zambruni, Mara; Melby, Christopher L; Melby, Peter C

    2017-10-01

    The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population. Copyright © 2017 American Society for Microbiology.

  3. The effect of protective nutrients on mucosal defense in the immature intestine.

    PubMed

    Forchielli, Maria L; Walker, W Allan

    2005-10-01

    Oral nutrition plays a dual role in the gut, providing nutrition to the body while affecting the function of the gastrointestinal tract. The exposure of the gut to food antigens, in the form of either beneficial or harmful nutritional substances, contributes to a vast array of physiological and pathologic gastrointestinal responses with secondary systemic implications. The immune system of the gastrointestinal tract is always involved in the first line of defense, and its actions are particularly important in the early period of life as maturation takes place. From maturation, a balance ensues in the regulatory mechanism of host defense, ultimately leading to either tolerance or immune reaction. This paper emphasizes how some nutrients may beneficially affect the gastrointestinal immune system's maturation in both term and especially premature neonates.

  4. Immunization of Epidemics in Multiplex Networks

    PubMed Central

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  5. Immunization of epidemics in multiplex networks.

    PubMed

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.

  6. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    PubMed Central

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-01-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation. PMID:26471771

  7. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  8. Experimental demonstration of a parasite-induced immune response in wild birds: Darwin's finches and introduced nest flies.

    PubMed

    Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H

    2013-08-01

    Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune

  9. Regulatory roles of mast cells in immune responses.

    PubMed

    Morita, Hideaki; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2016-09-01

    Mast cells are important immune cells for host defense through activation of innate immunity (via toll-like receptors or complement receptors) and acquired immunity (via FcεRI). Conversely, mast cells also act as effector cells that exacerbate development of allergic or autoimmune disorders. Yet, several lines of evidence show that mast cells act as regulatory cells to suppress certain inflammatory diseases. Here, we review the mechanisms by which mast cells suppress diseases.

  10. Addressing the surveillance goal in the National Strategy for Suicide Prevention: the Department of Defense Suicide Event Report.

    PubMed

    Gahm, Gregory A; Reger, Mark A; Kinn, Julie T; Luxton, David D; Skopp, Nancy A; Bush, Nigel E

    2012-03-01

    The US National Strategy for Suicide Prevention (National Strategy) described 11 goals across multiple areas, including suicide surveillance. Consistent with these goals, the Department of Defense (DoD) has engaged aggressively in the area of suicide surveillance. The DoD's population-based surveillance system, the DoD Suicide Event Report (DoDSER) collects information on suicides and suicide attempts for all branches of the military. Data collected includes suicide event details, treatment history, military and psychosocial history, and psychosocial stressors at the time of the event. Lessons learned from the DoDSER program are shared to assist other public health professionals working to address the National Strategy objectives.

  11. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System

    PubMed Central

    Arp, Alex P.; Hunter, Wayne B.; Pelz-Stelinski, Kirsten S.

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts. PMID:27965582

  12. More than Fever: Thermoregulatory Responses to Immunological Stimulation and Consequences of Thermoregulatory Strategy on Innate Immunity in Gopher Tortoises (Gopherus polyphemus).

    PubMed

    Goessling, Jeffrey M; Guyer, Craig; Mendonça, Mary T

    Organisms possess a range of thermoregulatory strategies that may vary in response to sickness, thereby driving important life-history consequences. Because the immune system is vital to maintaining organism function, understanding the suite of immune responses to infection indicates basic costs and benefits of physiological strategies. Here, we assessed consequences of thermoregulation and seasonality on immune function in both immunologically stimulated and nonstimulated gopher tortoises (Gopherus polyphemus). An ectothermic vertebrate was used as an experimental model because the effects of thermoregulation on immunity remain understudied and are of increasing importance in light of anthropogenic alterations to thermal environments. We found that G. polyphemus increased body temperature (T b ) at 1 h after injection with lipopolysaccharide (LPS) when compared with saline controls (P = 0.04), consistent with behavioral fever. LPS increased plasma bactericidal ability (BA; P = 0.006), reduced plasma iron concentration (P = 0.041), and increased heterophil∶lymphocyte ratios (P < 0.001). In nonstimulated animals, thermoregulatory strategy had a strong effect on innate immunity, which demonstrated that individuals have the ability to facultatively adjust immune function when infection burden is low; this relationship was not present in LPS-injected animals, which suggested that animals stimulated with LPS maximize bactericidal ability independently of temperature. Seasonal acclimation state did not influence responses to LPS, although baseline plasma iron was significantly lower in animals acclimated to winter. These results support that a trade-off exists between immunity and other conflicting physiological interests. Moreover, these results clearly demonstrate the ability of individuals to modulate immune function as a direct result of thermoregulatory decisions.

  13. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  14. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Under Secretary of Defense for Policy > OUSDP Offices > ASD for Special

    Science.gov Websites

    Secretary of Defense for Policy Search Search Office of the Under Secretary of Defense for Policy: Search Search Office of the Under Secretary of Defense for Policy: Search Under Secretary of Defense for Policy U.S. Department of Defense Under Secretary of Defense for Policy Home National Defense Strategy

  16. Using immunization delivery strategies to accelerate progress in Africa towards achieving the Millennium Development Goals.

    PubMed

    Clements, C John; Nshimirimanda, Deo; Gasasira, Alex

    2008-04-07

    Integration of health services brings together common functions within and between organizations to solve common problems, developing a commitment to a shared vision and goals, and using common technologies and resources to achieve these goals. Integration has been the frustrated rally call of Primary Health Care for 30 years. This paper discusses the process of integrating child survival strategies and other heath services with immunization in Africa. Immunization is arguably the most successful health programme throughout the continent, making it the logical vehicle for add-on services. Strong health systems are the best way of delivering cost-effective child survival interventions in a most sustainable manner. But the reality in many African countries is that health systems have been weak for a number of reasons. Joining additional cost-effective child survival interventions on to immunization services may provide the needed boost. The unacceptably high childhood mortality in parts of Africa makes it the ideal location to undertake this exercise. The urgency to scale-up child survival interventions that have proven cost-effective is especially important if the Millennium Development Goals (MDGs) are to be met by 2015. Africa has more to loose than most in failing to scale up to meet these goals, bearing as it does the highest burden of childhood mortality in the world. But so far, prospects do not look good for achieving MDG-4 for the countries with the highest mortality rates. The timeliness of this initiative towards integration could not be better. In the last five years, countries in Africa have received massive injections of financial resources for polio eradication and measles control as well as additional funding for a range of immunization-strengthening activities and the introduction of new and under-utilized vaccines. While the data to support integration are limited, the information to hand suggests the effectiveness of the strategy. Where

  17. The impact of high-fat diet on metabolism and immune defense in small intestine mucosa.

    PubMed

    Wiśniewski, Jacek R; Friedrich, Alexandra; Keller, Thorsten; Mann, Matthias; Koepsell, Hermann

    2015-01-02

    Improved procedures for sample preparation and proteomic data analysis allowed us to identify 7700 different proteins in mouse small intestinal mucosa and calculate the concentrations of >5000 proteins. We compared protein concentrations of small intestinal mucosa from mice that were fed for two months with normal diet (ND) containing 34.4% carbohydrates, 19.6% protein, and 3.3% fat or high-fat diet (HFD) containing 25.3% carbohydrates, 24.1% protein, and 34.6% fat. Eleven percent of the quantified proteins were significantly different between ND and HFD. After HFD, we observed an elevation of proteins involved in protein synthesis, protein N-glycosylation, and vesicle trafficking. Proteins engaged in fatty acid absorption, fatty acid β-oxidation, and steroid metabolism were also increased. Enzymes of glycolysis and pentose phosphate cycle were decreased, whereas proteins of the respiratory chain and of ATP synthase were increased. The protein concentrations of various nutrient transporters located in the enterocyte plasma membrane including the Na(+)-d-glucose cotransporter SGLT1, the passive glucose transporter GLUT2, and the H(+)-peptide cotransporter PEPT1 were decreased. The concentration of the Na(+),K(+)-ATPase, which turned out to be the most strongly expressed enterocyte transporter, was also decreased. HFD also induced concentration changes of drug transporters and of enzymes involved in drug metabolism, which suggests effects of HFD on pharmacokinetics and toxicities. Finally, we observed down-regulation of antibody subunits and of components of the major histocompatibility complex II that may reflect impaired immune defense and immune tolerance in HFD. Our work shows dramatic changes in functional proteins of small intestine mucosa upon excessive fat consumption.

  18. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses.

    PubMed

    Garg, Abhishek D; Agostinis, Patrizia

    2017-11-01

    The immunogenicity of cancer cells is an emerging determinant of anti-cancer immunotherapy. Beyond developing immunostimulatory regimens like dendritic cell-based vaccines, immune-checkpoint blockers, and adoptive T-cell transfer, investigators are beginning to focus on the immunobiology of dying cancer cells and its relevance for the success of anticancer immunotherapies. It is currently accepted that cancer cells may die in response to anti-cancer therapies through regulated cell death programs, which may either repress or increase their immunogenic potential. In particular, the induction of immunogenic cancer cell death (ICD), which is hallmarked by the emission of damage-associated molecular patterns (DAMPs); molecules analogous to pathogen-associated molecular patterns (PAMPs) acting as danger signals/alarmins, is of great relevance in cancer therapy. These ICD-associated danger signals favor immunomodulatory responses that lead to tumor-associated antigens (TAAs)-directed T-cell immunity, which paves way for the removal of residual, treatment-resistant cancer cells. It is also emerging that cancer cells succumbing to ICD can orchestrate "altered-self mimicry" i.e. mimicry of pathogen defense responses, on the levels of nucleic acids and/or chemokines (resulting in type I interferon/IFN responses or pathogen response-like neutrophil activity). In this review, we exhaustively describe the main molecular, immunological, preclinical, and clinical aspects of immunosuppressive cell death or ICD (with respect to apoptosis, necrosis and necroptosis). We also provide an extensive historical background of these fields, with special attention to the self/non-self and danger models, which have shaped the field of cell death immunology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species

    PubMed Central

    Pathak, Rajesh K.; Baunthiyal, Mamta; Shukla, Rohit; Pandey, Dinesh; Taj, Gohar; Kumar, Anil

    2017-01-01

    Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA) mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials. PMID:28487711

  20. Paramyxovirus evasion of innate immunity: Diverse strategies for common targets

    PubMed Central

    Audsley, Michelle D; Moseley, Gregory W

    2013-01-01

    The paramyxoviruses are a family of > 30 viruses that variously infect humans, other mammals and fish to cause diverse outcomes, ranging from asymptomatic to lethal disease, with the zoonotic paramyxoviruses Nipah and Hendra showing up to 70% case-fatality rate in humans. The capacity to evade host immunity is central to viral infection, and paramyxoviruses have evolved multiple strategies to overcome the host interferon (IFN)-mediated innate immune response through the activity of their IFN-antagonist proteins. Although paramyxovirus IFN antagonists generally target common factors of the IFN system, including melanoma differentiation associated factor 5, retinoic acid-inducible gene-I, signal transducers and activators of transcription (STAT)1 and STAT2, and IFN regulatory factor 3, the mechanisms of antagonism show remarkable diversity between different genera and even individual members of the same genus; the reasons for this diversity, however, are not currently understood. Here, we review the IFN antagonism strategies of paramyxoviruses, highlighting mechanistic differences observed between individual species and genera. We also discuss potential sources of this diversity, including biological differences in the host and/or tissue specificity of different paramyxoviruses, and potential effects of experimental approaches that have largely relied on in vitro systems. Importantly, recent studies using recombinant virus systems and animal infection models are beginning to clarify the importance of certain mechanisms of IFN antagonism to in vivo infections, providing important indications not only of their critical importance to virulence, but also of their potential targeting for new therapeutic/vaccine approaches. PMID:24175230

  1. Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity

    PubMed Central

    Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.

    2012-01-01

    Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601

  2. The Host Defense Proteome of Human and Bovine Milk

    PubMed Central

    Hettinga, Kasper; van Valenberg, Hein; de Vries, Sacco; Boeren, Sjef; van Hooijdonk, Toon; van Arendonk, Johan; Vervoort, Jacques

    2011-01-01

    Milk is the single source of nutrients for the newborn mammal. The composition of milk of different mammals has been adapted during evolution of the species to fulfill the needs of the offspring. Milk not only provides nutrients, but it also serves as a medium for transfer of host defense components to the offspring. The host defense proteins in the milk of different mammalian species are expected to reveal signatures of evolution. The aim of this study is therefore to study the difference in the host defense proteome of human and bovine milk. We analyzed human and bovine milk using a shot-gun proteomics approach focusing on host defense-related proteins. In total, 268 proteins in human milk and 269 proteins in bovine milk were identified. Of these, 44 from human milk and 51 from bovine milk are related to the host defense system. Of these proteins, 33 were found in both species but with significantly different quantities. High concentrations of proteins involved in the mucosal immune system, immunoglobulin A, CD14, lactoferrin, and lysozyme, were present in human milk. The human newborn is known to be deficient for at least two of these proteins (immunoglobulin A and CD14). On the other hand, antimicrobial proteins (5 cathelicidins and lactoperoxidase) were abundant in bovine milk. The high concentration of lactoperoxidase is probably linked to the high amount of thiocyanate in the plant-based diet of cows. This first detailed analysis of host defense proteins in human and bovine milk is an important step in understanding the function of milk in the development of the immune system of these two mammals. PMID:21556375

  3. Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece

    2010-01-01

    This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  4. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  5. Nutritional strategies to optimize dairy cattle immunity.

    PubMed

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Immune Reactions Among Marine and Other Invertebrates

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  7. HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity.

    PubMed

    Wang, Jie; Yang, Shuai; Liu, Lu; Wang, Hui; Yang, Bo

    2017-03-15

    The cellular antiviral innate immune system is essential for host defense and viruses have evolved a variety of strategies to evade the innate immunity. Human T lymphotropic virus type 1 (HTLV-1) belongs to the deltaretrovirus family and it can establish persistent infection in human beings for many years. However, how this virus evades the host innate immune responses remains unclear. Here we report a new strategy used by HTLV-1 to block innate immune responses. We observed that stimulator of interferon genes (STING) limited HTLV-1 protein expression and was critical to HTLV-1 reverse transcription intermediate (RTI) ssDNA90 triggered interferon (IFN)-β production in phorbol12-myristate13-acetate (PMA)-differentiated THP1 (PMA-THP1) cells. The HTLV-1 protein Tax inhibited STING overexpression induced transcriptional activation of IFN-β. Tax also impaired poly(dA:dT), interferon stimulatory DNA (ISD) or cyclic GMP-AMP (cGAMP) -stimulated IFN-β production, which was dependent on STING activation. Coimmunoprecipitation assays and confocal microscopy indicated that Tax was associated with STING in the same complex. Mechanistic studies suggested that Tax decreased the K63-linked ubiquitination of STING and disrupted the interactions between STING and TANK-binding kinase 1 (TBK1). These findings may shed more light on the molecular mechanisms underlying HTLV-1 infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The immune response to human CMV

    PubMed Central

    La Rosa, Corinna; Diamond, Don J

    2012-01-01

    This review will summarize and interpret recent literature regarding the human CMV immune response, which is among the strongest measured and is the focus of attention for numerous research groups. CMV is a highly prevalent, globally occurring infection that rarely elicits disease in healthy immunocompetent hosts. The human immune system is unable to clear CMV infection and latency, but mounts a spirited immune-defense targeting multiple immune-evasion genes encoded by this dsDNA β-herpes virus. Additionally, the magnitude of cellular immune response devoted to CMV may cause premature immune senescence, and the high frequencies of cytolytic T cells may aggravate vascular pathologies. However, uncontrolled CMV viremia and life-threatening symptoms, which occur readily after immunosuppression and in the immature host, clearly indicate the essential role of immunity in maintaining asymptomatic co-existence with CMV. Approaches for harnessing the host immune response to CMV are needed to reduce the burden of CMV complications in immunocompromised individuals. PMID:23308079

  9. Nutritional strategies to boost immunity and prevent infection in elderly individuals.

    PubMed

    High, K P

    2001-12-01

    Older adults are at risk for malnutrition, which may contribute to their increased risk of infection. Nutritional supplementation strategies can reduce this risk and reverse some of the immune dysfunction associated with advanced age. This review discusses nutritional interventions that have been examined in clinical trials of older adults. The data support use of a daily multivitamin or trace-mineral supplement that includes zinc (elemental zinc, >20 mg/day) and selenium (100 microg/day), with additional vitamin E, to achieve a daily dosage of 200 mg/day. Specific syndromes may also be addressed by nutritional interventions (for example, cranberry juice consumption to reduce urinary tract infections) and may reduce antibiotic use in older adults, particularly those living in long-term care facilities. Drug-nutrient interactions are common in elderly individuals, and care providers should be aware of these interactions. Future research should evaluate important clinical end points rather than merely surrogate markers of immunity.

  10. Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation

    PubMed Central

    Budischak, Sarah A.; Hansen, Christina B.; Caudron, Quentin; Garnier, Romain; Kartzinel, Tyler R.; Pelczer, István; Cressler, Clayton E.; van Leeuwen, Anieke; Graham, Andrea L.

    2018-01-01

    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods

  11. Food-mediated modulation of immunity in a phytophagous insect: An effect of nutrition rather than parasitic contamination.

    PubMed

    Vogelweith, Fanny; Moreau, Jérôme; Thiéry, Denis; Moret, Yannick

    2015-06-01

    Inherent to the cost of immunity, the immune system itself can exhibit tradeoffs between its arms. Phytophagous insects face a wide range of microbial and eukaryotic parasites, each activating different immune pathways that could compromise the activity of the others. Feeding larvae are primarily exposed to microbes, which growth is controlled by antibiotic secondary metabolites produced by the host plant. The resulting variation in abundance of microbes on plants is expected to differentially stimulate the insect antimicrobial immune defenses. Under the above tradeoff hypothesis, stimulation of the insect antimicrobial defenses is expected to compromise immune activity against eukaryote parasites. In the European grape berry moth, Eupoecilia ambiguella, immune effectors directed towards microbes are negatively correlated to those directed towards eukaryotic parasites among host plants. Here, we hypothesize this relationship is caused by a variable control of the microbial community among host plants by their antibiotic metabolites. To test this hypothesis, we first quantified antimicrobial activity in berries of several grape varieties. We then measured immune defenses of E. ambiguella larvae raised on artificial diets in which we mimicked levels of antimicrobial activity of grape berries using tetracycline to control the abundance of growing microbes. Another group of larvae was raised on artificial diets made of berry extracts only to control for the effect of nutrition. We found that controlling microbe abundance with tetracycline in diets did not explain variation in the immune function whereas the presence of berry extracts did. This suggests that variation in immune defenses of E. ambiguella among grape varieties is caused by nutritional difference among host plants rather than microbe abundance. Further study of the effects of berry compounds on larval immune parameters will be needed to explain the observed tradeoff among immune system components

  12. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  13. Chemical and genetic defenses against disease in insect societies.

    PubMed

    Stow, Adam; Beattie, Andrew

    2008-10-01

    The colonies of ants, bees, wasps and termites, the social insects, consist of large numbers of closely related individuals; circumstances ideal for contagious diseases. Antimicrobial assays of these animals have demonstrated a wide variety of chemical defenses against both bacteria and fungi that can be broadly classified as either external antiseptic compounds or internal immune molecules. Reducing the disease risks inherent in colonies of social insects is also achieved by behaviors, such as multiple mating or dispersal, that lower genetic relatedness both within- and among colonies. The interactions between social insects and their pathogens are complex, as illustrated by some ants that require antimicrobial and behavioral defenses against highly specialized fungi, such as those in the genus Cordyceps that attack larvae and adults and species in the genus Escovopsis that attack their food supplies. Studies of these defenses, especially in ants, have revealed remarkably sophisticated immune systems, including peptides induced by, and specific to, individual bacterial strains. The latter may be the result of the recruitment by the ants of antibiotic-producing bacteria but the extent of such three-way interactions remains unknown. There is strong experimental evidence that the evolution of sociality required dramatic increases in antimicrobial defenses and that microbes have been powerful selective agents. The antimicrobial chemicals and the insect-killing fungi may be useful in medicine and agriculture, respectively.

  14. Geographical variation in parasitism shapes larval immune function in a phytophagous insect

    NASA Astrophysics Data System (ADS)

    Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2013-12-01

    Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.

  15. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Is crypsis a common defensive strategy in plants?

    PubMed Central

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development.1 Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals. PMID:20592801

  17. Root assays to study pattern-triggered immunity in plant-nematode interactions

    USDA-ARS?s Scientific Manuscript database

    Plants employ extracellular immune receptors to perceive conserved pathogen-associated molecular patterns (PAMPs), triggering the first layer of defense known as pattern-triggered immunity (PTI). The understanding of PTI is mainly based on the studies focusing on leaves. Plants are vulnerable to att...

  18. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  19. Integrated Immune Experiment

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2009-01-01

    This viewgraph presentation reviews NASA's Integrated Immune Experiment. The objectives include: 1) Address significant lack of data regarding immune status during flight; 2) Replace several recent immune studies with one comprehensive study that will include in-flight sampling; 3) Determine the in-flight status of immunity, physiological stress, viral immunity/reactivation; 4) Determine the clinical risk related to immune dysregulation for exploration class spaceflight; and 5) Determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  20. Pellino enhances innate immunity in Drosophila.

    PubMed

    Haghayeghi, Amirhossein; Sarac, Amila; Czerniecki, Stefan; Grosshans, Jörg; Schöck, Frieder

    2010-01-01

    The innate immune response is a defense mechanism against infectious agents in both vertebrates and invertebrates, and is in part mediated by the Toll pathway. Toll receptor activation upon exposure to bacteria causes stimulation of Pelle/IRAK kinase, eventually resulting in translocation of the transcription factor NF-kappaB to the nucleus. Here we show that Pellino, a highly conserved protein interacting with activated Pelle/IRAK, acts as a positive regulator of innate immunity in Drosophila.

  1. Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus.

    PubMed

    Pizzolla, Angela; Smith, Jeffery M; Brooks, Andrew G; Reading, Patrick C

    2017-04-01

    Influenza remains a major global health issue and the effectiveness of current vaccines and antiviral drugs is limited by the continual evolution of influenza viruses. Therefore, identifying novel prophylactic or therapeutic treatments that induce appropriate innate immune responses to protect against influenza infection would represent an important advance in efforts to limit the impact of influenza. Cellular pattern recognition receptors (PRRs) recognize conserved structures expressed by pathogens to trigger intracellular signaling cascades, promoting expression of proinflammatory molecules and innate immunity. Therefore, a number of approaches have been developed to target specific PRRs in an effort to stimulate innate immunity and reduce disease in a variety of settings, including during influenza infections. Herein, we discuss progress in immunomodulation strategies designed to target cell-associated PRRs of the innate immune system, thereby, modifying innate responses to IAV infection and/or augmenting immune responses to influenza vaccines. © Society for Leukocyte Biology.

  2. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  3. Soviet Assessments of North American Air Defense

    DTIC Science & Technology

    1986-06-01

    whether they represented misunderstandings or errors on the Soviet part, or unique Soviet perspectives and biases. Finally, articles on Soviet strategy...and what reactions do these assessments prompt? First, most articles on U.S. continental air defenses were found in the journal of the Air Defense...Soviet assessments of U.S. air defense control systems with articles in Military Thought. Some of these themes are: - The importance of centralized

  4. Under Secretary of Defense for Policy > OUSDP Offices > ASD for Asian and

    Science.gov Websites

    of Defense for Policy Search Search Office of the Under Secretary of Defense for Policy: Search Search Office of the Under Secretary of Defense for Policy: Search Under Secretary of Defense for Policy U.S. Department of Defense Under Secretary of Defense for Policy Home National Defense Strategy

  5. Defense Science Board Task Force Report on Defense Strategies for Ensuring the Resilience of National Space Capabilities

    DTIC Science & Technology

    2017-03-01

    Executive Summary is a product of the Defense Science Board (DSB). The DSB is a Federal Advisory Committee established to provide independent advice to the...Executive Summary Since 2000, when the Defense Science Board concluded space superiority was absolutely essential in achieving global awareness, information...control, critical enabling doctrine, and policy concepts. From April 2015 through September 2016, the Task Force received more than 40 briefings from

  6. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation

    PubMed Central

    Eden, Thomas; Menzel, Stephan; Wesolowski, Janusz; Bergmann, Philine; Nissen, Marion; Dubberke, Gudrun; Seyfried, Fabienne; Albrecht, Birte; Haag, Friedrich; Koch-Nolte, Friedrich

    2018-01-01

    Nanobodies (Nbs) are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully generated agonistic

  7. Systematic discovery of antiphage defense systems in the microbial pangenome.

    PubMed

    Doron, Shany; Melamed, Sarah; Ofir, Gal; Leavitt, Azita; Lopatina, Anna; Keren, Mai; Amitai, Gil; Sorek, Rotem

    2018-03-02

    The arms race between bacteria and phages led to the development of sophisticated antiphage defense systems, including CRISPR-Cas and restriction-modification systems. Evidence suggests that known and unknown defense systems are located in "defense islands" in microbial genomes. Here, we comprehensively characterized the bacterial defensive arsenal by examining gene families that are clustered next to known defense genes in prokaryotic genomes. Candidate defense systems were systematically engineered and validated in model bacteria for their antiphage activities. We report nine previously unknown antiphage systems and one antiplasmid system that are widespread in microbes and strongly protect against foreign invaders. These include systems that adopted components of the bacterial flagella and condensin complexes. Our data also suggest a common, ancient ancestry of innate immunity components shared between animals, plants, and bacteria. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains

    PubMed Central

    2013-01-01

    Background Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. Results In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Conclusion Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin. PMID:23856002

  9. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains.

    PubMed

    Defraia, Christopher T; Wang, Yongsheng; Yao, Jiqiang; Mou, Zhonglin

    2013-07-16

    Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin.

  10. Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia.

    PubMed

    Nakatsuka, Yoshinari; Vandenbon, Alexis; Mino, Takashi; Yoshinaga, Masanori; Uehata, Takuya; Cui, Xiaotong; Sato, Ayuko; Tsujimura, Tohru; Suzuki, Yutaka; Sato, Atsuyasu; Handa, Tomohiro; Chin, Kazuo; Sawa, Teiji; Hirai, Toyohiro; Takeuchi, Osamu

    2018-04-25

    Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.

  11. Recent Advances in Aptamers Targeting Immune System.

    PubMed

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  12. Commensal-innate immune miscommunication in IBD pathogenesis.

    PubMed

    Cario, Elke

    2012-01-01

    Commensal microbiota plays a key role in the health and disease of the host. The innate immune system comprises an essential functional component of the intestinal mucosal barrier, maintaining hyporesponsiveness to omnipresent harmless commensals in the lumen, but rapidly recognizing and combating invading bacteria through diverse antimicrobial mechanisms. Interactions between commensals and innate immune cells are constant, multidimensional and entirely context-dependent. Environment, genetics and host defense differentially modulate commensal-innate immune effects and functions in the intestinal mucosa. In IBD, dysbiosis, mucus layer disruption, impairment in bacterial clearance, intestinal epithelial cell barrier dysfunction and/or immune cell deregulation may lead to commensal-innate immune miscommunication, which critically drives mucosal inflammation and associated cancer. Copyright © 2012 S. Karger AG, Basel.

  13. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum - Rhizoctonia solani Interaction.

    PubMed

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani.

  14. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  15. Effect of dietary selenium on T cell immunity and cancer xenograft in nude mice

    USDA-ARS?s Scientific Manuscript database

    Selenium is known to regulate carcinogenesis and immunity at nutritional and supranutritional levels. Because the immune system provides one of the main body defenses against cancer, we asked whether T cell immunity can modulate selenium chemoprevention. Twenty-four homozygous NU/J nude mice were fe...

  16. Effects of interaction between temperature conditions and copper exposure on immune defense and other life-history traits of the blow fly Protophormia terraenovae.

    PubMed

    Pölkki, Mari; Kangassalo, Katariina; Rantala, Markus J

    2014-01-01

    Environmental pollution is considered one of the major threats to organisms. Direct effects of heavy metal pollution on various life-history traits are well recognized, while the effects of potential interactions between two distinct environmental conditions on different traits are poorly understood. Here, we have tested the effects of interactions between temperature conditions and heavy metal exposure on innate immunity and other life-history traits. Maggots of the blow fly Protophormia terraenovae were reared on either copper-contaminated or uncontaminated food, under three different temperature environments. Encapsulation response, body mass, and development time were measured for adult flies that were not directly exposed to copper. We found that the effects of copper exposure on immunity and other traits are temperature-dependent, suggesting that the ability to regulate toxic compounds in body tissues might depend on temperature conditions. Furthermore, we found that temperature has an effect on sex differences in immune defense. Males had an encapsulation response at higher temperatures stronger than that of females. Our results indicate that the effects of environmental conditions on different traits are much more intricate than what can be predicted. This is something that should be considered when conducting immunological experiments or comparing results of previous studies.

  17. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses

    PubMed Central

    Bidgood, Susanna R.; Mercer, Jason

    2015-01-01

    As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs. PMID:26308043

  18. Research on Network Defense Strategy Based on Honey Pot Technology

    NASA Astrophysics Data System (ADS)

    Hong, Jianchao; Hua, Ying

    2018-03-01

    As a new network security technology of active defense, The honeypot technology has become a very effective and practical method of decoy attackers. The thesis discusses the theory, structure, characteristic, design and implementation of Honeypot in detail. Aiming at the development of means of attack, put forward a kind of network defense technology based on honeypot technology, constructing a virtual Honeypot demonstrate the honeypot’s functions.

  19. A look at plant immunity through the window of the multitasking coreceptor BAK1.

    PubMed

    Yasuda, Shigetaka; Okada, Kentaro; Saijo, Yusuke

    2017-08-01

    Recognition of microbe- and danger-associated molecular patterns (MAMPs and DAMPs, respectively) by pattern recognition receptors (PRRs) is central to innate immunity in both plants and animals. The plant PRRs described to date are all cell surface-localized receptors. According to their ligand-binding ectodomains, each PRR engages a specific coreceptor or adaptor kinase in its signaling complexes to regulate defense signaling. With a focus on the coreceptor RLK BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and related SOMATIC EMBRYOGENESIS RECEPTOR KINASEs (SERKs), here we review the increasing inventory of BAK1 partners and their functions in plant immunity. We also discuss the significance of autoimmunity triggered by BAK1/SERK4 disintegration in shaping the strategies for attenuation of PRR signaling by infectious microbes and host plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  1. Superficial Immunity: Antimicrobial Responses Are More Than Skin Deep.

    PubMed

    Mack, Madison R; Kim, Brian S

    2016-07-19

    The skin barrier is essential for host defense, but how the skin provides protection when the barrier is breached is not well understood. In this issue of Immunity, Gallo and colleagues report that keratinocytes integrate signals from antimicrobial peptides via MAVS signaling to amplify their antiviral immune response. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium.

    PubMed

    Teng, Y-T A

    2006-03-01

    Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.

  3. The Anopheles innate immune system in the defense against malaria infection

    PubMed Central

    Clayton, April M.; Dong, Yuemei; Dimopoulos, George

    2014-01-01

    The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite’s successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito’s innate immune system. This review will discuss our current understanding of the Anopheles mosquito’s innate immune responses against the malaria parasite Plasmodium and the influence of the insect’s intestinal microbiota on parasite infection. PMID:23988482

  4. Alarmins and immunity.

    PubMed

    Yang, De; Han, Zhen; Oppenheim, Joost J

    2017-11-01

    More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity.

    PubMed

    Ben Khaled, Sara; Postma, Jelle; Robatzek, Silke

    2015-01-01

    A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

  6. Novel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity

    PubMed Central

    Padmanabhan, Meenu S.; Ma, Shisong; Burch-Smith, Tessa M.; Czymmek, Kirk; Huijser, Peter; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5. PMID:23516366

  7. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  8. Effects of immune challenge on the oviposition strategy of a noctuid moth.

    PubMed

    Staudacher, H; Menken, S B J; Groot, A T

    2015-08-01

    Infections can have detrimental effects on the fitness of an animal. Reproducing females may therefore be sensitive to cues of infection and be able to adaptively change their oviposition strategy in the face of infection. As one possibility, females could make a terminal investment and shift reproductive effort from future to current reproduction as life expectancy decreases. We hypothesized that females of the noctuid moth Heliothis virescens make a terminal investment and adapt their oviposition timing as well as their oviposition site selectivity in response to an immune challenge. We indeed found that females that were challenged with the bacterial entomopathogen Serratia entomophila laid more eggs than control females one night after the challenge. Additionally, bacteria-challenged females were less discriminating between oviposition sites than control females. Whereas control females preferred undamaged over damaged plants, immune-challenged females did not differentiate between the two. These results indicate that terminal investment is part of the life history of H. virescens females. Moreover, our results suggest that the strategy of terminal investment in H. virescens oviposition represents a fitness trade-off for females: in the face of infection, an increase in oviposition rate enhances female fitness, whereas low oviposition site selectivity reduces female fitness. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  9. Unique IL-13Rα2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity.

    PubMed

    Ranasinghe, C; Trivedi, S; Stambas, J; Jackson, R J

    2013-11-01

    We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)-specific CD8(+) T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor α2 (IL-13Rα2), which can "transiently" block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Rα2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8(+) T cells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8(+) T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer's patch (PP). Data revealed that intranasal delivery of these IL-13Rα2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8(+) T cells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection.

  10. Counterproliferation strategy: The influence of technology, budget, and arms control on theater missile defenses. Strategic research project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlier, G.H.

    1996-05-20

    This paper describes the historical evolution of the theater missile threat during World War II and the Persian Gulf War, and analyzes current technological challenges, budgetary pressures, and arms control restraints which constrain the development and deployment of effective theater missile defenses. The impact of these trends on strategic concepts as outlined in the National Military Strategy and their implications for attaining national policy objectives is assessed. A systems approach is used to described analyze, and evaluate the effectiveness of emerging counterproliferation strategy within the framework of an ends-ways-means strategy formulation paradigm. I conclude that current trends will lead tomore » a self-deterring strategy: resources are inadequate to support the ways we intend to achieve our national objectives. Recommendations are made to eliminate unacceptable risk and enhance the concept of `extended conventional deterrence` consistent with U.S. national values and security interests for our role in a new world order.« less

  11. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  12. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies.

    PubMed

    Piret, Jocelyne; Boivin, Guy

    2015-09-01

    Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host. Copyright © 2015 John Wiley & Sons, Ltd.

  13. A conserved mitochondrial surveillance pathway is required for defense against Pseudomonas aeruginosa.

    PubMed

    Tjahjono, Elissa; Kirienko, Natalia V

    2017-06-01

    All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.

  14. A motivational analysis of defensive pessimism and self-handicapping.

    PubMed

    Elliot, Andrew J; Church, Marcy A

    2003-06-01

    Two studies examined motivational influences on and correlates of defensive pessimism and self-handicapping and investigated the relationship between these two cognitive strategies and performance attainment. The findings indicated that defensive pessimism and self-handicapping have similar motivational profiles, with the primary difference being that self-handicapping represents the absence of approach motivation in the achievement domain, as well as the presence of avoidance motivation. Self-handicapping, but not defensive pessimism, was shown to undermine performance-attainment, and performance-avoidance goals were validated as mediators of this negative relationship. Issues regarding the functional nature of the two cognitive strategies are discussed.

  15. Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs.

    PubMed

    Warburton, Elizabeth M; Kam, Michael; Bar-Shira, Enav; Friedman, Aharon; Khokhlova, Irina S; Koren, Lee; Asfur, Mustafa; Geffen, Eli; Kiefer, Daniel; Krasnov, Boris R; Degen, A Allan

    2016-09-01

    Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.

  16. Toll-like receptors (TLRs) and immune disorders.

    PubMed

    Akashi-Takamura, Sachiko; Miyake, Kensuke

    2006-10-01

    Upon the invasion of pathogens, the immune system needs to mount defense responses immediately. Over the past 10 years, Toll-like receptors (TLRs) have been discovered in mammals and defined as pathogen sensors. TLRs are considered to bind directly to ligands, discriminate them immediately, and induce defense responses when appropriate. We here review microbial recognition by TLRs, downstream signaling, and the relationship of TLRs to susceptibility to infectious diseases and immune disorders. Recent reports have revealed a requirement for co-receptors in TLR responses. A TLR signaling pathway is required for protection against infectious diseases, but excessive signaling may lead to allergies, autoimmune diseases, or atherosclerosis. In humans, several deficiencies of signaling molecules downstream of TLRs, and TLR polymorphisms that affect recognition or signaling, were reported to cause immunodeficiencies. It is important to understand how TLR signaling is controlled.

  17. Cellular and humoral immune responses during tuberculosis infection: useful knowledge in the era of biological agents.

    PubMed

    Matucci, Andrea; Maggi, Enrico; Vultaggio, Alessandra

    2014-05-01

    In this review, recent insights into innate and adaptive cellular and humoral immune response to Mycobacterium tuberculosis (Mtb) are discussed and the role of specific cytokines such as tumor necrosis factor-α (TNF-α) is highlighted. According to recent findings, the immune system plays a key role in avoiding mycobacteria dissemination. The importance of different cell types (macrophages, dendritic cells, interferon-γ-producing T cells) as well as the production of proinflammatory cytokines such as interleukin 6 (IL-6), IL-12, and IL-23/IL-17 have been demonstrated. Alveolar macrophages are considered the first cells infected by Mtb during respiratory infection. Mtb proliferates within alveolar macrophages and dendritic cells and induces the release of cytokines such as TNF-α, IL-1, IL-6, and IL-12. Toll-like receptors-stimulated dendritic cells link innate and adaptive immunity by promoting polarization of effector T cells. The efficient induction of Th1 immunity is decisive in defense against Mtb. In fact, host effector immune response against Mtb is related to the presence of a Th1 response. The definition of the cellular and molecular mechanisms involved in the immune response to Mtb can be helpful in developing new preventive strategies to avoid infection relapse, particularly in patients treated with biological agents.

  18. New strategies to improve the efficacy of colorectal cancer vaccines: from bench to bedside.

    PubMed

    Mocellin, Simone

    2006-12-01

    By exploiting a naturally occurring defense system, anticancer vaccination embodies an ideal non-toxic treatment capable of evoking tumor-specific immune responses that can ultimately recognize and kill colorectal cancer (CRC) cells. Despite the enormous theoretical potential of active specific immunotherapy, no vaccination regimen has achieved sufficient therapeutic efficacy necessary for clinical implementation. Nevertheless, several immunological advances have opened new avenues of research to decipher the biological code governing tumor immune responsiveness, and this is leading to the design of potentially more effective immunotherapeutic protocols. This review briefly summarizes the principles behind anti-CRC vaccination and describes the most promising immunological strategies that have been developed, which are expected to renew interest in this molecularly targeted anticancer approach.

  19. Peptidoglycan from Fermentation By-Product Triggers Defense Responses in Grapevine

    PubMed Central

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192

  20. Defense RDT and E Planning and Strategy Parameters: Methodological Considerations

    DTIC Science & Technology

    1974-12-01

    Lions ant, i :,lation, oil embargo, and other mineral scarcities. These factors .o w .vy -.ponr Lne program decisions made during the defense planning...PAGE (When Data Entered) REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORC COMPLETING FORM (j . OVT ACCESSION NO.,44- I PIE 4CAIL1...Wilson Boulevard 14 MO NITORING AGENCY NAME & ADDRESS (if diff, from Con~trolling office) I Defense Supply Service-Washington 2’,DCA~FCTOI--uw.A*4c-Room

  1. The Gay Panic Defense: Legal Defense Strategy or Reinforcement of Homophobia in Court?

    PubMed

    Tomei, Jenna; Cramer, Robert J; Boccaccini, Marcus T; Panza, Nancy Ryba

    2017-06-01

    Gay panic refers to a heterosexual man violently responding to unwanted sexual advances from a gay man. In court, the defendant may argue he was provoked or temporarily insane. This study utilized 352 jury-eligible citizens to assess differences across mediums of gay panic. Participants were asked to read vignettes depicting a control, gay panic as provocation, or gay panic as insanity condition and provide verdicts and ratings of blame and responsibility. Participants also completed measures assessing political orientation and homonegativity. Data were analyzed via a MANCOVA, a chi-square goodness-of-fit test, and general linear modeling. Verdicts, victim blame, and ratings of responsibility differed across vignette conditions, with an observed leniency effect when gay panic was claimed in either context. Homonegativity also exacerbated patterns of prodefendant views, as participants higher in homonegativity assigned higher victim blame, lower defendant responsibility, and more lenient verdicts in the gay panic conditions. The effect of political orientation was nuanced, as only republicans in the provocation condition followed the anticipated pattern in rendering more lenient verdicts. Results provide additional support for the notion gay panic defenses may be, in part, fueled by political beliefs and prejudicial beliefs against persons of sexual minority status. Drawing from a justification-suppression model, it may be that in cases of gay panic, a context is created in which prejudiced ideologies can be openly expressed via leniency on the defendant. Implications may be relevant to future criminal law policies and practices, particularly advocacy and policy efforts, judicial training, and trial consultation to attorneys for juror selection and development of trial strategy.

  2. Clinical and economic impact of various strategies for varicella immunity screening and vaccination of health care personnel.

    PubMed

    Baracco, G J; Eisert, S; Saavedra, S; Hirsch, P; Marin, M; Ortega-Sanchez, I R

    2015-10-01

    Exposure to patients with varicella or herpes zoster causes considerable disruption to a health care facility's operations and has a significant health and economic impact. However, practices related to screening for immunity and immunization of health care personnel (HCP) for varicella vary widely. A decision tree model was built to evaluate the cost-effectiveness of 8 different strategies of screening and vaccinating HCP for varicella. The outcomes are presented as probability of acquiring varicella, economic impact of varicella per employee per year, and cost to prevent additional cases of varicella. Monte Carlo simulations and 1-way sensitivity analyses were performed to address the uncertainties inherent to the model. Alternative epidemiologic and technologic scenarios were also analyzed. Performing a clinical screening followed by serologic testing of HCP with negative history diminished the cost impact of varicella by >99% compared with not having a program. Vaccinating HCP with negative screen cost approximately $50,000 per case of varicella prevented at the current level of U.S. population immunity, but was projected to be cost-saving at 92% or lower immunity prevalence. Improving vaccine acceptance rates and using highly sensitive assays also optimize cost-effectiveness. Strategies relying on screening and vaccinating HCP for varicella on employment were shown to be cost-effective for health care facilities and are consistent with current national guidelines for varicella prevention. Published by Elsevier Inc.

  3. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    PubMed Central

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  4. Plant defense activators: applications and prospects in cereal crops

    USDA-ARS?s Scientific Manuscript database

    This review addresses the current understanding of the plant immune response and the molecular mechanisms responsible for systemic acquired resistance as well as the phenomenon of "priming" in plant defense. A detailed discussion of the role of salicylic acid in activating the plant transcription c...

  5. Defense.gov Special Report: Travels with Panetta - September 2011

    Science.gov Websites

    : Regional Defense, Cyber Highlight AUSMIN Talks SAN FRANCISCO, Sept. 14, 2011 - Asia-Pacific defense Sexual Assault Prevention Asia-Pacific Rebalance Cyber Strategy News Today in DOD Press Advisories News

  6. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies

    PubMed Central

    Becker, Dirk; Larisch, Christina; Kreuzer, Ines; Escalante-Perez, Maria; Schulze, Waltraud X.; Ankenbrand, Markus; Van de Weyer, Anna-Lena; Krol, Elzbieta; Al-Rasheid, Khaled A.; Mithöfer, Axel; Weber, Andreas P.; Schultz, Jörg

    2016-01-01

    Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death–related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition. PMID:27197216

  7. Modulation of host immunity by beneficial microbes.

    PubMed

    Zamioudis, Christos; Pieterse, Corné M J

    2012-02-01

    In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control activity, can stimulate plant growth by directly suppressing deleterious soilborne pathogens or by priming aboveground plant parts for enhanced defense against foliar pathogens or insect herbivores. The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses. A growing body of evidence suggests that beneficial microbes are initially recognized as potential invaders, after which an immune response is triggered, whereas, at later stages of the interaction, mutualists are able to short-circuit plant defense responses to enable successful colonization of host roots. Here, we review our current understanding of how symbiotic and nonsymbiotic beneficial soil microbes modulate the plant immune system and discuss the role of local and systemic defense responses in establishing the delicate balance between the two partners.

  8. Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors.

    PubMed

    Cassetta, Luca; Kitamura, Takanori

    2018-01-01

    Inhibition of immune checkpoint pathways in CD8 + T cell is a promising therapeutic strategy for the treatment of solid tumors that has shown significant anti-tumor effects and is now approved by the FDA to treat patients with melanoma and lung cancer. However the response to this therapy is limited to a certain fraction of patients and tumor types, for reasons still unknown. To ensure success of this treatment, CD8 + T cells, the main target of the checkpoint inhibitors, should exert full cytotoxicity against tumor cells. However recent studies show that tumor-associated macrophages (TAM) can impede this process by different mechanisms. In this mini-review we will summarize recent studies showing the effect of TAM targeting on immune checkpoint inhibitors efficacy. We will also discuss on the limitations of the current strategies as well on the future scientific challenges for the progress of the tumor immunology field.

  9. Rationality Validation of a Layered Decision Model for Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Huaqiang; Alves-Foss, James; Zhang, Du

    2007-08-31

    We propose a cost-effective network defense strategy built on three key: three decision layers: security policies, defense strategies, and real-time defense tactics for countering immediate threats. A layered decision model (LDM) can be used to capture this decision process. The LDM helps decision-makers gain insight into the hierarchical relationships among inter-connected entities and decision types, and supports the selection of cost-effective defense mechanisms to safeguard computer networks. To be effective as a business tool, it is first necessary to validate the rationality of model before applying it to real-world business cases. This paper describes our efforts in validating the LDMmore » rationality through simulation.« less

  10. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Male pregnancy and biparental immune priming.

    PubMed

    Roth, Olivia; Klein, Verena; Beemelmanns, Anne; Scharsack, Jörn P; Reusch, Thorsten B H

    2012-12-01

    In vertebrates, maternal transfer of immunity via the eggs or placenta provides offspring with crucial information on prevailing pathogens and parasites. Males contribute little to such transgenerational immune priming, either because they do not share the environment and parasite pressure of the offspring or because sperm are too small for transfer of immunity. In the teleost group of Syngnathids (pipefish, seahorses, and sea dragons), males brood female eggs in a placenta-like structure. Such sex-role-reversed species provide a unique opportunity to test for adaptive plasticity in immune transfer. Here, males and females should both influence offspring immunity. We experimentally tested paternal effects on offspring immunity by examining immune cell proliferation and immune gene expression. Maternal and paternal bacterial exposure induced offspring immune defense 5 weeks after hatching, and this effect persisted in 4-month-old offspring. For several offspring immune traits, double parental exposure (maternal and paternal) enhanced the response, whereas for another group of immune traits, the transgenerational induction already took place if only one parent was exposed. Our study shows that sex role reversal in connection with male pregnancy opens the door for biparental influences on offspring immunity and may represent an additional advantage for the evolution of male pregnancy.

  12. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Plant Lectins: Wheat Defense Strategy Against Hessian Fly

    USDA-ARS?s Scientific Manuscript database

    Plants produce a variety of defense proteins, including lectins in response to attack by phytophagous insects. Ultrastructural studies reveal that binding to insect gut structures and resistance to proteolytic degradation by insect digestive enzymes are the two main prerequisites for the lectins to...

  14. Factors associated with immunization against Hepatitis B among workers of the Family Health Strategy Program.

    PubMed

    Martins, Andréa Maria Eleutério de Barros Lima; da Costa, Fernanda Marques; Ferreira, Raquel Conceição; dos Santos Neto, Pedro Eleutério; de Magalhaes, Tatiana Almeida; de Sá, Maria Aparecida Barbosa; Pordeus, Isabela Almeida

    2015-01-01

    Cross-sectional study conducted among workers of the Family Health Strategy Montes Claros. To investigate the report of vaccination against Hepatitis B, verification of immunization and the factors associated with dosages of anti-HBs. We collected blood samples from those reported that they had one or more doses of the vaccine. We evaluated the association of the dosage of anti- HBs with sociodemographic conditions, occupational and behavioral. The associations were verified by Mann Whitney and Kruskal Wallis and correlation Spermann by linear regression using SPSS® 17.0. Among the 761 respondents, 504 (66.1%) were vaccinated, 52.5 % received three doses, 30.4 % verified immunization. Of the 397 evaluated for the determination of anti-Hbs, 16.4% were immune. It was found that longer duration of work was associated with higher levels of anti-HBs, while levels of smoking were inversely associated with anti-HBs. These workers need for vaccination campaigns.

  15. A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm

    PubMed Central

    Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng

    2014-01-01

    How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330

  16. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes.

    PubMed

    Aljaafri, Weasam A R; McNeece, Brant T; Lawaju, Bisho R; Sharma, Keshav; Niruala, Prakash M; Pant, Shankar R; Long, David H; Lawrence, Kathy S; Lawrence, Gary W; Klink, Vincent P

    2017-12-01

    The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes. Copyright © 2017. Published by Elsevier

  17. Novel mode of action of plant defense peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

    USDA-ARS?s Scientific Manuscript database

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes that results in the reinforcement of plant cell walls and production of antimicrobial compounds. To suppress plant defense, fungi secrete effecto...

  18. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals.

    PubMed

    Piasecka, Anna; Jedrzejczak-Rey, Nicolas; Bednarek, Paweł

    2015-05-01

    Plant secondary metabolites carry out numerous functions in interactions between plants and a broad range of other organisms. Experimental evidence strongly supports the indispensable contribution of many constitutive and pathogen-inducible phytochemicals to plant innate immunity. Extensive studies on model plant species, particularly Arabidopsis thaliana, have brought significant advances in our understanding of the molecular mechanisms underpinning pathogen-triggered biosynthesis and activation of defensive secondary metabolites. However, despite the proven significance of secondary metabolites in plant response to pathogenic microorganisms, little is known about the precise mechanisms underlying their contribution to plant immunity. This insufficiency concerns information on the dynamics of cellular and subcellular localization of defensive phytochemicals during the encounters with microbial pathogens and precise knowledge on their mode of action. As many secondary metabolites are characterized by their in vitro antimicrobial activity, these compounds were commonly considered to function in plant defense as in planta antibiotics. Strikingly, recent experimental evidence suggests that at least some of these compounds alternatively may be involved in controlling several immune responses that are evolutionarily conserved in the plant kingdom, including callose deposition and programmed cell death. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. The bacteriome-mycobiome interaction and antifungal host defense.

    PubMed

    Oever, Jaap Ten; Netea, Mihai G

    2014-11-01

    Large communities of microorganisms, collectively termed the microbiome, inhabit our body surfaces. With the advent of next-generation sequencing, the diversity and abundance of these communities are being unravelled. Besides an imporant role in metabolic processes, the microbiome is essential for proper functioning of our immune system, including the defense against fungi. Despite the progress of the past years, studies aimed at characterizing our fungal colonizers (the mycobiome) are limited; nevertheless fungi are important players of the microbiome, either as a cofactor in disease or as potential pathogens. In this review, we describe the role of the bacterial microbiome in antifungal host defense. On the one hand, bacteria provide colonization resistance to fungi, inhibit Candida virulence by preventing yeast-hyphal transition and contribute to epithelial integrity, all factors are important for the pathogenesis of invasive fungal disease. On the other hand, several bacterial species modulate mucosal (antifungal) immune responses. Murine studies demonstrate important effects of the microbiome on the antifungal responses of T-helper 17 cells, regulatory T cells and innate lymphoid cells. Inferred from these studies, perturbation of the healthy microbiome should be avoided and microbiome manipulation and interventions based on bacteria-derived pathways involved in immunomodulation are attractive options for modulating antifungal host defense. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cancer Self-Defense: An Immune Stealth.

    PubMed

    Nakajima, Kosei; Nangia-Makker, Pratima; Hogan, Victor; Raz, Avraham

    2017-10-15

    The hurdles in realizing successful cancer immunotherapy stem from the fact that cancer patients are either refractory to immune response and/or develop resistance. Here, we propose that these phenomena are due, in part, to the deployment/secretion of a "decoy flare," for example, anomalous cancer-associated antigens by the tumor cells. The cancer secretome, which resembles the parent cell make-up, is composed of soluble macromolecules (proteins, glycans, lipids, DNAs, RNAs, etc.) and insoluble vesicles (exosomes), thus hindering cancer detection/recognition by immunotherapeutic agents, resulting in a "cancer-stealth" effect. Immunotherapy, or any treatment that relies on antigens' expression/function, could be improved by the understanding of the properties of the cancer secretome, as its clinical evaluation may change the therapeutic landscape. Cancer Res; 77(20); 5441-4. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Plant immunity triggered by microbial molecular signatures.

    PubMed

    Zhang, Jie; Zhou, Jian-Min

    2010-09-01

    Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resulting in diminished plant defenses and increased bacterial virulence. Some of the proteins targeted by pathogen effectors have evolved to sense the effector activity by associating with cytoplasmic immune receptors classically known as resistance proteins. This allows plants to activate a second layer of immunity termed effector-triggered immunity (ETI). Recent studies on PTI regulation and P. syringae effector targets have uncovered new components in PTI signaling. Although MAP kinase (MAPK) cascades have been considered crucial for PTI, emerging evidence indicates that a MAPK-independent pathway also plays an important role in PTI signaling.

  2. Private Industry Support to Defense Needs.

    DTIC Science & Technology

    1982-04-19

    especially private industry, must fully understand that defense procurement is changing drastically and it will no longer be looking for all its...products on the leading edge of technology. The price in time and money dictates this changed procure - ment strategy immediately. Private industry would...A process to stablize procurements and breakdown the barriers that are stopping new firms from entering into defense business; private industry

  3. Modulation of Human Immune Response by Fungal Biocontrol Agents

    PubMed Central

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  4. Plant immunity against viruses: antiviral immune receptors in focus

    PubMed Central

    Calil, Iara P.

    2017-01-01

    Abstract Background Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant–virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant–virus interactions that affect disease or resistance. Scope and Conclusion This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin–26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on

  5. Plant immunity against viruses: antiviral immune receptors in focus.

    PubMed

    Calil, Iara P; Fontes, Elizabeth P B

    2017-03-01

    Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing

  6. Balancing Immunity and Yield in Crop Plants.

    PubMed

    Ning, Yuese; Liu, Wende; Wang, Guo-Liang

    2017-12-01

    Crop diseases cause enormous yield losses and threaten global food[ED1] security. The use of highly resistant cultivars can effectively control plant diseases, but in crops, genetic immunity to disease often comes with an unintended reduction in growth and yield. Here, we review recent advances in understanding how nucleotide-binding domain, leucine-rich repeat (NLR) receptors and cell wall-associated kinase (WAK) proteins function in balancing immunity and yield. We also discuss the role of plant hormones and transcription factors in regulating the trade-offs between plant growth and immunity. Finally, we describe how a novel mechanism of translational control of defense proteins can enhance immunity without the reduction in fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Plant Immune Responses Against Viruses: How Does a Virus Cause Disease?[OA

    PubMed Central

    Mandadi, Kranthi K.; Scholthof, Karen-Beth G.

    2013-01-01

    Plants respond to pathogens using elaborate networks of genetic interactions. Recently, significant progress has been made in understanding RNA silencing and how viruses counter this apparently ubiquitous antiviral defense. In addition, plants also induce hypersensitive and systemic acquired resistance responses, which together limit the virus to infected cells and impart resistance to the noninfected tissues. Molecular processes such as the ubiquitin proteasome system and DNA methylation are also critical to antiviral defenses. Here, we provide a summary and update of advances in plant antiviral immune responses, beyond RNA silencing mechanisms—advances that went relatively unnoticed in the realm of RNA silencing and nonviral immune responses. We also document the rise of Brachypodium and Setaria species as model grasses to study antiviral responses in Poaceae, aspects that have been relatively understudied, despite grasses being the primary source of our calories, as well as animal feed, forage, recreation, and biofuel needs in the 21st century. Finally, we outline critical gaps, future prospects, and considerations central to studying plant antiviral immunity. To promote an integrated model of plant immunity, we discuss analogous viral and nonviral immune concepts and propose working definitions of viral effectors, effector-triggered immunity, and viral pathogen-triggered immunity. PMID:23709626

  8. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection

    PubMed Central

    O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.

    2015-01-01

    Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222

  9. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection.

    PubMed

    O'Brien, Valerie P; Hannan, Thomas J; Schaeffer, Anthony J; Hultgren, Scott J

    2015-02-01

    Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact.

  10. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato[OPEN

    PubMed Central

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong

    2018-01-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea. Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea. PMID:29511053

  11. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity[OPEN

    PubMed Central

    2017-01-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus (Blumeria graminis f. sp hordei) in Arabidopsis thaliana. Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi. PMID:28808134

  12. Low-severity fire increases tree defense against bark beetle attacks

    Treesearch

    Sharon Hood; Anna Sala; Emily K. Heyerdahl; Marion Boutin

    2015-01-01

    Induced defense is a common plant strategy in response to herbivory. Although abiotic damage, such as physical wounding, pruning, and heating, can induce plant defense, the effect of such damage by large-scale abiotic disturbances on induced defenses has not been explored and could have important consequences for plant survival facing future biotic...

  13. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  14. Department of Defense 2016 Operational Energy Strategy

    DTIC Science & Technology

    2015-12-03

    forward arming refuel point to refuel a UH-60 Black Hawk, Dec. 21, 2014, Tappita, Liberia . Atkins and a team of crew chiefs set up a forward arming...refueling point from their CH-47 Chinook to ensure the commander of Joint Forces Command - United Assistance and crew made it to Ebola treatment unit...sites throughout Liberia . United Assistance is a Department of Defense operation in Liberia to provide logistics, training and engineering support to

  15. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants.

    PubMed

    De Vleesschauwer, David; Filipe, Osvaldo; Hoffman, Gena; Seifi, Hamed Soren; Haeck, Ashley; Canlas, Patrick; Van Bockhaven, Jonas; De Waele, Evelien; Demeestere, Kristof; Ronald, Pamela; Hofte, Monica

    2018-01-01

    Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. [IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].

    PubMed

    Kochlamasashvili, B; Gogiashvili, L; Jandieri, K

    2017-11-01

    Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.

  17. Immune Regulatory Activity of Vitamin D3 in Head and Neck Cancer

    PubMed Central

    Young, M. Rita I.; Day, Terry A.

    2013-01-01

    While vitamin D exhibits a multitude of cellular effects that can impact on cancer development and progression, this review focuses on its immune modulatory effects. These immune modulatory effects can be both direct and indirect. Compared to other cancer types, head and neck squamous cell carcinomas (HNSCC) have received less attention, but are a fascination immunologically because of the profound extent to which they inhibit immune defenses. This review describes the mechanisms of some of these immune inhibitory processes and how vitamin D can help overcome aspects of this immune suppression. PMID:24202334

  18. Viral evasion of DNA-stimulated innate immune responses

    PubMed Central

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  19. Nucleic Acid Immunity.

    PubMed

    Hartmann, G

    2017-01-01

    Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to

  20. Antipredator defenses predict diversification rates

    PubMed Central

    Arbuckle, Kevin; Speed, Michael P.

    2015-01-01

    The “escape-and-radiate” hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488

  1. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

    PubMed Central

    Chen, Tao; Duan, Liujian; Zhou, Bo; Yu, Haixiang; Zhu, Hui; Cao, Yangrong; Zhang, Zhongming

    2017-01-01

    Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011) and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2), pathogenesis-related protein 10 (PR10), and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules. PMID:28611764

  2. Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed Laurencia dendroidea.

    PubMed

    de Oliveira, Louisi Souza; Tschoeke, Diogo Antonio; Magalhães Lopes, Ana Carolina Rubem; Sudatti, Daniela Bueno; Meirelles, Pedro Milet; Thompson, Cristiane C; Pereira, Renato Crespo; Thompson, Fabiano L

    2017-01-01

    The ability to recognize and respond to the presence of microbes is an essential strategy for seaweeds to survive in the marine environment, but understanding of molecular seaweed-microbe interactions is limited. Laurencia dendroidea clones were inoculated with the marine bacterium Vibrio madracius . The seaweed RNA was sequenced, providing an unprecedentedly high coverage of the transcriptome of Laurencia , and the gene expression levels were compared between control and inoculated samples after 24, 48, and 72 h. Transcriptomic changes in L. dendroidea in the presence of V. madracius include the upregulation of genes that participate in signaling pathways described here for the first time as a response of seaweeds to microbes. Genes coding for defense-related transcription activators, reactive oxygen species metabolism, terpene biosynthesis, and energy conversion pathways were upregulated in inoculated samples of L. dendroidea , indicating an integrated defensive system in seaweeds. This report contributes significantly to the current knowledge about the molecular mechanisms involved in the highly dynamic seaweed-bacterium interactions. IMPORTANCE Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius . By expanding knowledge about seaweed-bacterium interactions and about the

  3. Dissecting innate immune responses with the tools of systems biology.

    PubMed

    Smith, Kelly D; Bolouri, Hamid

    2005-02-01

    Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.

  4. Trained immunity: a program of innate immune memory in health and disease

    PubMed Central

    Netea, Mihai G.; Joosten, Leo A.B.; Latz, Eicke; Mills, Kingston H.G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O’Neill, Luke A.J.; Xavier, Ramnik J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  5. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  6. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  7. Plant immunity in plant–aphid interactions

    PubMed Central

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  8. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity.

    PubMed

    Nielsen, Mads E; Jürgens, Gerd; Thordal-Christensen, Hans

    2017-08-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus ( Blumeria graminis f. sp hordei ) in Arabidopsis thaliana Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi. © 2017 American Society of Plant Biologists. All rights reserved.

  9. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation

  10. Immune defense of emodin enriched diet in Clarias batrachus against Aeromonas hydrophila.

    PubMed

    Harikrishnan, Ramasamy; Jawahar, Sundaram; Thamizharasan, Subramanian; Paray, Bilal Ahmad; Al-Sadoon, Mohammad K; Balasundaram, Chellam

    2018-05-01

    This study investigates the effect of emodin enriched diet on growth, hematology, and immune response in walking catfish, Clarias batrachus against Aeromonas hydrophila. The basal (control) diet supplemented with emodin at 0.0, 0.1, 0.2, or 0.4 g kg -1 was fed to the experimental groups for a period of four weeks. Feeding infected fish with 0.2 g kg -1 and 0.4 g kg -1 emodin enriched diets resulted in an overall weight gain, enhanced PER and FCR when compared to other diets. The survival rates were 98.3% and 96.7% in 0.1 g kg -1 and 0.4 g kg -1 emodin diet fed groups. Feeding with 0.2 g kg -1 diet the RBC level significantly elevated on week 1 and with 0.4 g kg -1 diet on weeks 2 and 4. The WBC, the percentage of globulin and neutrophils increased significantly with 0.2 g kg -1 diet only on week 4; however with 0.4 g kg -1 diet the increase was observed from week 1-4. The phagocytic activity increased significantly on being fed with 0.4 g kg -1 diet on week 2 while with 0.2 g kg -1 and 0.4 g kg -1 diets the increase manifested only on week 4; the respiratory burst activity also significantly increased on week 4 whereas increased the complement activity on weeks 2 and 4. The superoxide dismutase (SOD) activity was high on being fed with 0.4 g kg -1 diet on week 1; with 0.2 g kg -1 or 0.4 g kg -1 diets the increase was observed on weeks 2 and 4. The serum IgM level significantly increased when fed with 0.4 g kg -1 diet whereas the lysozyme activity was enhanced with 0.2 g kg -1 and 0.4 g kg -1 emodin diets on weeks 2 and 4. The percentage cumulative mortality was 10% with 0.1 g kg -1 or 0.2 g kg -1 diets while with 0.2 g kg -1 diet it was 15%. The results demonstrate that as a feed additive emodin acts as an immunostimulant enhancing the specific and nonspecific immune defense affording increased disease protection, enhances better growth and boosts hematology parameters in C

  11. The future is now: prospective temporal self-appraisals among defensive pessimists and optimists.

    PubMed

    Sanna, Lawrence J; Chang, Edward C; Carter, Seth E; Small, Eulena M

    2006-06-01

    Three studies found that prospective temporal self-appraisals can be part of defensive pessimists' strategy; they felt closer to equally distant negative than positive futures. In Study 1, defensive pessimists felt closer to future failures and reported more negative affect than those considering success. In Study 2, when manipulated negative futures were close, defensive pessimists felt bad and performed well; results suggested that viewing negative futures as close may be part of their natural strategy. Study 3 found that prospective self-appraisals influenced performances through felt preparation. Optimists did not use prospective self-appraisals (Study 1) and their performances were unaffected by manipulated temporal distance (Studies 2 and 3). Discussion centers on prospective self-appraisals and multiple strategies of defensive pessimists.

  12. Immune-Related Functions of the Hivep Gene Family in East African Cichlid Fishes

    PubMed Central

    Diepeveen, Eveline T.; Roth, Olivia; Salzburger, Walter

    2013-01-01

    Immune-related genes are often characterized by adaptive protein evolution. Selection on immune genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene family, tested their involvement in the immune defense, and related our results to explosive speciation and adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between immune response parameters and expression levels of three Hivep loci. This work provides the first evidence for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host–pathogen interactions within an adaptive radiation. PMID:24142922

  13. Effects of engineered nanoparticles on the innate immune system.

    PubMed

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms.

    PubMed

    Kang, Sangmin; Myoung, Jinjong

    2017-10-28

    Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

  15. Progranulin Plays a Central Role in Host Defense during Sepsis by Promoting Macrophage Recruitment.

    PubMed

    Song, Zhixin; Zhang, Xuemei; Zhang, Liping; Xu, Fang; Tao, Xintong; Zhang, Hua; Lin, Xue; Kang, Lihua; Xiang, Yu; Lai, Xaiofei; Zhang, Qun; Huang, Kun; Dai, Yubing; Yin, Yibing; Cao, Ju

    2016-11-15

    Progranulin, a widely expressed protein, has multiple physiological functions. The functional role of progranulin in the host response to sepsis remains unknown. To assess the role of progranulin in the host response to sepsis. Effects of progranulin on host response to sepsis were determined. Progranulin concentrations were significantly elevated in adult (n = 74) and pediatric (n = 26) patients with sepsis relative to corresponding healthy adult (n = 36) and pediatric (n = 17) control subjects, respectively. By using a low-lethality model of nonsevere sepsis, we observed that progranulin deficiency not only increased mortality but also decreased bacterial clearance during sepsis. The decreased host defense to sepsis in progranulin-deficient mice was associated with reduced macrophage recruitment, with correspondingly impaired chemokine CC receptor ligand 2 (CCL2) production in peritoneal lavages during the early phase of sepsis. Progranulin derived from hematopoietic cells contributed to host defense in sepsis. Therapeutic administration of recombinant progranulin not only rescued impaired host defense in progranulin-deficient mice after nonsevere sepsis but also protected wild-type mice against a high-lethality model of severe sepsis. Progranulin-mediated protection against sepsis was closely linked to improved peritoneal macrophage recruitment. In addition, CCL2 treatment of progranulin-deficient mice improved survival and decreased peritoneal bacterial loads during sepsis, at least in part through promotion of peritoneal macrophage recruitment. This proof-of-concept study supports a central role of progranulin-dependent macrophage recruitment in host defense to sepsis, opening new opportunities to host-directed therapeutic strategy that manipulate host immune response in the treatment of sepsis.

  16. A Novel Energy-Efficient Multi-Sensor Fusion Wake-Up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking.

    PubMed

    Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan

    2018-04-18

    A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.

  17. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity

    PubMed Central

    Sohn, Kee Hoon; Hughes, Richard K.; Piquerez, Sophie J.; Jones, Jonathan D. G.; Banfield, Mark J.

    2012-01-01

    Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding–leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4C, residues 134–221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4C required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4C, and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem. PMID:22988101

  18. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    PubMed

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  19. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    PubMed Central

    Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.

    2018-01-01

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588

  20. A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosubtypic immunity against future pandemic influenza virus

    PubMed Central

    Lee, Yu-Na; Lee, Young-Tae; Kim, Min-Chul; Gewirtz, Andrew T.; Kang, Sang-Moo

    2016-01-01

    The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. Here, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T-cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat M2e epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting antibodies to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8+ T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8+ T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69+ and CD103+ as well as M2e antibodies. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks. PMID:26864033