Science.gov

Sample records for immune defense strategies

  1. Linking immune patterns and life history shows two distinct defense strategies in land snails (gastropoda, pulmonata).

    PubMed

    Russo, Jacqueline; Madec, Luc

    2013-01-01

    Life history integration of the defense response was investigated at intra- and interspecific levels in land snails of the family Helicidae. Two hypotheses were tested: (i) fitness consequences of defense responses are closely related to life history traits such as size at maturity and life span; (ii) different pathways of the immune response based on "nonspecific" versus "specific" responses may reflect different defense options. Relevant immune responses to a challenge with E. coli were measured using the following variables: blood cell density, cellular or plasma antibacterial activity via reactive oxygen species (ROS) level, and bacterial growth inhibition. The results revealed that the largest snails did not exhibit the strongest immune response. Instead, body mass influenced the type of response in determining the appropriate strategy. Snails with a higher body mass at maturity had more robust plasma immune responses than snails with a lower mass, which had greater cell-mediated immune responses with a higher hemocyte density. In addition, ROS appeared also to be a stress mediator as attested by differences between sites and generations for the same species.

  2. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    PubMed Central

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  3. Immune defense and host life history.

    PubMed

    Zuk, Marlene; Stoehr, Andrew M

    2002-10-01

    Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.

  4. Immune defense against pneumonic plague

    PubMed Central

    Smiley, Stephen T.

    2009-01-01

    Summary Yersinia pestis is one of the world's most virulent human pathogens. Inhalation of this Gram-negative bacterium causes pneumonic plague, a rapidly progressing and usually fatal disease. Extensively antibiotic-resistant strains of Y. pestis exist and have significant potential for exploitation as agents of terrorism and biowarfare. Subunit vaccines comprised of the Y. pestis F1 and LcrV proteins are well-tolerated and immunogenic in humans but cannot be tested for efficacy, because pneumonic plague outbreaks are uncommon and intentional infection of humans is unethical. In animal models, F1/LcrV-based vaccines protect mice and cynomolgus macaques but have failed, thus far, to adequately protect African green monkeys. We lack an explanation for this inconsistent efficacy. We also lack reliable correlate assays for protective immunity. These deficiencies are hampering efforts to improve vaccine efficacy. Here, I review the immunology of pneumonic plague, focusing on evidence that humoral and cellular defense mechanisms collaborate to defend against pulmonary Y. pestis infection. PMID:18837787

  5. Improving immunization strategies

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Liljeros, Fredrik; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo

    2007-04-01

    We introduce an immunization method where the percentage of required vaccinations for immunity are close to the optimal value of a targeted immunization scheme of highest degree nodes. Our strategy retains the advantage of being purely local, without the need for knowledge on the global network structure or identification of the highest degree nodes. The method consists of selecting a random node and asking for a neighbor that has more links than himself or more than a given threshold and immunizing him. We compare this method to other efficient strategies on three real social networks and on a scale-free network model and find it to be significantly more effective.

  6. Evasion of host immune defenses by human papillomavirus.

    PubMed

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.

  7. Defense Display Strategy and Roadmaps

    DTIC Science & Technology

    2002-08-06

    ultra-resolution, true 3D , and intelligent displays (integration of computers and communication functions into screens). The new strategy is Service...led. Keywords: defense, electronic displays, high definition, micro-display, 25-megapixel, true 3D , novel and intelligent displays 1...megapixel and true 3D devices. The approved roadmap is illustrated in Figure 1. * Paper

  8. Disease Tolerance as a Defense Strategy

    PubMed Central

    Medzhitov, Ruslan; Schneider, David S.; Soares, Miguel P.

    2013-01-01

    The immune system protects from infections primarily by detecting and eliminating the invading pathogens; however, the host organism can also protect itself from infectious diseases by reducing the negative impact of infections on host fitness. This ability to tolerate a pathogen’s presence is a distinct host defense strategy, which has been largely overlooked in animal and human studies. Introduction of the notion of “disease tolerance” into the conceptual toolkit of immunology will expand our understanding of infectious diseases and host pathogen interactions. Analysis of disease tolerance mechanisms should provide new approaches for the treatment of infections and other diseases. PMID:22363001

  9. Immunization strategies against henipaviruses.

    PubMed

    Broder, Christopher C; Geisbert, Thomas W; Xu, Kai; Nikolov, Dimitar B; Wang, Lin-Fa; Middleton, Deborah; Pallister, Jackie; Bossart, Katharine N

    2012-01-01

    Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.

  10. Defense strategies used by two sympatric vineyard moth pests.

    PubMed

    Vogelweith, Fanny; Thiéry, Denis; Moret, Yannick; Colin, Eloïse; Motreuil, Sébastien; Moreau, Jérôme

    2014-05-01

    Natural enemies including parasitoids are the major biological cause of mortality among phytophagous insects. In response to parasitism, these insects have evolved a set of defenses to protect themselves, including behavioral, morphological, physiological and immunological barriers. According to life history theory, resources are partitioned to various functions including defense, implying trade-offs among defense mechanisms. In this study we characterized the relative investment in behavioral, physical and immunological defense systems in two sympatric species of Tortricidae (Eupoecilia ambiguella, Lobesia botrana) which are important grapevine moth pests. We also estimated the parasitism by parasitoids in natural populations of both species, to infer the relative success of the investment strategies used by each moth. We demonstrated that larvae invest differently in defense systems according to the species. Relative to L. botrana, E. ambiguella larvae invested more into morphological defenses and less into behavioral defenses, and exhibited lower basal levels of immune defense but strongly responded to immune challenge. L. botrana larvae in a natural population were more heavily parasitized by various parasitoid species than E. ambiguella, suggesting that the efficacy of defense strategies against parasitoids is not equal among species. These results have implications for understanding of regulation in communities, and in the development of biological control strategies for these two grapevine pests.

  11. [The paraspecific immune defense: possibilities and limits].

    PubMed

    Mayr, A

    1993-02-01

    The paraspecific defense system is the phylogenetically older part of the complex immune system. It enables the organism to immediately attack various foreign substances, infectious germs and toxins when confronted by them. In order to activate the paraspecific immune system with the help of drugs, so-called "paramunity inducers" are employed. The use of paramunization is a new way of prophylaxis and therapy, not only with regard to infections, but also with regard to different other indications. The limitations of paramunization are to be found in genetic defects of the paraspecific immune system, therefore the success of paramunization is dependent on the functioning of the paraspecific defense system. The possibility of developing paramunity inducers that are pyrogen-free, non-toxic and pleotypically effective in pre-clinical and clinical experiments is illustrated through the use of pox and parapox viruses. Inducers based on different pox virus species were effective and safe when used in humans as well as in animals in the field.

  12. National Strategy, Future Threats and Defense Spending

    DTIC Science & Technology

    1992-06-05

    AD-A256 884 NATIONAL STRATEGY, FUTURE THREATS AND DEFENSE SPENDING A thesis presented to the Faculty of the U.S. Army Command and General Staff...Jun 92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS National Strategy, Future Threats and Defense Spending 6. AUTHOR(S) MAJ Daniel M. Gerstein, USA 7...Future Threats, Defense Spending , 192 Regional Threats 16. PRICE COOE 17. SECURITY CLASSIFICATION 118. SECURITY CLASSIFICATION 19. SECURITY

  13. Optimal defense strategy: storage vs. new production.

    PubMed

    Shudo, Emi; Iwasa, Yoh

    2002-12-07

    If hosts produce defense proteins after they are infected by pathogens, it may take hours to days before defense becomes fully active. By producing defense proteins beforehand, and storing them until infection, the host can cope with pathogens with a short time delay. However, producing and storing defense proteins require energy, and the activated defense proteins often cause harm to the host's body as well as to pathogens. Here, we study the optimal strategy for a host who chooses the amount of stored defense proteins, the activation of the stored proteins upon infection, and the new production of the proteins. The optimal strategy is the one that minimizes the sum of the harm by pathogens and the cost of defense. The host chooses the storage size of defense proteins based on the probability distribution of the magnitude of pathogen infection. When the infection size is predictable, all the stored proteins are to be activated upon infection. The optimal strategy is to have no storage and to rely entirely on new production if the expected infection size n(0) is small, but to have a big storage without new production if n(0) is large. The transition from the "new production" phase to "storage" phase occurs at a smaller n(0) when storage cost is small, activation cost is large, pathogen toxicity is large, pathogen growth is fast, the defense is effective, the delay is long, and the infection is more likely. On the other hand, the storage size to produce for a large n(0) decreases with three cost parameters and the defense effectiveness, increases with the likelihood of infection, the toxicity and the growth rate of pathogens, and it is independent of the time delay. When infection size is much smaller than the expected size, some of the stored proteins may stay unused.

  14. Reagan Defense Forum: The Third Offset Strategy

    DTIC Science & Technology

    2015-11-07

    Reagan Defense Forum: The Third Offset Strategy As Delivered by Deputy Secretary of Defense Bob Work, Reagan Presidential Library, Simi Valley, CA...I’ve been a lifelong history of military strategy . And I’ve learned one of the most dangerous places a reporter can stand in the conflict zone is...called the "Third Offset Strategy ," which is not a way to win a football game without deflating the game ball, but actually has become one of the major

  15. Effector-triggered immunity: from pathogen perception to robust defense.

    PubMed

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  16. Immune Evasion Strategies of Glioblastoma

    PubMed Central

    Razavi, Seyed-Mostafa; Lee, Karen E.; Jin, Benjamin E.; Aujla, Parvir S.; Gholamin, Sharareh; Li, Gordon

    2016-01-01

    Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM. PMID:26973839

  17. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  18. The equal effectiveness of different defensive strategies

    PubMed Central

    Zhang, Shuang; Zhang, Yuxin; Ma, Keming

    2015-01-01

    Plants have evolved a variety of defensive strategies to resist herbivory, but at the interspecific level, the relative effectiveness of these strategies has been poorly evaluated. In this study, we compared the level of herbivory between species that depend on ants as indirect defenders and species that rely primarily on their own direct defenses. Using a dataset of 871 species and 1,405 data points, we found that in general, ant-associated species had levels of herbivory equal to those of species that are unattractive to ants; the pattern was unaffected by plant life form, climate and phylogenetic relationships between species. Interestingly, species that offer both food and nesting spaces for ants suffered significantly lower herbivory compared to species that offer either food or nesting spaces only or no reward for ants. A negative relationship between herbivory and latitude was detected, but the pattern can be changed by ants. These findings suggest that, at the interspecific level, the effectiveness of different defensive strategies may be equal. Considering the effects of herbivory on plant performance and fitness, the equal effectiveness of different defensive strategies may play an important role in the coexistence of various species at the community scale. PMID:26267426

  19. Channelling, a new immunization strategy.

    PubMed

    Gacharna Romero, M G; Silva Pizano, E; Avendano Lamo, J

    1985-01-01

    In 1981, with PAHO/WHO technical assistance, the Ministry of Health, Colombia, designed what is known as the channelling strategy, aimed at improving immunization coverage. This name was given because the strategy is designed to establish communication channels through direct action aimed at promoting health. Health workers and community leaders or guides conduct household visits to identify unvaccinated children or those with incomplete vaccination schedules and "channel" them to health centers or health posts. The channelling strategy developed in Colombia was briefly mentioned in the case study on the Colombian Vaccination Crusade of 1984. It is now being employed for ORT and other PHC components in the Colombian Child Survival and Development Plan, 1985-1987. In the meantime, other countries have adopted the channelling strategy, which is described in this article.

  20. Animal defense strategies and anxiety disorders.

    PubMed

    Shuhama, Rosana; Del-Ben, Cristina M; Loureiro, Sônia R; Graeff, Frederico G

    2007-03-01

    Anxiety disorders are classified according to symptoms, time course and therapeutic response. Concurrently, the experimental analysis of defensive behavior has identified three strategies of defense that are shared by different animal species, triggered by situations of potential, distal and proximal predatory threat, respectively. The first one consists of cautious exploration of the environment for risk assessment. The associated emotion is supposed to be anxiety and its pathology, Generalized Anxiety Disorder. The second is manifested by oriented escape or by behavioral inhibition, being related to normal fear and to Specific Phobias, as disorders. The third consists of disorganized flight or complete immobility, associated to dread and Panic Disorder. Among conspecific interactions lies a forth defense strategy, submission, that has been related to normal social anxiety (shyness) and to Social Anxiety Disorder. In turn, Posttraumatic Stress Disorder and Obsessive-Compulsive Disorder do not seem to be directly related to innate defense reactions. Such evolutionary approach offers a reliable theoretical framework for the study of the biological determinants of anxiety disorders, and a sound basis for psychiatric classification.

  1. Bacteria- and IMD Pathway-Independent Immune Defenses against Plasmodium falciparum in Anopheles gambiae

    PubMed Central

    Blumberg, Benjamin J.; Trop, Stefanie; Das, Suchismita; Dimopoulos, George

    2013-01-01

    The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. Antibiotic treated aseptic mosquitoes mounted molecular immune responses representing a variety of immune functions upon P. falciparum infection. Among other immune factors, our analysis uncovered a serine protease inhibitor (SRPN7) and Clip-domain serine protease (CLIPC2) that were transcriptionally induced in the midgut upon P. falciparum infection, independent of bacteria. We also showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Further exploration of this anti-Plasmodium defense will help clarify determinants of

  2. Sustainability Strategy at the Department of Defense

    DTIC Science & Technology

    2010-06-14

    public release ; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium...Acquisition, Technology and Logistics 1 Sustainability Strategy at the Department of Defense Environment, Energy Security, and Sustainability ...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE

  3. Functions of Cationic Host Defense Peptides in Immunity

    PubMed Central

    Hemshekhar, Mahadevappa; Anaparti, Vidyanand; Mookherjee, Neeloffer

    2016-01-01

    Cationic host defense peptides are a widely distributed family of immunomodulatory molecules with antimicrobial properties. The biological functions of these peptides include the ability to influence innate and adaptive immunity for efficient resolution of infections and simultaneous modulation of inflammatory responses. This unique dual bioactivity of controlling infections and inflammation has gained substantial attention in the last three decades and consequent interest in the development of these peptide mimics as immunomodulatory therapeutic candidates. In this review, we summarize the current literature on the wide range of functions of cationic host defense peptides in the context of the mammalian immune system. PMID:27384571

  4. Mosquito defense strategies against viral infection

    PubMed Central

    Cheng, Gong; Liu, Yang; Wang, Penghua; Xiao, Xiaoping

    2015-01-01

    Mosquito-borne viral diseases are a major concern of global health and result in significant economic losses in many countries. As natural vectors, mosquitoes are very permissive to and allow systemic and persistent arbovirus infection. Intriguingly, persistent viral propagation in mosquito tissues neither results in dramatic pathological sequelae nor impairs the vectorial behavior or lifespan, indicating that mosquitoes have evolved mechanisms to tolerate persistent infection and developed efficient antiviral strategies to restrict viral replication to non-pathogenic levels. Here, we provide an overview of recent progress in understanding mosquito antiviral immunity and advances in the strategies by which mosquitoes control viral infection in specific tissues. PMID:26626596

  5. Regulation of lung immunity and host defense by the intestinal microbiota

    PubMed Central

    Samuelson, Derrick R.; Welsh, David A.; Shellito, Judd E.

    2015-01-01

    Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI) microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal “dysbiosis” affects lung health. PMID:26500629

  6. U.S. Defense Strategy after Saddam

    DTIC Science & Technology

    2005-07-01

    budgets. Once the Iraq mission is concluded, it may be possible to then hold real-dollar defense spending steady―but right now it is simply too soon... defense plan called for. But a Democratic president would almost certainly also have boosted defense spending after the tragic attacks, since the existing...high. Depending on how one estimates the spending of countries such as China and 7 Russia, U.S. defense spending almost equals that of the rest of

  7. Anti-Immune Strategies of Pathogenic Fungi

    PubMed Central

    Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220

  8. Anti-Immune Strategies of Pathogenic Fungi.

    PubMed

    Marcos, Caroline M; de Oliveira, Haroldo C; de Melo, Wanessa de Cássia M Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A; Scorzoni, Liliana; Rossi, Suélen A; de Paula E Silva, Ana C A; Mendes-Giannini, Maria J S; Fusco-Almeida, Ana M

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.

  9. Defense Procurement Strategy for a Globalized Industry

    DTIC Science & Technology

    2007-11-02

    QDR,” DefenseNews, 8 November 2004, p. 4. 3 Vago Muradain, “Finalizing Transformation,” DefenseNews, 8 November 2004, p. 34. 4 Hugo Posey and Ben...Interavia, Summer 2004, 34-36. Munton, Bob, and Brinley Salzmann. “U.K.’s Growing Contols.” DefenseNews, 25 October 2004, 96. Muradain, Vago

  10. Antiviral defense in shrimp: from innate immunity to viral infection.

    PubMed

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  11. Strategy, Policy and Contingency Planning. The US Defense Planning Process.

    DTIC Science & Technology

    1984-05-23

    planning process has difficulty in trans- ’ lating national -level policy guidance into viable defense contingency plans * which, if implemented, produce...translating national -level policy guidance into viable defense contingency plans which, if implemented, produce winning outcomes. Some of the concerns...8217D-R148 851 STRATEGY POLICY AND CONTINGENCY PLANNING THE US DEFENSE i/i PLANNING PROCESS(U) ARMY WAR COLL CARLISLE BARRACKS PA J R CARLSON ET AL. 23

  12. Strategies for Dealing with the Defense Budget

    DTIC Science & Technology

    1983-08-17

    Q) Reference: Lipsey & Steiner, " Economics ," Fifth Edition, Harper & Row, New York, 1978. D-2 curve. The first is the region of steeply...Growth, Cost Indexes, Cost Overrums, Cost Reduction, Defense Appropriations, Defense Economics , Design to Cost, DoD Budgets, DoD budget estimates...Turbulence Characteristics APPENDIX C - Causes of Turbulence APPENDIX D - Economic and Effectiveness Comparisons VOLUME III APPENDIX E - Acquisition

  13. Degree-based attacks and defense strategies in complex networks

    NASA Astrophysics Data System (ADS)

    Yehezkel, Aviv; Cohen, Reuven

    2012-12-01

    We study the stability of random scale-free networks to degree-dependent attacks. We present analytical and numerical results to compute the critical fraction pc of nodes that need to be removed for destroying the network under this attack for different attack parameters. We study the effect of different defense strategies, based on the addition of a constant number of links on network robustness. We test defense strategies based on adding links to either low degree, middegree or high degree nodes. We find using analytical results and simulations that the middegree nodes defense strategy leads to the largest improvement to the network robustness against degree-based attacks. We also test these defense strategies on an internet autonomous systems map and obtain similar results.

  14. Immunization strategies for Clostridium difficile infections.

    PubMed

    Rebeaud, Fabien; Bachmann, Martin F

    2012-04-01

    Clostridium difficile infection is a major cause of nosocomial disease in Western countries. The recent emergence of hypervirulent strains resistant to most antibiotics correlates with increasing disease incidence, severity and lethal outcomes. Current treatments rely on metronidazol and vancomycin, but the limited ability of these antibiotics to cure infection and prevent relapse highlights the need for new strategies. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of Clostridium difficile now permits the development of new products specifically targeting the pathogen. Immune-based strategies relying on active vaccination or passive administration of antibody products are the focus of intense research and, today, the efficacy of monoclonal antibodies and of two vaccines are evaluated clinically. This review presents recent data, discusses the different strategies and highlights the challenges linked to the development of immunization strategies against this emerging threat.

  15. Innate Immunity and BK Virus: Prospective Strategies.

    PubMed

    Kariminik, Ashraf; Yaghobi, Ramin; Dabiri, Shahriar

    2016-03-01

    Recent information demonstrated that BK virus reactivation is a dominant complication after kidney transplantation, which occurs because of immunosuppression. BK virus reactivation is the main reason of transplanted kidney losing. Immune response against BK virus is the major inhibitor of the virus reactivation. Therefore, improving our knowledge regarding the main parameters that fight against BK viruses can shed light on to direct new treatment strategies to suppress BK infection. Innate immunity consists of numerous cell systems and also soluble molecules, which not only suppress virus replication, but also activate adaptive immunity to eradicate the infection. Additionally, it appears that immune responses against reactivated BK virus are the main reasons for induction of BK virus-associated nephropathy (BKAN). Thus, improving our knowledge regarding the parameters and detailed mechanisms of innate immunity and also the status of innate immunity of the patients with BK virus reactivation and its complications can introduce new prospective strategies to either prevent or as therapy of the complication. Therefore, this review was aimed to collate the most recent data regarding the roles played by innate immunity against BK virus and also the status of innate immunity in the patients with reactivation BK virus and BKAN.

  16. Herbivores can select for mixed defensive strategies in plants.

    PubMed

    Carmona, Diego; Fornoni, Juan

    2013-01-01

    Resistance and tolerance are the most important defense mechanisms against herbivores. Initial theoretical studies considered both mechanisms functionally redundant, but more recent empirical studies suggest that these mechanisms may complement each other, favoring the presence of mixed defense patterns. However, the expectation of redundancy between tolerance and resistance remains unsupported. In this study, we tested this assumption following an ecological genetics field experiment in which the presence/absence of two herbivores (Lema daturaphila and Epitrix parvula) of Datura stramonium were manipulated. In each of three treatments, genotypic selection analyses were performed and selection patterns compared. Our results indicated that selection on resistance and tolerance was significantly different between the two folivores. Tolerance and resistance are not redundant defense strategies in D. stramonium but instead functioned as complementary defenses against both beetle species, favoring the evolution of a mixed defense strategy. Although each herbivore was selected for different defense strategies, the observed average tolerance and resistance were closer to the adaptive peak predicted against E. parvula and both beetles together. In our experimental population, natural selection imposed by herbivores can favor the evolution of mixed defense strategies in plants, accounting for the presence of intermediate levels of tolerance and resistance.

  17. Immune Escape Strategies of Malaria Parasites

    PubMed Central

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  18. Immune Escape Strategies of Malaria Parasites.

    PubMed

    Gomes, Pollyanna S; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  19. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    PubMed

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses.

  20. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor).

    PubMed

    Jacobs, Chris G C; Gallagher, Joe D; Evison, Sophie E F; Heckel, David G; Vilcinskas, Andreas; Vogel, Heiko

    2017-05-01

    In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects.

  1. Defense Strategy and Forces: Setting Future Directions

    DTIC Science & Technology

    2007-11-15

    adverse climatic state for human life, arresting the rise in global tempera- ture and averting severe climate change are clearly in America’s interest...prefer to remain aloof, or will bring in train effects that will redound adversely against them. The United States today is the world’s only superpower...and (5) continue to overmatch possible adver - saries on the conventional battlefield. Each of these missions requires investment in future defense

  2. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.

  3. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  4. Strategy for child immunization in Malaysian plantations.

    PubMed

    Sinniah, D; Rajeswari, B; Harun, F; Maniam, C R

    1994-01-01

    An outline is given of a simple cost-effective strategy aimed at the immunization of all children and pregnant women residing in the plantation sector of Malaysia. It is based on a partnership between government, nongovernmental organizations and the private sector, and is supported by UNICEF.

  5. Immune evasion strategies used by Helicobacter pylori.

    PubMed

    Lina, Taslima T; Alzahrani, Shatha; Gonzalez, Jazmin; Pinchuk, Irina V; Beswick, Ellen J; Reyes, Victor E

    2014-09-28

    Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.

  6. Ontogeny of innate and adaptive immune defense components in free-living tree swallows, Tachycineta bicolor.

    PubMed

    Palacios, Maria G; Cunnick, Joan E; Vleck, David; Vleck, Carol M

    2009-04-01

    Little is known about the development of immune function in wild animals. We investigated the ontogeny of immune defense in a free-living bird, the tree swallow. We assessed total and differential leukocyte counts, natural antibodies, complement activity, in vivo skin swelling response, and in vitro lymphocyte proliferation and compared the levels of development between nestlings and young adults. We also assessed whether body condition explained variation in these immune components. We found some support for the prediction that innate defenses, which do not need to generate a broad repertoire of specific receptors, would reach adult levels earlier than adaptive defenses. In contrast, we found limited support for the prediction that adaptive defenses, which are thought to be more costly to develop, would be more related to body condition than innate defenses. We discuss our findings in the context of other studies on the ontogeny of immune function.

  7. Vaccination Strategies for Mucosal Immune Responses

    PubMed Central

    Ogra, Pearay L.; Faden, Howard; Welliver, Robert C.

    2001-01-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans. PMID:11292646

  8. Ecological immunology in a fluctuating environment: an integrative analysis of tree swallow nestling immune defense

    PubMed Central

    Pigeon, Gabriel; Bélisle, Marc; Garant, Dany; Cohen, Alan A; Pelletier, Fanie

    2013-01-01

    Evolutionary ecologists have long been interested by the link between different immune defenses and fitness. Given the importance of a proper immune defense for survival, it is important to understand how its numerous components are affected by environmental heterogeneity. Previous studies targeting this question have rarely considered more than two immune markers. In this study, we measured seven immune markers (response to phytohemagglutinin (PHA), hemolysis capacity, hemagglutination capacity, plasma bactericidal capacity, percentage of lymphocytes, percentage of heterophils, and percentage of eosinophils) in tree swallow (Tachycineta bicolor) nestlings raised in two types of agro-ecosystems of contrasted quality and over 2 years. First, we assessed the effect of environmental heterogeneity (spatial and temporal) on the strength and direction of correlations between immune measures. Second, we investigated the effect of an immune score integrating information from several immune markers on individual performance (including growth, mass at fledging and parasite burden). Both a multivariate and a pair-wise approach showed variation in relationships between immune measures across years and habitats. We also found a weak association between the integrated score of nestling immune function and individual performance, but only under certain environmental conditions. We conclude that the ecological context can strongly affect the interpretation of immune defenses in the wild. Given that spatiotemporal variations are likely to affect individual immune defenses, great caution should be used when generalizing conclusions to other study systems. PMID:23610646

  9. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  10. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  11. Vaccines and immunization strategies for dengue prevention.

    PubMed

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-07-20

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future.

  12. Order and Progress? The Evolution of Brazilian Defense Strategy

    DTIC Science & Technology

    2014-03-01

    to progress from this stereotype , Brazil needed a catalyst, which came from a charismatic national leader. Toward the end of the Cardoso... advertising the military’s mission to the citizenry in order to gain a stronger voice in domestic affairs and political agendas. Defense strategy and

  13. Immune defense in leaf-cutting ants: a cross-fostering approach.

    PubMed

    Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández; Nash, David R; Boomsma, Jacobus J

    2011-06-01

    To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily social defense, a Pseudonocardia bacteria that helps to control pathogens in the ants' fungus garden, showed a significant colony of origin by rearing environment interaction, whereby ants that acquired the bacteria of a foster colony obtained a less abundant cover of bacteria: one explanation for this pattern would be co-adaptation between host colonies and their vertically transmitted mutualist. These results illustrate the complexity of the selection pressures that affect the expression of multilevel immune defenses.

  14. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  15. Investment in immune defense is linked to pace of life in house sparrows.

    PubMed

    Martin, Lynn B; Hasselquist, Dennis; Wikelski, Martin

    2006-04-01

    The evidence for a relationship between life history and immune defense is equivocal, although the basic premise is intuitively appealing: animals that live short lives and reproduce early and rapidly should not waste resources on defenses they might never use. One possible reason for a lack of strong support for this hypothesis could be the inherent complexity of the vertebrate immune system. Indeed, different components of the vertebrate immune system vary in their relative costs and benefits, and therefore only some defenses may complement variation in species' life history. To address this hypothesis, we compared multiple types of immune activity between two populations of house sparrows (Passer domesticus) with distinct life histories, one from Colon, Panama, which lay small clutches over an extended breeding season (i.e., slow-living) and the other from Princeton, New Jersey, which lay larger clutches in a smaller window of time (i.e., fast-living). We expected (a) that more costly types of immune defenses would be stronger in the slow-living sparrows and (2) that the slow-living sparrows would show a greater increase in whole-body energy expenditure after immune challenge compared to their fast-living counterparts. We found that secondary antibody response to a novel antigen was more rapid and energetic investment in immune activity was greater in slow-living sparrows. However, cell-mediated immune activity was more robust in fast-living sparrows, and other measures of defense were not different between populations. These results provide partial support for a relationship between life history and immune defense in this species, but they also indicate that this relationship is not clear-cut. Further study is necessary to identify the influence of other factors, particular pathogen environment during development, on the architecture of the immune system of wild animals.

  16. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango

    PubMed Central

    Hwang, Elizabeth E.; Wang, Melinda B.; Bravo, Janis E.; Banta, Lois M.

    2015-01-01

    Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant–pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant’s recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant. PMID:25873923

  17. Immune Evasion Strategies of Trypanosoma cruzi

    PubMed Central

    Flávia Nardy, Ana; Freire-de-Lima, Célio Geraldo; Morrot, Alexandre

    2015-01-01

    Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4+ T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease. PMID:26240832

  18. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    PubMed Central

    2011-01-01

    Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements. PMID:21859495

  19. Probing the Unknowns in Cytokinin-Mediated Immune Defense in Arabidopsis with Systems Biology Approaches

    PubMed Central

    Naseem, Muhammad; Kunz, Meik; Dandekar, Thomas

    2014-01-01

    Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein–protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants. PMID:24558299

  20. Strategy alternatives for homeland air and cruise missile defense.

    PubMed

    Murphy, Eric M; Payne, Michael D; Vanderwoude, Glenn W

    2010-10-01

    Air and cruise missile defense of the U.S. homeland is characterized by a requirement to protect a large number of critical assets nonuniformly dispersed over a vast area with relatively few defensive systems. In this article, we explore strategy alternatives to make the best use of existing defense resources and suggest this approach as a means of reducing risk while mitigating the cost of developing and acquiring new systems. We frame the issue as an attacker-defender problem with simultaneous moves. First, we outline and examine the relatively simple problem of defending comparatively few locations with two surveillance systems. Second, we present our analysis and findings for a more realistic scenario that includes a representative list of U.S. critical assets. Third, we investigate sensitivity to defensive strategic choices in the more realistic scenario. As part of this investigation, we describe two complementary computational methods that, under certain circumstances, allow one to reduce large computational problems to a more manageable size. Finally, we demonstrate that strategic choices can be an important supplement to material solutions and can, in some cases, be a more cost-effective alternative.

  1. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  2. Optimal defense strategies in an idealized microbial food web under trade-off between competition and defense.

    PubMed

    Våge, Selina; Storesund, Julia E; Giske, Jarl; Thingstad, T Frede

    2014-01-01

    Trophic mechanisms that can generate biodiversity in food webs include bottom-up (growth rate regulating) and top-down (biomass regulating) factors. The top-down control has traditionally been analyzed using the concepts of "Keystone Predation" (KP) and "Killing-the-Winner" (KtW), predominately occuring in discussions of macro- and micro-biological ecology, respectively. Here we combine the classical diamond-shaped food web structure frequently discussed in KP analyses and the KtW concept by introducing a defense strategist capable of partial defense. A formalized description of a trade-off between the defense-strategist's competitive and defensive ability is included. The analysis reveals a complex topology of the steady state solution with strong relationships between food web structure and the combination of trade-off, defense strategy and the system's nutrient content. Among the results is a difference in defense strategies corresponding to maximum biomass, production, or net growth rate of invading individuals. The analysis thus summons awareness that biomass or production, parameters typically measured in field studies to infer success of particular biota, are not directly acted upon by natural selection. Under coexistence with a competition specialist, a balance of competitive and defensive ability of the defense strategist was found to be evolutionarily stable, whereas stronger defense was optimal under increased nutrient levels in the absence of the pure competition specialist. The findings of success of different defense strategies are discussed with respect to SAR11, a highly successful bacterial clade in the pelagic ocean.

  3. Plant mating system transitions drive the macroevolution of defense strategies.

    PubMed

    Campbell, Stuart A; Kessler, André

    2013-03-05

    Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant-herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense.

  4. Plant mating system transitions drive the macroevolution of defense strategies

    PubMed Central

    Campbell, Stuart A.; Kessler, André

    2013-01-01

    Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant–herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense. PMID:23431190

  5. The conventional defense of Europe: New technologies and new strategies

    SciTech Connect

    Pierre, A.J.

    1986-01-01

    Although in recent times there has developed a wide consensus on the desirability of improving the conventional defense of Western Europe in order to reduce reliance on the early use of nuclear weapons, there are widely diverging views as to how this should be done and at what costs. Proposals have been advanced for the acquisition of new ''emerging technologies'' and the adoption of innovative ''deep strike'' and ''follow-on forces attack'' strategies. These, and others, have provoked a deepening debate about such fundamental questions as the proper assessment of the military balance in Europe and the extent to which the defense of Europe should become non-nuclear, and the five authors, recognized experts with governmental experience, present contrasting and often opposing points of view on these important issues.

  6. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2016-12-10

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  7. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  8. Salivary Defense Proteins: Their Network and Role in Innate and Acquired Oral Immunity

    PubMed Central

    Fábián, Tibor Károly; Hermann, Péter; Beck, Anita; Fejérdy, Pál; Fábián, Gábor

    2012-01-01

    There are numerous defense proteins present in the saliva. Although some of these molecules are present in rather low concentrations, their effects are additive and/or synergistic, resulting in an efficient molecular defense network of the oral cavity. Moreover, local concentrations of these proteins near the mucosal surfaces (mucosal transudate), periodontal sulcus (gingival crevicular fluid) and oral wounds and ulcers (transudate) may be much greater, and in many cases reinforced by immune and/or inflammatory reactions of the oral mucosa. Some defense proteins, like salivary immunoglobulins and salivary chaperokine HSP70/HSPAs (70 kDa heat shock proteins), are involved in both innate and acquired immunity. Cationic peptides and other defense proteins like lysozyme, bactericidal/permeability increasing protein (BPI), BPI-like proteins, PLUNC (palate lung and nasal epithelial clone) proteins, salivary amylase, cystatins, prolin-rich proteins, mucins, peroxidases, statherin and others are primarily responsible for innate immunity. In this paper, this complex system and function of the salivary defense proteins will be reviewed. PMID:22605979

  9. Control Systems Cyber Security:Defense in Depth Strategies

    SciTech Connect

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  10. Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor

    PubMed Central

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-01-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  11. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells

    PubMed Central

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-01-01

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis. PMID:28248281

  12. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  13. Antiviral defense: RIG-Ing the immune system to STING.

    PubMed

    Bowzard, J Bradford; Ranjan, Priya; Sambhara, Suryaprakash; Fujita, Takashi

    2009-02-01

    A critical component of the innate immune response is the presence of germ line-encoded receptors capable of recognizing a wide variety of pathogen-associated molecules. One group of these receptors, the cytoplasmic RIG-I-like helicases (RLH), is involved in the induction of Type I interferon in response to viral infection. Here we discuss results of recent investigations into the initiation and transmission of signals through the RIG-I pathway.

  14. [Immune defense is both stimulated and inhibited by physical activity].

    PubMed

    Malm, Christer; Celsing, Fredrik; Friman, Göran

    Physical exercise may enhance some and depress other immune functions. The biological importance of these changes is not fully elucidated. Acute endurance exercise results in a relatively large redistribution of leukocytes between circulating blood and other tissues, as well as an increase in circulating cytokines. Some of these changes have been related to energy metabolism. A temporal correlation has been observed between altered immune functions and resistance to infections. A post-exercise infection can be either the result of a pre-exercise, sub-clinical infection amplified by the performed work or a novel infection, acquired during a period of decreased immune function shortly after exercise. Animal experiments have demonstrated that the susceptibility to infections after exercise depends on exercise intensity and duration, type of pathogen and time of inoculation. Exercise before inoculation with some bacterial agents can enhance resistance to infection, while exercise during an ongoing viral or bacterial infection worsens symptoms and enhances the risk for complications. Most studies demonstrate a deleterious effect of physical exercise in conjunction with infectious episodes.

  15. A Pulmonary Perspective on GASPIDs: Granule-Associated Serine Peptidases of Immune Defense

    PubMed Central

    Caughey, George H.

    2008-01-01

    Airways are protected from pathogens by forces allied with innate and adaptive immunity. Recent investigations establish critical defensive roles for leukocyte and mast cell serine-class peptidases garrisoned in membrane-bound organelles-here termed Granule-Associated Serine Peptidases of Immune Defense, or GASPIDs. Some better characterized GASPIDs include neutrophil elastase and cathepsin G (which defend against bacteria), proteinase-3 (targeted by antineutrophil antibodies in Wegener’s vasculitis), mast cell β-tryptase and chymase (which promote allergic inflammation), granzymes A and B (which launch apoptosis pathways in infected host cells), and factor D (which activates complement’s alternative pathway). GASPIDs can defend against pathogens but can harm host cells in the process, and therefore become targets for pharmaceutical inhibition. They vary widely in specificity, yet are phylogenetically similar. Mammalian speciation supported a remarkable flowering of these enzymes as they co-evolved with specialized immune cells, including mast cells, basophils, eosinophils, cytolytic T-cells, natural killer cells, neutrophils, macrophages and dendritic cells. Many GASPIDs continue to evolve rapidly, providing some of the most conspicuous examples of divergent protein evolution. Consequently, students of GASPIDs are rewarded not only with insights into their roles in lung immune defense but also with clues to the origins of cellular specialization in vertebrate immunity. PMID:18516248

  16. Defense Acquisition Policy and Defense Industrial Base Reinforcement Strategy - Enhancing the International Competitiveness of the Korean National Defense Industry

    DTIC Science & Technology

    2008-04-23

    Korea Defense Industry Association (KDIA). (2007). Annual management review of Korean Defense Industry. Seoul: Author. Lee, D.O. (2000...COMPETITIVENESS OF THE KOREAN NATIONAL DEFENSE INDUSTRY Published: 23 April 2008 by Dr. Dae Ok Lee 5th Annual Acquisition Research Symposium of the...International Competitiveness of the Korean National Defense Industry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  17. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    PubMed

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  18. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense.

    PubMed

    Price, Aryn A; Grakoui, Arash; Weiss, David S

    2016-04-01

    Clustered, regularly interspaced, short palindromic repeats - CRISPR-associated (CRISPR-Cas) systems - are sequence-specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense.

  19. Nutritional strategies to optimize dairy cattle immunity.

    PubMed

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows.

  20. Diversity of immune strategies explained by adaptation to pathogen statistics

    PubMed Central

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2016-01-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations—differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  1. The Defense Science Board 1999 Summer Study Task Force on 21st Century Defense Technology Strategies. Volume 1

    DTIC Science & Technology

    2016-06-07

    transition were managed more effectively, and an overall science and technology strategy tied to direct control of resources was the norm. An ideal approach...recommends stronger involvement from the Office of the Secretary of Defense in providing direction for long-term science and technology initiatives. Such...OMB control number. 1. REPORT DATE 1999 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The Defense Science Board 1999 Summer

  2. Mobilization and Defense Management Technical Reports Series. Creativity and Innovation in Defense Technology and Strategy.

    DTIC Science & Technology

    1983-04-01

    HD-R137 679 MOBILIZATION AND DEFENSE MANAGEMENT TECHNICAL REPORTS 1/1 SERIES CREATIVITY A-.(U) INDUSTRIAL COLL OF THE ARMED FORCES WASHINGTON DC J D...III~ 1. ~NATIONALDEFENSE UNIVERSITY MOBILIZATION AND DEFENSE MANAGEMENT TECHNICAL REPORTS SERIES t.CREATIVITY AND INNOVATION IN DEFENSE CIO TECHNOLOGY...creativity can be applied in defense. 21 , . 7.7 TEHNOLOGIES Existing New,I- Existing A B MISSIONS ., New C D THE TB1MRGO=/MISSION MATRIX The matrix is

  3. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense.

    PubMed

    Gloggnitzer, Jiradet; Akimcheva, Svetlana; Srinivasan, Arunkumar; Kusenda, Branislav; Riehs, Nina; Stampfl, Hansjörg; Bautor, Jaqueline; Dekrout, Bettina; Jonak, Claudia; Jiménez-Gómez, José M; Parker, Jane E; Riha, Karel

    2014-09-10

    Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.

  4. Civil defense home shelters: A viable defense strategy for the 1990s. Master's thesis

    SciTech Connect

    Evans, V.J.

    1990-09-01

    This study investigated the question 'Why are fallout shelters not a part of U.S. national defense strategy and policy ' Initial research determined that the U.S. has the technology to design and build shelters, they are effective protection from radioactive fallout, and nuclear agression against the U.S. remains a potential national threat. The research examined the physical threats posed by nuclear weapons, followed by a brief description of fallout shelters and their ability to shield against fallout radiation in terms of the ration of time in shelter to amount of exposure. Several opposing arguments from opponents and proponents of a national fallout shelter program were categorized and expressed within U.S. National Security Strategy, military, economic, and political terms. The principal argument against a national fallout shelter program, including home fallout shelters, is the momentum of over 30 years of successful deterrence. On the other hand, the relatively simple technology, the affordability, and the potential for saving millions of lives in low-risk areas that would otherwise be lost should deterrence fail, argue strongly in favor of a national home fallout shelter system.

  5. Control Systems Cyber Security: Defense-in-Depth Strategies

    SciTech Connect

    Mark Fabro

    2007-10-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  6. Department of Defense Operational Energy Strategy: A Content Analysis of Energy Literature from 1973-2014

    DTIC Science & Technology

    2014-03-27

    Applications: Solar, Wind, Biomass, Geothermal , Hydrokinetic Energy , Biofuels and Synfuels, Fuel Cells, Microgrids, Smart meters, and Energy Efficiency...DEPARTMENT OF DEFENSE OPERATIONAL ENERGY STRATEGY: A CONTENT ANALYSIS OF ENERGY ...copyright protection in the United States. AFIT-ENS-14-M-26 DEPARTMENT OF DEFENSE OPERATIONAL ENERGY STRATEGY: A CONTENT ANALYSIS

  7. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations

    PubMed Central

    2015-01-01

    Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to

  8. Kelps feature systemic defense responses: insights into the evolution of innate immunity in multicellular eukaryotes.

    PubMed

    Thomas, François; Cosse, Audrey; Le Panse, Sophie; Kloareg, Bernard; Potin, Philippe; Leblanc, Catherine

    2014-11-01

    Brown algae are one of the few eukaryotic lineages that have evolved complex multicellularity, together with Opisthokonts (animals, fungi) and Plantae (land plants, green and red algae). In these three lineages, biotic stresses induce similar local defense reactions. Animals and land plants also feature a systemic immune response, protecting the whole organism after an attack on one of its parts. However, the occurrence of systemic defenses has never been investigated in brown algae. We elicited selected parts of the kelp Laminaria digitata and monitored distant, nonchallenged areas of the same individual for subsequent defense reactions. A systemic reaction was detected following elicitation on a distant area, including an oxidative response, an increase in haloperoxidase activities and a stronger resistance against herbivory. Based on experiments with pharmacological inhibitors, the liberation of free fatty acids is proposed to play a key role in systemic signaling, reminiscent of what is known in land plants. This study is the first report, outside the phyla of Opisthokonts and Plantae, of an intraorganism communication leading to defense reactions. These findings indicate that systemic immunity emerged independently at least three times, as a consequence of convergent evolution in multicellular eukaryotic lineages.

  9. Adaptive Immune Regulation of Glial Homeostasis as an Immunization Strategy for Neurodegenerative Diseases

    PubMed Central

    Kosloski, Lisa M.; Ha, Duy M.; Stone, David K.; Hutter, Jessica A. L.; Pichler, Michael R.; Reynolds, Ashley D.; Gendelman, Howard E.; Mosley, R. Lee

    2010-01-01

    Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed. PMID:20524958

  10. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation.

    PubMed

    Oevermann, Lena; Lang, Peter; Feuchtinger, Tobias; Schumm, Michael; Teltschik, Heiko-Manuel; Schlegel, Patrick; Handgretinger, Rupert

    2012-08-01

    Haploidentical hematopoietic stem cell transplantation is a curative alternative option for patients without an otherwise suitable stem cell donor. In order to prevent graft-versus-host disease (GvHD), different in vitro and in vivo T cell-depletion strategies have been developed. A delayed immune reconstitution is common to all these strategies, and an impaired immune function after haploidentical transplantation with subsequent infections is a major cause of deaths in these patients. In addition to in vitro and in vivo T cell-depletion methods, posttransplant strategies to rapidly rebuild the immune system have been introduced in order to improve the outcome. Advances in in vitro and in vivo T cell-depletion methods, and adoptive transfer of immune cells of the innate and specific immune system, will contribute to reduce the risk of GvHD, lethal infections, and the risk of relapse of the underlying malignant disease.

  11. Age and sex differences in strategies of coping and defense across the life span.

    PubMed

    Diehl, M; Coyle, N; Labouvie-Vief, G

    1996-03-01

    Age and sex differences in the use of coping and defense strategies were examined in life-span sample of 381 individuals. Participants responded to 2 self-report measures assessing mechanisms of coping and defense and measures assessing their level of cognitive complexity. Older adults used a combination of coping and defense strategies indicative of greater impulse control and the tendency to positively appraise conflict situations. Adolescents and younger adults used strategies that were outwardly aggressive and psychologically undifferentiated, indicating lower levels of impulse control and self-awareness. Women used more internalizing defenses than men and used coping strategies that flexibly integrated intra-and interpersonal aspects of conflict situations. Taken together, findings provide evidence for the age- and sex-specific use of strategies of coping and defense, suggesting that men and women may face different developmental tasks in the process toward maturity in adulthood.

  12. Diverse immune evasion strategies by human cytomegalovirus.

    PubMed

    Noriega, Vanessa; Redmann, Veronika; Gardner, Thomas; Tortorella, Domenico

    2012-12-01

    Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.

  13. Life-history strategy determines constraints on immune function.

    PubMed

    Parker, Benjamin J; Barribeau, Seth M; Laughton, Alice M; Griffin, Lynn H; Gerardo, Nicole M

    2017-05-01

    Determining the factors governing investment in immunity is critical to understanding host-pathogen ecological and evolutionary dynamics. Studies often consider disease resistance in the context of life-history theory, with the expectation that investment in immunity will be optimized in anticipation of disease risk. Immunity, however, is constrained by context-dependent fitness costs. How the costs of immunity vary across life-history strategies has yet to be considered. Pea aphids are typically unwinged but produce winged offspring in response to high population densities and deteriorating conditions. This is an example of polyphenism, a strategy used by many organisms to adjust to environmental cues. The goal of this study was to examine the relationship between the fitness costs of immunity, pathogen resistance and the strength of an immune response across aphid morphs that differ in life-history strategy but are genetically identical. We measured fecundity of winged and unwinged aphids challenged with a heat-inactivated fungal pathogen, and found that immune costs are limited to winged aphids. We hypothesized that these costs reflect stronger investment in immunity in anticipation of higher disease risk, and that winged aphids would be more resistant due to a stronger immune response. However, producing wings is energetically expensive. This guided an alternative hypothesis - that investing resources into wings could lead to a reduced capacity to resist infection. We measured survival and pathogen load after live fungal infection, and we characterized the aphid immune response to fungi by measuring immune cell concentration and gene expression. We found that winged aphids are less resistant and mount a weaker immune response than unwinged aphids, demonstrating that winged aphids pay higher costs for a less effective immune response. Our results show that polyphenism is an understudied factor influencing the expression of immune costs. More generally, our work

  14. The immune system and cancer evasion strategies: therapeutic concepts.

    PubMed

    Muenst, S; Läubli, H; Soysal, S D; Zippelius, A; Tzankov, A; Hoeller, S

    2016-06-01

    The complicated interplay between cancer and the host immune system has been studied for decades. New insights into the human immune system as well as the mechanisms by which tumours evade immune control have led to the new and innovative therapeutic strategies that are considered amongst the medical breakthroughs of the last few years. Here, we will review the current understanding of cancer immunology in general, including immune surveillance and immunoediting, with a detailed look at immune cells (T cells, B cells, natural killer cells, macrophages and dendritic cells), immune checkpoints and regulators, sialic acid-binding immunoglobulin-like lectins (Siglecs) and other mechanisms. We will also present examples of new immune therapies able to reverse immune evasion strategies of tumour cells. Finally, we will focus on therapies that are already used in daily oncological practice such as the blockade of immune checkpoints cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) in patients with metastatic melanoma or advanced lung cancer, or therapies currently being tested in clinical trials such as adoptive T-cell transfer.

  15. Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world.

    PubMed

    Adamo, Shelley Anne

    2017-01-01

    A whole organism, network approach can help explain the adaptive purpose of stress-induced changes in immune function. In insects, mediators of the stress response (e.g. stress hormones) divert molecular resources away from immune function and towards tissues necessary for fight-or-flight behaviours. For example, molecules such as lipid transport proteins are involved in both the stress and immune responses, leading to a reduction in disease resistance when these proteins are shifted towards being part of the stress response system. Stress responses also alter immune system strategies (i.e. reconfiguration) to compensate for resource losses that occur during fight-or flight events. In addition, stress responses optimize immune function for different physiological conditions. In insects, the stress response induces a pro-inflammatory state that probably enhances early immune responses.

  16. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  17. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    PubMed

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  18. Civil Defense Home Shelters: a Viable Defense Strategy for the 1990s

    DTIC Science & Technology

    1990-09-01

    These figures assume some warning, but mainly a duck-and-cover level of defense. The number of deaths and injuries can be reduced with civil defense shelters . Civil...cost when compared to single-use shelters. In Civil Defense Shelters : A State-of-the-Art Assessment, Chester and Zimmerman say: Slightly altering new...usually listed in the white pages of most phone books. Additionally, the research of C.V. Chester and G.P. Zimmerman titled, " Civil Defense Shelters - A

  19. Roles of small RNAs in the immune defense mechanisms of crustaceans.

    PubMed

    He, Yaodong; Ju, Chenyu; Zhang, Xiaobo

    2015-12-01

    Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans.

  20. Alteration of antioxidant defense status precedes humoral immune response abnormalities in macrosomia

    PubMed Central

    Haddouche, Mustapha; Aribi, Mourad; Moulessehoul, Soraya; Smahi, Mohammed Chems-Eddine Ismet; Lammani, Mohammed; Benyoucef, Mohammed

    2011-01-01

    Summary Background This study aimed to investigate whether the anomalies affecting the antioxidant and humoral immune defenses could start at birth and to check whether the decrease in antioxidant defenses may precede the immune abnormalities in macrosomic newborns. Material/Methods Thirty macrosomic and 30 sex-matched control newborns were recruited for a retrospective case-control study at the Maghnia Maternity Hospital of Tlemcen Department (Algeria). Results The serum IgG levels were similar in both groups. However, plasma ORAC, albumin, vitamin E, SOD, CAT and GSH-Px levels were significantly decreased in macrosomic as compared to control newborns, yet no difference was observed after adjustment for weight. Additionally, serum concentrations of complement C3, MDA and XO were significantly higher in macrosomic as compared to controls before adjustment for weight. Moreover, macrosomia was significantly associated with high levels of complement C3 (OR=8, p=0.002); whereas no association with those of IgG was observed (OR<1, p>0.05). Furthermore, macrosomia was significantly associated with low levels of ORAC (OR=4.96, p=0.027), vitamin E (OR=4.5, p=0.018), SOD (OR=6.88, p=0.020) and CAT (OR=5.67, p=0.017), and with high levels of MDA (OR=10.29, p=0.005). Conclusions Abnormalities of the humoral defense system in excessive weight could be preceded by alterations of the anti-oxidative defense and by inflammatory response and activation of innate immunity at birth. Additionally, excessive weight could be a potential factor contributing to decreased anti-oxidative capacity and increased oxidative stress. PMID:22037745

  1. Quantitative Protein Profiling of Chlamydia trachomatis Growth Forms Reveals Defense Strategies Against Tryptophan Starvation*

    PubMed Central

    Østergaard, Ole; Follmann, Frank; Olsen, Anja W.; Heegaard, Niels H.; Andersen, Peter; Rosenkrands, Ida

    2016-01-01

    Chlamydia trachomatis is one of the most common sexually transmitted bacterial pathogens in humans. The infection is often asymptomatic and can lead to chronic manifestations. The infectious elementary body and the replicating reticulate body are the two growth forms in the normal developmental cycle. Under the influence of interferon-γ, the normal cycle is disrupted because of tryptophan degradation, leading to a third persistent form, the aberrant reticulate body. For the genital strain C. trachomatis D/UW-3/CX we established a quantitative, label-free proteomic approach, and identified in total 655 out of 903 (73%) predicted proteins, allowing the first quantitative comparison of all three growth forms. Inclusion membrane proteins and proteins involved in translation were more abundant in the reticulate body (RB)1 and aberrant reticulate body (ARB) forms, whereas proteins of the type III Secretion System and the cell envelope were more abundant in the elementary body (EB) form, reflecting the need for these proteins to establish infection and for host interactions. In the interferon-γ induced ARB proteome, the tryptophan synthase subunits were identified as biomarkers with a strong increase from less than 0.05% to 9% of the total protein content, reflecting an inherent defense strategy for the pathogen to escape interferon-γ mediated immune pressure. Furthermore, the total tryptophan content in the ARB form was 1.9-fold lower compared with the EB form, and we demonstrate that modulation of the protein repertoire toward lower abundance of proteins with high tryptophan content, is a mechanism which contributes to establish and maintain chlamydial persistence. Thus, quantitative proteomics provides insights in the Chlamydia defense mechanisms to escape interferon-γ mediated immune pressure. PMID:27784728

  2. The POU Transcription Factor Drifter/Ventral veinless Regulates Expression of Drosophila Immune Defense Genes▿

    PubMed Central

    Junell, Anna; Uvell, Hanna; Davis, Monica M.; Edlundh-Rose, Esther; Antonsson, Åsa; Pick, Leslie; Engström, Ylva

    2010-01-01

    Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens. PMID:20457811

  3. Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly.

    PubMed

    Fritzsche McKay, Alexa; Ezenwa, Vanessa O; Altizer, Sonia

    2016-08-01

    Migratory animals undergo extreme physiological changes to prepare for and sustain energetically costly movements; one potential change is reduced investment in immune defenses. However, because some migrants have evolved to minimize the energetic demands of movement (for example, through the temporary atrophy of non-essential organs such as those involved in reproduction), migratory animals could potentially avoid immunosuppression during long-distance journeys. In this study, we used a tethered flight mill to examine immune consequences of experimentally induced powered flight in eastern North American monarch butterflies. These butterflies undergo an annual two-way long-distance migration each year from as far north as Canada to wintering sites in Central Mexico. We quantified immune measures as a function of categorical flight treatment (flown versus control groups) and continuous measures of flight effort (e.g., flight distance, duration, and measures of efficiency). We also examined whether relationships between flight and immune measures depended on reproductive investment by experimentally controlling whether monarchs were reproductive or in state of reproductive diapause (having atrophied reproductive organs) prior to flight. Of the three immune responses we measured, hemocyte concentration (the number of immune cells) was lower in flown monarchs relative to controls but increased with flight distance among flown monarchs; the other two immune measures showed no relationship to monarch flight. We also found that monarchs that were reproductively active were less efficient fliers, as they exerted more power during flight than monarchs in reproductive diapause. However, reproductive status did not modify relationships between flight and immune measures. Results of this study add to a growing body of work suggesting that migratory monarchs-like some other animals that travel vast distances-can complete their journeys with efficient use of resources and

  4. In defense of phage: viral suppressors of CRISPR-mediated adaptive immunity in bacteria.

    PubMed

    Wiedenheft, Blake

    2013-05-01

    Viruses that infect bacteria are the most abundant biological agents on the planet and bacteria have evolved diverse defense mechanisms to combat these genetic parasites. One of these bacterial defense systems relies on a repetitive locus, referred to as a CRISPR (clusters of regularly interspaced short palindromic repeats). Bacteria and archaea acquire resistance to invading viruses and plasmids by integrating short fragments of foreign nucleic acids at one end of the CRISPR locus. CRISPR loci are transcribed and the long primary CRISPR transcript is processed into a library of small RNAs that guide the immune system to invading nucleic acids, which are subsequently degraded by dedicated nucleases. However, the development of CRISPR-mediated immune systems has not eradicated phages, suggesting that viruses have evolved mechanisms to subvert CRISPR-mediated protection. Recently, Bondy-Denomy and colleagues discovered several phage-encoded anti-CRISPR proteins that offer new insight into the ongoing molecular arms race between viral parasites and the immune systems of their hosts.

  5. Isonitrosoacetophenone Drives Transcriptional Reprogramming in Nicotiana tabacum Cells in Support of Innate Immunity and Defense

    PubMed Central

    Djami-Tchatchou, Arnaud T.; Maake, Mmapula P.; Piater, Lizelle A.; Dubery, Ian A.

    2015-01-01

    Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP) were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta. PMID:25658943

  6. NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?

    PubMed

    Machado, Joao P B; Brustolini, Otavio J B; Mendes, Giselle C; Santos, Anésia A; Fontes, Elizabeth P B

    2015-11-01

    NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.

  7. Adolescent Humor and Its Relationship to Coping, Defense Strategies, Psychological Distress, and Well-Being

    ERIC Educational Resources Information Center

    Erickson, Sarah J.; Feldstein, Sarah W.

    2007-01-01

    Objective: This study investigated the psychometric properties of the Humor Styles Questionnaire (HSQ) in measuring adolescent humor, including the relationship between humor and coping style, defense style, depressive symptoms, and adjustment in a non-clinical sample of adolescents. Method: Humor, coping, defense strategies, depressive symptoms,…

  8. Sugaring the Pill: Assessing Rhetorical Strategies Designed to Minimize Defensive Reactions to Group Criticism

    ERIC Educational Resources Information Center

    Hornsey, Matthew J.; Robson, Erin; Smith, Joanne; Esposo, Sarah; Sutton, Robbie M.

    2008-01-01

    People are considerably more defensive in the face of group criticism when the criticism comes from an out-group rather than an in-group member (the intergroup sensitivity effect). We tested three strategies that out-group critics can use to reduce this heightened defensiveness. In all studies, Australians received criticism of their country…

  9. Interim Strategic Defense Initiative arms negotiation strategy. Research report

    SciTech Connect

    Marshall, H.A.

    1986-05-01

    Comments are presented on some of the pros and cons of the Strategic Defense Initative (SDI). Key issues discussed relate to the projected cost of SDI and the potential violation of the 1972 Anti-ballistic Missile Treaty. A solution is proposed that has the potential to significantly reduce the total cost and circumvents the treaty resulting in the deployment of a more-effective ballistic missile defense system.

  10. Optimal Treatment Strategy for a Tumor Model under Immune Suppression

    PubMed Central

    Kim, Kwang Su; Cho, Giphil; Jung, Il Hyo

    2014-01-01

    We propose a mathematical model describing tumor-immune interactions under immune suppression. These days evidences indicate that the immune suppression related to cancer contributes to its progression. The mathematical model for tumor-immune interactions would provide a new methodology for more sophisticated treatment options of cancer. To do this we have developed a system of 11 ordinary differential equations including the movement, interaction, and activation of NK cells, CD8+T-cells, CD4+T cells, regulatory T cells, and dendritic cells under the presence of tumor and cytokines and the immune interactions. In addition, we apply two control therapies, immunotherapy and chemotherapy to the model in order to control growth of tumor. Using optimal control theory and numerical simulations, we obtain appropriate treatment strategies according to the ratio of the cost for two therapies, which suggest an optimal timing of each administration for the two types of models, without and with immunosuppressive effects. These results mean that the immune suppression can have an influence on treatment strategies for cancer. PMID:25140193

  11. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    PubMed

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.

  12. Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection.

    PubMed

    Sayed, S M; Abou El-Ella, Ghada A; Wahba, Nahed M; El Nisr, Neveen A; Raddad, Khaled; Abd El Rahman, M F; Abd El Hafeez, M M; Abd El Fattah Aamer, Ahmed

    2009-06-01

    The objective of this work was to evaluate the potency of bee product-immunized rats to overcome an induced Staphylococcus aureus infection. Forty rats were divided to eight groups: T1, T3, and T5 received, respectively, fennel honey, ethanol, and aqueous propolis extracts orally, and T2, T4, and T6 were administered the respective materials intraperitoneally; T7 received bee venom by the bee sting technique; and T8 was the control group. All groups were challenged by a bovine clinical mastitis isolate of S. aureus. Each rat received 2 mL of broth inoculated with 1 x 10(5) colony-forming units/mL intraperitoneally. Two weeks post-induced infection all rats were sacrificed and eviscerated for postmortem inspection and histopathological study. Three rats from T8 and one rat from T7 died before sacrifice. Another two rats, one each in T4 and T5, had morbidity manifestations. The remaining experimental animals showed apparently healthy conditions until time of sacrifice. Postmortem inspection revealed that all T8 rats showed different degrees of skeletal muscle and internal organ paleness with scattered focal pus nodules mainly on lungs and livers. All rats of the treated groups showed normal postmortem features except three rats. A dead rat in group T7 showed focal pus nodules on the lung surface only, whereas the affected two rats in groups T4 and T5 appeared normal except with some pus nodules, but much smaller than in the control, scattered on the hepatic surface and mesentery. Histopathological studies revealed that T8 rats had typical suppurative bronchopneumonia and or severe degenerative and necrobiotic changes in hepatic tissues. Three affected rats of the treated groups showed slight bronchopneumonia or degenerative hepatic changes only. The other animals of the treated groups showed completely normal parenchymatous organs with stimulated lymphatic tissues. It was concluded that all tested previously bee product-immunized rats could significantly challenge

  13. Complex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild.

    PubMed

    Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M

    2013-01-01

    The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.

  14. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies

    PubMed Central

    Becker, Dirk; Larisch, Christina; Kreuzer, Ines; Escalante-Perez, Maria; Schulze, Waltraud X.; Ankenbrand, Markus; Van de Weyer, Anna-Lena; Krol, Elzbieta; Al-Rasheid, Khaled A.; Mithöfer, Axel; Weber, Andreas P.; Schultz, Jörg

    2016-01-01

    Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death–related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition. PMID:27197216

  15. Improved immunization strategy to reduce energy consumption on nodes traffic

    NASA Astrophysics Data System (ADS)

    Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong

    2017-04-01

    The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.

  16. Immune Evasion Strategies of Ranaviruses and Innate Immune Responses to These Emerging Pathogens

    PubMed Central

    Grayfer, Leon; Andino, Francisco De Jesús; Chen, Guangchun; Chinchar, Gregory V.; Robert, Jacques

    2012-01-01

    Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95–100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections. PMID:22852041

  17. Polish Defense Policy in the Context of National Security Strategy

    DTIC Science & Technology

    2006-06-01

    12 C. GENERAL ASSUMPTIONS........................................................................16 D. MAIN...These are generally seen by the Polish political elite more as a stabilizing factor in Europe than a superpower or counterbalance to the United...development of a security and defense policy. Generally , NATO defended the position of the new member countries such as Poland, Czechoslovakia, and Hungary

  18. Defense and counterdefense in the RNAi-based antiviral immune system in insects.

    PubMed

    van Mierlo, Joël T; van Cleef, Koen W R; van Rij, Ronald P

    2011-01-01

    RNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs (v-siRNAs), and (3) suppression of RNAi by dedicated viral proteins. In this chapter, we will review the mechanism of RNAi in insects, its function as an antiviral immune system, viral small RNA profiles, and viral counterdefense strategies. We will also consider alternative, inducible antiviral immune responses.

  19. A comparative assessment of immunization records in the Defense Medical Surveillance System and the Vaccine Adverse Event Reporting System.

    PubMed

    McNeil, Michael M; Ma, Guihua; Aranas, Aaron; Payne, Daniel C; Rose, Charles E

    2007-04-30

    We compared immunization data in the Defense Medical Surveillance System (DMSS) and immunization data for service members with an anthrax vaccine-associated adverse event reported to the Vaccine Adverse Event Reporting System (VAERS) during January 1998 through December 2004. Our main measure of agreement was sensitivity of the DMSS conditional on an immunization record(s) occurring in VAERS. The sensitivity of DMSS was 73% for all vaccines and 74% for the anthrax vaccine on the VAERS index immunization date. Our study is the first to quantify the agreement between immunization records in VAERS and DMSS. Our data suggest the immunization information in military VAERS reports and the DMSS is similar for anthrax and non-anthrax immunizations.

  20. Social marketing as a strategy to increase immunization rates.

    PubMed

    Opel, Douglas J; Diekema, Douglas S; Lee, Nancy R; Marcuse, Edgar K

    2009-05-01

    Today in the United States, outbreaks of vaccine-preventable disease are often traced to susceptible children whose parents have claimed an exemption from school or child care immunization regulations. The origins of this immunization hesitancy and resistance have roots in the decline of the threat of vaccine-preventable disease coupled with an increase in concerns about the adverse effects of vaccines, the emergence of mass media and the Internet, and the intrinsic limitations of modern medicine. Appeals to emotion have drowned out thoughtful discussion in public forums, and overall, public trust in immunizations has declined. We present an often overlooked behavior change strategy-social marketing-as a way to improve immunization rates by addressing the important roots of immunization hesitancy and effectively engaging emotions. As an example, we provide a synopsis of a social marketing campaign that is currently in development in Washington state and that is aimed at increasing timely immunizations in children from birth to age 24 months.

  1. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    PubMed

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.

  2. Is crypsis a common defensive strategy in plants?

    PubMed Central

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development.1 Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals. PMID:20592801

  3. Department of Defense Space Science and Technology Strategy 2015

    DTIC Science & Technology

    2015-01-01

    for instance: the ESA/NASA Solar Orbiter mission that will launch in 2017, carrying onboard the NRL-led, NASA-funded SoloHI ( Solar Orbiter ...Heliospheric Imager) instrument that will obtain time-lapse imagery of solar coronal mass ejections and the evolving solar corona from within the orbit of... solar irradiance incident at the top of the Earth’s atmosphere. Between 2010 and 2013, the U.S. Army Space and Missile Defense Command – Orbital

  4. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification

    PubMed Central

    Locato, Vittoria; Cimini, Sara; Gara, Laura De

    2013-01-01

    Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by “classical” breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses. PMID:23734160

  5. An improved local immunization strategy for scale-free networks with a high degree of clustering

    NASA Astrophysics Data System (ADS)

    Xia, Lingling; Jiang, Guoping; Song, Yurong; Song, Bo

    2017-01-01

    The design of immunization strategies is an extremely important issue for disease or computer virus control and prevention. In this paper, we propose an improved local immunization strategy based on node's clustering which was seldom considered in the existing immunization strategies. The main aim of the proposed strategy is to iteratively immunize the node which has a high connectivity and a low clustering coefficient. To validate the effectiveness of our strategy, we compare it with two typical local immunization strategies on both real and artificial networks with a high degree of clustering. Simulations on these networks demonstrate that the performance of our strategy is superior to that of two typical strategies. The proposed strategy can be regarded as a compromise between computational complexity and immune effect, which can be widely applied in scale-free networks of high clustering, such as social network, technological networks and so on. In addition, this study provides useful hints for designing optimal immunization strategy for specific network.

  6. Aggregation and cnidae development as early defensive strategies in Favia fragum and Porites astreoides

    NASA Astrophysics Data System (ADS)

    Rivera, H. E.; Goodbody-Gringley, G.

    2014-12-01

    To survive, corals possess a variety of active and passive defenses. This study examined the effectiveness of aggregation and cnidae development as defensive strategies in enhancing post-settlement survival and growth of two brooding corals, Favia fragum and Porites astreoides, in Bermuda. Growth and survival of solitary and aggregated spat were monitored over seven weeks; cnidae were extracted from surviving spat. F. fragum aggregated spat had higher mortality, slower growth, and more cnidae than solitary spat. On the other hand, aggregation proved beneficial for P. astreoides spat, which had significantly lower mortality, faster growth, and fewer cnidae. Aggregated and solitary F. fragum spat displayed negative correlations between cnidae density and growth, suggesting a trade-off between defense and growth; however, P. astreoides spat did not demonstrate such a trade-off. These differing responses suggest that early patterns of survivorship and defensive strategies are highly species specific and complex.

  7. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    PubMed

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  8. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    PubMed

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  9. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  10. [Japanese college students' pessimism, coping strategies and anxiety: validation of the Japanese Defensive Pessimism Inventory (JDPI)].

    PubMed

    Araki, Yukiko

    2008-04-01

    The purpose of this study was to develop the Japanese Defensive Pessimism Inventory (JDPI), which measures defensive pessimism in an academic achievement situation for Japanese undergraduate students and differentiates between those who are realistically pessimistic and those who are defensively pessimistic. In Study 1,695 undergraduates completed the JDPI. A factor analysis revealed that the 24 items of the JDPI comprised four factors: Pessimism, Past experience, Positive reflectivity, and Effort. In Study 2, 618 undergraduates completed the JDPI, the Test Coping Strategy Scale, and the State-Trait Anxiety Inventory. The JDPI had high internal consistency and test-retest reliability. Defensive pessimists and strategic optimists had higher scores on the active coping strategy and lower scores on the avoidant-thinking coping strategy than did realistic pessimists. Furthermore, defensive pessimists and realistic pessimists had higher scores on the state anxiety and lower scores on the optimistic-thinking coping strategy than did strategic optimists. The results indicate that the JDPI had high concurrent validity.

  11. A role for host activation-induced cytidine deaminase in innate immune defense against KSHV.

    PubMed

    Bekerman, Elena; Jeon, Diana; Ardolino, Michele; Coscoy, Laurent

    2013-01-01

    Activation-induced cytidine deaminase (AID) is specifically induced in germinal center B cells to carry out somatic hypermutation and class-switch recombination, two processes responsible for antibody diversification. Because of its mutagenic potential, AID expression and activity are tightly regulated to minimize unwanted DNA damage. Surprisingly, AID expression has been observed ectopically during pathogenic infections. However, the function of AID outside of the germinal centers remains largely uncharacterized. In this study, we demonstrate that infection of human primary naïve B cells with Kaposi's sarcoma-associated herpesvirus (KSHV) rapidly induces AID expression in a cell intrinsic manner. We find that infected cells are marked for elimination by Natural Killer cells through upregulation of NKG2D ligands via the DNA damage pathway, a pathway triggered by AID. Moreover, without having a measurable effect on KSHV latency, AID impinges directly on the viral fitness by inhibiting lytic reactivation and reducing infectivity of KSHV virions. Importantly, we uncover two KSHV-encoded microRNAs that directly regulate AID abundance, further reinforcing the role for AID in the antiviral response. Together our findings reveal additional functions for AID in innate immune defense against KSHV with implications for a broader involvement in innate immunity to other pathogens.

  12. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

    PubMed Central

    Mondy, Samuel; Tranchimand, Sylvain; Rumeau, Dominique; Boudsocq, Marie; Garcia, Ana Victoria; Douki, Thierry; Bigeard, Jean; Laurière, Christiane; Chevalier, Anne; Castresana, Carmen; Hirt, Heribert

    2013-01-01

    Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. PMID:23526882

  13. A local immunization strategy for networks with overlapping community structure

    NASA Astrophysics Data System (ADS)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  14. Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab.

    PubMed

    Burnett, Louis E; Holman, Jeremy D; Jorgensen, Darwin D; Ikerd, Jennifer L; Burnett, Karen G

    2006-08-01

    Crustacean gills function in gas exchange, ion transport, and immune defense against microbial pathogens. Hemocyte aggregates that form in response to microbial pathogens become trapped in the fine vasculature of the gill, leading to the suggestion by others that respiration and ion regulation might by impaired during the course of an immune response. In the present study, injection of the pathogenic bacterium Vibrio campbellii into Callinectes sapidus, the Atlantic blue crab, caused a dramatic decline in oxygen uptake from 4.53 to 2.56 micromol g-1 h-1. This decline in oxygen uptake is associated with a large decrease in postbranchial PO2, from 16.2 (+/-0.46 SEM, n=7) to 13.1 kPa (+/-0.77 SEM, n=9), while prebranchial PO2 remains unchanged. In addition, injection of Vibrio results in the disappearance of a pH change across the gills, an indication of reduced CO2 excretion. The hemolymph hydrostatic pressure change across the gill circulation increases nearly 2-fold in Vibrio-injected crabs compared with a negligible change in pressure across the gill circulation in saline-injected, control crabs. This change, in combination with stability of heart rate and branchial chamber pressure, is indicative of a significant increase in vascular resistance across the gills that is induced by hemocyte nodule formation. A healthy, active blue crab can eliminate most invading bacteria, but the respiratory function of the gills is impaired. Thus, when blue crabs are engaged in the immune response, they are less equipped to engage in oxygen-fueled activities such as predator avoidance, prey capture, and migration. Furthermore, crabs are less fit to invade environments that are hypoxic.

  15. West European and East Asian Perspectives on Defense, Deterrence and Strategy. Volume 4. Portuguese Perspectives on Defense, Deterrence and Strategy.

    DTIC Science & Technology

    1984-05-16

    flesh out it6 equipment -- especially in the air defense and transportation sectors of the only existing brigade; to form another brigade; and to...the coast of Britain. If we bear in mind the flight range of air transport craft -- 2,140 miles for the C-141, 3,250 for the C-5A -- the access to...Socialist Party, and the editor of the Communist daily, O’Diario, Miguel Urbano Rodriques. Neutralist doctrines are abundantly expressed in Liber 25

  16. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies

    PubMed Central

    Vlasova, Anastasia N.; Amimo, Joshua O.; Saif, Linda J.

    2017-01-01

    Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans. PMID:28335454

  17. Optimization strategies with resource scarcity: From immunization of networks to the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Agliari, Elena; Cassi, Davide

    2015-10-01

    The best strategy to immunize a complex network is usually evaluated in terms of the percolation threshold, i.e. the number of vaccine doses which make the largest connected cluster (LCC) vanish. The strategy inducing the minimum percolation threshold represents the optimal way to immunize the network. Here we show that the efficacy of the immunization strategies can change during the immunization process. This means that, if the number of doses is limited, the best strategy is not necessarily the one leading to the smallest percolation threshold. This outcome should warn about the adoption of global measures in order to evaluate the best immunization strategy.

  18. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses

    PubMed Central

    Hastie, Kathryn M.; Bale, Shridhar; Kimberlin, Christopher R.; Saphire, Erica Ollmann

    2013-01-01

    The innate immune system is one of the first lines of defense against invading pathogens. Pathogens have, in turn, evolved different strategies to counteract these responses. Recent studies have illuminated how the hemorrhagic fever viruses Ebola and Lassa fever prevent host sensing of double-stranded RNA (dsRNA), a key hallmark of viral infection. The ebolavirus protein VP35 adopts a unique bimodal configuration to mask key cellular recognition sites on dsRNA. Conversely, the Lassa fever virus nucleoprotein, NP, actually digests the dsRNA signature. Collectively, these structural and functional studies shed new light on the mechanisms of pathogenesis of these viruses and provide new targets for therapeutic intervention. PMID:22482712

  19. Considerations for developing an immunization strategy with enterovirus 71 vaccine.

    PubMed

    Li, Li; Yin, Hongzhang; An, Zhijie; Feng, Zijian

    2015-02-25

    Enterovirus 71 (EV71) is a common pathogen for hand, foot, and mouth disease (HFMD), which has significant morbidity and mortality, and for which children aged 6-59 months age are at highest risk. Due to lack of effective treatment options, control of EV71 epidemics has mainly focused on development of EV71 vaccines. Clinical trials have been completed on 3 EV71 vaccines, with trial results demonstrating good vaccine efficacy and safety. When EV71 vaccine is approved by China's national regulatory authority, an evidence-based strategy should be developed to optimize impact and safety. An immunization strategy for EV71 vaccine should consider several factors, including the target population age group, the number of doses for primary immunization, the need for a booster dose, concomitant administration of other vaccines, economic value, program capacity and logistics, and public acceptance. Once EV71 vaccines are in use, vaccine effectiveness and safety must be monitored in large populations, and the epidemiology of HFMD must be evaluated to assure a match between vaccination strategy and epidemiology. Evaluation in China is especially important because there are no other EV71 vaccines globally.

  20. Report of the Defense Science Board Summer Study Task Force on Defense Manufacturing Enterprise Strategy

    DTIC Science & Technology

    1993-09-01

    report defines the Lean Manufacturing Process and the characteristics of that process, by which the management of a large number of organizations has...Team to be the change agent for incorporating lean manufacturing and enterprise principles within the department itself and as an interface with the...Manufacturing Enterprise Strategy. The Terms of Reference asked us to identify those lean acquisition and manufacturing processes which both DoD and

  1. Common Gamma Chain Cytokines in Combinatorial Immune Strategies against Cancer

    PubMed Central

    Pulliam, Stephanie R.; Uzhachenko, Roman V.; Adunyah, Samuel E.; Shanker, Anil

    2015-01-01

    Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies. PMID:26597610

  2. HOMA: Israel’s National Missile Defense Strategy (Abridged Version)

    DTIC Science & Technology

    2007-11-02

    Scud hunting sorties numbered between 75 and 160, or about 5 percent of planned daily sorties. The anti-Scud strategy had essentially three parts... oil to our main business partners in Europe and Asia as well as to the US. During the year 2000, the US imported 55% of its crude oil and its imports...world–via the disruption of the oil flow, WMD contamination, environmental disasters, loss of markets or loss of access to markets, and other

  3. American Strategy Issues and Alternatives for the Quadrennial Defense Review

    DTIC Science & Technology

    2000-09-01

    Franklin D . Raines, Jeffrey H. Smith, Admiral (ret) Leon A . Edney, Major General (ret) John L. Matthews, General (ret) Robert W. RisCassi, Lieutenant...win-hold-win” construct periodically reemerge. In 1997, for instance, Senator Charles Robb ( D -VA) suggested that the forces used to defeat a second...official). 24. In a 1950 document usually known as NSC-68, for instance, Paul H. Nitze argued that containment must be a military strategy in addition

  4. Department of Defense Strategy for Operating in Cyberspace

    DTIC Science & Technology

    2011-07-01

    incubator for new forms of entrepreneurship , advances in technology, the spread of free speech, and new social networks that drive our economy and...research, and technology. DoD will continue to embrace this spirit of entrepreneurship and work in partnership with these communities and institutions...Strategy for Operating in Cyberspace 9 private synergy . Public-private partnerships will necessarily require a balance between regulation and volunteerism

  5. An Analysis of the Defense Acquisition Strategy for Unmanned Systems

    DTIC Science & Technology

    2013-11-20

    improvements in existing components and build on the existing technological trajectory, whereas exploratory innovation involves a shift to a different...also limits the comparative analysis of technology S-curves. While it is easy to assess the impact of historical technological breakthroughs, the...identify technological maturity may result in retaining the increasingly obsolete technology too long. Failure to adopt a strategy for switching

  6. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.

    PubMed

    Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne

    2017-02-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals.

  7. Extraribosomal L13a Is a Specific Innate Immune Factor for Antiviral Defense

    PubMed Central

    Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina

    2014-01-01

    ABSTRACT We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3′untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal

  8. An inflammatory CC chemokine of Cynoglossus semilaevis is involved in immune defense against bacterial infection.

    PubMed

    Li, Yong-xin; Sun, Jin-sheng; Sun, Li

    2011-09-01

    Chemokines are a family of small cytokines that regulate leukocyte migration. Based on the arrangement of the first two cysteine residues, chemokines are classified into four groups called CXC(α), CC(β), C, and CX(3)C. In this study, we identified a CC chemokine, CsCCK1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its biological activity. The deduced amino acid sequence of CsCCK1 contains 111 amino acid residues and is phylogenetically belonging to the CCL19/21/25 group of CC chemokines. CsCCK1 possesses a DCCL motif that is highly conserved among CC chemokines. Quantitative real time RT-PCR analysis showed that the expression of CsCCK1 was relatively abundant in immune organs under normal physiological conditions and was upregulated by experimental infection of a bacterial pathogen. Purified recombinant CsCCK1 (rCsCCK1) induced chemotaxis in peripheral blood leukocytes (PBL) of both tongue sole and turbot (Scophthalmus maximus) in a dose-dependent manner. Mutation of the CC residues in the DCCL motif by serine substitution completely abolished the biological activity of rCsCCK1. When rCsCCK1, but not the mutant protein, was added to the cell culture of PBL, it enhanced cellular resistance against intracellular bacterial infection. Taken together, these results indicate that CsCCK1 is a functional CC chemokine whose biological activity depends on the DCCL motif and that CsCCK1 plays a role in host immune defense against bacterial infection.

  9. Difference in defense strategy in flower heads and leaves of Asteraceae: multiple-species approach.

    PubMed

    Oguro, Michio; Sakai, Satoki

    2014-01-01

    Although a vast number of studies have investigated defenses against herbivores in leaves, relatively little is known about defenses in flowers. Using wild individuals of 34 species of Asteraceae, we investigated differences in five traits that are thought to affect the intensity of herbivory (C, N, P, water, and total phenolic contents). Combinations of these traits between flower heads and leaves were studied as well. We also evaluated phylogenetic patterns of flower head and leaf traits. Flower heads had higher P and lower total phenolics than leaves. Water and C contents were negatively correlated both in the flower heads and leaves. N, P, and water contents were positively correlated in the flower heads, whereas this pattern was not found in the leaves. Thus, the traits we measured were more tightly inter-correlated in flower heads than in leaves. Because the flower heads had a lower total phenolic content, the relative allocation of defensive compounds could not be explained solely by fitness values of the organs. Perhaps plants employ an escape strategy rather than a defense strategy to cope with floral herbivores and higher allocation in P may enhance their escape from herbivores by improving the growth rate of flower heads, though our result might be affected in part by the plasticity of plants growing at different sites. Moreover, we found weak phylogenetic signals in the defensive traits. Because we found significant differences in the flower head traits, these weak signals may imply that the traits we measured evolved frequently.

  10. Optimistic and defensive-pessimist students: differences in their academic motivation and learning strategies.

    PubMed

    Suárez Riveiro, José Manuel

    2014-01-01

    In addition to cognitive and behavioral strategies, students can also use affective-motivational strategies to facilitate their learning process. In this way, the strategies of defensive-pessimism and generation of positive expectations have been widely related to conceptual models of pessimism-optimism. The aim of this study was to describe the use of these strategies in 1753 secondary school students, and to study the motivational and strategic characteristics which differentiated between the student typologies identified as a result of their use. The results indicated a higher use of the generation of positive expectations strategy (optimism) (M = 3.40, SD = .78) than the use of the defensive pessimism strategy (M = 3.00, SD = .78); a positive and significant correlation between the two strategies (r = .372, p = .001); their relationship with adequate academic motivation and with the use of learning strategies. Furthermore, four student typologies were identified based on the use of both strategies. Lastly, we propose a new approach for future work in this line of research.

  11. Paramyxovirus evasion of innate immunity: Diverse strategies for common targets

    PubMed Central

    Audsley, Michelle D; Moseley, Gregory W

    2013-01-01

    The paramyxoviruses are a family of > 30 viruses that variously infect humans, other mammals and fish to cause diverse outcomes, ranging from asymptomatic to lethal disease, with the zoonotic paramyxoviruses Nipah and Hendra showing up to 70% case-fatality rate in humans. The capacity to evade host immunity is central to viral infection, and paramyxoviruses have evolved multiple strategies to overcome the host interferon (IFN)-mediated innate immune response through the activity of their IFN-antagonist proteins. Although paramyxovirus IFN antagonists generally target common factors of the IFN system, including melanoma differentiation associated factor 5, retinoic acid-inducible gene-I, signal transducers and activators of transcription (STAT)1 and STAT2, and IFN regulatory factor 3, the mechanisms of antagonism show remarkable diversity between different genera and even individual members of the same genus; the reasons for this diversity, however, are not currently understood. Here, we review the IFN antagonism strategies of paramyxoviruses, highlighting mechanistic differences observed between individual species and genera. We also discuss potential sources of this diversity, including biological differences in the host and/or tissue specificity of different paramyxoviruses, and potential effects of experimental approaches that have largely relied on in vitro systems. Importantly, recent studies using recombinant virus systems and animal infection models are beginning to clarify the importance of certain mechanisms of IFN antagonism to in vivo infections, providing important indications not only of their critical importance to virulence, but also of their potential targeting for new therapeutic/vaccine approaches. PMID:24175230

  12. Strain-specific pulmonary defense achieved after repeated airway immunizations with non-typeable haemophilus influenzae in a mouse model.

    PubMed

    Koyama, Jun; Ahmed, Kamruddin; Zhao, Jizi; Saito, Mariko; Onizuka, Shozaburo; Oma, Keita; Watanabe, Kiwao; Watanabe, Hiroshi; Oishi, Kazunori

    2007-01-01

    Strain-specific immune responses may play a critical role in the acute exacerbation of chronic obstructive pulmonary disease (COPD) caused by Haemophilus influenzae (NTHi), and the outer membrane protein P2 is one of surface antigens of NTHi, which may contribute to the strain-specific protective immunity. We examined whether repeated airway immunizations with killed-NTHi strains bearing different P2 molecules were capable of inducing protective immunity against homologous or heterologous strains in the lungs of a mouse model. Three different strains of NTHi were used in this study. Three serial intratracheal (IT) immunizations of a single strain or three different strains of NTHi led to the production of cross-reactive immunoglobulins G and A in bronchoalveolar lavage fluids. Three serial IT immunizations with a single strain enhanced the bacterial clearance of the homologous strain in the lungs, but no enhancement of bacterial clearance was found with three serial IT immunizations of heterologous strains. The enhancement in bacterial clearance, therefore, appears to be primarily strain-specific. Enhanced bacterial clearance of a heterologous strain was also found after three serial IT immunizations of a single strain among two of the three strains employed for bacterial challenge. These findings suggest that P2 molecules and surface antigens other than P2 are involved in the development of pulmonary defense against NTHi in mice. Our data may explain, in part, why patients with COPD experience recurrent NTHi infections.

  13. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells

    PubMed Central

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  14. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells.

    PubMed

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines.

  15. Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Yanhong; Feng, Shaozhen; Chen, Jun; Qin, Chaobin; Lin, Haoran; Li, Wensheng

    2012-05-01

    Chitinase, belonging to either family 18 or family 19 of the glycosylhydrolases, hydrolyze chitin into oligosaccharides. In the present study, the cDNA fragment encoding orange-spotted grouper (Epinephelus coioides) chitinase1 was subcloned into pPIC3.5K vector and expressed in Pichia pastoris GS115. The results showed that a band with the size of about 53 kDa could be detected by SDS-PAGE and Western blot. The recombinant protein of grouper chitinase1 (rgChi1) was added into the fish diet containing shrimp shell chitin for feeding experiment lasting 8 weeks. The weight of orange-spotted grouper, fed with diets containing rgChi1 at 0, 5, 10 and 20 μg/g was calculated on the 2nd, 4th, 6th and 8th weeks, and difference in growth rates was first observed in the 6th week of the feeding period and it kept until the end of the feeding experiment. At the end of 8 weeks feeding trial, the percent weight gain (PWG), growth rate (GR) and specific growth rate (SGR) of fish fed with 10 and 20 μg rgChi1/g feed were significantly higher compared to the control group. The neuropeptide Y (NPY), growth-hormone-releasing hormone (GHRH), growth-hormone (GH), interleukin-1beta (IL-1β), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD) (Cu/Zn) and SOD (Mn) mRNA expression of fish fed with diet containing 10 μg/g or/and 20 μg/g rgChi1 were obviously higher than the control group. The lysozyme (LZM) and total SOD activity of fish fed with diet containing rgChi1 at 10 and 20 μg/g were significantly higher than that of the control. The aspartate aminotransferase (AST)/glutamic oxalacetic transaminases (GOT) activity in 20 μg/g group decreased compared to the control group. These results indicated that the grouper chitinase1 was successfully produced using the P. pastoris expression system and the recombinant protein had obvious effects on growth and immune defense. The mRNA expression and protein secretion of grouper chitinase1 and chitinase2 were significantly stimulated in

  16. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion.

    PubMed

    Baumgarth, Nicole; Tung, James W; Herzenberg, Leonore A

    2005-03-01

    Natural antibodies are produced at tightly regulated levels in the complete absence of external antigenic stimulation. They provide immediate, early and broad protection against pathogens, making them a crucial non-redundant component of the humoral immune system. These antibodies are produced mainly, if not exclusively, by a subset of long-lived, self-replenishing B cells termed B-1 cells. We argue here that the unique developmental pattern of these B-1 cells, which rests on positive selection by self antigens, ensures production of natural antibodies expressing evolutionarily important specificities that are required for the initial defense against invading pathogens. Positive selection for reactivity with self antigens could also result in the production of detrimental anti-self antibodies. However, B-1 cells have evolved a unique response pattern that minimizes the risk of autoimmunity. Although these cells respond rapidly and strongly to host-derived innate signals, such as cytokines, and to pathogen-encoded signals, such as lipopolysaccharide and phosphorylcholine, they respond very poorly to receptor-mediated activation. In addition, they rarely enter germinal centers and undergo affinity maturation. Thus, their potential for producing high-affinity antibodies with harmful anti-self specificity is highly restricted. The positive selection of B-1 cells occurs during the neonatal period, during which the long-lived self-renewing B-1 population is constituted. Many of these cells (B-1a) express CD5, although a smaller subset (B-1b) does not express this surface marker. Importantly, B-1a cells should not be confused with short-lived anergic B-2 cells, which originate in the bone marrow in adults and initiate CD5 expression and programmed cell death following self-antigen recognition. In summary, we argue here that the mechanisms that enable natural antibody production by B-1 cells reflect the humoral immune system, which has evolved in layers whose distinct

  17. Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera).

    PubMed

    Wiens, Matthias; Korzhev, Michael; Perovic-Ottstadt, Sanja; Luthringer, Bérengère; Brandt, David; Klein, Stefanie; Müller, Werner E G

    2007-03-01

    During evolution and with the emergence of multicellular animals, the need arose to ward off foreign organisms that threaten the integrity of the animal body. Among many different receptors that participate in the recognition of microbial invaders, toll-like receptors (TLRs) play an essential role in mediating the innate immune response. After binding distinct microbial components, TLRs activate intracellular signaling cascades that result in an induced expression of diverse antimicrobial molecules. Because sponges (phylum Porifera) are filter feeders, they are abundantly exposed to microorganisms that represent a potential threat. Here, we describe the identification, cloning, and deduced protein sequence from 3 major elements of the poriferan innate response (to bacterial lipopeptides): the TLR, the IL-1 receptor-associated kinase-4-like protein (IRAK-4l), and a novel effector caspase from the demosponge Suberites domuncula. Each molecule shares significant sequence similarity with its homologues in higher Metazoa. Sequence homologies were found in particular within the family-specific domains toll/interleukin-1 receptor/resistance (TLR family), Ser/Thr/Tyr kinase domain (IRAK family), and CASc (caspase family). In addition, in situ hybridization and immunohistological analyses revealed an abundance of SDTLR (TLR) transcripts in epithelial layers of the sponge surface (exopinacoderm and endopinacoderm). Furthermore, it is shown that both SDTLR and SDIRAK-4 like (IRAK) are expressed constitutively, regardless of treatment with synthetic triacyl lipopeptide Pam(3)Cys-Ser-(Lys)(4). In contrast, SDCASL (caspase) expression is highly Pam(3)Cys-Ser-(Lys)(4) inducible. However, blocking of the lipopeptide with recombinant TLR prior to its application completely prevented the induced expression of this poriferan caspase. These results underscore that the phylogenetically oldest extant metazoan phylum is provided already with the signaling pathways of the antimicrobial

  18. Central immune alterations in passive strategy following chronic defeat stress.

    PubMed

    Joana, Perez-Tejada; Amaia, Arregi; Arantza, Azpiroz; Garikoitz, Beitia; Eneritz, Gomez-Lazaro; Larraitz, Garmendia

    2016-02-01

    The relationship between stress, mood disorders and immune disorders is known, but what remains to be resolved is why certain individuals are more susceptible than others to suffer different disorders, along with the biological mechanisms that underlie these differences. The objective of this study was to analyze the changes in the expression patterns of proinflammatory cytokines in the hypothalamus, hippocampus, amygdala and prefrontal cortex after chronic defeat, depending on the coping strategy used. The expression levels of α1b and α2a adrenergic receptors and cytokine-inducible nitric oxide synthase (iNOS) in the prefrontal cortex were also measured. The results indicated that subjects with a passive coping strategy showed high levels of interleukin-6 (IL-6) and interleukin-1β (IL-1β) expression in several cerebral structures in resting conditions after 21 days of chronic stress and increases in these cytokine levels in the hippocampus following an additional stress. Low expression levels of tumour necrosis factor-alpha (TNF-α) in the prefrontal cortex in active subjects at rest and in passive subjects after an additional defeat were detected. The iNOS expression levels were lower in the prefrontal cortex of the active group at rest. With respect to adrenergic receptor expression, there were no changes as a function of stress, but there were changes as a function of coping strategy. These results indicate differences in the variables studied in terms of the coping strategy adopted, with passive subjects having a biological profile that could be considered more vulnerable to the development of stress-related disorders.

  19. The Role of Innate Immunity in Osteoarthritis: When Our First Line of Defense Goes on the Offensive

    PubMed Central

    Orlowsky, Eric W.; Kraus, Virginia Byers

    2015-01-01

    Although mankind has been suffering from osteoarthritis (OA) dating to the dawn of humankind, its pathogenesis remains poorly understood. OA is no longer considered a “wear and tear” condition but rather one driven by proteases where chronic low-grade inflammation may play a role in perpetuating proteolytic activity. While multiple factors are likely active in this process, recent evidence has implicated the importance of the innate immune system, the older or more primitive part of our body’s immune defense mechanisms. The role of some of the components of the innate immune system have been tested in OA models in vivo including the role of synovial macrophages and the complement system. This review is a selective overview of a large and evolving field. Insights into these mechanisms might inform our ability to phenotype patient subsets and give hope for the advent of novel OA therapies. PMID:25593231

  20. Brazil’s National Defense Strategy -- A Deepening of Civilian Control

    DTIC Science & Technology

    2009-05-15

    Identity Crisis.” Journal of Interamerican Studies and World Affairs 42, no.3 (Autumn 2000): 149 in JSTOR (Accessed September 17, 2008). 26 Ibid. 161 27...34 Ibid. 35 Stockholm International Peace Research Institute, “Military Expenditure Database – Brazil,” http://milexdata.sipri.org/result.php4...International Peace Research Institute, “Military Expenditure Database – Brazil,” 59 Jobim and Unger, National Defense Strategy. 60 Senior SOUTHCOM

  1. Indonesian Defense Strategy: An Appraisal of Requirements, Resources, Capabilities, and Directions.

    DTIC Science & Technology

    1984-05-07

    open publicoation until It has boen cleared by the appropriate military service or government agency. INDCNESIAN DEFENSE STRATEGY AN APPRAISAL OF...political roles. as a result of the "coup", and Territorial Warfare recog years) to "unfreeze" them. The poor transportation /communicat oncerned with the...Combat Engineer Battalions 4 Special Warfare Groups (KOPPASANDA) - Army Aviation Command - Marine Transport Command - Supply, Maintenance and

  2. Alpha 2 macroglobulin is a maternally-derived immune factor in amphioxus embryos: New evidence for defense roles of maternal immune components in invertebrate chordate.

    PubMed

    Pathirana, Anjalika; Diao, Mingyue; Huang, Shibo; Zuo, Lingling; Liang, Yujun

    2016-03-01

    In fish, a series of maternal derived immune components have been identified in their eggs or embryos at very early stages, which are proposed to provide protections to themselves against pathogenic attacks from hostile environment. The phenomenon of maternal immunity has been also recorded in several invertebrate species, however, so far, very limited information about the maternal immune molecules are available. In this study, it was demonstrated maternal alpha2 macroglobulin (A2m) protein, an important innate immune factor, exists in the fertilized eggs of amphioxus Branchiostoma japonicum, an invertebrate chordate. Maternal mRNA of A2m was also detected in amphioxus embryos at very early developing stages. In addition, it was recorded that the egg lysate prepared from the newly fertilized eggs can inhibit the growth of both Gram-negative bacterium Escherichia coli and Gram-positive bacterium Staphylococcus aureus in a concentration dependent manner. The bacteriostatic activity can be reduced notably after precipitated A2m with anti-A2m antibody. Thus maternal A2m is partly attributed to the bacteriostatic activity. It was further demonstrated that recombinant A2m can bind to E. coli cells directly. All these points come to a result that A2m is a maternal immune factor existing in eggs of invertebrate chordate, which may be involved in defense their embryos against harmful microbes' attacks.

  3. Electronic Warfare: Comprehensive Strategy Still Needed for Suppressing Enemy Air Defenses

    NASA Astrophysics Data System (ADS)

    2002-11-01

    U.S. military aircraft are often at great risk from enemy air defenses, and the services use specialized aircraft to neutralize or destroy them. In January 2001, GAO reported that a gap existed between the services' suppression capabilities and their needs and recommended that a comprehensive strategy was needed to fix the situation. In response to GAO's report, DOD emphasized that a major study underway at the time would provide the basis for a Department-wide strategy and lead to a balanced set of acquisition programs between the services. This report updates our previous work and assesses actions that DOD has taken to improve its suppression capabilities.

  4. Defense Acquisitions: CH-53K Helicopter Program has Addressed Early Difficulties and Adopted Strategies to Address Future Risks

    DTIC Science & Technology

    2011-04-01

    United States Government Accountability Office GAO Report to the Ranking Member, Subcommittee on Defense, Committee on...Appropriations, House of Representatives DEFENSE ACQUISITIONS CH-53K Helicopter Program Has Addressed Early Difficulties and Adopted Strategies to...S) AND ADDRESS(ES) U.S. Government Accountability Office,441 G Street NW,Washington,DC,20548 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  5. Immune evasion by cytomegalovirus--survival strategies of a highly adapted opportunist.

    PubMed

    Hengel, H; Brune, W; Koszinowski, U H

    1998-05-01

    Slowly replicating, species-specific and complex DNA viruses, such as cytomegaloviruses (CMVs), which code for > 200 antigenic proteins, should be easy prey to the host's immune system. Yet, CMVs are amazingly adapted opportunists that cope with multiple immune responses. Frequently, CMVs exploit immune mechanisms generated by the host. These strategies secure the persistence of CMVs and provide opportunities to spread to naive individuals.

  6. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses

    PubMed Central

    Wang, Shui; Durrant, Wendy E.; Song, Junqi; Spivey, Natalie W.; Dong, Xinnian

    2010-01-01

    Systemic acquired resistance (SAR) is a plant immune response associated with both transcriptional reprogramming and increased homologous DNA recombination (HR). SNI1 is a negative regulator of SAR and HR, as indicated by the increased basal expression of defense genes and HR in sni1. We found that the sni1 phenotypes are rescued by mutations in BREAST CANCER 2 (BRCA2). In humans, BRCA2 is a mediator of RAD51 in pairing of homologous DNA. Mutations in BRCA2 cause predisposition to breast/ovarian cancers; however, the role of the BRCA2–RAD51 complex in transcriptional regulation remains unclear. In Arabidopsis, both brca2 and rad51 were found to be hypersusceptible not only to genotoxic substances, but also to pathogen infections. A whole-genome microarray analysis showed that downstream of NPR1, BRCA2A is a major regulator of defense-related gene transcription. ChIP demonstrated that RAD51 is specifically recruited to the promoters of defense genes during SAR. This recruitment is dependent on the SAR signal salicylic acid (SA) and on the function of BRCA2. This study provides the molecular evidence showing that the BRCA2–RAD51 complex, known for its function in HR, also plays a direct and specific role in transcription regulation during plant immune responses. PMID:21149701

  7. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  8. Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells following Streptococcus uberis Infection of Sheep

    PubMed Central

    Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano

    2013-01-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals. PMID:23774600

  9. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria.

  10. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    PubMed

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  11. Economic Analysis of Immunization Strategies for PRRS Control [corrected].

    PubMed

    Linhares, Daniel C L; Johnson, Clayton; Morrison, Robert B

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSv) is a swine-specific pathogen that causes significant increases in production costs. When a breeding herd becomes infected, in an attempt to hasten control and elimination of PRRSv, some veterinarians have adopted a strategy called load-close-expose which consists of interrupting replacement pig introductions into the herd for several weeks (herd closure) and exposing the whole herd to a replicating PRRSv to boost herd immunity. Either modified-live virus (MLV) vaccine or live field-virus inoculation (FVI) is used. This study consisted of partial budget analyses to compare MLV to FVI as the exposure method of load-close-expose program to control and eliminate PRRSv from infected breeding herds, and secondly to estimate benefit / cost of vaccinating sow herds preventatively. Under the assumptions used in this study, MLV held economic advantage over FVI. However, sensitivity analysis revealed that decreasing margin over variable costs below $ 47.32, or increasing PRRSv-attributed cost above $18.89 or achieving time-to-stability before 25 weeks resulted in advantage of FVI over MLV. Preventive vaccination of sow herds was beneficial when the frequency of PRRSv infection was at least every 1 year and 9 months [corrected]. The economics of preventative vaccination was minimally affected by cost attributed to field-type PRRSv infection on growing pigs or by the breeding herd productivity level. The models developed and described in this paper provide valuable tools to assist veterinarians in their efforts to control PRRSv.

  12. Saliva-Induced Clotting Captures Streptococci: Novel Roles for Coagulation and Fibrinolysis in Host Defense and Immune Evasion

    PubMed Central

    Mohanty, Tirthankar; Karlsson, Christofer; Mörgelin, Matthias; Frick, Inga-Maria; Malmström, Johan; Björck, Lars

    2016-01-01

    Streptococcal pharyngitis is among the most common bacterial infections, but the molecular mechanisms involved remain poorly understood. Here we investigate the interactions among three major players in streptococcal pharyngitis: streptococci, plasma, and saliva. We find that saliva activates the plasma coagulation system through both the extrinsic and the intrinsic pathways, entrapping the bacteria in fibrin clots. The bacteria escape the clots by activating host plasminogen. Our results identify a potential function for the intrinsic pathway of coagulation in host defense and a corresponding role for fibrinolysis in streptococcal immune evasion. PMID:27456827

  13. Comparative study of the strategies evolved by two parasitoids of the genus Asobara to avoid the immune response of the host, Drosophila melanogaster.

    PubMed

    Moreau, Sébastien J M; Eslin, Patrice; Giordanengo, Philippe; Doury, Géraldine

    2003-04-01

    Asobara tabida and Asobara citri are two braconid endoparasitoids of Drosophila melanogaster larvae. We studied and compared the strategies evolved by these two species to avoid the immune reaction of their host. A. tabida has no negative impact on host cellular defenses and its eggs avoid encapsulation by adhering to host tissues. At the opposite, we found that A. citri, whose eggs are devoid of adhesive properties, affects the host encapsulation abilities, hemolymph phenoloxidase activity and concentrations of circulating hemocytes. Some of these effects could directly rely on a severe disruption of the hematopoietic organ anterior lobes observed in parasitized larvae. This is the first report of the immune suppressive abilities of a parasitoid from the Asobara genus. Results are presented and discussed with respect to the strategies of virulence evolved by other parasitoids to counteract the D. melanogaster immune system.

  14. The evolutionary strategies of plant defenses have a dynamic impact on the adaptations and interactions of vectors and pathogens.

    PubMed

    Huot, Ordom Brian; Nachappa, Punya; Tamborindeguy, Cecilia

    2013-06-01

    Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects. Living in a sedentary lifestyle, plants are constantly adapting to their environment. They employ various strategies to increase performance and fitness. Thus, plants developed cost-effective strategies to defend against specific insects and pathogens. Plant defense, however, imposes selective pressure on insects and pathogens. This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense. This results in an evolutionary arms race among plants, pathogens and insects. The ever-changing adaptations and physiological alterations among these organisms make studying plant-vector-pathogen interactions a challenging and fascinating field. Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize. Therefore, this review focuses on the integral parts of plant-vector-pathogen interactions in order to understand the factors that affect plant defense and disease development. The review addresses plant-vector-pathogen co-evolution, plant defense strategies, specificity of plant defenses and plant-vector-pathogen interactions. Improving the comprehension of these factors will provide a multi-dimensional perspective for the future research in pest and disease management.

  15. Testing Strategies To Raise Immunization Rates. Report of the Joyce Foundation's Special Project on Immunization.

    ERIC Educational Resources Information Center

    Fischer, Sunny; Baron, Dan

    In many low-income communities, children are not properly immunized and are left vulnerable to completely preventable illnesses. This report provides information gained as a result of a 1-year funding project in the Chicago area to determine why so many children were not being immunized and how to increase immunization rates. The project tested 5…

  16. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    SciTech Connect

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  17. Epithelial cells, the "switchboard" of respiratory immune defense responses: effects of air pollutants.

    PubMed

    Müller, Loretta; Jaspers, Ilona

    2012-07-31

    "Epimmunome", a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases.

  18. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  19. Immune defence strategies of generalist and specialist insect herbivores

    PubMed Central

    Barthel, Andrea; Kopka, Isabell; Vogel, Heiko; Zipfel, Peter; Heckel, David G.; Groot, Astrid T.

    2014-01-01

    Ecological immunology examines the adaptive responses of animals to pathogens in relation to other environmental factors and explores the consequences of trade-offs between investment in immune function and other life-history traits. Among species of herbivorous insects, diet breadth may vary greatly, with generalists consuming a wide variety of plant families and specialists restricted to a few species. Generalists may thus be exposed to a wider range of pathogens exerting stronger selection on the innate immune system. To examine whether this produces an increase in the robustness of the immune response, we compared larvae of the generalist herbivore Heliothis virescens and the specialist Heliothis subflexa challenged by entomopathogenic and non-pathogenic bacteria. Heliothis virescens larvae showed lower mortality, a lower number of recoverable bacteria, lower proliferation of haemocytes and higher phagocytic activity. These results indicate a higher tolerance to entomopathogenic bacteria by the generalist, which is associated with a more efficient cell-mediated immune response by mechanisms that differ between these closely related species. Our findings provide novel insights into the consequences of diet breadth and related environmental factors, which may be significant in further studies to understand the ecological forces and investment trade-offs that shape the evolution of innate immunity. PMID:24943370

  20. Quorum Sensing Determines the Choice of Antiphage Defense Strategy in Vibrio anguillarum

    PubMed Central

    Tan, Demeng; Svenningsen, Sine Lo

    2015-01-01

    ABSTRACT Selection for phage resistance is a key driver of bacterial diversity and evolution, and phage-host interactions may therefore have strong influence on the genetic and functional dynamics of bacterial communities. In this study, we found that an important, but so far largely overlooked, determinant of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V. anguillarum PF430-3 cells locked in the low-cell-density state (ΔvanT mutant) express high levels of the phage receptor OmpK, resulting in a high susceptibility to phage KVP40, but achieve protection from infection by enhanced biofilm formation. By contrast, cells locked in the high-cell-density state (ΔvanΟ mutant) are almost completely unsusceptible due to quorum-sensing-mediated downregulation of OmpK expression. The phenotypes of the two quorum-sensing mutant strains are accurately reflected in the behavior of wild-type V. anguillarum, which (i) displays increased OmpK expression in aggregated cells compared to free-living variants in the same culture, (ii) displays a clear inverse correlation between ompK mRNA levels and the concentration of N-acylhomoserine lactone quorum-sensing signals in the culture medium, and (iii) survives mainly by one of these two defense mechanisms, rather than by genetic mutation to phage resistance. Taken together, our results demonstrate that V. anguillarum employs quorum-sensing information to choose between two complementary antiphage defense strategies. Further, the prevalence of nonmutational defense mechanisms in strain PF430-3 suggests highly flexible adaptations to KVP40 phage infection pressure, possibly allowing the long-term coexistence of phage and host. PMID:26081633

  1. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens*

    PubMed Central

    Djoko, Karrera Y.; Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.

    2015-01-01

    Zinc (Zn) and copper (Cu) are essential for optimal innate immune function, and nutritional deficiency in either metal leads to increased susceptibility to bacterial infection. Recently, the decreased survival of bacterial pathogens with impaired Cu and/or Zn detoxification systems in phagocytes and animal models of infection has been reported. Consequently, a model has emerged in which the host utilizes Cu and/or Zn intoxication to reduce the intracellular survival of pathogens. This review describes and assesses the potential role for Cu and Zn intoxication in innate immune function and their direct bactericidal function. PMID:26055706

  2. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens.

    PubMed

    Djoko, Karrera Y; Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-07-31

    Zinc (Zn) and copper (Cu) are essential for optimal innate immune function, and nutritional deficiency in either metal leads to increased susceptibility to bacterial infection. Recently, the decreased survival of bacterial pathogens with impaired Cu and/or Zn detoxification systems in phagocytes and animal models of infection has been reported. Consequently, a model has emerged in which the host utilizes Cu and/or Zn intoxication to reduce the intracellular survival of pathogens. This review describes and assesses the potential role for Cu and Zn intoxication in innate immune function and their direct bactericidal function.

  3. Chagas’ disease: an update on immune mechanisms and therapeutic strategies

    PubMed Central

    Boscardin, Silvia Beatriz; Torrecilhas, Ana Claudia Troccoli; Manarin, Romina; Revelli, Silvia; Rey, Elena Gonzalez; Tonelli, Renata Rosito; Silber, Ariel Mariano

    2010-01-01

    Abstract The final decade of the 20th century was marked by an alarming resurgence in infectious diseases caused by tropical parasites belonging to the kinetoplastid protozoan order. Among the pathogenic trypanosomatids, some species are of particular interest due to their medical importance. These species include the agent responsible for Chagas’ disease, Trypanosoma cruzi. Approximately 8 to 10 million people are infected in the Americas, and approximately 40 million are at risk. In the present review, we discuss in detail the immune mechanisms elicited during infection by T. cruzi and the effects of chemotherapy in controlling parasite proliferation and on the host immune system. PMID:20070438

  4. Clinical Decision Support for Immunizations (CDSi): A Comprehensive, Collaborative Strategy

    PubMed Central

    Arzt, Noam H.

    2016-01-01

    This article focuses on the requirements and current developments in clinical decision support technologies for immunizations (CDSi) in both the public health and clinical communities, with an emphasis on shareable solutions. The requirements of the Electronic Health Record Incentive Programs have raised some unique challenges for the clinical community, including vocabulary mapping, update of changing guidelines, single immunization schedule, and scalability. This article discusses new, collaborative approaches whose long-term goal is to make CDSi more sustainable for both the public and private sectors. PMID:27789956

  5. Immediate–Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses

    PubMed Central

    Torres, Lilith; Tang, Qiyi

    2015-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses. PMID:25501994

  6. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus).

    PubMed

    Lazado, Carlo C; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-08-01

    The present study investigated the daily dynamics of humoral immune defenses and the temporal influence in the sensitivity of these responses to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). The first experiment subjected the fish to two photoperiod conditions, 12L:12D (LD) and 0L:24D (DD), for 20 days to characterize the rhythms of humoral immunity. Serum alkaline phosphatase (ALP), lysozyme (LYZ), peroxidase (PER) and protease (PRO) exhibited significant rhythmicity under LD but not in DD. No significant rhythms were observed in esterase (ESA) and anti-protease (ANTI) in both photoperiod conditions. Fish reared under LD were subsequently subjected to DD while the group previously under DD was exposed to LD, and this carried on for 3 days before another set of samples was collected. Results revealed that the rhythms of LYZ, PER and PRO but not ALP persisted when photoperiod was changed from LD to DD. Nonetheless, immune parameters remained arrhythmic in the group subjected from DD to LD. Cluster analysis of the humoral immune responses under various light conditions revealed that each photic environment had distinct daily immunological profile. In the second experiment, fish were injected with bacterial endotoxin lipopolysaccharide (LPS) either at ZT3 (day) or at ZT15 (night) to evaluate the temporal sensitivity of humoral immunity to a pathogen-associated molecular pattern. The results demonstrated that responses to LPS were gated by the time of day. LPS significantly modulated serum ALP and ANTI activities but only when the endotoxin was administered at ZT3. Serum LYZ and PER were stimulated at both injection times but with differing response profiles. Modulated LYZ activity was persistent when injected at ZT3 but transient when LPS was applied at ZT15. The magnitude of LPS-induced PER activity was higher when the endotoxin was delivered at ZT3 versus ZT15. It was further shown that plasma cortisol was significantly elevated but only when LPS

  7. Strategies to Modulate Immune Responses: A New Frontier for Gene Therapy

    PubMed Central

    Arruda, Valder R; Favaro, Patricia; Finn, Jonathan D

    2009-01-01

    The success of gene therapy strategies to cure disease relies on the control of unwanted immune responses to transgene products, genetically modified cells and/or to the vector. Effective treatment of an established immune response is much harder to achieve than prevention of a response before it has had a chance to develop. However, preventive strategies are not always effective in avoiding immune responses, thus the use of drugs to induce immunosuppression (IS) is required. The growing discovery of novel drugs provides a conceptual shift from using generalized, moderately intensive immunosuppressive regimens towards a refined approach to attain the optimal balance of naive cells, effector cells, memory cells, and regulatory cells, harnessing the natural tolerance mechanisms of the body. We review several strategies based on transient IS coupled with gene therapy for sustained immune tolerance induction to the therapeutic transgene. PMID:19584819

  8. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  9. The Defense Acquisition Workforce Improvement Strategy. Appendix 1: DOD Strategic Human Capital Plan Update. The Defense Acquisition Workforce

    DTIC Science & Technology

    2010-04-01

    8 to this Section. 11 Numbers based on FY2009 gains and losses from all pay plans ( CSRS , FERS and...refinements to this definition. Numbers include all members regardless of retirement plan ( CSRS , FERS and others). Other analysis in report focuses on...members under CSRS and FERS. Defense Acquisition Workforce (DAW) (Civilian) (FY09) Gains to DAW from within DOD (FY08= ) Administrative

  10. Comparative Analysis of the Effectiveness of Three Immunization Strategies in Controlling Disease Outbreaks in Realistic Social Networks

    PubMed Central

    Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie

    2014-01-01

    The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies—acquaintance immunization, community-bridge immunization, and ring vaccination—were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures). However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice. PMID:24787718

  11. The impact of membrane lipid composition on macrophage activation in the immune defense against Rhodococcus equi and Pseudomonas aeruginosa.

    PubMed

    Schoeniger, Axel; Adolph, Stephanie; Fuhrmann, Herbert; Schumann, Julia

    2011-01-01

    Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model system, we identified polyunsaturated fatty acids (PUFA) of both the n-3 and the n-6 family to down-regulate the synthesis of: (i) the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; (ii) the co-stimulatory molecule CD86; as well as (iii) the antimicrobial polypeptide lysozyme. The action of the fatty acids partially depended on the activation status of the macrophages. It is particularly important to note that the anti-inflammatory action of the PUFA could also be seen in case of infection of RAW264.7 with viable microorganisms of the genera R. equi and P. aeruginosa. In summary, our data provide strong evidence that PUFA from both the n-3 and the n-6 family down-regulate inflammation processes in context of chronic infections caused by persistent pathogens.

  12. IRAK-M regulation and function in host defense and immune homeostasis

    PubMed Central

    Hubbard, Leah L.N.; Moore, Bethany B.

    2010-01-01

    Antigen presenting cells (APCs) of the innate immune system sense a wide range of pathogens via pattern recognition receptors (PRRs). Engagement of certain PRRs can induce production of pro-inflammatory mediators that facilitate effective clearance of pathogen. Toll-like receptors (TLRs) are a well described group of PRRs that belong to the TLR/Interleukin-1 receptor (IL-1R) superfamily. However, TLR/IL-1R induction of pro-inflammatory mediators must be regulated to prevent excessive inflammation and tissue damage. One molecule of recent interest that is known to inhibit TLR/IL-1R signaling is interleukin-1 receptor associated kinase (IRAK)-M, also known as IRAK-3. IRAK-M is expressed in a number of immune and epithelial cells types, and through its inhibition of pro-inflammatory cytokine production, IRAK-M can regulate immune homeostasis and tolerance in a number of infectious and non-infectious diseases. Furthermore, use of IRAK-M deficient animals has increased our understanding of the importance of IRAK-M in regulating immune responsiveness to a variety of pathogens. Although IRAK-M expression is typically induced through TLR signaling, IRAK-M can also be expressed in response to various endogenous and exogenous soluble factors as well as cell surface and intracellular signaling molecules. This review will focus on clinical scenarios in which expression of IRAK-M is beneficial (as in early sepsis) and those situations where IRAK-M expression is harmful to the host (as in cancer and following bone marrow transplant). There is strong rationale for therapeutic targeting of IRAK-M for clinical benefit. However, effective targeting will require a greater understanding of the transcriptional regulation of this gene. PMID:21390243

  13. RNAi and antiviral defense in Drosophila: setting up a systemic immune response.

    PubMed

    Karlikow, Margot; Goic, Bertsy; Saleh, Maria-Carla

    2014-01-01

    RNA interference (RNAi) controls gene expression in eukaryotic cells and thus, cellular homeostasis. In addition, in plants, nematodes and arthropods it is a central antiviral effector mechanism. Antiviral RNAi has been well described as a cell autonomous response, which is triggered by double-stranded RNA (dsRNA) molecules. This dsRNA is the precursor for the silencing of viral RNA in a sequence-specific manner. In plants, systemic antiviral immunity has been demonstrated, however much less is known in animals. Recently, some evidence for a systemic antiviral response in arthropods has come to light. Cell autonomous RNAi may not be sufficient to reach an efficient antiviral response, and the organism might rely on the spread and uptake of an RNAi signal of unknown origin. In this review, we offer a perspective on how RNAi-mediated antiviral immunity could confer systemic protection in insects and we propose directions for future research to understand the mechanism of RNAi-immune signal sorting, spreading and amplification.

  14. Mimics of Host Defense Proteins; Strategies for Translation to Therapeutic Applications.

    PubMed

    Scott, Richard W; Tew, Gregory N

    2017-01-01

    New infection treatments are urgently needed to combat the rising threat of multi-drug resistant bacteria. Despite early clinical set-backs attention has re-focused on host defense proteins (HDPs), as potential sources for new and effective antimicrobial treatments. HDPs appear to act at multiple targets and their repertoire includes disruptive membrane and intracellular activities against numerous types of pathogens as well as immune modulatory functions in the host. Importantly, these novel activities are associated with a low potential for emergence of resistance and little crossresistance with other antimicrobial agents. Based on these properties, HDPs appear to be ideal candidates for new antibiotics; however, their development has been plagued by the many therapeutic limitations associated with natural peptidic agents. This review focuses on HDP mimetic approaches aimed to improve metabolic stability, pharmacokinetics, safety and manufacturing processes. Early efforts with β-peptide or peptoid analogs focused on recreating stable facially amphiphilic structures but demonstrated that antimicrobial activity was modulated by more, complex structural properties. Several approaches have used lipidation to increase the hydrophobicity and membrane activity. One lead compound, LTX-109, has entered clinical study as a topical agent to treat impetigo and nasal decolonization. In a more significant departure from the amino acid like peptidomimetics, considerable effort has been directed at developing amphiphilic compounds that recapitulate the structural and biological properties of HDPs on small abiotic scaffolds. The lead compound from this approach, brilacidin, has completed two phase 2 studies as an intravenous agent for skin infections.

  15. Strategies to improve immunization services in urban Africa.

    PubMed Central

    Cutts, F. T.

    1991-01-01

    The urban poor constitute a rapidly increasing proportion of the population in developing countries. Focusing attention on underserved urban slums and squatter settlements will contribute greatly to immunization programme goals, because these areas account for 30-50% of urban populations, usually provide low access to health services, carry a large burden of disease mortality, and act as sources of infection for the city and surrounding rural areas. Improvement of urban immunization programmes requires intersectorial collaboration, use of all opportunities to vaccinate eligible children and mothers, identification of low-coverage neighbourhoods and execution of extra activities in these neighbourhoods, and community mobilization to identify and refer persons for vaccination. Improved disease surveillance helps to identify high-risk populations and document programme impact. New developments in vaccines, such as the high-dose Edmonston-Zagreb vaccine, will allow changes in the immunization schedule that facilitate the control of specific diseases. Finally, operational research can assist managers to conduct urban situation assessments, evaluate programme performance at the "micro" level, and design and monitor interventions. PMID:1934234

  16. Pertussis immunization in the global pertussis initiative North American region: recommended strategies and implementation considerations.

    PubMed

    Tan, Tina; Halperin, Scott; Cherry, James D; Edwards, Kathryn; Englund, Janet A; Glezen, Paul; Greenberg, David; Rothstein, Edward; Skowronski, Danuta

    2005-05-01

    In North America, children currently receive 5 doses of a combined diphtheria-tetanus-acellular pertussis vaccine between the ages of 2 months and 6 years. Although this schedule has reduced the incidence of childhood pertussis, it has not led to the development of herd immunity in the total population, largely because pertussis immunity wanes with time. The time course over which immunity wanes is uncertain; however, high pertussis antibody titers in adolescents and adults indicate unrecognized infection in these groups. There is evidence that this group serves as a source of infection for young infants who are not fully immunized. Therefore, of the potential strategies reviewed by the North American Global Pertussis Initiative group, universal adolescent immunization would in theory reduce the risk of pertussis in this age group and may reduce transmission to young infants. However, because immunity probably wanes at the same rate in adolescents and children, the burden of disease will likely shift to older age groups, including young adults (parents of vulnerable infants). Therefore the ideal would be immunization of adolescents and adults, particularly those who are in contact with young infants. Adolescent immunization is already recommended in Austria, France, Germany and Canada, and participants in the Global Pertussis Initiative recommend that this strategy be implemented across North America with a view to eventually extending immunization to include adults. The final decision to implement such a strategy will depend on pertussis surveillance studies and analysis of the effectiveness and tolerability of adolescent and adult pertussis immunization as well as program considerations related to feasibility and economics.

  17. Defense Biometric and Forensic Office Research, Development, Test and Evaluation Strategy

    DTIC Science & Technology

    2015-01-06

    DEFENSE 3030 DEFENSE PENTAGON WASHINGTON, DC 20301-3030 6 January 2015 I am pleased to present the Defense Biometric and Forensic Office’s (DBFO... biometric and forensic RDT &E. It anticipates that other organizations that fund projects across these enterprises will develop their own priorities and...view of biometric and forensic RDT &E investments across the Department of Defense. I look forward to advancing our common efforts to achieve the

  18. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  19. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

    PubMed Central

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U.

    2016-01-01

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi’s sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways. PMID:27871174

  20. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  1. Short Toxin-like Proteins Attack the Defense Line of Innate Immunity

    PubMed Central

    Tirosh, Yitshak; Ofer, Dan; Eliyahu, Tsiona; Linial, Michal

    2013-01-01

    ClanTox (classifier of animal toxins) was developed for identifying toxin-like candidates from complete proteomes. Searching mammalian proteomes for short toxin-like proteins (coined TOLIPs) revealed a number of overlooked secreted short proteins with an abundance of cysteines throughout their sequences. We applied bioinformatics and data-mining methods to infer the function of several top predicted candidates. We focused on cysteine-rich peptides that adopt the fold of the three-finger proteins (TFPs). We identified a cluster of duplicated genes that share a structural similarity with elapid neurotoxins, such as α-bungarotoxin. In the murine proteome, there are about 60 such proteins that belong to the Ly6/uPAR family. These proteins are secreted or anchored to the cell membrane. Ly6/uPAR proteins are associated with a rich repertoire of functions, including binding to receptors and adhesion. Ly6/uPAR proteins modulate cell signaling in the context of brain functions and cells of the innate immune system. We postulate that TOLIPs, as modulators of cell signaling, may be associated with pathologies and cellular imbalance. We show that proteins of the Ly6/uPAR family are associated with cancer diagnosis and malfunction of the immune system. PMID:23881252

  2. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    PubMed Central

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome. PMID:23087900

  3. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity.

    PubMed

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  4. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them.

    PubMed

    Hareendran, Sangeetha; Balakrishnan, Balaji; Sen, Dwaipayan; Kumar, Sanjay; Srivastava, Alok; Jayandharan, Giridhara R

    2013-11-01

    AAV-based gene transfer protocols have shown remarkable success when directed to immune-privileged sites such as for retinal disorders like Lebers congenital amaurosis. In contrast, AAV-mediated gene transfer into liver or muscle tissue for diseases such as hemophilia B, α1 anti-trypsin deficiency and muscular dystrophy has demonstrated a decline in gene transfer efficacy over time. It is now known that in humans, AAV triggers specific pathways that recruit immune sensors. These factors initiate an immediate reaction against either the viral capsid or the vector encoded protein as part of innate immune response or to produce a more specific adaptive response that generates immunological memory. The vector-transduced cells are then rapidly destroyed due to this immune activation. However, unlike other viral vectors, AAV is not immunogenic in murine models. Its immunogenicity becomes apparent only in large animal models and human subjects. Moreover, humans are natural hosts to AAV and exhibit a high seroprevalence against AAV vectors. This limits the widespread application of AAV vectors into patients with pre-existing neutralising antibodies or memory T cells. To address these issues, various strategies are being tested. Alternate serotype vectors (AAV1-10), efficient expression cassettes, specific tissue targeting, immune-suppression and engineered capsid variants are some approaches proposed to minimise this immune stimulation. In this review, we have summarised the nature of the immune response documented against AAV in various pre-clinical and clinical settings and have further discussed the strategies to evade them.

  5. Microecology and local immune and nonspecific defensive proteins depending on different nutrition.

    PubMed

    Kuvaeva, I B; Orlova, N G; Borovik, T E; Veselova, O L

    1987-01-01

    Breast-feeding is of high importance for the development of intestinal eubiosis. Before beginning with breast-feeding the coprofiltrates of newborns lack of IgA. Following the first feeding IgA concentration in the faeces sharply increases (up to 200 mg/100 g faeces). Comparable high values can be found in the coprofiltrates of breast-fed sick prematures. In the coprofiltrates of artificially fed healthy newborns and sick prematures no IgA is provable, within the first two weeks of age. Afterwards both the frequency of its evidence and its concentration gradually rise. This can be regarded as a sign of an increasing local production of immune proteins. Starting with the second year of life, only, the values of all the immunoglobulins fall again. It happens a microbial degradation. Increased concentrations of immunoglobulins in the coprofiltrates of children over 3 years must be evaluated as a sign of subclinical dysbacteriosis.

  6. Dissemination strategy for immunizing scale-free networks

    NASA Astrophysics Data System (ADS)

    Stauffer, Alexandre O.; Barbosa, Valmir C.

    2006-11-01

    We consider the problem of distributing a vaccine for immunizing a scale-free network against a given virus or worm. We introduce a method, based on vaccine dissemination, that seems to reflect more accurately what is expected to occur in real-world networks. Also, since the dissemination is performed using only local information, the method can be easily employed in practice. Using a random-graph framework, we analyze our method both mathematically and by means of simulations. We demonstrate its efficacy regarding the trade-off between the expected number of nodes that receive the vaccine and the network’s resulting vulnerability to develop an epidemic as the virus or worm attempts to infect one of its nodes. For some scenarios, the method is seen to render the network practically invulnerable to attacks while requiring only a small fraction of the nodes to receive the vaccine.

  7. CsCCL17, a CC chemokine of Cynoglossus semilaevis, induces leukocyte trafficking and promotes immune defense against viral infection.

    PubMed

    Hu, Yong-Hua; Zhang, Jian

    2015-08-01

    CC chemokines are the largest subfamily of chemokines, which are important components of the innate immune system. To date, sequences of several CC chemokines have been identified in half-smooth tongue sole (Cynoglossus semilaevis); however, the activities and functions of these putative chemokines remain unknown. Herein, we characterized a CC chemokine, CsCCL17, from tongue sole, and examined its activity. CsCCL17 contains a 303 bp open reading frame, which encodes a polypeptide of 100 amino acids with a molecular mass of 12 kDa CsCCL17 is phylogenetically related to the CCL17/22 group of CC chemokines and possesses the typical arrangement of four cysteines and an SCCR motif found in known CC chemokines. Under normal physiological conditions, CsCCL17 expression was detected in spleen, liver, heart, gill, head kidney, muscle, brain, and intestine. When the fish were infected by bacterial and viral pathogens, CsCCL17 expression was significantly up-regulated in a time-dependent manner. Chemotactic analysis showed that recombinant CsCCL17 (rCsCCL17) induced migration of peripheral blood leukocytes. A mutagenesis study showed that when the two cysteine residues in the SCCR motif were replaced by serine, no apparent chemotactic activity was observed in the mutant protein rCsCCL17M. rCsCCL17 enhanced the resistance of tongue sole against viral infection, but rCsCCL17M lacked this antiviral effect. Taken together, these findings indicate that CsCCL17 is a functional CC chemokine with the ability to recruit leukocytes and enhance host immune defense in a manner that requires the conserved SCCR motif.

  8. Biphasic CD8+ T-Cell Defense in Simian Immunodeficiency Virus Control by Acute-Phase Passive Neutralizing Antibody Immunization

    PubMed Central

    Iseda, Sumire; Takahashi, Naofumi; Poplimont, Hugo; Nomura, Takushi; Seki, Sayuri; Nakane, Taku; Nakamura, Midori; Shi, Shoi; Ishii, Hiroshi; Furukawa, Shota; Harada, Shigeyoshi; Naruse, Taeko K.; Kimura, Akinori; Matano, Tetsuro

    2016-01-01

    ABSTRACT Identifying human immunodeficiency virus type 1 (HIV-1) control mechanisms by neutralizing antibodies (NAbs) is critical for anti-HIV-1 strategies. Recent in vivo studies on animals infected with simian immunodeficiency virus (SIV) and related viruses have shown the efficacy of postinfection NAb passive immunization for viremia reduction, and one suggested mechanism is its occurrence through modulation of cellular immune responses. Here, we describe SIV control in macaques showing biphasic CD8+ cytotoxic T lymphocyte (CTL) responses following acute-phase NAb passive immunization. Analysis of four SIVmac239-infected rhesus macaque pairs matched with major histocompatibility complex class I haplotypes found that counterparts receiving day 7 anti-SIV polyclonal NAb infusion all suppressed viremia for up to 2 years without accumulating viral CTL escape mutations. In the first phase of primary viremia control attainment, CD8+ cells had high capacities to suppress SIVs carrying CTL escape mutations. Conversely, in the second, sustained phase of SIV control, CTL responses converged on a pattern of immunodominant CTL preservation. During this sustained phase of viral control, SIV epitope-specific CTLs showed retention of phosphorylated extracellular signal-related kinase (ERK)hi/phosphorylated AMP-activated protein kinase (AMPK)lo subpopulations, implying their correlation with SIV control. The results suggest that virus-specific CTLs functionally boosted by acute-phase NAbs may drive robust AIDS virus control. IMPORTANCE In early HIV infection, NAb responses are lacking and CTL responses are insufficient, which leads to viral persistence. Hence, it is important to identify immune responses that can successfully control such HIV replication. Here, we show that monkeys receiving NAb passive immunization in early SIV infection strictly control viral replication for years. Passive infusion of NAbs with CTL cross-priming capacity resulted in induction of functionally

  9. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response.

    PubMed

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Theurl, Igor; Theurl, Milan; Lindner, Ewald; Demetz, Egon; Aßhoff, Malte; Bellmann-Weiler, Rosa; Müller, Raphael; Gerner, Romana R; Moschen, Alexander R; Baumgartner, Nadja; Moser, Patrizia L; Talasz, Heribert; Tilg, Herbert; Fang, Ferric C; Weiss, Günter

    2015-11-01

    Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study, we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α, and IL-6 expression. Lcn2(-/-) macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2(-/-) IL-10(-/-) macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2(-/-) counterparts. Overexpression of the iron exporter ferroportin-1 in Lcn2(-/-) macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages.

  10. Beyond TLR Signaling—The Role of SARM in Antiviral Immune Defense, Apoptosis & Development.

    PubMed

    Panneerselvam, Porkodi; Ding, Jeak Ling

    2015-01-01

    SARM (Sterile alpha and armadillo motif-containing protein) is the recently identified TIR domain-containing cytosolic protein. Classified as a member of the TLR adaptor family, the multiple locations and functions of SARM (sometimes playing opposing roles), provoke an enigma on its biology. Although originally assumed to be a member of the TLR adaptor family (functioning as a negative regulator of TLR signaling pathway), latest findings indicate that SARM regulates signaling differently from other TLR adaptor proteins. Recent studies have highlighted the significant functional role of SARM in mediating apoptosis and antiviral innate immune response. In this review, we provide an update on the evolutionary conservation, spatial distribution, and regulated expression of SARM to highlight its diverse functional roles. The review will summarize findings on the known interacting partners of SARM and provide analogy on how they add new dimensions to the current understanding on the multifaceted roles of SARM in antiviral activities and apoptotic functions. In addition, we provide a future perspective on the roles of SARM in differentiation and development, with substantial emphasis on the molecular insights to its mechanisms of action.

  11. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Theurl, Igor; Theurl, Milan; Lindner, Ewald; Demetz, Egon; Aβhoff, Malte; Bellmann-Weiler, Rosa; Müller, Raphael; Gerner, Romana R.; Moschen, Alexander R.; Baumgartner, Nadja; Moser, Patrizia L.; Talasz, Heribert; Tilg, Herbert; Fang, Ferric C.; Weiss, Günter

    2015-01-01

    Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α and IL-6 expression. Lcn2-/- macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2-/- IL-10-/- macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2-/- counterparts. Over-expression of the iron exporter ferroportin-1 in Lcn2-/- macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages. PMID:26332507

  12. West European and East Asian Perspectives on Defense, Deterrence and Strategy. Volume 2. Western European Perspectives on Defense, Deterrence and Strategy.

    DTIC Science & Technology

    1984-05-16

    Europe on defense and national security issues. Even among avowed Gaullists such as the wright-wing’ Mayor of Paris, Jacques Chirac, there is growing...of such systems.(82 , 83) Embracing the School III concept that in order to deter, a weapon’s potential use must be credible, Jacques Cressard, former...forces are countercity, single warhead weapons. In the words of Jacques Huntzinger, foreign affairs spokesman for the French Socialist Party, "it is

  13. Novel Strategies for Targeting Innate Immune Responses to Influenza

    PubMed Central

    Shirey, Kari Ann; Lai, Wendy; Patel, Mira C.; Pletneva, Lioubov M.; Pang, Catherine; Kurt-Jones, Evelyn; Lipsky, Michael; Roger, Thierry; Calandra, Thierry; Tracey, Kevin; Al-Abed, Yousef; Bowie, Andrew G.; Fasano, Alessio; Dinarello, Charles; Gusovsky, Fabian; Blanco, Jorge C.G.; Vogel, Stefanie N.

    2016-01-01

    We previously reported that TLR4-/- mice are refractory to mouse-adapted A/PR/8/34 (PR8) influenza-induced lethality and that therapeutic administration of the TLR4 antagonist, Eritoran, blocked PR8-induced lethality and acute lung injury (ALI) when given starting 2 days post-infection. Herein, we extend these findings: anti-TLR4- or TLR2-specific IgG therapy also conferred significant protection of wild-type (WT) mice from lethal PR8 infection. If treatment is initiated 3 h prior to PR8 infection and continued daily for 4 days, Eritoran failed to protect WT and TLR4-/- mice, implying that Eritoran must block a virus-induced, non-TLR4 signal that is required for protection. Mechanistically, we determined that (i) Eritoran blocks HMGB1-mediated, TLR4-dependent signaling in vitro and circulating HMGB1 in vivo, and an HMGB1 inhibitor protects against PR8; (ii) Eritoran inhibits pulmonary lung edema associated with ALI, (iii) IL-1β contributes significantly to PR8-induced lethality, as evidenced by partial protection by IL-1 receptor antagonist (IL-1Ra) therapy. Synergistic protection against PR8-induced lethality was achieved when Eritoran and the anti-viral drug, oseltamivir, were administered starting 4 days post-infection. Eritoran treatment does not prevent development of an adaptive immune response to subsequent PR8 challenge. Overall, our data support the potential of a host-targeted therapeutic approach to influenza infection. PMID:26813341

  14. DNA methylation-associated colonic mucosal immune and defense responses in treatment-naïve pediatric ulcerative colitis.

    PubMed

    Harris, R Alan; Nagy-Szakal, Dorottya; Mir, Sabina A V; Frank, Eibe; Szigeti, Reka; Kaplan, Jess L; Bronsky, Jiri; Opekun, Antone; Ferry, George D; Winter, Harland; Kellermayer, Richard

    2014-08-01

    Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn's disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P<0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD.

  15. The Cnes2 Locus on Mouse Chromosome 17 Regulates Host Defense against Cryptococcal Infection through Pleiotropic Effects on Host Immunity

    PubMed Central

    Shourian, Mitra; Flaczyk, Adam; Angers, Isabelle; Mindt, Barbara C.; Fritz, Jörg H.

    2015-01-01

    The genetic basis of natural susceptibility to progressive Cryptococcus neoformans infection is not well understood. Using C57BL/6 and CBA/J inbred mice, we previously identified three chromosomal regions associated with C. neoformans susceptibility (Cnes1, Cnes2, and Cnes3). To validate and characterize the role of Cnes2 during the host response, we constructed a congenic strain on the C57BL/6 background (B6.CBA-Cnes2). Phenotypic analysis of B6.CBA-Cnes2 mice 35 days after C. neoformans infection showed a significant reduction of fungal burden in the lungs and spleen with higher pulmonary expression of gamma interferon (IFN-γ) and interleukin-12 (IL-12), lower expression of IL-4, IL-5, and IL-13, and an absence of airway epithelial mucus production compared to that in C57BL/6 mice. Multiparameter flow cytometry of infected lungs also showed a significantly higher number of neutrophils, exudate macrophages, CD11b+ dendritic cells, and CD4+ cells in B6.CBA-Cnes2 than in C57BL/6 mice. The activation state of recruited macrophages and dendritic cells was also significantly increased in B6.CBA-Cnes2 mice. Taken together, these findings demonstrate that the Cnes2 interval is a potent regulator of host defense, immune responsiveness, and differential Th1/Th2 polarization following C. neoformans infection. PMID:26371125

  16. Innate Immune Defenses Mediated by Two ILC Subsets are Critical for Protection Against Acute Clostridium difficile Infection

    PubMed Central

    Abt, Michael C.; Lewis, Brittany B.; Caballero, Silvia; Xiong, Huizhong; Carter, Rebecca A.; Sušac, Bože; Ling, Lilan; Leiner, Ingrid; Pamer, Eric G.

    2015-01-01

    Summary Infection with the opportunistic enteric pathogen Clostridium difficile is an increasingly common clinical complication that follows antibiotic treatment-induced gut microbiota perturbation. Innate lymphoid cells (ILCs) are early responders to enteric pathogens; however, their role during C. difficile infection is undefined. To identify immune pathways that mediate recovery from C. difficile infection, we challenged C57BL/6, Rag1−/−, which lack T and B cells, and Rag2−/− Il2rg−/− (Ragγc−/−) mice, which additionally lack ILCs, with C. difficile. In contrast to Rag1−/− mice, ILC-deficient Ragγc−/− mice rapidly succumbed to infection. Rag1−/−, but not Ragγc−/− mice, upregulate expression of ILC1 or ILC3 associated proteins following C. difficile infection. Protection against infection was restored by transferring ILCs into Ragγc−/− mice. While ILC3s made a minor contribution to resistance, loss of IFN-γ or T-bet-expressing ILC1s in Rag1−/− mice increased susceptibility to C. difficile. These data demonstrate a critical role for ILC1s in defense against C. difficile. PMID:26159718

  17. A new role for PGRP-S (Tag7) in immune defense: lymphocyte migration is induced by a chemoattractant complex of Tag7 with Mts1

    PubMed Central

    Dukhanina, EA; Lukyanova, TI; Romanova, EA; Guerriero, V; Gnuchev, NV; Georgiev, GP; Yashin, DV; Sashchenko, LP

    2015-01-01

    PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response. PMID:26654597

  18. Sympathetic Modulation of Immunity: Relevance to Disease

    PubMed Central

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced ‘fight’ responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks. PMID:18308299

  19. Laboratory strategic defense initiatives against transmission of human immune deficiency virus in blood and blood products.

    PubMed

    Ahmed, S G

    2003-12-01

    Serological methods based on enzyme linked immunosorbent assay (ELISA) and Western blot tests for detecting the presence of antibodies against the human immune deficiency virus are the standard techniques for identifying infected blood donors. However, these tests could not detect infected seronegative donors who were in the window period at the time of donation. Such donors can be identified by more elaborate methods including antigen detecting ELISA and polymerase chain reaction, which can detect viral antigens and nucleic acids in infected donor blood even in window period. In addition, the process of donor selection whereby individuals who were at high risk for HIV infections were excluded from the donor panel had substantially reduced the risk of window period donation. Furthermore, in order to ensure greater safety, transfusion centers nowadays undertake additional measures in the form of virucidal techniques such as the use of heat, detergents and photochemical agents to treat blood and blood products. Despite all of these measures, a risk-free transfusion was not practically achievable. However, risk-free transfusion is now possible with the introduction of recombinant blood products, the use of which is severely limited by their cost. Nonetheless, a risk-free transfusion is still achievable at a relatively little cost by transfusing suitably eligible patients with their own blood through the autologous blood transfusion program. Antibody testing is virtually the only method currently available in Nigerian blood banks. There is the need to reactivate and expand the scope of our National Blood Transfusion Service in order to make our blood and products safer.

  20. Immune function and host defense in rodents exposed to 60-Hz magnetic fields.

    PubMed

    House, R V; Ratajczak, H V; Gauger, J R; Johnson, T R; Thomas, P T; Mccormick, D L

    1996-12-01

    This study was conducted to evaluate the influence of subchronic exposure to pure, linearly polarized 60-Hz magnetic fields (MF) on the host immune response in mice. The experimental design was as follows: three groups were exposed continuously (18.5 hr/day) to MF at field strengths of 0.02, 2, or 10 gauss (G), one group was exposed intermittently (1 hr on/1 hr off) to MF at a field strength of 10 G, and one group served as a sham control. Experimental endpoints included spleen and thymus weights and cellularity, antibody-forming cell (AFC) response, delayed-type hypersensitivity (DTH) response, splenic lymphocyte subset analysis, susceptibility to infection with Listeria monocytogenes, and natural killer (NK) cell activity. No differences in body weight, lymphoid organ weight, or lymphoid organ cellularity were observed in any MF-exposed group in comparison to sham controls. Likewise, no statistically significant differences were found in comparisons of AFC responses. Isolated statistically significant differences from control were observed in MF-exposed mice in the DTH assay, although no clear dose-related pattern of altered activity was seen. Splenic lymphocyte subset parameters examined were within normal limits in all groups, and no differences between control and MF-exposed mice were found. Host resistance to bacterial infection was not altered at any MF exposure examined in this study. Finally, although apparently dose-related, statistically significant alterations were observed in an initial study of NK cell function, repeat studies failed to demonstrate a consistent pattern of alteration.

  1. Controlled release strategies for modulating immune responses to promote tissue regeneration.

    PubMed

    Dumont, Courtney M; Park, Jonghyuck; Shea, Lonnie D

    2015-12-10

    Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.

  2. Mucosal and systemic immune responses induced by a single time vaccination strategy in mice.

    PubMed

    González Aznar, Elizabeth; Romeu, Belkis; Lastre, Miriam; Zayas, Caridad; Cuello, Maribel; Cabrera, Osmir; Valdez, Yolanda; Fariñas, Mildrey; Pérez, Oliver

    2015-08-01

    Vaccination is considered by the World Health Organization as the most cost-effective strategy for controlling infectious diseases. In spite of great successes with vaccines, many infectious diseases are still leading killers, because of the inadequate coverage of many vaccines. Several factors have been responsible: number of doses, high vaccine reactogenicity, vaccine costs, vaccination policy, among others. Contradictorily, few vaccines are of single dose and even less of mucosal administration. However, more common infections occur via mucosa, where secretory immunoglobulin A plays an essential role. As an alternative, we proposed a novel protocol of vaccination called Single Time Vaccination Strategy (SinTimVaS) by immunizing 2 priming doses at the same time: one by mucosal route and the other by parenteral route. Here, the mucosal and systemic responses induced by Finlay adjuvants (AF Proteoliposome 1 and AF Cochleate 1) implementing SinTimVaS in BALB/c mice were evaluated. One intranasal dose of AF Cochleate 1 and an intramuscular dose of AF Proteoliposome 1 adsorbed onto aluminum hydroxide, with bovine serum albumin or tetanus toxoid as model antigens, administrated at the same time, induced potent specific mucosal and systemic immune responses. Also, we demonstrated that SinTimVaS using other mucosal routes like oral and sublingual, in combination with the subcutaneous route elicits immune responses. SinTimVaS, as a new immunization strategy, could increase vaccination coverage and reduce time-cost vaccines campaigns, adding the benefits of immune response in mucosa.

  3. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers

    PubMed Central

    Braitbard, Ori; Roniger, Maayan; Bar-Sinai, Allan; Rajchman, Dana; Gross, Tamar; Abramovitch, Hillel; Ferla, Marco La; Franceschi, Sara; Lessi, Francesca; Naccarato, Antonio Giuseppe; Mazzanti, Chiara M.; Bevilacqua, Generoso; Hochman, Jacob

    2016-01-01

    Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers. PMID:26934560

  4. Novel strategies for targeting innate immune responses to influenza.

    PubMed

    Shirey, K A; Lai, W; Patel, M C; Pletneva, L M; Pang, C; Kurt-Jones, E; Lipsky, M; Roger, T; Calandra, T; Tracey, K J; Al-Abed, Y; Bowie, A G; Fasano, A; Dinarello, C A; Gusovsky, F; Blanco, J C G; Vogel, S N

    2016-09-01

    We previously reported that TLR4(-/-) mice are refractory to mouse-adapted A/PR/8/34 (PR8) influenza-induced lethality and that therapeutic administration of the TLR4 antagonist Eritoran blocked PR8-induced lethality and acute lung injury (ALI) when given starting 2 days post infection. Herein we extend these findings: anti-TLR4- or -TLR2-specific IgG therapy also conferred significant protection of wild-type (WT) mice from lethal PR8 infection. If treatment is initiated 3 h before PR8 infection and continued daily for 4 days, Eritoran failed to protect WT and TLR4(-/-) mice, implying that Eritoran must block a virus-induced, non-TLR4 signal that is required for protection. Mechanistically, we determined that (i) Eritoran blocks high-mobility group B1 (HMGB1)-mediated, TLR4-dependent signaling in vitro and circulating HMGB1 in vivo, and an HMGB1 inhibitor protects against PR8; (ii) Eritoran inhibits pulmonary lung edema associated with ALI; (iii) interleukin (IL)-1β contributes significantly to PR8-induced lethality, as evidenced by partial protection by IL-1 receptor antagonist (IL-1Ra) therapy. Synergistic protection against PR8-induced lethality was achieved when Eritoran and the antiviral drug oseltamivir were administered starting 4 days post infection. Eritoran treatment does not prevent development of an adaptive immune response to subsequent PR8 challenge. Overall, our data support the potential of a host-targeted therapeutic approach to influenza infection.

  5. Shell colour polymorphism, injuries and immune defense in three helicid snail species, Cepaea hortensis, Theba pisana and Cornu aspersum maximum☆

    PubMed Central

    Scheil, Alexandra E.; Hilsmann, Stefanie; Triebskorn, Rita; Köhler, Heinz-R.

    2013-01-01

    Shell colour polymorphism is a widespread feature of various land snail species. In our study we aimed at elucidating the question whether there is a correlation between shell colouration and immune defense in three land snail species by comparing phenoloxidase (PO) activity levels of different morphs after immunostimulation via Zymosan A-injection. Since phenoloxidase is involved both in immune defense as well as in melanin production, the PO activity level is particularly interesting when trying to resolve this question. Even though Zymosan A failed to induce PO activity rendering a comparison of inducible PO activity impossible, an interesting difference between pale and dark morphs of all tested species could be observed: dark snails were less affected by hemolymph withdrawal and were able to maintain or regenerate a significantly higher PO activity level after hemolymph withdrawal than pale snails. Possible implications of this observation are discussed. PMID:24600561

  6. Immunizations

    MedlinePlus

    ... Get Weight Loss Surgery? A Week of Healthy Breakfasts Shyness Immunizations KidsHealth > For Teens > Immunizations Print A A A What's in this article? Why Are Vaccinations Important? Why Do I Need Shots? Which Vaccinations Do ...

  7. Immune inflammation indicators and implication for immune modulation strategies in advanced hepatocellular carcinoma patients receiving sorafenib

    PubMed Central

    Gardini, Andrea Casadei; Scarpi, Emanuela; Faloppi, Luca; Scartozzi, Mario; Silvestris, Nicola; Santini, Daniele; de Stefano, Giorgio; Marisi, Giorgia; Negri, Francesca V.; Foschi, Francesco Giuseppe; Valgiusti, Martina; Ercolani, Giorgio; Frassineti, Giovanni Luca

    2016-01-01

    We evalueted a systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) with the aim to explored their prognostic value in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib. 56 advanced HCC patients receiving sorafenib were available for our analysis. Lymphocyte, neutrophil and platelet were measured before beginning of treatment and after one month. Patient with SII ≥ 360 showed lower median PFS (2.6 vs. 3.9 months, P < 0.026) and OS (5.6 vs. 13.9 months, P = 0.027) with respect to patients with SII < 360. NLR ≥ 3 had a lower median PFS (2.6 vs. 3.3 months, P < 0.049) but not OS (5.6 vs. 13.9 months, P = 0.062) than those with NLR < 3. After adjusting for clinical covariates SII and NLR remained an independent prognostic factor for OS. The SII and NLR represent potential prognostic indicator in patients with advanced HCC treated with sorafenib. PMID:27613839

  8. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa-review.

    PubMed

    Andonova, Maria; Urumova, Valentina

    2013-09-01

    The present review aims to provide insight into the complex interactions between the host and Pseudomonas aeruginosa-an opportunistic microbial agent causing skin infections. Heat, humidity and skin pH are among the factors beneficial for the development of this Gram-negative agent. To cause infection, Pseudomonas aeruginosa should first overcome the primary mechanisms of defense including the cell elements and humoral factors of the skin, as well as non-specific responses-phagocytosis, inflammation, acute phase response. All they are analysed with emphasis on the fact that their detailed understanding would help revealing their potential and allow for their efficient control. The microorganism, being more alterable and more flexible than the host, uses stealth strategies and modes of life. The review goes over the arsenal of virulence factors, used by Pseudomonas aeruginosa to attack the host defense mechanisms. The bacterial pathogenic strategies for invasion, resulting in collapse of skin defense are analysed. Several novel therapeutic approached to Pseudomonas aeruginosa skin infections are briefly reviewed.

  9. A Scallop Nitric Oxide Synthase (NOS) with Structure Similar to Neuronal NOS and Its Involvement in the Immune Defense

    PubMed Central

    Jiang, Qiufen; Zhou, Zhi; Wang, Leilei; Wang, Lingling; Yue, Feng; Wang, Jingjing; Song, Linsheng

    2013-01-01

    Background Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. Methodology In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot-1, and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot-1, respectively, P < 0.01). Conclusions These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α. PMID:23922688

  10. Global Immunization Vision and Strategy (GIVS): a mid-term analysis of progress in 50 countries.

    PubMed

    Kamara, Lidija; Lydon, Patrick; Bilous, Julian; Vandelaer, Jos; Eggers, Rudi; Gacic-Dobo, Marta; Meaney, William; Okwo-Bele, Jean-Marie

    2013-01-01

    Within the overall framework set out in the Global Immunization Vision and Strategy (GIVS) for the period 2006-2015, over 70 countries had developed comprehensive Multi-Year Plans (cMYPs) by 2008, outlining their plans for implementing the GIVS strategies and for attaining the GIVS Goals at the midpoint in 2010 or earlier. These goals are to: (1) reach ≥90% and ≥80% vaccination coverage at national and district level, respectively; and (2) reduce measles-related mortality by 90% compared with the 2000 level. Fifty cMYPs were analysed along the four strategic areas of the GIVS: (1) protecting more people in a changing world; (2) introducing new vaccines and technologies; (3) integrating immunization, other health interventions and surveillance in the health system context; and (4) immunizing in the context of global interdependence. By 2010, all 50 countries planned to have introduced hepatitis B (HepB) vaccine, 48 the Haemophilus influenzae type B (Hib) vaccine and only a few countries had firm plans to introduce pneumococcal or rotavirus vaccines. Countries seem to be inadequately prepared in terms of cold-chain requirements to deal with the expected increases in storage that will be required for vaccines, and in making provisions to establish a corresponding surveillance system for planned new vaccine introductions. Immunization contacts are used to deliver other health interventions, especially in the countries in the World Health Organization (WHO) Africa Region. The cost for the planned immunization activities will double to U$27 per infant, of which U$5 per infant is the expected shortfall. Global Alliance for Vaccines and Immunization (GAVI) funding is becoming the largest contributor to immunization programmes.

  11. Identification and analysis of a Sciaenops ocellatus ISG15 homologue that is involved in host immune defense against bacterial infection.

    PubMed

    Liu, Chun-Sheng; Sun, Yun; Zhang, Min; Sun, Li

    2010-07-01

    ISG15 is an interferon-stimulated gene that encodes a ubiquitin-like protein. ISG15 homologues have been identified in a number of fish species, some of which are known to be regulated at expression level by virus infection and lipopolysaccharide (LPS) treatment. However, the relationship between ISG15 and live bacterial infection has not been investigated in piscine models. In this study, an ISG15 homologue, SoISG15, was identified from red drum Sciaenops ocellatus and analyzed at expression and functional levels. The open reading frame of SoISG15 is 477 base pairs (bp) and intronless, with a 5'-untranslated region (UTR) of 91 bp and a 3'-UTR of 415 bp. The deduced amino acid sequence of SoISG15 shares 60-67% overall identities with the ISG15 of several fish species. SoISG15 possesses two conserved ubiquitin-like domains and the canonical ubiquitin conjugation motif, LRGG, at the C-terminus. Expressional analysis showed that constitutive expression of SoISG15 was highest in blood and lowest in kidney. Experimental challenges with LPS and bacterial pathogens induced significant SoISG15 expression in the kidney but not in the liver. Similar differential induction was also observed at cellular level with primary hepatocytes and head kidney (HK) lymphocytes. Poly(I:C), however, effected drastic induction of SoISG15 expression in kidney and liver at both tissue and cellular levels. Immunoblot analysis showed that SoISG15 was secreted by cultured HK lymphocytes into the extracellular milieu. Recombinant SoISG15 expressed in and purified from Escherichia coli was able to enhance the respiratory burst activity, acid phosphatase activity, and bactericidal activity of HK macrophages. Taken together, the results of this study indicated that SoISG15 possesses apparent immunological property and is likely to be involved in host immune defense against bacterial infection.

  12. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity

    PubMed Central

    Botelho, Danielle J.; Leo, Bey Fen; Massa, Christopher B.; Sarkar, Srijata; Tetley, Terry D.; Chung, Kian Fan; Chen, Shu; Ryan, Mary P.; Porter, Alexandra E.; Zhang, Junfeng; Schwander, Stephan K.; Gow, Andrew J.

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered. PMID:26152688

  13. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.

    PubMed

    Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.

  14. Immune System (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Immune System KidsHealth > For Parents > Immune System A A A ... can lead to illness and infection. About the Immune System The immune system is the body's defense against ...

  15. Counterproliferation strategy: The influence of technology, budget, and arms control on theater missile defenses. Strategic research project

    SciTech Connect

    Parlier, G.H.

    1996-05-20

    This paper describes the historical evolution of the theater missile threat during World War II and the Persian Gulf War, and analyzes current technological challenges, budgetary pressures, and arms control restraints which constrain the development and deployment of effective theater missile defenses. The impact of these trends on strategic concepts as outlined in the National Military Strategy and their implications for attaining national policy objectives is assessed. A systems approach is used to described analyze, and evaluate the effectiveness of emerging counterproliferation strategy within the framework of an ends-ways-means strategy formulation paradigm. I conclude that current trends will lead to a self-deterring strategy: resources are inadequate to support the ways we intend to achieve our national objectives. Recommendations are made to eliminate unacceptable risk and enhance the concept of `extended conventional deterrence` consistent with U.S. national values and security interests for our role in a new world order.

  16. Evaluation of a time efficient immunization strategy for anti-PAH antibody development.

    PubMed

    Li, Xin; Kaattari, Stephen L; Vogelbein, Mary Ann; Unger, Michael A

    2016-01-01

    The development of monoclonal antibodies (mAb) with affinity to small molecules can be a time-consuming process. To evaluate shortening the time for mAb production, we examined mouse antisera at different time points post-immunization to measure titer and to evaluate the affinity to the immunogen PBA (pyrene butyric acid). Fusions were also conducted temporally to evaluate antibody production success at various time periods. We produced anti-PBA antibodies 7 weeks post-immunization and selected for anti-PAH reactivity during the hybridoma screening process. Moreover, there were no obvious sensitivity differences relative to antibodies screened from a more traditional 18-week schedule. Our results demonstrate a more time efficient immunization strategy for anti-PAH antibody development that may be applied to other small molecules.

  17. The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy

    PubMed Central

    Amara, Suneetha; Tiriveedhi, Venkataswarup

    2017-01-01

    DNA-based vaccine strategy is increasingly realized as a viable cancer treatment approach. Strategies to enhance immunogenicity utilizing tumor associated antigens have been investigated in several pre-clinical and clinical studies. The promising outcomes of these studies have suggested that DNA-based vaccines induce potent T-cell effector responses and at the same time cause only minimal side-effects to cancer patients. However, the immune evasive tumor microenvironment is still an important hindrance to a long-term vaccine success. Several options are currently under various stages of study to overcome immune inhibitory effect in tumor microenvironment. Some of these approaches include, but are not limited to, identification of neoantigens, mutanome studies, designing fusion plasmids, vaccine adjuvant modifications, and co-treatment with immune-checkpoint inhibitors. In this review, we follow a Porter’s analysis analogy, otherwise commonly used in business models, to analyze various immune-forces that determine the potential success and sustainable positive outcomes following DNA vaccination using non-viral tumor associated antigens in treatment against cancer. PMID:28304339

  18. Advanced Strategies in Immune Modulation of Cancer Using Lipid-Based Nanoparticles

    PubMed Central

    Mizrahy, Shoshy; Hazan-Halevy, Inbal; Landesman-Milo, Dalit; Ng, Brandon D.; Peer, Dan

    2017-01-01

    Immunotherapy has a great potential in advancing cancer treatment, especially in light of recent discoveries and therapeutic interventions that lead to complete response in specific subgroups of melanoma patients. By using the body’s own immune system, it is possible not only to specifically target and eliminate cancer cells while leaving healthy cells unharmed but also to elicit long-term protective response. Despite the promise, current immunotherapy is limited and fails in addressing all tumor types. This is probably due to the fact that a single treatment strategy is not sufficient in overcoming the complex antitumor immunity. The use of nanoparticle-based system for immunotherapy is a promising strategy that can simultaneously target multiple pathways with the same kinetics to enhance antitumor response. Here, we will highlight the recent advances in the field of cancer immunotherapy that utilize lipid-based nanoparticles as delivery vehicles and address the ongoing challenges and potential opportunities. PMID:28220118

  19. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects.

    PubMed

    Fedorka, Kenneth M; Copeland, Emily K; Winterhalter, Wade E

    2013-11-01

    To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.

  20. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects

    SciTech Connect

    Fedorka, K. M.; Copeland, E. K.; Winterhalter, W. E.

    2013-07-18

    To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.

  1. Strategies to improve the functions and redox state of the immune system in aged subjects.

    PubMed

    De la Fuente, Monica; Cruces, Julia; Hernandez, Oskarina; Ortega, Eduardo

    2011-12-01

    The aging process is accompanied by an impairment of the physiological systems including the immune system. This system is an excellent indicator of health. We have also observed that several functions of the immune cells are good markers of biological age and predictors of longevity. In agreement with the oxidation-inflammation theory that we have proposed, the chronic oxidative stress that appears with age affects all cells and especially those of the regulatory systems, such as the nervous, endocrine and immune systems and the communication between them. This fact prevents an adequate homeostasis and, therefore, the preservation of health. We have also proposed an involvement of the immune system in the aging process of the organism, concretely in the rate of aging, since there is a relation between the redox state and functional capacity of the immune cells and the longevity of individuals. A confirmation of the central role of the immune system in oxi-inflamm-aging is that several lifestyle strategies such as the administration of adequate amounts of antioxidants in the diet, physical exercise, physical and mental activity through environmental enrichment and hormetic interventions improve functions of immune cells, decreasing their oxidative stress, and consequently increasing the longevity of individuals. Recent results in mice of investigations on the effects of a new environmental enrichment (bathing in waters) as well as a hormetic intervention with slight infections (caused by injection of E.coli lipopolysaccharide, LPS), on several functions and redox parameters are shown. The advantages and possible problems of the use of those interventions to achieve a healthy aging and longevity are discussed.

  2. Enhancement of survivin-specific anti-tumor immunity by adenovirus prime protein-boost immunity strategy with DDA/MPL adjuvant in a murine melanoma model.

    PubMed

    Wang, Yu-Qian; Zhang, Hai-Hong; Liu, Chen-Lu; Wu, Hui; Wang, Peng; Xia, Qiu; Zhang, Li-Xing; Li, Bo; Wu, Jia-Xin; Yu, Bin; Gu, Tie-Jun; Yu, Xiang-Hui; Kong, Wei

    2013-09-01

    As an ideal tumor antigen, survivin has been widely used for tumor immunotherapy. Nevertheless, no effective protein vaccine targeting survivin has been reported, which may be due to its poor ability to induce cellular immunity. Thus, a suitable immunoadjuvant and optimized immunization strategy can greatly enhance the cellular immune response to this protein vaccine. DDA/MPL (monophosphoryl lipid A formulated with cationic dimethyldioctadecylammonium) has been reported to enhance the antigen uptake and presentation to T cells as an adjuvant. Meanwhile, a heterologous prime-boost strategy can enhance the cellular immunity of a protein vaccine by applying different antigen-presenting systems. Here, DDA/MPL and an adenovirus prime-protein boost strategy were applied to enhance the specific anti-tumor immunity of a truncated survivin protein vaccine. Antigen-specific IFN-γ-secreting T cells were increased by 10-fold, and cytotoxic T lympohocytes (CTLs) were induced effectively when the protein vaccine was combined with the DDA/MPL adjuvant. Meanwhile, the Th1 type cellular immune response was strongly enhanced and tumor inhibition was significantly increased by 96% with the adenovirus/protein prime-boost strategy, compared to the protein homologous prime-boost strategy. Moreover, this adjuvanted heterologous prime-boost strategy combined with oxaliplatin could significantly enhance the efficiency of tumor growth inhibition through promoting the proliferation of splenocytes. Thus, our results provide a novel vaccine strategy for cancer therapy using an adenovirus prime-protein boost strategy in a murine melanoma model, and its combination with oxaliplatin may further enhance the anti-tumor efficacy while alleviating side effects of the drug.

  3. Addressing the Surveillance Goal in the National Strategy for Suicide Prevention: The Department of Defense Suicide Event Report

    PubMed Central

    Reger, Mark A.; Kinn, Julie T.; Luxton, David D.; Skopp, Nancy A.; Bush, Nigel E.

    2012-01-01

    The US National Strategy for Suicide Prevention (National Strategy) described 11 goals across multiple areas, including suicide surveillance. Consistent with these goals, the Department of Defense (DoD) has engaged aggressively in the area of suicide surveillance. The DoD's population-based surveillance system, the DoD Suicide Event Report (DoDSER) collects information on suicides and suicide attempts for all branches of the military. Data collected includes suicide event details, treatment history, military and psychosocial history, and psychosocial stressors at the time of the event. Lessons learned from the DoDSER program are shared to assist other public health professionals working to address the National Strategy objectives. PMID:22390595

  4. Addressing the surveillance goal in the National Strategy for Suicide Prevention: the Department of Defense Suicide Event Report.

    PubMed

    Gahm, Gregory A; Reger, Mark A; Kinn, Julie T; Luxton, David D; Skopp, Nancy A; Bush, Nigel E

    2012-03-01

    The US National Strategy for Suicide Prevention (National Strategy) described 11 goals across multiple areas, including suicide surveillance. Consistent with these goals, the Department of Defense (DoD) has engaged aggressively in the area of suicide surveillance. The DoD's population-based surveillance system, the DoD Suicide Event Report (DoDSER) collects information on suicides and suicide attempts for all branches of the military. Data collected includes suicide event details, treatment history, military and psychosocial history, and psychosocial stressors at the time of the event. Lessons learned from the DoDSER program are shared to assist other public health professionals working to address the National Strategy objectives.

  5. Increasing adolescent immunization rates in primary care: strategies physicians use and would consider implementing.

    PubMed

    Humiston, Sharon G; Serwint, Janet R; Szilagyi, Peter G; Vincelli, Phyllis A; Dhepyasuwan, Nui; Rand, Cynthia M; Schaffer, Stanley J; Blumkin, Aaron K; Curtis, C Robinette

    2013-08-01

    Strategies to increase adolescent immunization rates have been suggested, but little is documented about which strategies clinicians actually use or would consider. In spring 2010, we surveyed primary care physicians from 2 practice-based research networks (PBRNs): Greater Rochester PBRN (GR-PBRN) and national pediatric COntinuity Research NETwork (CORNET). Network clinicians received mailed or online surveys (response rate 76%, n=148). The GR-PBRN patient population (51% suburban, 33% rural, and 16% urban) differed from that served by CORNET (85% urban). For nonseasonal vaccines recommended for adolescents, many GR-PBRN and CORNET practices reported using nurse prompts to providers at preventive visits (61% and 52%, respectively), physician education (53% and 53%), and scheduled vaccine-only visits (91% and 82%). Strategies not used that clinicians frequently indicated they would consider included patient reminder/recall and prompts to providers via nurses or electronic health records. As preventive visits and immunization recommendations grow more complex, using technology to support immunization delivery to adolescents might be effective.

  6. The Defense Acquisition Challenge: A Strategy for Improving Weapon System Affordability

    DTIC Science & Technology

    1993-04-01

    Office, 1 September 1985). 13. Kotter, John P., "What Leaders Really Do," Harvard Business Review , May-June 1990, pp. 103-111. 14. Puryear, Edgar F...34 Defense Issues, Vol. 7, No. 22, March 19, 1992, pp. 1-8. 46. Drucker, Peter F., "The Emerging Theory of Manufacturing," Harvard Business Review , May-June...1983), p. 30. 71. Lundquist, Jerrold T., "Shrinking Fast and Smart in the Defense Industry," Harvard Business Review , November-December 1992, p. 77. 72

  7. Looming Discontinuities in U.S. Military Strategy and Defense Planning: Colliding RMAs Necessitate a New Strategy

    DTIC Science & Technology

    2011-01-01

    hypersonic cruise missiles or precision-guided ballistic or boost- glide missiles.17 Another pos- sibility for strategic investment would be the Air Force’s...or a single maneuvering reentry vehicle , pos- sibly of the boost- glide variety. 20 The United States is increasing its military presence on the...defenses against drones. Special needs for mine-resistant vehicles , persistent surveillance and substantial manpower. NOTE: Red = feasibility is in

  8. Department of Defense Enterprise Architecture Transition Strategy, Version 2.0

    DTIC Science & Technology

    2008-02-29

    organization, training, materials , leadership and education, personnel, and facilities (DOTMLPF) implications for making information available on a...processes such as the Systems Development Lifecycle (http://akss.dau.mil/dag/) and Information Resources Management (DoD IRM Plan) have also occurred...Enterprise Information Decision Support (EIDS) investment: risks to medical and dental readiness and medical surveillance  Defense Message

  9. A Strategy-Based Framework for Accommodating Reductions in the Defense Budget

    DTIC Science & Technology

    2012-01-01

    low allied defense spending is as much a political choice as an eco- nomic necessity.6 Apart from the yawning disparity in U.S.-allied burden...direction addresses directly the objective of ensuring strong alliances, in that the yawning gap between U.S. and allied burden-sharing could otherwise

  10. Building Future Security: Strategies for Restructuring the Defense Technology and Industrial Base.

    DTIC Science & Technology

    1992-06-01

    in the future. Instead, flexibility in development and manufac- turing will be essential. The automatic link be- tween development and production...defense work, and an emphasis on flexible performance specifications rather than rigid military specifications for products and manufacturing processes...policy flexibility Access to foreign markets Access to foreign technology Potential for reduced unit costs SOURCE: Office of Technology Assessment

  11. 75 FR 8272 - Defense Federal Acquisition Regulation Supplement; Acquisition Strategies To Ensure Competition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Defense Federal Acquisition Regulation Supplement (DFARS) to implement the Weapon Systems Acquisition..., 2009, The Weapon Systems Acquisition Reform Act (Pub. L. 111-23) was enacted to improve the organization and procedures of DoD for the acquisition of major weapon systems. This law establishes...

  12. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race.

  13. Immunization

    MedlinePlus

    ... remembers" the germ and can fight it again. Vaccines contain germs that have been killed or weakened. When given to a healthy person, the vaccine triggers the immune system to respond and thus ...

  14. An Evidence-Based Project Demonstrating Increased School Immunization Compliance Following a School Nurse-Initiated Vaccine Compliance Strategy

    ERIC Educational Resources Information Center

    Swallow, Wendy; Roberts, Jill C.

    2016-01-01

    During the 2012-2013 school year, only 66% of students at a Northern Indiana High School were in compliance with school immunization requirements. We report here successful implementation of evidence-based, time, and cost-effective methods aimed at increasing school immunization compliance. A three-stage strategy initiated by the school nurse was…

  15. Human NKG2D-ligands: cell biology strategies to ensure immune recognition

    PubMed Central

    Fernández-Messina, Lola; Reyburn, Hugh T.; Valés-Gómez, Mar

    2012-01-01

    Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumors and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, major histocompatibility complex class I-related chain (MIC) A/B and UL16 binding proteins (ULBPs), are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarize the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease. PMID:23056001

  16. Strategies to enhance immune function in hematopoietic transplantation recipients who have fungal infections.

    PubMed

    Safdar, A

    2006-09-01

    The challenges in the treatment of systemic fungal infections after HSCT include: (1) changing epidemiology as less drug-susceptible saprophytic fungi are increasingly associated with human disease; (2) the difficulty of early and correct diagnosis, even with the new generation of enzymatic immunoassays; (3) the inability to reduce or eliminate predisposing factors, especially severe immune suppression in most transplant patients with these infections and (4) the uncertain role of antifungal drug combinations and risk of drug antagonism complicating effective empiric-pre-emptive therapy. Current, developing and future immune enhancement strategies including recombinant granulocyte- and granulocyte macrophage-colony stimulating factor (GM-CSF), interferon-gamma (IFN-gamma), adjuvant pro-inflammatory cytokine therapy during mobilized donor granulocyte transfusions, therapeutic potential of pentraxin, adaptive immune transfer and dendritic cell fungal vaccines. Improved understanding of the molecular pathogenesis of fungal infections and of the complexity of host antifungal immune responses has provided the critical information to readdress existing treatment paradigms and further evaluate the role of GM-CSF and IFN-gamma early in the course of therapy against life-threatening fungal infections in high-risk patients following stem cell transplantation.

  17. Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance.

    PubMed

    Zhang, Cheng; Zhang, Xi; Chen, Xing-Hua

    2014-10-01

    Interleukin-6 (IL-6) is a proinflammatory cytokine that is multifunctional, with multifaceted effects. IL-6 signaling plays a vital role in the control of the differentiation and activation of T lymphocytes by inducing different pathways. In particular, IL-6 controls the balance between Th17 cells and regulatory T (Treg) cells. An imbalance between Treg and Th17 cells is thought to play a pathological role in various immune-mediated diseases. Deregulated IL-6 production and signaling are associated with immune tolerance. Therefore, methods of inhibiting IL-6 production, receptors, and signaling pathways are strategies that are currently being widely pursued to develop novel therapies that induce immune tolerance. This survey aims to provide an updated account of why IL-6 inhibitors are becoming a vital class of drugs that are potentially useful for inducing immune tolerance as a treatment for autoimmune diseases and transplant rejection. In addition, we discuss the effect of targeting IL-6 in recent experimental and clinical studies on autoimmune diseases and transplant rejection.

  18. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity

    PubMed Central

    Stijlemans, Benoît; Caljon, Guy; Van Den Abbeele, Jan; Van Ginderachter, Jo A.; Magez, Stefan; De Trez, Carl

    2016-01-01

    The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host’s immune response (cellular as well as humoral) and via an elaborate and efficient (vector)–parasite–host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host. PMID:27446070

  19. Greening the Mixture: An Evaluation of the Department of Defense’s Alternative Aviation Fuel Strategy

    DTIC Science & Technology

    2012-06-08

    process begins with gasification of feedstocks such as coal, natural gas, or biomass towards the production of alternative fuels. With adequate carbon...Barrels per day CBTL Coal and Biomass to Liquid CCS Carbon Dioxide Capture and Sequestration CTL Coal to Liquid DARPA Defense Advanced Research...sequestration. Captured carbon dioxide from coal-to-liquid (CTL) or coal and biomass -to-liquid (CBTL) production could be readily injected into the

  20. Road to a National Political Strategy for Missile Defense of Europe

    DTIC Science & Technology

    2008-06-13

    the 2000-2002 timeframe address the missile defense issue before the U.S. withdrawal from the ABM treaty. These source set the groundwork for later...arrangements (Park 2002). This study appeared prior to the U.S. withdrawal from the ABM treaty and the subsequent debate that action generated. The...well as possible European reaction to possible unilateral/bilateral U.S. actions were presented . The most significant limitation of these pre- ABM

  1. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution

    PubMed Central

    Kumar, M. Senthil; Plotkin, Joshua B.; Hannenhalli, Sridhar

    2015-01-01

    CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. PMID:26544847

  2. Innate Immune Defenses Induced by CpG do not Promote Vaccine-Induced Protection Against Foot-and-Mouth Disease in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emergency vaccination as part of the control strategies against Foot-and-Mouth Disease (FMD) epidemics has the potential not only to limit the spread of the virus but also to reduce large-scale culling of affected herds. With the aim to reduce the time between vaccination and the onset of immunity, ...

  3. Construction of a full-length cDNA library of Solen grandis dunker and identification of defense- and immune-related genes

    NASA Astrophysics Data System (ADS)

    Sun, Guohua; Liu, Xiangquan; Ren, Lihua; Yang, Jianmin; Wei, Xiumei; Yang, Jialong

    2013-11-01

    The basic genetic characteristics, important functional genes, and entire transcriptome of Solen grandis Dunker were investigated by constructing a full-length cDNA library with the `switching mechanism at the 5'-end of the RNA transcript' (SMART) technique. Total RNA was isolated from the immune-relevant tissues, gills and hemocytes, using the Trizol reagent, and cDNA fragments were digested with Sfi I before being ligated to the pBluescript II SK* vector. The cDNA library had a titer of 1048 cfu μL-1 and a storage capacity of 1.05×106 cfu. Approximately 98% of the clones in the library were recombinants, and the fragment lengths of insert cDNA ranged from 0.8 kb to 3.0 kb. A total of 2038 expressed sequence tags were successfully sequenced and clustered into 965 unigenes. BLASTN analysis showed that 240 sequences were highly similar to the known genes (E-value < 1e -5; percent identity >80%), accounting for 25% of the total unigenes. According to the Gene Ontology, these unigenes were related to several biological processes, including cell structure, signal transport, protein synthesis, transcription, energy metabolism, and immunity. Fifteen of the identified sequences were related to defense and immunity. The full-length cDNA sequence of HSC70 was obtained. The cDNA library of S. grandis provided a useful resource for future researches of functional genomics related to stress tolerance, immunity, and other physiological activities.

  4. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death

    PubMed Central

    DeLaney, Alexandra; Santos-Marrero, Melanie; Grier, Jennifer T.; Sun, Yan; Zwack, Erin E.; Hu, Baofeng; Olsen, Tayla M.; Rongvaux, Anthony; López, Carolina B.; Oberst, Andrew; Beiting, Daniel P.; Brodsky, Igor E.

    2016-01-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. PMID:27737018

  5. Maternal Antibodies: Clinical Significance, Mechanism of Interference with Immune Responses, and Possible Vaccination Strategies

    PubMed Central

    Niewiesk, Stefan

    2014-01-01

    Neonates have an immature immune system, which cannot adequately protect against infectious diseases. Early in life, immune protection is accomplished by maternal antibodies transferred from mother to offspring. However, decaying maternal antibodies inhibit vaccination as is exemplified by the inhibition of seroconversion after measles vaccination. This phenomenon has been described in both human and veterinary medicine and is independent of the type of vaccine being used. This review will discuss the use of animal models for vaccine research. I will review clinical solutions for inhibition of vaccination by maternal antibodies, and the testing and development of potentially effective vaccines. These are based on new mechanistic insight about the inhibitory mechanism of maternal antibodies. Maternal antibodies inhibit the generation of antibodies whereas the T cell response is usually unaffected. B cell inhibition is mediated through a cross-link between B cell receptor (BCR) with the Fcγ-receptor IIB by a vaccine–antibody complex. In animal experiments, this inhibition can be partially overcome by injection of a vaccine-specific monoclonal IgM antibody. IgM stimulates the B cell directly through cross-linking the BCR via complement protein C3d and antigen to the complement receptor 2 (CR2) signaling complex. In addition, it was shown that interferon alpha binds to the CD21 chain of CR2 as well as the interferon receptor and that this dual receptor usage drives B cell responses in the presence of maternal antibodies. In lieu of immunizing the infant, the concept of maternal immunization as a strategy to protect neonates has been proposed. This approach would still not solve the question of how to immunize in the presence of maternal antibodies but would defer the time of infection to an age where infection might not have such a detrimental outcome as in neonates. I will review successful examples and potential challenges of implementing this concept. PMID

  6. Hemipteran and dipteran pests: Effectors and plant host immune regulators.

    PubMed

    Kaloshian, Isgouhi; Walling, Linda L

    2016-04-01

    Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.

  7. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions.

    PubMed

    Sukhithasri, V; Nisha, N; Biswas, Lalitha; Anil Kumar, V; Biswas, Raja

    2013-08-25

    The innate immune system constitutes the first line of defence against invading microbes. The basis of this defence resides in the recognition of defined structural motifs of the microbes called "Microbial associated molecular patterns" that are absent in the host. Cell wall, the outer layer of both bacterial and fungal cells, a unique structure that is absent in the host and is recognized by the germ line encoded host receptors. Nucleotide oligomerization domain proteins, peptidoglycan recognition proteins and C-type lectins are host receptors that are involved in the recognition of bacterial cell wall (usually called peptidoglycan), whereas fungal cell wall components (N- and O-linked mannans, β-glucans etc.) are recognized by host receptors like C-type lectins (Dectin-1, Dectin-2, mannose receptor, DC-SIGN), Toll like receptors-2 and -4 (TLR-2 and TLR-4). These recognitions lead to activation of a variety of host signaling cascades and ultimate production of anti-microbial compounds including phospholipase A2, antimicrobial peptides, lysozyme, reactive oxygen and nitrogen species. These molecules act in cohort against the invading microbes to eradicate infections. Additionally pathogen recognition leads to the production of cytokines, which further activate the adaptive immune system. Both pathogenic and commensal bacteria and fungus use numerous strategies to subvert the host defence. These strategies include bacterial peptidoglycan glycan backbone modifications by O-acetylation, N-deacetylation, N-glycolylation and stem peptide modifications by amidation of meso-Diaminopimelic acid; fungal cell wall modifications by shielding the β-glucan layer with mannoproteins and α-1,3 glucan. This review focuses on the recent advances in understanding the role of bacterial and fungal cell wall in their innate immune recognition and evasion strategies.

  8. Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest.

    PubMed

    Silva, Farley W S; Elliot, Simon L

    2016-04-27

    Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature-dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host-pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis. Upon egg hatching, caterpillars were reared in thermostat-controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone- and group-reared caterpillars, although the lone-reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group-reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean

  9. The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense

    DTIC Science & Technology

    2016-03-23

    mitigate those global threats that climate change poses to the international community. This is the climate change strategy gap. The Importance of...strategic interests globally . The strategic framework allows Yarger’s interlocking ends-ways-means-risk construct to define the strategy so it can...be interpreted into policy. Applying the strategy and objectives into the QDR, Global Employment of the Force (GEF), Joint Strategic Capabilities

  10. Recombinant probiotics with antimicrobial peptides: a dual strategy to improve immune response in immunocompromised patients.

    PubMed

    Mandal, Santi M; Silva, Osmar N; Franco, Octavio L

    2014-08-01

    Bacterial infectious diseases are currently a serious health problem, especially in patients compromised by illness or those receiving immune-suppressant drugs. In this context, it is not only essential to improve the understanding of infectious mechanisms and host response but also to discover novel therapies with extreme urgency. Probiotics and antimicrobial peptides are also favorably viewed as novel strategies in the control of resistant bacteria. The present review will shed some light on the use of probiotic microorganisms expressing antimicrobial peptides as a dual therapy to control bacterial infectious diseases.

  11. Strategies for Minimizing Monetary Loss in the Department of Defense Budget through Use of Financial Derivatives

    DTIC Science & Technology

    2008-03-01

    Chew, D. H.(2001). The New Corporate Finance : Where Theory Meets Practice. Lewent J. C. and Kearney, A. J., Identifying, Measuring, and Hedging...of Applied Corporate Finance , 18(4), 8-20. SEPT_1506. (2007) Foreign Currency Fluctuations, Defense Report for Operations and Maintenance. DD-COMP(M...Applied Corporate Finance , 9(3), 8-24. 5(3257𔃼&80(17$7,213$*( )RUP$SSURYHG 20%1R 5(3257’$7( ’󈧄<<<< 5(32577ɛ( 7,7

  12. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  13. Innate immune cell response upon Candida albicans infection.

    PubMed

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-03

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.

  14. An Assessment of the Department of Defense Strategy for Operating in Cyberspace

    DTIC Science & Technology

    2013-09-01

    providing a strong foundation of wisdom grounded in mastery of the profession of arms, and by serving as a crucible for educating future leaders in the...analysis, evaluation, and refinement of professional expertise in war, strategy, operations, national security, resource management, and responsible...Strategy identifies four specific actions: 1. Implement cyber hygiene best practices; 2. Address insider threats by strengthening work- force

  15. Maternal immune transfer in mollusc.

    PubMed

    Wang, Lingling; Yue, Feng; Song, Xiaorui; Song, Linsheng

    2015-02-01

    Maternal immunity refers to the immunity transferred from mother to offspring via egg, playing an important role in protecting the offspring at early life stages and contributing a trans-generational effect on offspring's phenotype. Because fertilization is external in most of the molluscs, oocytes and early embryos are directly exposed to pathogens in the seawater, and thus maternal immunity could provide a better protection before full maturation of their immunological systems. Several innate immune factors including pattern recognition receptors (PRRs) like lectins, and immune effectors like lysozyme, lipopolysaccharide binding protein/bacterial permeability-increasing proteins (LBP/BPI) and antioxidant enzymes have been identified as maternally derived immune factors in mollusc eggs. Among these immune factors, some maternally derived lectins and antibacterial factors have been proved to endue mollusc eggs with effective defense ability against pathogen infection, while the roles of other factors still remain untested. The physiological condition of mollusc broodstock has a profound effect on their offspring fitness. Many other factors such as nutrients, pathogens, environment conditions and pollutants could exert considerable influence on the maternal transfer of immunity. The parent molluscs which have encountered an immune stimulation endow their offspring with a trans-generational immune capability to protect them against infections effectively. The knowledge on maternal transfer of immunity and the trans-generational immune effect could provide us with an ideal management strategy of mollusc broodstock to improve the immunity of offspring and to establish a disease-resistant family for a long-term improvement of cultured stocks.

  16. Unraveling the evolution of the Atlantic cod's (Gadus morhua L.) alternative immune strategy.

    PubMed

    Malmstrøm, Martin; Jentoft, Sissel; Gregers, Tone F; Jakobsen, Kjetill S

    2013-01-01

    Genes encoding the major histocompatibility complex (MHC) have been thought to play a vital role in the adaptive immune system in all vertebrates. The discovery that Atlantic cod (Gadus morhua) has lost important components of the MHC II pathway, accompanied by an unusually high number of MHC I genes, shed new light on the evolution and plasticity of the immune system of teleosts as well as in higher vertebrates. The overall aim of this study was to further investigate the highly expanded repertoire of MHC I genes using a cDNA approach to obtain sequence information of both the binding domains and the sorting signaling potential in the cytoplasmic tail. Here we report a novel combination of two endosomal sorting motifs, one tyrosine-based associated with exogenous peptide presentation by cross-presenting MHCI molecules, and one dileucine-based associated with normal MHC II functionality. The two signal motifs were identified in the cytoplasmic tail in a subset of the genes. This indicates that these genes have evolved MHC II-like functionality, allowing a more versatile use of MHC I through cross-presentation. Such an alternative immune strategy may have arisen through adaptive radiation and acquisition of new gene function as a response to changes in the habitat of its ancestral lineage.

  17. Immune Evasion, Immunopathology and the Regulation of the Immune System

    PubMed Central

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-01-01

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response. PMID:25436882

  18. Women's use of physical and nonphysical self-defense strategies during incidents of partner violence.

    PubMed

    Downs, William R; Rindels, Barb; Atkinson, Christine

    2007-01-01

    Two incidents of partner violence are investigated using qualitative methodology to discover strategies women use to protect themselves and examine women's use of violence. Data were collected from 447 women (age 18 or older) from 7 domestic violence programs and 5 substance use disorder treatment programs in a midwestern state. Women were found to have developed numerous self-protection strategies, some using nonphysical means only, others using physical means only, and others combining nonphysical and physical means. Women often used a variety of strategies in the same incident. Few women initiated violence against partners. Implications for theory and research are discussed.

  19. The Hyperlipidemia Caused by Overuse of Glucocorticoid after Liver Transplantation and the Immune Adjustment Strategy

    PubMed Central

    Meng, Xueqin; Wu, Liming

    2017-01-01

    The overuse of glucocorticoid may cause the metabolic disorders affecting the long term outcome of liver transplantation. This study aims to investigate the immune adjustment strategy by decreasing use of glucocorticoid after liver transplantation. The follow-up study was carried out on liver function and lipid metabolism. This study included adult recipients of liver transplantation. There were 3 groups according to their use of glucocorticoid: long term (>3 months, n = 18), short term (<3 months, n = 20), and control group (no use of glucocorticoid, radical hepatic resection, n = 22). The laboratory results of liver function (AST/ALT ratio) and serum lipid were compared 6 months after liver transplantation. AST/ALT ratio, the marker of liver function, showed no significant difference between long and short term group (P > 0.05). The acute rejection had no significant difference between short and long term groups, while TG, HDL, LDL, and glucose showed significant change in the long term group (P < 0.05). At 6 months after liver transplantation, the long term group showed higher metabolic disorders (P < 0.05). The proper immune adjustment strategy should be made to avoid overuse of glucocorticoid. It can decrease hyperlipidemia and other metabolic disorders after liver transplantation without increasing the acute rejection or liver function damage. PMID:28194427

  20. Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium.

    PubMed

    Chiarelli, Roberto; Martino, Chiara; Agnello, Maria; Bosco, Liana; Roccheri, Maria Carmela

    2016-01-01

    Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently included into the guidelines for the use and interpretation of assays to monitor autophagy. After cadmium (Cd) exposure, a heavy metal recognized as an environmental toxicant, the sea urchin embryo is able to adopt different defense mechanisms, in a hierarchical way. Among these, autophagy is one of the main responses activated to preserve the developmental program. Finally, we discuss the interplay between autophagy and apoptosis in the sea urchin embryo, a temporal and functional choice that depends on the intensity of stress conditions.

  1. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  2. How Much Will Be Enough? Assessing Changing Defense Strategies Implications for Army Resource Requirements

    DTIC Science & Technology

    2014-01-01

    Resource Requirements M. Wade Markel, Stuart E. Johnson, Carolyn Chu, David C. Gompert, Duncan Long, Anny Wong Prepared for the United States Army...the U.S. Army Training and 1 See Paul K. Davis, Stuart E. Johnson, Duncan Long, and David C. Gompert...hereafter as Davis et al., 2008. See also David C. Gompert, Paul K. Davis, Stuart E. Johnson, and Duncan Long, Analysis of Strategy and Strategies of

  3. A cognitive and economic decision theory for examining cyber defense strategies.

    SciTech Connect

    Bier, Asmeret Brooke

    2014-01-01

    Cyber attacks pose a major threat to modern organizations. Little is known about the social aspects of decision making among organizations that face cyber threats, nor do we have empirically-grounded models of the dynamics of cooperative behavior among vulnerable organizations. The effectiveness of cyber defense can likely be enhanced if information and resources are shared among organizations that face similar threats. Three models were created to begin to understand the cognitive and social aspects of cyber cooperation. The first simulated a cooperative cyber security program between two organizations. The second focused on a cyber security training program in which participants interact (and potentially cooperate) to solve problems. The third built upon the first two models and simulates cooperation between organizations in an information-sharing program.

  4. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-04-29

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology.

  5. An optimal defense strategy for phenolic glycoside production in Populus trichocarpa--isotope labeling demonstrates secondary metabolite production in growing leaves.

    PubMed

    Massad, Tara Joy; Trumbore, Susan E; Ganbat, Gantsetseg; Reichelt, Michael; Unsicker, Sybille; Boeckler, Andreas; Gleixner, Gerd; Gershenzon, Jonathan; Ruehlow, Steffen

    2014-07-01

    Large amounts of carbon are required for plant growth, but young, growing tissues often also have high concentrations of defensive secondary metabolites. Plants' capacity to allocate resources to growth and defense is addressed by the growth-differentiation balance hypothesis and the optimal defense hypothesis, which make contrasting predictions. Isotope labeling can demonstrate whether defense compounds are synthesized from stored or newly fixed carbon, allowing a detailed examination of these hypotheses. Populus trichocarpa saplings were pulse-labeled with 13CO2 at the beginning and end of a growing season, and the 13C signatures of phenolic glycosides (salicinoids), sugars, bulk tissue, and respired CO2 were traced over time. Half of the saplings were also subjected to mechanical damage. Populus trichocarpa followed an optimal defense strategy, investing 13C in salicinoids in expanding leaves directly after labeling. Salicinoids turned over quickly, and their production continued throughout the season. Salicin was induced by early-season damage, further demonstrating optimal defense. Salicinoids appear to be of great value to P. trichocarpa, as they command new C both early and late in the growing season, but their fitness benefits require further study. Export of salicinoids between tissues and biochemical pathways enabling induction also needs research. Nonetheless, the investigation of defense production afforded by isotope labeling lends new insights into plants' ability to grow and defend simultaneously.

  6. Neutrophils and keratinocytes in innate immunity--cooperative actions to provide antimicrobial defense at the right time and place.

    PubMed

    Borregaard, Niels; Theilgaard-Mönch, Kim; Cowland, Jack B; Ståhle, Mona; Sørensen, Ole E

    2005-04-01

    The human neutrophil is a professional phagocyte of fundamental importance for defense against microorganisms, as witnessed by the life-threatening infections occurring in patients with neutropenia or with defects that result in decreased microbicidal activity of the neutrophil. Likewise, the skin and mucosal surfaces provide important barriers against infections. Traditionally, these major defense systems, the epithelial cells and the neutrophils, have been viewed as limited in their armory: The epithelial cells provide defense by constituting a physical barrier, and the neutrophils provide instant delivery of preformed antimicrobial substances or on-the-spot assembly of the multicomponent reduced nicotinamide adenine dinucleotide phosphate oxidase from stored components for the generation of reactive oxygen metabolites. Recent research has shown that epithelial cells are highly dynamic and able to generate antimicrobial peptides in response not only to microbial infection itself but more importantly, to the growth factors that are called into play when the physical barrier is broken, and the risk of microbial infection is imminent. Likewise, the neutrophil changes its profile of actively transcribed genes when it diapedeses into wounded skin. This results in generation of signaling molecules, some of which support the growth and antimicrobial potential of keratinocytes and epithelial cells. This paper will highlight some recent advances in this field.

  7. Invasion of mosquito salivary glands by malaria parasites: Prerequisites and defense strategies

    PubMed Central

    Mueller, Ann-Kristin; Kohlhepp, Florian; Hammerschmidt, Christiane; Michel, Kristin

    2010-01-01

    The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites. PMID:20621627

  8. Exploiting the Interplay between Innate and Adaptive Immunity to Improve Immunotherapeutic Strategies for Epstein-Barr-Virus-Driven Disorders

    PubMed Central

    Martorelli, Debora; Muraro, Elena; Merlo, Anna; Turrini, Riccardo; Faè, Damiana Antonia; Rosato, Antonio; Dolcetti, Riccardo

    2012-01-01

    The recent demonstration that immunotherapeutic approaches may be clinically effective for cancer patients has renewed the interest for this strategy of intervention. In particular, clinical trials using adoptive T-cell therapies disclosed encouraging results, particularly in the context of Epstein-Barr-virus- (EBV-) related tumors. Nevertheless, the rate of complete clinical responses is still limited, thus stimulating the development of more effective therapeutic protocols. Considering the relevance of innate immunity in controlling both infections and cancers, innovative immunotherapeutic approaches should take into account also this compartment to improve clinical efficacy. Evidence accumulated so far indicates that innate immunity effectors, particularly NK cells, can be exploited with therapeutic purposes and new targets have been recently identified. We herein review the complex interactions between EBV and innate immunity and summarize the therapeutic strategies involving both adaptive and innate immune system, in the light of a fruitful integration between these immunotherapeutic modalities for a better control of EBV-driven tumors. PMID:22319542

  9. "Beauty contest" indicator of cognitive ability and free riding strategies. Results from a scenario experiment about pandemic flu immunization.

    PubMed

    Rönnerstrand, Björn

    2017-03-01

    High immunization coverage rates are desirable in order to reduce total morbidity and mortality rates, but it may also provide an incentive for herd immunity free riding strategies. The aim of this paper was to investigate the link between cognitive ability and vaccination intention in a hypothetical scenario experiment about Avian Flu immunization. A between-subject scenario experiment was utilized to examine the willingness to undergo vaccination when the vaccination coverage was proclaimed to be 36, 62 and 88%. Respondents were later assigned to a "Beauty contest" experiment, an experimental game commonly used to investigate individual's cognitive ability. Results show that there was a significant negative effect of the proclaimed vaccination uptake among others on the vaccination intention. However, there were no significant association between the "Beauty contest" indicator of cognitive ability and the use of herd immunity free riding strategies.

  10. White shrimp Litopenaeus vannamei that have received fucoidan exhibit a defense against Vibrio alginolyticus and WSSV despite their recovery of immune parameters to background levels.

    PubMed

    Chen, Yu-Yuan; Kitikiew, Suwaree; Yeh, Su-Tuen; Chen, Jiann-Chu

    2016-12-01

    White shrimp Litopenaeus vannamei receiving fucoidan at 2, 6, and 10 μg g(-1) after 0-144 h or 0-120 h were examined for immune parameters (haemograms, phenoloxidase activity, respiratory burst, and superoxide dismutase activity), proliferation of haemocyte in the haematopoietic tissue (HPT), gene expression, and phagocytic activity and clearance efficiency to Vibrio alginolyticus. Immune parameters and mitotic index of HPT increased after 3-24 h, reached their maxima after 48-72 h, and returned to background values after 144 h. Transcripts of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), prophenoloxidase (proPO) I, proPO II, astakine, and haemocyte homeostasis-associated protein (HHAP) were up-regulated to a maximum after 48-72 h and returned to background values after 144 h. Phagocytic activity and clearance efficiency to V. alginolyticus increased after 12 h, reached its maximum after 48 h, and continued to remain higher after 120 h. In another experiment, shrimp receiving fucoidan after 48 h and 144 h were respectively challenged with V. alinolyticus at 6 × 10(6) colony-forming units (cfu) shrimp(-1) or challenged with WSSV at 1.2 × 10(5) copies shrimp(-1) and then placed in seawater. The survival rate of shrimp receiving fucoidan was significantly higher than in controls. In conclusion, shrimp receiving fucoidan showed a proliferation of HPT, increased immune parameters, and up-regulated transcripts of LGBP, PX, proPO I, proPO II, astakine, and HHAP after 48 h. Shrimp receiving fucoidan exhibited a defense against V. alginolyticus and WSSV, even after immune parameters recovered to background levels.

  11. Recognition sites for microbes and components of the immune system on human mast cells: relationship to CD antigens and implications for host defense.

    PubMed

    Mayerhofer, M; Aichberger, K J; Florian, S; Valent, P

    2007-01-01

    Traditionally, mast cells (MCs) have been considered to play an important role in allergic disorders and helminth infections. More recently, MCs have been implicated in a variety of different infectious diseases including life-threatening disorders caused by viruses and bacteria. Apart from recognition through specific IgE, MCs are considered to recognize such bacteria and viruses via specific cell surface binding sites. In addition, MCs interact with diverse components and cells of the immune system and thereby may facilitate the targeting and the elimination of invading microbes in the tissues. The current article provides an overview on MC antigens contributing to microbe recognition and targeting as an important element of natural host-defense.

  12. Spectroelectrochemistry as a Strategy for Improving Selectivity of Sensors for Security and Defense Applications

    SciTech Connect

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.; Bryan, Samuel A.

    2012-12-19

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The change in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin–biotin and 17β-estradiol–anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.

  13. Spectroelectrochemistry as a strategy for improving selectivity of sensors for security and defense applications

    NASA Astrophysics Data System (ADS)

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.; Bryan, Samuel A.

    2012-09-01

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The change in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin-biotin and 17β-estradiol-anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.

  14. Prioritization of rheumatoid arthritis risk subpathways based on global immune subpathway interaction network and random walk strategy.

    PubMed

    Lv, Wenhua; Wang, Qiuyu; Chen, He; Jiang, Yongshuai; Zheng, Jiajia; Shi, Miao; Xu, Yanjun; Han, Junwei; Li, Chunquan; Zhang, Ruijie

    2015-11-01

    The initiation and development of rheumatoid arthritis (RA) is closely related to mutual dysfunction of multiple pathways. Furthermore, some similar molecular mechanisms are shared between RA and other immune diseases. Therefore it is vital to reveal the molecular mechanism of RA through searching for subpathways of immune diseases and investigating the crosstalk effect among subpathways. Here we exploited an integrated approach combining both construction of a subpathway-subpathway interaction network and a random walk strategy to prioritize RA risk subpathways. Our research can be divided into three parts: (1) acquisition of risk genes and identification of risk subpathways of 85 immune diseases by using subpathway-lenient distance similarity (subpathway-LDS) method; (2) construction of a global immune subpathway interaction (GISI) network with subpathways identified by subpathway-LDS; (3) optimization of RA risk subpathways by random walk strategy based on GISI network. The results showed that our method could effectively identify RA risk subpathways, such as MAPK signaling pathway, prostate cancer pathway and chemokine signaling pathway. The integrated strategy considering crosstalk between immune subpathways significantly improved the effect of risk subpathway identification. With the development of GWAS, our method will provide insight into exploring molecular mechanisms of immune diseases and might be a promising approach for studying other diseases.

  15. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics.

    PubMed

    Alba, Annia; López-Abarrategui, Carlos; Otero-González, Anselmo J

    2012-01-01

    Host defense peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutic compounds. Also, the ability of host defense peptides to modulate immunity is an emerging therapeutic concept since its selective modulation is a novel antiinfective strategy. Their mechanisms of action and the fundamental differences between pathogens and host cells surfaces mostly lead to a not widely extended microbial resistance and to a lower toxicity toward host cells. Biological libraries and rational design are novel tools for developing such molecules with promising applications as therapeutic drugs.

  16. A putative G protein-coupled receptor involved in innate immune defense of Procambarus clarkii against bacterial infection.

    PubMed

    Dong, Chaohua; Zhang, Peng

    2012-02-01

    The immune functions of G protein-coupled receptor (GPCR) were widely investigated in mammals. However, limited researches on immune function of GPCRs were reported in invertebrates. In the present study, the immune functions of HP1R gene, a putative GPCR identified from red swamp crayfish Procambarus clarkii were reported. Expression of HP1R gene was significant up-regulated in response to heat-killed Aeromonas hydrophila challenge. HP1R gene silencing mediated by RNA interference significantly enhanced the susceptibility of red swamp crayfish to A. hydrophila and Vibrio alginolyticus, indicating that HP1R was required for red swamp crayfish to defend against bacterial challenge. In HP1R-silenced crayfish, increased bacterial burden and decreased THC in response to bacterial challenge were observed when compared with control crayfish. No significant difference of proPO gene expression was observed between HP1R-silenced and control crayfish after challenge with heat-killed A. hydrophila. However, PO activity in response to bacterial challenge was significantly reduced in HP1R-silenced crayfish. The results collectively indicated that HP1R was an important immune molecule which was required for red swamp crayfish to defend against bacterial infection.

  17. Rafts and the battleships of defense: the multifaceted microdomains for positive and negative signals in immune cells.

    PubMed

    Szöor, Arpád; Szöllosi, János; Vereb, György

    2010-05-04

    Recognition of the heterogeneity of the cell membrane was one of the most important scientific achievements in the last decades. Since coining the term "lipid rafts", continuous development of advanced microscopic and spectroscopic techniques has vastly expanded our view on these cell membrane microdomains that appear to have almost as many faces as researchers that look at them; they are variable in stability, size and composition that can change in a highly dynamic manner both by recruiting and expelling components as well as by coalescing and breaking up into smaller units. They have, however, one common feature: all eukaryotic cells present some variation of lipid rafts. Cells of the immune system are not exception to this, regardless of their lymphoid or myeloid origin their membranes show a domain structure and these domains serve to condense or reject particular transmembrane, GPI-linked and intracellularly membrane-anchored proteins as function requires. Here we provide a concise overview about the various weapons and shields that immune cells concentrate into their rafts, which have come into sight during the past years. The positive and negative regulatory roles of these microdomains are essential both in the functions of innate immunity and processes concatenated in the adaptive immune response.

  18. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment.

    PubMed

    Hendry, Shona A; Farnsworth, Rae H; Solomon, Benjamin; Achen, Marc G; Stacker, Steven A; Fox, Stephen B

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.

  19. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment

    PubMed Central

    Hendry, Shona A.; Farnsworth, Rae H.; Solomon, Benjamin; Achen, Marc G.; Stacker, Steven A.; Fox, Stephen B.

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host’s immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion. PMID:28066431

  20. Changing the U.S. National and Defense Strategies and Other Initiatives to Combat Competitive Intelligence Operations Against the U.S.

    DTIC Science & Technology

    1998-05-01

    to the use of their national intelligence organizations through competitive intelligence operations to improve their economic position. This has...concludes with recommended changes to our national security and defense strategies and several initiatives we could undertake to counter foreign competitive intelligence operations.

  1. Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity

    PubMed Central

    Li, Feng; Ding, Shou-Wei

    2009-01-01

    Viruses are obligate, intracellular pathogens that must manipulate and exploit host molecular mechanisms to prosper in the hostile cellular environment. Here we review the strategies used by viruses to evade the immunity controlled by 21- to 26-nt small RNAs. Viral suppressors of RNA silencing (VSRs) are encoded by genetically diverse viruses infecting plants, invertebrates, and vertebrates. VSRs target key steps in the small RNA pathways by inhibiting small RNA production,sequestering small RNAs,orpreventing short- and long-distance spread of RNA silencing. However, although VSRs are required for infection, explicit data demonstrating a role of silencing suppression in virus infection are available only for a few VSRs. A subset of VSRs bind double-stranded RNA, but a distinct protein fold is revealed for each of the four VSRs examined. We propose that VSR families are evolved independently as a viral adaptation to immunity. Unresolved issues on the role of RNA silencing in virus-host interactions are highlighted. PMID:16768647

  2. Green supplier selection: a new genetic/immune strategy with industrial application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Jain, Vipul; Kumar, Sameer; Chandra, Charu

    2016-10-01

    With the onset of the 'climate change movement', organisations are striving to include environmental criteria into the supplier selection process. This article hybridises a Green Data Envelopment Analysis (GDEA)-based approach with a new Genetic/Immune Strategy for Data Envelopment Analysis (GIS-DEA). A GIS-DEA approach provides a different view to solving multi-criteria decision making problems using data envelopment analysis (DEA) by considering DEA as a multi-objective optimisation problem with efficiency as one objective and proximity of solution to decision makers' preferences as the other objective. The hybrid approach called GIS-GDEA is applied here to a well-known automobile spare parts manufacturer in India and the results presented. User validation developed based on specific set of criteria suggests that the supplier selection process with GIS-GDEA is more practical than other approaches in a current industrial scenario with multiple decision makers.

  3. Five-year-old children's tuning-in and negotiation strategies in an immunization situation.

    PubMed

    Harder, Maria; Christensson, Kyllike; Coyne, Imelda; Söderbäck, Maja

    2011-06-01

    In this article, we have explored 5-year-old children's expressions when they as actors took part in an immunization situation in the Primary Child Health Care (PCHC) service in Sweden. Although children's health and development are the main concern in the PCHC service, their perspectives in such a setting have not been explored fully. To capture children's perspectives we used a hermeneutic design and video observations. The findings revealed children as competent and active participants, contributing to the construction of the PCHC situation in mutuality with the nurse and the parent. The conceptualization of children's expressions and actions revealed how they influenced and dealt with a PCHC situation by using strategies of tuning-in, affirmative negotiation, and delaying negotiation. Understanding children's actions will assist nurses to act with sensitivity when they encounter and support children.

  4. Strategies to harness immunity against infectious pathogens after haploidentical stem cell transplantation

    PubMed Central

    Rutella, Sergio; Locatelli, Franco

    2011-01-01

    Viral and fungal infections account for significant morbidity and mortality, particularly in pediatric patients with profound immune suppression resulting from allogeneic hematopoietic stem cell transplantation (HSCT). Therapies with anti-viral and anti-fungal drugs are often associated with significant toxicity, are of limited efficacy and can induce drug resistance. One innovative approach to prevent and/or treat viral and fungal infections involves the adoptive transfer of in vitro-expanded or in vitro-generated pathogen-specific T cells. This review summarizes the clinical trials that have been run to date with virus- and fungus-specific T cells, with special emphasis on the clinical context of haploidentical HSCT for pediatric malignancies. It will also discuss initiatives and strategies to overcome the hurdles associated with time-consuming and complex GMP-grade laboratory procedures required to generate pathogen-specific T cells. PMID:22046483

  5. Zone Defense -- Anti-Submarine Warfare Strategy in the age of Littoral Warfare

    DTIC Science & Technology

    2008-12-01

    and one of the most enthusiastic about the possibilities of this research, CDR Harrington passed away from cancer during the course of this... prevalence of noise from nearby surface ships.17 Zurk, Lee and Tracy accurately describe the complexity of the acoustic situation in the littorals, but a...Britain and Argentina over control of the Falkland Islands revealed several lessons on maritime strategy but the most useful is in regard to the effect

  6. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically.

    PubMed

    Kumar, Abhay; Prasad, M N V; Sytar, Oksana

    2012-11-01

    Talinum species have been used to investigate a variety of environmental problems for e.g. determination of metal pollution index and total petroleum hydrocarbons in roadside soils, stabilization and reclamation of heavy metals (HMs) in dump sites, removal of HMs from storm water-runoff and green roof leachates. Species of Talinum are popular leaf vegetables having nutrient antinutrient properties. In this study, Talinum triangulare (Jacq.) Willd (Ceylon spinach) grown hydroponically were exposed to different concentrations of lead (Pb) (0, 0.25, 0.5, 0.75, 1.0 and 1.25 mM) to investigate the biomarkers of toxicity and tolerance mechanisms. Relative water content, cell death, photosynthetic pigments, sulphoquinovosyldiacylglycerol (SQDG), anthocyanins, α-tocopherol, malondialdehyde (MDA), reactive oxygen species (ROS) glutathione (GSH and GSSG) and elemental analysis have been investigated. The results showed that Pb in roots and shoots gradually increased as the function of Pb exposure; however Pb concentration in leaves was below detectable level. Chlorophylls and SQDG contents increased at 0.25 mM of Pb treatment in comparison to control at all treated durations, thereafter decreased. Levels of carotenoid, anthocyanins, α-tocopherol, and lipid peroxidation increased in Pb treated plants compared to control. Water content, cells death and elemental analysis suggested the damage of transport system interfering with nutrient transport causing cell death. The present study also explained that Pb imposed indirect oxidative stress in leaves is characterized by decreases in GSH/GSSG ratio with increased doses of Pb treatment. Lead-induced oxidative stress was alleviated by carotenoids, anthocyanins, α-tocopherol and glutathione suggesting that these defense responses as potential biomarkers for detecting Pb toxicity.

  7. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein.

    PubMed

    Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J; Backofen, Rolf; Marchfelder, Anita

    2015-02-13

    The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3' handle are still active in triggering an interference reaction. The complete 3' handle could be removed without loss of activity. However, manipulations of the 5' handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.

  8. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity.

    PubMed

    Contreras, Estefanía; Benito-Jardón, María; López-Galiano, M José; Real, M Dolores; Rausell, Carolina

    2015-06-01

    In Tribolium castaneum larvae we have demonstrated by RNA interference knockdown that the Bacillus thuringiensis Cry3Ba toxin receptors Cadherin-like and Sodium solute symporter proteins are also functional receptors of the less active Cry3Aa toxin. Differences in susceptibility to B. thuringiensis infection might not only rely on toxin-receptor interaction but also on host defense mechanisms. We compared the expression of the immune related genes encoding Apolipophorin-III and two antimicrobial peptides, Defensin3 and Defensin2 after B. thuringiensis challenge. All three genes were up-regulated following Cry3Ba spore-crystal intoxication whereas only Defensins gene expression was induced upon Cry3Aa spore-crystal treatment, evidencing a possible association between host immune response and larval susceptibility to B. thuringiensis. We assessed the antimicrobial activity spectra of T. castaneum defensins peptide fragments and found that a peptide fragment of Defensin3 was effective against the human microbial pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans, being S. aureus the most susceptible one.

  9. Resistance and Susceptibility to Malarial Infection: A Host Defense Strategy against Malaria

    PubMed Central

    BAKIR, Hanaa; YONES, Doaa; GALAL, Lamia; HUSEEIN, Enas

    2015-01-01

    Background: In an effort to understand what limits the virulence of malaria parasites in relation to the host genetic and immunogenic background, we investigated the possibility that the parasite and host genotype crossover interactions constrain virulence. Methods: Two groups of mice from different genotypes were used (C57BL/6 (B6) and DBA/2 mice). The mice were infected with a virulent parasite line Plasmodium yoelii 17XL (P. yoelii 17XL). Parasitemia, hematocrit value and lymphocytes yielded by livers and spleens were evaluated. Fluorescence Activated Cell Sorting (FACS) analysis illustrated phenotypic characterization of lymphocytes. Results: Infection with P. yoelii 17XL did not result in the death of DBA/2 mice. In contrast, B6 mice developed significantly high parasitemia and succumbed to death. Using (FACS) analysis, DBA/2 mice were found to experience a marked expansion of interleukin (IL)-2Rβ+ CD3int cells and γδ T cells in the liver, especially in the recovery phase. The expansion of unconventional T cells (i.e. B220+ T cells) was also marked in DBA/2 mice. Conclusion: The outcome of murine malaria infections depends on the dynamic interplay between the immune-mediator and the genotype of the host. PMID:26811732

  10. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.

  11. Adaptive Immunity to Fungi

    PubMed Central

    Verma, Akash; Wüthrich, Marcel; Deepe, George; Klein, Bruce

    2015-01-01

    Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases. PMID:25377140

  12. [Immunization strategy of hepatitis B vaccine among adults in China: evidence based-medicine and consideration].

    PubMed

    Xu, A Q; Zhang, L

    2016-06-01

    With the effective control of hepatitis B infection among children, the adults especial the young ones become the main population for new hepatitis B virus infection. Now the adults receive hepatitis B vaccination voluntarily and at their own expense in China and the coverage is low. The high immunogenicity of hepatitis B vaccine has been proven among healthy adults. Although the safety of hepatitis B vaccination has been documented among high-risk population such as HIV-infected people, injecting drug users and patients with chronic hepatitis disease, their antibody seroconversion rate after hepatitis B vaccination is lower than the healthy adults. Hepatitis B vaccination is recommended to population at high risk officially in many countries and some effects have been achieved. It is urgent to improve the strategy of hepatitis B vaccination among adults to fasten the control of hepatitis B in China, along with the researches about the long-term efficacy of hepatitis B vaccine among adults, the immunogenicity of hepatitis B vaccination among high-risk adults and the economical evaluation about different adult immunization strategy of hepatitis B.

  13. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability

    PubMed Central

    Jiang, Hao; Zhang, Sheng; Lei, Yanbao; Xu, Gang; Zhang, Dan

    2016-01-01

    Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification. PMID:27489556

  14. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability.

    PubMed

    Jiang, Hao; Zhang, Sheng; Lei, Yanbao; Xu, Gang; Zhang, Dan

    2016-01-01

    Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification.

  15. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes

    PubMed Central

    Witte, Katrin; Koch, Egon; Volk, Hans-Dieter; Wolk, Kerstin; Sabat, Robert

    2015-01-01

    Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells. PMID:26406906

  16. Coping Strategies of Patients with Haemophilia as a Risk Group for AIDS (Acquired Immune Deficiency Syndrome). Brief Research Report.

    ERIC Educational Resources Information Center

    Naji, Simon; And Others

    1986-01-01

    Plans are described for a 2-year project whose major focus is the identification of ways in which patients with hemophilia and their families assimilate, interpret, and act on information about Acquired Immune Deficiency Syndrome (AIDS). Findings will be related to perceived risk, anxiety levels, and the development of coping strategies.…

  17. Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni.

    PubMed

    Galinier, Richard; Portela, Julien; Moné, Yves; Allienne, Jean François; Henri, Hélène; Delbecq, Stéphane; Mitta, Guillaume; Gourbal, Benjamin; Duval, David

    2013-03-01

    Aerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni.

  18. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    DOE PAGES

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; ...

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26more » g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.« less

  19. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    SciTech Connect

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; Miller, P. L.

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26 g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.

  20. c-Jun N-terminal kinase (JNK) is involved in immune defense against bacterial infection in Crassostrea hongkongensis.

    PubMed

    Qu, Fufa; Xiang, Zhiming; Xiao, Shu; Wang, Fuxuan; Li, Jun; Zhang, Yang; Zhang, Yuehuan; Qin, Yanping; Yu, Ziniu

    2017-02-01

    c-Jun N-terminal kinase (JNK) is a universal and essential subgroup of the mitogen-activated protein kinase (MAPK) superfamily, which is highly conserved from yeast to mammals and functions in a variety of physiological and pathological processes. In this study, we report the first oyster JNK gene homolog (ChJNK) and its biological functions in the Hong Kong oyster Crassostrea hongkongensis. The ChJNK protein consists of 383 amino acids and contains a conserved serine/threonine protein kinase (S_TKc) domain with a typical TPY motif. Phylogenetic analysis revealed that ChJNK shared a close evolutionary relationship with Crassostrea gigas JNK. Quantitative RT-PCR analyses revealed broad expression patterns of ChJNK mRNA in various adult tissues and different embryonic and larval stages of C. hongkongensis. When exposed to Vibrio alginolyticus or Staphylococcus haemolyticus, ChJNK mRNA expression levels were significantly up-regulated in the hemocytes and gills in a time-dependent manner. Additionally, subcellular localization studies that ChJNK is a cytoplasm-localized protein, and that its overexpression could significantly enhance the transcriptional activities of AP-1-Luc in HEK293T cells. In summary, this study provided the first experimental demonstration that oysters possess a functional JNK that participates in host defense against bacterial infection in C. hongkongensis.

  1. Salmonella enterica Serovar Enteritidis Antimicrobial Peptide Resistance Genes Aid in Defense against Chicken Innate Immunity, Fecal Shedding, and Egg Deposition

    PubMed Central

    McKelvey, Jessica A.; Yang, Ming; Jiang, Yanhua

    2014-01-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major etiologic agent of nontyphoid salmonellosis in the United States. S. Enteritidis persistently and silently colonizes the intestinal and reproductive tract of laying hens, resulting in contaminated poultry products. The consumption of contaminated poultry products has been identified as a significant risk factor for human salmonellosis. To understand the mechanisms S. Enteritidis utilizes to colonize and persist in laying hens, we used selective capture of transcribed sequences to identify genes overexpressed in the HD11 chicken macrophage cell line and in primary chicken oviduct epithelial cells. From the 15 genes found to be overexpressed in both cell types, we characterized the antimicrobial peptide resistance (AMPR) genes, virK and ybjX, in vitro and in vivo. In vitro, AMPR genes were required for natural morphology, motility, secretion, defense against detergents such as EDTA and bile salts, and resistance to antimicrobial peptides polymyxin B and avian β-defensins. From this, we inferred the AMPR genes play a role in outer membrane stability and/or modulation. In the intestinal tract, AMPR genes were involved in early intestinal colonization and fecal shedding. In the reproductive tract, virK was required in early colonization whereas a deletion of ybjX caused prolonged ovary colonization and egg deposition. Data from the present study indicate that AMPR genes are differentially utilized in various host environments, which may ultimately assist S. Enteritidis in persistent and silent colonization of chickens. PMID:25267840

  2. Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings.

    PubMed

    Gisbert, E; Skalli, A; Campbell, J; Solovyev, M M; Rodríguez, C; Dias, J; Polo, J

    2015-01-01

    Terrestrial animal byproduct meals, including nonruminant blood meal and blood products, represent the largest and largely untapped safe source of animal protein available within the international market for the aquafeed industry. Spray-dried blood and spray-dried plasma (SDP) proteins have long been recognized as high-quality feed ingredients for farmed animals. In this study, we evaluated the inclusion of SDP from porcine blood (SDPP) in growing diets for gilthead sea bream. Three isonitrogenous (CP = 51.2%) and isolipidic (fat = 12.4%) diets manufactured by cold extrusion (0.8 to 1.5 mm pellet size) were prepared by substituting high-quality fish meal with 0, 3, and 6% SDPP. The diets were tested for a period of 60 d at 22°C with 4 replicates each (400-L cylindroconical tanks, 150 fish per tank, and initial density = 0.5 kg/m(3)). The SDPP inclusion in diets for gilthead sea bream fingerlings were evaluated in terms of growth performance, feed utilization, histological organization of the intestinal mucosa, activity of oxidative stress enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and glutathione reductase) in the intestine, and nonspecific serum immune parameters (lysozyme and bactericidal activity). Results from this study indicated that dietary SDPP promoted fish growth in terms of BW and length; fish fed 3% SDPP were 10.5% heavier (P < 0.05) than those fed the control diet. Spray-dried plasma from porcine blood modulated the activity of the antioxidative defenses in the intestine (P < 0.05) and increased the density of goblet cells in the intestine (P < 0.05) and benefited the host by providing an effective immune barrier against gut pathogenic microbiota. The nonspecific serum immune response in fish fed diets with SDPP was greater (P < 0.05) than in fish fed the control diet. These results indicated that the inclusion of SDPP in gilthead sea bream feed could be beneficial for the fish by enhancing intestinal and serum innate immune

  3. Human and animal isolates of Yersinia enterocolitica show significant serotype-specific colonization and host-specific immune defense properties.

    PubMed

    Schaake, Julia; Kronshage, Malte; Uliczka, Frank; Rohde, Manfred; Knuuti, Tobias; Strauch, Eckhard; Fruth, Angelika; Wos-Oxley, Melissa; Dersch, Petra

    2013-11-01

    Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans.

  4. RabGAP22 Is Required for Defense to the Vascular Pathogen Verticillium longisporum and Contributes to Stomata Immunity

    PubMed Central

    Roos, Jonas; Bejai, Sarosh; Oide, Shinichi; Dixelius, Christina

    2014-01-01

    Verticillium longisporum is a soil-borne pathogen with a preference for plants within the family Brassicaceae. Following invasion of the roots, the fungus proliferates in the plant vascular system leading to stunted plant growth, chlorosis and premature senescence. RabGTPases have been demonstrated to play a crucial role in regulating multiple responses in plants. Here, we report on the identification and characterization of the Rab GTPase-activating protein RabGAP22 gene from Arabidopsis, as an activator of multiple components in the immune responses to V. longisporum. RabGAP22Pro:GUS transgenic lines showed GUS expression predominantly in root meristems, vascular tissues and stomata, whereas the RabGAP22 protein localized in the nucleus. Reduced RabGAP22 transcript levels in mutants of the brassinolide (BL) signaling gene BRI1-ASSOCIATED RECEPTOR KINASE 1, together with a reduction of fungal proliferation following BL pretreatment, suggested RabGAP22 to be involved in BL-mediated responses. Pull-down assays revealed SERINE:GLYOXYLATE AMINOTRANSFERASE (AGT1) as an interacting partner during V. longisporum infection and bimolecular fluorescence complementation (BiFC) showed the RabGAP22-AGT1 protein complex to be localized in the peroxisomes. Further, fungal-induced RabGAP22 expression was found to be associated with elevated endogenous levels of the plant hormones jasmonic acid (JA) and abscisic acid (ABA). An inadequate ABA response in rabgap22-1 mutants, coupled with a stomata-localized expression of RabGAP22 and impairment of guard cell closure in response to V. longisporum and Pseudomonas syringae, suggest that RabGAP22 has multiple roles in innate immunity. PMID:24505423

  5. Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense.

    PubMed

    Westra, Edze R; van Houte, Stineke; Oyesiku-Blakemore, Sam; Makin, Ben; Broniewski, Jenny M; Best, Alex; Bondy-Denomy, Joseph; Davidson, Alan; Boots, Mike; Buckling, Angus

    2015-04-20

    In the face of infectious disease, organisms evolved a range of defense mechanisms, with a clear distinction between those that are constitutive (always active) and those that are inducible (elicited by parasites). Both defense strategies have evolved from each other, but we lack an understanding of the conditions that favor one strategy over the other. While it is hard to generalize about their degree of protection, it is possible to make generalizations about their associated fitness costs, which are commonly detected. By definition, constitutive defenses are always "on," and are therefore associated with a fixed cost, independent of parasite exposure. Inducible defenses, on the other hand, may lack costs in the absence of parasites but become costly when defense is elicited through processes such as immunopathology. Bacteria can evolve constitutive defense against phage by modification/masking of surface receptors, which is often associated with reduced fitness in the absence of phage. Bacteria can also evolve inducible defense using the CRISPR-Cas (clustered regularly interspaced short palindromic repeat, CRISPR associated) immune system, which is typically elicited upon infection. CRISPR-Cas functions by integrating phage sequences into CRISPR loci on the host genome. Upon re-infection, CRISPR transcripts guide cleavage of phage genomes. In nature, both mechanisms are important. Using a general theoretical model and experimental evolution, we tease apart the mechanism that drives their evolution and show that infection risk determines the relative investment in the two arms of defense.

  6. Bacterial Evasion of Host Antimicrobial Peptide Defenses

    PubMed Central

    Cole, Jason N.; Nizet, Victor

    2015-01-01

    SUMMARY Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections. PMID:26999396

  7. A multifunctional peptide based on the neutrophil immune defense molecule, CAP37, has antibacterial and wound-healing properties

    PubMed Central

    Kasus-Jacobi, Anne; Noor-Mohammadi, Samaneh; Griffith, Gina L.; Hinsley, Heather; Mathias, Lauren; Pereira, H. Anne

    2015-01-01

    CAP37, a protein constitutively expressed in human neutrophils and induced in response to infection in corneal epithelial cells, plays a significant role in host defense against infection. Initially identified through its potent bactericidal activity for Gram-negative bacteria, it is now known that CAP37 regulates numerous host cell functions, including corneal epithelial cell chemotaxis. Our long-term goal is to delineate the domains of CAP37 that define these functions and synthesize bioactive peptides for therapeutic use. We report the novel finding of a multifunctional domain between aa 120 and 146. Peptide analogs 120–146 QR, 120–146 QH, 120–146 WR, and 120–146 WH were synthesized and screened for induction of corneal epithelial cell migration by use of the modified Boyden chamber assay, antibacterial activity, and LPS-binding activity. In vivo activity was demonstrated by use of mouse models of sterile and infected corneal wounds. The identity of the amino acid at position 132 (H vs. R) was important for cell migration and in vivo corneal wound healing. All analogs demonstrated antimicrobial activity. However, analogs containing a W at position 131 showed significantly greater antibacterial activity against the Gram-negative pathogen Pseudomonas aeruginosa. All analogs bound P. aeruginosa LPS. Topical administration of analog 120–146 WH, in addition to accelerating corneal wound healing, effectively cleared a corneal infection as a result of P. aeruginosa. In conclusion, we have identified a multifunctional bioactive peptide, based on CAP37, that induces cell migration, possesses antibacterial and LPS-binding activity, and is effective at healing infected and noninfected corneal wounds in vivo. PMID:25412625

  8. Research progress on the mollusc immunity in China.

    PubMed

    Wang, Lingling; Qiu, Limei; Zhou, Zhi; Song, Linsheng

    2013-01-01

    The economical and phylogenic importance of mollusc has led an increasing number of investigations giving emphasis to immune defense mechanism. This review discusses the advances in immunological study of mollusc in China, with special reference to dominant aquaculture species over the past decades. As an invertebrate group, molluscs lack adaptive immunity and consequently they have evolved sophisticated strategies of innate immunity for defense against pathogens. This review aims to present the various immunologically significant pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), lectins, lipopolysaccharide and β-1, 3-glucan binding protein (LGBP), scavenger receptors (SRs) employed by mollucans. This work also highlights immune proteolytic cascade, TLR signaling pathway and an extensive repertoire of immune effectors including antimicrobial peptide, lysozyme, antioxidant enzyme and heat shock protein. Further, the review presents the preliminary progress made on the catecholaminergic neuroendocrine system in scallop and its immunomodulation function to throw light into neuroendocrine-immune regulatory network in lower invertebrates.

  9. Defense Logistics: A Completed Comprehensive Strategy is Needed to Guide DOD’s In-Transit Visibility Efforts

    DTIC Science & Technology

    2013-02-01

    Defense Logistics List of Abbreviations aRFID active radio frequency identification DOD Department of Defense RFID ...incomplete delivery data for many surface shipments; inadequate radio-frequency identification ( RFID )9 information to track all cargo movements to and...entered onto RFID tags. In July 2011, we also recommended that DOD develop a comprehensive corrective action plan for improving asset visibility, and

  10. The Role of Civil Defense and the Scope of Its Mission in U. S. National Security Strategy

    DTIC Science & Technology

    1992-04-01

    community. On the high end, we might argue that a surpri’e attack could come at any time. This argues for civil defense shelters ready and stocked...transportation for civil needs must also be considered. During mobilization civil defense shelters will need to be stocked with food, water and other 25

  11. CsTNF1, a teleost tumor necrosis factor that promotes antibacterial and antiviral immune defense in a manner that depends on the conserved receptor binding site.

    PubMed

    Li, Mo-fei; Zhang, Jian

    2016-02-01

    Tumor necrosis factor (TNF) is one of the most important cytokines involved in inflammation, apoptosis, cell proliferation, and stimulation of the immune system. The TNF gene has been cloned in teleost fish; however, the in vivo function of fish TNF is essentially unknown. In this study, we report the identification of a TNF homologue, CsTNF1, from tongue sole (Cynoglossus semilaevis) and analysis of its expression and biological effect. CsTNF1 is composed of 242 amino acid residues and possesses a TNF domain and conserved receptor binding sites. Expression of CsTNF1 was detected in a wide range of tissues and up-regulated in a time-dependent manner by experimental challenge with bacterial and viral pathogens. Bacterial infection of peripheral blood leukocytes (PBL) caused extracellular secretion of CsTNF1. Purified recombinant CsTNF1 (rCsTNF1) was able to bind to PBL and stimulate the respiratory burst activity of PBL. In contrast, rCsTNF1M1 and rCsTNF1M2, the mutant CsTNF1 bearing substitutions at the receptor binding site, failed to activate PBL. Fish administered with rCsTNF1, but not with rCsTNF1M1 and rCsTNF1M2, exhibited enhanced expression of IL-1, IL-6, IL-8, IL-27, TLR9 and G3BP in a time-dependent manner and augmented resistance against bacterial and viral infection. These results provide the first evidence that the receptor binding sites are essential to a fish TNF, and that CsTNF1 is involved in the innate immune defense of fish against microbial pathogens.

  12. How Biofilms Evade Host Defenses.

    PubMed

    Roilides, Emmanuel; Simitsopoulou, Maria; Katragkou, Aspasia; Walsh, Thomas J

    2015-06-01

    The steps involved during the biofilm growth cycle include attachment to a substrate followed by more permanent adherence of the microorganisms, microcolony arrangement, and cell detachment required for the dissemination of single or clustered cells to other organ systems. Various methods have been developed for biofilm detection and quantitation. Biofilm-producing microorganisms can be detected in tissue culture plates, using silicone tubes and staining methods, and by visual assessment using scanning electron microscopy or confocal scanning laser microscopy. Quantitative measurement of biofilm growth is determined by using methods that include dry cell weight assays, colony-forming-unit counting, DNA quantification, or XTT 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide reduction assay. Upon infection, innate immune defense strategies are able to establish an immediate response through effector mechanisms mediated by immune cells, receptors, and several humoral factors. We present an overview of the life cycle of biofilms and their diversity, detection methods for biofilm development, and host immune responses to pathogens. We then focus on current concepts in bacterial and fungal biofilm immune evasion mechanisms. This appears to be of particular importance because the use of host immune responses may represent a novel therapeutic approach against biofilms.

  13. Strategies to enhance immune function for marathon runners : what can be done?

    PubMed

    Akerström, Thorbjörn C A; Pedersen, Bente K

    2007-01-01

    Marathoners are at an increased risk of developing upper respiratory tract infections (URTIs) following races and periods of hard training, which are associated with temporary changes in the immune system. The majority of the reported changes are decreases in function or concentration of certain immune cells. During this period of immune suppression, by some referred to as an 'open window' in immune function, it has been hypothesised that viruses and bacteria might gain a foothold, which would increase the risk of infections. In light of this, nutritional interventions that can enhance immune function and reduce the risk of URTIs have been sought. This paper focuses on the effect of glutamine, vitamin C, bovine colostrum and glucose. Although, some of these supplements can affect the physiological and immune changes associated with marathon racing, none of the supplements discussed have consistently been shown to reduce the risk of URTIs and therefore cannot be recommended for use as enhancers of immune function in marathon runners.

  14. Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy

    PubMed Central

    Subhash, Vinod Vijay; Yeo, Mei Shi; Tan, Woei Loon; Yong, Wei Peng

    2015-01-01

    In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer. PMID:26579545

  15. Through the Immune Looking Glass: A Model for Brain Memory Strategies

    PubMed Central

    Sánchez-Ramón, Silvia; Faure, Florence

    2016-01-01

    The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust’s madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model’s approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective. PMID:26869886

  16. Involvement of pore-forming molecules in immune defense and development of the Mediterranean mussel (Mytilus galloprovincialis).

    PubMed

    Estévez-Calvar, Noelia; Romero, Alejandro; Figueras, Antonio; Novoa, Beatriz

    2011-10-01

    The membrane attack complex and perforin (MACPF) superfamily is one of the largest families of pore-forming molecules. Although MACPF proteins are able to destruct invading microbes, several MACPF proteins play roles in embryonic development, neural migration or tumor suppression. We describe two apextrin-like proteins (ApelB and ApelP) and one MACPF-domain-containing protein (Macp) in Mytilus galloprovincialis. The two apextrin-like proteins did not present any conserved domain. The Macp protein contained the membrane/attack complex domain and its signature motif. Gene expression during larval development was analyzed by RT-PCR. There was a stage-specific up-regulation of the three proteins, suggesting that they play a role in development. Apextrin-like proteins were highly expressed at blastula and trochophore stage, whereas Macp was expressed at veliger stage. RT-PCR revealed up-regulation of the three genes in tissues and hemocytes from adults treated with bacteria and pathogen-associated molecular patterns, suggesting that they may be involved in the immune response.

  17. The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: new perspectives.

    PubMed

    Bielecki, Tomasz; Dohan Ehrenfest, David M; Everts, Peter A; Wiczkowski, Andrzej

    2012-06-01

    Platelet concentrates for topical use are innovative tools of regenerative medicine and their effects in various therapeutical situations are hotly debated. Unfortunately, this field of research mainly focused on the platelet growth factors, and the fibrin architecture and the leukocyte content of these products are too often neglected. In the four families of platelet concentrates, 2 families contain significant concentrations of leukocytes: L-PRP (Leukocyte- and Platelet-Rich Plasma) and L-PRF (Leukocyte- and Platelet-Rich Fibrin). The presence of leukocytes has a great impact on the biology of these products, not only because of their immune and antibacterial properties, but also because they are turntables of the wound healing process and the local factor regulation. In this article, the various kinds of leukocytes present in a platelet concentrate are described (particularly the various populations of granulocytes and lymphocytes), and we insist on the large diversity of factors and pathways that these cells can use to defend the wound site against infections and to regulate the healing process. Finally, the impact of these cells in the healing properties of the L-PRP and L-PRF is also discussed: if antimicrobial properties were already pointed out, effects in the regulation of cell proliferation and differentiation were also hypothesized. Leukocytes are key actors of many platelet concentrates, and a better understanding of their effects is an important issue for the development of these technologies.

  18. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    PubMed

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.

  19. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum - Rhizoctonia solani Interaction.

    PubMed

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani.

  20. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum – Rhizoctonia solani Interaction

    PubMed Central

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A.

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani. PMID:27540382

  1. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

  2. Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece

    2010-01-01

    This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  3. Pakistan's expanded programme on immunization: an overview in the context of polio eradication and strategies for improving coverage.

    PubMed

    Owais, Aatekah; Khowaja, Asif Raza; Ali, Syed Asad; Zaidi, Anita K M

    2013-07-18

    Since its inception in 1978, Pakistan's Expanded Programme on Immunization (EPI) has contributed significantly towards child health and survival in Pakistan. However, the WHO-estimated immunization coverage of 88% for 3 doses of Diptheria-Tetanus-Pertussis vaccine in Pakistan is likely an over-estimate. Many goals, such as polio, measles and neonatal tetanus elimination have not been met. Pakistan reported more cases of poliomyelits in 2011 than any other country globally, threatening the Global Polio Eradication Initiative. Although the number of polio cases decreased to 58 in 2012 through better organized supplementary immunization campaigns, country-wide measles outbreaks with over 15,000 cases and several hundred deaths in 2012-13 underscore sub-optimal EPI performance in delivering routine immunizations. There are striking inequities in immunization coverage between different parts of the country. Barriers to universal immunization coverage include programmatic dysfunction at lower tiers of the program, socioeconomic inequities in access to services, low population demand, poor security, and social resistance to vaccines among population sub-groups. Recent conflicts and large-scale natural disasters have severely stressed the already constrained resources of the national EPI. Immunization programs remain low priority for provincial and many district governments in the country. The recent decision to devolve the national health ministry to the provinces has had immediate adverse consequences. Mitigation strategies aimed at rapidly improving routine immunization coverage should include improving the infrastructure and management capacity for vaccine delivery at district levels and increasing the demand for vaccines at the population level. Accurate vaccine coverage estimates at district/sub-district level and local accountability of district government officials are critical to improving performance and eradicating polio in Pakistan.

  4. Elucidation of the Mechanism by Which Catecholamine Stress Hormones Liberate Iron from the Innate Immune Defense Proteins Transferrin and Lactoferrin ▿

    PubMed Central

    Sandrini, Sara M.; Shergill, Raminder; Woodward, Jonathan; Muralikuttan, Remya; Haigh, Richard D.; Lyte, Mark; Freestone, Primrose P.

    2010-01-01

    The ability of catecholamine stress hormones and inotropes to stimulate the growth of infectious bacteria is now well established. A major element of the growth induction process has been shown to involve the catecholamines binding to the high-affinity ferric-iron-binding proteins transferrin (Tf) and lactoferrin, which then enables bacterial acquisition of normally inaccessible sequestered host iron. The nature of the mechanism(s) by which the stress hormones perturb iron binding of these key innate immune defense proteins has not been fully elucidated. The present study employed electron paramagnetic resonance spectroscopy and chemical iron-binding analyses to demonstrate that catecholamine stress hormones form direct complexes with the ferric iron within transferrin and lactoferrin. Moreover, these complexes were shown to result in the reduction of Fe(III) to Fe(II) and the loss of protein-complexed iron. The use of bacterial ferric iron uptake mutants further showed that both the Fe(II) and Fe(III) released from the Tf could be directly used as bacterial nutrient sources. We also analyzed the transferrin-catecholamine interactions in human serum and found that therapeutically relevant concentrations of stress hormones and inotropes could directly affect the iron binding of serum-transferrin so that the normally highly bacteriostatic tissue fluid became significantly more supportive of the growth of bacteria. The relevance of these catecholamine-transferrin/lactoferrin interactions to the infectious disease process is considered. PMID:19820086

  5. Advances in Molecular Imaging Strategies for In Vivo Tracking of Immune Cells

    PubMed Central

    Lee, Ho Won; Gangadaran, Prakash

    2016-01-01

    Tracking of immune cells in vivo is a crucial tool for development and optimization of cell-based therapy. Techniques for tracking immune cells have been applied widely for understanding the intrinsic behavior of immune cells and include non-radiation-based techniques such as optical imaging and magnetic resonance imaging (MRI), radiation-based techniques such as computerized tomography (CT), and nuclear imaging including single photon emission computerized tomography (SPECT) and positron emission tomography (PET). Each modality has its own strengths and limitations. To overcome the limitations of each modality, multimodal imaging techniques involving two or more imaging modalities are actively applied. Multimodal techniques allow integration of the strengths of individual modalities. In this review, we discuss the strengths and limitations of currently available preclinical in vivo immune cell tracking techniques and summarize the value of immune cell tracking in the development and optimization of immune cell therapy for various diseases. PMID:27725934

  6. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney

    PubMed Central

    Vega, Israel A.; Castro-Vazquez, Alfredo

    2015-01-01

    participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail. PMID:25893243

  7. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants

    PubMed Central

    Gouveia, Bianca C.; Calil, Iara P.; Machado, João Paulo B.; Santos, Anésia A.; Fontes, Elizabeth P. B.

    2017-01-01

    Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of

  8. Behavioral coping strategies in response to social stress are associated with distinct neuroendocrine, monoaminergic and immune response profiles in mice.

    PubMed

    De Miguel, Zurine; Vegas, Oscar; Garmendia, Larraitz; Arregi, Amaia; Beitia, Garikoitz; Azpiroz, Arantza

    2011-12-01

    Individual variation in behavioral coping strategies to stress implies that animals may have a distinct physiological adaptation to stress; these differences may underlie differences in vulnerability to stress-related diseases. This study was designed to test the hypothesis that different behavioral coping strategies (active vs. passive) are stable over time and that they would be associated with differences in hypothalamic-pituitary-adrenal (HPA) and sympathetic-adreno-medular (SAM) axes, and monoaminergic and immune activity. Male mice were subjected to social stress. Twelve days after the first social interaction, mice were subjected to a second identical social stress interaction. Behavior was videotaped and assessed during both sessions. One hour after the final social interaction, serum was collected for corticosterone and adrenaline concentrations and brains were collected for hypothalamic corticotrophin-releasing hormone (CRH) mRNA expression. Monoaminergic system activity was determined by mRNA expression of serotonin, dopamine and noradrenaline synthetic enzymes in the brain stem. Immune system activity was determined by mRNA expression of hypothalamic interleukin-1β (IL-1β) and splenic IL-1β and interleukin-2 (IL-2). Mice engaging in a passive strategy had higher serum corticosterone and lower serum adrenaline concentrations than the active group. The passive group showed lower hypothalamic mRNA expression of IL-1β and CRH and lower splenic mRNA expression of IL-2 and IL-1β relative to mice in the active group. An active strategy was associated with higher expression of the dopaminergic synthetic enzyme, while a passive strategy was associated with decreased expression of the serotonergic synthetic enzyme. These findings indicate that individual coping strategies are stable over time and are related to differences in the physiological stress response and immune activity.

  9. Evaluating strategies to enhance the anti-tumor immune response to a carbohydrate mimetic peptide vaccine.

    PubMed

    Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Jousheghany, Fariba; Artaud, Cecile; Kieber-Emmons, Thomas

    2006-06-01

    Carbohydrate mimetic peptides of tumor associated carbohydrate antigens (TACA) are T-cell-dependent antigens and, therefore, immunization with these surrogates is predicted to overcome the low immunogenicity of carbohydrate antigens. Consistent with this hypothesis, we show that among the potential immune cells involved, peptide immunization led to an increase in T-cell populations. While peptide mimetics may also function as TLR binding ligands, we did not observe evidence of involvement of NK cells. Examining tumor challenged animals, we observed that peptide immunization and not tumor cells rendered IL-12 responsiveness to T-cells, as T-cells from peptide-immunized mice produced IFN-gamma upon stimulation with IL-12. Cyclophosphamide administration enhanced the anti-tumor efficacy of the vaccine, which was achieved by enhancing T-cell responses with no effect on NK cell population. Prophylactic immunization of mice with a DNA construct encoding carbohydrate mimetic peptides indicated a specific role for the mimotope vaccine in anti-tumor immune responses. These data suggest a role for both CD4(+) and CD8(+) T-cells induced by mimotopes of TACA in protective immunity against tumor cells.

  10. Child Immunization Status among a Sample of Adolescent Mothers: Comparing the Validity of Measurement Strategies

    ERIC Educational Resources Information Center

    Phillips, Clarissa; Cota-Robles, Sonia; Knight, Margaret; Francis, Judith; Phillips, Elizabeth; Mazerbo, Laurie

    2011-01-01

    This study of adolescent mothers sought to identify whether a single general question asked by phone or a detailed, vaccine-specific question asked in a self-report questionnaire best captured infant immunization status at 6 months postpartum, by comparing them with immunization record books. Responses to a global question about whether infants…

  11. 78 FR 79469 - Strategies To Address Hemolytic Complications of Immune Globulin Infusions; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Globulin Infusions; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public... Address Hemolytic Complications of Immune Globulin Infusions.'' The purpose of the public workshop is to... complication of Immune Globulin Intravenous (IGIV) (Human) infusion. Complications of hemolysis include...

  12. Mosquito Immunity against Arboviruses

    PubMed Central

    Sim, Shuzhen; Jupatanakul, Natapong; Dimopoulos, George

    2014-01-01

    Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector. PMID:25415198

  13. Immunization Strategies against Piscirickettsia salmonis Infections: Review of Vaccination Approaches and Modalities and Their Associated Immune Response Profiles

    PubMed Central

    Evensen, Øystein

    2016-01-01

    Salmonid rickettsial septicemia (SRS) is a serious, infectious disease in Chilean salmon farming caused by Piscirickettsia salmonis, causing heavy losses to the salmonid industry. P. salmonis belongs to the Gammaproteobacteria, order Thiotrichales. SRS was first described in Chile in 1989, and infection with P. salmonis has since been described from a high number of fish species and in several geographic regions globally. P. salmonis infection of salmonids causes multifocal, necrotic areas of internal organs such as liver, kidney, and spleen. Histologically and immunologically, the tissue response is the formation of granulomas, often with central suppuration. The exact sequence of infection is not known, but bacteria likely gain access to internal organs through mucosal surfaces and when infected, fish carry bacteria in macrophages. It has not been fully determined if the bacterium resides in the cytosol or “hide” within vesicular structures intracellularly, although there are indications that in vitro infection results in actin reorganization and formation of actin-coated vesicle within which the bacterium resides. Protection against lethal challenge is well documented in lab scale experiments, but protection from vaccination has proven more difficult to attain long term under field conditions. Current vaccination protocols include whole cell, inactivated and adjuvanted vaccines for injection for primary immunization followed by oral boost where timing of boost delivery is followed by measuring circulating antibody levels against the pathogen. Documentation also exist that there is correlation between antibody titers and protection against mortality. Future vaccination regimes will likely also include live-attenuated vaccines or other technologies such as DNA vaccination. So far, there is no documentation available for live vaccines and, for DNA vaccines, studies have been unsuccessful under laboratory conditions. PMID:27917172

  14. Microbial pathogenesis and host defense in the nematode C. elegans

    PubMed Central

    Cohen, Lianne B.; Troemel, Emily R.

    2014-01-01

    Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial infection. Like many other metazoans, the nematode C. elegans lacks known professional immune cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core physiology within host cells and through autophagic defense against intracellular and extracellular pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies used against C. elegans. These findings are providing insight into the underpinnings of host/pathogen interactions in a simple animal host that can inform studies of infectious diseases in humans. PMID:25461579

  15. Biomimetic strategies based on viruses and bacteria for the development of immune evasive biomaterials

    PubMed Central

    Novak, Matthew T.; Bryers, James D.; Reichert, William M.

    2009-01-01

    The field of biomaterial design has begun to focus upon methods by which materials can modulate immune response. While certain approaches appear promising, they are limited to isolated facets of inflammation. It is well documented that both bacteria and viruses have highly developed methods for evading the immune system, providing impetus for a more biomimetic approach to material design. This review presents the immune evasive tactics employed by viruses and bacteria and offers suggestions for future directions in applying these principles to biomaterial design. PMID:19185345

  16. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination

    PubMed Central

    Jayashankar, Lakshmi; Hafner, Richard

    2016-01-01

    Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms

  17. Natural killer cells in host defense against veterinary pathogens.

    PubMed

    Shekhar, Sudhanshu; Yang, Xi

    2015-11-15

    Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes.

  18. Phage Anti-Immune complex Assay (PHAIA): a general strategy for noncompetitive immunodetection of small molecules

    PubMed Central

    González-Techera, A; Vanrell, L; Last, J.; Hammock, B.D; González-Sapienza, G.

    2008-01-01

    Due to their size, small molecules can not be simultaneously bound by two antibodies precluding their detection by noncompetitive two-site immunoassays, which are superior to competitive ones in terms of sensitivity, kinetics, and working range. This has prompted the development of anti-immune complex antibodies, but these are difficult to produce, and often exhibit high cross-reactivity with the unliganded primary antibody. This work demonstrates that anti-immune complex antibodies can be substituted by phage particles isolated from phage display peptide libraries. Phages bearing specific small peptide loops allowed to focus the recognition to changes in the binding area of the immune complex. The concept was tested using environmental and drug analytes; with improved sensitivity and ready adaptation into onsite formats. Peptides specific for different immune complexes can be isolated from different peptide libraries in a simple and systematic fashion allowing the rapid development of noncompetitive assays for small molecules PMID:17845007

  19. Phage anti-immune complex assay: general strategy for noncompetitive immunodetection of small molecules.

    PubMed

    González-Techera, A; Vanrell, L; Last, J A; Hammock, B D; González-Sapienza, G

    2007-10-15

    Due to their size, small molecules cannot be simultaneously bound by two antibodies, precluding their detection by noncompetitive two-site immunoassays, which are superior to competitive ones in terms of sensitivity, kinetics, and working range. This has prompted the development of anti-immune complex antibodies, but these are difficult to produce, and often exhibit high cross-reactivity with the unliganded primary antibody. This work demonstrates that anti-immune complex antibodies can be substituted by phage particles isolated from phage display peptide libraries. Phages bearing specific small peptide loops allowed to focus the recognition to changes in the binding area of the immune complex. The concept was tested using environmental and drug analytes; with improved sensitivity and ready adaptation into on-site formats. Peptides specific for different immune complexes can be isolated from different peptide libraries in a simple and systematic fashion allowing the rapid development of noncompetitive assays for small molecules.

  20. Strategies for Coordination of a Serosurvey in Parallel with an Immunization Coverage Survey

    PubMed Central

    Travassos, Mark A.; Beyene, Berhane; Adam, Zenaw; Campbell, James D.; Mulholland, Nigisti; Diarra, Seydou S.; Kassa, Tassew; Oot, Lisa; Sequeira, Jenny; Reymann, Mardi; Blackwelder, William C.; Pasetti, Marcela F.; Sow, Samba O.; Steinglass, Robert; Kebede, Amha; Levine, Myron M.

    2015-01-01

    A community-based immunization coverage survey is the standard way to estimate effective vaccination delivery to a target population in a region. Accompanying serosurveys can provide objective measures of protective immunity against vaccine-preventable diseases but pose considerable challenges with respect to specimen collection and preservation and community compliance. We performed serosurveys coupled to immunization coverage surveys in three administrative districts (woredas) in rural Ethiopia. Critical to the success of this effort were serosurvey equipment and supplies, team composition, and tight coordination with the coverage survey. Application of these techniques to future studies may foster more widespread use of serosurveys to derive more objective assessments of vaccine-derived seroprotection and monitor and compare the performance of immunization services in different districts of a country. PMID:26055737

  1. The politics of Soviet strategic defense: Political strategies, organization politics, and Soviet strategic thought. (Volumes I and II)

    SciTech Connect

    Kaufman, S.J.

    1991-01-01

    This study formulates three different unitary rational-actor models and an organizational model that can be used to explain Soviet policy in strategic defense from 1966-1980, then tests the models to determine which most successfully explains Soviet behavior. The only rational-actor model that can explain the Soviet force posture for air defense relies on demonstrably false assumptions. A well-formulated organizational model can explain these facts, as well as some organizational pathologies shown by the Soviet National Air Defense Forces. The findings suggest that military services, even when ostensibly closely directed by civilian and military superiors, often manage to pursue their own interests rather than the requirements of higher policy. Soviet civilian leaders generally had limited control over the formulation of military doctrine or over the force posture of Soviet military services, but arms control (especially the ABM Treaty) offered a policy handle which helped them to affect doctrine and force posture to a substantial degree.

  2. Viral-host interaction in kidney reveals strategies to escape host immunity and persistently shed virus to the urine.

    PubMed

    Ou, Xumin; Mao, Sai; Jiang, Yifan; Zhang, Shengyong; Ke, Chen; Ma, Guangpeng; Cheng, Anchun; Wang, Mingshu; Zhu, Dekang; Chen, Shun; Jia, Renyong; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue

    2017-01-31

    Hepatitis A virus is one of five types of hepatotropic viruses that cause human liver disease. A similar liver disease is also identified in ducks caused by Duck Hepatitis A virus (DHAV). Notably, many types of hepatotropic viruses can be detected in urine. However, how those viruses enter into the urine is largely unexplored. To elucidate the potential mechanism, we used the avian hepatotropic virus to investigate replication strategies and immune responses in kidney until 280 days after infection. Immunohistochemistry and qPCR were used to detect viral distribution and copies in the kidney. Double staining of CD4+ or CD8+ T cells and virus and qPCR were used to investigate T cell immune responses and expression levels of cytokines. Histopathology was detected by standard HE staining. In this study, viruses were persistently located at scattered renal tubules. No CD4+ or CD8+ T cells were recruited to the kidney, which was only accompanied by transient cytokine storms. In conclusion, the extremely scattered infection was the viral strategy to escape host immunity and may persistently shed virus into urine. The deletion of Th or Tc cell responses and transient cytokine storms indeed provide an advantageous renal environment for their persistent survival.

  3. The immune response to parasitic helminths of veterinary importance and its potential manipulation for future vaccine control strategies.

    PubMed

    Foster, Neil; Elsheikha, Hany M

    2012-05-01

    Despite the increasing knowledge of the immunobiology and epidemiology of parasitic helminths of the gastrointestinal system and the cardiorespiratory system, complications arising from infections of animals and humans with these parasites are a major clinical and economic problem. This has been attributed to the high incidence of these parasites, the widespread emergence of multi-drug resistant parasite strains and the lack of effective vaccines. Efforts to develop and produce vaccines against virtually all helminths (with the exception of Dictyocaulus viviparus and some cestode species) have been hindered by the complexity of the host-parasite relationship, and incomplete understanding of the molecular and immune regulatory pathways associated with the development of protective immunity against helminths. Novel genomic and proteomic technologies have provided opportunities for the discovery and characterisation of effector mechanisms and molecules that govern the host-parasite interactions in these two body systems. Such knowledge provided clues on how appropriate and protective responses are elicited against helminths and, thus, may lead to the development of effective therapeutic strategies. Here, we review advances in the immune response to selected helminths of animal health significance, and subsequent vaccine potential. The topics addressed are important for understanding how helminths interact with host immune defences and also are relevant for understanding the pathogenesis of diseases caused by helminths.

  4. Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets

    PubMed Central

    Sehgal, Kartik; Das, Rituparna; Zhang, Lin; Verma, Rakesh; Deng, Yanhong; Kocoglu, Mehmet; Vasquez, Juan; Koduru, Srinivas; Ren, Yan; Wang, Maria; Couto, Suzana; Breider, Mike; Hansel, Donna; Seropian, Stuart; Cooper, Dennis; Thakurta, Anjan; Yao, Xiaopan; Dhodapkar, Kavita M.

    2015-01-01

    In preclinical studies, pomalidomide mediated both direct antitumor effects and immune activation by binding cereblon. However, the impact of drug-induced immune activation and cereblon/ikaros in antitumor effects of pomalidomide in vivo is unknown. Here we evaluated the clinical and pharmacodynamic effects of continuous or intermittent dosing strategies of pomalidomide/dexamethasone in lenalidomide-refractory myeloma in a randomized trial. Intermittent dosing led to greater tumor reduction at the cost of more frequent adverse events. Both cohorts experienced similar event-free and overall survival. Both regimens led to a distinct pattern but similar degree of mid-cycle immune activation, manifested as increased expression of cytokines and lytic genes in T and natural killer (NK) cells. Pomalidomide induced poly-functional T-cell activation, with increased proportion of coinhibitory receptor BTLA+ T cells and Tim-3+ NK cells. Baseline levels of ikaros and aiolos protein in tumor cells did not correlate with response or survival. Pomalidomide led to rapid decline in Ikaros in T and NK cells in vivo, and therapy-induced activation of CD8+ T cells correlated with clinical response. These data demonstrate that pomalidomide leads to strong and rapid immunomodulatory effects involving both innate and adaptive immunity, even in heavily pretreated multiple myeloma, which correlates with clinical antitumor effects. This trial was registered at www.clinicaltrials.gov as #NCT01319422. PMID:25869284

  5. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection.

    PubMed

    Fischer, Annette; Rudel, Thomas

    2016-05-13

    Obligate intracellular bacteria entirely depend on the metabolites of their host cell for survival and generation of progeny. Due to their lifestyle inside a eukaryotic cell and the lack of any extracellular niche, they have to perfectly adapt to compartmentalized intracellular environment of the host cell and counteract the numerous defense strategies intrinsically present in all eukaryotic cells. This so-called cell-autonomous defense is present in all cell types encountering Chlamydia infection and is in addition closely linked to the cellular innate immune defense of the mammalian host. Cell type and chlamydial species-restricted mechanisms point a long-term evolutionary adaptation that builds the basis of the currently observed host and cell-type tropism among different Chlamydia species. This review will summarize the current knowledge on the strategies pathogenic Chlamydia species have developed to subvert and overcome the multiple mechanisms by which eukaryotic cells defend themselves against intracellular pathogens.

  6. Estimating the costs of achieving the WHO–UNICEF Global Immunization Vision and Strategy, 2006–2015

    PubMed Central

    Gasse, François; Lee-Martin, Shook-Pui; Lydon, Patrick; Magan, Ahmed; Tibouti, Abdelmajid; Johns, Benjamin; Hutubessy, Raymond; Salama, Peter; Okwo-Bele, Jean-Marie

    2008-01-01

    Abstract Objective To estimate the cost of scaling up childhood immunization services required to reach the WHO–UNICEF Global Immunization Vision and Strategy (GIVS) goal of reducing mortality due to vaccine-preventable diseases by two-thirds by 2015. Methods A model was developed to estimate the total cost of reaching GIVS goals by 2015 in 117 low- and lower-middle-income countries. Current spending was estimated by analysing data from country planning documents, and scale-up costs were estimated using a bottom-up, ingredients-based approach. Financial costs were estimated by country and year for reaching 90% coverage with all existing vaccines; introducing a discrete set of new vaccines (rotavirus, conjugate pneumococcal, conjugate meningococcal A and Japanese encephalitis); and conducting immunization campaigns to protect at-risk populations against polio, tetanus, measles, yellow fever and meningococcal meningitis. Findings The 72 poorest countries of the world spent US$ 2.5 (range: US$ 1.8–4.2) billion on immunization in 2005, an increase from US$ 1.1 (range: US$ 0.9–1.6) billion in 2000. By 2015 annual immunization costs will on average increase to about US$ 4.0 (range US$ 2.9–6.7) billion. Total immunization costs for 2006–2015 are estimated at US$ 35 (range US$ 13–40) billion; of this, US$ 16.2 billion are incremental costs, comprised of US$ 5.6 billion for system scale-up and US$ 8.7 billion for vaccines; US$ 19.3 billion is required to maintain immunization programmes at 2005 levels. In all 117 low- and lower-middle-income countries, total costs for 2006–2015 are estimated at US$ 76 (range: US$ 23–110) billion, with US$ 49 billion for maintaining current systems and $27 billion for scaling-up. Conclusion In the 72 poorest countries, US$ 11–15 billion (30%–40%) of the overall resource needs are unmet if the GIVS goals are to be reached. The methods developed in this paper are approximate estimates with limitations, but provide a roadmap

  7. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site

    PubMed Central

    Kiefer, Jonathan D.; Neri, Dario

    2016-01-01

    Summary The activation of the immune system for a selective removal of tumor cells represents an attractive strategy for the treatment of metastatic malignancies, which cannot be cured by existing methodologies. In this review, we examine the design and therapeutic potential of immunocytokines and bispecific antibodies, two classes of bifunctional products which can selectively activate the immune system at the tumor site. Certain protein engineering aspects, such as the choice of the antibody format, are common to both classes of therapeutic agents and can have a profound impact on tumor homing performance in vivo of individual products. However, immunocytokines and bispecific antibodies display different mechanisms of action. Future research activities will reveal whether an additive of even synergistic benefit can be obtained from the judicious combination of these two types of biopharmaceutical agents. PMID:26864112

  8. Sialic acids siglec interaction: A unique strategy to circumvent innate immune response by pathogens

    PubMed Central

    Khatua, Biswajit; Roy, Saptarshi; Mandal, Chitra

    2013-01-01

    Sialic acids (Sias) are nine-carbon keto sugars primarily present on the terminal residue of cell surface glycans. Sialic acid binding immunoglobulins (Ig)-like lectins (siglecs) are generally expressed on various immune cells. They selectively recognize different linkage-specific sialic acids and undertake a variety of cellular functions. Many pathogens either synthesize or acquire sialic acids from the host. Sialylated pathogens generally use siglecs to manipulate the host immune response. The present review mainly deals with the newly developed information regarding mechanism of acquisition of sialic acids by pathogens and their biological relevance especially in the establishment of successful infection by impairing host innate immunity. The pathogens which are unable to synthesize sialic acids might adsorb these from the host as a way to engage the inhibitory siglecs. They promote association with the immune cells through sialic acids-siglec dependent manner. Such an association plays an important role to subvert host's immunity. Detailed investigation of these pathways has been discussed in this review. Particular attention has been focused on Pseudomonas aeruginosa (PA) and Leishmania donovani. PMID:24434319

  9. Plant Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants are faced with defending themselves against a multitude of pathogens, including bacteria, fungi, viruses, nematodes, etc. Immunity is multi-layered and complex. Plants can induce defenses when they recognize small peptides, proteins or double-stranded RNA associated with pathogens. Recognitio...

  10. Innate immunity in lophotrochozoans: the annelids.

    PubMed

    Salzet, Michel; Tasiemski, Aurélie; Cooper, Edwin

    2006-01-01

    Innate immunity plays a major role as a first defense against microbes. Effectors of the innate response include pattern recognition receptors (PRR), phagocytic cells, proteolytic cascades and peptides/proteins with antimicrobial properties. Each element of these events has been well studied in vertebrates and in some invertebrates such as annelids. From these different researches, it appears that mammalian innate immunity could be considered as a mosaic of invertebrate immune responses. Annelids belonging to the lophotrochozoans' group are primitive coelomates that possess specially developed cellular immunity against pathogens including phagocytosis, encapsulation and spontaneous cytotoxicity of coelomocytes against allogenic or xenogenic cells. They have also developed an important humoral immunity that is based on antimicrobial, hemolytic and clotting properties of their body fluid. In the present review, we will emphasize the different immunodefense strategies that adaptation has taken during the course of evolution of two classes of annelids i.e. oligochaetes and achaetes.

  11. Variation in Immune Parameters and Disease Prevalence among Lesser Black-Backed Gulls (Larus fuscus sp.) with Different Migratory Strategies

    PubMed Central

    Arriero, Elena; Müller, Inge; Juvaste, Risto; Martínez, Francisco Javier; Bertolero, Albert

    2015-01-01

    The ability to control infections is a key trait for migrants that must be balanced against other costly features of the migratory life. In this study we explored the links between migration and disease ecology by examining natural variation in parasite exposure and immunity in several populations of Lesser Black-backed Gulls (Larus fuscus) with different migratory strategies. We found higher activity of natural antibodies in long distance migrants from the nominate subspecies L.f.fuscus. Circulating levels of IgY showed large variation at the population level, while immune parameters associated with antimicrobial activity showed extensive variation at the individual level irrespective of population or migratory strategy. Pathogen prevalence showed large geographical variation. However, the seroprevalence of one of the gull-specific subtypes of avian influenza (H16) was associated to the migratory strategy, with lower prevalence among the long-distance migrants, suggesting that migration may play a role in disease dynamics of certain pathogens at the population level. PMID:25679797

  12. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration.

    PubMed

    Ong, Siew-Min; Biswas, Subhra K; Wong, Siew-Cheng

    2015-07-01

    The concept of implanting an artificial device into the human body was once the preserve of science fiction, yet this approach is now often used to replace lost or damaged biological structures in human patients. However, assimilation of medical devices into host tissues is a complex process, and successful implant integration into patients is far from certain. The body's immediate response to a foreign object is immune-mediated reaction, hence there has been extensive research into biomaterials that can reduce or even ablate anti-implant immune responses. There have also been attempts to embed or coat anti-inflammatory drugs and pro-regulatory molecules onto medical devices with the aim of preventing implant rejection by the host. In this review, we summarize the key immune mediators of medical implant reaction, and we evaluate the potential of microRNAs to regulate these processes to promote wound healing, and prolong host-implant integration.

  13. Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond

    PubMed Central

    Migali, Cristina; Milano, Monica; Trapani, Dario; Criscitiello, Carmen; Esposito, Angela; Locatelli, Marzia; Minchella, Ida; Curigliano, Giuseppe

    2016-01-01

    Is breast cancer (BC) immunogenic? Many data suggest that it is. Many observations demonstrated the prognostic role of tumor-infiltrating lymphocytes (TILs) in triple negative (TN) and human epidermal growth factor receptor 2 (HER-2)-positive BC. TNBCs are poorly differentiated tumors with high genetic instability and very high heterogeneity. This heterogeneity enhances the ‘danger signals’ and select clone variants that could be more antigenic or, in other words, that could more strongly stimulate a host immune antitumor response. The response to chemotherapy is at least partly dependent on an immunological reaction against those tumor cells that are dying during the chemotherapy. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). ICD elicits an adaptive immune response. Which are the clinical implications of all ‘immunome’ data produced in the last years? First, validate prognostic or predictive role of TILs. Second, validate immune genomic signatures that may be predictive and prognostic in patients with TN disease. Third, incorporate an ‘immunoscore’ into traditional classification of BC, thus providing an essential prognostic and potentially predictive tool in the pathology report. Fourth, implement clinical trials for BC in the metastatic setting with drugs that target immune-cell–intrinsic checkpoints. Blockade of one of these checkpoints, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or the programmed cell death 1 (PD-1) receptor may provide proof of concepts for the activity of an immune-modulation approach in the treatment of a BC. PMID:27583028

  14. New preventive strategy to eliminate measles, mumps and rubella from Europe based on the serological assessment of herd immunity levels in the population.

    PubMed

    Plans, P

    2013-07-01

    Herd immunity blocks the transmission of measles, mumps and rubella in a population group when the prevalence of positive serologic results (p) is higher than a critical value (p c), known as the herd immunity threshold. A new preventive strategy should be developed in order to achieve the elimination of measles, rubella and mumps in Europe based on the serological assessment of herd immunity levels in different population groups. This strategy could detect population groups without herd immunity (p < p c) and indicate the additional vaccination coverage required in these groups in order to establish herd immunity and prevent outbreaks. The serological assessment of herd immunity levels in Catalonia, Spain, showed that herd immunity had not been established for measles and mumps in schoolchildren (5-9 years of age) and youths/younger adults (15-29 years of age), and that the additional vaccination coverage required to establish herd immunity in these groups was 1-7%. The new preventive strategy should be used to detect priority population groups for preventive and surveillance activities in European countries.

  15. Strategies of ROS regulation and antioxidant defense during transition from C₃ to C₄ photosynthesis in the genus Flaveria under PEG-induced osmotic stress.

    PubMed

    Uzilday, Baris; Turkan, Ismail; Ozgur, Rengin; Sekmen, Askim H

    2014-01-01

    In the present study, we aimed to elucidate how strategies of reactive oxygen species (ROS) regulation and the antioxidant defense system changed during transition from C₃ to C₄ photosynthesis, by using the model genus Flaveria, which contains species belonging to different steps in C₄ evolution. For this reason, four Flaveria species that have different carboxylation mechanisms, Flaveria robusta (C₃), Flaveria anomala (C₃-C₄), Flaveria brownii (C₄-like) and Flaveria bidentis (C₄), were used. Physiological (growth, relative water content (RWC), osmotic potential), and photosynthetical parameters (stomatal conductance (g(s)), assimilation rate (A), electron transport rate (ETR)), antioxidant defense enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductases(GR)) and their isoenzymes, non-enzymatic antioxidant contents (ascorbate, glutathione), NADPH oxidase (NOX) activity, hydrogen peroxide (H₂O₂) content and lipid peroxidation levels (TBARS) were measured comparatively under polyethylene glycol (PEG 6000) induced osmotic stress. Under non-stressed conditions, there was a correlation only between CAT (decreasing), APX and GR (both increasing) and the type of carboxylation pathways through C₃ to C₄ in Flaveria species. However, they responded differently to PEG-induced osmotic stress in regards to antioxidant defense. The greatest increase in H₂O₂ and TBARS content was observed in C₃ F. robusta, while the least substantial increase was detected in C₄-like F. brownii and C₄ F. bidentis, suggesting that oxidative stress is more effectively countered in C₄-like and C₄ species. This was achieved by a better induced enzymatic defense in F. bidentis (increased SOD, CAT, POX, and APX activity) and non-enzymatic antioxidants in F. brownii. As a response to PEG-induced oxidative stress, changes in activities of isoenzymes and also isoenzymatic patterns were observed in all

  16. Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand Litenimod (Li28) improves local immune defense against tumors.

    PubMed

    Schaedler, Emmanuelle; Remy-Ziller, Christelle; Hortelano, Julie; Kehrer, Nadine; Claudepierre, Marie-Christine; Gatard, Tanja; Jakobs, Christopher; Préville, Xavier; Carpentier, Antoine F; Rittner, Karola

    2017-01-23

    TG4010 is an immunotherapeutic vaccine based on Modified Vaccinia virus Ankara (MVA) encoding the human tumor-associated antigen MUC1 and human IL-2. In combination with first-line standard of care chemotherapy in advanced metastatic non-small-cell lung cancer (NSCLC), repeated subcutaneous injection of TG4010 improved progression-free survival in phase 2b clinical trials. In preclinical tumor models, MVATG9931, the research version of TG4010, conferred antigen-specific responses against the weak antigen human MUC1. The combination of a suboptimal dose of MVATG9931 and the type B TLR9 ligand Litenimod (Li28) markedly increased survival in a subcutaneous RMA-MUC1 tumor model compared to the treatment with MVATG9931 or Li28 alone. The requirements for this protection were (i) de novo synthesis of MUC1, (ii) Li28 delivered several hours after MVATG9931 at the same site, (iii) at least two vaccination cycles, and (iv) implantation of MUC1-positive tumor cells in the vicinity to the vaccination site. Subcutaneously injected MVATG9931 allowed transient local gene expression and induced the local accumulation of MCP-1, RANTES, M-CSF, IL-15/IL-15R and IP-10. After repeated injection, CD4(+) and CD8(+) T lymphocytes, B lymphocytes, NK cells, pDCs, neutrophils, and macrophages accumulated around the injection site, local RANTES levels remained high. Delayed injection of Li28 into this environment, led to further accumulation of macrophages, the secretion of IL-18 and IL-1 beta, and an increase of the percentage of activated CD69(+) NK cell. Combination treatment augmented the number of activated CD86(+) DCs in the draining lymph nodes and increased the percentage of KLRG1(+) CD127(-)CD8(+) T cells at the injection site. In vivo depletion of macrophages around the injection site by Clodronate liposomes reduced local IL-18 levels and diminished survival rates significantly. Thus, sequential administration of MVATG9931 and Li28 improves local innate and adaptive immune defense

  17. Viro-immune therapy: A new strategy for treatment of pancreatic cancer

    PubMed Central

    Ibrahim, Andrea Marie; Wang, Yao-He

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an almost uniformly lethal disease with less than 5% survival at five years. This is largely due to metastatic disease, which is already present in the majority of patients when diagnosed. Even when the primary cancer can be removed by radical surgery, local recurrence occurs within one year in 50%-80% of cases. Therefore, it is imperative to develop new approaches for the treatment of advanced cancer and the prevention of recurrence after surgery. Tumour-targeted oncolytic viruses (TOVs) have become an attractive therapeutic agent as TOVs can kill cancer cells through multiple mechanisms of action, especially via virus-induced engagement of the immune response specifically against tumour cells. To attack tumour cells effectively, tumour-specific T cells need to overcome negative regulatory signals that suppress their activation or that induce tolerance programmes such as anergy or exhaustion in the tumour microenvironment. In this regard, the recent breakthrough in immunotherapy achieved with immune checkpoint blockade agents, such as anti-cytotoxic T-lymphocyte-associate protein 4, programmed death 1 (PD-1) or PD-L1 antibodies, has demonstrated the possibility of relieving immune suppression in PDAC. Therefore, the combination of oncolytic virotherapy and immune checkpoint blockade agents may synergistically function to enhance the antitumour response, lending the opportunity to be the future for treatment of pancreatic cancer. PMID:26811622

  18. Epigenetic responses to stress: triple defense?

    PubMed

    Gutzat, Ruben; Mittelsten Scheid, Ortrun

    2012-11-01

    Stressful conditions for plants can originate from numerous physical, chemical and biological factors, and plants have developed a plethora of survival strategies including developmental and morphological adaptations, specific signaling and defense pathways as well as innate and acquired immunity. While it has become clear in recent years that many stress responses involve epigenetic components, we are far from understanding the mechanisms and molecular interactions. Extending our knowledge is fundamental, not least for plant breeding and conservation biology. This review will highlight recent insights into epigenetic stress responses at the level of signaling, chromatin modification, and potentially heritable consequences.

  19. Is crypsis a common defensive strategy in plants? Speculation on signal deception in the New Zealand flora.

    PubMed

    Burns, Kevin C

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development. Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals.

  20. Defense Logistics: DOD Has a Strategy and Has Taken Steps to Improve Its Asset Visibility, but Further Actions Are Needed

    DTIC Science & Technology

    2015-01-01

    Ordnance Information System RFID Radio Frequency Identification SEP Supporting Execution Plan STRATEGY Strategy for Improving DOD Asset...Frequency Identification ( RFID ) technology. However, the Strategy does not specify which of the goals and objectives this initiative supports... RFID Migration SEP will increase vendor competition, lower product cost, and ensure an unlimited supply of unique identification tags. Although the

  1. Acquisition Workforce Strategy: The Challenge Department of Defense (DoD) Faces to Improve its Acquisition Workforce

    DTIC Science & Technology

    2011-12-01

    Rebalance the department’s programs and enhance capabilities to fight the wars we are in today and the scenarios we are most likely to face in the... Layton , 2007). While DoD is years beyond the $400.00 11 hammer issue, performance-based services contracts have become the latest topic of...current acquisition problems are not new. Evelyn Layton noted in The Defense Acquisition University: Training Professionals for the Acquisition

  2. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection

    SciTech Connect

    Van Loveren, H.; Rombout, P.J.; Wagenaar, S.S.; Walvoort, H.C.; Vos, J.G.

    1988-07-01

    We have investigated the effect of exposure to ozone on defense mechanisms to a respiratory infection with Listeria monocytogenes in the rat. For this purpose rats were continuously exposed to O/sub 3/ concentrations ranging from 0.25 to 2.0 mg/m3 for a period of 1 week. In this model defense to a respiratory infection with Listeria depends on acquired specific cellular immune responses, as well as on natural nonspecific defense mechanisms. The results confirm earlier findings that show that ozone exposure can suppress the capacity of macrophages to ingest and kill Listeria. Moreover, the results show that ozone can also have a suppressive effect on the development of cellular immune responses to a respiratory Listeria infection, i.e., on T/B ratios in lung draining lymph nodes, delayed-type hypersensitivity responses to Listeria antigen, and lymphoproliferative responses in spleen and lung draining lymph nodes to Listeria antigen. The effects on the specific immune responses are especially overt if exposure to the oxidant gas occurs during an ongoing primary infection. The pathological lesions induced by a pulmonary Listeria monocytogenes infection were characterized by multifocal infiltrates of histiocytic and lymphoid cells. The foci sometimes had a granulomatous appearance. Moreover, the cellularity of the interstitial tissues was increased. In the lung many diffuse alveolar macrophages could be seen in the alveoli. Ozone exposure greatly increased the severity of the lung lesions and also of liver lesions resulting from the pulmonary infection. A prominent finding was the formation of granulomas in ozone-exposed and Listeria-infected rats.

  3. JASMONATE-TRIGGERED PLANT IMMUNITY

    PubMed Central

    Campos, Marcelo L.; Kang, Jin-Ho; Howe, Gregg A.

    2014-01-01

    The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom. PMID:24973116

  4. Interactome of E. piscicida and grouper liver proteins reveals strategies of bacterial infection and host immune response

    PubMed Central

    Li, Hui; Zhu, Qing-feng; Peng, Xuan-xian; Peng, Bo

    2017-01-01

    The occurrence of infectious diseases is related to heterogeneous protein interactions between a host and a microbe. Therefore, elucidating the host-pathogen interplay is essential. We previously revealed the protein interactome between Edwardsiella piscicida and fish gill cells, and the present study identified the protein interactome between E. piscicida and E. drummondhayi liver cells. E. drummondhayi liver cells and bacterial pull-down approaches were used to identify E. piscicida outer membrane proteins that bind to liver cells and fish liver cell proteins that interact with bacterial cells, respectively. Eight bacterial proteins and 11 fish proteins were characterized. Heterogeneous protein-protein interactions between these bacterial cells and fish liver cells were investigated through far-Western blotting and co-immunoprecipitation. A network was constructed based on 42 heterogeneous protein-protein interactions between seven bacterial proteins and 10 fish proteins. A comparison of the new interactome with the previously reported interactome showed that four bacterial proteins overlapped, whereas all of the identified fish proteins were new, suggesting a difference between bacterial tricks for evading host immunity and the host strategy for combating bacterial infection. Furthermore, these bacterial proteins were found to regulate the expression of host innate immune-related proteins. These findings indicate that the interactome contributes to bacterial infection and host immunity. PMID:28045121

  5. Analysis of swine beta1 integrin (CD29) epitopes through monoclonal antibodies developed using two immunization strategies.

    PubMed

    Paños, G; Moreno, A; Jiménez-Marín, A; Garrido, J J; Martin de la Mulas, J; Ordás, J; Llanes, D

    2004-10-01

    This report describes the production and characterization of monoclonal antibodies (MAbs) to swine beta1 integrin subunit (CD29) using two different immunization strategies. MAb GP4B4 was developed from a mouse immunized with porcine peripheral blood mononuclear cells (PBMC), while MAbs GP1A5, GP1A6, and GP4A1 were produced by immunizing mice with a porcine CD29 recombinant protein (rpCD29) developed in our laboratory, which includes the ligand binding site. GP4B4 and UCP1D2 (specific to porcine CD29) immunoprecipitated two bands of approximately 115 and 150 kDa under reducing conditions. The molecule recognized by these two antibodies was studied using flow cytometry and was found in practically all cells studied, displaying a similar reaction pattern. Western blot assays performed with rpCD29 indicated that MAbs GP1A5, GP1A6, and GP4A1 recognized the 30-kDa band for this recombinant protein, confirming their specificity for the beta1, integrin subunit. Immunohistochemical analyses of these MAbs disclosed a morphological pattern associated with smooth muscle, epithelium, and myeloid cells, as expected in MAbs recognizing CD29. This MAb panel could be useful as a general anti-CD29 reagent and would allow further research into this important integrin in swine.

  6. Allergic Host Defenses

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.

    2012-01-01

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macro-parasites. Here we present arguments to suggest that allergic immunity plays an important role in host defense against noxious environmental substances, including venoms, hematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Furthermore, we suggest that allergic hypersensitivity evolved to elicit anticipatory responses and to promote avoidance of suboptimal environments. PMID:22538607

  7. [Immune response in cervical cancer. Strategies for the development of therapeutic vaccines].

    PubMed

    Mora-García, María Lourdes; Monroy-García, Alberto

    2015-01-01

    High-risk human papillomaviruses (HR-HPV), as HPV-16, evade immune recognition through the inactivation of cells of the innate immune response. HPV-16 E6 and E7 genes down-regulate type I interferon response. They do not produce viremia or cell death; therefore, they do not cause inflammation or damage signal that alerts the immune system. Virus-like particles (VLPs), consisting of structural proteins (L1 and L2) of the main HR-HPV types that infect the genitourinary tract, are the most effective prophylactic vaccines against HR-HPV infection. While for the high grade neoplastic lesions, therapeutic vaccines based on viral vectors, peptides, DNA or complete HR-HPV E6 and E7 proteins as antigens, have had limited effectiveness. Chimeric virus-like particles (cVLPs) that carry immunogenic peptides derived from E6 and E7 viral proteins, capable to induce activation of specific cytotoxic T lymphocytes, emerge as an important alternative to provide prophylactic and therapeutic activity against HR-HPV infection and cervical cancer.

  8. 1985-1986 American defense annual

    SciTech Connect

    Hudson, G.E.; Kruzel, J.

    1985-01-01

    This book contains the following chapters: Perspectivfes; U.S. defense strategy: A debate; The Defense budget; Strategic forces; Theater forces: U.S. Defense policy in NATO: Seapower and projection forces; Manpower; Organization and management; Arms control; The Strategic Defense Initiative; and Low-intensity conflict, the strategic challenge.

  9. A Common European Security and Defense Policy in the European Union: Greek Policy and Strategy on ESDP

    DTIC Science & Technology

    2003-06-01

    create such an empire, and an army for all of Europe. That leader was Charlemagne , or Charles the Great, King of the Franks and Emperor of the Holy...army responsible for the security and defense of all Europe. Charles, King of the Franks, known as Charlemagne , who became the supreme ruler of...Western Europe when crowned Emperor on Christmas Day in the year 800 AD,3 rose from such a power vacuum and the lack of such an army after the fall of

  10. Building immunity to cancer with radiation therapy.

    PubMed

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  11. Evolutionary plasticity of insect immunity.

    PubMed

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination.

  12. Amphibian macrophage development and antiviral defenses.

    PubMed

    Grayfer, Leon; Robert, Jacques

    2016-05-01

    Macrophage lineage cells represent the cornerstone of vertebrate physiology and immune defenses. In turn, comparative studies using non-mammalian animal models have revealed that evolutionarily distinct species have adopted diverse molecular and physiological strategies for controlling macrophage development and functions. Notably, amphibian species present a rich array of physiological and environmental adaptations, not to mention the peculiarity of metamorphosis from larval to adult stages of development, involving drastic transformation and differentiation of multiple new tissues. Thus it is not surprising that different amphibian species and their respective tadpole and adult stages have adopted unique hematopoietic strategies. Accordingly and in order to establish a more comprehensive view of these processes, here we review the hematopoietic and monopoietic strategies observed across amphibians, describe the present understanding of the molecular mechanisms driving amphibian, an in particular Xenopus laevis macrophage development and functional polarization, and discuss the roles of macrophage-lineage cells during ranavirus infections.

  13. Antibody-mediated immunity against tuberculosis: implications for vaccine development.

    PubMed

    Achkar, Jacqueline M; Casadevall, Arturo

    2013-03-13

    There is an urgent need for new and better vaccines against tuberculosis (TB). Current vaccine design strategies are generally focused on the enhancement of cell-mediated immunity. Antibody-based approaches are not being considered, mostly due to the paradigm that humoral immunity plays little role in the protection against intracellular pathogens. Here, we reappraise and update the increasing evidence for antibody-mediated immunity against Mycobacterium tuberculosis, discuss the complexity of antibody responses to mycobacteria, and address mechanism of protection. Based on these findings and discussions, we challenge the common belief that immunity against M. tuberculosis relies solely on cellular defense mechanisms, and posit that induction of antibody-mediated immunity should be included in TB vaccine development strategies.

  14. [Modification of pertussis vaccination schedule in Chile, immunization of special groups and control strategies: Commentary from the Consultive Committee of Immunizations of The Chilean Society of Infectious Diseases].

    PubMed

    Potin, Marcela; Cerda, Jaime; Contreras, Lily; Muñoz, Alma; Ripoll, Erna; Vergara, Rodrigo

    2012-06-01

    In Chile, an increased number of notifications of cases of whooping cough was detected at the beginning of October 2010, and maintained through 2012. Accumulated cases during 2011 were 2,581 (15.0 per 100,000), which is greater than the number of cases registered during the period 2008-2010 (2,460 cases). On the other hand, the local sanitary authority introduced a modification of pertussis vaccination schedule (starting 2012), which consists in the replacement of the second booster of pertussis vaccine (DTwP, administered to 4-year-old children) as well as diphtheria-tetanus toxoid (dT, administered to second grade scholars) for an acellular pertussis vaccine with reduced antigenic content (dTpa), which will be administrated to first grade scholars. The Consultive Committee of Immunizations considers that the modification is adequate, since it extends the age of protection, reducing at least in theory the infection in older scholars and adolescents -who are significant sources of transmission of Bordetella pertussis to infants- using an adequate vaccine formulation (acellular pertussis vaccine). The available evidence regarding vaccination in special groups (adolescents and adults, health-care workers and pregnant women) and cocooning strategy are commented.

  15. The Complex Contributions of Genetics and Nutrition to Immunity in Drosophila melanogaster

    PubMed Central

    Unckless, Robert L.; Rottschaefer, Susan M.; Lazzaro, Brian P.

    2015-01-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and “nutritional immunology” has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional “immune system” that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to

  16. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.

    PubMed

    Unckless, Robert L; Rottschaefer, Susan M; Lazzaro, Brian P

    2015-03-01

    Both malnutrition and undernutrition can lead to compromised immune defense in a diversity of animals, and "nutritional immunology" has been suggested as a means of understanding immunity and determining strategies for fighting infection. The genetic basis for the effects of diet on immunity, however, has been largely unknown. In the present study, we have conducted genome-wide association mapping in Drosophila melanogaster to identify the genetic basis for individual variation in resistance, and for variation in immunological sensitivity to diet (genotype-by-environment interaction, or GxE). D. melanogaster were reared for several generations on either high-glucose or low-glucose diets and then infected with Providencia rettgeri, a natural bacterial pathogen of D. melanogaster. Systemic pathogen load was measured at the peak of infection intensity, and several indicators of nutritional status were taken from uninfected flies reared on each diet. We find that dietary glucose level significantly alters the quality of immune defense, with elevated dietary glucose resulting in higher pathogen loads. The quality of immune defense is genetically variable within the sampled population, and we find genetic variation for immunological sensitivity to dietary glucose (genotype-by-diet interaction). Immune defense was genetically correlated with indicators of metabolic status in flies reared on the high-glucose diet, and we identified multiple genes that explain variation in immune defense, including several that have not been previously implicated in immune response but which are confirmed to alter pathogen load after RNAi knockdown. Our findings emphasize the importance of dietary composition to immune defense and reveal genes outside the conventional "immune system" that can be important in determining susceptibility to infection. Functional variation in these genes is segregating in a natural population, providing the substrate for evolutionary response to pathogen

  17. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    PubMed

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

  18. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease

    PubMed Central

    Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847

  19. Mitigating cascades in sandpile models: an immunization strategy for systemic risk?

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Zlatić, Vinko; Caldarelli, Guido; D'Agostino, Gregorio

    2016-10-01

    We use a simple model of distress propagation (the sandpile model) to show how financial systems are naturally subject to the risk of systemic failures. Taking into account possible network structures among financial institutions, we investigate if simple policies can limit financial distress propagation to avoid system-wide crises, i.e. to dampen systemic risk. We therefore compare different immunization policies (i.e. targeted helps to financial institutions) and find that the information coming from the network topology allows to mitigate systemic cascades by targeting just few institutions.

  20. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains

    PubMed Central

    Fábrega, María José; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  1. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed Central

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Wong, Kum Thong

    2017-01-01

    Background During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. Methods We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. Results TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. Conclusion B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection. PMID:28045926

  2. Is cell-mediated immunity related to the evolution of life-history strategies in birds?

    PubMed Central

    Tella, José L; Scheuerlein, Alex; Ricklefs, Robert E

    2002-01-01

    According to life-history theory, the development of immune function should be balanced through evolutionary optimization of the allocation of resources to reproduction and through mechanisms that promote survival. We investigated interspecific variability in cell-mediated immune response (CMI), as measured by the phytohaemagglutinin (PHA) assay, in relation to clutch size, longevity and other life-history traits in 50 species of birds. CMI exhibited significant repeatability within species, and PHA responses in chicks were consistently stronger than in adults. Univariate tests showed a variety of significant relationships between the CMI of both chicks and adults with respect to size, development period and lifespan, but not clutch size or prevalence of blood parasites in adults. Multivariate analyses confirmed these patterns but independent variables were too highly correlated to isolate unique influences on CMI. The positive relationship of chick CMI to nestling period is further complicated by a parallel relationship of chick CMI to the age at testing. However, multivariate analysis showed that chick CMI varies uniquely with length of the nestling period. Adult CMI was associated with a strong life-history axis of body size, development rate and longevity. Therefore, adult CMI may be associated with prevention and repair mechanisms related to long lifespan, but it also may be allometrically related to body size through other pathways. Neither chick CMI nor adult CMI was related to clutch size, contradicting previous results linking parasite-related mortality to CMI and the evolution of clutch size (reproductive investment) in birds. PMID:12028764

  3. Defensive strategies in Geranium sylvaticum. Part 1: organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids.

    PubMed

    Tuominen, Anu; Toivonen, Eija; Mutikainen, Pia; Salminen, Juha-Pekka

    2013-11-01

    A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory.

  4. 76 FR 14413 - Risk Mitigation Strategies To Address Potential Procoagulant Activity in Immune Globulin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ...) pathophysiology of arterial and venous thrombosis in this context; (3) research to identify specific procoagulant...) the role of activated Coagulation Factor XIa in IGIV-associated thrombosis; (6) test methods for... HUMAN SERVICES Food and Drug Administration Risk Mitigation Strategies To Address Potential...

  5. Prevention of Immune Cell Apoptosis as Potential Therapeutic Strategy for Severe Infections

    PubMed Central

    Parrino, Janie; Hotchkiss, Richard S.

    2007-01-01

    Some labile cell types whose numbers are normally controlled through programmed cell death are subject to markedly increased destruction during some severe infections. Lymphocytes, in particular, undergo massive and apparently unregulated apoptosis in human patients and laboratory animals with sepsis, potentially playing a major role in the severe immunosuppression that characterizes the terminal phase of fatal illness. Extensive lymphocyte apoptosis has also occurred in humans and animals infected with several exotic agents, including Bacillus anthracis, the cause of anthrax; Yersinia pestis, the cause of plague; and Ebola virus. Prevention of lymphocyte apoptosis, through either genetic modification of the host or treatment with specific inhibitors, markedly improves survival in murine sepsis models. These findings suggest that interventions aimed at reducing the extent of immune cell apoptosis could improve outcomes for a variety of severe human infections, including those caused by emerging pathogens and bioterrorism agents. PMID:17479879

  6. Balancing Innate Immunity and Inflammatory State via Modulation of Neutrophil Function: A Novel Strategy to Fight Sepsis.

    PubMed

    Fang, Haoshu; Jiang, Wei; Cheng, Jin; Lu, Yan; Liu, Anding; Kan, Lixin; Dahmen, Uta

    2015-01-01

    Sepsis and SIRS (systemic inflammatory response syndrome) belong to a severe disease complex characterized by infection and/or a whole-body inflammatory state. There is a growing body of evidence that neutrophils are actively involved in sepsis and are responsible for both release of cytokines and phagocytosis of pathogens. The neutrophil level is mainly regulated by G-CSF, a cytokine and drug, which is widely used in the septic patient with neutropenia. This review will briefly summarize the role of neutrophils and the therapeutic effect of G-CSF in sepsis. We further suggest that targeting neutrophil function to modulate the balance between innate immunity and inflammatory injury could be a worthwhile therapeutic strategy for sepsis.

  7. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  8. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  9. Promotion of a down-modulated lung immune state may be a strategy by M. tuberculosis to foster active disease and persistence.

    PubMed

    Ho, John L; Lapa e Silva, Jose Roberto

    2010-01-01

    One-third of humans carry Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB) where microbe/host immune response interactions result in persistence or active TB. However, immune mediators associated with human TB remain poorly defined. Through a series of comparative studies of lung immune response of TB cases at the time of diagnosis and patients with other infectious lung diseases and volunteers, we found that TB cases expressed significantly higher levels of mediators that counteract Th1-type and innate immunity critical for containment of M. tuberculosis. Despite the concomitant heightened levels of Th1-type mediators, they are likely rendered ineffectual by high levels of intracellular (e.g., SOCS) and extracellular (e.g., IL-10) immune suppressors. These modulators are a direct response to M. tuberculosis as many suppressive factors declined to the levels of controls by 30 days of anti-TB treatment while most Th1-type and innate immune mediators rose above the pre-treatment levels. Parallel laboratory studies and monitored lung alveolar macrophage effector, nitric oxide synthase-2 (being shown critical for killing M. tuberculosis), support that M. tuberculosis actively promotes down-modulatory mediators to counteract Th1-type/innate immunity as an immunopathological strategy. Our studies highlight the potential application of immune mediators as surrogate markers for TB diagnosis or treatment response.

  10. On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases.

    PubMed

    Bretscher, P A

    2014-06-01

    It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the 'decision criterion' controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers.

  11. Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows.

    PubMed

    Shkreta, Lulzim; Talbot, Brian G; Diarra, Moussa S; Lacasse, Pierre

    2004-11-15

    The fibronectin binding protein (FnBP) and clumping factor A (ClfA) of Staphylococcus aureus are important proteins involved in the pathogenesis of staphylococcal bovine mastitis. These antigens were the targets of a DNA and protein vaccination strategy against S. aureus induced mastitis in dairy cows. The DNA vaccine comprised the bicistronic plasmid (pCI-D(1)D(3)-IRES-ClfA) that encoded the fusion of two sequences, (D1(21-34); D3(20-33)) from the fibronectin-binding motifs of FnBP and a fragment from ClfA (aa 221-550) of S. aureus 8325-4 separated by an Internal Ribosomal Entry Site (IRES) sequence. In addition, the vaccine contained the plasmid encoding the bovine granulocyte-macrophage-colony stimulatory factor gene (pCI-bGM-CSF). Four, 7-month pregnant heifers were immunized twice with the DNA vaccine and boosted once with recombinant D(1)D(3) and ClfA proteins while four others were not immunized. The immunization induced lymphoproliferative responses and functional antibodies against D(1)D(3) and ClfA antigens. Three weeks after calving, three mammary quarters of each vaccinated and non-vaccinated cow were challenged with 900 CFU/each of S. aureus Newbould 305. The fourth quarter received saline only. Serum haptoglobin levels, cardiac rhythm and the body temperature of vaccinated cows during the 24-72 h post-challenge were lower than in non-vaccinated animals. At 21 days post-challenge, bacteria were present in 5 of the vaccinated and 11 of the control challenged quarters. The bacteria averaged 1.4 and 3.3 log(10) CFU/ml of milk from vaccinated and control cows respectively. In summary, DNA-protein vaccination against FnBP and ClfA of S. aureus caused both lymphoproliferative and humoral immune responses that provided partial protection of mammary gland from staphylococcal mastitis and better post-challenge conditions in vaccinated cows.

  12. Optimizing Immunization Strategies for the Induction of Antigen-Specific CD4 and CD8 T Cell Responses for Protection against Intracellular Parasites.

    PubMed

    Hofmeyer, Kimberly A; Duthie, Malcolm S; Laurance, John D; Favila, Michelle A; Van Hoeven, Neal; Coler, Rhea N; Reed, Steven G

    2016-09-01

    Immunization strategies that generate either CD4 or CD8 T cell responses are relatively well described, but less is known with regard to optimizing regimens to induce both CD4 and CD8 memory T cells. Considering the importance of both CD4 and CD8 T cells in the control of intracellular pathogens such as Leishmania donovani, we wanted to identify vaccines that could raise both CD4 and CD8 T cell responses and determine how to configure immunization strategies to generate the best combined protective T cell response. We examined responses generated against the Leishmania vaccine antigen F3 following its administration in either recombinant form with the Toll-like receptor 4 (TLR4) agonist-containing adjuvant formulation GLA-SE (F3+GLA-SE) or as a gene product delivered in an adenoviral vector (Ad5-F3). Homologous immunization strategies using only F3+GLA-SE or Ad5-F3 preferentially generated either CD4 or CD8 T cells, respectively. In contrast, heterologous strategies generated both antigen-specific CD4 and CD8 T cells. Administration of F3+GLA-SE before Ad5-F3 generated the greatest combined CD4 and CD8 responses. Cytotoxic CD8 T cell responses were highest when Th1 cells were generated prior to their induction by Ad5-F3. Finally, a single immunization with a combination of F3+GLA-SE mixed with Ad5-F3 was found to be sufficient to provide protection against experimental L. donovani infection. Taken together, our data delineate immunization regimens that induce antigen-specific CD4 and CD8 T cell memory responses, and identify a single immunization strategy that could be used to rapidly provide protection against intracellular pathogens in regions where access to health care is limited or sporadic.

  13. Optimizing Immunization Strategies for the Induction of Antigen-Specific CD4 and CD8 T Cell Responses for Protection against Intracellular Parasites

    PubMed Central

    Hofmeyer, Kimberly A.; Laurance, John D.; Favila, Michelle A.; Van Hoeven, Neal; Coler, Rhea N.; Reed, Steven G.

    2016-01-01

    Immunization strategies that generate either CD4 or CD8 T cell responses are relatively well described, but less is known with regard to optimizing regimens to induce both CD4 and CD8 memory T cells. Considering the importance of both CD4 and CD8 T cells in the control of intracellular pathogens such as Leishmania donovani, we wanted to identify vaccines that could raise both CD4 and CD8 T cell responses and determine how to configure immunization strategies to generate the best combined protective T cell response. We examined responses generated against the Leishmania vaccine antigen F3 following its administration in either recombinant form with the Toll-like receptor 4 (TLR4) agonist-containing adjuvant formulation GLA-SE (F3+GLA-SE) or as a gene product delivered in an adenoviral vector (Ad5-F3). Homologous immunization strategies using only F3+GLA-SE or Ad5-F3 preferentially generated either CD4 or CD8 T cells, respectively. In contrast, heterologous strategies generated both antigen-specific CD4 and CD8 T cells. Administration of F3+GLA-SE before Ad5-F3 generated the greatest combined CD4 and CD8 responses. Cytotoxic CD8 T cell responses were highest when Th1 cells were generated prior to their induction by Ad5-F3. Finally, a single immunization with a combination of F3+GLA-SE mixed with Ad5-F3 was found to be sufficient to provide protection against experimental L. donovani infection. Taken together, our data delineate immunization regimens that induce antigen-specific CD4 and CD8 T cell memory responses, and identify a single immunization strategy that could be used to rapidly provide protection against intracellular pathogens in regions where access to health care is limited or sporadic. PMID:27466350

  14. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    SciTech Connect

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.; Ivanova, N.; Francino, P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland,A.; Detter, J.C.; Land, M.; Richardson, P.M.; Yu, X.J.; Walker, D.H.; McBride, J.W.; Kyrpides, N.C.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).

  15. Modeling bacterial immune systems: strategies for expression of toxic - but useful - molecules.

    PubMed

    Djordjevic, Marko

    2013-05-01

    Protection of bacterial cells against virus infection requires expression of molecules that are able to destroy the incoming foreign DNA. However, these molecules can also be toxic for the host cell. In both restriction-modification (R-M), and the recently discovered CRISPR/Cas systems, the toxicity is (in part) avoided through rapid transition of the expression of the toxic molecules from "OFF" to "ON" state. In restriction-modification systems the rapid transition is achieved through a large binding cooperativity, and low translation rate of the control protein. On the other hand, CRISPR array expression in CRISPR/Cas systems involves a mechanism where a small decrease of unprocessed RNAs leads to a rapid increase of processed small RNAs. Surprisingly, this rapid amplification crucially depends on fast non-specific degradation of the unprocessed molecules by an unidentified nuclease, rather than on large cooperativity in protein binding. Furthermore, the major control elements that are responsible for fast transition of R-M and CRISPR/Cas systems from "OFF" to "ON" state, are also directly involved in increased stability of the steady states of these systems. We here discuss mechanisms that allow rapid transition of toxic molecules from the unproductive to the productive state in R-M and CRISPR/Cas systems. The main purpose of this discussion is to put relevant theoretical and experimental work in a perspective that points to general similarities in otherwise mechanistically very different bacterial immune systems.

  16. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    SciTech Connect

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  17. Kinetics of rabies antibodies as a strategy for canine active immunization

    PubMed Central

    2014-01-01

    Background Rabies, a zoonosis found throughout the globe, is caused by a virus of the Lyssavirus genus. The disease is transmitted to humans through the inoculation of the virus present in the saliva of infected mammals. Since its prognosis is usually fatal for humans, nationwide public campaigns to vaccinate dogs and cats against rabies aim to break the epidemiological link between the virus and its reservoirs in Brazil. Findings During 12 months we evaluated the active immunity of dogs first vaccinated (booster shot at 30 days after first vaccination) against rabies using the Fuenzalida-Palácios modified vaccine in the urban area of Botucatu city, São Pauto state, Brazil. Of the analyzed dogs, 54.7% maintained protective titers (≥0.5 IU/mL) for 360 days after the first vaccination whereas 51.5% during all the study period. Conclusions The present results suggest a new vaccination schedule for dogs that have never been vaccinated. In addition to the first dose of vaccine, two others are recommended: the second at 30 days after the first and the third dose at 180 days after the first for the maintenance of protective titers during 12 months. PMID:26413082

  18. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation

    PubMed Central

    Woźniak, Agnieszka; Formela, Magda; Bilman, Piotr; Grześkiewicz, Katarzyna; Bednarski, Waldemar; Marczak, Łukasz; Narożna, Dorota; Dancewicz, Katarzyna; Mai, Van Chung; Borowiak-Sobkowiak, Beata; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2017-01-01

    The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O2•− was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate. PMID:28165429

  19. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy.

    PubMed

    Wang, Jing-Zhang; Zhang, Yu-Hua; Guo, Xin-Hua; Zhang, Hong-Yan; Zhang, Yuan

    2016-07-01

    Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.

  20. Fighting a Losing Battle: Vigorous Immune Response Countered by Pathogen Suppression of Host Defenses in the Chytridiomycosis-Susceptible Frog Atelopus zeteki

    PubMed Central

    Ellison, Amy R.; Savage, Anna E.; DiRenzo, Grace V.; Langhammer, Penny; Lips, Karen R.; Zamudio, Kelly R.

    2014-01-01

    The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in disease outcomes are poorly understood: differences in host immune responses have been proposed, yet previous studies suggest a lack of robust immune responses to Bd in susceptible species. Here, we sequenced transcriptomes from clutch-mates of a highly susceptible amphibian, Atelopus zeteki, with different infection histories. We found significant changes in expression of numerous genes involved in innate and inflammatory responses in infected frogs despite high susceptibility to chytridiomycosis. We show evidence of acquired immune responses generated against Bd, including increased expression of immunoglobulins and major histocompatibility complex genes. In addition, fungal-killing genes had significantly greater expression in frogs previously exposed to Bd compared with Bd-naïve frogs, including chitinase and serine-type proteases. However, our results appear to confirm recent in vitro evidence of immune suppression by Bd, demonstrated by decreased expression of lymphocyte genes in the spleen of infected compared with control frogs. We propose susceptibility to chytridiomycosis is not due to lack of Bd-specific immune responses but instead is caused by failure of those responses to be effective. Ineffective immune pathway activation and timing of antibody production are discussed as potential mechanisms. However, in light of our findings, suppression of key immune responses by Bd is likely an important factor in the lethality of this fungus. PMID:24841130

  1. Natural host defense mechanisms.

    PubMed

    Heggers, J P

    1979-10-01

    Severe injury, whether the result of a major accident, a large burn, or a complicated surgical operation, often results in sepsis. Under such conditions both specific and nonspecific host defense systems are affected. The individual facets of major concern are chemotaxis, phagocytosis, intracellular killing, complement depletion, and depression of humoral and cellular mediated immunity. The most profound changes occur in cell-mediated immunity. Within a few hours o injury, the number of circulating T cells becomes depleted, concomitantly thoracic duct lymphocytes are markedly reduced. This change is not only quantitative but functional. The clinical impact of these deficient host defense mechanisms lies in the fact that low virulent organisms may become a lethal threat to the injured patient. Currently, investigators are attempting to reverse thse deficiencies through the use of immunotherapy.

  2. Health Risk Communication in the Anthrax Vaccine Immunization Program: Lessons for the Future

    DTIC Science & Technology

    2001-04-01

    HEALTH RISK COMMUNICATION IN THE ANTHRAX VACCINE IMMUNIZATION PROGRAM: Lessons for the Future Colonel Bradley D. Freeman April 2001 AEPI-IFP-0901...REPORT TYPE AND DATES COVERED Strategy Research Project 4. TITLE AND SUBTITLE Health Risk Communication in the Anthrax Vaccine Immunization Program...Maximum 200 words) When Secretary of Defense William Cohen announced that all military service members would be vaccinated with the anthrax vaccine , few

  3. CpG ODN mimicking CpG rich region of myxosporean Myxobolus supamattayai stimulates innate immunity in Asian sea bass (Lates calcarifer) and defense against Streptococcus iniae.

    PubMed

    U-Taynapun, Kittichon; Chirapongsatonkul, Nion; Itami, Toshiaki; Tantikitti, Chutima

    2016-11-01

    Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine CpG dinucleotides within specific sequence contexts (CpG motifs) have been reported as pathogen-associated molecular patterns (PAMPs). Its immunostimulatory effects have been demonstrated in diverse vertebrate models. CpG ODN is typically found in bacterial or viral genome and recognized by a non-self recognition receptor Toll-like receptor9 (TLR9). Here, a new CpG ODN 1013 which mimics sequence of SSU rDNA of early eukaryotic organism myxosporidia, Myxobolus supamattayai, was employed to stimulate the immune responses of Asian sea bass Lates calcarifer. Its immunostimulant potentiality was comparatively compared with that of CpG ODN 1668, a widely used as functional immunostimulant. Both unmethylated CpG ODNs with some modified phosphorothioated positions were intraperitoneally injection (5 μg/fish). Hematological examination, immunological assays and immune-related genes expression were evaluated 12 h, 1, 3 and 5 d after post CpG ODN challenge. The immunosimulatory effect of these CpG ODNs on fish immunity to protect the bacterial pathogen Streptococcus iniae was also determined. The results demonstrated that these two CpG ODNs could induce immune responses in Asian sea bass including the significant (P < 0.05) increase level of WBC, peroxidase activity and oxidative radicals in head kidney (HK) leukocyte, serum innate immune parameters and up-regulation of four immune responsive genes compared with the control group. Most of immune responses induced by ODN 1668 were strong within 1 d but lesser extended while ODN 1013 prolonged the stimulatory effects during the whole experimental period. After challenge with S. iniae, the survival proportion in ODN 1013-treated fish was apparently higher than that treated with ODN 1668 and PBS, respectively. The results together suggested that CpG ODN 1013 enhanced innate immune responses, including humoral and cellular responses, through

  4. Passive immune neutralization strategies for prevention and control of influenza A infections.

    PubMed

    Ye, Jianqiang; Shao, Hongxia; Perez, Daniel R

    2012-02-01

    Although vaccination significantly reduces influenza severity, seasonal human influenza epidemics still cause more than 250,000 deaths annually. Vaccine efficacy is limited in high-risk populations such as infants, the elderly and immunosuppressed individuals. In the event of an influenza pandemic (such as the 2009 H1N1 pandemic), a significant delay in vaccine availability represents a significant public health concern, particularly in high-risk groups. The increasing emergence of strains resistant to the two major anti-influenza drugs, adamantanes and neuraminidase inhibitors, and the continuous circulation of avian influenza viruses with pandemic potential in poultry, strongly calls for alternative prophylactic and treatment options. In this review, we focus on passive virus neutralization strategies for the prevention and control of influenza type A viruses.

  5. The personal touch: strategies toward personalized vaccines and predicting immune responses to them

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Lambert, Nathaniel D.; Haralambieva, Iana H.; Poland, Gregory A.

    2014-01-01

    The impact of vaccines on public health and well-being has been profound. Smallpox has been eradicated, polio is nearing eradication, and multiple diseases have been eliminated from certain areas of the world. Unfortunately, we now face diseases such as: hepatitis C, malaria, or tuberculosis, as well as new and re-emerging pathogens for which lack effective vaccines. Empirical approaches to vaccine development have been successful in the past, but may not be up to the current infectious disease challenges facing us. New, directed approaches to vaccine design, development, and testing need to be developed. Ideally these approaches will capitalize on cutting-edge technologies, advanced analytical and modeling strategies, and up-to-date knowledge of both pathogen and host. These approaches will pay particular attention to the causes of inter-individual variation in vaccine response in order to develop new vaccines tailored to the unique needs of individuals and communities within the population. PMID:24702429

  6. Mode of action of botulinum neurotoxins: current vaccination strategies and molecular immune recognition.

    PubMed

    Aoki, K Roger; Smith, Leonard A; Atassi, M Zouhair

    2010-01-01

    The action of a botulinum neurotoxin (BoNT) commences by binding at the nerve terminal via its H- (heavy) chain to a cell-surface receptor, which consists of a ganglioside and a cell-surface protein. Binding enables the L-chain, a Zn2+-dependent endopeptidase, to be internalized and act intracellularly, cleaving one or more SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins required for vesicle docking and fusion, which results in reduced neurotransmitter release. Sprouts emerge at motor-nerve terminals that reestablish synaptic contact and lead to restoration of exocytosis. As the terminals recover, sprouts retreat and synaptic function is fully re-established. Neutralizing antibodies (Abs) induced by vaccination can prevent the neuronal changes produced by BoNT. Until recently, vaccines against BoNT have been based on toxins inactivated by treatment with formaldehyde (toxoids) and contain either one (monovalent) or five (pentavalent) toxoids, but formalin-based toxoids have many undesirable side effects. Availability of the gene sequences of BoNT serotypes enabled design of recombinant subunit vaccines that have included the C-terminal domain of the H chain (HC, its subdomains (HC-N and HC-C), the L- (catalytic) chain, and the L-chain expressed with the translocation domain (LCHN). Of these, the HC displays the highest protective ability. Recent vaccines have used whole toxins inactivated by three key mutations at the enzyme active site, which have been found to be very effective in mice against the correlated toxin. Immune responses to BoNTs A and B epitopes are under the hosts MHC (major histocompatibility complex) control. Anti-BoNT/A blocking Abs bind at sites that coincide or overlap with those that bind synaptosomes and to BoNT/B at sites that overlap with synaptotagmin-II and ganglioside-binding sites. Therefore, locations occupied by blocking Abs preclude the respective toxin from binding to its receptor and thus from

  7. RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies.

    PubMed

    Ronza, Paolo; Robledo, Diego; Bermúdez, Roberto; Losada, Ana Paula; Pardo, Belén G; Sitjà-Bobadilla, Ariadna; Quiroga, María Isabel; Martínez, Paulino

    2016-07-01

    Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early

  8. The dual role of Fas-ligand as an injury effector and defense strategy in diabetes and islet transplantation.

    PubMed

    Pearl-Yafe, Michal; Yolcu, Esma S; Yaniv, Isaac; Stein, Jerry; Shirwan, Haval; Askenasy, Nadir

    2006-02-01

    The exact process that leads to the eruption of autoimmune reactions against beta cells and the evolution of diabetes is not fully understood. Macrophages and T cells may launch an initial immune reaction against the pancreatic islets of Langerhans, provoking inflammation and destructive insulitis. The information on the molecular mechanisms of the emergence of beta cell injury is controversial and points to possibly important roles for the perforin-granzyme, Fas-Fas-ligand (FasL) and tumor-necrosis-factor-mediated apoptotic pathways. FasL has several unique features that make it a potentially ideal immunomodulatory tool. Most important, FasL is selectively toxic to cytotoxic T cells and less harmful to regulatory T cells. This review discusses the intrinsic sensitivity of beta cells to FasL-mediated apoptosis, the conditions that underlie this beta cell sensitivity, and the feasibility of using FasL to arrest autoimmunity and prevent islet allograft rejection. In both the autoimmune and transplant settings, it is imperative to progress from the administration of nonspecific immunosuppressive therapy to the concept of beta-cell-specific immunomodulation. FasL evolves as a prime candidate for antigen-specific immunomodulation.

  9. De-submergence responses of antioxidative defense systems in two wetland plants having escape and quiescence strategies.

    PubMed

    Luo, Fang-Li; Thiele, Björn; Janzik, Ingar; Zeng, Bo; Schurr, Ulrich; Matsubara, Shizue

    2012-11-15

    Fast recovery after de-submergence requires efficient protection against oxidative injuries. We investigated whether de-submergence responses of antioxidant systems differ in two wetland plants, Alternanthera philoxeroides and Hemarthria altissima, characterized by 'escape' and 'quiescence' strategies of flood tolerance, respectively. The antioxidant capacity was assessed in the two species during 10d of recovery following 20d of complete submergence (low light+low O(2)) or severe shading (low light+ambient O(2)). The activities of superoxide dismutase and catalase were measured in leaf and root tissues, along with the concentrations of reduced ascorbate, malondialdehyde, and acetaldehyde. In addition, formation of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) was detected in leaves by chemical staining. Following de-submergence, plants of A. philoxeroides showed a transient burst of acetaldehyde, while the concentration of acetaldehyde increased slowly and stayed high in leaves of H. altissima. In leaves of A. philoxeroides, the variations in O(2)(-) and H(2)O(2) correlated with the levels of light and O(2), respectively, whereas neither of the two reactive oxygen species was detected in H. altissima. For A. philoxeroides, the antioxidant capacities changed mainly in leaves during the recovery. For H. altissima, changes in reduced ascorbate were found in leaves and those of antioxidant enzyme activities in roots. De-submergence caused some lipid peroxidation in leaves of both species. We conclude that de-submergence responses of the detoxification systems differ between A. philoxeroides and H. altissima, especially in leaves. Dynamic changes were found in A. philoxeroides (having the escape strategy), as opposed to little or slow changes in H. altissima (having the quiescence strategy). Whereas the antioxidant capacities are often strongly influenced by light environments, the toxic compounds and lipid peroxidation indicate harmful effects of changing O(2

  10. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  11. Innate immunity activation on biomaterial surfaces: A mechanistic model and coping strategies

    PubMed Central

    Ekdahl, Kristina N; Lambris, John D.; Elwing, Hans; Ricklin, Daniel; Nilsson, Per H.; Teramura, Yuji; Nicholls, Ian A.; Nilsson, Bo

    2011-01-01

    When an artificial biomaterial (e.g., a stent or implantable pump) is exposed to blood, plasma proteins immediately adhere to the surface, creating a new interface between the biomaterial and the blood. The recognition proteins within the complement and contact activation/coagulation cascade systems of the blood will be bound to, or inserted into, this protein film and generate different mediators that will activate polymorphonuclear leukocytes and monocytes, as well as platelets. Under clinical conditions, the ultimate outcome of these processes may be thrombotic and inflammatory reactions, and consequently the composition and conformation of the proteins in the initial layer formed on the surface will to a large extent determine the outcome of a treatment involving the biomaterial, affecting both the functionality of the material and the patient’s life quality. This review presents models of biomaterial-induced activation processes and describes various strategies to attenuate potential adverse reactions by conjugating bioactive molecules to surfaces or by introducing nanostructures. PMID:21771620

  12. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  13. Immunity and Nutrition.

    ERIC Educational Resources Information Center

    Dupin, Henri; Guerin, Nicole

    1990-01-01

    The three articles in this issue of a periodical focussed on various aspects of the life and health of children in the tropics concern: (1) immune defenses; (2) interactions between nutrition disorders and infection; and (3) immunity and vaccination. The science of immunology has progressed rapidly in recent years. A brief review of present…

  14. Sequestration of host-CD59 as potential immune evasion strategy of Trichomonas vaginalis.

    PubMed

    Ibáñez-Escribano, Alexandra; Nogal-Ruiz, Juan José; Pérez-Serrano, Jorge; Gómez-Barrio, Alicia; Escario, J Antonio; Alderete, J F

    2015-09-01

    Trichomonas vaginalis is known to evade complement-mediated lysis. Because the genome of T. vaginalis does not possess DNA sequence with homology to human protectin (CD59), a complement lysis restricting factor, we tested the hypothesis that host CD59 acquisition by T. vaginalis organisms mediates resistance to complement killing. This hypothesis was based on the fact that trichomonads are known to associate with host proteins. No CD59 was detected on the surface of T. vaginalis grown in serum-based medium using as probe anti-CD59 monoclonal antibody (MAb). We, therefore, infected mice intraperitoneally with live T. vaginalis, and trichomonads harvested from ascites were tested for binding of CD59. Immunofluorescence showed that parasites had surface CD59. Furthermore, as mouse erythrocytes (RBCs) possess membrane-associated CD59, and trichomonads use RBCs as a nutrient source, organisms were co-cultured with murine RBCs for one week. Parasites were shown to have detectable surface CD59. Importantly, live T. vaginalis with bound CD59 were compared with batch-grown parasites without surface-associated CD59 for sensitivity to complement in human serum. Trichomonads without surface-bound CD59 had a higher level of killing by complement than did parasites with surface CD59. These data show that host CD59 acquired onto the surface by live T. vaginalis may be an alternative mechanism for complement evasion. We describe a novel strategy by T. vaginalis consistent with host protein procurement by this parasite to evade the lytic action of complement.

  15. Immunotherapy for cancer: promoting innate immunity.

    PubMed

    Lotfi, Ramin; Schrezenmeier, Hubert; Lotze, Michael Thomas

    2009-01-01

    Development of tumor over many years leads to reciprocal alterations in the host immune response and the tumor, enabling tumor growth seemingly paradoxically in the setting of necrosis and inflammation. Innate immune cells, granulocytes - neutrophils, eosinophils, basophils - and mast cells belong to the first line of defense sensing pathogen and damage associated molecular pattern (PAMPs, DAMPs) signals, initiating and modulating the subsequent inflammatory response. Nontheless, the prevailing contemporary strategies of immunotherapy for cancer have focused on the second line of the immune response, the adaptive immune response. We have determined that most highly evolved tumors in adults undergo necrosis, releasing DAMPs, promoting reactive angiogenesis, stromagenesis and reparative epithelial proliferation of the tumor cell. Means to aerobically eliminate such DAMPs by peroxidases released by innate immune effectors allows us to consider novel strategies for limiting tumor progression. Summarized here is our current understanding of acute and chronic inflammation and its impact on tumor development, the pathophysiology of immunity in cancer, and the influence of granulocytes and mast cells in this setting.

  16. Novel Antitumor Strategy Utilizing a Plasmid Expressing a Mycobacterium tuberculosis Antigen as a “Danger Signal” to Block Immune Escape of Tumor Cells

    PubMed Central

    Koyama, Yoshiyuki; Yoshihara, Chieko; Ito, Tomoko

    2015-01-01

    Immune escape of tumor cells is one of the main obstacles hindering the effectiveness of cancer immunotherapy. We developed a novel strategy to block immune escape by transfecting tumor cells in vivo with genes of pathogenic antigens from Mycobacterium tuberculosis (TB). This induces presentation of the TB antigen on tumor cell surfaces, which can be recognized by antigen presenting cells (APCs) as a “danger signal” to stimulate antitumor immune response. This strategy is also expected to amplify the immune response against tumor-associated antigens, and block immune escape of the tumor. DNA/PEI/chondroitin sulfate ternary complex is a highly effective non-viral gene vector system for in vivo transfection. A therapeutic complex was prepared using a plasmid encoding the TB antigen, early secretory antigenic target-6 (ESAT-6). This was injected intratumorally into syngeneic tumor-bearing mice, and induced significant tumor growth suppression comparable to or higher than similar complexes expressing cytokines such as interleukin-2 (IL-2) and interleukin-12 (IL-12). Co-transfection of the cytokine-genes and the ESAT-6-gene enhanced the antitumor efficacy of either treatment alone. In addition, complete tumor regression was achieved with the combination of ESAT-6 and IL-2 genes. PMID:26213962

  17. Homologous prime-boost strategy with TgPI-1 improves the immune response and protects highly susceptible mice against chronic Toxoplasma gondii infection.

    PubMed

    Sánchez, Vanesa R; Fenoy, Ignacio M; Picchio, Mariano S; Soto, Ariadna S; Arcon, Nadia; Goldman, Alejandra; Martin, Valentina

    2015-10-01

    Subunit-based vaccines are safer than live or attenuated pathogen vaccines, although they are generally weak immunogens. Thus, proper combination of immunization strategies and adjuvants are needed to increase their efficacy. We have previously protected C3H/HeN mice from Toxoplasma gondii infection by immunization with the serine protease inhibitor-1 (TgPI-1) in combination with alum. In this work, we explore an original vaccination protocol that combines administration of recombinant TgPI-1 by intradermal and intranasal routes in order to enhance protection in the highly susceptible C57BL/6 strain. Mice primed intradermally with rTgPI-1 plus alum and boosted intranasally with rTgPI-1 plus CpG-ODN elicited a strong specific Th1/Th2 humoral response, along with a mucosal immune response characterized by specific-IgA in intestinal lavages. A positive cellular response of mesentheric lymph node cells and Th1/Th2 cytokine secretion in the ileon were also detected. When immunized mice were challenged with the cystogenic Me49 T. gondii strain, they displayed up to 62% reduction in brain parasite burden. Moreover, adoptive transfer of mesenteric lymph node cells from vaccinated to naïve mice induced significant protection against infection. These results demonstrate that this strategy that combines the administration of TgPI-1 by two different routes, intradermal priming and intranasal boost, improves protective immunity against T. gondii chronic infection in highly susceptible mice.

  18. The cGAS-STING Defense Pathway and Its Counteraction by Viruses

    PubMed Central

    Ma, Zhe; Damania, Blossom

    2016-01-01

    Summary Upon viral infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway. PMID:26867174

  19. The cGAS-STING Defense Pathway and Its Counteraction by Viruses.

    PubMed

    Ma, Zhe; Damania, Blossom

    2016-02-10

    Upon virus infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently, cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis, and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway.

  20. Immunization Requirements for DoD Dependents Schools, Section 6 Schools, and Day Care Centers Operated by the Department of Defense

    DTIC Science & Technology

    1985-05-29

    and rubeola , it is "evidence of any detectable antibody. "- A . 2. Volunteer. A person who does not receive compensation from the Federal Goverment for...Injectable Polio Vaccine consisting of 4 doses is required for all individuals. c. Measles ( rubeola ). For those born after December 31, 1955. S d. German...vaccine given Measles ( Rubeola ) singly or in combination on or after 15 Mumps months of age. Individuals immunized Rubella after one year of age but before

  1. Effects of Lipoic Acid on Immune Function, the Antioxidant Defense System, and Inflammation-Related Genes Expression of Broiler Chickens Fed Aflatoxin Contaminated Diets

    PubMed Central

    Li, Yan; Ma, Qiu-Gang; Zhao, Li-Hong; Wei, Hua; Duan, Guo-Xiang; Zhang, Jian-Yun; Ji, Cheng

    2014-01-01

    This study was designed to evaluate the effect of low level of Aflatoxin B1 (AFB1) on oxidative stress, immune reaction and inflammation response and the possible ameliorating effects of dietary alpha-lipoic acid (α-LA) in broilers. Birds were randomly allocated into three groups and assigned to receive different diets: basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1 for three weeks. The results showed that the serum levels of malondialdehyde, tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ) in the AFB1-treated group were significantly increased than the control group. In addition, the increased expressions of interleukin 6 (IL6), TNFα and IFNγ were observed in birds exposed to the AFB1-contaminated diet. These degenerative changes were inhibited by α-LA-supplement. The activities of total superoxide dismutase and glutathione peroxidase, the levels of humoral immunity, and the expressions of nuclear factor-κB p65 and heme oxygenase-1, however, were not affected by AFB1. The results suggest that α-LA alleviates AFB1 induced oxidative stress and immune changes and modulates the inflammatory response at least partly through changes in the expression of proinflammatory cytokines of spleen such as IL6 and TNFα in broiler chickens. PMID:24699046

  2. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets.

    PubMed

    Li, Yan; Ma, Qiu-Gang; Zhao, Li-Hong; Wei, Hua; Duan, Guo-Xiang; Zhang, Jian-Yun; Ji, Cheng

    2014-04-02

    This study was designed to evaluate the effect of low level of Aflatoxin B1 (AFB1) on oxidative stress, immune reaction and inflammation response and the possible ameliorating effects of dietary alpha-lipoic acid (α-LA) in broilers. Birds were randomly allocated into three groups and assigned to receive different diets: basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1 for three weeks. The results showed that the serum levels of malondialdehyde, tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ) in the AFB1-treated group were significantly increased than the control group. In addition, the increased expressions of interleukin 6 (IL6), TNFα and IFNγ were observed in birds exposed to the AFB1-contaminated diet. These degenerative changes were inhibited by α-LA-supplement. The activities of total superoxide dismutase and glutathione peroxidase, the levels of humoral immunity, and the expressions of nuclear factor-κB p65 and heme oxygenase-1, however, were not affected by AFB1. The results suggest that α-LA alleviates AFB1 induced oxidative stress and immune changes and modulates the inflammatory response at least partly through changes in the expression of proinflammatory cytokines of spleen such as IL6 and TNFα in broiler chickens.

  3. Cytosolic Innate Immune Sensing and Signaling upon Infection

    PubMed Central

    Radoshevich, Lilliana; Dussurget, Olivier

    2016-01-01

    Cytosolic sensing of pathogens is essential to a productive immune response. Recent reports have emphasized the importance of signaling platforms emanating from organelles and cytosolic sensors, particularly during the response to intracellular pathogens. Here, we highlight recent discoveries identifying the key mediators of nucleic acid and cyclic nucleotide sensing and discuss their importance in host defense. This review will also cover strategies evolved by pathogens to manipulate these pathways. PMID:27014235

  4. Analysis to Inform Defense Planning Despite Austerity

    DTIC Science & Technology

    2014-01-01

    Secretary of Defense with responsibili- ties for both strategy and program analysis, and—for many years—an analyst and manager at the RAND...Corporation. The monograph’s primary intended audience includes defense analysts, their managers , and the policymakers who are consumers of defense analysis...26 Multiple Objectives, Including Risk Management . . . . . . . . . . . . . . . . . . . . . . . . 26

  5. Roles of plant hormones and their interplay in rice immunity.

    PubMed

    Yang, Dong-Lei; Yang, Yinong; He, Zuhua

    2013-05-01

    Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.

  6. The Role of Autophagy in Chloroplast Degradation and Chlorophagy in Immune Defenses during Pst DC3000 (AvrRps4) Infection

    PubMed Central

    Dong, Junjian; Chen, Wenli

    2013-01-01

    Background Chlorosis of leaf tissue normally observed during pathogen infection may result from the degradation of chloroplasts. There is a growing evidence to suggest that the chloroplast plays a significant role during pathogen infection. Although most degradation of the organelles and cellular structures in plants is mediated by autophagy, its role in chloroplast catabolism during pathogen infection is largely unknown. Results In this study, we investigated the function of autophagy in chloroplast degradation during avirulent Pst DC3000 (AvrRps4) infection. We examined the expression of defensive marker genes and suppression of bacterial growth using the electrolyte leakage assay in normal light (N) and low light (L) growing environments of wild-type and atg5-1 plants during pathogen treatment. Stroma-targeted GFP proteins (CT-GFP) were observed with LysoTracker Red (LTR) staining of autophagosome-like structures in the vacuole. The results showed that Arabidopsis expressed a significant number of small GFP-labeled bodies when infected with avirulent Pst DC3000 (AvrRps4). While barely detectable, there were small GFP-labeled bodies in plants with the CT-GFP expressing atg5-1 mutation. The results showed that chloroplast degradation depends on autophagy and this may play an important role in inhibiting pathogen growth. Conclusion Autophagy plays a role in chloroplast degradation in Arabidopsis during avirulent Pst DC3000 (AvrRps4) infection. Autophagy dependent chloroplast degradation may be the primary source of reactive oxygen species (ROS) as well as the pathogen-response signaling molecules that induce the defense response. PMID:24023671

  7. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  8. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  9. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy.

    PubMed

    Reiss, Kim A; Forde, Patrick M; Brahmer, Julie R

    2014-01-01

    Cancer cells employ several mechanisms to evade the immune system of their host, thus escaping immune recognition and elimination. Of particular interest is a cancer cell's ability to co-opt the immune system's innate ligands and inhibitory receptors (also known as checkpoints), thus creating an immunosuppressive microenvironment that downregulates T-cell activation and cell signaling. The recent development of the checkpoint inhibitors anti-programmed death-1 and anti-programmed death ligand-1 has generated an enormous amount of interest as a potential new anticancer strategy in solid tumors, particularly in non-small-cell lung cancer, renal cell carcinoma and melanoma. Data suggest significant disease response rates using anti-programmed death-1 and anti-programmed death ligand-1 antibodies, even in heavily pretreated patients. Future directions include optimization of drug delivery sequence and combination of immunotherapy with other therapies including cytotoxic chemotherapy, radiation, antiangiogenic agents and small-molecule tyrosine kinase inhibitors.

  10. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system.

    PubMed

    Pelaseyed, Thaher; Bergström, Joakim H; Gustafsson, Jenny K; Ermund, Anna; Birchenough, George M H; Schütte, André; van der Post, Sjoerd; Svensson, Frida; Rodríguez-Piñeiro, Ana M; Nyström, Elisabeth E L; Wising, Catharina; Johansson, Malin E V; Hansson, Gunnar C

    2014-07-01

    The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.

  11. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system

    PubMed Central

    Pelaseyed, Thaher; Bergström, Joakim H.; Gustafsson, Jenny K.; Ermund, Anna; Birchenough, George M. H.; Schütte, André; van der Post, Sjoerd; Svensson, Frida; Rodríguez-Piñeiro, Ana M.; Nyström, Elisabeth E.L.; Wising, Catharina; Johansson, Malin E.V.; Hansson, Gunnar C.

    2014-01-01

    Summary The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine mucus limits the number of bacteria that can reach the epithelium and the Peyer’s patches. In the large intestine the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells not only secrete the MUC2 mucin, but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103+-type. In addition to the gel forming mucins, the transmembrane mucins MUC3, MUC12 and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization suggesting that enterocytes might control and report epithelial microbial challenge. There is not only communication from the epithelial cells to the immune system, but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy. PMID:24942678

  12. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the availability of vaccines, influenza is a significant public health problem, emphasizing the need for development of additional strategies to enhance host defense against influenza. Wolfberry or Goji berry, long used as a medicinal food in China, has recently been shown to improve immune ...

  13. [A novel immunization strategy to induce strong humoral responses against HIV-1 using combined DNA, recombinant vaccinia virus and protein vaccines].

    PubMed

    Liu, Chang; Wang, Shu-hui; Ren, Li; Hao, Yan-ling; Zhang, Qi-cheng; Liu, Ying

    2014-11-01

    To optimize the immunization strategy against HIV-1, a DNA vaccine was combined with a recombinant vaccinia virus (rTV) vaccine and a protein vaccine. Immune responses against HIV-1 were detected in 30 female guinea pigs divided into six groups. Three groups of guinea pigs were primed with HIV-1 DNA vaccine three times, boosted with rTV at week 14, and then boosted with gp140 protein at intervals of 4, 8 or 12 weeks. Simultaneously, the other three groups of animals were primed with rTV vaccine once, and then boosted with gp140 after 4, 8 or 12 weeks. The HIV-1 specific binding antibody and neutralizing antibody, in addition to the relative affinity of these antibodies, were detected at different time points after the final administration of vaccine in each group. The DNA-rTV-gp140 immune regimen induced higher titers and affinity levels of HIV-1 gp120/gp140 antibodies and stronger V1V2-gp70 antibodies than the rTV-gp140 regimen. In the guinea pigs that underwent the DNA-rTV-gp140 regimen, the highest V1V2-gp70 antibody was induced in the 12-week-interval group. However, the avidity of antibodies was improved in the 4-week-interval group. Using the rTV-gp140 immunization strategy, guinea pigs boosted at 8 or 12 weeks after rTV priming elicited stronger humoral responses than those boosted at 4 weeks after priming. In conclusion, this study shows that the immunization strategy of HIV-1 DNA vaccine priming, followed by rTV and protein vaccine boosting, could strengthen the humoral response against HIV-1. Longer intervals were better to induce V1V2-gp70-specific antibodies, while shorter intervals were more beneficial to enhance the avidity of antibodies.

  14. Emerging roles of orphan nuclear receptors in regulation of innate immunity.

    PubMed

    Jin, Hyo Sun; Kim, Tae Sung; Jo, Eun-Kyeong

    2016-11-01

    Innate immunity constitutes the first line of defense against pathogenic and dangerous insults. However, it is a double-edged sword, as it functions in both clearance of infection and inflammatory damage. It is therefore important that innate immune responses are tightly controlled to prevent harmful excessive inflammation. Nuclear receptors (NRs) are a family of transcription factors that play critical roles in various physiological responses. Orphan NRs are a subset of NRs for which the ligands and functions are unclear. Accumulating evidence has revealed that orphan NRs play essential roles in innate immune responses to prevent pathogenic inflammatory responses and to enhance antimicrobial host defenses. In this review, we describe current knowledge on the roles and mechanisms of orphan NRs in the regulation of innate immune responses. Discovery of new functions of orphan NRs would facilitate development of novel preventive and therapeutic strategies against human inflammatory diseases.

  15. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  16. [Recent advances in understanding the innate immune mechanisms and developing new disease resistance breeding strategies against the rice blast fungus Magnaporthe oryzae in rice].

    PubMed

    He, Feng; Zhang, Hao; Liu, Jinling; Wang, Zhilong; Wang, Guoliang

    2014-08-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases in rice. Utilization of resistant cultivars is the most effective and economic strategy against the disease. Recently, rice blast has become an advanced model system for elucidating the molecular mechanisms of plant-fungal interactions. Significant progress has been made in the molecular biology, genomics and proteomics of the rice-M. oryzae interaction and host resistance in the last few years. In this review, we summarize the recent advances in understanding the molecular basis of PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) in rice against M. oryzae, and propose the new strategies for blast resistance molecular breeding. We also discuss the new challenges for future investigations.

  17. Transforming Defense

    DTIC Science & Technology

    2005-09-01

    or agency each week?” 47 By way of just one example, Madrid’s La Razon reported on September 13 , 2004, that Spain would lose U.S. bases to Portugal...public release, distribution unlimited 13 . SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...DEFENSE 7 responsibilities. The homeland security JOC envisions a layered and comprehensive defense requiring geographical and functional integra- tion. 13

  18. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  19. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  20. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections.

  1. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  2. Innate immune responses in hepatitis C virus infection.

    PubMed

    Li, Kui; Lemon, Stanley M

    2013-01-01

    Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma worldwide and thus poses a significant public health threat. A hallmark of HCV infection is the extraordinary ability of the virus to persist in a majority of infected people. Innate immune responses represent the front line of defense of the human body against HCV immediately after infection. They also play a crucial role in orchestrating subsequent HCV-specific adaptive immunity that is pivotal for viral clearance. Accumulating evidence suggests that the host has evolved multifaceted innate immune mechanisms to sense HCV infection and elicit defense responses, while HCV has developed elaborate strategies to circumvent many of these. Defining the interplay of HCV with host innate immunity reveals mechanistic insights into hepatitis C pathogenesis and informs approaches to therapy. In this review, we summarize recent advances in understanding innate immune responses to HCV infection, focusing on induction and effector mechanisms of the interferon antiviral response as well as the evasion strategies of HCV.

  3. Heteropentameric Cholera Toxin B Subunit Chimeric Molecules Genetically Fused to a Vaccine Antigen Induce Systemic and Mucosal Immune Responses: a Potential New Strategy To Target Recombinant Vaccine Antigens to Mucosal Immune Systems

    PubMed Central

    Harakuni, Tetsuya; Sugawa, Hideki; Komesu, Ai; Tadano, Masayuki; Arakawa, Takeshi

    2005-01-01

    Noninvasive mucosal vaccines are attractive alternatives to parenteral vaccines. Although the conjugation of vaccine antigens with the B subunit of cholera toxin (CTB) is one of the most promising strategies for vaccine delivery to mucosal immune systems, the molecule cannot tolerate large-protein fusion, as it severely impairs pentamerization and loses affinity for GM1-ganglioside. Here we report a new strategy, in which steric hindrance between CTB-antigen fusion subunits is significantly reduced through the integration of unfused CTB “molecular buffers” into the pentamer unit, making them more efficiently self-assemble into biologically active pentamers. In addition, the chimeric protein took a compact configuration, becoming small enough to be secreted, and one-step affinity-purified proteins, when administered through a mucosal route, induced specific immune responses in mice. Since our results are not dependent on the use of a particular expression system or vaccine antigen, this strategy could be broadly applicable to bacterial enterotoxin-based vaccine design. PMID:16113283

  4. Managing Change: Converting the Defense Industry

    DTIC Science & Technology

    1993-04-01

    and threats). 2. Develop mission Statement. 3. Develop objectives and Strategies. 4. Develop a Capsule Marketing Strategy. 5. Use a Budgeted Marketing ... Mix . 15 This is not a paper about marketing, but marketing concepts apply to defense companies. Defense companies conduct analyses, analyze their

  5. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  6. Synthetic plant defense elicitors.

    PubMed

    Bektas, Yasemin; Eulgem, Thomas

    2014-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  7. Aging and Immune Function: Molecular Mechanisms to Interventions

    PubMed Central

    Ponnappan, Subramaniam

    2011-01-01

    Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785

  8. Evolution of adaptive immune recognition in jawless vertebrates.

    PubMed

    Saha, Nil Ratan; Smith, Jeramiah; Amemiya, Chris T

    2010-02-01

    All extant vertebrates possess an adaptive immune system wherein diverse immune receptors are created and deployed in specialized blood cell lineages. Recent advances in DNA sequencing and developmental resources for basal vertebrates have facilitated numerous comparative analyses that have shed new light on the molecular and cellular bases of immune defense and the mechanisms of immune receptor diversification in the "jawless" vertebrates. With data from these key species in hand, it is becoming possible to infer some general aspects of the early evolution of vertebrate adaptive immunity. All jawed vertebrates assemble their antigen-receptor genes through combinatorial recombination of different "diversity" segments into immunoglobulin or T-cell receptor genes. However, the jawless vertebrates employ an analogous, but independently derived set of immune receptors in order to recognize and bind antigens: the variable lymphocyte receptors (VLRs). The means by which this locus generates receptor diversity and achieves antigen specificity is of considerable interest because these mechanisms represent a completely independent strategy for building a large immune repertoire. Therefore, studies of the VLR system are providing insight into the fundamental principles and evolutionary potential of adaptive immune recognition systems. Here we review and synthesize the wealth of data that have been generated towards understanding the evolution of the adaptive immune system in the jawless vertebrates.

  9. Integrated Immune Experiment

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2009-01-01

    This viewgraph presentation reviews NASA's Integrated Immune Experiment. The objectives include: 1) Address significant lack of data regarding immune status during flight; 2) Replace several recent immune studies with one comprehensive study that will include in-flight sampling; 3) Determine the in-flight status of immunity, physiological stress, viral immunity/reactivation; 4) Determine the clinical risk related to immune dysregulation for exploration class spaceflight; and 5) Determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  10. Department of Defense Arctic Strategy

    DTIC Science & Technology

    2013-11-01

    and oceanic models, improve accuracy of estimates of ice extent and thickness, and detect and monitor climate change indicators. In particular, the...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 The World Factbook 2013-14. Washington, DC: Central Intelligence Agency...2013. ARCTIC REGION Prince .George Fort Nelson. Fort .McMurray 150 N a /h P \\ c i f i c / Ocean <f> North Atlant i c Ocean I Sca le I

  11. Recent progress in HIV vaccines inducing mucosal immune responses.

    PubMed

    Pavot, Vincent; Rochereau, Nicolas; Lawrence, Philip; Girard, Marc P; Genin, Christian; Verrier, Bernard; Paul, Stéphane

    2014-07-31

    In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.

  12. The respiratory microbiome and innate immunity in asthma

    PubMed Central

    Huang, Yvonne J.

    2015-01-01

    Purpose of review The purpose of this study is to summarize recent studies of the lower respiratory microbiome in asthma, the role of innate immunity in asthma and strategies to understand complex microbiome–immune interactions in asthma. Recent findings Recent evidence indicates that the composition of lower respiratory microbiota in asthmatic individuals, across a spectrum of disease severity, is altered compared with healthy individuals. Attributes of this altered airway microbiome have been linked to clinical and inflammatory features of asthma. The importance of innate immune cells and mucosal defense systems in asthma is increasingly appreciated and may be dysregulated in the disease. Summary Interactions between the respiratory microbiome and innate mucosal immunity in asthma are complex and a challenge to dissect. Multiple avenues of investigation, leveraging a variety of methodologies, will need to be pursued to understand functional relationships to clinical and inflammatory phenotypes seen in asthma. PMID:25405668

  13. Host cell autophagy in immune response to zoonotic infections.

    PubMed

    Skendros, Panagiotis; Mitroulis, Ioannis

    2012-01-01

    Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  14. Responses of innate immune cells to group A Streptococcus.

    PubMed

    Fieber, Christina; Kovarik, Pavel

    2014-01-01

    Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies.

  15. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    PubMed

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development.

  16. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S

  17. Immune response from a resource allocation perspective

    PubMed Central

    Rauw, Wendy M.

    2012-01-01

    The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production. PMID:23413205

  18. Immune Evasion by Epstein-Barr Virus.

    PubMed

    Ressing, Maaike E; van Gent, Michiel; Gram, Anna M; Hooykaas, Marjolein J G; Piersma, Sytse J; Wiertz, Emmanuel J H J

    2015-01-01

    Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.

  19. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks

    PubMed Central

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-01-01

    ABSTRACT The consequences of the 2013–16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks. PMID:27925844

  20. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus

    PubMed Central

    Fang, Lingzhao; Hou, Yali; An, Jing; Li, Bingjie; Song, Minyan; Wang, Xiao; Sørensen, Peter; Dong, Yichun; Liu, Chao; Wang, Yachun; Zhu, Huabin; Zhang, Shengli; Yu, Ying

    2016-01-01

    Staphylococcus aureus (S. aureus) is problematic for lactating mammals and public health. Understanding of mechanisms by which the hosts respond to severe invasion of S. aureus remains elusive. In this study, the genome-wide expression of mRNAs and miRNAs in bovine mammary gland cells were interrogated at 24 h after intra-mammary infection (IMI) with high or low concentrations of S. aureus. Compared to the negative control quarters, 194 highly-confident responsive genes were identified in the quarters with high concentration (109 cfu/mL) of S. aureus, which were predominantly implicated in pathways and biological processes pertaining to innate immune system, such as cytokine-cytokine receptor interaction and inflammatory response. In contrast, only 21 highly-confident genes were significantly differentially expressed in face of low concentration (106 cfu/mL) of S. aureus, which slightly perturbed the cell signaling and invoked corresponding responses like vasoconstriction, indicating limited perturbations and immunological evading. Additionally, the significant up-regulations of bta-mir-223 and bta-mir-21-3p were observed in the quarters infected by high concentration of S. aureus. Network analysis suggested that the two miRNAs' pivotal roles in defending hosts against bacterial infection probably through inhibiting CXCL14 and KIT. The significant down-regulation of CXCL14 was also observed in bovine mammary epithelial cells at 24 h post-infection of S. aureus (108 cfu/mL) in vitro. Integrated analysis with QTL database further suggested 28 genes (e.g., CXCL14, KIT, and SLC4A11) as candidates of bovine mastitis. This study first systematically revealed transcriptional and post-transcriptional responses of bovine mammary gland cells to invading S. aureus in a dosage-dependent pattern, and highlighted a complicated responsive mechanism in a network of miRNA-gene-pathway interplay. PMID:28083515

  1. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus.

    PubMed

    Fang, Lingzhao; Hou, Yali; An, Jing; Li, Bingjie; Song, Minyan; Wang, Xiao; Sørensen, Peter; Dong, Yichun; Liu, Chao; Wang, Yachun; Zhu, Huabin; Zhang, Shengli; Yu, Ying

    2016-01-01

    Staphylococcus aureus (S. aureus) is problematic for lactating mammals and public health. Understanding of mechanisms by which the hosts respond to severe invasion of S. aureus remains elusive. In this study, the genome-wide expression of mRNAs and miRNAs in bovine mammary gland cells were interrogated at 24 h after intra-mammary infection (IMI) with high or low concentrations of S. aureus. Compared to the negative control quarters, 194 highly-confident responsive genes were identified in the quarters with high concentration (10(9) cfu/mL) of S. aureus, which were predominantly implicated in pathways and biological processes pertaining to innate immune system, such as cytokine-cytokine receptor interaction and inflammatory response. In contrast, only 21 highly-confident genes were significantly differentially expressed in face of low concentration (10(6) cfu/mL) of S. aureus, which slightly perturbed the cell signaling and invoked corresponding responses like vasoconstriction, indicating limited perturbations and immunological evading. Additionally, the significant up-regulations of bta-mir-223 and bta-mir-21-3p were observed in the quarters infected by high concentration of S. aureus. Network analysis suggested that the two miRNAs' pivotal roles in defending hosts against bacterial infection probably through inhibiting CXCL14 and KIT. The significant down-regulation of CXCL14 was also observed in bovine mammary epithelial cells at 24 h post-infection of S. aureus (10(8) cfu/mL) in vitro. Integrated analysis with QTL database further suggested 28 genes (e.g., CXCL14, KIT, and SLC4A11) as candidates of bovine mastitis. This study first systematically revealed transcriptional and post-transcriptional responses of bovine mammary gland cells to invading S. aureus in a dosage-dependent pattern, and highlighted a complicated responsive mechanism in a network of miRNA-gene-pathway interplay.

  2. Immunity to plant pathogens and iron homeostasis.

    PubMed

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity.

  3. Antipredator defenses predict diversification rates

    PubMed Central

    Arbuckle, Kevin; Speed, Michael P.

    2015-01-01

    The “escape-and-radiate” hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488

  4. Tumor antigen-targeting monoclonal antibody-based immunotherapy: Orchestrating combined strategies for the development of long-term antitumor immunity.

    PubMed

    Michaud, Henri-Alexandre; Eliaou, Jean-François; Lafont, Virginie; Bonnefoy, Nathalie; Gros, Laurent

    2014-10-01

    Tumor antigen (TA)-targeting monoclonal antibody (mAb)-based treatments are considered to be one of the most successful strategies in cancer therapy. Besides targeting TAs and inducing tumor cell death, such antibodies interact with immune cells through Fc-dependent mechanisms to induce adaptive memory immune responses. However, multiple inhibitory/immunosuppressive pathways can be induced by tumor cells to limit the establishment of an efficient antitumor response and consequently a sustained clinical response to TA-targeting mAbs. Here, we provide an overview on how TA-targeting mAbs in combination with conventional cancer therapies and/or inhibitors of key immunosuppressive pathways might represent promising approaches to achieve long-term tumor control.

  5. Deterrence and the impact of strategic defense

    SciTech Connect

    Lunghofer, D.M.

    1992-06-01

    This paper examines the role of strategic defense in a deterrence strategy. Deterrence theory, strategic defense, the 1972 ABM Treaty, the national military strategy and Global Protection Against Limited Strikes are reviewed. It is asserted that the roles of nuclear forces and strategic defense are complimentary and stabilizing. The options to counter the threat of future proliferation of weapons of mass destruction and the threat of accidental or unauthorized launch of ballistic missiles are examined with the conclusion that a comprehensive defense is necessary.

  6. The inflammasome in host defense.

    PubMed

    Chen, Gang; Pedra, Joao H F

    2010-01-01

    Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  7. Immune responses against hepatitis C virus genotype 3a virus-like particles in mice: A novel VLP prime-adenovirus boost strategy.

    PubMed

    Kumar, Anuj; Das, Soma; Mullick, Ranajoy; Lahiri, Priyanka; Tatineni, Ranjitha; Goswami, Debashree; Bhat, Prasanna; Torresi, Joseph; Gowans, Eric James; Karande, Anjali Anoop; Das, Saumitra

    2016-02-17

    Chronic hepatitis C virus (HCV) infection represents a major health threat to global population. In India, approximately 15-20% of cases of chronic liver diseases are caused by HCV infection. Although, new drug treatments hold great promise for HCV eradication in infected individuals, the treatments are highly expensive. A vaccine for preventing or treating HCV infection would be of great value, particularly in developing countries. Several preclinical trials of virus-like particle (VLP) based vaccine strategies are in progress throughout the world. Previously, using baculovirus based system, we have reported the production of hepatitis C virus-like particles (HCV-LPs) encoding structural proteins for genotype 3a, which is prevalent in India. In the present study, we have generated HCV-LPs using adenovirus based system and tried different immunization strategies by using combinations of both kinds of HCV-LPs with other genotype 3a-based immunogens. HCV-LPs and peptides based ELISAs were used to evaluate antibody responses generated by these combinations. Cell-mediated immune responses were measured by using T-cell proliferation assay and intracellular cytokine staining. We observed that administration of recombinant adenoviruses expressing HCV structural proteins as final booster enhances both antibody as well as T-cell responses. Additionally, reduction of binding of VLP and JFH1 virus to human hepatocellular carcinoma cells demonstrated the presence of neutralizing antibodies in immunized sera. Taken together, our results suggest that the combined regimen of VLP followed by recombinant adenovirus could more effectively inhibit HCV infection, endorsing the novel vaccine strategy.

  8. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  9. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  10. Bacteria fighting back: how pathogens target and subvert the host innate immune system.

    PubMed

    Reddick, L Evan; Alto, Neal M

    2014-04-24

    The innate immune system has evolved under selective pressure since the radiation of multicellular life approximately 600 million years ago. Because of this long history, innate immune mechanisms found in modern eukaryotic organisms today are highly complex but yet built from common molecular strategies. It is now clear that evolution has selected a conserved set of antimicrobial peptides as well as pattern-recognition receptors (PRRs) that initiate cellular-based signals as a first line of defense against invading pathogens. Conversely, microbial pathogens employ their own strategies in order to evade, inhibit, or otherwise manipulate the innate immune response. Here, we discuss recent discoveries that have changed our view of immune modulatory mechanisms employed by bacterial pathogens, focusing specifically on the initial sites of microbial recognition and extending to host cellular signal transduction, proinflammatory cytokine production, and alteration of protein trafficking and secretion.

  11. Kidney and innate immunity.

    PubMed

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed.

  12. Bovine innate and adaptive immune responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal shedding in ruminants.

    PubMed

    Vande Walle, Kris; Vanrompay, Daisy; Cox, Eric

    2013-03-15

    Enterohaemorrhagic E. coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance causing foodborne infections with possibly life-threatening consequences in humans, such as haemorrhagic colitis and in a small percentage of zoonotic cases, haemolytic-uremic syndrome (HUS). Ruminants are an important reservoir of EHEC and human infections are most frequently associated with direct or indirect contact with ruminant faeces. A thorough understanding of the host-bacterium interaction in ruminants could lead to the development of novel interventions strategies, including innovative vaccines. This review aims to present the current knowledge regarding innate and adaptive immune responses in EHEC colonized ruminants. In addition, results on vaccination strategies in ruminants aiming at reduction of EHEC shedding are reviewed.

  13. A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host

    PubMed Central

    Rai, Pradeep K; Chodisetti, Sathi Babu; Nadeem, Sajid; Maurya, Sudeep K; Gowthaman, Uthaman; Zeng, Weiguang; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2016-01-01

    Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ+TNF-α+ polyfunctional Th1 cells and IL-17A+IFN-γ+ Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime. PMID:27052185

  14. A strategy for efficient cross-presentation of CTL-epitope peptides leading to enhanced induction of in vivo tumor immunity.

    PubMed

    Hayashi, Akira; Wakita, Hisashi; Yoshikawa, Tomoaki; Nakanishi, Tsuyoshi; Tsutsumi, Yasuo; Mayumi, Tadanori; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2007-01-22

    The activation of antitumor cytotoxic T-lymphocytes (CTLs) depends on how efficiently the relevant tumor antigen peptides are delivered into the major histocompatibility complex (MHC) class I presentation pathway in antigen presenting c