Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping
2015-01-01
An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389
Use of the local lymph node assay in assessment of immune function.
van den Berg, Femke A; Baken, Kirsten A; Vermeulen, Jolanda P; Gremmer, Eric R; van Steeg, Harry; van Loveren, Henk
2005-07-01
The murine local lymph node assay (LLNA) was originally developed as a predictive test method for the identification of chemicals with sensitizing potential. In this study we demonstrated that an adapted LLNA can also be used as an immune function assay by studying the effects of orally administered immunomodulating compounds on the T-cell-dependent immune response induced by the contact sensitizer 2,4-dinitrochlorobenzene (DNCB). C57Bl/6 mice were treated with the immunotoxic compounds cyclosporin A (CsA), bis(tri-n-butyltin)oxide (TBTO) or benzo[a]pyrene, (B[a]P). Subsequently, cell proliferation and interferon-gamma (IFN-gamma) and interleukin (IL)-4 release were determined in the auricular lymph nodes (LNs) after DNCB application on both ears. Immunosuppression induced by CsA, TBTO and B[a]P was clearly detectable in this application of the LLNA. Cytokine release measurements proved valuable to confirm the results of the cell proliferation assay and to obtain an indication of the effect on Th1/Th2 balance. We believe to have demonstrated the applicability of an adapted LLNA as an immune function assay in the mouse.
Keilholz, Ulrich; Weber, Jeffrey; Finke, James H; Gabrilovich, Dmitry I; Kast, W Martin; Disis, Mary L; Kirkwood, John M; Scheibenbogen, Carmen; Schlom, Jeff; Maino, Vernon C; Lyerly, H Kim; Lee, Peter P; Storkus, Walter; Marincola, Franceso; Worobec, Alexandra; Atkins, Michael B
2002-01-01
The Society for Biological Therapy held a Workshop last fall devoted to immune monitoring for cancer immunotherapy trials. Participants included members of the academic and pharmaceutical communities as well as the National Cancer Institute and the Food and Drug Administration. Discussion focused on the relative merits and appropriate use of various immune monitoring tools. Six breakout groups dealt with assays of T-cell function, serologic and proliferation assays to assess B cell and T helper cell activity, and enzyme-linked immunospot assay, tetramer, cytokine flow cytometry, and reverse transcription polymerase chain reaction assays of T-cell immunity. General conclusions included: (1) future vaccine studies should be designed to determine whether T-cell dysfunction (tumor-specific and nonspecific) correlated with clinical outcome; (2) tetramer-based assays yield quantitative but not functional data (3) enzyme-linked immunospot assays have the lowest limit of detection (4) cytokine flow cytometry have a higher limit of detection than enzyme-linked immunospot assay, but offer the advantages of speed and the ability to identify subsets of reactive cells; (5) antibody tests are simple and accurate and should be incorporated to a greater extent in monitoring plans; (6) proliferation assays are imprecise and should not be emphasized in future studies; (7) the reverse transcription polymerase chain reaction assay is a promising research approach that is not ready for widespread application; and (8)there is a critical need to validate these assays as surrogates for vaccine potency and clinical effect. Current data and opinion support the use of a functional assay like the enzyme-linked immunospot assay or cytokine flow cytometry in combination with a quantitative assay like tetramers for immune monitoring. At present, assays appear to be most useful as measures of vaccine potency. Careful immune monitoring in association with larger scale clinical trials ultimately may enable the correlation of monitoring results with clinical benefit.
NASA Astrophysics Data System (ADS)
Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma
2014-07-01
Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f
Bolton, Wade
2011-06-01
The utility of functional cell mediated immune assays in the assessment of immune response or immunogenicity is increasing significantly as we search for surrogates to determine vaccine efficacy or therapeutic response. No definitive reports to date have demonstrated that CMI assays in human clinical trials correlate with clinical outcome, although animal and non human primate studies have reported surrogacy in varying degrees. This report discusses the approaches identified, their advantages and disadvantages, and their justification for inclusion in the clinical trial setting.
St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A
2017-01-01
While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.
Ivaldi, Federico; Starc, Nadia; Landi, Fabiola; Locatelli, Franco; Rutella, Sergio; Tripodi, Gino; Manca, Fabrizio
2014-01-01
Monitoring of antigen-specific T-cell responses is valuable in numerous conditions that include infectious diseases, vaccinations, and opportunistic infections associated with acquired or congenital immune defects. A variety of assays that make use of peripheral lymphocytes to test activation markers, T-cell receptor expression, or functional responses are currently available. The last group of assays calls for large numbers of functional lymphocytes. The number of cells increases with the number of antigens to be tested. Consequently, cells may be the limiting factor, particularly in lymphopenic subjects and in children, the groups that more often require immune monitoring. We have developed immunochemical assays that measure secreted cytokines in the same wells in which peripheral blood mononuclear cells (PBMC) are cultured. This procedure lent itself to miniaturization and automation. Lymphoproliferation and the enzyme-linked immunosorbent spot (ELISPOT) assay have been adapted to a miniaturized format. Here we provide examples of immune profiles and describe a comparison between miniaturized assays based on cytokine secretion or proliferation. We also demonstrate that these assays are convenient for use in testing antigen specificity in established T-cell lines, in addition to analysis of PBMC. In summary, the applicabilities of miniaturization to save cells and reagents and of automation to save time and increase accuracy were demonstrated in this study using different methodological approaches valuable in the clinical immunology laboratory. PMID:24477854
DeWitt, Jamie C; Peden-Adams, Margie M; Keil, Deborah E; Dietert, Rodney R
2012-02-01
Developmental immunotoxicity (DIT) occurs when exposure to environmental risk factors prior to adulthood, including chemical, biological, physical, or physiological factors, alters immune system development. DIT may elicit suppression, hyperactivation, or misregulation of immune responses and may present clinically as decreased resistance to pathogens, allergic and autoimmune diseases, and inflammatory diseases. Immunotoxicity testing guidelines established by the Environmental Protection Agency for adult animals (OPPTS 8703.7800) require functional tests and immunophenotyping that are suitable for detecting immunomodulation, especially immunosuppression. However, evaluating immune function in offspring that are not fully immunocompetent yields results that are challenging to interpret. Therefore, this unit will describe an optimum exposure scenario, reference two assays (immunophenotyping and histopathology) appropriate for detecting immunomodulation in weaning-age offspring, and reference four assays (immunophenotyping, histopathology, T cell-dependent antibody responses, and delayed-type hypersensitivity) appropriate for detecting immunomodulation in immunocompetent offspring. The protocol also will reference other assays (natural killer cell and cytotoxic T lymphocyte) with potential utility for assessing DIT. © 2012 by John Wiley & Sons, Inc.
Genschmer, Kristopher R.; Accavitti-Loper, Mary Ann; Briles, David E.
2013-01-01
Streptococcus pneumoniae causes otitis media, meningitis and pneumonia in patients worldwide; predominantly affecting young children, the elderly, and the immune compromised. Current vaccines against invasive pneumococcal disease are based on the polysaccharide capsules of the most clinically relevant serotypes. Due to serotype replacement, non-vaccine serotypes of S. pneumoniae have become more clinically relevant and as a result pneumococcal vaccines are becoming increasingly complex. These events emphasize the need to evaluate the potential for pneumococcal cross-reactive proteins to contribute to future vaccines. Antibody elicited by the immunization of humans with pneumococcal surface protein A (PspA) can passively protect mice from infection. However, robust in vitro functional assays for antibody to PspA are not available to predict the protective capacity of immune serum. For polysaccharide based vaccines, a standardized opsonophagocytosis killing assay (OPKA) is used. Antibody to PspA, however, does not work well in the standard OPKA. The present studies take advantage of past observations that phagocytosis is more efficient on tissue surfaces than in solution. In a modified surface killing assay (MSKA), monoclonal antibody to PspA, in the presence of complement, opsonized pneumococci for killing by phagocytes on an agar surface. Five monoclonal antibodies to PspA were tested; three demonstrated increased amounts of killing compared to the diluent control and protected mice by passive protection against type 3 pneumococci. The two antibodies that were not functional in the MSKA also failed to protect mice. Thus, an MSKA might be useful as a functional assay for immunity to PspA. PMID:24211169
Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.
2011-01-01
This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.
Development and Fit-for-Purpose Validation of a Soluble Human Programmed Death-1 Protein Assay.
Ni, Yan G; Yuan, Xiling; Newitt, John A; Peterson, Jon E; Gleason, Carol R; Haulenbeek, Jonathan; Santockyte, Rasa; Lafont, Virginie; Marsilio, Frank; Neely, Robert J; DeSilva, Binodh; Piccoli, Steven P
2015-07-01
Programmed death-1 (PD-1) protein is a co-inhibitory receptor which negatively regulates immune cell activation and permits tumors to evade normal immune defense. Anti-PD-1 antibodies have been shown to restore immune cell activation and effector function-an exciting breakthrough in cancer immunotherapy. Recent reports have documented a soluble form of PD-1 (sPD-1) in the circulation of normal and disease state individuals. A clinical assay to quantify sPD-1 would contribute to the understanding of sPD-1-function and facilitate the development of anti-PD-1 drugs. Here, we report the development and validation of a sPD-1 protein assay. The assay validation followed the framework for full validation of a biotherapeutic pharmacokinetic assay. A purified recombinant human PD-1 protein was characterized extensively and was identified as the assay reference material which mimics the endogenous analyte in structure and function. The lower limit of quantitation (LLOQ) was determined to be 100 pg/mL, with a dynamic range spanning three logs to 10,000 pg/mL. The intra- and inter-assay imprecision were ≤15%, and the assay bias (percent deviation) was ≤10%. Potential matrix effects were investigated in sera from both normal healthy volunteers and selected cancer patients. Bulk-prepared frozen standards and pre-coated Streptavidin plates were used in the assay to ensure consistency in assay performance over time. This assay appears to specifically measure total sPD-1 protein since the human anti-PD-1 antibody, nivolumab, and the endogenous ligands of PD-1 protein, PDL-1 and PDL-2, do not interfere with the assay.
Gupta, Vinita; Davancaze, Teresa; Good, Jeremy; Kalia, Navdeep; Anderson, Michael; Wallin, Jeffrey J; Brady, Ann; Song, An; Xu, Wenfeng
2016-12-01
Immune-checkpoint inhibitors are presumed to break down the tolerogenic state of immune cells by activating T-lymphocytes that release cytokines and enhance effector cell function for elimination of tumors. Measurement of cytokines is being pursued for better understanding of the mechanism of action of immune-checkpoint inhibitors, as well as to identify potential predictive biomarkers. In this study, we show bioanalytical qualification of cytokine assays in plasma on a novel multi-analyte immunoassay platform, Simple Plex ™ . The qualified assays exhibited excellent sensitivity as evidenced by measurement of all samples within the quantifiable range. The accuracy and precision were 80-120% and 10%, respectively. The qualified assays will be useful in assessing mechanism of action cancer immunotherapies.
van der Maten, Erika; de Jonge, Marien I; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D
2017-02-08
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.
van der Maten, Erika; de Jonge, Marien I.; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D.
2017-01-01
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood. PMID:28176849
Danilova, Ludmila; Anagnostou, Valsamo; Caushi, Justina X; Sidhom, John-William; Guo, Haidan; Chan, Hok Yee; Suri, Prerna; Tam, Ada J; Zhang, Jiajia; El Asmar, Margueritta; Marrone, Kristen A; Naidoo, Jarushka; Brahmer, Julie R; Forde, Patrick M; Baras, Alexander S; Cope, Leslie; Velculescu, Victor E; Pardoll, Drew; Housseau, Franck; Smith, Kellie N
2018-06-12
Mutation-associated neoantigens (MANAs) are a target of antitumor T-cell immunity. Sensitive, simple, and standardized assays are needed to assess the repertoire of functional MANA-specific T cells in oncology. Assays analyzing in vitro cytokine production such as ELISpot and intracellular cytokine staining (ICS) have been useful but have limited sensitivity in assessing tumor-specific T-cell responses and do not analyze antigen-specific T-cell repertoires. The FEST (Functional Expansion of Specific T cells) assay described herein integrates TCR sequencing of short-term, peptide-stimulated cultures with a bioinformatic platform to identify antigen-specific clonotypic amplifications. This assay can be adapted for all types of antigens, including mutation associated neoantigens (MANAs) via tumor exome-guided prediction of MANAs. Following in vitro identification by the MANAFEST assay, the MANA-specific CDR3 sequence can be used as a molecular barcode to detect and monitor the dynamics of these clonotypes in blood, tumor, and normal tissue of patients receiving immunotherapy. MANAFEST is compatible with high-throughput routine clinical and lab practices. Copyright ©2018, American Association for Cancer Research.
Immune monitoring of clinical trials with biotherapies.
Whiteside, Theresa L
2008-01-01
Immune monitoring of biotherapy clinical trials has undergone a considerable change in recent years. Technical advances together with new insights into molecular immunology have ushered a new genre of assays into immune monitoring. Single-cell assays, multiplex profiling, and signaling molecule detection have replaced formerly used bulk assays, such as proliferation or cytotoxicity. The emphasis on immune cell functions and quantitation of antigen-specific T cells has been playing a major role in attempts to establish correlations between therapy-induced alterations in immune responses and clinical endpoints. However, this has been an elusive goal to achieve, and there is a special need for improving the quality of serial monitoring to ensure that it adequately and reliably measures changes induced by administered biotherapy. In this respect, monitoring performed in specialized reference laboratories operating as good laboratory practice (GLP) facilities and strengthening of interactions between the clinical investigator, the clinical immunologist, and the biostatistician are crucial for successful use of immune monitoring in clinical studies.
Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta).
Rousselet, Estelle; Levin, Milton; Gebhard, Erika; Higgins, Benjamin M; DeGuise, Sylvain; Godard-Codding, Céline A J
2013-11-15
Sea turtles face numerous environmental challenges, such as exposure to chemical pollution and biotoxins, which may contribute to immune system impairment, resulting in increased disease susceptibility. Therefore, a more thorough assessment of the host's immune response and its susceptibility is needed for these threatened and endangered animals. In this study, the innate and acquired immune functions of sixty-five clinically healthy, immature, captive loggerhead sea turtles (Caretta caretta) were assayed using non-lethal blood sample collection. Functional immune assays were developed and/or optimized for this species, including mitogen-induced lymphocyte proliferation, natural killer (NK) cell activity, phagocytosis, and respiratory burst. Peripheral blood mononuclear cells (PBMC) and phagocytes were isolated by density gradient centrifugation on Ficoll-Paque and discontinuous Percoll gradients, respectively. The T lymphocyte mitogens ConA significantly induced lymphocyte proliferation at 1 and 2 μg/mL while PHA significantly induced lymphocyte proliferation at 5 and 10 μg/mL. The B lymphocyte mitogen LPS significantly induced proliferation at 1 μg/mL. Monocytes demonstrated higher phagocytic activity than eosinophils. In addition, monocytes exhibited respiratory burst. Natural killer cell activity was higher against YAC-1 than K-562 target cells. These optimized assays may help to evaluate the integrity of loggerhead sea turtle's immune system upon exposure to environmental contaminants, as well as part of a comprehensive health assessment and monitoring program. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.
2011-01-01
This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.
NASA Astrophysics Data System (ADS)
Cohen, Luchino
Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.
Immunotoxicant screening and prioritization in the 21st century
Current immunotoxicity testing guidance for drugs, high production volume chemicals and pesticides specifies the use of animal models that measure immune function or evaluation of general indicators of immune system health generated in routine toxicity testing. The assays are ...
Immunotoxicant screening and prioritization in the 21st century*
Current immunotoxicity testing guidance for drugs, high production volume chemicals and pesticides specifies the use of animal models that measure immune function or evaluation of general indicators of immune system health generated in routine toxicity testing. The assays are r...
PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.
Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping
2016-12-01
Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.
Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C.; Christophides, George K.
2013-01-01
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srikannathasan, Velupillai; English, Grant; Bui, Nhat Khai
Crystal structures of type VI secretion system-associated immunity proteins, a peptidoglycan endopeptidase and a complex of the endopeptidase and its cognate immunity protein are reported together with assays of endopeptidase activity and functional assessment. Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-d-glutamic acid and l-meso-diaminopimelic acid with differentmore » specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure–activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1–Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2–Rap2a orthologues suggest that the specificity of these immunity proteins for neutralizing effectors is fold-dependent and that in cases where the fold is conserved sequence differences contribute to the specificity of effector–immunity protein interactions.« less
[Effect of polysaccharides in processed Sibiraea on immunologic function of immunosuppression mice].
Duan, Bowen; Li, Yun; Liu, Xin; Yang, Yongjian
2010-06-01
To study the effect of polysaccharides in processed Sibiraea on the immunologic function of immunosuppression mice. The immunosuppressed mice were induced by cyclophosphamide. After the treatment, the organ weight index and the delayed type hypersensitivity of the mice were investigated. The humoral immune function was determined by serum hemolysin assay. Non-specific immune function was determined by carbon clearance method. Cellular immune function was determined by spleen lymphocyte proliferation test. Two hundred kunming mice were randomly divided into five groups: normal controls, model group, low-dose group (110 mg x kg(-1)), middle-dose group (220 mg x kg(-1)), high-dose group (440 mg x kg(-1)). Drugs were given to the mice by oral gavage every day. The immunosuppressed mice treated with Sibiraea polysibcharide at intragastrica dose of 110-440 mg x kg(-1) have increased weight of the immune organs, increased content of DTH and content in serum hemolysin lgG and lgM. Mean while the rate of carbon clearance was enhanced and the proliferation of spleen lymphocyte was increased. Polysaccharides in processed Sibiraea can increase the weight of the immune organs. At the same time, non-specific immune, DTH, humoral immune and cellular immune function were enhanced significantly.
Anandamide and Δ9-Tetrahydrocannabinol Directly Inhibit Cells of the Immune System via CB2 Receptors
Eisenstein, Toby K.; Meissler, Joseph J.; Wilson, Qiana; Gaughan, John P.; Adler, Martin W.
2007-01-01
This study shows that two cannabinoids, Δ9-tetrahydrocannabinol (THC) and anandamide, induce dose related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB2 receptor, but not by SR141716, a CB1 antagonist. These studies are novel in that they show that both anadamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB2 receptor. PMID:17640739
Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira
2016-01-01
Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors.
Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Kurabayashi, Katsuo; Oh, Bo-Ram
2014-08-01
Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.
Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E
2012-05-01
In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.
Human adaptive immune system Rag2-/-gamma(c)-/- mice.
Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G
2005-06-01
Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.
An effector Peptide family required for Drosophila toll-mediated immunity.
Clemmons, Alexa W; Lindsay, Scott A; Wasserman, Steven A
2015-04-01
In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire.
Respiratory Syncytial Virus (RSV): Neutralizing Antibody, a Correlate of Immune Protection.
Piedra, Pedro A; Hause, Anne M; Aideyan, Letisha
2016-01-01
Assays that measure RSV-specific neutralizing antibody activity are very useful for evaluating vaccine candidates, performing seroprevalence studies, and detecting infection. Neutralizing antibody activity is normally measured by a plaque reduction neutralization assay or by a microneutralization assay with or without complement. These assays measure the functional capacity of serum (or other fluids) to neutralize virus infectivity in cells as compared to ELISA assays that only measure the binding capacity against an antigen. This chapter discusses important elements in standardization of the RSV-specific microneutralization assay for use in the laboratory.
Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model.
Shao, Tong; Shi, Wei; Zheng, Jia-Yu; Xu, Xiao-Xiao; Lin, Ai-Fu; Xiang, Li-Xin; Shao, Jian-Zhong
2018-01-01
CD58 and CD2 have long been known as a pair of reciprocal adhesion molecules involved in the immune modulations of CD8 + T and NK-mediated cellular immunity in humans and several other mammals. However, the functional roles of CD58 and CD2 in CD4 + T-mediated adaptive humoral immunity remain poorly defined. Moreover, the current functional observations of CD58 and CD2 were mainly acquired from in vitro assays, and in vivo investigation is greatly limited due to the absence of a Cd58 homology in murine models. In this study, we identified cd58 and cd2 homologs from the model species zebrafish ( Danio rerio ). These two molecules share conserved structural features to their mammalian counterparts. Functionally, cd58 and cd2 were significantly upregulated on antigen-presenting cells and Cd4 + T cells upon antigen stimulation. Blockade or knockdown of Cd58 and Cd2 dramatically impaired the activation of antigen-specific Cd4 + T and mIgM + B cells, followed by the inhibition of antibody production and host defense against bacterial infections. These results indicate that CD58/CD2 interaction was required for the full activation of CD4 + T-mediated adaptive humoral immunity. The interaction of Cd58 with Cd2 was confirmed by co-immunoprecipitation and functional competitive assays by introducing a soluble Cd2 protein. This study highlights a new costimulatory mechanism underlying the regulatory network of adaptive immunity and makes zebrafish an attractive model organism for the investigation of CD58/CD2-mediated immunology and disorders. It also provides a cross-species understanding of the evolutionary history of costimulatory signals from fish to mammals as a whole.
Wines, Bruce D; Billings, Hugh; Mclean, Milla R; Kent, Stephen J; Hogarth, P Mark
2017-01-01
There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fcdependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. This brief review highlights the importance of Fc properties for immunity to HIV, particularly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ectodomains to detect functionally relevant viral antigen-specific antibodies. The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the essential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reliably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. We propose the assay has broader implications for the evaluation of the quality of antibody responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wines, Bruce D.; Billings, Hugh; Mclean, Milla R.; Kent, Stephen J.; Hogarth, P. Mark
2017-01-01
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. PMID:28322167
Spectrum of primary immunodeficiency disorders in Sri Lanka
2013-01-01
Background While primary immunodeficiencies (PID has been recognized in the west for decades, recognition has been delayed in the third world. This study attempts to detail the spectrum of PID, the therapy provided, and constraints in the diagnosis and treatment in a middle income country such as Sri Lanka. Methods Nine hundred and forty two patients with recurrent infections and features suggestive of immune deficiency, referred from the entire country in a 4 year period, to the sole immunology unit in Sri Lanka were included. The following tests were performed. Full blood counts, serum Immunoglobulin and complement C3 and C4 levels, functional antibody levels, enumeration of lymphocyte subsets, in vitro and in vivo T cell functional assays,, nitroblue tetrazolium assay to diagnose chronic granulomatous disease, hair shaft assay to diagnose Griscelli syndrome. Sequencing of the common gamma chain to identify x linked severe combined immune deficiency, and X linked agammaglobulinemia was confirmed by assaying for Btk mutations by single sequence conformation polymorphism. HIV/AIDS was excluded in all patients. Results Seventy three patients were diagnosed with a primary immune deficiency. The majority (60.27%) had antibody deficiency. Common variable immune deficiency was the commonest (28.76%), followed by X linked agammaglobulinemia (XLA) (20.54%). Five patients had possible hyper IgM syndrome. Ten patients had severe combined immune deficiency (SCID), including 2 with x linked SCID, in addition to DiGeorge syndrome (2), ataxia telangiectasia (6), autosomal dominant hyper IgE syndrome (2), chronic granulomatous disease (4), leucocyte adhesion deficiency type 1 (2) and Griscelli syndrome (3). Patients with autoinflammatory, innate immune and complement defects could not be identified due to lack of facilities. Conclusions Antibody deficiency is the commonest PID, as in the west.IgA deficiency is rare. Autoinflammatory diseases, innate immune and complement deficiencies could not be identified due to lack of diagnostic facilities. Lack of awareness of PID among adult physicians result in delay in treatment of adult patients. While treatment of antibody deficiencies provided in state hospitals has extended life expectancy, there is no treatment available for severe T cell defects. PMID:24373416
Feng, Xiao-Wu; Huo, Li-Jie; Sun, Jie-Jie; Xu, Ji-Dong; Niu, Guo-Juan; Wang, Jin-Xing; Shi, Xiu-Zhen
2017-11-01
Myeloid leukemia factor (MLF) plays an important role in development, cell cycle, myeloid differentiation, and regulates the RUNX transcription factors. However, the function of MLF in immunity is still unclear. In this study, an MLF was identified and characterized in kuruma shrimp Marsupenaeus japonicus, and named as MjMLF. The full-length cDNA of MjMLF contained 1111 nucleotides, which had an opening reading frame of 816 bp encoding a protein of 272 amino acids with an MLF1-interacting protein domain. MjMLF could be ubiquitously detected in different tissues of shrimp at the transcriptional level. The expression pattern analysis showed that MjMLF could be upregulated in shrimp hemocytes and hepatopancreas after white spot syndrome virus challenge. The RNA interference and protein injection assay showed that MjMLF could inhibit WSSV replication in vivo. Flow cytometry assay showed that MjMLF could induce hemocytes apoptosis which functioned in the shrimp antiviral reaction. All the results suggested that MjMLF played an important role in the antiviral immune reaction of kuruma shrimp. The research indicated that MjMLF might function as a novel regulator to inhibit WSSV replication in shrimp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Malignant Melanoma Initiating Cells on T-Cell Activation
Schatton, Tobias; Schütte, Ute; Frank, Markus H.
2016-01-01
Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883
1978-01-01
T lymphoblasts specific for foreign histocompatibility antigens and purified via mixed leukocyte culture (MLC) and 1 g velocity sedimentation procedures can be used as autoimmunogen to produce specific immunological unresponsiveness in adult animals. This unresponsiveness is positively correlated to the production of autoanti- idiotypic antibodies in the blast immunized animals and no evidence of coexisting alloimmunity was found. We consider this autoanti-idiotypic immunity to be the specific inducing agent of the immune tolerance. The blast immunization procedure will lead to selective reduction in T-cell reactivity against the relevant alloantigens as measured by MLC, cell- mediated lympholysis, or graft-versus-host assays. However, in individual animals, dichtomy in suppression between two T-cell assays could sometimes be observed indicating elimination of only a select group of idiotypic functionally distinct population of T cells in these blast-immunized animals. Attempts to abrogate already immune animals by the autoblast procedure were successful, in part suggesting the use of the present procedure when trying to induce in accelerated reversion of such immunity. PMID:75235
Seth, Aruna; Ourmanov, Ilnour; Kuroda, Marcelo J.; Schmitz, Jörn E.; Carroll, Miles W.; Wyatt, Linda S.; Moss, Bernard; Forman, Meryl A.; Hirsch, Vanessa M.; Letvin, Norman L.
1998-01-01
The utility of modified vaccinia virus Ankara (MVA) as a vector for eliciting AIDS virus-specific cytotoxic T lymphocytes (CTL) was explored in the simian immunodeficiency virus (SIV)/rhesus monkey model. After two intramuscular immunizations with recombinant MVA-SIVSM gag pol, the monkeys developed a Gag epitope-specific CTL response readily detected in peripheral blood lymphocytes by using a functional killing assay. Moreover, those immunizations also elicited a population of CD8+ T lymphocytes in the peripheral blood that bound a specific major histocompatibility complex class I/peptide tetramer. These Gag epitope-specific CD8+ T lymphocytes also were demonstrated by using both functional and tetramer-binding assays in lymph nodes of the immunized monkeys. These observations suggest that MVA may prove a useful vector for an HIV-1 vaccine. They also suggest that tetramer staining may be a useful technology for monitoring CTL generation in vaccine trials in nonhuman primates and in humans. PMID:9707609
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-01-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587
1997-08-01
anti-neu antibody response of DNA vaccine immunized mice again by indirectly flowcytometry assay, we confirm our previous finding. We also examine the... flowcytometry assay, I have confirmed my previous finding from Elisa assay. 5 I also examined the cellular immunity response of DNA immunized mice by CTL...immunized mice by indirectly flowcytometry assay. I also find mice immunized with neu DNA vaccine did not develop detectable cytotoxic T lymphocyte
Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly
2016-01-01
Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of Biologics Evaluation and Research, with plaque reduction neutralization test performed by Focus Diagnostics, and with hemaglutination inhibition assay performed in-house at Sanofi Pasteur. Taken together, fADI assay appears to be a useful high throughput functional immunoassay for assessment of antibody-related neutralization of the viral infections for which pre-attachment neutralization pathway is predominant, such as polio, influenza, yellow fever and dengue. PMID:26863313
Guan, Qingdong; Li, Yun; Shpiruk, Tanner; Bhagwat, Swaroop; Wall, Donna A
2018-05-01
Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs. Clinical-grade bone marrow-derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed. MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ-licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation. A flow cytometry-based assay of MSCs post-IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders
2017-11-17
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
Lebrec, Hervé N
2013-01-01
The immune system has been recognized for decades as a potential "target organ" of toxicity. Immune system activation can result in cytokine release resulting in severe systemic toxicity. Immunosuppression can result in impaired host defense and an increase in opportunistic infection, reemergence of latent infection, poor responses to vaccination, or increased risk of certain cancers. Several regulatory documents have addressed various aspects of immunotoxicity assessments. Nonhuman primates (NHPs) and in particular macaques are often the only relevant species for biotechnology-derived investigational new drugs based on cross-reactivity with human and NHP targets. This article reviews the challenges and opportunities associated with monitoring immune function in NHPs in the context of regulatory expectations. The article emphasizes how a comprehensive assessment of immunotoxicity remains a challenge due to interanimal variability associated with certain parameters (e.g., T-dependent antibody response)and it identifies gaps, such as the stage of development of certain assays (e.g., cytotoxic T-cell function). Despite these challenges, a thorough assessment of target biology-driven theoretical risks, in combination with proper integration of all information from the standard toxicology studies, and the refinement of certain assays should enable proper risk assessment. To this effect, emphasis should be placed on leveraging predictive in vitro assays using human cells.
Matson, Kevin D; Tieleman, B Irene; Klasing, Kirk C
2006-01-01
In wild birds, relatively little is known about intra- or interspecific variation in immunological capabilities, and even less is known about the effects of stress on immune function. Immunological assays adaptable to field settings and suitable for a wide variety of taxa will prove most useful for addressing these issues. We describe a novel application of an in vitro technique that measures the intrinsic bacteria-killing abilities of blood. We assessed the capacities of whole blood and plasma from free-living individuals of five tropical bird species to kill a nonpathogenic strain of E. coli before and after the birds experienced an acute stress. Killing invasive bacteria is a fundamental immune function, and the bacteria-killing assay measures constitutive, innate immunity integrated across circulating cell and protein components. Killing ability varied significantly across species, with common ground doves exhibiting the lowest levels and blue-crowned motmots exhibiting the highest levels. Across species, plasma killed bacteria as effectively as whole blood, and higher concentrations of plasma killed significantly better. One hour of acute stress reduced killing ability by up to 40%. This assay is expected to be useful in evolutionary and ecological studies dealing with physiological and immunological differences in birds.
Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.
Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L
2008-01-01
The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.
Dehydroepiandrosterone and multiple measures of functional immunity in young adults.
Prall, Sean P; Muehlenbein, Michael P
2015-01-01
Human immune function is strongly influenced by variation in hormone concentrations. The adrenal androgens dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) are thought to be beneficial to immune function and disease resistance, but physiologically interact with testosterone and cortisol. We predict that DHEA and DHEA-S will interact with these other hormones in determining immunological outcomes. Understanding the interactive effects of these hormones will aid in understanding variability in immunocompetence and clarify discrepancies in human studies of androgen-immune interactions. Thirty-eight participants collected morning saliva over three days, from which concentrations of DHEA, DHEA-S, testosterone, and cortisol were measured, as well as salivary bacteria killing ability to measure innate immune function. From blood collection, serum was collected to measure innate immune function via a hemolytic complement assay, and whole blood collected and processed to measure proliferative responses of lymphocytes in the presence of mitogens. DHEA was negatively correlated with T cell proliferation, and positively correlated with salivary bacteria killing in male participants. Additionally, using regression models, DHEA-S was negatively associated with hemolytic complement activity, but interaction variables did not yield statistically significant relationships for any other outcome measure. While interactions with other hormones did not significantly relate with immune function measures in this sample, DHEA and DHEA-S did differentially impact multiple branches of the immune system. Generally characterized as immunosupportive in action, DHEA is shown to inhibit certain facets of innate and cell-mediated immunity, suggesting a more complex role in regulating immunocompetence. © 2015 Wiley Periodicals, Inc.
Jet fuel-induced immunotoxicity.
Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M
2000-09-01
Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorka, K. M.; Copeland, E. K.; Winterhalter, W. E.
To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuationsmore » in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.« less
Takahashi, Mamoru; Ohsumi, Akihiro; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi; Chen-Yoshikawa, Toyofumi F
2017-06-01
The ImmuKnow (IK) assay is a comprehensive immune function test that involves measuring adenosine triphosphate produced by the cluster of differentiation 4+ T lymphocytes in peripheral blood. The aim of this study was to analyze the time trends of IK values and assess the relationship between IK values and infections in lung transplants. We prospectively collected 178 blood samples from 22 deceased-donor lung transplant (DDLT) recipients and 17 living-donor lobar lung transplant (LDLLT) recipients. A surveillance IK assay was performed postoperatively, then after 1 week and 1, 3, 6, and 12 months. Time trends of IK values in stable recipients peaked 1 week after DDLT (477 ± 247 ATP ng/ml), and 1 month after LDLLT (433 ± 134 ng/ml), followed by a gradual decline over 1 year. The mean IK values in infections were significantly lower than those in the stable state (119 vs 312 ATP ng/ml, p = 0.0002). IK values increased sharply after lung transplantation and then decreased gradually over time in the first year, suggesting a natural history of immune function. IK values were also significantly reduced during infections. These results may provide new insights into the utility of immune monitoring after lung transplantation.
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Pierson, Duane; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Sams, Clarence
2010-01-01
The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. To date, 18 short duration (now completed) and 8 long-duration crewmembers have completed the study. The long-duration phase of this study is ongoing. For this presentation, the final data set for the short duration subjects will be discussed.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-09-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.
Shin, Kwang-Soon
2017-06-01
To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at 100 μg/mL than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.
Galipeau, Jacques; Krampera, Mauro; Barrett, John; Dazzi, Francesco; Deans, Robert J; DeBruijn, Joost; Dominici, Massimo; Fibbe, Willem E; Gee, Adrian P; Gimble, Jeffery M; Hematti, Peiman; Koh, Mickey B C; LeBlanc, Katarina; Martin, Ivan; McNiece, Ian K; Mendicino, Michael; Oh, Steve; Ortiz, Luis; Phinney, Donald G; Planat, Valerie; Shi, Yufang; Stroncek, David F; Viswanathan, Sowmya; Weiss, Daniel J; Sensebe, Luc
2016-02-01
Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Nuclear processes associated with plant immunity and pathogen susceptibility
Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja
2015-01-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755
Nuclear processes associated with plant immunity and pathogen susceptibility.
Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar
2015-07-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.
The effect of hydration state and energy balance on innate immunity of a desert reptile.
Moeller, Karla T; Butler, Michael W; Denardo, Dale F
2013-05-04
Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Using agglutination and lysis assays as measures of an organism's plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species.
The effect of hydration state and energy balance on innate immunity of a desert reptile
2013-01-01
Introduction Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Results Using agglutination and lysis assays as measures of an organism’s plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Conclusions Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species. PMID:23642164
Immunotoxic effects of environmental pollutants in marine mammals.
Desforges, Jean-Pierre W; Sonne, Christian; Levin, Milton; Siebert, Ursula; De Guise, Sylvain; Dietz, Rune
2016-01-01
Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of immune function in marine mammals exposed to environmental contaminants. Exposure to immunotoxic contaminants may have significant population level consequences as a contributing factor to increasing anthropogenic stress in wildlife and infectious disease outbreaks.
Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine
2015-08-01
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N
2016-12-01
Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.
The role of dehydroepiandrosterone on functional innate immune responses to acute stress.
Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P
2017-12-01
The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.
Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses.
Bråve, Andreas; Nyström, Sanna; Roos, Anna-Karin; Applequist, Steven E
2011-03-01
Plasmid DNA vaccination using skin electroporation (EP) is a promising method able to elicit robust humoral and CD8(+) T-cell immune responses while limiting invasiveness of delivery. However, there is still only limited data available on the induction of CD4(+) T-cell immunity using this method. Here, we compare the ability of homologous prime/boost DNA vaccinations by skin EP and intramuscular (i.m.) injection to elicit immune responses by cytokine enzyme-linked immunosorbent spot (ELISPOT) assay, as well as study the complexity of CD4(+) T-cell responses to the human immunodeficiency virus antigen Gag, using multiparamater flow cytometry. We find that DNA vaccinations by skin EP and i.m. injection are capable of eliciting both single- and poly-functional vaccine-specific CD4(+) T cells. However, although DNA delivered by skin EP was administered at a five-fold lower dose it elicited significant increases in the magnitude of multiple-cytokine producers compared with i.m. immunization suggesting that the skin EP could provide greater poly-functional T-cell help, a feature associated with successful immune defense against infectious agents.
Maricic, Natalie; Dawid, Suzanne
2014-09-30
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.
Yong, Michelle K; Cameron, Paul U; Spelman, Tim; Elliott, Julian H; Fairley, Christopher K; Boyle, Jeffrey; Miyamasu, Misato; Lewin, Sharon R
2016-01-01
HIV infection is characterised by persistent immune dysfunction of both the adaptive and innate immune responses. The aim of this study was to evaluate these responses using a novel high throughput assay in healthy controls and HIV-infected individuals prior to and following anti-retroviral treatment (ART). Cross-sectional study. Whole blood was assessed using the QuantiFERON Monitor® (QFM) assay containing adaptive and innate immunostimulants. Interferon (IFN)-γ levels (IU/mL) were measured by enzyme-linked immunosorbent assay (ELISA). We recruited HIV-infected participants (n = 20 off ART and viremic; n = 59 on suppressive ART) and HIV-uninfected controls (n = 229). Median IFN-γ production was significantly higher in HIV-infected participants compared to controls (IFN-γ 512 vs 223 IU/ml, p<0.0001), but within the HIV-infected participants there was no difference between those on or off ART (median IFN-γ 512 vs 593 IU/ml p = 0.94). Amongst the HIV-infected participants, IFN-γ production was higher in individuals with CD4 count>350 compared to <350 cells/μL (IFN-γ IU/ml 561 vs 259 p = 0.02) and in males compared to females (IFN-γ 542 vs 77 IU/ml p = 0.04). There were no associations between IFN-γ production and age, plasma HIV RNA, nadir CD4 count or duration of HIV infection. Using a multivariable analysis, neither CD4 nor sex were independently predictive of IFN-γ production. Using a high throughput assay which assesses both adaptive and innate immune function, we showed elevated IFN-γ production in HIV-infected patients both on and off ART. Further research is warranted to determine if changes in QuantiFERON Monitor® are associated with clinical outcomes.
Comstedt, Pär; Schüler, Wolfgang; Meinke, Andreas; Lundberg, Urban
2017-01-01
We have previously shown that the Outer surface protein A (OspA) based Lyme borreliosis vaccine VLA15 induces protective immunity in mice. Herein, we report the induction of protective immunity by VLA15 with mouse models using ticks infected with B. burgdorferi (OspA serotype 1), B. afzelii (OspA serotype 2) and B. bavariensis (OspA serotype 4) or with in vitro grown B. garinii (OspA serotype 5 and 6) for challenge. For B. garinii (OspA serotype 3), we have developed a growth inhibition assay using chicken complement and functional antibodies targeting B. garinii (OspA serotype 3) could be demonstrated after immunization with VLA15. Furthermore, following three priming immunizations, a booster dose was administered five months later and the induction of immunological memory could be confirmed. Thus, the antibody titers after the booster dose were increased considerably compared to those after primary immunization. In addition, the half-lives of anti-OspA serotype specific antibodies after administration of the booster immunization were longer than after primary immunization. Taken together, we could show that VLA15 induced protection in mice against challenge with four different clinically relevant Borrelia species (B. burgdorferi, B. afzelii, B. garinii and B. bavariensis) expressing five of the six OspA serotypes included in the vaccine. The protection data is supported by functional assays showing efficacy against spirochetes expressing any of the six OspA serotypes (1 to 6). To our knowledge, this is the first time a Lyme borreliosis vaccine has been able to demonstrate such broad protection in preclinical studies. These new data provide further promise for the clinical development of VLA15 and supports our efforts to provide a new Lyme borreliosis vaccine available for global use.
A simple method for determining polymeric IgA-containing immune complexes.
Sancho, J; Egido, J; González, E
1983-06-10
A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.
Effects of Fenbendazole on Routine Immune Response Parameters of BALB/c Mice
Cray, Carolyn; Villar, David; Zaias, Julia; Altman, Norman H
2008-01-01
Fenbendazole (FBZ) is an anthelmintic drug widely used to treat and prevent pinworm outbreaks in laboratory rodents. Although data in nonrodent species indicate possible effects of fenbendazole on the bone marrow and lymphocyte proliferation and function, little has been reported regarding possible effects on the rodent immune system. The purpose of the current study was to determine the effects of a therapeutic regimen of FBZ on immune parameters in BALB/c mice. Both 9-wk on–off and 5-wk continuous medicated feed protocols were assessed. No significant differences between normal and FBZ diet treated mice were observed in the following parameters: complete blood count, blood chemistry, quantitation of major T and B cell markers in spleen, quantitation of T cell markers in the thymus, spleen cell proliferation to T and B cell mitogens, bone marrow colony-forming cell assays, skin graft rejection, and primary and secondary humoral immune responses. These data indicate that FBZ treatment does not affect many standard broad measures of immune function. PMID:19049250
Effects of fenbendazole on routine immune response parameters of BALB/c mice.
Cray, Carolyn; Villar, David; Zaias, Julia; Altman, Norman H
2008-11-01
Fenbendazole (FBZ) is an anthelmintic drug widely used to treat and prevent pinworm outbreaks in laboratory rodents. Although data in nonrodent species indicate possible effects of fenbendazole on the bone marrow and lymphocyte proliferation and function, little has been reported regarding possible effects on the rodent immune system. The purpose of the current study was to determine the effects of a therapeutic regimen of FBZ on immune parameters in BALB/c mice. Both 9-wk on-off and 5-wk continuous medicated feed protocols were assessed. No significant differences between normal and FBZ diet treated mice were observed in the following parameters: complete blood count, blood chemistry, quantitation of major T and B cell markers in spleen, quantitation of T cell markers in the thymus, spleen cell proliferation to T and B cell mitogens, bone marrow colony-forming cell assays, skin graft rejection, and primary and secondary humoral immune responses. These data indicate that FBZ treatment does not affect many standard broad measures of immune function.
Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines.
Cockburn, Ian
2013-01-01
The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.
Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement.
Strewe, C; Muckenthaler, F; Feuerecker, M; Yi, B; Rykova, M; Kaufmann, I; Nichiporuk, I; Vassilieva, G; Hörl, M; Matzel, S; Schelling, G; Thiel, M; Morukov, B; Choukèr, A
2015-05-01
The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ~500 m(3) mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research. Copyright © 2015 the American Physiological Society.
Maruki-Uchida, Hiroko; Sai, Masahiko; Sekimizu, Kazuhisa
2017-11-22
We evaluated the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay. Sake cake, a raw material used to make amazake, had high innate immunity-stimulating activity, whereas rice malt, another raw material used to make amazake, did not, even after fermentation. These results suggest that the silkworm muscle contraction assay is a useful tool to screen foods with high innate immune-stimulating activity and that amazake made from sake cake has immunomodulatory potential.
Wieten, Rosanne W; Jonker, Emile F F; Pieren, Daan K J; Hodiamont, Caspar J; van Thiel, Pieter P A M; van Gorp, Eric C M; de Visser, Adriëtte W; Grobusch, Martin P; Visser, Leo G; Goorhuis, Abraham
2016-03-04
The 17D-yellow fever (YF) vaccination is considered contraindicated in immune-compromised patients; however, accidental vaccination occurs. In this population, measuring the immune response is useful in clinical practice. In this study we compare two antibody tests (the Immune Fluorescence Assay and the Plaque Reduction Neutralization Test) in a group of Dutch immune-compromised travellers with a median of 33 days (IQR [28-49]) after primary YF vaccination. We collected samples of 15 immune-compromised vaccinees vaccinated with the 17D yellow fever vaccine between 2004 and 2012. All samples measured in the plaque reduction neutralization test yielded positive results (>80% virus neutralization with a 1:10 serum dilution). Immune Fluorescence Assay sensitivity was 28% (95% CI [0.12-0.49]). No adverse events were reported. All immune-compromised patients mounted an adequate response with protective levels of virus neutralizing antibodies to the 17-D YF vaccine. No adverse effects were reported. Compared to the plaque reduction neutralization test, the sensitivity of the Immune Fluorescence Assay test was low. Further research is needed to ascertain that 17D vaccination in immune-compromised patients is safe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V
2018-06-19
To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).
Short, Kirsty R.; Grant, Emma J.; Vissers, Marloes; Reading, Patrick C.; Diavatopoulos, Dimitri A.; Kedzierska, Katherine
2013-01-01
To understand the interactions between innate and adaptive immunity, and specifically how virally infected macrophages impact T cell function, novel assays examining the ability of macrophages to present antigen to CD8+ T cells are needed. In the present study, we have developed a robust in vitro assay to measure how antigen presentation by human monocyte-derived macrophages (MDMs) affects the functional capacity of autologous CD8+ T cells. The assay is based on the polyfunctional characteristics of antigen-specific CD8+ T cells, and is thus called a Mac-CD8 Polyfunctionality Assay. Following purification of monocytes and their maturation to MDMs, MDMs were pulsed with an antigenic peptide to be presented to CD8+ T cells. Peptide-pulsed MDMs were then incubated with antigen-specific CD8+ T cells in order to assess the efficacy of antigen presentation to T cells. CD8+ T cell polyfunctionality was assessed by staining with mAbs to IFN-γ, TNF-α, and CD107a in a multi-color intracellular cytokine staining assay. To highlight the utility of the Mac-CD8 Polyfunctionality Assay, we assessed the effects of influenza infection on the ability of human macrophages to present antigen to CD8+ T cells. We found that influenza infection of human MDMs can alter the effector efficacy of MDMs to activate more CD8+ T cells with cytotoxic capacity. This has important implications for understanding how the virus-infected macrophages affect adaptive immunity at the site of infection. PMID:24312096
Tung, K S; Woodroffe, A J; Ahlin, T D; Williams, R C; Wilson, C B
1978-01-01
The C1q solid phase and Raji cell radioimmune assays were used to determine the frequency of detectable circulating immune complexes in patients with glomerulonephritis. In this study, 46% of 56 patients with glomerulonephritis had evidence of circulating immune complexes. More important, circulating immune complexes were associated with some, but not other, types of glomerulonephritis. Thus, immune complexes were detected in lupus glomerulonephritis (9/9 patients), rapidly progressive glomerulonephritis (5/6 patients), and acute nephritis (5/6 patients), but not in IgA-IgG glomerulonephritis (0/7 patients), or membranous glomerulonephritis (0/8 patients). The Raji cell radioimmune assay and the C1q solid phase radioimmune assay showed concordance of 79% in the detection of circulating immune complexes. Serial determinations, in general, showed either persistence of a negative or positive result of conversion of positive to negative. PMID:659639
Chen, X; Zhang, J; Feng, X; Chen, X; Yin, S; Wen, H; Zheng, S
2014-01-01
The patients with false immune diagnosis of hydatid disease were investigated for the humoural immune response to analyse the possible reasons and mechanism leading to false immune diagnosis. Two hundred and thirty-nine patients with nature-unknown cysts and 30 healthy controls were detected by immunological assays (four hydatid antigen-based immunogold filtration assay and enzyme-linked immune absorbent assay) and ultrasound. Sensitivity of and specificity of immunological assay and ultrasound were calculated, respectively. The serological diagnosis was compared with surgical pathology to screen the patients with false immune diagnosis for the immunoglobulin measurement and pathological analysis. The history and cyst characteristics were also reviewed. The results indicate the immunoglobulin has little influence on false immunodiagnosis. The false-negative immunodiagnosis was caused by the cysts' inactive status while the false positive caused by previous rupture, antigen cross-reaction. The clinical diagnosis of cystic echinococcosis requires a combination of immunodiagnosis and ultrasonography, which is the necessary complementary confirmation. PMID:24372157
Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo.
Potter, Timothy M; Neun, Barry W; Dobrovolskaia, Marina A
2018-01-01
Adverse drug effects on the immune system function represent a significant concern in the pharmaceutical industry, because 10-20% of the drug withdrawal from the market is accounted to immunotoxicity. Immunosuppression is one such adverse effect. The traditional immune function test used to estimate materials' immunosuppression is a T-cell-dependent antibody response (TDAR). This method involves a 28 day in vivo study evaluating the animal's antibody titer to a known antigen (KLH) with and without challenge. Due to the limited quantities of novel drug candidates, an in vitro method called human leukocyte activation (HuLa) assay has been developed to substitute the traditional TDAR assay during early preclinical development. In this test, leukocytes isolated from healthy donors vaccinated with the current year's flu vaccine are incubated with Fluzone in the presence or absence of a test material. The antigen-specific leukocyte proliferation is then measured by ELISA analyzing incorporation of BrdU into DNA of the proliferating cells. Here, we describe the experimental procedures for investigating immunosuppressive properties of nanoparticles by both TDAR and HuLa assays, discuss the in vitro-in vivo correlation of these methods, and show a case study using the iron oxide nanoparticle formulation, Feraheme.
Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A
2006-09-01
Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.
NASA Astrophysics Data System (ADS)
Brzicová, Táňa; Lochman, Ivo; Danihelka, Pavel; Lochmanová, Alexandra; Lach, Karel; Mička, Vladimír
2013-04-01
The aim of this pilot study was to evaluate perspectives of the assessment of nonspecific biological effects of airborne particulate matter including nanoparticles using appropriate immunological assays. We have selected various in vitro immunological assays to establish an array allowing us to monitor activation of the cell-mediated and humoral response of both the innate and adaptive immunity. To assess comprehensive interactions and effects, the assays were performed in whole blood cultures from healthy volunteers and we used an original airborne particle mixture from high pollution period in Ostrava region representing areas with one of the most polluted air in Europe. Even if certain effects were observed, the results of the immunological assays did not prove significant effects of airborne particles on immune cells' functions of healthy persons. However, obtained data do not exclude health risks of long-term exposure to airborne particles, especially in case of individuals with genetic predisposition to certain diseases or already existing disease. This study emphasizes the in vitro assessment of complex effects of airborne particles in conditions similar to actual ones in an organism exposed to particle mixture present in the polluted air.
Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane; Sams, Clarence; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather
2010-01-01
The objective of this NASA Short-Duration Bioastronautics Investigation (SDBI) was to assess spaceflight-associated immune dysregulation. Many previous studies have investigated this phenomenon post-flight, and found altered distribution and function of the peripheral leukocyte populations. Alterations in cytokine production profiles have also been reported. Unfortunately, post-flight data may be altered by the stress associated with high-G re-entry and readaptation to unit gravity following deconditioning. Therefore, the current study collected blood and saliva samples from crewmembers immediately before landing, and returned those samples to Earth for terrestrial analysis. Assays include peripheral comprehensive immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. A total of 18 short duration crewmembers completed the study and the final data will be presented.
Methods to study Drosophila immunity.
Neyen, Claudine; Bretscher, Andrew J; Binggeli, Olivier; Lemaitre, Bruno
2014-06-15
Innate immune mechanisms are well conserved throughout evolution, and many theoretical concepts, molecular pathways and gene networks are applicable to invertebrate model organisms as much as vertebrate ones. Drosophila immunity research benefits from an easily manipulated genome, a fantastic international resource of transgenic tools and over a quarter century of accumulated techniques and approaches to study innate immunity. Here we present a short collection of ways to challenge the fruit fly immune system with various pathogens and parasites, as well as read-outs to assess its functions, including cellular and humoral immune responses. Our review covers techniques for assessing the kinetics and efficiency of immune responses quantitatively and qualitatively, such as survival analysis, bacterial persistence, antimicrobial peptide gene expression, phagocytosis and melanisation assays. Finally, we offer a toolkit of Drosophila strains available to the research community for current and future research. Copyright © 2014 Elsevier Inc. All rights reserved.
Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N
2014-01-01
Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations. Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303
Methods to Evaluate Cytotoxicity and Immunosuppression of Combustible Tobacco Product Preparations
Arimilli, Subhashini; Damratoski, Brad E.; G.L., Prasad
2015-01-01
Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest. PMID:25650834
Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations.
Arimilli, Subhashini; Damratoski, Brad E; G L, Prasad
2015-01-10
Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.
Banas, Bernhard; Böger, Carsten A; Lückhoff, Gerhard; Krüger, Bernd; Barabas, Sascha; Batzilla, Julia; Schemmerer, Mathias; Köstler, Josef; Bendfeldt, Hanna; Rascle, Anne; Wagner, Ralf; Deml, Ludwig; Leicht, Joachim; Krämer, Bernhard K
2017-03-07
Uncontrolled cytomegalovirus (CMV) replication in immunocompromised solid-organ transplant recipients is a clinically relevant issue and an indication of impaired CMV-specific cell-mediated immunity (CMI). Primary aim of this study was to assess the suitability of the immune monitoring tool T-Track® CMV to determine CMV-reactive CMI in a cohort of hemodialysis patients representative of patients eligible for renal transplantation. Positive and negative agreement of T-Track® CMV with CMV serology was examined in 124 hemodialysis patients, of whom 67 (54%) revealed a positive CMV serostatus. Secondary aim of the study was to evaluate T-Track® CMV performance against two unrelated CMV-specific CMI monitoring assays, QuantiFERON®-CMV and a cocktail of six class I iTAg™ MHC Tetramers. Positive T-Track® CMV results were obtained in 90% (60/67) of CMV-seropositive hemodialysis patients. In comparison, 73% (45/62) and 77% (40/52) positive agreement with CMV serology was achieved using QuantiFERON®-CMV and iTAg™ MHC Tetramer. Positive T-Track® CMV responses in CMV-seropositive patients were dominated by pp65-reactive cells (58/67 [87%]), while IE-1-responsive cells contributed to an improved (87% to 90%) positive agreement of T-Track® CMV with CMV serology. Interestingly, T-Track® CMV, QuantiFERON®-CMV and iTAg™ MHC Tetramers showed 79% (45/57), 87% (48/55) and 93% (42/45) negative agreement with serology, respectively, and a strong inter-assay variability. Notably, T-Track® CMV was able to detect IE-1-reactive cells in blood samples of patients with a negative CMV serology, suggesting either a previous exposure to CMV that yielded a cellular but no humoral immune response, or TCR cross-reactivity with foreign antigens, both suggesting a possible protective immunity against CMV in these patients. T-Track® CMV is a highly sensitive assay, enabling the functional assessment of CMV-responsive cells in hemodialysis patients prior to renal transplantation. T-Track® CMV thus represents a valuable immune monitoring tool to identify candidate transplant recipients potentially at increased risk for CMV-related clinical complications.
Koh, Yi T.; Gray, Andrew; Higgins, Sean A.; Hubby, Bolyn; Kast, W. Martin
2009-01-01
Background Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. Methods Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. Results Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. Conclusion Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization. PMID:19143030
Wang, Yong-Tang; Lu, Xiu-Min; Zhu, Feng; Zhao, Min
2014-01-01
As a new type of biomaterials, gold nanoparticles (GNPs), also known as colloidal gold (CG), have a wide biomedical application. In this study, GNPs with diameters of 10, 15, and 25 nm were prepared by sodium citrate reduction, and detected by common optical property, ultraviolet-visible (UV-vis) absorbance spectroscopy, and scanning electron microscope (SEM), separately for identification of the particle size and uniformity. In order to observe the effects of GNPs on immune function, adult Sprague Dawley (SD) rats were immunized with the above three GNPs, each having three doses of 0.2, 0.4, and 0.6 ml, and rats without immunization served as negative control. After immunization, proliferation activity of blood and spleen lymphocyte and the levels of interleukin-2 (IL-2) in serum and supernatant of spleen lymphocyte were detected by thiazoleblue (MTT) assay and enzyme linked immunosorbent assay (ELISA), respectively. The results indicated that different size of GNPs was prepared, and the uniformity increased with the decrease of the size of particles. Different diameters and doses of GNPs have different effects on proliferation of blood and spleen lymphocyte, as well as the levels of IL-2 in serum and supernatant of spleen lymphocyte. The 15 nm CG in 0.6 ml dose group could most significantly promote blood and spleen lymphocyte proliferation, and enhance IL-2 levels in serum and supernatant of spleen lymphocyte. Taken together, the findings revealed that application of CG prepared by sodium citrate reduction could enhance specific and nonspecific immune responses, and the 0.6 ml dose of 15 nm CG might be the best immunizing dose in rats. This fact may serve as a further evidence for using CG as a novel immunoadjuvant in the future.
Zechmann, Bernd; Hillmer, Morten; Doehlemann, Gunther
2012-01-01
The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H2O2 strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction. PMID:22589719
Nehete, Pramod N; Nehete, Bharti P; Chitta, Sriram; Williams, Lawrence E; Abee, Christian R
2017-02-01
Owl monkeys (Aotus nancymaae) are New World NHP that serve an important role in vaccine development and as a model for human disease conditions such as malaria. Despite the past contributions of this animal model, limited information is available about the phenotype and functional properties of peripheral blood lymphocytes in reference to sex and age. Using a panel of human antibodies and a set of standardized human immune assays, we identified and characterized various peripheral blood lymphocyte subsets, evaluated the immune functions of T cells, and analyzed cytokines relative to sex and age in healthy owl monkeys. We noted age- and sex-dependent changes in CD28+ (an essential T cell costimulatory molecule) and CD95+ (an apoptotic surface marker) T cells and various levels of cytokines in the plasma. In immune assays of freshly isolated peripheral blood mononuclear cells, IFNγ and perforin responses were significantly higher in female than in male monkeys and in young adults than in juvenile and geriatric groups, despite similar lymphocyte (particularly T cell) populations in these groups. Our current findings may be useful in exploring Aotus monkeys as a model system for the study of aging, susceptibility to infectious diseases, and age-associated differences in vaccine efficacy, and other challenges particular to pediatric and geriatric patients.
Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds.
Irene Tieleman, B; Williams, Joseph B; Ricklefs, Robert E; Klasing, Kirk C
2005-08-22
We studied the relationship between one component of immune function and basal metabolic rate (BMR), an indicator of the 'pace-of-life syndrome', among 12 tropical bird species and among individuals of the tropical house wren (Troglodytes aedon), to gain insights into functional connections between life history and physiology. To assess constitutive innate immunity we introduced a new technique in the field of ecological and evolutionary immunology that quantifies the bactericidal activity of whole blood. This in vitro assay utilises a single blood sample to provide a functional, integrated measure of constitutive innate immunity. We found that the bactericidal activity of whole blood varied considerably among species and among individuals within a species. This variation was not correlated with body mass or whole-organism BMR. However, among species, bacteria killing activity was negatively correlated with mass-adjusted BMR, suggesting that species with a slower pace-of-life have evolved a more robust constitutive innate immune capability. Among individuals of a single species, the house wren, bacteria killing activity was positively correlated with mass-adjusted BMR, pointing to physiological differences in individual quality on which natural selection potentially could act.
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.
2016-01-01
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G
2016-01-05
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
Hu, Xiaofang; Cao, Yan; Meng, Yiming; Hou, Mingxiao
2015-01-01
IL-2 is a pleiotropic cytokine produced by T cell after antigen activation of T cell and it is so called T cell growth factor. A large number of documents suggest that Il-2 plays pivotal roles in the immune response and now Il-2 is an approved drug being used for various kinds of diseases such as cancer and dermatitis. (1) The aim of present exploration was to look at effect of IL-2 on structural, phenotypic and functional maturation of murine BMDCs. The structural and phenotypic maturation of BMDCs under influence of IL-2 were evaluated by light microscope and flow cytometry (FCM). The functional maturation of BMDCs was confirmed by cytochemistry assay, FITC-dextran, acid phosphatase (ACP) activity, bio-assay and enzyme linked immunosorbent assay (ELISA).We elucidated that IL-2 up-regulated the expression of key surface markers such as: CD80, CD83, CD86, CD40 and MHC II molecules on BMDCs, down-regulated phagocytosis activity, induced more production of IL-12 and TNF-α secreted by BMDCs. Therefore it can be concluded that IL-2 effectively enhance the maturation of BMDCs. Our results provide direct evidence to support IL-2 would be used as a potent adjuvant in preparation of DC-based vaccines, as well as an immune remedy for cancer situation.
Hwang, Pai-An; Phan, Nam Nhut; Lu, Wen-Jung; Ngoc Hieu, Bui Thi; Lin, Yen-Chang
2016-01-01
The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF) and high-stability fucoxanthin (HS-Fucox) in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. We used various methods such as transepithelial resistance (TER) assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells.
Experimental evolution reveals trade-offs between mating and immunity.
McNamara, Kathryn B; Wedell, Nina; Simmons, Leigh W
2013-08-23
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations.
Experimental evolution reveals trade-offs between mating and immunity
McNamara, Kathryn B.; Wedell, Nina; Simmons, Leigh W.
2013-01-01
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations. PMID:23720521
Predictors of responses to immune checkpoint blockade in advanced melanoma.
Jacquelot, N; Roberti, M P; Enot, D P; Rusakiewicz, S; Ternès, N; Jegou, S; Woods, D M; Sodré, A L; Hansen, M; Meirow, Y; Sade-Feldman, M; Burra, A; Kwek, S S; Flament, C; Messaoudene, M; Duong, C P M; Chen, L; Kwon, B S; Anderson, A C; Kuchroo, V K; Weide, B; Aubin, F; Borg, C; Dalle, S; Beatrix, O; Ayyoub, M; Balme, B; Tomasic, G; Di Giacomo, A M; Maio, M; Schadendorf, D; Melero, I; Dréno, B; Khammari, A; Dummer, R; Levesque, M; Koguchi, Y; Fong, L; Lotem, M; Baniyash, M; Schmidt, H; Svane, I M; Kroemer, G; Marabelle, A; Michiels, S; Cavalcanti, A; Smyth, M J; Weber, J S; Eggermont, A M; Zitvogel, L
2017-09-19
Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs. Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we retrospectively observed, in eight cohorts enrolling 190 MMel patients treated with ipilimumab, that PD-L1 expression on peripheral T cells was prognostic on overall and progression-free survival. Moreover, detectable CD137 on circulating CD8 + T cells was associated with the disease-free status of resected stage III MMel patients after adjuvant ipilimumab + nivolumab (but not nivolumab alone). These biomarkers should be validated in prospective trials in MMel.The clinical management of metastatic melanoma requires predictors of the response to checkpoint blockade. Here, the authors use immunological assays to identify potential prognostic/predictive biomarkers in circulating blood cells and in tumor-infiltrating lymphocytes from patients with resected stage III melanoma.
Radiation induces an antitumour immune response to mouse melanoma.
Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling
2009-12-01
Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.
In vitro immunomodulatory effects of herbal products.
Wilasrusmee, Chumpon; Siddiqui, Josephine; Bruch, David; Wilasrusmee, Skuntala; Kittur, Smita; Kittur, Dilip S
2002-10-01
Immunosuppressive drugs have been developed from natural products such as soil and fungi, which are also the sources of some commonly used herbal products. However, the effect of herbal products on immune response has not been investigated. Because these products can affect the host immune system they can induce either rejection or tolerance after a transplant procedure. To investigate the effects of ten commonly used herbal products on transplant-related immune function we performed in vitro lymphocyte proliferation tests using phytohemagglutinin, mixed lymphocyte culture (MLC) assay, and interleukin (IL)-2 and IL-10 production from MLC. Dong quai, ginseng, and milk thistle had nonspecific immunostimulatory effects on lymphocyte proliferation, whereas ginger and green tea had immunosuppressive effects. Dong quai and milk thistle increased alloresponsiveness in MLC, whereas ginger and tea decreased these responses. The immunostimulatory effects of dong quai and milk thistle were consistently seen in both cell-mediated immune response and nonspecific lymphoproliferation, whereas that of ginseng was not. The immunosuppressive effect of green tea and ginger were mediated through a decrease in IL-2 production, but the immunostimulatory effects of dong quai and milk thistle were not. We conclude that green tea, dong quai, ginseng, milk thistle, and ginger have effects on in vitro immune assays that may be relevant in transplantation in humans.
Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.
2013-01-01
Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.
Immunotoxicological effects of JP-8 jet fuel exposure.
Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M
1997-01-01
Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.
Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.
Fröhlich, Eleonore
2015-01-01
Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs.
Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo
Fröhlich, Eleonore
2015-01-01
Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence
2007-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.
Han, Nannan; Zhang, Zun; Jv, Houyu; Hu, Jingzhou; Ruan, Min; Zhang, Chenping
2018-06-05
The aim of the present study was to investigate whether tumor-derived supernatants down-regulate the immune function of plasmacytoid dendritic cells (pDCs) in oral cancer and the potential molecular mechanisms of this effect. Immunohistochemistry (IHC) and flow cytometry were used to detect tumor-infiltrating and peripheral blood pDCs. MTS and flow cytometry were employed to evaluate the immune response of CD4 + T cells. Real-time PCR and ELISA assays were used to identify TLR-7 and TLR-9 expression, IFN-α production and tumor-secreted soluble cytokines. The proportion of pDCs (0.121%±0.043%) was significantly higher in Oral squamous cell carcinoma (OSCC) samples than in normal tissue (0.023%±0.016%) (P = 0.021). TLR9 mRNA was significantly lower in tumor-infiltrating pDCs and positively correlated to low IFN-α production (r = 0.956; P<0.01). The supernatant of oral cancer cells negatively regulated TLR9 mRNA expression and the subsequent IFN-α production of pDCs, which inhibited the immune response of CD4 + T cells. The neutralizing antibodies blocking assay showed that the specific inhibitory effect of pDC functionality was associated with the soluble fraction of the oral cancer environment, which is mainly mediated by IL-10 and TGF-β cooperation. Tumor-derived supernatants may impair the function of tumor-infiltrating pDCs, which subsequently decreases the immune response of CD4 + T cells in human oral cancer through TGF-β- and IL-10- dependent mechanisms. Careful manipulation of these impaired pDCs may help develop an important alternative immunotherapy for the treatment of oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas
Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.
2000-01-01
Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a detectable immune response in green turtles.
Rapid Assay of Cellular Immunity in Q Fever.
1995-10-01
Integrated Diagnostics for activity by re-incubation with L929 cells and no infectious material was detected. This antigen was tested for the ability to...UNCLASSIFIED •%E L E• M1 lt*’E••l DEC 1 119954 F A CONTRACT NUMBER: DAND17-95-C-5057 TITLE: Rapid Assay of Cellular Immunity in Q Fever PRINCIPAL INVESTIGATOR...SUBTITLE 5. FUNDING NUMBERS Rapid Assay of Cellular Immunity in Q Fever DAMDI7-95-C-5057 6. AUTHOR(S) Marjorie Wier, Ph.D. 7. PERFORMING ORGANIZATION
Ntumngia, Francis B.; Schloegel, Jesse; Barnes, Samantha J.; McHenry, Amy M.; Singh, Sanjay; King, Christopher L.
2012-01-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains. PMID:22215740
Ntumngia, Francis B; Schloegel, Jesse; Barnes, Samantha J; McHenry, Amy M; Singh, Sanjay; King, Christopher L; Adams, John H
2012-03-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains.
Ye, Roy R; Peterson, Drew R; Seemann, Frauke; Kitamura, Shin-Ichi; Lee, J S; Lau, Terrance C K; Tsui, Stephen K W; Au, Doris W T
2017-12-01
Many anthropogenic pollutants in coastal marine environments can induce immune impairments in wild fish and reduce their survival fitness. There is a pressing need to establish sensitive and high throughput in vivo tools to systematically evaluate the immunosuppressive effects of contaminants in marine teleosts. This study reviewed a battery of in vivo immune function detection technologies established for different biological hierarchies at molecular (immune function pathways and genes by next generation sequencing (NGS)), cellular (leukocytes profiles by flow cytometry), tissues/organ system (whole adult histo-array), and organism (host resistance assays (HRAs)) levels, to assess the immune competence of marine medaka Oryzias melastigma. This approach enables a holistic assessment of fish immune competence under different chemical exposure or environmental scenarios. The data obtained will also be useful to unravel the underlying immunotoxic mechanisms. Intriguingly, NGS analysis of hepatic immune gene expression profiles (male > female) are in support of the bacterial HRA findings, in which infection-induced mortality was consistently higher in females than in males. As such, reproductive stages and gender-specific responses must be taken into consideration when assessing the risk of immunotoxicants in the aquatic environment. The distinct phenotypic sexual dimorphism and short generation time (3 months) of marine medaka offer additional advantages for sex-related immunotoxicological investigation.
Lattin, Christine R.; Waldron-Francis, K.; Romero, L. Michael
2013-01-01
Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin's response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli. PMID:23407837
Scotti, Melissa-Ann L; Carlton, Elizabeth D; Demas, Gregory E; Grippo, Angela J
2015-04-01
Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health. Copyright © 2015 Elsevier Inc. All rights reserved.
Jang, Mi Seon; Sahastrabuddhe, Sushant; Yun, Cheol-Heui; Han, Seung Hyun; Yang, Jae Seung
2016-08-01
Typhoid fever, mainly caused by Salmonella enterica serovar Typhi (S. Typhi), is a life-threatening disease, mostly in developing countries. Enzyme-linked immunosorbent assay (ELISA) is widely used to quantify antibodies against S. Typhi in serum but does not provide information about functional antibody titers. Although the serum bactericidal assay (SBA) using an agar plate is often used to measure functional antibody titers against various bacterial pathogens in clinical specimens, it has rarely been used for typhoid vaccines because it is time-consuming and labor-intensive. In the present study, we established an improved SBA against S. Typhi using a semi-automated colony-counting system with a square agar plate harboring 24 samples. The semi-automated SBA efficiently measured bactericidal titers of sera from individuals immunized with S. Typhi Vi polysaccharide vaccines. The assay specifically responded to S. Typhi Ty2 but not to other irrelevant enteric bacteria including Vibrio cholerae and Shigella flexneri. Baby rabbit complement was more appropriate source for the SBA against S. Typhi than complements from adult rabbit, guinea pig, and human. We also examined the correlation between SBA and ELISA for measuring antibody responses against S. Typhi using pre- and post-vaccination sera from 18 human volunteers. The SBA titer showed a good correlation with anti-Vi IgG quantity in the serum as determined by Spearman correlation coefficient of 0.737 (P < 0.001). Taken together, the semi-automated SBA might be efficient, accurate, sensitive, and specific enough to measure functional antibody titers against S. Typhi in sera from human subjects immunized with typhoid vaccines. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nie, Jianhui; Huang, Weijin; Wu, Xueling; Wang, Youchun
2014-09-01
The pseudoviron-based neutralization assay is accepted as the gold standard to evaluate the functional humoral immune response against HPV. The goal of this study was to develop and optimize a human papillomavirus (HPV) neutralization assay using HPV pseudovirons with Gaussia luciferase (Gluc) as the reporter gene. For this purpose, high-titers Gluc pseudovirons were generated by cotransfecting 293TT cells with HPV structural genes and Gluc expressing plasmids. Six types of neutralizing monoclonal antibodies, vaccines immunized serum samples and WHO international antibody standard were used to validate the new developed assay. The ideal circumstances of the assay were identified for cell counts (30,000/well for 96-well plate), pseudoviron inoculating size (100 times RLU above background) and incubation time (72 hr). The sensitivity of the Gluc assay was comparable to secreted alkaline phosphatase (SEAP) assay and higher than the green florescent protein (GFP) assay. The non-specific background for different types of sample was significantly different (rabbit sera > human sera > mouse sera, P < 0.01). The non-specific neutralization effects were not attributed to IgG antibody. The cutoff value for this assay was determined as 50% inhibition at a dilution of 1:40. Without requirements of sample dilution and different incubation times at different temperature before processing, the detection time was shortened from more than 90 min to less than 5 min for a 96-well plate compared with the SEAP-based assay. With the advantages of short detection time and easy-to-use procedure, the newly developed assay is more suitable for large sero-epidemiological studies or clinical trials and more amenable to automation. © 2014 Wiley Periodicals, Inc.
CMV-specific immune reconstitution following allogeneic stem cell transplantation
Blyth, Emily; Withers, Barbara; Clancy, Leighton; Gottlieb, David
2016-01-01
ABSTRACT Cytomegalovirus (CMV) remains a major contributor to morbidity and mortality following allogeneic haemopoietic stem cell transplant (HSCT) despite widespread use of viraemia monitoring and pre-emptive antiviral therapy. Uncontrolled viral replication occurs primarily in the first 100 d post transplant but this high risk period can extend to many months if immune recovery is delayed. The re-establishment of a functional population of cellular effectors is essential for control of virus replication and depends on recipient and donor serostatus, the stem cell source, degree of HLA matching and post-transplant factors such as CMV antigen exposure, presence of GVHD and ongoing use of immune suppression. A number of immune monitoring assays exist but have not yet become widely accessible for routine clinical use. Vaccination, adoptive transfer of CMV specific T cells and a number of graft engineering processes are being evaluated to enhance of CMV specific immune recovery post HSCT. PMID:27580355
IMMUNOTOXICITY OF 2-METHOXYETHANOL FOLLOWING ORAL ADMINISTRATION IN FISCHER 344 RATS
The immunotoxicity of the glycol ether 2-methoxyethanol (ME) as evaluated in adult Fischer 344 rats using a variety of in vitro and in vivo immune function assays. n the first phase of this study, male rats are dosed by oral gavage with ME in water, at dosages ranging from 50 to ...
Anderson, Stacey E.; Franko, Jennifer; Anderson, Katie L.; Munson, Albert E.; Lukomska, Ewa; Meade, B. Jean
2015-01-01
Dimethyl carbonate (DMC) is an industrial chemical, used as a paint and adhesive solvent, with the potential for significant increases in production. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of DMC following dermal exposure using a murine model. Following a 28-day exposure, DMC produced a significant decrease in thymus weight at concentrations of 75% and greater. No effects on body weight, hematological parameters (erythrocytes, leukocytes, and their differentials), or immune cell phenotyping (B-cells, T-cells, and T-cell sub-sets) were identified. The IgM antibody response to sheep red blood cell (SRBC) was significantly reduced in the spleen but not the serum. DMC was not identified to be an irritant and evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50–100%, did not identify increases in lymphocyte proliferation. These results demonstrate that dermal exposure to DMC induces immune suppression in a murine model and raise concern about potential human exposure and the need for occupational exposure regulations. PMID:22953780
On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.
Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem
2016-10-01
Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.
Green, Taryn L; Cruse, Julius M; Lewis, Robert E; Craft, Barbara S
2013-10-01
We aimed to examine the use of circulating tumor cells (CTCs) as an effective measure of treatment efficacy and immune system function in metastatic breast cancer patients. CTCs are believed to be indicators of residual disease and thus pose an increased risk of metastasis and poorer outcomes to those patients who are CTC-positive. We obtained peripheral blood samples from 45 patients previously diagnosed with metastatic disease originating in the breast. Using TLR agonists that bind TLR ligands and upregulate immune effects versus unstimulated cells, we calculated a percent specific lysis using chromium-51 assay to illustrate the functional abilities of patient natural killer (NK) cells. We found those with greater than 5 CTCs per 7.5 mL blood had significantly decreased responses by their immune cells when compared with those patients who had 5 CTCs or less. We furthermore found a correlation between disease progression and CTC-positive patients, indicating that those who have a positive test should be closely monitored by their clinician. CTCs represent an exciting new clinical opportunity that will ideally utilize their low invasiveness and quick turnaround time to best benefit clinical scenarios. © 2013.
High-resolution definition of humoral immune response correlates of effective immunity against HIV.
Alter, Galit; Dowell, Karen G; Brown, Eric P; Suscovich, Todd J; Mikhailova, Anastassia; Mahan, Alison E; Walker, Bruce D; Nimmerjahn, Falk; Bailey-Kellogg, Chris; Ackerman, Margaret E
2018-03-26
Defining correlates of immunity by comprehensively interrogating the extensive biological diversity in naturally or experimentally protected subjects may provide insights critical for guiding the development of effective vaccines and antibody-based therapies. We report advances in a humoral immunoprofiling approach and its application to elucidate hallmarks of effective HIV-1 viral control. Systematic serological analysis for a cohort of HIV-infected subjects with varying viral control was conducted using both a high-resolution, high-throughput biophysical antibody profiling approach, providing unbiased dissection of the humoral response, along with functional antibody assays, characterizing antibody-directed effector functions such as complement fixation and phagocytosis that are central to protective immunity. Profiles of subjects with varying viral control were computationally analyzed and modeled in order to deconvolute relationships among IgG Fab properties, Fc characteristics, and effector functions and to identify humoral correlates of potent antiviral antibody-directed effector activity and effective viral suppression. The resulting models reveal multifaceted and coordinated contributions of polyclonal antibodies to diverse antiviral responses, and suggest key biophysical features predictive of viral control. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
NASA Astrophysics Data System (ADS)
Wu, Qiuli; Zhao, Yunli; Fang, Jianpeng; Wang, Dayong
2014-05-01
Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00699b
Chu, Pinpin; Ma, Miaopeng; Shi, Juqing; Cai, Haiming; Huang, Chaoyuan; Li, Huazhou; Jiang, Zhenggu; Wang, Houguang; Wang, Weifang; Zhang, Shuiqing; Zhang, Linghua
2013-01-01
Background and Aims Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner. Methodology Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses. Results CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation. Conclusions Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination. PMID:23785433
Barabas, Sascha; Spindler, Theresa; Kiener, Richard; Tonar, Charlotte; Lugner, Tamara; Batzilla, Julia; Bendfeldt, Hanna; Rascle, Anne; Asbach, Benedikt; Wagner, Ralf; Deml, Ludwig
2017-03-07
In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 10 4 and 2 × 10 5 PBMC per well upon stimulation with T-activated® IE-1 (R 2 = 0.97) and pp65 (R 2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3 + CD4 + (Th), CD3 + CD8 + (CTL), CD3 - CD56 + (NK) and CD3 + CD56 + (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.
Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee
2017-09-01
Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.
2011-01-01
Fifty-nine adult male American kestrels (Falco sparverius) were assigned to one of three diet formulations including 0 (control), 0.6, and 3.9 μg/g (dry wt) methylmercury (MeHg). Kestrels received their diets daily for 13 weeks to assess the effects of dietary MeHg on immunocompetence. Immunotoxic endpoints included assessment of cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and primary and secondary antibody-mediated immune responses (IR) via the sheep red blood cell (SRBC) hemagglutination assay. Select hematology and histology parameters were evaluated to corroborate the results of functional assays and to assess immunosuppression of T and B cell-dependent components in spleen tissue. Kestrels in the 0.6 and 3.9 μg/g MeHg groups exhibited suppression of CMI, including lower PHA stimulation indexes (p = 0.019) and a 42 to 45% depletion of T cell-dependent splenic lymphoid tissue (p = 0.006). Kestrels in the 0.6 μg/g group exhibited suppression of the primary IR to SRBCs (p = 0.014). MeHg did not have a noticeable effect on the secondary IR (p = 0.166). Elevation of absolute heterophil counts (p p p = 0.003) was apparent in the 3.9 μg/g group at week 12. Heterophilia, or the excess of heterophils in peripheral blood above normal ranges, was apparent in seven of 17 (41%) kestrels in the 3.9 μg/g group and was indicative of an acute inflammatory response or physiological stress. This study revealed that adult kestrels were more sensitive to immunotoxic effects of MeHg at environmentally relevant dietary concentrations than they were to reproductive effects as previously reported.
Zanzonico, Pat; Koehne, Guenther; Gallardo, Humilidad F; Doubrovin, Mikhail; Doubrovina, Ekaterina; Finn, Ronald; Blasberg, Ronald G; Riviere, Isabelle; O'Reilly, Richard J; Sadelain, Michel; Larson, Steven M
2006-09-01
Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [(131)I]-2'-fluoro-2'-deoxy-1-beta-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular (131)I (even at tracer levels), the nucleus absorbed dose (D ( n )) and dose-dependent immune functionality were evaluated for NIT(+) T cells labeled ex vivo in [(131)I]FIAU-containing medium. Based on in vitro kinetic studies of [(131)I]FIAU uptake by NIT(+) T cells, D ( n ) was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [(131)I]FIAU-labeled cells was assayed against (51)Cr-labeled target cells [B-lymphoblastoid cells (BLCLs)] in a standard 4-h release assay. At median nuclear absorbed doses up to 830 cGy, a (51)Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies.
Cwach, Kevin T.; Sandbulte, Heather R.; Klonoski, Joshua M.; Huber, Victor C.
2011-01-01
Please cite this paper as: Cwach et al. (2011) Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2011.00283.x. Background Prior to detection of an antibody response toward influenza viruses using the hemagglutination inhibition assay (HAI), sera are routinely treated to inactivate innate inhibitors using both heat inactivation (56°C) and recombinant neuraminidase [receptor‐destroying enzyme (RDE)]. Objectives We revisited the contributions of innate serum inhibitors toward interference with influenza viruses in immune assays, using murine sera, with emphasis on the interactions with influenza A viruses of the H3N2 subtype. Methods We used individual serum treatments: 56°C alone, RDE alone, or RDE + 56°C, to treat sera prior to evaluation within HAI, microneutralization, and macrophage uptake assays. Results Our data demonstrate that inhibitors present within untreated murine sera interfere with the HAI assay in a manner that is different from that seen for the microneutralization assay. Specifically, the γ class inhibitor α2‐Macroglobulin (A2‐M) can inhibit H3N2 viruses within the HAI assay, but not in the microneutralization assay. Based on these findings, we used a macrophage uptake assay to demonstrate that these inhibitors can increase uptake by macrophages when the influenza viruses express an HA from a 1968 H3N2 virus isolate, but not a 1997 H3N2 isolate. Conclusions The practice of treating sera to inactivate innate inhibitors of influenza viruses prior to evaluation within immune assays has allowed us to effectively detect influenza virus‐specific antibodies for decades. However, this practice has yielded an under‐appreciation for the contribution of innate serum inhibitors toward host immune responses against these viruses, including contributions toward neutralization and macrophage uptake. PMID:21883963
ELISPOT Assays in 384-Well Format: Up to 30 Data Points with One Million Cells
Hanson, Jodi; Sundararaman, Srividya; Caspell, Richard; Karacsony, Edith; Karulin, Alexey Y.; Lehmann, Paul V.
2015-01-01
Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format. PMID:25643292
Local brain heavy ion irradiation induced Immunosuppression
NASA Astrophysics Data System (ADS)
Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong
Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.
A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses
Grenga, Italia; Donahue, Renee N; Lepone, Lauren M; Richards, Jacob; Schlom, Jeffrey
2016-01-01
Monoclonal antibodies (MAbs) that interfere with checkpoint molecules are being investigated for the treatment of infectious diseases and cancer, with the aim of enhancing the function of an impaired immune system. Avelumab (MSB0010718C) is a fully human IgG1 MAb targeting programmed death-ligand 1 (PD-L1), which differs from other checkpoint-blocking antibodies in its ability to mediate antibody-dependent cell-mediated cytotoxicity. These studies were conducted to define whether avelumab could enhance the detection of antigen-specific immune response in in vitro assays. Peripheral blood mononuclear cells from 17 healthy donors were stimulated in vitro, with and without avelumab, with peptide pools encoding for cytomegalovirus, Epstein–Barr virus, influenza and tetanus toxin or the negative peptide control encoding for human leukocyte antigen. These studies show for the first time that the addition of avelumab to an antigen-specific IVS assay (a) increased the frequency of activated antigen-specific CD8+ T lymphocytes, and did so to a greater extent than that seen with commercially available PD-L1-blocking antibodies, (b) reduced CD4+ T-cell proliferation and (c) induced a switch in the production of Th2 to Th1 cytokines. Moreover, there was an inverse correlation between the enhancement of CD8+ T-cell activation and reduction in CD4+ T-cell proliferation induced by avelumab. These findings provide the rationale for the use of avelumab anti-PD-L1 in in vitro assays to monitor patient immune responses to immunotherapies. PMID:27350882
A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses.
Grenga, Italia; Donahue, Renee N; Lepone, Lauren M; Richards, Jacob; Schlom, Jeffrey
2016-05-01
Monoclonal antibodies (MAbs) that interfere with checkpoint molecules are being investigated for the treatment of infectious diseases and cancer, with the aim of enhancing the function of an impaired immune system. Avelumab (MSB0010718C) is a fully human IgG1 MAb targeting programmed death-ligand 1 (PD-L1), which differs from other checkpoint-blocking antibodies in its ability to mediate antibody-dependent cell-mediated cytotoxicity. These studies were conducted to define whether avelumab could enhance the detection of antigen-specific immune response in in vitro assays. Peripheral blood mononuclear cells from 17 healthy donors were stimulated in vitro, with and without avelumab, with peptide pools encoding for cytomegalovirus, Epstein-Barr virus, influenza and tetanus toxin or the negative peptide control encoding for human leukocyte antigen. These studies show for the first time that the addition of avelumab to an antigen-specific IVS assay (a) increased the frequency of activated antigen-specific CD8(+) T lymphocytes, and did so to a greater extent than that seen with commercially available PD-L1-blocking antibodies, (b) reduced CD4(+) T-cell proliferation and (c) induced a switch in the production of Th2 to Th1 cytokines. Moreover, there was an inverse correlation between the enhancement of CD8(+) T-cell activation and reduction in CD4(+) T-cell proliferation induced by avelumab. These findings provide the rationale for the use of avelumab anti-PD-L1 in in vitro assays to monitor patient immune responses to immunotherapies.
Characterization of the Inflammatory Response in Dystrophic Muscle Using Flow Cytometry.
Kastenschmidt, Jenna M; Avetyan, Ileen; Villalta, S A
2018-01-01
Although mutations of the dystrophin gene are the causative defect in Duchenne muscular dystrophy (DMD) patients, secondary disease processes such as inflammation contribute greatly to the pathogenesis of DMD. Genetic and histological studies have shown that distinct facets of the immune system promote muscle degeneration or regeneration during muscular dystrophy through mechanisms that are only beginning to be defined. Although histological methods have allowed the enumeration and localization of immune cells within dystrophic muscle, they are limited in their ability to assess the full spectrum of phenotypic states of an immune cell population and its functional characteristics. This chapter highlights flow cytometry methods for the isolation and functional study of immune cell populations from muscle of the mdx mouse model of DMD. We include a detailed description of preparing single-cell suspensions of dystrophic muscle that maintain the integrity of cell-surface markers used to identify macrophages, eosinophils, group 2 innate lymphoid cells, and regulatory T cells. This method complements the battery of histological assays that are currently used to study the role of inflammation in muscular dystrophy, and provides a platform capable of being integrated with multiple downstream methodologies for the mechanistic study of immunity in muscle degenerative diseases.
Newton, Sandra; Martineau, Adrian; Kampmann, Beate
2011-09-14
Functional assays have long played a key role in measuring of immunogenicity of a given vaccine. This is conventionally expressed as serum bactericidal titers. Studies of serum bactericidal titers in response to childhood vaccines have enabled us to develop and validate cut-off levels for protective immune responses and such cut-offs are in routine use. No such assays have been taken forward into the routine assessment of vaccines that induce primarily cell-mediated immunity in the form of effector T cell responses, such as TB vaccines. In the animal model, the performance of a given vaccine candidate is routinely evaluated in standardized bactericidal assays, and all current novel TB-vaccine candidates have been subjected to this step in their evaluation prior to phase 1 human trials. The assessment of immunogenicity and therefore likelihood of protective efficacy of novel anti-TB vaccines should ideally undergo a similar step-wise evaluation in the human models now, including measurements in bactericidal assays. Bactericidal assays in the context of tuberculosis vaccine research are already well established in the animal models, where they are applied to screen potentially promising vaccine candidates. Reduction of bacterial load in various organs functions as the main read-out of immunogenicity. However, no such assays have been incorporated into clinical trials for novel anti-TB vaccines to date. Although there is still uncertainty about the exact mechanisms that lead to killing of mycobacteria inside human macrophages, the interaction of macrophages and T cells with mycobacteria is clearly required. The assay described in this paper represents a novel generation of bactericidal assays that enables studies of such key cellular components with all other cellular and humoral factors present in whole blood without making assumptions about their relative individual contribution. The assay described by our group uses small volumes of whole blood and has already been employed in studies of adults and children in TB-endemic settings. We have shown immunogenicity of the BCG vaccine, increased growth of mycobacteria in HIV-positive patients, as well as the effect of anti-retroviral therapy and Vitamin D on mycobacterial survival in vitro. Here we summarise the methodology, and present our reproducibility data using this relatively simple, low-cost and field-friendly model. Note: Definitions/Abbreviations BCG lux = M. bovis BCG, Montreal strain, transformed with shuttle plasmid pSMT1 carrying the luxAB genes from Vibrio harveyi, under the control of the mycobacterial GroEL (hsp60) promoter. CFU = Colony Forming Unit (a measure of mycobacterial viability).
Kennedy, Richard; Pankratz, V. Shane; Swanson, Eric; Watson, David; Golding, Hana; Poland, Gregory A.
2009-01-01
Because of the bioterrorism threat posed by agents such as variola virus, considerable time, resources, and effort have been devoted to biodefense preparation. One avenue of this research has been the development of rapid, sensitive, high-throughput assays to validate immune responses to poxviruses. Here we describe the adaptation of a β-galactosidase reporter-based vaccinia virus neutralization assay to large-scale use in a study that included over 1,000 subjects. We also describe the statistical methods involved in analyzing the large quantity of data generated. The assay and its associated methods should prove useful tools in monitoring immune responses to next-generation smallpox vaccines, studying poxvirus immunity, and evaluating therapeutic agents such as vaccinia virus immune globulin. PMID:19535540
Yang, Tai-Yun; Chiang, Nien-Yi; Tseng, Wen-Yi; Pan, Hsiao-Lin; Peng, Yen-Ming; Shen, Jiann-Jong; Wu, Kuo-An; Kuo, Ming-Ling; Chang, Gin-Wen; Lin, Hsi-Hsien
2015-05-01
GPR56 is a multi-functional adhesion-class G protein-coupled receptor involved in biological systems as diverse as brain development, male gonad development, myoblast fusion, hematopoietic stem cell maintenance, tumor growth and metastasis, and immune-regulation. Ectodomain shedding of human GPR56 receptor has been demonstrated previously, however the quantitative detection of GPR56 receptor shedding has not been investigated fully due to the lack of appropriate assays. Herein, an efficient system of expression and immune-affinity purification of the recombinant soluble extracellular domain of human GPR56 (sGPR56) protein from a stably transduced human melanoma cell line was established. The identity and functionality of the recombinant human sGPR56 protein were verified by Western blotting and mass spectrometry, and ligand-binding assays, respectively. Combined with the use of two recently generated anti-GPR56 monoclonal antibodies, a sensitive sandwich ELISA assay was successfully developed for the quantitative detection of human sGPR56 molecule. We found that GPR56 receptor shedding occurred constitutively and was further increased in activated human melanoma cells expressing endogenous GPR56. In conclusion, we report herein an efficient system for the production and purification of human sGPR56 protein for the establishment of a quantitative ELISA analysis of GPR56 receptor shedding. Copyright © 2014 Elsevier Inc. All rights reserved.
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2009-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly reduced in-flight. In-vivo cytokine production profiles are altered, with in-flight dysregulation observed in the Th1/Th2/Treg equilibrium. EBV specific T cell levels are increased during flight, whereas their function is reduced. VZV reactivation was observed inflight and several days post flight with highest levels measured later during long-duration flight. The shedding of CMV in the urine was detected of 4/5 long duration and 4/7 short duration crewmembers. Plasma cortisol was not elevated during flight. Further data will be required to validate the initial observations.
Circulating Immune Complexes in Lyme Arthritis
Hardin, John A.; Walker, Lesley C.; Steere, Allen C.; Trumble, Thomas C.; Tung, Kenneth S. K.; Williams, Ralph C.; Ruddy, Shaun; Malawista, Stephen E.
1979-01-01
We have found immunoglobulin (Ig) G-containing material consistent with immune complexes in the sera of patients with Lyme arthritis. It was detected in 29 of 55 sera (55%) from 31 patients by at least one of three assays: 125I-C1q binding, C1q solid phase, or Raji cell. The presence of reactive material correlated with clinical aspects of disease activity; it was found early in the illness, was most prominent in sera from the sickest patients, was infrequent during remissions, and often fluctuated in parallel with changes in clinical status. The results in the two C1q assays showed a strong positive correlation (P<0.001). They were each elevated in 45% of the sera and were usually concordant (85%). In contrast, the Raji cell assay was less frequently positive and often discordant with the C1q assays. In sucrose density gradients, putative circulating immune complexes sedimented near 19S; they, too, were detected best by the two assays based on C1q binding. An additional 7S component was found in some sera by the 125I-C1q binding assay. Serum complement was often above the range of normal in patients with mild disease and normal in patients with severe disease but did not correlate significantly with levels of circulating immune complexes. IgM and IgG rheumatoid factors were not detectable. These findings support a role for immune complexes in the pathogenesis of Lyme arthritis. Their measurement, by either the 125I-C1q binding assay or by the C1q solid phase assay, often provides a sensitive index of disease activity. Moreover, the complexes are likely sources of disease-related antigens for further study of this new disorder. PMID:429566
Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes
Salmela, Heli; Amdam, Gro Vang; Münch, Daniel
2017-01-01
Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity. PMID:28877227
Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.
Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel
2017-01-01
Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.
[Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].
Meng, Li; Zhang, Lanwei
2009-12-01
To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.
Alterations in adaptive immunity persist during long-duration spaceflight.
Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2015-01-01
It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8 + T-cell maturation. A reduction in general T-cell function (both CD4 + and CD8 + ) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4 + T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions.
Alterations in adaptive immunity persist during long-duration spaceflight
Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2015-01-01
Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716
Chemokines in teleost fish species.
Alejo, Alí; Tafalla, Carolina
2011-12-01
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bernard, J; Jeannesson, P; Thiernesse, N; Zagury, D; Ternynck, T; Avrameas, S
1979-01-01
Mice were injected in their hind footpads with peroxidase (PO) emulsified in Freund's complete adjuvant. The development of cells secreting anti-peroxidase antibody (Ab) and cells secreting immunoglobulins (Ig) were detected in the draining popliteal lymph nodes in the subsequent 35 days, using local haemolysis plaque assay with sheep red cell blood cells coated with either PO or anti-mouse Ig antibody. Plaque-forming cells (PFC) were isolated from the centre of plaques by micromanipulation and after appropriate treatment, were examined by electron microscopy for their intracellular Ab content and in corporation of [3H]-thymidine. Four subpopulations of Ig secreting cells were distinguished: (1) cells secreting Ig without Ab function and not containing intracellular Ab detectable between days 5 and 20; (2) cells secreting Ig without Ab function but containing Ab appearing on day 6 and present throughout the immune response; (3) cells secreting Ab and containing Ab; (4) cells secreting Ab, but without detectable intracellular Ab. These last subpopulations appeared on day 7 and were found in all subsequent assays. The analysis of the kinetics of these subpopulations suggest that cells secreting Ig without Ab function might be precursors of Ab secreting cells. Images Figure 2a Figure 2b Figure 4 PMID:374259
Rolland-Turner, Magali; Farre, Guillaume; Muller, Delphine; Rouet, Nelly; Boue, Franck
2004-10-22
The immune response in the fox (Vulpes vulpes), despite the success of the oral rabies vaccine is not well characterized, and specific immunological tools are needed. To investigate both the humoral and cellular immune response, we used ovalbumin (OVA) and cholera toxin B (CTB) as an antigenic model to set-up ELISA and ELISPOT antibodies secreting cells (ASC) assays in the fox model. Identification of antibodies that cross-react with fox immunoglobulin was performed by Western blot, and their use was adapted for both the ELISA and ELISPOT ASC assay. The humoral and cellular specific immune responses were assessed after intra-muscular or intra-nasal immunization. Intra-muscular immunization resulted in the development of both cellular and humoral anti-OVA and anti-CTB responses in peripheral blood mononuclear cells (PBMCs). Immunization via the intra-nasal route resulted in the development of a cellular and humoral response against CTB in PBMCs. This immune response was confirmed using splenocytes from immunized animals by ELISPOT assay at euthanasia. Females immunized via the intra-nasal route developed specific anti-CTB IgM, IgA and IgG in vaginal fluids after the initial boost (day 26) showing that mucosal immunization produces a vaginal immune response in foxes. These immunological tools developed here are now available to be adapted to other antigenic models to facilitate further immune studies in foxes.
Wessels, Uwe; Schick, Eginhard; Ritter, Mirko; Kowalewsky, Frank; Heinrich, Julia; Stubenrauch, Kay
2017-06-01
Bridging immunoassays for detection of antidrug antibodies (ADAs) are typically susceptible to high concentrations of residual drug. Sensitive drug-tolerant assays are, therefore, needed. An immune complex assay to detect ADAs against therapeutic antibodies bearing Pro329Gly mutation was established. The assay uses antibodies specific for the Pro329Gly mutation for capture and human soluble Fcγ receptor for detection. When compared with a bridging assay, the new assay showed similar precision, high sensitivity to IgG1 ADA and dramatically improved drug tolerance. However, it was not able to detect early (IgM-based) immune responses. Applied in combination with a bridging assay, the novel assay serves as orthogonal assay for immunogenicity assessment and allows further characterization of ADA responses.
Wu, Yueting; Deng, Wentao; McGinley, Emily Chambers; Klinke, David J.
2017-01-01
Summary As exosomes are emerging as a new mode of intercellular communication, we hypothesized that the payload contained within exosomes is shaped by somatic evolution. To test this, we assayed the impact on primary CD8+ T cell function, a key mechanism for anti-tumor immunity, of exosomes derived from three melanoma-related cell lines. While morphologically similar, exosomes from each cell line were functionally different, as B16F0 exosomes dose-dependently suppressed T cell proliferation. In contrast, Cloudman S91 exosomes promoted T cell proliferation and Melan-A exosomes had a negligible effect on primary CD8+ T cells. Mechanistically, transcript profiling suggested that exosomal mRNA is enriched for full-length mRNAs that target immune-related pathways. Interestingly, B16F0 exosomes were unique in that they contained both protein and mRNA for Ptpn11, which inhibited T cell proliferation. Collectively, the results suggest that upregulation of PTPN11 by B16F0 exosomes to tumor infiltrating lymphocytes would bypass the extracellular control of the immune checkpoints. PMID:27930879
Improved Endpoints for Cancer Immunotherapy Trials
Eggermont, Alexander M. M.; Janetzki, Sylvia; Hodi, F. Stephen; Ibrahim, Ramy; Anderson, Aparna; Humphrey, Rachel; Blumenstein, Brent; Wolchok, Jedd
2010-01-01
Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluation of some immunotherapy clinical trials require a new development paradigm that includes reconsideration of established endpoints. Between 2004 and 2009, several initiatives facilitated by the Cancer Immunotherapy Consortium of the Cancer Research Institute and partner organizations systematically evaluated an immunotherapy-focused clinical development paradigm and created the principles for redefining trial endpoints. On this basis, a body of clinical and laboratory data was generated that supports three novel endpoint recommendations. First, cellular immune response assays generate highly variable results. Assay harmonization in multicenter trials may minimize variability and help to establish cellular immune response as a reproducible biomarker, thus allowing investigation of its relationship with clinical outcomes. Second, immunotherapy may induce novel patterns of antitumor response not captured by Response Evaluation Criteria in Solid Tumors or World Health Organization criteria. New immune-related response criteria were defined to more comprehensively capture all response patterns. Third, delayed separation of Kaplan–Meier curves in randomized immunotherapy trials can affect results. Altered statistical models describing hazard ratios as a function of time and recognizing differences before and after separation of curves may allow improved planning of phase III trials. These recommendations may improve our tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation. PMID:20826737
Elevated Serum GAD65 and GAD65-GADA Immune Complexes in Stiff Person Syndrome.
Gu Urban, Gucci Jijuan; Friedman, Mikaela; Ren, Ping; Törn, Carina; Fex, Malin; Hampe, Christiane S; Lernmark, Åke; Landegren, Ulf; Kamali-Moghaddam, Masood
2015-06-16
Glutamic acid decarboxylase 65 (GAD65) and autoantibodies specific for GAD65 (GADA) are associated with autoimmune diseases including Stiff Person Syndrome (SPS) and Type 1 diabetes (T1D). GADA is recognized as a biomarker of value for clinical diagnosis and prognostication in these diseases. Nonetheless, it remains medically interesting to develop sensitive and specific assays to detect GAD65 preceding GADA emergence, and to monitor GADA-GAD65 immune complexes in blood samples. In the present study, we developed a highly sensitive proximity ligation assay to measure serum GAD65. This novel assay allowed detection of as little as 0.65 pg/ml GAD65. We were also able to detect immune complexes involving GAD65 and GADA. Both free GAD65 and GAD65-GADA levels were significantly higher in serum samples from SPS patients compared to healthy controls. The proximity ligation assays applied for detection of GAD65 and its immune complexes may thus enable improved diagnosis and better understanding of SPS.
2011-09-30
creatinine, calcium, ALK.phos, AST(SGOT), ALT(SGPT), total bilirubin, total protein and albumin); iron, LDH; phosphate; and uric acid . For liver function...assays AST, ALT, total bilirubin, and uric acid are most relevant, whereas for kidney function, BUN and creatinine are of particular interest. For...formic acid (for analysis in the positive ion mode) and in methanol:water 4:1 with 10 mM ammonium acetate (for the negative ion mode). FT-ICR mass
Immune Function Changes during a Spaceflight-Analog Undersea Mission
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Quiniarte, Heather; Yetman, Deborah; Pierson, Duane; Sams, Clarence
2008-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. It is attractive to utilize ground-based spaceflight analogs as appropriate to investigate this phenomenon. For spaceflight-associated immune dysregulation (SAID), the authors believe the most appropriate analogs might be NEEMO (short duration, Shuttle analog), Antarctic winter-over (long-duration, ISS analog) and the Haughton Mars Project in the Canadian Arctic (intermediate-duration). Each of these analogs replicate isolation, mission-associated stress, disrupted circadian rhythms, and other aspects of flight thought to contribute to SAID. To validate NEEMO as a flight analog with respect to SAID, a pilot study was conducted during the NEEMO-12 and 13 missions during 2007. Assays were performed that assessed immune status, physiological stress and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission timepoints.
Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael
2015-01-01
GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853
Bado-Nilles, A; Techer, R; Porcher, J M; Geffard, A; Gagnaire, B; Betoulle, S; Sanchez, W
2014-09-01
Today, the list of endocrine disrupting compounds (EDCs) in freshwater and marine environments that mimic or block endogenous hormones is expanding at an alarming rate. As immune and reproductive systems may interact in a bidirectional way, some authors proposed the immune capacities as attractive markers to evaluate the hormonal potential of environmental samples. Thus, the present work proposed to gain more knowledge on direct biological effects of natural and EDCs on female fish splenic leucocyte non-specific immune activities by using ex vivo assays. After determining the optimal required conditions to analyze splenic immune responses, seven different EDCs were tested ex vivo at 0.01, 1 and 100nM over 12h on the leucocyte functions of female three-spined stickleback, Gasterosteus aculeatus. In summary, we found that natural hormones acted as immunostimulants, whilst EDCs were immunosuppressive. Copyright © 2014 Elsevier B.V. All rights reserved.
Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.
2012-01-01
The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381
Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H
2012-11-01
The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.
Cwach, Kevin T; Sandbulte, Heather R; Klonoski, Joshua M; Huber, Victor C
2012-03-01
Prior to detection of an antibody response toward influenza viruses using the hemagglutination inhibition assay (HAI), sera are routinely treated to inactivate innate inhibitors using both heat inactivation (56°C) and recombinant neuraminidase [receptor-destroying enzyme (RDE)]. We revisited the contributions of innate serum inhibitors toward interference with influenza viruses in immune assays, using murine sera, with emphasis on the interactions with influenza A viruses of the H3N2 subtype. We used individual serum treatments: 56°C alone, RDE alone, or RDE + 56°C, to treat sera prior to evaluation within HAI, microneutralization, and macrophage uptake assays. Our data demonstrate that inhibitors present within untreated murine sera interfere with the HAI assay in a manner that is different from that seen for the microneutralization assay. Specifically, the γ class inhibitor α(2) -Macroglobulin (A2-M) can inhibit H3N2 viruses within the HAI assay, but not in the microneutralization assay. Based on these findings, we used a macrophage uptake assay to demonstrate that these inhibitors can increase uptake by macrophages when the influenza viruses express an HA from a 1968 H3N2 virus isolate, but not a 1997 H3N2 isolate. The practice of treating sera to inactivate innate inhibitors of influenza viruses prior to evaluation within immune assays has allowed us to effectively detect influenza virus-specific antibodies for decades. However, this practice has yielded an under-appreciation for the contribution of innate serum inhibitors toward host immune responses against these viruses, including contributions toward neutralization and macrophage uptake. © 2011 Blackwell Publishing Ltd.
Armc5 deletion causes developmental defects and compromises T-cell immune responses
Hu, Yan; Lao, Linjiang; Mao, Jianning; Jin, Wei; Luo, Hongyu; Charpentier, Tania; Qi, Shijie; Peng, Junzheng; Hu, Bing; Marcinkiewicz, Mieczyslaw Martin; Lamarre, Alain; Wu, Jiangping
2017-01-01
Armadillo repeat containing 5 (ARMC5) is a cytosolic protein with no enzymatic activities. Little is known about its function and mechanisms of action, except that gene mutations are associated with risks of primary macronodular adrenal gland hyperplasia. Here we map Armc5 expression by in situ hybridization, and generate Armc5 knockout mice, which are small in body size. Armc5 knockout mice have compromised T-cell proliferation and differentiation into Th1 and Th17 cells, increased T-cell apoptosis, reduced severity of experimental autoimmune encephalitis, and defective immune responses to lymphocytic choriomeningitis virus infection. These mice also develop adrenal gland hyperplasia in old age. Yeast 2-hybrid assays identify 16 ARMC5-binding partners. Together these data indicate that ARMC5 is crucial in fetal development, T-cell function and adrenal gland growth homeostasis, and that the functions of ARMC5 probably depend on interaction with multiple signalling pathways. PMID:28169274
Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes.
Semenkovich, Nicholas P; Planer, Joseph D; Ahern, Philip P; Griffin, Nicholas W; Lin, Charles Y; Gordon, Jeffrey I
2016-12-20
The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αβ + and γδ + intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling-weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages.
Wang, Xuezhi; Chen, Shuangshuang; Xu, Yongjuan; Zheng, Huajun; Xiao, Tongyang; Li, Yuqing; Chen, Xing; Huang, Mingxiang; Zhang, Haifeng; Fang, Xijing; Jiang, Yi; Li, Machao; Liu, Haican; Wan, Kanglin
2017-01-01
There is an urgent need for new immunodominant antigens to improve the diagnosis of tuberculosis (TB) and the efficacy of the TB vaccine to control the disease worldwide. In this study, we evaluated the diagnostic potential of a novel Mycobacterium tuberculosis (MTB)-specific antigen, Rv2351c, from region of difference (RD) 7 of the MTB genome, and investigated the potency of the vaccine by identifying its immunological function in human and animal immunological experiments. Twenty T-cell epitopes were identified using TEpredict and prediction tools from the Immune Epitope Database and Analysis Resource. A total of 159 subjects, including 61 patients with pulmonary TB, 38 patients with no TB and 55 healthy donors, were recruited and analyzed with an enzyme-linked immunospot (ELISpot) assay. The ELISpot assay using Rv2351c to detect TB infection, as compared with bacteriological tests as the gold standard, had a sensitivity and specificity of 61.4% (35/57) and 91.4% (85/93), respectively. The ELISpot assay using Rv2351c had a good conformance (κ=0.554) as compared with the bacteriological test. Rv2351c also elicited a potent cellular immune response with a high expression of cytokines (IFN-γ (4978±596.7 μg/mL) and IL-4 (68.3±15.5 μg/mL)) and a potent humoral immune response with a high concentration of IgG (1:2.2 × 106), IgG1 (1:4.5 × 105) and IgG2a (1:1.6 × 106) in immunized BALB/c mice. In addition, the ratio of IgG2a/IgG1 indicated that Rv2351c induced cellular immunity in the mice. The results of this study indicated that Rv2351c is an antigen with good immunogenicity that may potentially be used to develop diagnostic techniques and new TB vaccines. PMID:28588287
Ishida, S; Feng, N; Tang, B; Gilbert, J M; Greenberg, H B
1996-01-01
The purpose of the present study was to develop a quantitative assay that could be used to measure the local and systemic immune responses to specific rotavirus proteins following rotavirus infection of adult mice. To measure these responses, we used an immunocytochemical staining assay of Spodoptera frugiperda (Sf-9) cells which were infected with recombinant baculovirus expressing selected rotavirus proteins. The specificity of the assay was documented by using a series of monoclonal antibodies to individual rotavirus proteins. We observed that the assay had high levels of sensitivity and specificity for a series of VP7- and VP4-specific neutralizing monoclonal antibodies which recognized conformation-dependent epitopes on their target proteins. We also studied immunoglobulin G (IgG) immune responses in serum and IgA immune responses in the stools of mice infected with wild-type murine rotavirus strain EHPw. In both sera and stools, the most immunogenic proteins were VP6 and VP4. VP2 was less immunogenic than VP6 or VP4, and the immune responses to VP7, NSP2, and NSP4 were very low in serum and undetectable in stools. PMID:8784572
Firbas, Christa; Boehm, Thomas; Buerger, Vera; Schuller, Elisabeth; Sabarth, Nicolas; Jilma, Bernd; Klade, Christoph S
2010-03-11
An effective vaccine would be a significant progress in the management of chronic HCV infections. This study was designed to examine whether different application schedules and injection routes may enhance the immunogenicity of the HCV peptide vaccine IC41. In this randomized trial 54 healthy subjects received either subcutaneous (s.c.) or intradermal (i.d.) vaccinations weekly (16 injections) or every other week (8 injections). One group additionally received imiquimod, an activator of the toll-like receptor (TLR) 7. The T cell epitope-specific immune response to IC41 was assessed using [(3)H]-thymidine CD4+ T cell proliferation, interferon-gamma (IFN-gamma) CD8+ and CD4+ ELIspot and HLA-A*0201 fluorescence-activated cell sorting (FACS) tetramer-binding assays. More than 60% of vaccinees responded in the CD4+ T cell proliferation assay in all groups. An HLA-A*0201 FACS tetramer-binding assay and IFN-gamma CD8+ ELIspot class I response of more than 70% was induced in four and three groups, respectively. IC41 induced significant immunological responses in all groups with responder rates of up to 100%. Interestingly, topical imiquimod was not able to enhance immunogenicity but was associated with a lower immune response. Local injection site reactions were mostly transient. Intradermal injections caused more pronounced reactions compared to s.c., especially erythema and edema. Compared to a previous study intensified dosing and/or i.d. injections enhanced the response rates to the vaccine IC41 in three assays measuring T cell function. Immunization with IC41 was generally safe in this study. These results justify testing IC41 in further clinical trials with HCV-infected individuals.
O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus
2006-01-01
Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855
A high-throughput assay of NK cell activity in whole blood and its clinical application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung
2014-03-14
Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate themore » status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.« less
Mulder, Sasja F; Jacobs, Joannes F M; Olde Nordkamp, Michel A M; Galama, Joep M D; Desar, Ingrid M E; Torensma, Ruurd; Teerenstra, Steven; Mulders, Peter F A; Vissers, Kris C P; Punt, Cornelis J A; de Vries, I Jolanda M; van Herpen, Carla M L
2011-07-01
The tyrosine kinase inhibitors sorafenib and sunitinib have efficacy in several types of cancer. Recent studies indicate that these agents affect the immune system. The way it affects the immune response to influenza vaccination is unknown. The aim of this study was to elucidate the specific immune response to seasonal flu vaccination in cancer patients treated with sunitinib or sorafenib. Sunitinib- or sorafenib-treated cancer patients were vaccinated against seasonal influenza with an inactivated vaccine. Healthy controls and patients with metastatic renal cell cancer (mRCC) without systemic treatment (nontreated mRCC controls) were included for comparison. Antibody responses were measured at baseline, day 8, and day 22 by a standard hemagglutination inhibition assay and cellular T-cell responses at baseline and day 8 by proliferation assay and secretion of cytokines. Forty subjects were enrolled: 16 patients treated with sunitinib, 6 patients with sorafenib, 7 nontreated mRCC controls, and 11 healthy controls. All patients treated with sunitinib and sorafenib developed seroprotection rates comparable with controls. Functional T-cell reactivity was observed in all groups, except for patients treated with sorafenib who showed a decreased proliferation rate and IFN-γ/IL-2 production and increased IL-10 compared with healthy controls. We conclude that influenza vaccination should be recommended to cancer patients treated with sunitinib or sorafenib.
Zhu, Longbao; Ge, Fei; Yang, Liangjun; Li, Wanzhen; Wei, Shenghua; Tao, Yugui; Du, Guocheng
2017-04-28
BACKGROUND Alginate is a natural polysaccharide obtained from brown algae and has been shown to have numerous applications in biomedical science, such as wound healing, delivery of bioactive agents, and cell transplantation. Ovalbumin (OVA) peptide 323-339 has been reported to be involved in immune response. MATERIAL AND METHODS This work investigated the use of alginate particles as a carrier and adjuvant for the immune therapy of cancer. Alginate particles loaded with OVA peptide were produced via emulsion. A tumor model was established in C57BL/6J mice via subcutaneous injection of 3×105 B16-OVA tumor cells. The effect of alginate/OVA peptide on cell viability was analyzed by use of the CCK-8 assay kit. Activation of macrophages was examined by checking cell surface makers CD40 and CD86 by FACs. RESULTS Alginate/OVA peptide inhibited tumor progression more effectively than using the peptide alone. The viability and uptake study illustrated that this particle is safe and non-toxic. The activation study demonstrated that alginate particles can promote the activation of surface markers on macrophages. ELISA assay showed that the particles with peptide can promote the secretion of inflammatory and effector cytokines from macrophages. CONCLUSIONS This study demonstrated that alginate has dual functions in immune therapy of cancer, serving both as a carrier and an adjuvant.
The DNA methylation profile of activated human natural killer cells.
Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T
2016-05-03
Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.
Reglinski, Mark; Lynskey, Nicola N; Sriskandan, Shiranee
2016-05-01
The lack of a surrogate-of-immunity assay presents a major barrier to Streptococcus pyogenes research. Modification of the Lancefield assay to include an antibody digestion step reduced inter-donor variation and permitted detection of the anti-streptococcal activity of intravenous immunoglobulin and convalescent serum, thus facilitating retrospective evaluation of immunity using stored samples. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Effects of Sex Steroids on Fish Leukocytes
Cabas, Isabel
2018-01-01
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish. PMID:29315244
Xie, Jinfu; Kaufhold, Robin; Mcguinness, Debra; Zhang, Yuhua; Smith, William; Giovarelli, Cecelia; Winters, Michael; Musey, Luwy; Kosinski, Michael; Skinner, Julie
2017-01-01
Abstract Background Streptococcus pneumoniae (pneumococcus) is a leading cause of a variety of diseases, including bacteremia, meningitis, and pneumonia, among older adults in the United States. Immunization with pneumococcal vaccines is an effective way to prevent these diseases. In this study, we evaluated the immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV15) in adult rhesus macaques. Methods Animals were intramuscularly immunized with PNEUMOVAX® 23 and PCV15 vaccine (5 animals/group) and sera were collected before immunization and 30, 60, and 90 days after the immunization. Sera were assayed using multiplexed electrochemiluminescent (ECL) assays to measure serotype-specific IgG antibodies to all vaccine serotypes and multiplexed opsonophagocytic killing assays (MOPA) to measure functional antibody responses to 15 vaccine serotypes. Results At day 30 post immunization, 16 out of the 23 serotypes in PNEUMOVAX 23 groups induced statistically significant higher ECL titers compared with pre bleed, ranging from 1.6-fold (19A) to 28.3-fold (15B). Compared with PNEUMOVAX 23, PCV15 induced much higher ECL titers. Thirteen out of the 15 serotypes in PCV15 groups induced statistically significant higher ECL titers compared with pre bleed, ranging from 7.4-fold (14) to 47.3-fold (4). The ECL antibody titers gradually decreased from day 30 to day 90 for both groups. We also compared the functional MOPA titers of the day 30 sera compared with pre bleed for 15 vaccine serotypes. Out of the 14 common vaccine serotypes, 7 serotypes in the PNEUMOVAX 23 immunized macaques had a >4 fold increase in MOPA titer, ranging from 4-fold (22F) to 3902-fold (33F) and 11 serotypes in the PCV15 immunized macaques had a >4-fold increase in MOPA titer, ranging from 6.3-fold (23F) to 4445-fold (7F). Twelve out of the 14 common serotypes in PCV15 group had higher MOPA titers compared with the PNEUMOVAX 23 group, although they didn’t reach statistical significance due to high variability. Conclusion These data demonstrate that a single dose of PCV15 is highly immunogenic in adult rhesus macaques and has better immunogenicity for most common serotypes compared with PNEUMOVAX 23. However, PNEUMOVAX 23 offers broader serotype coverage with 9 additional serotypes contained in the vaccine. Disclosures J. Xie, Merck & Co. Inc: Employee, Salary; R. Kaufhold, Merck & Co. Inc: Employee, Salary; D. Mcguinness, Merck & Co. Inc: Employee, Salary; Y. Zhang, Merck & Co. Inc.: Employee, Salary; W. Smith, Merck & Co. Inc.: Employee, Salary; C. Giovarelli, Merck & Co. Inc.: Employee, Salary; M. Winters, Merck & Co. Inc: Employee, Salary; L. Musey, Merck & Co. Inc: Employee, Salary; M. Kosinski, Merck & Co. Inc: Employee, Salary; J. Skinner, Merck & Co. Inc: Employee, Salary
Innate immunity is not related to the sex of adult Tree Swallows during the nestling period
Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell
2011-01-01
Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.
Fragkoudis, Rennos; Dixon-Ballany, Catherine M; Zagrajek, Adrian K; Kedzierski, Lukasz; Fazakerley, John K
2018-05-18
Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain. Here we show that in MHC-II -/- mice, with no functional CD4 T-cells, infectious virus is also detectable in the brain for long periods. In contrast, in the brains of CD8 -/- mice, virus RNA persists but infectious virus is not detectable. In SCID mice infected with SFV, repeated intraperitoneal administration of anti-SFV immune serum rapidly reduced the titer of infectious virus in the brain to undetectable, however virus RNA persisted. Repeated intraperitoneal passive transfer of immune serum resulted in maintenance of brain virus RNA, with no detectable infectious virus, for several weeks. When passive antibody transfer was stopped, antibody levels declined and infectious virus was again detectable in the brain. In aged immunocompetent mice, previously infected with SFV, immunosuppression of antibody responses many months after initial infection also resulted in renewed ability to detect infectious virus in the brain. In summary, antiviral antibodies control and determine whether infectious virus is detectable in the brain but immune responses cannot clear this infection from the brain. Functional virus RNA capable of generating infectious virus persists and if antibody levels decline, infectious virus is again detectable.
Yao, Hang-Ping; Zhang, Li-Huang; Sun, Wen-Ji; Leng, Jian-Hang
2002-04-01
OBJECTIVE: To investigate the effects of IL-18 gene-modified fetal hepatocytes (AdmIL-18/MNL.CL2) intrasplenic transplantation on mouse immune function. METHODS: Forty mice were evenly divided into 4 groups of 10. Each group received an intrasplenic transplantation one of the following: AdmIL-18/BNL.CL2, Ad-LacZ/BNL.CL2 (virus control), BNL.CL2 (cell control) and PBS (blank control). After two weeks, the mice were sacrificed. Serum cytokine levels, Mpsi and splenic cell culture supernatant and liver tissue extracts supernatants were measured using ELISA. Hepatic cytokines mRNA expression were determined by RT-PCR. THe cytotoxicity of peritoneal Mpsi and NK activity of spienocytes were detected by LDH release assay. The proliferation of splenic lymphocytes was determined by MTT assay. RESULTS: The IL-18, IL-2,IFN-gamma, TNF-alpha levels of serum, Mpsi and splenocyte culture supernatant, liver tissue extracts supernatants in mice transplanted with AdmIL-18/BNL.CL2 were higher and the IL-4, IL-10 levels were lower compared to their levels in other 3 groups. The highest IL-18, IL-2, IFN-gamma, TNF-alpha and the lowest IL-4, IL-10 mRNA expressions in the liver were observed in mice transplanted with AdmIL-18/BNL.CL2. The mice transplanted with AdmIL-18/BNL.Cl2 showed significantly increases cytotoxicity of Mpsi, NK activity and splenic cell proliferation compared with the other 3 groups. CONCLUSION: AdmIL-18 can be effectively transfected into mice fetal heptocytes which subsequently IL-18. Intransplenic transplantation of IL-18 gene-modified fetal hepatocytes may augment mouse immune function and provide an useful basis for targeted gene therapy of liver disease.
Collective cell migration during inflammatory response
NASA Astrophysics Data System (ADS)
Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim
2012-02-01
Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.
Hu, Xiaohan; Wu, Jian; An, Jingnan; Hu, Yumin; Shen, Yu; Liu, Cuiping; Zhang, Xueguang
2016-07-01
ICOSL (B7-H2, CD275), a co-stimulatory molecule of the B7 superfamily, functions as a positive signal in immune response. To investigate whether ICOSL could be released into sera and the possible biological function of soluble ICOS (sICOSL), we generated and characterized a functional anti-human ICOSL monoclonal antibody (mAb), 20B10, and developed a novel enzyme-linked immunosorbent assay (ELISA) based on two anti-human ICOSL antibodies with different epitope specificities. Using the ELISA system, we found that sICOSL in the serum of healthy donors increases in an age-dependent manner and that the matrix metalloproteinase inhibitor (MMPI) could suppress sICOSL production. Together, these data demonstrate that the existence of circulating sICOSL in human serum might play an important role in immunoregulation. Copyright © 2016. Published by Elsevier B.V.
David-Neto, E; Ballarati, C A; Freitas, O J; Lemos, F C; Nahas, W C; Arap, S; Kalil, J
2000-01-01
Evaluation of Cyclosporin A (CyA) blood concentration is imperative in solid organ transplantation in order to achieve maximal immunosuppression with the least side effects. We compared the results of whole blood concentrations of CyA in 50 blood samples simultaneously evaluated by the fluorescent polarization immune assay (TDx) and the enzymatic competitive immune assay (EMIT 2000). There was a strong correlation between both kits for any range of CyA blood concentration (R=0.99, p<0.001). The within-run and between-days coefficient of variation were less than 4% for both assays. The cost for each CyA measurement was 50% lower for the EMIT assay when compared to the TDx assay. We concluded that the EMIT is as accurate as the TDx in measuring CyA blood concentration and has the advantage of a lower cost, as well as the possibility of widespread access to the EMIT methodology in contrast to the TDx equipment, allowing the laboratory to perform several routines within a working day.
Microchip-Based Single-Cell Functional Proteomics for Biomedical Applications
Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui
2017-01-01
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that fail to be addressed by traditional population-based methods. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical framework to extract new biology. In this review article, we highlight a few biological and clinical applications in which the microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating well-contolled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies. PMID:28280819
Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic
NASA Technical Reports Server (NTRS)
Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence
2006-01-01
Dysregulation of the immune system has been shown to occur during space flight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions has yet to be established. In addition, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive field immunology assessment on crewmembers participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate mission-associated effects on the human immune system, as well as to evaluate techniques developed for processing immune samples in remote field locations. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, wholeblood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles and plasma EBV viral antibody levels. Study timepoints were L-30, midmission and R+60. The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed in the field location, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in Astronauts following spaceflight. The sample processing protocol developed for this study may have applications for immune assessment during exploration-class space missions or in remote terrestrial field locations. The data validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology.
Smith, Steven G; Smits, Kaatje; Joosten, Simone A; van Meijgaarden, Krista E; Satti, Iman; Fletcher, Helen A; Caccamo, Nadia; Dieli, Francesco; Mascart, Francoise; McShane, Helen; Dockrell, Hazel M; Ottenhoff, Tom H M
2015-01-01
Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.
Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J.; Shih, J. Wai-Kuo
2017-01-01
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-γ-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biasedpathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-γ demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins. PMID:18675871
Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J; Shih, J Wai-Kuo
2008-10-09
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.
Impact of host cell variation on the neutralization of HIV-1 in vitro.
Polonis, Victoria R; Schuitemaker, Hanneke; Bunnik, Evelien M; Brown, Bruce K; Scarlatti, Gabriella
2009-09-01
In this review we present current advances in our understanding of HIV-1 neutralization assays that employ primary cell types, as compared with those that utilize cell lines and the newer, more standardized pseudovirus assays. A commentary on the challenges of standardizing in-vitro neutralization assays using primary cells is included. The data from reporter cell line neutralization assays may agree with results observed in primary cells; however, exceptions have recently been reported. Multiple variables exist in primary cell assays using peripheral blood mononuclear cells from HIV-seronegative donors; in-vitro neutralization titers can vary significantly based on the donor cells used for assay targets and for virus propagation. Thus, more research is required to achieve validated primary cell neutralization assays. HIV-vaccine-induced antibody performance in the current neutralization assays may function as a 'gatekeeper' for HIV-1 subunit vaccine advancement. Development of standardized platforms for reproducible measurement of in-vitro neutralization is therefore a high priority. Given the considerable variation in results obtained from some widely applied HIV neutralization platforms, parallel evaluation of new antibodies using different host cells for assay targets, as well as virus propagation, is recommended until immune correlates of protection are identified.
Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza.
Wang, Jiong; Hilchey, Shannon P; Hyrien, Ollivier; Huertas, Nelson; Perry, Sheldon; Ramanunninair, Manojkumar; Bucher, Doris; Zand, Martin S
2015-01-01
The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA's, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA's. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination.
Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza
Wang, Jiong; Hilchey, Shannon P.; Hyrien, Ollivier; Huertas, Nelson; Perry, Sheldon; Ramanunninair, Manojkumar; Bucher, Doris; Zand, Martin S.
2015-01-01
The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA’s, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA’s. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination. PMID:26103163
In vitro immunotherapy potency assays using real-time cell analysis
Cerignoli, Fabio; Abassi, Yama A.; Lamarche, Brandon J.; Guenther, Garret; Santa Ana, David; Guimet, Diana; Zhang, Wen; Zhang, Jing
2018-01-01
A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow. PMID:29499048
Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep.
Hall, Jean A; Sendek, Rachel L; Chinn, Rachel M; Bailey, D Paul; Thonstad, Katie N; Wang, Yongqiang; Forsberg, Neil E; Vorachek, William R; Stang, Bernadette V; Van Saun, Robert J; Bobe, Gerd
2011-09-06
We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL).
Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep
2011-01-01
We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL). PMID:21896161
Wu, Yueting; Deng, Wentao; McGinley, Emily Chambers; Klinke, David J
2017-03-01
As exosomes are emerging as a new mode of intercellular communication, we hypothesized that the payload contained within exosomes is shaped by somatic evolution. To test this, we assayed the impact on primary CD8+ T-cell function, a key mechanism for antitumor immunity, of exosomes derived from three melanoma-related cell lines. While morphologically similar, exosomes from each cell line were functionally different, as B16F0 exosomes dose-dependently suppressed T-cell proliferation. In contrast, Cloudman S91 exosomes promoted T-cell proliferation and Melan-A exosomes had a negligible effect on primary CD8+ T cells. Mechanistically, transcript profiling suggested that exosomal mRNA is enriched for full-length mRNAs that target immune-related pathways. Interestingly, B16F0 exosomes were unique in that they contained both protein and mRNA for PTPN11, which inhibited T-cell proliferation. Collectively, the results suggest that upregulation of PTPN11 by B16F0 exosomes to tumor infiltrating lymphocytes would bypass the extracellular control of the immune checkpoints. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fujiyuki, T; Hamamoto, H; Ishii, K; Urai, M; Kataoka, K; Takeda, T; Shibata, S; Sekimizu, K
2012-04-01
In silkworm larvae, the mature form of paralytic peptide (PP), an insect cytokine, is produced from pro-PP in association with activation of innate immune responses, resulting in slow muscle contraction. We utilized this reaction, muscle contraction in silkworms coupled with innate immunity stimulation, to quantitatively measure the innate immune stimulating activity of various natural polysaccharides. β-Glucan of Gyrophora esculenta (GE-3), fucoidan from sporophyll of Undaria pinnatifida, and curldan induced silkworm muscle contraction. We further demonstrated that GE-3 had therapeutic effects on silkworms infected by baculovirus. Based on these findings, we propose that the silkworm muscle contraction assay is useful for screening substances that stimulate innate immunity before evaluating therapeutic effectiveness in mammals.
Immune system changes during simulated planetary exploration on Devon Island, high arctic
Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence
2007-01-01
Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions. PMID:17521440
Whiting, James R; Magalhaes, Isabel S; Singkam, Abdul R; Robertson, Shaun; D'Agostino, Daniele; Bradley, Janette E; MacColl, Andrew D C
2018-06-20
Understanding how wild immune variation covaries with other traits can reveal how costs and trade-offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality; or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three-spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short-lived, two long-lived and an anadromous population using qPCR to quantify current immune profile and RAD-seq data to study the distribution of immune variants within our assay genes and across the genome. Short-lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population-level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene-based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Xu, Weifeng; Jiang, Hao; Titsch, Craig; Haulenbeek, Jonathan R; Pillutla, Renuka C; Aubry, Anne-Françoise; DeSilva, Binodh S; Arnold, Mark E; Zeng, Jianing; Dodge, Robert W
2015-01-01
Biological therapeutics can induce an undesirable immune response resulting in the formation of anti-drug antibodies (ADA), including neutralizing antibodies (NAbs). Functional (usually cell-based) NAb assays are preferred to determine NAb presence in patient serum, but are often subject to interferences from numerous serum factors, such as growth factors and disease-related cytokines. Many functional cell-based NAb assays are essentially drug concentration assays that imply the presence of NAbs by the detection of small changes in functional drug concentration. Any drug contained in the test sample will increase the total amount of drug in the assay, thus reducing the sensitivity of NAb detection. Biotin-drug Extraction with Acid Dissociation (BEAD) has been successfully applied to extract ADA, thereby removing drug and other interfering factors from human serum samples. However, to date there has been no report to estimate the residual drug level after BEAD treatment when the drug itself is a human monoclonal antibody; mainly due to the limitation of traditional ligand-binding assays. Here we describe a universal BEAD optimization procedure for human monoclonal antibody (mAb) drugs by using a LC-MS/MS method to simultaneously measure drug (a mutant human IgG4), NAb positive control (a mouse IgG), and endogenous human IgGs as an indicator of nonspecific carry-over in the BEAD eluate. This is the first report demonstrating that residual human mAb drug level in clinical sample can be measured after BEAD pre-treatment, which is critical for further BEAD procedure optimization and downstream immunogenicity testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of immunoassays for human urokinase
NASA Technical Reports Server (NTRS)
Atassi, M. Zouhair
1988-01-01
Radioimmune assays (RIA) and enzyme linked immune assays for measurement of pro-urokinase and the two active forms of the enzyme were developed. Polyclonal and monoclonal antibodies, with desired specificities against preselected synthetic regions of urokinase (UK), were obtained by immunization with the respective synthetic peptides and used to develop RIA for zymogen and the two activated forms of UK.
USDA-ARS?s Scientific Manuscript database
A quantifiable in situ immune fluorescent assay (IFA) was developed to measure bluetongue virus (BTV) binding to mammalian cells. The utility of the assay was demonstrated with both Chinese hamster ovary (CHO) and bovine pulmonary artery endothelial (CPAE) cells. Since heparin sulfate (HS) has been ...
Kapelski, Stephanie; Klockenbring, Torsten; Fischer, Rainer; Barth, Stefan; Fendel, Rolf
2014-01-01
Semi-immunity against Pf malaria is based on a combination of cellular and humoral immune responses. PMNs and IgGs are considered important components of this process, but the underlying mechanisms are unclear. We investigated the neutrophilic ADRB by analyzing the production of ROS in response to Pf antigen-specific IgGs bound to solid-phase immobilized antigens (sADRB) or whole merozoites (mADRB). We found that the PMN stimulations in each assay were based on different underlying mechanisms, demonstrating the importance of the assay set-up for the evaluation of antibody-triggered PMN responses. In the sADRB assay, ROS were produced externally, and by specific blocking of CD32(a)/FcγRII(a), the immediate neutrophilic response was abolished, whereas the removal of CD16(b)/FcγRIII(b) had no substantial effect. The key role of CD32(a) was confirmed using CD16(b)-deficient PMNs, in which similar changes of neutrophilic ADRB profiles were recorded after treatment. In the mADRB assay, ROS were produced almost exclusively within the cell, suggesting that the underlying mechanism was phagocytosis. This was confirmed using an additional phagocytosis assay, in which PMNs specifically ingested merozoites opsonized with Ghanaian plasma IgGs, seven times more often than merozoites opsonized with European plasma IgGs (P<0.001). Our data show that assay set-ups used to evaluate the responses of PMNs and perhaps other effector cells must be chosen carefully to evaluate the appropriate cellular responses. Our robust, stable, and well-characterized methods could therefore be useful in malaria vaccine studies to analyze the antimalarial effector function of antibodies. PMID:25118179
Perreau, Matthieu; Mennechet, Franck; Serratrice, Nicolas; Glasgow, Joel N.; Curiel, David T.; Wodrich, Harald; Kremer, Eric J.
2007-01-01
Antipathogen immune responses create a balance between immunity, tolerance, and immune evasion. However, during gene therapy most viral vectors are delivered in substantial doses and are incapable of expressing gene products that reduce the host's ability to detect transduced cells. Gene transfer efficacy is also modified by the in vivo transduction of dendritic cells (DC), which notably increases the immunogenicity of virions and vector-encoded genes. In this study, we evaluated parameters that are relevant to the use of canine adenovirus serotype 2 (CAV-2) vectors in the clinical setting by assaying their effect on human monocyte-derived DC (hMoDC). We compared CAV-2 to human adenovirus (HAd) vectors containing the wild-type virion, functional deletions in the penton base RGD motif, and the CAV-2 fiber knob. In contrast to the HAd type 5 (HAd5)-based vectors, CAV-2 poorly transduced hMoDC, provoked minimal upregulation of major histocompatibility complex class I/II and costimulatory molecules (CD40, CD80, and CD86), and induced negligible morphological changes indicative of DC maturation. Functional maturation assay results (e.g., reduced antigen uptake; tumor necrosis factor alpha, interleukin-1β [IL-1β], gamma interferon [IFN-γ], IL-10, IL-12, and IFN-α/β secretion; and stimulation of heterologous T-cell proliferation) were also significantly lower for CAV-2. Our data suggested that this was due, in part, to the use of an alternative receptor and a block in vesicular escape. Additionally, HAd5 vector-induced hMoDC maturation was independent of the aforementioned cytokines. Paradoxically, an HAd5/CAV-2 hybrid vector induced the greatest phenotypical and functional maturation of hMoDC. Our data suggest that CAV-2 and the HAd5/CAV-2 vector may be the antithesis of Adenoviridae immunogenicity and that each may have specific clinical advantages. PMID:17229706
Hepatitis B virus genetic diversity and its impact on diagnostic assays.
Hollinger, F B
2007-11-01
Hepatitis B virus (HBV) circulates in blood as closely related, but genetically diverse molecules called quasispecies. During replication, HBV production may approach 10(11) molecules/day, although during peak activity this rate may increase 100-1000 times. Generally, DNA polymerases have excellent fidelity in reading DNA templates because they are associated with an exonuclease which removes incorrectly added nucleotides. However, the HBV-DNA polymerase lacks fidelity and proofreading function partly because exonuclease activity is either absent or deficient. Thus, the HBV genome and especially the envelope gene, is mutated with unusually high frequency. These mutations can affect more than one open reading frame because of overlapping genes. The S gene contains an exposed major hydrophilic region (residues 110-155), which encompasses the 'a' determinant that is important for inducing immunity. Nucleotide substitutions in this region are common and result in reduced binding or failure to detect hepatitis B surface antigen (HBsAg) in diagnostic assays. Adaptive immunity also depends on the recognition of HBsAg by specific antibody and variants pose a threat if they interfere with binding to antibody. Finally, genomic hypervariability allows HBV to escape selection pressures imposed by antiviral therapies, vaccines and the host immune system, and is responsible for creating genotypes, subgenotypes and subtypes.
Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy
2008-08-01
The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.
Ripley, J.; Iwanowicz, L.; Blazer, V.; Foran, C.
2008-01-01
The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. ?? 2008 SETAC.
GDSL lipases modulate immunity through lipid homeostasis in rice
Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Shui, Guanghou
2017-01-01
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. PMID:29131851
Ludwig, Sonja; Floros, Theofanis; Theodoraki, Marie-Nicole; Hong, Chang-Sook; Jackson, Edwin K; Lang, Stephan; Whiteside, Theresa L
2017-08-15
Purpose: Head and neck cancers (HNCs) often induce profound immunosuppression, which contributes to disease progression and interferes with immune-based therapies. Body fluids of patients with HNC are enriched in exosomes potentially engaged in negative regulation of antitumor immune responses. The presence and content of exosomes derived from plasma of patients with HNC are evaluated for the ability to induce immune dysfunction and influence disease activity. Experimental Design: Exosomes were isolated by size-exclusion chromatography from plasma of 38 patients with HNC and 14 healthy donors. Morphology, size, numbers, and protein and molecular contents of the recovered exosomes were determined. Coculture assays were performed to measure exosome-mediated effects on functions of normal human lymphocyte subsets and natural killer (NK) cells. The results were correlated with disease stage and activity. Results: The presence, quantity, and molecular content of isolated, plasma-derived exosomes discriminated patients with HNC with active disease (AD) from those with no evident disease (NED) after oncologic therapies. Exosomes of patients with AD were significantly more effective than exosomes of patients with NED in inducing apoptosis of CD8 + T cells, suppression of CD4 + T-cell proliferation, and upregulation of regulatory T-cell (Treg) suppressor functions (all at P < 0.05). Exosomes of patients with AD also downregulated NKG2D expression levels in NK cells. Conclusions: Exosomes in plasma of patients with HNC carry immunosuppressive molecules and interfere with functions of immune cells. Exosome-induced immune suppression correlates with disease activity in HNC, suggesting that plasma exosomes could be useful as biomarkers of HNC progression. Clin Cancer Res; 23(16); 4843-54. ©2017 AACR . ©2017 American Association for Cancer Research.
Ca2+/Calmodulin-Dependent AtSR1/CAMTA3 Plays Critical Roles in Balancing Plant Growth and Immunity.
Yuan, Peiguo; Du, Liqun; Poovaiah, B W
2018-06-14
During plant-pathogen interactions, plants have to relocate their resources including energy to defend invading organisms; as a result, plant growth and development are usually reduced. Arabidopsis signal responsive1 (AtSR1) has been documented as a negative regulator of plant immune responses and could serve as a positive regulator of plant growth and development. However, the mechanism by which AtSR1 balances plant growth and immunity is poorly understood. Here, we performed a global gene expression profiling using Affymetrix microarrays to study how AtSR1 regulates defense- and growth-related genes in plants with and without bacterial pathogen infection. Results revealed that AtSR1 negatively regulates most of the immune-related genes involved in molecular pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and in salicylic acid (SA)- and jasmonate (JA)-mediated signaling pathways. AtSR1 may rigidly regulate several steps of the SA-mediated pathway, from the activation of SA synthesis to the perception of SA signal. Furthermore, AtSR1 may also regulate plant growth through its involvement in regulating auxin- and BRs-related pathways. Although microarray data revealed that expression levels of defense-related genes induced by pathogens are higher in wild-type (WT) plants than that in atsr1 mutant plants, WT plants are more susceptible to the infection of virulent pathogen as compared to atsr1 mutant plants. These observations indicate that the AtSR1 functions in suppressing the expression of genes induced by pathogen attack and contributes to the rapid establishment of resistance in WT background. Results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR assays suggest that AtSR1 acts as transcription factor in balancing plant growth and immunity, through interaction with the “CGCG” containing CG-box in the promotors of its target genes.
Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang
2012-11-01
Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.
Brelsford, Jill B; Plieskatt, Jordan L; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J; Diemert, David; Bethony, Jeffrey M
2017-02-01
A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2-8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines.
Very long haplotype tracts characterized at high resolution from HLA homozygous cell lines
Norman, Paul J.; Norberg, Steve; Nemat-Gorgani, Neda; Royce, Thomas; Hollenbach, Jill A.; Won, Melissa Shults; Guethlein, Lisbeth A.; Gunderson, Kevin L.; Ronaghi, Mostafa; Parham, Peter
2015-01-01
The HLA region of chromosome 6 contains the most polymorphic genes in humans. Spanning ~5Mbp the densely packed region encompasses approximately 175 expressed genes including the highly polymorphic HLA class I and II loci. Most of the other genes and functional elements are also polymorphic, and many of them are directly implicated in immune function or immune-related disease. For these reasons this complex genomic region is subject to intense scrutiny by researchers with the common goal of aiding further understanding and diagnoses of multiple immune-related diseases and syndromes. To aid assay development and characterization of the classical loci, a panel of cell lines partially or fully homozygous for HLA class I and II was assembled over time by the International Histocompatibility Working Group (IHWG). Containing a minimum of 88 unique HLA haplotypes, we show this panel represents a significant proportion of European HLA allelic and haplotype diversity (60–95%). Using a high-density whole genome array that includes 13,331 HLA region SNPs, we analyzed 99 IHWG cells to map the coordinates of the homozygous tracts at a fine scale. The mean homozygous tract length within chromosome 6 from these individuals is 21Mbp. Within HLA the mean haplotype length is 4.3Mbp, and 65% of the cell lines were shown to be homozygous throughout the entire region. In addition, four cell lines are homozygous throughout the complex KIR region of chromosome 19 (~250kbp). The data we describe will provide a valuable resource for characterizing haplotypes, designing and refining imputation algorithms and developing assay controls. PMID:26198775
NASA Technical Reports Server (NTRS)
Twomey, J. J.
1976-01-01
This space bioprocessing contract effort was comprised of four general objectives. These were: (1) the evaluation of current separation processes, (2) the identification of problems relevant to the separation of important biologicals, (3) the identification of ground-based assay methods needed for pre- and postflight analysis of space bioprocessing separation technology; and (4) the establishment of methods to determine the efficiency of space bioprocessing separation procedures. Immunology was deemed advantageous to study the diversity of cells and cell products involved and the extensive interest being given to their separation. Upon recognition of a cellular or molecular agent as foreign to the body, the immune system becomes activated to produce cells whose function is to destroy that agent and cell products whose function is to inactivate the agent and assist in its destruction. Long after the agent is removed from the body, some cells remain in a state of readiness to continue these destructive actions specifically against that agent should further exposure to it occur. This is the basis of acquired immunity to disease.
Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He
2014-07-01
This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.
Webb, Tonya J.; Potter, James P.; Li, Zhiping
2011-01-01
Background/Aims Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. Methods The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. Results CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. Conclusions NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity. PMID:22073248
Zinzula, Luca; Esposito, Francesca; Pala, Daniela; Tramontano, Enzo
2012-03-01
The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)-dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC(50) value of 50μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased K(d) values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35-dsRNA binding functions. Copyright © 2012 Elsevier B.V. All rights reserved.
Risk of Crew Adverse Health Event Due to Altered Immune Response
NASA Technical Reports Server (NTRS)
Crucian, Brian; Kunz, Hawley; Sams, Clarence F.
2015-01-01
Determining the effect of space travel on the human immune system has proven to be extremely challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes determining precise variables to measure very difficult. There is also the challenge of determining the clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a transient subclinical observation related to short-term stress? The effect of this problem may be observed by scanning publications associated with immunity and spaceflight, which began to appear during the 1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate focus on narrow aspects of immunity. The most clinically relevant data are derived from in-flight human studies, which have demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data are available from post-flight testing of humans, with clear evidence of altered cytokine production patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data are related to in vivo immune cell function or are an artifact of microgravity culture. Ground analog testing of humans and animals, as well as microgravity-analog cell culture, has demonstrated utility. However, in all cases, it is not known with certainty if these data would reflect similar testing during space travel. Given their ready availability, ground analogs may be extremely useful for assay development and the evaluation of potential countermeasures. In general, the evidence base suffers from widely disparate studies on small numbers of subjects that do not directly correlate well with each other or spaceflight itself. Also lacking are investigations of the effect of gender on adaption to spaceflight. This results in significant knowledge 'gaps' that must be filled by future studies to completely determine any clinical risk related to immunity for human exploration-class space missions. These gaps include a significant lack of in-flight data, particularly during long-duration space missions. The International Space Station represents an excellent science platform with which to address this knowledge gap. Other knowledge gaps include lack of a single validated ground analog for the phenomenon and a lack of flight-compatible laboratory equipment capable of monitoring astronauts (for either clinical or research purposes). However, enough significant data exist, as described in this manuscript, to warrant addressing this phenomenon during the utilization phase of the ISS. A recent Space Shuttle investigation has confirmed the 31 in-flight nature of immune dysregulation, demonstrating that it is not merely a post-flight phenomenon. Several current studies are ongoing onboard the ISS that should thoroughly characterize the phenomenon. NASA recognizes that if spaceflight-associated immune dysregulation persists during exploration flights in conjunction with other dangers, such as high-energy radiation, the result may be a significant clinical risk. This emphasizes the need for a continued integrated comprehensive approach to determining the effect of prolonged spaceflight, separated from transient launch and landing stresses, on human immunity. After such studies, the phenomenon will be understood, and, hopefully, a monitoring strategy will have been developed that could be used to monitor the effectiveness of countermeasure
Chronic fatigue syndrome: exercise performance related to immune dysfunction.
Nijs, Jo; Meeus, Mira; McGregor, Neil R; Meeusen, Romain; de Schutter, Guy; van Hoof, Elke; de Meirleir, Kenny
2005-10-01
To date, the exact cause of abnormal exercise response in chronic fatigue syndrome (CFS) remains to be revealed, but evidence addressing intracellular immune deregulation in CFS is growing. Therefore, the aim of this cross-sectional study was to examine the interactions between several intracellular immune variables and exercise performance in CFS patients. After venous blood sampling, subjects (16 CFS patients) performed a maximal exercise stress test on a bicycle ergometer with continuous monitoring of cardiorespiratory variables. The following immune variables were assessed: the ratio of 37 kDa Ribonuclease (RNase) L to the 83 kDa native RNase L (using a radiolabeled ligand/receptor assay), RNase L enzymatic activity (enzymatic assay), protein kinase R activity assay (comparison Western blot), elastase activity (enzymatic-colorimetric assay), the percent of monocytes, and nitric oxide determination (for monocytes and lymphocytes; flow cytometry, live cell assay). Forward stepwise multiple regression analysis revealed 1) that elastase activity was the only factor related to the reduction in oxygen uptake at a respiratory exchange ratio (RER) of 1.0 (regression model: R = 0.53, F (1,14) = 15.5, P < 0.002; elastase activity P < 0.002); 2) that the protein kinase R activity was the principle factor related to the reduction in workload at RER = 1.0; and 3) that elastase activity was the principle factor related to the reduction in percent of target heart rate achieved. These data provide evidence for an association between intracellular immune deregulation and exercise performance in patients with CFS. To establish a causal relationship, further study of these interactions using a prospective longitudinal design is required.
Schwartz, B S; Edgington, T S
1981-09-01
It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.
Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes
Semenkovich, Nicholas P.; Planer, Joseph D.; Ahern, Philip P.; Griffin, Nicholas W.; Lin, Charles Y.; Gordon, Jeffrey I.
2016-01-01
The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αβ+ and γδ+ intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling–weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages. PMID:27911843
Improvement of Intestinal Immune Cell Function by Lactic Acid Bacteria for Dairy Products.
Kamiya, Tomonori; Watanabe, Yohei; Makino, Seiya; Kano, Hiroshi; Tsuji, Noriko M
2016-12-23
Lactic acid bacteria (LAB) form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552) and Streptococcus thermophilus ME-553 (ME553). In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ) and interleukin 17 (IL-17) produced by cluster of differentiation (CD) 4⁺ T cells from Peyer's patches (PPs) were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity.
Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
Daniell, Henry
2006-10-01
Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang
2009-10-01
Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.
Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in animals.
Sudha, P; Asdaq, Syed Mohammed Basheeruddin; Dhamingi, Sunil S; Chandrakala, Gowda Kallenahalli
2010-01-01
The aim of the present study was to investigate the immunomodulatory action of methanolic extract of Moringa oleifera (MEMO) in an experimental model of immunity. The cellular immunity was evaluated using neutrophil adhesion test, cyclophosphamide induced neutropenia and carbon clearance assay, whereas, humoral immunity was tested by mice lethality test, serum immunoglobulin estimation and indirect haemagglutination assay in animals. Administration of MEMO (250 and 750 mg/kg, po) and Ocimum sanctum (100 mg/kg, po) significantly increased the levels of serum immunoglobulins and also prevented the mortality induced by bovine Pasteurella multocida in mice. They also increased significantly the circulating antibody titre in indirect haemagglunation test. Moreover, MEMO produced significant increase in adhesion of neutrophils, attenuation of cyclophosphamide-induced neutropenia and an increase in phagocytic index in carbon clearance assay. From the above results, it can be concluded that MEMO stimulate both cellular and humoral immune response. However, low dose of MEMO was found to be more effective than the high dose.
Drake, Walter R; Hou, Ching-Wen; Zachara, Natasha E; Grimes, Catherine Leimkuhler
2018-06-01
O-GlcNAcylation is a dynamic and functionally diverse post-translational modification shown to affect thousands of proteins, including the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Mutations of Nod2 (R702W, G908R and 1007 fs) are associated with Crohn's disease and have lower stabilities compared to wild type. Cycloheximide (CHX)-chase half-life assays have been used to show that O-GlcNAcylation increases the stability and response of both wild type and Crohn's variant Nod2, R702W. A more rapid method to assess stability afforded by post-translational modifications is necessary to fully comprehend the correlation between NLR stability and O-GlcNAcylation. Here, a recently developed cellular thermal shift assay (CETSA) that is typically used to demonstrate protein-ligand binding was adapted to detect shifts in protein stabilization upon increasing O-GlcNAcylation levels in Nod2. This assay was used as a method to predict if other Crohn's associated Nod2 variants were O-GlcNAcylated, and also identified the modification on another NLR, Nod1. Classical immunoprecipitations and NF-κB transcriptional assays were used to confirm the presence and effect of this modification on these proteins. The results presented here demonstrate that CETSA is a convenient method that can be used to detect the stability effect of O-GlcNAcylation on O-GlcNAc-transferase (OGT) client proteins and will be a powerful tool in studying post-translational modification.
Smit, Erica; Erasmus, Mzwandile; Day, Jonathan; Makhethe, Lebohang; de Kock, Marwou; Hughes, E. Jane; van Rooyen, Michele; Stone, Lynnett; Hanekom, Willem; Brennan, Michael J.; Wallis, Robert S.; Hatherill, Mark; Scriba, Thomas J.
2017-01-01
The determinants of immunological protection against Mycobacterium tuberculosis (M.tb) infection in humans are not known. Mycobacterial growth inhibition assays have potential utility as in vitro surrogates of in vivo immunological control of M.tb. We evaluated a whole blood growth inhibition assay in a setting with high burden of TB and aimed to identify immune responses that correlate with control of mycobacterial growth. We hypothesized that individuals with underlying M.tb infection will exhibit greater M.tb growth inhibition than uninfected individuals and that children aged 4 to 12 years, an age during which TB incidence is curiously low, will also exhibit greater M.tb growth inhibition than adolescents or adults. Neither M.tb infection status, age of the study participants, nor M.tb strain was associated with differential control of mycobacterial growth. Abundance and function of innate or T cell responses were also not associated with mycobacterial growth. Our data suggest that this assay does not provide a useful measure of age-associated differential host control of M.tb infection in a high TB burden setting. We propose that universally high levels of mycobacterial sensitization (through environmental non-tuberculous mycobacteria and/or universal BCG vaccination) in persons from high TB burden settings may impart broad inhibition of mycobacterial growth, irrespective of M.tb infection status. This sensitization may mask the augmentative effects of mycobacterial sensitization on M.tb growth inhibition that is typical in low burden settings. PMID:28886145
Li, Ruimei; Tan, Binghe; Han, Honghui; Liu, Mingyao; Qian, Min; Du, Bing
2012-01-01
Norcantharidin (NCTD), a demethylated analog of cantharidin, is a common used clinical drug to inhibit proliferation and metastasis of cancer cells. But the role of NCTD in modulating immune responses remains unknown. Here, we investigated the function and mechanism of NCTD in regulation of TLR4 associated immune response in macrophages. We evaluated the influence of NCTD on host defense against invaded pathogens by acute peritonitis mouse model, ELISA, Q-PCR, nitrite quantification, phagocytosis assay and gelatin zymography assay. Our data showed that the survival and the serum concentrations of IL-6 and TNF-α were all enhanced by NCTD significantly in peritonitis mouse model. Accordingly, LPS-induced cytokine, nitric oxide and MMP-9 production as well as the phagocytosis of bacteria were all up-regulated by NCTD in a dose dependent manner in both RAW264.7 cells and bone marrow-derived macrophages (BMMs). Then we further analyzed TLR4 associated signaling pathway by Western blot, Immunofluorescence and EMSA in the presence or absence of LPS. The phosphorylation of AKT and p65 at serine 536 but not serine 468 was enhanced obviously by NCTD in a dose dependent manner, whereas the degradation of IκBα was little effected. Consequently, the nuclear translocation and DNA binding ability of NF-κB was also increased by NCTD obviously in RAW264.7 cells. Our results demonstrated that NCTD could facilitate LPS-mediated immune response through promoting the phosphorylation of AKT/p65 and transcriptional activity of NF-κB, thus reprofiling the traditional anti-tumor drug NCTD as a novel immune regulator in promoting host defense against bacterial infection. PMID:22984593
Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie
2016-12-20
Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better understand the molecular mechanisms of JAK/STAT signaling pathway in antifungal immune response in silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.
Sunyakumthorn, Piyanate; Somponpun, Suwit J.; Im-erbsin, Rawiwan; Anantatat, Tippawan; Jenjaroen, Kemajittra; Dunachie, Susanna J.; Lombardini, Eric D.; Burke, Robin L.; Blacksell, Stuart D.; Jones, James W.; Mason, Carl J.; Richards, Allen L.; Day, Nicholas P. J.
2018-01-01
Background Scrub typhus is an important endemic disease in tropical Asia caused by Orientia tsutsugamushi for which no effective broadly protective vaccine is available. The successful evaluation of vaccine candidates requires well-characterized animal models and a better understanding of the immune response against O. tsutsugamushi. While many animal species have been used to study host immunity and vaccine responses in scrub typhus, only limited data exists in non-human primate (NHP) models. Methodology/Principle findings In this study we evaluated a NHP scrub typhus disease model based on intradermal inoculation of O. tsutsugamushi Karp strain in rhesus macaques (n = 7). After an intradermal inoculation with 106 murine LD50 of O. tsutsugamushi at the anterior thigh (n = 4) or mock inoculum (n = 3), a series of time course investigations involving hematological, biochemical, molecular and immunological assays were performed, until day 28, when tissues were collected for pathology and immunohistochemistry. In all NHPs with O. tsutsugamushi inoculation, but not with mock inoculation, the development of a classic eschar with central necrosis, regional lymphadenopathy, and elevation of body temperature was observed on days 7–21 post inoculation (pi); bacteremia was detected by qPCR on days 6–18 pi; and alteration of liver enzyme function and increase of white blood cells on day 14 pi. Immune assays demonstrated raised serum levels of soluble cell adhesion molecules, anti-O. tsutsugamushi-specific antibody responses (IgM and IgG) and pathogen-specific cell-mediated immune responses in inoculated macaques. The qPCR assays detected O. tsutsugamushi in eschar, spleen, draining and non-draining lymph nodes, and immuno-double staining demonstrated intracellular O. tsutsugamushi in antigen presenting cells of eschars and lymph nodes. Conclusions/Significance These data show the potential of using rhesus macaques as a scrub typhus model, for evaluation of correlates of protection in both natural and vaccine induced immunity, and support the evaluation of future vaccine candidates against scrub typhus. PMID:29522521
Sood, Siddharth; Yu, Lijia; Visvanathan, Kumar; Angus, Peter William; Gow, Paul John; Testro, Adam Gareth
2016-01-01
AIM To investigate whether a novel immune function biomarker QuantiFERON-Monitor (QFM) can identify cirrhotic patients at greatest risk of infection. METHODS Adult cirrhotic patients on the liver transplant waiting list were recruited for this observational cohort study from a tertiary liver transplant referral unit. The immune function biomarker, QFM was performed using the same method as the widely available Quantiferon-gold assay, and measures output in interferon gamma in IU/mL after dual stimulation of the innate and adaptive immune systems. Ninety-one cirrhotic patients were recruited, with 47 (52%) transplanted on the day of their QFM. The remaining 44 (48%) were monitored for infections until transplant, death, or census date of 1st February 2014. RESULTS Cirrhotic patients express a median QFM significantly lower than healthy controls (94.5 IU/mL vs 423 IU/mL), demonstrating that they are severely immunosuppressed. Several factors including model for end stage liver disease, presence of hepatocellular carcinoma, bilirubin, international normalized ratio and haemoglobin were associated with QFM on univariate analysis. Disease aetiology did not appear to impact QFM. On multivariate analysis, only Child-Pugh score and urea were significantly associated with a patient’s immune function as objectively measured by QFM. In the 44 patients who were not transplanted immediately after their blood test and could be monitored for subsequent infection risk, 13 (29.5%) experienced a pre-transplant infection a median 20 d (range 2-182) post-test. QFM < 214 IU/mL was associated with HR = 4.1 (P = 0.01) for infection. A very low QFM < 30 IU/mL was significantly associated (P = 0.003) with death in three patients who died while awaiting transplantation (HR = 56.6). CONCLUSION QFM is lower in cirrhotics, allowing objective determinations of an individual’s unique level of immune dysfunction. Low QFM was associated with increased susceptibility to infection. PMID:28050238
Immune response varies with rate of dispersal in invasive cane toads (Rhinella marina).
Brown, Gregory P; Shine, Richard
2014-01-01
What level of immunocompetence should an animal maintain while undertaking long-distance dispersal? Immune function (surveillance and response) might be down-regulated during prolonged physical exertion due to energy depletion, and/or to avoid autoimmune reactions arising from damaged tissue. On the other hand, heightened immune vigilance might be favored if the organism encounters novel pathogens as it enters novel environments. We assessed the links between immune defense and long-distance movement in a population of invasive cane toads (Rhinella marina) in Australia. Toads were radio-tracked for seven days to measure their activity levels and were then captured and subjected to a suite of immune assays. Toads that moved further showed decreased bacteria-killing ability in their plasma and decreased phagocytic activity in their whole blood, but a heightened skin-swelling response to phytohemagglutinin. Baseline and post-stress corticosterone levels were unrelated to distance moved. Thus, long-distance movement in cane toads is associated with a dampened response in some systems and enhanced response in another. This pattern suggests that sustained activity is accompanied by trade-offs among immune components rather than an overall down or up-regulation. The finding that high mobility is accompanied by modification of the immune system has important implications for animal invasions.
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges
Coughlan, Lynda; Lambe, Teresa
2015-01-01
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials. PMID:26343189
Curcumin prevents human dendritic cell response to immune stimulants
Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.
2012-01-01
Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521
Curcumin prevents human dendritic cell response to immune stimulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.
2008-09-26
Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays weremore » performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.« less
Niu, Lidan; Zhou, Yingfeng; Sun, Bing; Hu, Junling; Kong, Lingyu; Duan, Sufang
2013-01-01
The effects of different Radix ranunculi ternati extracts on human gastric cancer BGC823 cells were investigated, different methods were used to extract the saponins and polysaccharides from Radix ranunculi ternati, and MTT assay and colony formation assay were used to observe the effects of saponins and polysaccharides from Radix ranunculi ternati on in-vitro cultured human gastric cancer BGC823 cells. The results found that the saponins and polysaccharides from Radix Ranunculi Ternati had certain effects on both the growth and colony formation of human gastric cancer BGC823 cells, while improving the immune function of normal mice, of which saponins had more significant effects than polysaccharides.
Mahajan, Sudipta; Hogan, James K; Shlyakhter, Dina; Oh, Luke; Salituro, Francesco G; Farmer, Luc; Hoock, Thomas C
2015-05-01
Cytokines, growth factors, and other chemical messengers rely on a class of intracellular nonreceptor tyrosine kinases known as Janus kinases (JAKs) to rapidly transduce intracellular signals. A number of these cytokines are critical for lymphocyte development and mediating immune responses. JAK3 is of particular interest due to its importance in immune function and its expression, which is largely confined to lymphocytes, thus limiting the potential impact of JAK3 inhibition on nonimmune physiology. The aim of this study was to evaluate the potency and selectivity of the investigational JAK3 inhibitor VX-509 (decernotinib) [(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide] against JAK3 kinase activity and inhibition of JAK3-mediated signaling in vitro and JAK3-dependent physiologic processes in vivo. These results demonstrate that VX-509 potently inhibits JAK3 in enzyme assays (Ki = 2.5 nM + 0.7 nM) and cellular assays dependent on JAK3 activity (IC50 range, 50-170 nM), with limited or no measurable potency against other JAK isotypes or non-JAK kinases. VX-509 also showed activity in two animal models of aberrant immune function. VX-509 treatment resulted in dose-dependent reduction in ankle swelling and paw weight and improved paw histopathology scores in the rat collagen-induced arthritis model. In a mouse model of oxazolone-induced delayed-type hypersensitivity, VX-509 reduced the T cell-mediated inflammatory response in skin. These findings demonstrate that VX-509 is a selective and potent inhibitor of JAK3 in vitro and modulates proinflammatory response in models of immune-mediated diseases, such as collagen-induced arthritis and delayed-type hypersensitivity. The data support evaluation of VX-509 for treatment of patients with autoimmune and inflammatory diseases such as rheumatoid arthritis. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Nanobeads-based assays. The case of gluten detection
NASA Astrophysics Data System (ADS)
Venditti, Iole; Fratoddi, Ilaria; Vittoria Russo, Maria; Bellucci, Stefano; Crescenzo, Roberta; Iozzino, Luisa; Staiano, Maria; Aurilia, Vincenzo; Varriale, Antonio; Rossi, Mosè; D'Auria, Sabato
2008-11-01
In order to verify if the use of nanobeads of poly[phenylacetylene-(co-acrylic acid)] (PPA/AA) in the ELISA test would affect the immune-activity of the antibodies (Ab) and/or the activity of the enzymes used to label the Ab anti-rabbit IGg, in this work we immobilized the horse liver peroxidase labelled Ab anti-rabbit IGg onto PPA/AA nanobeads. The gluten test was chosen as the model to demonstrate the usefulness of these nanobeads in immunoassays. The synthesis of PPA/AA nanobeads was performed by a modified emulsion polymerization. Self-assembly of nanospheres with mean diameter equal to 200 nm was achieved by casting aqueous suspensions. The materials were characterized by traditional spectroscopic techniques, while the size and dispersion of the particles were analysed by scanning electron microscopy (SEM) measurements. The obtained results show that the immobilization process of the Abs onto PPA/AA did not affect either the immune-response of the Abs or the functional activity of the peroxidase suggesting the usefulness of PPA/AA for the design of advanced nanobeads-based assays for the simultaneous screening of several analytes in complex media.
Current insights into the laboratory diagnosis of HIT.
Bakchoul, T; Zöllner, H; Greinacher, A
2014-06-01
Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction and prothrombotic disorder caused by immunization against platelet factor 4 (PF4) after complex formation with heparin or other polyanions. After antibody binding to PF4/heparin complexes, HIT antibodies are capable of intravascular platelet activation by cross-linking Fc gamma receptor IIa (FcγRIIa) on the platelet surface leading to a platelet count decrease and/or thrombosis. In contrast to most other immune-mediated disorders, the currently available laboratory tests for anti-PF4/heparin antibodies show a high sensitivity also for clinically irrelevant antibodies. This makes the diagnosis of HIT challenging and bears the risk to substantially overdiagnose HIT. The strength of the antigen assays for HIT is in ruling out HIT when the test is negative. Functional assays have a higher specificity for clinically relevant antibodies, but they are restricted to specialized laboratories. Currently, a Bayesian approach combining the clinical likelihood estimation for HIT with laboratory tests is the most appropriate approach to diagnose HIT. In this review, we give an overview on currently available diagnostic procedures and discuss their limitations. © 2014 John Wiley & Sons Ltd.
Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing
Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna
2012-01-01
Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured?
Chuangchaiya, Sriwipa; Persson, Kristina E M
2013-01-01
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Aging Research Using Mouse Models
Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.
2015-01-01
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080
Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao
2018-03-15
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang
2015-07-01
The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator. Copyright © 2015 Elsevier B.V. All rights reserved.
Splenic immunotoxicity in developing cane toads (Rhinella marina) from Bermuda.
Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Fort, Troy D; Linzey, Donald W; Bacon, Jamie P
2016-10-01
The impacts of contaminated sediment from 2 ponds in Bermuda on immune function in newly metamorphosed cane toads were examined. In the present study, a partial life-cycle experiment exposing Gosner stage 20 cane toad tadpoles to pond sediment and laboratory culture water through metamorphosis and into a juvenile state was performed. A basic immunology battery, including general necropsy, spleen somatic index, spleen white pulp content, splenocyte tissue density, and splenocyte viability, was conducted in newly metamorphosed Rhinella marina exposed to Bermuda freshwater sediment and baseline specimens collected from 2 separate populations in south Texas and south Florida, USA. Immune function was evaluated using a lymphocyte proliferation assay with subset specimens infected with Mycobacterium chelonae. In the Bermuda population exposed to pond sediment, splenocyte tissue density was markedly lower and lymphocyte proliferation substantially less relative to cohorts exposed to control sediment and to the North American populations. Considerable increases in spleen weight and liver and spleen lesions related to M. chelonae infection were recorded in challenged Bermuda R. marina compared with unchallenged specimens. Overall, immune function in Bermuda R. marina was compromised compared with North American mainland R. marina regardless of treatment but more dramatically in specimens exposed to Bermuda pond sediments. Environ Toxicol Chem 2016;35:2604-2612. © 2016 SETAC. © 2016 SETAC.
Fazal, Nadeem
2013-01-01
Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.
Fazal, Nadeem
2013-01-01
Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury. PMID:24600560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvermoes, Brooke E., E-mail: brooke.tvermoes@cardn
The objective of this preliminary study was to evaluate the threshold for immune stimulation in mice following local exposure to metal particles and ions representative of normal-functioning cobalt-chromium (CoCr) metal-on-metal (MoM) hip implants. The popliteal lymph node assay (PLNA) was used in this study to assess immune responses in BALB/c mice following treatment with chromium-oxide (Cr{sub 2}O{sub 3}) particles, metal salts (CoCl{sub 2}, CrCl{sub 3} and NiCl{sub 2}), or Cr{sub 2}O{sub 3} particles together with metal salts using single-dose exposures representing approximately 10 days (0.000114 mg), 19 years (0.0800 mg), and 40 years (0.171 mg) of normal implant wear. Themore » immune response elicited following treatment with Cr{sub 2}O{sub 3} particles together with metal salts was also assessed at four additional doses equivalent to approximately 1.5 months (0.0005 mg), 0.6 years (0.0025 mg), 2.3 years (0.01 mg), and 9.3 years (0.04 mg) of normal implant wear. Mice were injected subcutaneously (50 μL) into the right hind foot with the test article, or with the relevant vehicle control. The proliferative response of the draining lymph node cells (LNC) was measured four days after treatment, and stimulation indices (SI) were derived relative to vehicle controls. The PLNA was negative (SI < 3) for all Cr{sub 2}O{sub 3} particle doses, and was also negative at the lowest dose of the metal salt mixture, and the lowest four doses of the Cr{sub 2}O{sub 3} particles with metal salt mixture. The PLNA was positive (SI > 3) at the highest two doses of the metal salt mixture and the highest three doses of the Cr{sub 2}O{sub 3} particles with the metal salt mixture. The provisional NOAEL and LOAEL values identified in this study for immune activation corresponds to Co and Cr concentrations in the synovial fluid approximately 500 and 2000 times higher than that reported for normal-functioning MoM hip implants, respectively. Overall, these results indicate that normal wear conditions are unlikely to result in immune stimulation in individuals not previously sensitized to metals. - Highlights: • Immune responses in mice were assessed following treatment with Cr2O3 particles with metal salts. • The PLNA was negative (SI < 3) for all Cr2O3 particle doses. • A LOAEL for immune activation was identified at 0.04 mg of metal particles with metal salts. • A NOAEL for immune activation was identified at 0.01 mg of metal particles with metal salts.« less
Finger, John W; Thomson, Peter C; Adams, Amanda L; Benedict, Suresh; Moran, Christopher; Isberg, Sally R
2015-02-01
To determine reference levels for on-farm stressors on immune responsiveness and growth rate, 253 hatchling crocodiles from 11 known breeding pairs were repeatedly measured and blood sampled during their first year. Plasma corticosterone (CORT) was used to quantify baseline stress levels in captive animals and were found to be lower (mean 1.83±SE 0.16 ng/mL) than previously reported in saltwater crocodile hatchlings. Two tests of immune function were also conducted. Innate constitutive immunity was assessed using bacterial killing assays (BKA) against two bacterial species: Escherichia coli and Providencia rettgeri, whereby the latter causes considerable economic loss to industry from septicaemic mortalities. Although the bactericidal capabilities were different at approximately 4 months old (32±3% for E. coli and 16±4% for P. rettgeri), the differences had disappeared by approximately 9 months old (58±2% and 68±6%, respectively). To assess immune responsiveness to a novel antigen, the inflammatory swelling response caused by phytohaemagglutinin (PHA) injection was assessed but was only significantly different between Samplings 1 and 3 (5% LSD). There were no significant clutch effects for CORT or PHA but there were for both BKA traits. CORT was not significantly associated with growth (head length) or the immune parameters except for P. rettgeri BKA where higher CORT levels were associated with better bactericidal capability. As such, these results suggest that the crocodiles in this study are not stressed, therefore endorsing the management strategies adopted within the Australian industry Code of Practice. Copyright © 2015 Elsevier Inc. All rights reserved.
Tjahjono, Elissa; Kirienko, Natalia V
2017-06-01
All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.
Brelsford, Jill B.; Plieskatt, Jordan L.; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P.; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J.
2017-01-01
A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2–8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines. PMID:28192438
Bernsmeier, Christine; Triantafyllou, Evangelos; Brenig, Robert; Lebosse, Fanny J; Singanayagam, Arjuna; Patel, Vishal C; Pop, Oltin T; Khamri, Wafa; Nathwani, Rooshi; Tidswell, Robert; Weston, Christopher J; Adams, David H; Thursz, Mark R; Wendon, Julia A; Antoniades, Charalambos Gustav
2018-06-01
Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14 + HLA-DR - myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14 + CD15 - CD11b + HLA-DR - cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. Circulating CD14 + CD15 - CD11b + HLA-DR - M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. Immunosuppressive CD14 + HLA-DR - M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wang, Chengcheng; Feng, Liang; Su, Jiayan; Cui, Li; Dan Liu; Yan, Jun; Ding, Chuanlin; Tan, Xiaobin; Jia, Xiaobin
2017-07-31
Epimedium koreanum Nakai is documented as tonic herbal in China for over a thousand years and has the potential to enhance the body's immunity according to the theory of traditional Chinese medicine. Polysaccharides are one of the most important effective compounds in Epimedium koreanum Nakai. Accumulating evidence indicated polysaccharides derived from traditional Chinese medicine have potent immune-enhancing properties and relatively nontoxic effects in cancer treatment. However, information about immunological regulation in tumor of Epimedium koreanum Nakai polysaccharides is limited and the reports of purification, characterization of polysaccharides have remained less. The purpose of our study was to further investigate the active polysaccharides from Epimedium koreanum Nakai by evaluating the immune-regulation activities in tumor-bearing mice and provide reasonable explanation for traditional application. We firstly purified Epimedium koreanum polysaccharide (EPS) from crude extracts and evaluated EPS in vitro using immunological experiments including maturation and Ag presentation function of DCs, CD4 T-cell differentiation and secretion of anti-cancer cytokines. In LLC-bearing mice model, we investigated its antitumor activities through evaluation of tumor cell proliferative activity, calculation of immune organ indexes and relative host immune system function tests. Results showed that EPS (180 × 10 4 Da) was composed of mannose (Man), rhamnose (Rha), glucuronic acid (GlcUA), galactosamine (GalN), glucose (Glc), galactose (Gal), arabinose (Ara) and fructose (Fuc). Chemical composition assay indicated EPS was a fraction with 28.20% uronic acid content. FT-IR suggested the presence of pyraoid ring in EPS and SEM displayed smooth surface embedded by several pores. Moreover, Our study suggested EPS could remarkably stimulate macrophages to secrete substantial anti-cancer cytokines and promote maturation as well as Ag presentation function of DCs. Strikingly, CD4 T-cell differentiation and increased INF-γ production stimulated by EPS-activated macrophages were observed in the research. Furthermore, EPS exhibited prominent antitumor activities through regulating host immune system function in LLC-bearing mice. Taken together, experimental findings suggested EPS could be regarded as a potential immune-stimulating modifier for cancer therapy. Our studies demonstrated the polysaccharide (180 × 10 4 Da) purified from Epimedium koreanum Nakai could promote maturation and Ag presentation function of DCs, increase the level of immunomodulatory cytokines and activate CD4 T-cell differentiation. Furthermore, it may inhibit the tumor growth in LLC-bearing mice through regulating host immune system function. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Li, Ou; Tormin, Ariane; Sundberg, Berit; Hyllner, Johan; Le Blanc, Katarina; Scheding, Stefan
2013-01-01
Mesenchymal stroma cells (MSCs) have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs), however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells) to normal human bone marrow-derived MSCs (BM-MSCs). hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells). Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA) lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function. PMID:23383153
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus . However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus . For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus . Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B.; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies. PMID:29270175
Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.
Chahroudi, A; Silvestri, G; Feinberg, M B
2003-10-01
Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.
Diaz, Fernando M; Knipe, David M
2016-01-15
Viral vaccines have traditionally protected against disease, but for viruses that establish latent infection, it is desirable for the vaccine to reduce infection to reduce latent infection and reactivation. While seroconversion has been used in clinical trials of herpes simplex virus (HSV) vaccines to measure protection from infection, this has not been modeled in animal infection systems. To measure the ability of a genital herpes vaccine candidate to protect against various aspects of infection, we established a non-lethal murine model of genital HSV-2 infection, an ELISA assay to measure antibodies specific for infected cell protein 8 (ICP8), and a very sensitive qPCR assay. Using these assays, we observed that immunization with HSV-2 dl5-29 virus reduced disease, viral shedding, seroconversion, and latent infection by the HSV-2 challenge virus. Therefore, it may be feasible to obtain protection against genital disease, seroconversion and latent infection by immunization, even if sterilizing immunity is not achieved. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of 12C6+ Heavy Ion Radiation on Dendritic Cells Function
Zhang, Pei; Hu, Xuguang; Liu, Bin; Liu, Zhe; Liu, Cong; Cai, Jianming; Gao, Fu; Li, Bailong
2018-01-01
Background Carbon ion radiotherapy has been shown to be more effective in cancer radiotherapy than photon irradiation. Influence of carbon ion radiation on cancer microenvironment is very important for the outcomes of radiotherapy. Tumor-infiltrating dendritic cells (DCs) play critical roles in cancer antigen processing and antitumor immunity. However, there is scant literature covering the effects of carbon ion radiation on DCs. In this study, we aimed to uncover the impact of carbon ion irradiation on bone marrow derived DCs. Material/Methods Bone marrow cells were co-cultured with GM-CSF and IL-4 for seven days, and the population of DCs was confirmed with flow cytometry. We used an Annexin V and PI staining method to detect cell apoptosis. Endocytosis assay of DCs was determined by using a flow cytometry method. DCs migration capacity was tested by a Transwell method. We also used ELISA assay and western blotting assay to examine the cytokines and protein expression, respectively. Results Our data showed that carbon ion radiation induced apoptosis in both immature and mature DCs. After irradiation, the endocytosis and migration capacity of DCs was also impaired. Interestingly, carbon irradiation triggered a burst of IFN-γ and IL-12 in LPS or CpG treated DCs, which provide novel insights into the combination of immunotherapy and carbon ion radiotherapy. Finally, we found that carbon ion irradiation induced apoptosis and migration suppression was p38 dependent. Conclusions Our present study demonstrated that carbon ion irradiation induced apoptosis in DCs, and impaired DCs function mainly through the p38 signaling pathway. Carbon ion irradiation also triggered anti-tumor cytokines secretion. This work provides novel information of carbon ion radiotherapy in DCs, and also provides new insights on the combination of immune adjuvant and carbon ion radiotherapy. PMID:29525808
Identification and characterization of MAVS from black carp Mylopharyngodon piceus.
Zhou, Wei; Zhou, Jujun; Lv, Ying; Qu, Yixiao; Chi, Mengdie; Li, Jun; Feng, Hao
2015-04-01
MAVS (mitochondria antiviral signaling protein) plays an important role in the host cellular innate immune response against microbial pathogens. In this study, MAVS has been cloned and characterized from black carp (Mylopharyngodon piceus). The full-length cDNA of black carp MAVS (bcMAVS) consists of 2352 nucleotides and the predicted bcMAVS protein contains 579 amino acids. Structural analysis showed that bcMAVS is composed of functional domains including an N-terminal CARD, a central proline-rich domain, a putative TRAF2-binding motif and a C-terminal TM domain, which is similar to mammalian MAVS. bcMAVS is constitutively transcribed in all the selected tissues including gill, kidney, heart, intestine, liver, muscle, skin and spleen; bcMAVS mRNA level in intestine, liver, muscle increased but decreased in spleen right after GCRV or SVCV infection. Multiple bands of bcMAVS were detected in western blot when it was expressed in tissue culture, which is similar to mammalian MAVS. Immunofluorescence assay determined that bcMAVS is a mitochondria protein and luciferase reporter assay demonstrated that bcMAVS could induce zebrafish IFN and EPC IFN expression in tissue culture. Data generated in this manuscript has built a solid foundation for further elucidating the function of bcMAVS in the innate immune system of black carp. Copyright © 2015 Elsevier Ltd. All rights reserved.
Menard, Cedric; Pacelli, Luciano; Bassi, Giulio; Dulong, Joelle; Bifari, Francesco; Bezier, Isabelle; Zanoncello, Jasmina; Ricciardi, Mario; Latour, Maelle; Bourin, Philippe; Schrezenmeier, Hubert; Sensebé, Luc; Tarte, Karin; Krampera, Mauro
2013-06-15
Clinical-grade mesenchymal stromal cells (MSCs) are usually expanded from bone marrow (BMMSCs) or adipose tissue (ADSCs) using processes mainly differing in the use of fetal calf serum (FCS) or human platelet lysate (PL). We aimed to compare immune modulatory properties of clinical-grade MSCs using a combination of fully standardized in vitro assays. BMMSCs expanded with FCS (BMMSC-FCS) or PL (BMMSC-PL), and ADSC-PL were analyzed in quantitative phenotypic and functional experiments, including their capacity to inhibit the proliferation of T, B, and NK cells. The molecular mechanisms supporting T-cell inhibition were investigated. These parameters were also evaluated after pre-stimulation of MSCs with inflammatory cytokines. BMMSC-FCS, BMMSC-PL, and ADSC-PL displayed significant differences in expression of immunosuppressive and adhesion molecules. Standardized functional assays revealed that resting MSCs inhibited proliferation of T and NK cells, but not B cells. ADSC-PL were the most potent in inhibiting T-cell growth, a property ascribed to interferon-γ-dependent indoleamine 2,3-dioxygenase activity. MSCs did not stimulate allogeneic T cell proliferation but were efficiently lysed by activated NK cells. The systematic use of quantitative and reproducible validation techniques highlights differences in immunological properties of MSCs produced using various clinical-grade processes. ADSC-PL emerge as a promising candidate for future clinical trials.
Menard, Cedric; Pacelli, Luciano; Bassi, Giulio; Dulong, Joelle; Bifari, Francesco; Bezier, Isabelle; Zanoncello, Jasmina; Ricciardi, Mario; Latour, Maelle; Bourin, Philippe; Schrezenmeier, Hubert; Sensebé, Luc
2013-01-01
Clinical-grade mesenchymal stromal cells (MSCs) are usually expanded from bone marrow (BMMSCs) or adipose tissue (ADSCs) using processes mainly differing in the use of fetal calf serum (FCS) or human platelet lysate (PL). We aimed to compare immune modulatory properties of clinical-grade MSCs using a combination of fully standardized in vitro assays. BMMSCs expanded with FCS (BMMSC-FCS) or PL (BMMSC-PL), and ADSC-PL were analyzed in quantitative phenotypic and functional experiments, including their capacity to inhibit the proliferation of T, B, and NK cells. The molecular mechanisms supporting T-cell inhibition were investigated. These parameters were also evaluated after pre-stimulation of MSCs with inflammatory cytokines. BMMSC-FCS, BMMSC-PL, and ADSC-PL displayed significant differences in expression of immunosuppressive and adhesion molecules. Standardized functional assays revealed that resting MSCs inhibited proliferation of T and NK cells, but not B cells. ADSC-PL were the most potent in inhibiting T-cell growth, a property ascribed to interferon-γ-dependent indoleamine 2,3-dioxygenase activity. MSCs did not stimulate allogeneic T cell proliferation but were efficiently lysed by activated NK cells. The systematic use of quantitative and reproducible validation techniques highlights differences in immunological properties of MSCs produced using various clinical-grade processes. ADSC-PL emerge as a promising candidate for future clinical trials. PMID:23339531
Manga, Kiran; Serban, Geo; Schwartz, Joseph; Slotky, Ronit; Patel, Nita; Fan, Jianshe; Bai, Xiaolin; Chari, Ajai; Savage, David; Suciu-Foca, Nicole; Colovai, Adriana I
2010-07-01
Hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with hematologic malignancies. To explore the immunomodulatory effects of HSC mobilization agents, we studied the function and phenotype of CD4(+) T cells from 16 adult patients with hematologic malignancies undergoing HSC mobilization treatment for autologous transplantation. Immune cell function was determined using the Immuknow (Cylex) assay by measuring the amount of adenosine triphosphate (ATP) produced by CD4(+) cells from whole blood. ATP activity measured in G-CSF-treated patients was significantly higher than that measured in healthy individuals or "nonmobilized" patients. In patients treated with G-CSF, CD4(+) T cells were predominantly CD25(low)FOXP3(low), consistent with an activated phenotype. However, T-cell depletion did not abrogate ATP production in blood samples from G-CSF-treated patients, indicating that CD4(+) myeloid cells contributed to the increased ATP levels observed in these patients. There was a significant correlation between ATP activity and patient survival, suggesting that efficient activation of CD4(+) cells during mobilization treatment predicts a low risk of disease relapse. Monitoring immune cell reactivity using the Immuknow assay may assist in the clinical management of patients with hematologic malignancies and optimization of HSC mobilization protocols. Copyright 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Kumaraswamy, Monika; Kousha, Armin; Nizet, Victor
2017-01-01
ABSTRACT This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. PMID:29242830
An, So Jung; Scaria, Puthupparampil V; Chen, Beth; Barnafo, Emma; Muratova, Olga; Anderson, Charles; Lambert, Lynn; Chae, Myung Hwa; Yang, Jae Seung; Duffy, Patrick E
2018-05-17
Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever. Copyright © 2018. Published by Elsevier Ltd.
Building an Ontology-driven Database for Clinical Immune Research
Ma, Jingming
2006-01-01
The clinical researches of immune response usually generate a huge amount of biomedical testing data over a certain period of time. The user-friendly data management systems based on the relational database will help immunologists/clinicians to fully manage the data. On the other hand, the same biological assays such as ELISPOT and flow cytometric assays are involved in immunological experiments no matter of different study purposes. The reuse of biological knowledge is one of driving forces behind this ontology-driven data management. Therefore, an ontology-driven database will help to handle different clinical immune researches and help immunologists/clinicians easily understand the immunological data from each other. We will discuss some outlines for building an ontology-driven data management for clinical immune researches (ODMim). PMID:17238637
Aziz, Najib
2015-01-01
Measurement of circulating cytokine levels can provide important information in the study of the pathogenesis of disease. John L. Fahey was a pioneer in the measurement of circulating cytokines and immune-activation markers and a leader in the quality assessment/control of assays for measurement of circulating cytokines. Insights into the measurement of circulating cytokines, including consideration of multiplex assays, are presented here.
Root assays to study pattern-triggered immunity in plant-nematode interactions
USDA-ARS?s Scientific Manuscript database
Plants employ extracellular immune receptors to perceive conserved pathogen-associated molecular patterns (PAMPs), triggering the first layer of defense known as pattern-triggered immunity (PTI). The understanding of PTI is mainly based on the studies focusing on leaves. Plants are vulnerable to att...
Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili
2005-02-01
The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study provides the first evidence that Qigong practice may exert transcriptional regulation at a genomic level. New approaches are needed to study how genes are regulated by elements associated with human uniqueness, such as consciousness, cognition, and spirituality.
Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)
Alcorn, S.W.; Murray, A.L.; Pascho, R.J.
2002-01-01
To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in its scope because it was the first quantitative assessment of salmon immune functions for an entire life-cycle. ?? 2002 Elsevier Science Ltd.
Kimberly, R P; Parris, T M; Inman, R D; McDougal, J S
1983-01-01
Seventeen pairs of longitudinal studies of mononuclear phagocyte system (MPS) Fc receptor function in 15 patients with systemic lupus were performed to explore the dynamic range of Fc receptor dysfunction in lupus and to establish the relationships between MPS function, clinical disease activity and circulating immune complexes (CIC). Fc receptor function was measured by the clearance of IgG sensitized autologous erythrocytes. At the time of first study the degree of MPS dysfunction was correlated with both clinical activity (P less than 0.05) and CIC (P less than 0.05). At follow-up patients with a change in clinical status show significantly larger changes in clearance function compared to clinically stable patients (206 min vs 7 min; P less than 0.001). MPS function changed concordantly with a change in clinical status in all cases (P = 0.002). Longitudinal assessments did not demonstrate concordance of changes in MPS function and CIC, measured by three different assays. The MPS Fc receptor defect in systemic lupus is dynamic and closely associated with disease activity. The lack of concordance of the defect with changes in CIC suggests that either CIC does not adequately reflect receptor site saturation or that other factors may also contribute to the magnitude of MPS dysfunction. PMID:6839542
Lum, Fok-Moon; Lye, David C B; Tan, Jeslin J L; Lee, Bernett; Chia, Po-Ying; Chua, Tze-Kwang; Amrun, Siti N; Kam, Yiu-Wing; Yee, Wearn-Xin; Ling, Wei-Ping; Lim, Vanessa W X; Pang, Vincent J X; Lee, Linda K; Mok, Esther W H; Chong, Chia-Yin; Leo, Yee-Sin; Ng, Lisa F P
2018-04-16
The unexpected re-emergence of Zika virus (ZIKV) has caused numerous outbreaks globally. This study characterized the host immune responses during ZIKV infection. Patient samples were collected longitudinally during the acute, convalescence and recovery phases of ZIKV infection over 6 months during the Singapore outbreak in late 2016. Plasma immune mediators were profiled via multiplex micro-bead assay, while changes in blood cell numbers were determined with immune-phenotyping. Data showed the involvement of various immune mediators during acute ZIKV infection accompanied by a general reduction in blood cell numbers for all immune subsets except CD14+ monocytes. Importantly, viremic patients experiencing moderate symptoms had significantly higher quantities of IP-10, MCP-1, IL-1RA, IL-8 and PIGF-1, accompanied by reduced numbers of peripheral CD8+, CD4+ and DNT cells. Levels of T-cell associated mediators including IP-10, IFNγ, and IL-10 were high in recovery phases of ZIKV infection, suggesting a functional role for T-cells. The identification of different markers at specific disease phases emphasizes the dynamics of a balanced cytokine environment in disease progression. This is the first comprehensive study that highlights specific cellular changes and immune signatures during ZIKV disease progression and provides valuable insights into ZIKV immuno-pathogenesis.
Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric
2015-06-23
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Zou, Xiao-Ping; Chen, Min; Wei, Wei; Cao, Jun; Chen, Lei; Tian, Mi
2010-01-01
This study evaluated the effects of enteral immunonutrition (EIN) supplemented with glutamine, arginine, and probiotics on gut barrier function and immune function in pigs with severe acute pancreatitis (SAP). The model was induced by retrograde injection of 5% sodium taurocholate and trypsin via the pancreatic duct. After induction of SAP, 18 pigs were randomly divided into 3 groups, in which either parenteral nutrition (PN), control enteral nutrition (CEN), or EIN was applied for 8 days. Serum and pancreatic fluid amylase concentration was determined. Intestinal permeability (lactulose to mannitol ratio) was measured by high-performance liquid chromatography, and plasma endotoxin was quantified by the chromogenic limulus amebocyte lysate technique. Samples of venous blood and organs were cultured using standard techniques. Pancreatitis severity and villi of ileum were scored according to histopathologic grading. Plasma T-lymphocyte subsets were measured by flow cytometry, and immunoglobulins (Igs) were determined via enzyme-linked immunosorbent assay. There were no significant differences in serum and pancreatic fluid amylases concentrations or in pancreatitis severity between any 2 of the 3 groups. Compared with PN and CEN, EIN significantly decreased intestinal permeability, plasma endotoxin concentration, and the incidence and magnitudes of bacterial translocation, but increased ileal mucosal thickness, villous height, crypt depth, and percentage of normal intestinal villi. Significant differences were found in CD3+, CD4+ lymphocyte subsets, the ratio of CD4+: CD8+ lymphocyte subsets, and serum IgA and IgG, but not IgM, between any 2 of the 3 groups. EIN maintained gut barrier function and immune function in pigs with SAP.
Trugilho, Monique Ramos de Oliveira; Hottz, Eugenio Damaceno; Brunoro, Giselle Villa Flor; Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patrícia T; Perales, Jonas
2017-05-01
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses.
Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A.; Perales, Jonas
2017-01-01
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses. PMID:28542641
Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen
2016-02-01
Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Perrone, Danielle; Bender, Scott; Niewiesk, Stefan
2010-07-01
Canine distemper virus (CDV)-specific immune response was measured in different dog populations. Three groups of vaccinated or wild-type virus exposed dogs were tested: dogs with a known vaccination history, dogs without a known vaccination history (shelter dogs), and dogs with potential exposure to wild-type CDV. The use of a T-cell proliferation assay demonstrated a detectable CDV-specific T-cell response from both spleen and blood lymphocytes of dogs. Qualitatively, antibody assays [enzyme-linked immunosorbent assay (ELISA) and neutralization assay] predicted the presence of a T-cell response well, although quantitatively neither antibody assays nor the T-cell assay correlated well with each other. An interesting finding from our study was that half of the dogs in shelters were not vaccinated (potentially posing a public veterinary health problem) and that antibody levels in dogs living in an environment with endemic CDV were lower than in vaccinated animals.
Perrone, Danielle; Bender, Scott; Niewiesk, Stefan
2010-01-01
Canine distemper virus (CDV)-specific immune response was measured in different dog populations. Three groups of vaccinated or wild-type virus exposed dogs were tested: dogs with a known vaccination history, dogs without a known vaccination history (shelter dogs), and dogs with potential exposure to wild-type CDV. The use of a T-cell proliferation assay demonstrated a detectable CDV-specific T-cell response from both spleen and blood lymphocytes of dogs. Qualitatively, antibody assays [enzyme-linked immunosorbent assay (ELISA) and neutralization assay] predicted the presence of a T-cell response well, although quantitatively neither antibody assays nor the T-cell assay correlated well with each other. An interesting finding from our study was that half of the dogs in shelters were not vaccinated (potentially posing a public veterinary health problem) and that antibody levels in dogs living in an environment with endemic CDV were lower than in vaccinated animals. PMID:20885846
1981-01-01
incubated for an additional 10 min at 22°C. Immune rene test tubes. Samples were withdrawn aseptically complexes were collected by centrifugation at 3.000... tested imme- of assay buffer, and the final pellets were counted with diately in an assay, and the other was frozen at -70°C. a Beckman Biogamma counter... tested before and after activation immunoadsorbent for immune complexes containing with urea and dithiothreitol (13). Enzyme neutraliza
Nanosized aluminum altered immune function.
Braydich-Stolle, Laura K; Speshock, Janice L; Castle, Alicia; Smith, Marcus; Murdock, Richard C; Hussain, Saber M
2010-07-27
On the basis of their uses in jet fuels and munitions, the most likely scenario for aluminum nanoparticle (NP) exposure is inhalation. NPs have been shown to be capable of penetrating deep into the alveolar regions of the lung, and therefore human alveolar macrophages (U937) with human type II pneumocytes (A549) were cultured together and exposed to NPs dispersed in an artificial lung surfactant to more accurately mimic the lung microenvironment. Two types of NPs were evaluated: aluminum (Al) and aluminum oxide (Al2O3). Following a 24-h incubation, cell viability was assessed using MTS, and mild toxicity was observed at higher doses with the U937 cells affected more than the A549. Since the U937 cells provided protection from NP toxicity, the cocultures were exposed to a benign concentration of NPs and infected with the respiratory pathogen community-associated methicillin-resistant Staphylococcus aureus (ca-MRSA) to determine any changes in cellular function. Phagocytosis assays demonstrated that the NPs impaired phagocytic function, and bacterial growth curves confirmed that this reduction in phagocytosis was not related to NP-bacteria interactions. Furthermore, NFkappaB PCR arrays and an IL-6 and TNF-alpha real time PCR demonstrated that both types of NPs altered immune response activation. This change was confirmed by ELISA assays that evaluated the secretion of IL-6, IL-8, IL-10, IL-1beta, and TNF-alpha and illustrated that the NPs repressed secretion of these cytokines. Therefore, although the NPs were not toxic to the cells, they did impair the cell's natural ability to respond to a respiratory pathogen regardless of NP composition.
Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg
2012-04-15
Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.
Thorn, Mitchell; Hudson, Adam W; Kreeger, John; Kawabe, Thomas T; Bowman, Christopher J; Collinge, Mark
2015-01-01
Delayed-type hypersensitivity (DTH) is a T-cell-mediated immune response that may be used for immunotoxicity testing in non-clinical species. However, in some cases DTH assays using T-dependent antigens may be confounded by the production of antibodies to the antigen. The authors have previously modified a DTH assay, initially validated in the mouse, for use in juvenile rats to assess the effect of immunosuppressive drugs on the developing rat immune system. The assay measures footpad swelling induced by subcutaneous footpad injection of Candida albicans (C. albicans) derived-chitosan in rats previously sensitized with C. albicans. Antibodies to chitosan are not produced in this model. However, considerable inter-animal variability inherent in the footpad swelling assay can make it difficult to precisely quantify the magnitude of the immune response and inhibition by immunosuppressants, particularly if complete suppression is not observed. This report describes the development of an ex vivo assay to assess DTH in rats using interferon (IFN)-γ production by splenocytes, obtained from rats sensitized with C. albicans, as the quantifiable measure of the DTH response. Adult and neonatal rats administered dexamethasone (DEX), a known immunosuppressant, exhibited immunosuppression as evidenced by a reduction in ex vivo IFNγ production from splenocytes challenged with C. albicans-derived chitosan. Current data indicate that the ex vivo based DTH assay is more sensitive than the conventional footpad swelling assay due to a lower background response and the ability to detect a response as early as post-natal day (PND) 12. The ex vivo based rat DTH assay offers a highly sensitive and quantitative alternative to the footpad swelling assay for the assessment of the immunotoxic potential of drugs. The increased sensitivity of the ex vivo DTH assay may be useful for identifying smaller changes in response to immunotoxic drugs, as well as detecting responses earlier in animal development.
Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen
2013-10-01
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Functional modulation on macrophage by low dose naltrexone (LDN).
Yi, Zhe; Guo, Shengnan; Hu, Xu; Wang, Xiaonan; Zhang, Xiaoqing; Griffin, Noreen; Shan, Fengping
2016-10-01
Previously it was confirmed that naltrexone, a non-peptide δ-opioid receptor selective antagonist is mainly used for alcoholic dependence and opioid addiction treatment. However, there is increasing data on immune regulation of low dose naltrexone (LDN). The aim of this work was to explore the effect of LDN on the phenotype and function of macrophage. The changes of macrophage after treatment with LDN were examined using flow cytometry (FCM); FITC-dextran phagocytosis and enzyme-linked immunosorbent assay (ELISA). We have found that LDN enhances function of macrophage as confirmed by up-regulating MHC II molecule and CD64 on macrophage while down-regulating CD206 expression. Furthermore the productions of TNF-α, IL-6, IL-1β, increased significantly. Macrophages in LDN treated group performed the enhanced phagocytosis. Therefore it is concluded that LDN could promote function of macrophage and this work has provided concrete data of impact on immune system by LDN. Especially the data would support interaction between CD4+T cell and macrophage in AIDS treatment with LDN in Africa (LDN has already been approved in Nigeria for the use in AIDS treatment). Copyright © 2016. Published by Elsevier B.V.
Perception of the plant immune signal salicylic acid
Yan, Shunping; Dong, Xinnian
2014-01-01
Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance. PMID:24840293
New immunomodulatory role of neuropeptide Y (NPY) in Salmo salar leucocytes.
González-Stegmaier, Roxana; Villarroel-Espíndola, Franz; Manríquez, René; López, Mauricio; Monrás, Mónica; Figueroa, Jaime; Enríquez, Ricardo; Romero, Alex
2017-11-01
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maye, S; Stanton, C; Fitzgerald, G F; Kelly, P M
2016-01-01
Complement activity has only recently been characterized in raw bovine milk. However, the activity of this component of the innate immune system was found to diminish as milk was subjected to heat or partitioning during cream separation. Detection of complement in milk relies on a bactericidal assay. This assay exploits the specific growth susceptibility of Escherichia coli O111 to the presence of complement. Practical application of the assay was demonstrated when a reduction in complement activity was recorded in the case of pasteurized and reduced-fat milks. This presented an opportunity to improve the functionality of the bactericidal assay by incorporating bioluminescence capability into the target organism. Following some adaptation, the strain was transformed by correctly integrating the p16Slux plasmid. Growth properties of the transformed strain of E. coli O111 were unaffected by the modification. The efficacy of the strain adaptation was correlated using the LINEST function analysis [r=0.966; standard error of prediction (SEy)=0.957] bioluminescence with that of bactericidal assay total plate counts within the range of 7.5 to 9.2 log cfu/mL using a combination of raw and processed milk samples. Importantly, the transformed E. coli O111 p16Slux strain could be identified in milk and broth samples using bioluminescence measurement, thus enabling the bactericidal assay-viability test to be monitored in real time throughout incubation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Immune responses to mumps vaccine in adults who were vaccinated in childhood.
Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A
2008-06-15
In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.
Immune Responses to Mumps Vaccine in Adults Who Were Vaccinated in Childhood
Hanna-Wakim, Rima; Yasukawa, Linda L.; Sung, Phillip; Arvin, Ann M.; Gans, Hayley A.
2008-01-01
Background In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. Methods This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)–γ production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. Results T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (≥3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-γ were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-γ concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P ≤ .01). All adults were positive for mumps IgG. Conclusion T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-γ release, responses in vaccinated adults paralleled those observed in naturally immune individuals. PMID:18419345
Weigand, Kilian; Voigt, Franziska; Encke, Jens; Hoyler, Birgit; Stremmel, Wolfgang; Eisenbach, Christoph
2012-01-01
AIM: To explore dendritic cells (DCs) multiple functions in immune modulation. METHODS: We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice. Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2, covering a non-HCV core structure. Thus, not a single epitope, but the whole “viral surface” induces immunogenicity. For vaccination, mature and activated DC were injected subcutaneously twice. RESULTS: Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV. Furthermore, T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1. CONCLUSION: Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further. PMID:22371638
Iwanowicz, Luke R; Blazer, Vicki S; McCormick, Stephen D; Vanveld, Peter A; Ottinger, Christopher A
2009-06-04
The brown bullhead Ameiurus nebulosus is a species of the family Ictaluridae commonly used as a sentinel of environmental contamination. While these fish have been utilized for this purpose in areas contaminated with polychlorinated biphenyls (PCBs), few controlled, laboratory-based studies have been designed to document the effects of PCB mixtures in this species. Here, brown bullhead were exposed to the PCB mixture, Aroclor 1248, via intraperitoneal injection and the effects on immune function, plasma hormones and disease resistance were evaluated. Exposure to this mixture led to a decrease in bactericidal activity and circulating antibodies to Edwardsiella ictaluri present from a previous exposure to this pathogen. A subsequent E. ictaluri disease challenge led to significantly higher mortality in A1248 treated fish compared to vehicle-control fish. The mitogenic response to the T-cell mitogen, phytohemaglutinin-P, was increased compared to vehicle-control fish. The steroid hormone, cortisol, and the thyroid hormone, T3, were also significantly lower in A1248 exposed fish. In summary, we have validated a number of functional immune assays for application in brown bullhead immunotoxicity studies. Additionally, we have demonstrated that the PCB mixture (A1248) modulates both immune function and endocrine physiology in brown bullhead. Such data may compliment the interpretation of data yielded from applied field studies conducted in PCB contaminated aquatic ecosystems.
Iwanowicz, L.R.; Blazer, V.S.; McCormick, S.D.; Van Veld, P.A.; Ottinger, C.A.
2009-01-01
The brown bullhead Ameiurus nebulosus is a species of the family Ictaluridae commonly used as a sentinel of environmental contamination. While these fish have been utilized for this purpose in areas contaminated with polychlorinated biphenyls (PCBs), few controlled, laboratory-based studies have been designed to document the effects of PCB mixtures in this species. Here, brown bullhead were exposed to the PCB mixture, Aroclor 1248, via intraperitoneal injection and the effects on immune function, plasma hormones and disease resistance were evaluated. Exposure to this mixture led to a decrease in bactericidal activity and circulating antibodies to Edwardsiella ictaluri present from a previous exposure to this pathogen. A subsequent E. ictaluri disease challenge led to significantly higher mortality in A1248 treated fish compared to vehicle-control fish. The mitogenic response to the T-cell mitogen, phytohemaglutinin-P, was increased compared to vehicle-control fish. The steroid hormone, cortisol, and the thyroid hormone, T3, were also significantly lower in A1248 exposed fish. In summary, we have validated a number of functional immune assays for application in brown bullhead immunotoxicity studies. Additionally, we have demonstrated that the PCB mixture (A1248) modulates both immune function and endocrine physiology in brown bullhead. Such data may compliment the interpretation of data yielded from applied field studies conducted in PCB contaminated aquatic ecosystems.
Standardized Methods for Detection of Poliovirus Antibodies.
Weldon, William C; Oberste, M Steven; Pallansch, Mark A
2016-01-01
Testing for neutralizing antibodies against polioviruses has been an established gold standard for assessing individual protection from disease, population immunity, vaccine efficacy studies, and other vaccine clinical trials. Detecting poliovirus specific IgM and IgA in sera and mucosal specimens has been proposed for evaluating the status of population mucosal immunity. More recently, there has been a renewed interest in using dried blood spot cards as a medium for sample collection to enhance surveillance of poliovirus immunity. Here, we describe the modified poliovirus microneutralization assay, poliovirus capture IgM and IgA ELISA assays, and dried blood spot polio serology procedures for the detection of antibodies against poliovirus serotypes 1, 2, and 3.
Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity
Baena, Andres; Ligeiro, Filipa; Diop, Ousmane M.; Brieva, Claudia; Gagneux, Pascal; O'Brien, Stephen J.; Ryder, Oliver A.; Goldfeld, Anne E.
2007-01-01
Background Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry. Methodology/Principal findings Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages. Conclusions/significance Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF. PMID:17637837
Silveira, Amanda S; Matos, Gabriel M; Falchetti, Marcelo; Ribeiro, Fabio S; Bressan, Albert; Bachère, Evelyne; Perazzolo, Luciane M; Rosa, Rafael D
2018-02-01
Much of our current knowledge on shrimp immune system is restricted to the defense reactions mediated by the hemocytes and little is known about gut immunity. Here, we have investigated the transcriptional profile of immune-related genes in different organs of the digestive system of the shrimp Litopenaeus vannamei. First, the tissue distribution of 52 well-known immune-related genes has been assessed by semiquantitative analysis in the gastrointestinal tract (foregut, midgut and hindgut) and in the hepatopancreas and circulating hemocytes of shrimp stimulated or not with heat-killed bacteria. Then, the expression levels of 18 genes from key immune functional categories were quantified by fluorescence-based quantitative PCR in the midgut of animals experimentally infected with the Gram-negative Vibrio harveyi or the White spot syndrome virus (WSSV). Whereas the expression of some genes was induced at 48 h after the bacterial infection, any of the analyzed genes showed to be modulated in response to the virus. Whole-mount immunofluorescence assays confirmed the presence of infiltrating hemocytes in the intestines, indicating that the expression of some immune-related genes in gut is probably due to the migratory behavior of these circulating cells. This evidence suggests the participation of hemocytes in the delivery of antimicrobial molecules into different portions of the digestive system. Taken all together, our results revealed that gut is an important immune organ in L. vannamei with intimate association with hemocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pakker, N G; Kroon, E D; Roos, M T; Otto, S A; Hall, D; Wit, F W; Hamann, D; van der Ende, M E; Claessen, F A; Kauffmann, R H; Koopmans, P P; Kroon, F P; ten Napel, C H; Sprenger, H G; Weigel, H M; Montaner, J S; Lange, J M; Reiss, P; Schellekens, P T; Miedema, F
1999-02-04
Current antiretroviral treatment can induce significant and sustained virological and immunological responses in HIV-1-infected persons over at least the short- to mid-term. In this study, long-term immune reconstitution was investigated during highly active antiretroviral therapy. Patients enrolled in the INCAS study in The Netherlands were treated for 102 weeks (range 52-144 weeks) with nevirapine (NVP) + zidovudine (ZDV) (n = 9), didanosine (ddl) + ZDV (n = 10), or NVP + ddl + ZDV (n = 10). Memory and naïve CD4+ and CD8+ T cells were measured using CD45RA and CD27 monoclonal antibodies (mAb), T-cell function was assayed by CD3 + CD28 mAb stimulation, and plasma HIV-1 RNA load was measured by ultra-direct assay (cut-off < 20 copies/ml). Compared to both double combination regimens the triple combination regimen resulted in the most sustained increase in CD4+ T cells (change in CD4+, + 253 x 10(6) cells/l; standard error, 79 x 10(6) cells/l) and reduction of plasma HIV-1 RNA. In nine patients (31%) (ddl + ZDV, n = 2; NVP + ddl + ZDV, n = 7) plasma HIV-1 RNA levels remained below cut-off for at least 2 years. On average, these long-term virological responders demonstrated a significantly higher increase of naïve and memory CD4+ T cells (P = 0.01 and 0.02, respectively) as compared with patients with a virological failure, and showed improved T-cell function and normalization of the naïve; memory CD8+ T-cell ratio. However, individual virological success or failure did not predict the degree of immunological response. T-cell patterns were independent of baseline CD4+ T-cell count, T-cell function, HIV-1 RNA load or age. Low numbers of naïve CD4+ T cells at baseline resulted in modest long-term naïve T-cell recovery. Patients with prolonged undetectable plasma HIV-1 RNA levels during antiretroviral therapy do not invariably show immune restoration. Naïve T-cell recovery in the setting of complete viral suppression is a gradual process, similar to that reported for immune recovery in adults after chemotherapy and bone marrow transplantation.
Analysis of Th1, Th17 and regulatory T cells in tuberculosis case contacts.
García Jacobo, R E; Serrano, C J; Enciso Moreno, J A; Gaspar Ramírez, O; Trujillo Ochoa, J L; Uresti Rivera, E E; Portales Pérez, D P; González-Amaro, R; García Hernández, M H
2014-01-01
We have hypothesized that individuals infected with Mycobacteriumtuberculosis that exhibit different patterns of immune reactivity in serial interferon (IFN)-γ release assays (IGRA's) correspond to different status within the immune spectrum of latent tuberculosis (TB). Accordingly, we analyzed the possible association between the consistent results (negative or positive) in an IGRA test and relevant immune parameters, mainly the levels of Th1 and Th17 lymphocytes and T regulatory (Treg) cells in the peripheral blood of TB case contacts. We found that individuals with a persistently positive IGRA showed increased levels of Th1 and Th17 lymphocytes upon in vitro stimulation with MTB antigens. In addition, a significant increase in the proportion of CD4+CTLA-4+ and CD4+Foxp3+ cells was detected in assays with blood samples from these individuals. Our data support that different immune phenotypes can be identified into the spectrum of latent TB, by combining different parameters of immune reactivity against MTB. Copyright © 2014 Elsevier Inc. All rights reserved.
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells.
Hwang, Pai-An; Lin, Xiao-Zhen; Kuo, Ko-Liang; Hsu, Fu-Yin
2017-03-14
Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and -67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.
Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity.
Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M
1997-01-01
Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed. Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (i.e., physiology, cardiology, respiratory, etc.); e.g., the immune system. Previous studies have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system, which should have serious consequences for the exposed host in terms of susceptibility to infectious agents. If these alterations in immune function were long-lasting, it might also result in an increased likelihood of development and/or progression of cancer, as well as autoimmune disease. In the current study, mice were exposed for 1 h/day for 7 days to a moderate (1000 mg/m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel to stimulate occupational exposures. One to 28 days after the last exposure the mice were analyzed for effects of the exposure on their immune systems. It was observed that decrease in viable immune cell numbers and immune organ weights found at 24 h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analyzed by mitogenesis assays, which persisted for up to 4 weeks post-exposure. Thus, short-term exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long-lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure. Such long-term changes in immune status may have significant effects on the health of the exposed individual.
Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I
2012-01-01
Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters increased significantly after immunization against inhibin, even though FSH mRNA gene expression increased, suggesting interference in testicular function in aging roosters.
Crohn's Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70.
Schaefer, Amy K; Wastyk, Hannah C; Mohanan, Vishnu; Hou, Ching-Wen; Lauro, Mackenzie L; Melnyk, James E; Burch, Jason M; Grimes, Catherine L
2017-08-29
Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.
Wabitsch, Martin; Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram; Kratzsch, Jürgen
2017-03-01
Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80-1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48-0.55) being distinct from normal was observed. The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. © 2017 The authors.
International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II
Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella
2012-01-01
Background Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). Methods In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Findings Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Conclusions Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation. PMID:22590544
International network for comparison of HIV neutralization assays: the NeutNet report II.
Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella
2012-01-01
Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation.
Haralambieva, Iana H.; Ovsyannikova, Inna G.; O’Byrne, Megan; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.
2011-01-01
The measurement of measles-specific neutralizing antibodies, directed against the surface measles virus hemagglutinin and fusion proteins, is considered the gold standard in measles serology. We assessed functional measles-specific neutralizing antibody levels in a racially diverse cohort of 763 young healthy adolescents after receipt of two doses of measles-mumps-rubella vaccine, by the use of an automated plaque reduction microneutralization (PRMN) assay, and evaluated their relevance to protective antibody levels, as well as their associations with demographic and clinical variables. We also concurrently assessed measles-specific IFNγ Elispot responses and their relation to the observed antibody concentrations. The geometric mean titer for our cohort was 832 mIU/mL (95% CIs: 776; 891). Sixty-eight subjects (8.9%) had antibody concentrations of less than the protective threshold of 210 mIU/mL (corresponding to PRMN titer of 120; suggesting protection against symptomatic disease), and 177 subjects (23.2%) demonstrated persisting antibody concentrations above 1,841 mIU/mL (corresponding to PRMN titer of 1,052; suggesting total protection against viral infection), 7.4 years after vaccination, in the absence of wild-type virus boosting. The mean measles-specific IFNγ Elispot response for our cohort was 46 (95% CIs: 43; 49) IFNγ-positive spots per 200,000 cells with no relation of cellular immunity measures to the observed antibody concentrations. No significant associations between antibody titers and demographic and clinical variables, including gender and race, were observed in our study. In conclusion, in a large observational study of measles immunity, we used an automated high-throughput measles virus-specific neutralization assay to measure humoral immunity, and concurrently determined measles-specific cellular immunity to aid the assessment of potential susceptibility to measles in vaccinated populations. PMID:21539880
Kurien, B T; Dsouza, A; Igoe, A; Lee, Y J; Maier-Moore, J S; Gordon, T; Jackson, M; Scofield, R H
2013-07-01
Sjögren's syndrome is a chronic illness manifested characteristically by immune injury to the salivary and lacrimal glands, resulting in dry mouth/eyes. Anti-Ro [Sjögren's syndrome antigen A (SSA)] and anti-La [Sjögren's syndrome antigen B (SSB)] autoantibodies are found frequently in Sjögren's subjects as well as in individuals who will go on to develop the disease. Immunization of BALB/c mice with Ro60 peptides results in epitope spreading with anti-Ro and anti-La along with lymphocyte infiltration of salivary glands similar to human Sjögren's. In addition, these animals have poor salivary function/low saliva volume. In this study, we examined whether Ro-peptide immunization produces a Sjögren's-like illness in other strains of mice. BALB/c, DBA-2, PL/J, SJL/J and C57BL/6 mice were immunized with Ro60 peptide-274. Sera from these mice were studied by immunoblot and enzyme-linked immunosorbent assay for autoantibodies. Timed salivary flow was determined after pharmacological stimulation, and salivary glands were examined pathologically. We found that SJL/J mice had no immune response to the peptide from Ro60, while C57BL/6 mice produced antibodies that bound the peptide but had no epitope spreading. PL/J mice had epitope spreading to other structures of Ro60 as well as to La, but like C57BL/6 and SJL/J had no salivary gland lymphocytic infiltration and no decrement of salivary function. DBA-2 and BALB/c mice had infiltration but only BALB/c had decreased salivary function. The immunological processes leading to a Sjögren's-like illness after Ro-peptide immunization were interrupted in a stepwise fashion in these differing mice strains. These data suggest that this is a model of preclinical disease with genetic control for epitope spreading, lymphocytic infiltration and glandular dysfunction. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Kraemer, Thomas; Celik, Alexander A; Huyton, Trevor; Kunze-Schumacher, Heike; Blasczyk, Rainer; Bade-Döding, Christina
2015-01-01
The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E (∗) 01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E (∗) 01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E (∗) 01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.
Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Benjamin J.
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase genemore » reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.« less
Measurement and Characterization of Apoptosis by Flow Cytometry.
Telford, William; Tamul, Karen; Bradford, Jolene
2016-07-01
Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Cash, Harrison; Shah, Sujay; Moore, Ellen; Caruso, Andria; Uppaluri, Ravindra; Van Waes, Carter; Allen, Clint
2015-01-01
We investigated the effects of mTOR and MEK1/2 inhibition on tumor growth and the tumor microenvironment in immunogenic and poorly immunogenic models of murine oral cancer. In vitro, rapamycin and PD901 inhibited signaling through expected downstream targets, but only PD901 reduced viability and altered function of MOC cells. Following transplantation of MOC cells into immune-competent mice, effects on both cancer and infiltrating immune cells were characterized following rapamycin and/or PD901 treatment for 21 days. In vivo, both rapamycin and PD901 inhibition reduced primary growth of established MOC tumors on treatment. Following withdrawal of PD901, rapid rebound of tumor growth limited survival, whereas durable tumor control was observed following rapamycin treatment in immunogenic MOC1 tumors despite more robust inhibition of oncogenic signaling by PD901. Characterization of the immune microenvironment revealed diminished infiltration and activation of antigen-specific CD8+ T-cells and other immune cells following PD901 but not rapamycin in immunogenic tumors. Subsequent in vitro T-cell assays validated robust inhibition of T-cell expansion and activation following MEK inhibition compared to mTOR inhibition. CD8 cell depletion abrogated rapamycin-induced primary tumor growth inhibition in MOC1 mice. These data have critical implications in the design of combination targeted and immune therapies in oral cancer. PMID:26506415
Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.
Cho, S; Dong, S; Parent, K N; Chen, M
2016-01-01
Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.
Lee, Dong Sook; Kim, Young Cheon; Kwon, Sun Jae; Ryu, Choong-Min; Park, Ohkmae K.
2017-01-01
Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and overexpressing (CRK36OE) plants were prepared. CRK36OE plants exhibited increased hypersensitive cell death and ROS burst in response to avirulent pathogens. Treatment with a typical pathogen-associated molecular pattern, flg22, markedly induced pattern-triggered immune responses, notably stomatal defense, in CRK36OE plants. The immune responses were weakened in crk36 plants. Protein-protein interaction assays revealed the in vivo association of CRK36, FLS2, and BIK1. CRK36 enhanced flg22-triggered BIK1 phosphorylation, which showed defects with Cys mutations in the DUF26 motifs of CRK36. Disruption of BIK1 and RbohD/RbohF genes further impaired CRK36-mediated stomatal defense. We propose that CRK36, together with BIK1 and NADPH oxidases, may form a positive activation loop that enhances ROS burst and leads to the promotion of stomatal immunity. PMID:29163585
Prall, Sean P; Ambu, Laurentius; Nathan, Senthilvel; Alsisto, Sylvia; Ramirez, Diana; Muehlenbein, Michael P
2015-06-01
Despite the implications for the development of life-history traits, endocrine-immune trade-offs in apes are not well studied. This is due, in part, to difficulty in sampling wild primates, and lack of methods available for immune measures using samples collected noninvasively. Evidence for androgen-mediated immune trade-offs in orangutans is virtually absent, and very little is known regarding their pattern of adrenal development and production of adrenal androgens. To remedy both of these deficiencies, sera were collected from orangutans (Pongo pygmaeus morio) (N = 38) at the Sepilok Orangutan Rehabilitation Centre, Sabah, Malaysia, during routine health screenings. Testosterone, dehydroepiandrosterone (DHEA), and dehydroepiandrosterone-sulfate (DHEA-S) were assayed, along with two measures of functional innate immunity. DHEA-S concentrations, but not DHEA, increased with age in this sample of 1-18 year old animals. DHEA concentrations were higher in animals with higher levels of serum bacteria killing ability, while DHEA-S and testosterone concentrations were higher in animals with reduced complement protein activity. Patterns of DHEA-S concentration in this sample are consistent with patterns of adrenarche observed in other apes. Results from this study suggest that in addition to testosterone, DHEA and DHEA-S may have potent effects on immunological activity in this species. © 2015 Wiley Periodicals, Inc.
Ruiz-Riol, Marta; Llano, Anuska; Ibarrondo, Javier; Zamarreño, Jennifer; Yusim, Karina; Bach, Vanessa; Mothe, Beatriz; Perez-Alvarez, Susana; Fernandez, Marco A.; Requena, Gerard; Meulbroek, Michael; Pujol, Ferran; Leon, Agathe; Cobarsi, Patricia; Korber, Bette T.; Clotet, Bonaventura; Ganoza, Carmela; Sanchez, Jorge; Coll, Josep; Brander, Christian
2015-01-01
The characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays. Importantly, this approach also allows detection of broad and strong virus-specific T-cell responses in HESN individuals that are characterized by a T-helper type 1 cytokine–like effector profile and produce cytokines that have been associated with potential control of HIV infection, including interleukin 10, interleukin 13, and interleukin 22. These results establish a novel approach to improve the current understanding of HIV-specific T-cell immunity and identify cellular immune responses and individual cytokines as potential markers of relative HIV resistance. As such, the findings also help develop similar strategies for more-comprehensive assessments of host immune responses to other human infections and immune-mediated disorders. PMID:25249264
Wu, Yanhong; Deng, Zhenling; Wang, Huiru; Ma, Wenbo; Zhou, Chunxia; Zhang, Shuren
2016-09-20
Recently, the immunostimulatory roles of chemotherapeutics have been increasingly revealed, although bone marrow suppression is still a common toxicity of chemotherapy. While the numbers and ratios of different immune subpopulations are analyzed after chemotherapy, changes to immune status after each cycle of treatment are less studied and remain unclear. To determine the tumor-specific immune status and functions after different cycles of chemotherapy, we treated CT26 tumor-bearing mice with one to four cycles of 5-fluorouracil (5-FU). Overall survival was not improved when more than one cycle of 5-FU was administered. Here we present data concerning the immune statuses after one and three cycles of chemotherapy. We analyzed the amount of spleen cells from mice treated with one and three cycles of 5-FU as well as assayed their proliferation and cytotoxicity against the CT26 tumor cell line. We found that the absolute numbers of CD8 T-cells and NK cells were not influenced significantly after either one or three cycles of chemotherapy. However, after three cycles of 5-FU, proliferated CD8 T-cells were decreased, and CT26-specific cytotoxicity and IFN-γ secretion of spleen cells were impaired in vitro. After one cycle of 5-FU, there was a greater percentage of tumor infiltrating CD8 T-cells. In addition, more proliferated CD8 T-cells, enhanced tumor-specific cytotoxicity as well as IFN-γ secretion of spleen cells against CT26 in vitro were observed. Given the increased expression of immunosuppressive factors, such as PD-L1 and TGF-β, we assessed the effect of early introduction of immunotherapy in combination with chemotherapy. We found that mice treated with cytokine induced killer cells and PD-L1 monoclonal antibodies after one cycle of 5-FU had a better anti-tumor performance than those treated with chemotherapy or immunotherapy alone. These data suggest that a single cycle of 5-FU treatment promoted an anti-tumor immune response, whereas repeated chemotherapy cycles impaired anti-tumor immune functions. Though the amount of immune cells could recover after chemotherapy suspension, their anti-tumor functions were damaged by multiple rounds of chemotherapy. These findings also point towards early implementation of immunotherapy to improve the anti-tumor effect.
Gal, Yoav; Alcalay, Ron; Sabo, Tamar; Noy-Porat, Tal; Epstein, Eyal; Kronman, Chanoch; Mazor, Ohad
2015-09-01
Ricin is one of the most potent and lethal toxins known against which there is no available antidote. Currently, the most promising countermeasures against the toxin are based on neutralizing antibodies elicited by active vaccination or administered passively. A cell-based assay is widely applied for the primary screening and evaluation of anti-ricin antibodies, yet such assays are usually time-consuming (18-72 h). Here, we report of a novel assay to monitor ricin activity, based on HeLa cells that stably express the rapidly-degraded ubiquitin-luciferase (Ub-FL, half-life of 2 min). Ricin-induced arrest of protein synthesis could be quantified within 3 to 6h post intoxication (IC90 of 300 and 100 ng/ml, respectively). Furthermore, by stabilizing the intracellular levels of Ub-FL in the last hour of the assay, a 3-fold increase in the assay sensitivity was attained. We applied this assay to monitor the efficacy of a ricin holotoxin-based vaccine by measuring the formation of neutralizing antibodies throughout the immunization course. The potency of anti-ricin monoclonal antibodies (directed to either subunit of the toxin) could also be easily and accurately measured in this assay format. Owing to its simplicity, this assay may be implemented for high-throughput screening of ricin-neutralizing antibodies and for identification of small-molecule inhibitors of the toxin, as well as other ribosome-inactivating toxins. Copyright © 2015 Elsevier B.V. All rights reserved.
Ota, Shusuke; Kanazawa, Satoshi; Kobayashi, Masaaki; Otsuka, Takanobu; Okamoto, Takashi
2005-04-01
Antibodies to type II collagen (col II) have been detected in patients with rheumatoid arthritis and in animal models of collagen induced arthritis. Here, we describe a novel method to detect anti-col II antibodies using an immunospot assay with an infrared fluorescence imaging system. This method showed very high sensitivity and specificity, and was simple, with low background levels. It also showed higher reproducibility and linearity, with a dynamic range of approximately 500-fold, than the conventional immunospot assay with enhanced chemiluminescence detection. Using this method we were able to demonstrate the antibody affinity maturation process in mice immunized with col II. In these immunized mice, although cross-reactive antibodies reacting with other collagen species were detected in earlier stages of immunization, the titers of cross-reactive antibodies rapidly diminished after the antigen boost, concomitantly with the elevation of the anti-col II antibody. The method and its possible applications are discussed.
Evaluation of a Novel Global Immunity Assay to Predict Infection in Organ Transplant Recipients.
Mian, Muhtashim; Natori, Yoichiro; Ferreira, Victor; Selzner, Nazia; Husain, Shahid; Singer, Lianne; Kim, S Joseph; Humar, Atul; Kumar, Deepali
2018-04-17
Solid organ transplant recipients (SOTRs) are predisposed to infection due to the need for lifelong immunosuppression, although tools to measure the overall degree of immunosuppression are limited. In this study, we used a novel global cell-mediated immunity (CMI) assay to quantify the degree of immunosuppression and predict subsequent infections. Consecutive SOTRs were enrolled and provided whole blood to conduct the global CMI assay (QuantiFERON Monitor) at 1, 3, and 6 months posttransplant. The assay measures plasma interferon gamma (IFN-γ) levels after stimulation of whole blood with antigens that stimulate both innate and adaptive immunity. Bacterial, viral, and fungal infections were prospectively recorded. We enrolled 137 patients who provided CMI measurements on at least 1 study timepoint. Median age was 58 years; transplant types were kidney (32.1%), liver (30.7%), and lung (36.5%). At least 1 episode of infection occurred in 32 of 137 (23.4%) patients between 1 and 3 months, 34 of 135 (25.1%) between 3 and 6 months, and 39 of 132 (29.5%) between 6 and 12 months. IFN-γ levels were significantly lower in those with at least 1 episode of infection vs no infection at month 1 (P = .04), month 3 (P = .05), and month 6 (P = .006). Patients who developed opportunistic infections (OIs) also showed a significantly lower CMI than those without OI at months 3 and 6. Using a cutoff value of ≤10 IU/mL of IFN-γ, there was a 2- to 3-fold greater likelihood of subsequent infection in those with lower CMI. We show that a novel global immunity assay is able to quantify the level of immunosuppression and predict the risk of subsequent infection episodes in organ transplant recipients.
Rugged Single Domain Antibody Detection Elements for Bacillus anthracis Spores and Vegetative Cells
Walper, Scott A.; Anderson, George P.; Brozozog Lee, P. Audrey; Glaven, Richard H.; Liu, Jinny L.; Bernstein, Rachel D.; Zabetakis, Dan; Johnson, Linwood; Czarnecki, Jill M.; Goldman, Ellen R.
2012-01-01
Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors. PMID:22412927
Lynn, Freyja; Mocca, Brian; Borrow, Ray; Findlow, Helen; Hassan-King, Musa; Preziosi, Marie-Pierre; Idoko, Olubukola; Sow, Samba; Kulkarni, Prasad; LaForce, F. Marc
2014-01-01
A meningococcal group A polysaccharide (PS) conjugate vaccine (PsA-TT) has been developed for African countries affected by epidemic meningitis caused by Neisseria meningitidis. Complement-mediated serum bactericidal antibody (SBA) assays are used to assess protective immune responses to meningococcal vaccination. Human complement (hC′) was used in early studies demonstrating antibody-mediated protection against disease, but it is difficult to obtain and standardize. We developed and evaluated a method for sourcing hC′ and then used the SBA assay with hC′ (hSBA) to measure bactericidal responses to PsA-TT vaccination in 12- to 23-month-old African children. Sera with active complement from 100 unvaccinated blood donors were tested for intrinsic bactericidal activity, SBA titer using rabbit complement (rSBA), and anti-group A PS antibody concentration. Performance criteria and pooling strategies were examined and then verified by comparisons of three independently prepared hC′ lots in two laboratories. hSBA titers of clinical trial sera were then determined using this complement sourcing method. Two different functional antibody tests were necessary for screening hC′. hSBA titers determined using three independent lots of pooled hC′ were within expected assay variation among lots and between laboratories. In African toddlers, PsA-TT elicited higher hSBA titers than meningococcal polysaccharide or Hib vaccines. PsA-TT immunization or PS challenge of PsA-TT-primed subjects resulted in vigorous hSBA memory responses, and titers persisted in boosted groups for over a year. Quantifying SBA using pooled hC′ is feasible and showed that PsA-TT was highly immunogenic in African toddlers. PMID:24671551
Dong, Zhiwei; Chen, Yajie; Peng, Yuan; Wang, Fan; Yang, Zichen; Huang, Guangtao; Chen, Yu; Yuan, Zhiqiang; Cao, Tongtong; Peng, Yizhi
2017-01-01
Skin transplantation aims to cover skin defects but often fails due to immune rejection of the transplantated tissue. Immature dendritic cells (imDCs) induce immune tolerance but have a low migration rate. After stimulation, imDCs transform into mature DCs, which activate immune rejection. Thus, inducing imDC to obtain a high migration counteracts development of immune tolerance. We transfected imDCs with a recombinant adenovirus carrying the CCR7 gene (Ad-CCR7) and a small interfering RNA targeting RelB (RelB-siRNA) to concurrently overexpress CCR7 and downregulate RelB expression. Functionally, such cells showed a significantly enhanced migration rate in the chemotactic assay and decreased T-cell proliferation after lipopolysaccharide stimulation in mixed lymphocyte reactions. Cotransfected cells showed an increased ability to induce immune tolerance by upregulating T regulatory (Treg) cells and shifting the Th1/Th2 ratio. Cotransfection of Ad-CCR7 and RelB-siRNA endowed imDCs with resistance to apoptosis and cell death. CCR7 overexpression and RelB knockdown (KD) in imDCs improve skin-graft survival in a murine skin-transplantation model. Transfection with Ad-CCR7 and RelB KD in imDCs may be an effective approach inducing immune tolerance, thus being potentially valuable for inhibiting allograft rejection. © 2017 The Author(s). Published by S. Karger AG, Basel.
HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain.
Celik, Alexander A; Simper, Gwendolin S; Huyton, Trevor; Blasczyk, Rainer; Bade-Döding, Christina
2018-06-01
The trade-off from HLA class I expression to HLA-G expression support the immune evasion of malignant cells. The essential role of the virtually invariant HLA-G in immune tolerance, tumor immunology and its expression frequency in immune privileged tissues is known; however the specific importance of allelic subtypes in immune responses is still not well understood. HLA-G ∗ 01:01, ∗ 01:03 and ∗ 01:04 are the most prevalent allelic variants differing at residues 31 and 110, respectively. In cytotoxicity assays applying K562 cells transduced with the HLA-G variants as targets and NK cells as effectors the differential protective potential of HLA-G variants was analyzed. Their peptide profiles were determined utilizing soluble HLA technology. An increased protective potential of HLA-G ∗ 01:04 could be observed. All variants exhibit a unique peptide repertoire with marginal overlap, while G ∗ 01:04 differs in its peptide anchor profile substantially. The functional differences between HLA-G subtypes could be explained by the constraint of the bound peptides, modifying the pHLA-G accessible surface. For the first time a contribution of amino acid alterations within the HLA-G heavy chain for peptide selection and NK cell recognition could be observed. These results will be a step towards understanding immune tolerance and will guide towards personalized immune therapeutic strategies. Copyright © 2018. Published by Elsevier Inc.
Nonlinear response of the immune system to power-frequency magnetic fields.
Marino, A A; Wolcott, R M; Chervenak, R; Jourd'Heuil, F; Nilsen, E; Frilot, C
2000-09-01
Studies of the effects of power-frequency electromagnetic fields (EMFs) on the immune and other body systems produced positive and negative results, and this pattern was usually interpreted to indicate the absence of real effects. However, if the biological effects of EMFs were governed by nonlinear laws, deterministic responses to fields could occur that were both real and inconsistent, thereby leading to both types of results. The hypothesis of real inconsistent effects due to EMFs was tested by exposing mice to 1 G, 60 Hz for 1-105 days and observing the effect on 20 immune parameters, using flow cytometry and functional assays. The data were evaluated by means of a novel statistical procedure that avoided averaging away oppositely directed changes in different animals, which we perceived to be the problem in some of the earlier EMF studies. The reliability of the procedure was shown using appropriate controls. In three independent experiments involving exposure for 21 or more days, the field altered lymphoid phenotype even though the changes in individual immune parameters were inconsistent. When the data were evaluated using traditional linear statistical methods, no significant difference in any immune parameter was found. We were able to mimic the results by sampling from known chaotic systems, suggesting that deterministic chaos could explain the effect of fields on the immune system. We conclude that exposure to power-frequency fields produced changes in the immune system that were both real and inconsistent.
Chao, Yu-Hua; Lin, Chiao-Wen; Pan, Hui-Hsien; Yang, Shun-Fa; Weng, Te-Fu; Peng, Ching-Tien; Wu, Kang-Hsi
2018-06-05
Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM. © 2018 Wiley Periodicals, Inc.
Low dose naltrexone (LDN) enhances maturation of bone marrow dendritic cells (BMDCs).
Meng, Jingjuan; Meng, Yiming; Plotnikoff, Nicholas P; Youkilis, Gene; Griffin, Noreen; Shan, Fengping
2013-12-01
It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrexone, a non-peptidic δ-opioid receptor selective antagonist and opioid receptors on BMDCs have been detected [1]. However, there is little prior data published on naltrexone and DCs. Therefore, we hypothesized that LDN could exert modulating effect on BMDCs. In present study, we studied influence of LDN on both phenotypic and functional maturation of BMDCs. Changes of BMDC post-treatment with LDN were evaluated using conventional light microscope and transmission electron microscopy (TEM); flow cytometry(FCM); cytochemistry; acid phosphatase activity(ACP) test; FITC-dextran bio-assay; mixed lymphocytes and enzyme-linked immunosorbent assay (ELISA). We have found that LDN enhances maturation of BMDCs as evidenced by 1) up-regulating the expression of MHC II, CD40, CD83, CD80 and CD86 molecules on BMDCs; 2) down-regulating the rates of pinocytosis and phagocytosis accompanied by the results of decreased ACP, and FITC-dextran bio-assay; 3) mounting potential of BMDCs to drive T cell; and 4) inducing secretion of higher levels of IL-12 and TNF-α. It is therefore concluded that LDN can efficiently promote the maturation of BMDCs via precise modulation inside and outside BMDCs. Our study has provided meaningful mode of action on the role of LDN in immunoregulation, and rationale on future application of LDN for enhancing host immunity in cancer therapy and potent use in the design of DC-based vaccines for a number of diseases.
Stepp, Wesley; Sjeklocha, Lucas; Long, Clayton; Riley, Caitlin; Callahan, James; Sanchez, Yolanda; Gough, Peter; Knowlin, Laquanda; van Duin, David; Ortiz-Pujols, Shiara; Jones, Samuel; Maile, Robert; Hong, Zhi; Berger, Scott; Cairns, Bruce
2017-01-01
Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0–48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells. PMID:28886135
Eitas, Timothy K; Stepp, Wesley H; Sjeklocha, Lucas; Long, Clayton V; Riley, Caitlin; Callahan, James; Sanchez, Yolanda; Gough, Peter; Knowlin, Laquanda; van Duin, David; Ortiz-Pujols, Shiara; Jones, Samuel W; Maile, Robert; Hong, Zhi; Berger, Scott; Cairns, Bruce A
2017-01-01
Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0-48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.
Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil
2013-01-01
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830
Bergamo, Elisa; Diani, Erica; Bertazzoni, Umberto; Romanelli, Maria Grazia
2017-01-01
HTLV-1 and HTLV-2 viruses express Tax transactivator proteins required for viral genome transcription and capable of transforming cells in vivo and in vitro. Although Tax oncogenic potential needs to be further elucidated, it is well established that Tax proteins activate, among others, transcription factors of the NF-ĸB family, which are involved in immune and inflammatory responses, cell growth, apoptosis, stress responses and oncogenesis. Here, we describe a reporter gene assay applied for quantitative analysis of Tax-dependent NF-ĸB activation. The procedure is based on co-transfection of two individual vectors containing the cDNA for firefly and Renilla luciferase enzymes and vectors expressing Tax proteins. The luciferase expression is driven by cis-NF-ĸB promoter regulatory elements responsive to Tax transactivating factor. This assay is particularly useful to investigate Tax influence on NF-ĸB activation mediated by viral or host factors.
Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo
2015-10-01
During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chebolu, S; Daniell, H
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Chebolu, S.; Daniell, H.
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820
Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M
2008-08-01
Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.
Ndumnego, Okechukwu C; Crafford, Jannie; Beyer, Wolfgang; van Heerden, Henriette
2013-12-27
Presently, few data exist on the level and duration of anti-protective antigen (PA) IgG in vaccinated livestock. Various adaptation of enzyme-linked immunosorbent assays (ELISAs) have been developed in studies to assess immune response following vaccination, albeit mostly in laboratory rodent models. The quantitative anti-anthrax IgG ELISA in this study describes a method of enumerating the concentration of anti-PA specific IgG present in sera of immunized goats, with the aid of an affinity-purified caprine polyclonal anti-anthrax PA-83 IgG standard. This was compared with the anthrax toxin neutralization assay (TNA) which measures a functional subset of toxin neutralizing anti-PA IgG. The measured concentrations obtained in the standard curve correlated with the known concentration at each dilution. Percentage recovery of the standard concentrations ranged from 89 to 98% (lower and upper asymptote respectively). Mean correlation coefficient (r2) of the standard curve was 0.998. Evaluation of the intra-assay coefficient of variation showed ranges of 0.23-16.90% and 0.40-12.46% for days 28 and 140 sera samples respectively, following vaccination. The mean inter-assay coefficient of variation for triplicate samples repeated on 5 different days was 18.53 and 12.17% for days 28 and 140 sera samples respectively. Spearman's rank correlation of log-transformed IgG concentrations and TNA titres showed strong positive correlation (rs = 0.942; p = 0.01). This study provides evidence that an indirect ELISA can be used for the quantification of anti-anthrax PA IgG in goats with the added advantage of using single dilutions to save time and resources. The use of such related immunoassays can serve as potential adjuncts to potency tests for Sterne and other vaccine types under development in ruminant species. This is the first report on the correlation of polyclonal anti-anthrax PA83 antibody with the TNA in goats.
HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin
Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago
2014-01-01
AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN-α-based therapy, modifies the immune response in chronic patients. The study provides evidence for the design of more effective therapeutic vaccine interventions against HCV. PMID:24415868
Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.
Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V
2017-05-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.
Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics
Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.
2017-01-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523
Campi-Azevedo, Ana Carolina; Peruhype-Magalhães, Vanessa; Coelho-Dos-Reis, Jordana Grazziela; Costa-Pereira, Christiane; Yamamura, Anna Yoshida; Lima, Sheila Maria Barbosa de; Simões, Marisol; Campos, Fernanda Magalhães Freire; de Castro Zacche Tonini, Aline; Lemos, Elenice Moreira; Brum, Ricardo Cristiano; de Noronha, Tatiana Guimarães; Freire, Marcos Silva; Maia, Maria de Lourdes Sousa; Camacho, Luiz Antônio Bastos; Rios, Maria; Chancey, Caren; Romano, Alessandro; Domingues, Carla Magda; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis
2017-09-01
Technological innovations in vaccinology have recently contributed to bring about novel insights for the vaccine-induced immune response. While the current protocols that use peripheral blood samples may provide abundant data, a range of distinct components of whole blood samples are required and the different anticoagulant systems employed may impair some properties of the biological sample and interfere with functional assays. Although the interference of heparin in functional assays for viral neutralizing antibodies such as the functional plaque-reduction neutralization test (PRNT), considered the gold-standard method to assess and monitor the protective immunity induced by the Yellow fever virus (YFV) vaccine, has been well characterized, the development of pre-analytical treatments is still required for the establishment of optimized protocols. The present study intended to optimize and evaluate the performance of pre-analytical treatment of heparin-collected blood samples with ecteola-cellulose (ECT) to provide accurate measurement of anti-YFV neutralizing antibodies, by PRNT. The study was designed in three steps, including: I. Problem statement; II. Pre-analytical steps; III. Analytical steps. Data confirmed the interference of heparin on PRNT reactivity in a dose-responsive fashion. Distinct sets of conditions for ECT pre-treatment were tested to optimize the heparin removal. The optimized protocol was pre-validated to determine the effectiveness of heparin plasma:ECT treatment to restore the PRNT titers as compared to serum samples. The validation and comparative performance was carried out by using a large range of serum vs heparin plasma:ECT 1:2 paired samples obtained from unvaccinated and 17DD-YFV primary vaccinated subjects. Altogether, the findings support the use of heparin plasma:ECT samples for accurate measurement of anti-YFV neutralizing antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Tian-Xiao; Yang, Xiao-Hong
2008-05-01
This study investigated the reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis mahoniae, on P-glycoprotein-mediated multidrug resistance in human breast cancer doxorubicin-resistant (MCF-7/DOX) cells. RT-PCR assay and immunity histochemistry assay were used to determine the expression level of mdrl gene and P-gp in MCF-7/DOX cells to elucidate resistant character of MCF-7/DOX cells. The activity of isotetrandine to enhance doxorubicin cytotoxicity was tested using MTT (3-(4, 5-dimethyhthiazol)-2,5 -diphenyltetrazolium bromide) assay and was evaluated by the reversal fold (RF) values. Intracellular accumulation of doxorubicin was assessed by the determination of doxorubicin-associated fluorescence intensity. Effect of isotetrandrine on the expression level of P-gp in MCF-7/DOX cells was then determined by immunity histochemistry assay. The ability of isotetrandrine to inhibit P-gp function was evaluated by detecting the accumulation and efflux of rhodamine 123 (Rh123) with flow cytometry (FCM). Verapamil was employed as a comparative agent in whole experiment. The results indicated that MCF-7/DOX cells had phenotype of MDR and that the positive expression of P-gp was their resistant character. 10 microg x mL(-1) isotetrandrine could distinctly enhance cytotoxicity of DOX in MCF-7/DOX cells and reversal fold (RF) was significantly higher than that of verapamil (P < 0.05), but it hardly affected cytotoxicity of DOX in MCF-7 cells and the expression level of P-gp in MCF-7/DOX cells. The ability of isotetrandrine to inhibit P-gp function was reversible, because incubation of MCF-7/DOX cells with isotetrandrine caused a marked increase in uptake and a notable decrease in efflux of Rh123 and a marked increase of intracellular DOX concentrations. In conclusion, isotetrandrine exhibited potent effect on the reversal of P-gp-mediated MDR in vitro, suggesting that it might become a candidate of effective MDR reversing agent in cancer chemotherapy.
Godahewa, G I; Perera, N C N; Lee, Jehee
2018-02-05
Natural killer enhancing factor A (NKEF-A), also known as peroxiredoxin 1 (Prx1), is a well-known antioxidant involved in innate immunity. Although NKEF-A/Prx1 has been studied in different fish species, the present study broadens the knowledge of NKEF-A gene in terms of molecular structure, function, and immune responses in fish species. Hippocampus abdominalis NKEF-A (HaNKEF-A) cDNA encoded a putative protein of 198 amino acids containing a thioredoxin_2 domain, VCP motifs, and three conserved cysteine residues including peroxidatic and resolving cysteines. Amino acid sequence comparison and phylogenetic breakdown showed the higher sequence identity and closer evolutionary position of HaNKEF-A to those of other fish counterparts. A recombinant protein of HaNKEF-A was shown to i) protect supercoiled DNA against mixed catalyzed oxidation, ii) reduce insulin disulfide bonds, and iii) scavenge extracellular H 2 O 2 . Results of in vitro assays demonstrated the concentration dependent antioxidant function of recombinant HaNKEF-A. In addition, qPCR assessments revealed that the HaNKEF-A transcripts were constitutively expressed in fourteen tissues with the highest expression in liver. As an innate immune response, HaNKEF-A transcripts were up-regulated in liver post injection of LPS, Edwardsiella tarda, Streptococcus iniae, and polyinosinic-polycytidylic acid. Thus, HaNKEF-A can safeguards big-belly seahorse from oxidative damage and pathogenic infections. This study provides insight into the functions of NKEF-A/Prx1 in fish species. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of ration level on immune functions in chinook salmon (Oncorhynchus tshawytscha)
Alcorn, S.W.; Pascho, R.J.; Murray, A.L.; Shearer, K.D.
2003-01-01
The relationship between nutritional status and disease resistance in cultured salmonids can be affected by dietary manipulations. Careful attention to feeding levels may be important to avoid imbalances in nutrient levels that could ultimately impair a fish's ability to resist infectious microorganisms. In the current study, fish in three feed-level groups were fed an experimental diet either to satiation, 64% of satiation or 40% of satiation. A fourth group of fish were fed a commercial diet at the 64% of satiation level and served as controls. To evaluate certain indices of disease resistance in the test and control fish, a panel of assays was employed to measure humoral and cellular immune functions 30, 39 and 54 weeks after starting the dietary treatments. The panel included measures of blood hematocrit and leucocrit levels, plasma protein concentration and serum lysozyme and complement activity. Cellular analyses included differential blood leucocyte counts, NBT reduction and phagocytosis by pronephros macrophages and myeloperoxidase activity of pronephros neutrophils. No differences were observed in those indices between fish tested from the control-diet group (commercial diet fed at the 64% rate) and fish tested from the 64% feed-level group, except that fish fed the commercial diet had a greater concentration of plasma protein. Leucocrit values and plasma protein concentrations tended to increase among the experimental feed groups as the ration increased from 40% to satiation. More importantly, phagocytic activity by anterior kidney leucocytes was found to be inversely proportional to the feed level. Whereas the results of this study provide evidence that the salmonid immune system may be fairly robust with regard to available metabolic energy, the significant changes observed in phagocytic cell activity suggest that some cellular immune functions may be affected by the feed level.
Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R
2013-01-01
Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.
Parreiras, P M; Sirota, L A; Wagner, L D; Menzies, S L; Arciniega, J L
2009-07-16
Complexities of lethal challenge models have prompted the investigation of immunogenicity assays as potency tests of anthrax vaccines. An ELISA and a lethal toxin neutralization assay (TNA) were used to measure antibody response to Protective Antigen (PA) in mice immunized once with either a commercial or a recombinant PA (rPA) vaccine formulated in-house. Even though ELISA and TNA results showed correlation, ELISA results may not be able to accurately predict TNA results in this single immunization model.
USDA-ARS?s Scientific Manuscript database
Cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and criticism of current tests for the detection of paratuberculosis. In the present study, host immune responses to antigen preparations of Mycobacterium avium subsp. paratuberculosis (MAP), consis...
Lindsten, T; Yaffe, L J; Thompson, C B; Guelde, G; Berning, A; Scher, I; Kenny, J J
1985-05-01
Both complement receptor positive (CR+) and complement receptor negative (CR-) B cells have been shown to be involved in the primary immune response to PC-Hy (phosphocholine conjugated hemocyanin), a thymus dependent (TD) antigen which preferentially induces antibody secretion in Lyb-5+ B cells during a primary adoptive transfer assay. CR+ and CR- B cells also responded in a primary adoptive transfer assay to TNP-Ficoll, a thymus independent type 2 (TI-2) antigen which activates only Lyb-5+ B cells. When the secondary immune response to PC-Hy and TNP-Ficoll were analyzed, it was found that most of the immune memory to both antigens was present in the CR- B cell subset. The CR- B cell subset also dominated the secondary immune response to PC-Hy in immune defective (CBA/N X DBA/2N)F1 male mice. These data indicate that CR- B cells dominate the memory response in both the Lyb-5+ and Lyb-5- B cell subsets of normal and xid immune defective mice and suggest that Lyb-5+ and Lyb-5- B cells can be subdivided into CR+ and CR- subsets.
2011-01-01
Background With the increasing use of nanomaterials, the need for methods and assays to examine their immunosafety is becoming urgent, in particular for nanomaterials that are deliberately administered to human subjects (as in the case of nanomedicines). To obtain reliable results, standardised in vitro immunotoxicological tests should be used to determine the effects of engineered nanoparticles on human immune responses. However, before assays can be standardised, it is important that suitable methods are established and validated. Results In a collaborative work between European laboratories, existing immunological and toxicological in vitro assays were tested and compared for their suitability to test effects of nanoparticles on immune responses. The prototypical nanoparticles used were metal (oxide) particles, either custom-generated by wet synthesis or commercially available as powders. Several problems and challenges were encountered during assay validation, ranging from particle agglomeration in biological media and optical interference with assay systems, to chemical immunotoxicity of solvents and contamination with endotoxin. Conclusion The problems that were encountered in the immunological assay systems used in this study, such as chemical or endotoxin contamination and optical interference caused by the dense material, significantly affected the data obtained. These problems have to be solved to enable the development of reliable assays for the assessment of nano-immunosafety. PMID:21306632
Nano-immunosafety: issues in assay validation
NASA Astrophysics Data System (ADS)
Boraschi, Diana; Oostingh, Gertie J.; Casals, Eudald; Italiani, Paola; Nelissen, Inge; Puntes, Victor F.; Duschl, Albert
2011-07-01
Assessing the safety of engineered nanomaterials for human health must include a thorough evaluation of their effects on the immune system, which is responsible for defending the integrity of our body from damage and disease. An array of robust and representative assays should be set up and validated, which could be predictive of the effects of nanomaterials on immune responses. In a trans-European collaborative work, in vitro assays have been developed to this end. In vitro tests have been preferred for their suitability to standardisation and easier applicability. Adapting classical assays to testing the immunotoxicological effects of nanoparticulate materials has raised a series of issues that needed to be appropriately addressed in order to ensure reliability of results. Besides the exquisitely immunological problem of selecting representative endpoints predictive of the risk of developing disease, assay results turned out to be significantly biased by artefactual interference of the nanomaterials or contaminating agents with the assay protocol. Having addressed such problems, a series of robust and representative assays have been developed that describe the effects of engineered nanoparticles on professional and non-professional human defence cells. Two of such assays are described here, one based on primary human monocytes and the other employing human lung epithelial cells transfected with a reporter gene.
Iqbal, Junaid; Rajani, Mehak; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2013-05-01
Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood-brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.
A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity1[OPEN
Connor, Richard A.
2017-01-01
Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. PMID:27909045
A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity.
Zhou, Bangjun; Mural, Ravi V; Chen, Xuanyang; Oates, Matt E; Connor, Richard A; Martin, Gregory B; Gough, Julian; Zeng, Lirong
2017-02-01
Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. © 2017 American Society of Plant Biologists. All Rights Reserved.
Francisco, Ngiambudulu M; Hsu, Nai-Jen; Keeton, Roanne; Randall, Philippa; Sebesho, Boipelo; Allie, Nasiema; Govender, Dhirendra; Quesniaux, Valerie; Ryffel, Bernhard; Kellaway, Lauriston; Jacobs, Muazzam
2015-06-26
Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. We generated neuron-specific TNF-deficient (NsTNF(-/-)) mice and compared outcomes of disease against TNF(f/f) control and global TNF(-/-) mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). Intracerebral M. tuberculosis infection of TNF(-/-) mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF(-/-) mice were resistant to infection and presented with a phenotype similar to that in TNF(f/f) control mice. Impaired immunity in TNF(-/-) mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB.
He, Li-Xia; Ren, Jin-Wei; Liu, Rui; Chen, Qi-He; Zhao, Jian; Wu, Xin; Zhang, Zhao-Feng; Wang, Jun-Bo; Pettinato, Giuseppe; Li, Yong
2017-10-01
Traditionally used as a restorative medicine, ginseng (Panax ginseng Meyer) has been the most widely used and acclaimed herb in Chinese communities for thousands of years. To investigate the immune-modulating activity of ginseng oligopeptides (GOP), 420 healthy female BALB/c mice were intragastrically administered distilled water (control), whey protein (0.15 g per kg body weight (BW)), and GOP 0.0375, 0.075, 0.15, 0.3 and 0.6 g per kg BW for 30 days. Blood samples from mice were collected from the ophthalmic venous plexus and then sacrificed by cervical dislocation. Seven assays were conducted to determine the immunomodulatory effects of GOP on innate and adaptive immune responses, followed by flow cytometry to investigate spleen T lymphocyte sub-populations, multiplex sandwich immunoassays to investigate serum cytokine and immunoglobulin levels, and ELISA to investigate intestinally secreted immunoglobulin to study the mechanism of GOP affecting the immune system. Our results showed that GOP was able to enhance innate and adaptive immune responses in mice by improving cell-mediated and humoral immunity, macrophage phagocytosis capacity and NK cell activity. Notably, the use of GOP revealed a better immune-modulating activity compared to whey protein. We conclude that the immune-modulating activity might be due to the increased macrophage phagocytosis capacity and NK cell activity, and the enhancement of T and Th cells, as well as IL-2, IL-6 and IL-12 secretion and IgA, IgG1 and IgG2b production. These results indicate that GOP could be considered a good candidate that may improve immune functions if used as a dietary supplement, with a dosage that ranges from 0.3 to 0.6 g per kg BW.
Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K
2011-11-01
Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.
Smith, Kent A.; Meisenburg, Brenna L.; Tam, Victor L.; Pagarigan, Robb R.; Wong, Raymond; Joea, Diljeet K.; Lantzy, Liz; Carrillo, Mayra A.; Gross, Todd M.; Malyankar, Uriel M.; Chiang, Chih-Sheng; Da Silva, Diane M.; Kündig, Thomas M.; Kast, W. Martin; Qiu, Zhiyong; Bot, Adrian
2009-01-01
Purpose The goal of this study was to investigate the therapeutic potential of a novel immunotherapy strategy resulting in immunity to localized or metastatic HPV 16-transformed murine tumors. Experimental design Animals bearing E7-expressing tumors were co-immunized by lymph node injection with E7 49-57 antigen and TLR3-ligand (synthetic dsRNA). Immune responses were measured by flow cytometry and anti-tumor efficacy was evaluated by tumor size and survival. In situ cytotoxicity assays and identification of tumor-infiltrating lymphocytes and T regulatory cells were used to assess the mechanisms of treatment resistance in bulky disease. Chemotherapy with cyclophosphamide was explored to augment immunotherapy in late-stage disease. Results In therapeutic and prophylactic settings, immunization resulted in a considerable expansion of E7 49-57 antigen-specific T lymphocytes in the range of 1/10 CD8+ T cells. The resulting immunity was effective in suppressing disease progression and mortality in a pulmonary metastatic disease model. Therapeutic immunization resulted in control of isolated tumors up to a certain volume, and correlated with anti-tumor immune responses measured in blood. In situ analysis showed that within bulky tumors, T cell function was affected by negative regulatory mechanisms linked to an increase in T regulatory cells and could be overcome by cyclophosphamide treatment in conjunction with immunization. Conclusions This study highlights a novel cancer immunotherapy platform with potential for translatability to the clinic and suggests its potential usefulness for controlling metastatic disease, solid tumors of limited size, or larger tumors when combined with cytotoxic agents that reduce the number of tumor-infiltrating T regulatory cells. PMID:19789304
Verma, Anita; Ngundi, Miriam M.; Meade, Bruce D.; De Pascalis, Roberto; Elkins, Karen L.; Burns, Drusilla L.
2009-01-01
Anthrax toxin neutralization assays are used to measure functional antibody levels elicited by anthrax vaccines in both preclinical and clinical studies. In this study, we investigated the magnitude and molecular nature of Fc gamma (Fcγ) receptor-dependent toxin neutralization observed in commonly used forms of the anthrax toxin neutralization assay. Significantly more Fcγ receptor-dependent neutralization was observed in the J774A.1 cell-based assay than in the RAW 264.7 cell-based assay, a finding that could be due to the larger numbers of Fcγ receptors that we found on J774A.1 cells by using flow cytometry. Thus, the extent to which Fcγ receptor-dependent neutralization contributes to the total neutralization measured by the assay depends on the specific cell type utilized in the assay. Using Fcγ receptor blocking monoclonal antibodies, we found that at least three murine Fcγ receptor classes, IIB, III, and IV, can contribute to Fcγ receptor-dependent neutralization. When antibodies elicited by immunization of rabbits with protective-antigen-based anthrax vaccines were analyzed, we found that the magnitude of Fcγ receptor-dependent neutralization observed in the J774A.1 cell-based assay was dependent on the concentration of protective antigen utilized in the assay. Our results suggest that the characteristics of the antibodies analyzed in the assay (e.g., species of origin, isotype, and subclass), as well as the assay design (e.g., cell type and protective antigen concentration), could significantly influence the extent to which Fcγ receptor-dependent neutralization contributes to the total neutralization measured by anthrax toxin neutralization assays. These findings should be considered when interpreting anthrax toxin neutralization assay output. PMID:19656993
Girndt, M; Lengler, S; Kaul, H; Sester, U; Sester, M; Köhler, H
2000-01-01
Cytokine induction by dialyzer membranes has been related to several acute and chronic side effects of hemodialysis treatment, among them being immune dysfunction and progressive atherosclerosis. Surface modification of cuprophane dialyzers with the antioxidant vitamin E is a new approach to enhance biocompatibility and improve cytokine levels, as well as immune function. Twenty-one patients undergoing treatment with hemophane (HE) dialyzers were enrolled onto a crossover study with a vitamin E-coated (VE) dialyzer or a synthetic polyamide (PA) dialyzer. In vitro assays of lymphocyte activation and measurements of cytokine induction were performed to evaluate biocompatibility. Four weeks of treatment with either VE or PA dialyzers enhanced in vitro proliferation of peripheral blood leukocytes in comparison to treatment with HE membranes used before study entry. Enhancement of lymphocyte function was independent of dialysis efficiency, which was kept constant during the study. In the interdialytic interval, preactivation of monocytes for the production of interleukin-6 (IL-6) did not differ between VE or PA dialysis. In contrast, the VE membrane reduced acute production of IL-6 during a dialysis treatment, whereas the PA membrane did not. Unlike IL-6, the regulatory cytokine IL-10 is not inhibited by either membrane. This is important because IL-10 is believed to have a beneficial effect on immune function in dialysis patients. The VE membrane, despite being based on a cuprophane backbone, is similar to the highly biocompatible PA dialyzer in terms of its effect on lymphocyte function, whereas it exerts an additional suppressive effect on the overproduction of proinflammatory cytokines.
USDA-ARS?s Scientific Manuscript database
Monitoring the immune status of cetaceans is important for a variety of health conditions. Assays to quantify cytokines, especially pro-inflammatory cytokines, could be employed, in addition to currently available diagnostic assays, to screen for alterations in the health status of an animal. Thou...
Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M
2015-09-01
Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.
2015-01-01
Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385
Inhalation exposure to methylene chloride does not induce systemic immunotoxicity in rats.
Warbrick, E V; Kilgour, J D; Dearman, R J; Kimber, I; Dugard, P H
2003-07-11
Methylene chloride (dichloromethane) is used in a variety of industrial applications. To date, there has been no formal assessment of immunotoxicity attributed to methylene chloride. Studies were undertaken to examine whether methylene chloride has any potential to influence the integrity of immune function. For this purpose, Sprague-Dawley rats of both genders were exposed by inhalation to a single high dose (5000 ppm) of methylene chloride for 6 h/d, 5 d/wk for 28 d. This was considered the relevant route of administration, as not only is inhalation a primary route for human exposure to methylene chloride, but, also, the chemical is absorbed rapidly via the lungs. Under these conditions of exposure, methylene chloride failed to influence absolute or relative thymus weights in either gender and produced a significant reduction in relative, but not absolute, spleen weight in female rats only. Immunocompetence was measured as a function of the ability of treated animals to mount immunoglobulin M (IgM) antibody responses to sheep red blood cells (SRBC) as determined by enzyme-linked immunosorbent assay (ELISA). Exposure to methylene chloride did not affect antibody production. Evidence indicates that under these conditions of exposure, methylene chloride did not compromise immune function.
Associations between immunological function and memory recall in healthy adults.
Wang, Grace Y; Taylor, Tamasin; Sumich, Alexander; Merien, Fabrice; Borotkanics, Robert; Wrapson, Wendy; Krägeloh, Chris; Siegert, Richard J
2017-12-01
Studies in clinical and aging populations support associations between immunological function, cognition and mood, although these are not always in line with animal models. Moreover, very little is known about the relationship between immunological measures and cognition in healthy young adults. The present study tested associations between the state of immune system and memory recall in a group of relatively healthy adults. Immediate and delayed memory recall was assessed in 30 participants using the computerised cognitive battery. CD4, CD8 and CD69 subpopulations of lymphocytes, Interleukin-6 (IL-6) and cortisol were assessed with blood assays. Correlation analysis showed significant negative relationships between CD4 and the short and long delay memory measures. IL-6 showed a significant positive correlation with long-delay recall. Generalized linear models found associations between differences in all recall challenges and CD4. A multivariate generalized linear model including CD4 and IL-6 exhibited a stronger association. Results highlight the interactions between CD4 and IL-6 in relation to memory function. Further study is necessary to determine the underlying mechanisms of the associations between the state of immune system and cognitive performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development.
Milger, Katrin; Yu, Yingyan; Brudy, Eva; Irmler, Martin; Skapenko, Alla; Mayinger, Michael; Lehmann, Mareike; Beckers, Johannes; Reichenberger, Frank; Behr, Jürgen; Eickelberg, Oliver; Königshoff, Melanie; Krauss-Etschmann, Susanne
2017-11-01
Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2 + CD4 + T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2 + cell populations might either increase or decrease disease pathogenesis depending on their subtype. To investigate the role of CCR2 + CD4 + T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. Pulmonary CCR2 + CD4 + T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. Frequencies of CCR2 + CD4 + T cells were increased in experimental fibrosis-specifically the CD62L - CD44 + effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2 + CD4 + T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2 + CD4 + T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3 + CD25 + cells within bronchoalveolar lavage fluid CCR2 + CD4 + T cells as compared with CCR2 - CD4 + T cells. Pulmonary CCR2 + CD4 + T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sirvent, Sofía; Soria, Irene; Cirauqui, Cristina; Cases, Bárbara; Manzano, Ana I; Diez-Rivero, Carmen M; Reche, Pedro A; López-Relaño, Juan; Martínez-Naves, Eduardo; Cañada, F Javier; Jiménez-Barbero, Jesús; Subiza, Javier; Casanovas, Miguel; Fernández-Caldas, Enrique; Subiza, José Luis; Palomares, Oscar
2016-08-01
Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Application of Oral Fluid Assays in Support of Mumps, Rubella and Varicella Control Programs.
Maple, Peter A C
2015-12-09
Detection of specific viral antibody or nucleic acid produced by infection or immunization, using oral fluid samples, offers increased potential for wider population uptake compared to blood sampling. This methodology is well established for the control of HIV and measles infections, but can also be applied to the control of other vaccine preventable infections, and this review describes the application of oral fluid assays in support of mumps, rubella and varicella national immunization programs. In England and Wales individuals with suspected mumps or rubella, based on clinical presentation, can have an oral fluid swab sample taken for case confirmation. Universal varicella immunization of children has led to a drastic reduction of chickenpox in those countries where it is used; however, in England and Wales such a policy has not been instigated. Consequently, in England and Wales most children have had chickenpox by age 10 years; however, small, but significant, numbers of adults remain susceptible. Targeted varicella zoster virus (VZV) immunization of susceptible adolescents offers the potential to reduce the pool of susceptible adults and oral fluid determination of VZV immunity in adolescents is a potential means of identifying susceptible individuals in need of VZV vaccination. The main application of oral fluid testing is in those circumstances where blood sampling is deemed not necessary, or is undesirable, and when the documented sensitivity and specificity of the oral fluid assay methodology to be used is considered sufficient for the purpose intended.
Implementing liquid biopsies into clinical decision making for cancer immunotherapy
Quandt, Dagmar; Zucht, Hans Dieter; Amann, Arno; Wulf-Goldenberg, Anne; Borrebaeck, Carl; Cannarile, Michael; Lambrechts, Diether; Oberacher, Herbert; Garrett, James; Nayak, Tapan; Kazinski, Michael; Massie, Charles; Schwarzenbach, Heidi; Maio, Michele; Prins, Robert; Wendik, Björn; Hockett, Richard; Enderle, Daniel; Noerholm, Mikkel; Hendriks, Hans; Zwierzina, Heinz; Seliger, Barbara
2017-01-01
During the last decade, novel immunotherapeutic strategies, in particular antibodies directed against immune checkpoint inhibitors, have revolutionized the treatment of different malignancies leading to an improved survival of patients. Identification of immune-related biomarkers for diagnosis, prognosis, monitoring of immune responses and selection of patients for specific cancer immunotherapies is urgently required and therefore areas of intensive research. Easily accessible samples in particular liquid biopsies (body fluids), such as blood, saliva or urine, are preferred for serial tumor biopsies. Although monitoring of immune and tumor responses prior, during and post immunotherapy has led to significant advances of patients’ outcome, valid and stable prognostic biomarkers are still missing. This might be due to the limited capacity of the technologies employed, reproducibility of results as well as assay stability and validation of results. Therefore solid approaches to assess immune regulation and modulation as well as to follow up the nature of the tumor in liquid biopsies are urgently required to discover valuable and relevant biomarkers including sample preparation, timing of the collection and the type of liquid samples. This article summarizes our knowledge of the well-known liquid material in a new context as liquid biopsy and focuses on collection and assay requirements for the analysis and the technical developments that allow the implementation of different high-throughput assays to detect alterations at the genetic and immunologic level, which could be used for monitoring treatment efficiency, acquired therapy resistance mechanisms and the prognostic value of the liquid biopsies. PMID:28501851
Implementing liquid biopsies into clinical decision making for cancer immunotherapy.
Quandt, Dagmar; Dieter Zucht, Hans; Amann, Arno; Wulf-Goldenberg, Anne; Borrebaeck, Carl; Cannarile, Michael; Lambrechts, Diether; Oberacher, Herbert; Garrett, James; Nayak, Tapan; Kazinski, Michael; Massie, Charles; Schwarzenbach, Heidi; Maio, Michele; Prins, Robert; Wendik, Björn; Hockett, Richard; Enderle, Daniel; Noerholm, Mikkel; Hendriks, Hans; Zwierzina, Heinz; Seliger, Barbara
2017-07-18
During the last decade, novel immunotherapeutic strategies, in particular antibodies directed against immune checkpoint inhibitors, have revolutionized the treatment of different malignancies leading to an improved survival of patients. Identification of immune-related biomarkers for diagnosis, prognosis, monitoring of immune responses and selection of patients for specific cancer immunotherapies is urgently required and therefore areas of intensive research. Easily accessible samples in particular liquid biopsies (body fluids), such as blood, saliva or urine, are preferred for serial tumor biopsies.Although monitoring of immune and tumor responses prior, during and post immunotherapy has led to significant advances of patients' outcome, valid and stable prognostic biomarkers are still missing. This might be due to the limited capacity of the technologies employed, reproducibility of results as well as assay stability and validation of results. Therefore solid approaches to assess immune regulation and modulation as well as to follow up the nature of the tumor in liquid biopsies are urgently required to discover valuable and relevant biomarkers including sample preparation, timing of the collection and the type of liquid samples. This article summarizes our knowledge of the well-known liquid material in a new context as liquid biopsy and focuses on collection and assay requirements for the analysis and the technical developments that allow the implementation of different high-throughput assays to detect alterations at the genetic and immunologic level, which could be used for monitoring treatment efficiency, acquired therapy resistance mechanisms and the prognostic value of the liquid biopsies.
Deficient natural killer cell function in preeclampsia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alanen, A.; Lassila, O.
1982-11-01
Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.
Datta, Dibyadyuti; Bansal, Geetha P; Gerloff, Dietlind L; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay
2017-01-05
Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immune modulation of CD4+CD25+ regulatory T cells by zoledronic acid.
Liu, Hsien; Wang, Shih-Han; Chen, Shin-Cheh; Chen, Ching-Ying; Lo, Jo-Lin; Lin, Tsun-Mei
2016-11-25
CD4 + CD25 + regulatory T (Treg) cells suppress tumor immunity by inhibiting immune cells. Manipulation of Treg cells represents a new strategy for cancer treatment. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts to inhibit osteoclastogenesis. In a mouse model of bisphosphonate-related osteonecrosis of the jaw, administration of ZA suppressed Treg-cell activity and activated inflammatory Th17 cells. However, the interaction between ZA and Treg cells remained unclear. This study investigated the immune modulation of Treg cells by ZA. Flow cytometry was used to analyze the phenotypic and immunosuppressive characteristics of Treg cells treated with ZA. Chemotactic migration was evaluated using transwell assays. Quantitative real-time PCR (qRT-PCR) was used to investigate the effect of ZA on the expression of suppressive molecules by Treg cells. Proliferation of isolated Treg cells in culture was inhibited by ZA, although ZA did not induce apoptosis. qRT-PCR and flow cytometry showed that ZA significantly downregulated the expression of CCR4, CTLA4, PD-1 and RANKL on Treg cells. Chemotactic migration and immunosuppressive functions were also significantly attenuated in Treg cells pretreated with ZA, and these effects were dose-dependent. Co-culture with Treg cells significantly increased the migration rate of breast cancer cells, while pretreatment of Treg cells with ZA attenuated this effect. Our findings demonstrated that ZA acted as an immune modulator by significantly inhibiting the expansion, migration, immunosuppressive function and pro-metastatic ability of Treg cells. Immunomodulation of Treg cells by ZA represents a new strategy for cancer therapy.
Isolation of Biologically Active Exosomes from Plasma of Patients with Cancer.
Hong, Chang-Sook; Funk, Sonja; Whiteside, Theresa L
2017-01-01
A method for exosome isolation from human plasma was developed for rapid, high-throughput processing of plasma specimens obtained from patients with cancer. This method removes the bulk of plasma proteins associated with exosomes and can be used for comparative examinations of exosomes and their content in serial specimens of patients' plasma, allowing for monitoring changes in exosome numbers, profiles, and functions in the course of cancer progression or during therapy. The plasma-derived exosomes can be recovered in quantities sufficient for the characterization of their morphology by transmission electron microscopy (TEM), size and concentration by qNano, protein/lipid ratios, nucleic acid extraction, molecular profiling by Western blots or immune arrays, and functional assays.
Gao, Wen-Xiang; Sun, Yue-Qi; Shi, Jianbo; Li, Cheng-Lin; Fang, Shu-Bin; Wang, Dan; Deng, Xue-Quan; Wen, Weiping; Fu, Qing-Ling
2017-03-02
Mesenchymal stem cells (MSCs) have potent immunomodulatory effects on multiple immune cells and have great potential in treating immune disorders. Induced pluripotent stem cells (iPSCs) serve as an unlimited and noninvasive source of MSCs, and iPSC-MSCs have been reported to have more advantages and exhibit immunomodulation on T lymphocytes and natural killer cells. However, the effects of iPSC-MSCs on dendritic cells (DCs) are unclear. The aim of this study is to investigate the effects of iPSC-MSCs on the differentiation, maturation, and function of DCs. Human monocyte-derived DCs were induced and cultured in the presence or absence of iPSC-MSCs. Flow cytometry was used to analyze the phenotype and functions of DCs, and enzyme-linked immunosorbent assay (ELISA) was used to study cytokine production. In this study, we successfully induced MSCs from different clones of human iPSCs. iPSC-MSCs exhibited a higher proliferation rate with less cell senescence than BM-MSCs. iPSC-MSCs inhibited the differentiation of human monocyte-derived DCs by both producing interleukin (IL)-10 and direct cell contact. Furthermore, iPSC-MSCs did not affect immature DCs to become mature DCs, but modulated their functional properties by increasing their phagocytic ability and inhibiting their ability to stimulate proliferation of lymphocytes. More importantly, iPSC-MSCs induced the generation of IL-10-producing regulatory DCs in the process of maturation, which was mostly mediated by a cell-cell contact mechanism. Our results indicate an important role for iPSC-MSCs in the modulation of DC differentiation and function, supporting the clinical application of iPSC-MSCs in DC-mediated immune diseases.
Functionalized iron oxide nanoparticles for controlling the movement of immune cells
NASA Astrophysics Data System (ADS)
White, Ethan E.; Pai, Alex; Weng, Yiming; Suresh, Anil K.; van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.
2015-04-01
Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed ``cell box'' was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed ``cell box'' was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain. Electronic supplementary information (ESI) available: Transmission electron microscopy images of the particles, additional independent experiments for the NFκB activity and exocytosis assays, TEM images for the SPION untreated cells, bright field microscopy images of the cells alone in the presence and absence of magnet, images of the magnetic movement experiments at higher doses of SPION, full uncropped images of the post-migration LIVE/DEAD assay, and a video file of cell movement. See DOI: 10.1039/c3nr04421a
Kim, Sarah; Whitley, Chester B.; Jarnes Utz, Jeanine R.
2018-01-01
Introduction Antibodies to intravenous idursulfase enzyme replacement therapy (ERT) for patients with Hunter syndrome (mucopolysaccharidosis type II, MPS II) can have a harmful clinical impact, including both increasing risk of infusion reactions and inhibiting therapeutic activity. Thus, failure to monitor anti-idursulfase antibodies and neutralizing antibodies, and delays in reporting results, may postpone critical clinical decisions. Hypothesis Urinary glycosaminoglycan (GAG) levels may be used as a biomarker for anti-idursulfase antibodies and neutralizing antibodies to improve timeliness in monitoring and managing ERT. Methods This is a case report describing a patient with MPS II with high levels of neutralizing antibodies and worsened clinical status who was treated for five years with a non-immunosuppressive and non-cytotoxic immune tolerance (NICIT) regimen, consisting of intravenous immune globulin and frequent infusions of idursulfase. Neutralizing antibodies and total anti-idursulfase antibodies were measured by two different methods, the direct 1,9-dimethylmethylene blue (DMB) assay and cetylpyridinium chloride carbazole-borate (CPC) assay. Results Neutralizing antibodies, measured as percent inhibition of enzyme activity and also by total neutralizing antibody titer, were correlated with quantitative urinary GAG measured by DMB assay (p = 0.026, p = 0.0067), and quantitative urinary GAG by CPC assay with percent inhibition of enzyme activity by neutralizing antibodies (p = 0.0475). The NICIT regimen showed a sustained immune tolerance after five years and was well-tolerated. Conclusions Urinary GAG, measured by DMB assay, may be a biomarker for anti-idursulfase neutralizing antibodies and is useful for managing immune tolerance regimens for patients with MPS II who have high levels of anti-idursulfase neutralizing antibodies. This study highlights the importance of regular and frequent monitoring of urinary GAG in patients with MPS II who are receiving ERT. The NICIT regimen, with less drug toxicities, may be preferred in patients with MPS who have a high risk of infections and whose disease progresses less rapidly than some other lysosomal storage diseases, such as infantile Pompe disease. PMID:28610913
2017-01-01
The current cytomegalovirus (CMV) prevention strategies in solid organ transplantation (SOT) recipients have contributed towards overcoming the detrimental effects caused by CMV lytic infection, and improving the long-term success rate of graft survival. Although the quantification of CMV in peripheral blood is the standard method, and an excellent end-point for diagnosing CMV replication and modulating the anti-CMV prevention strategies in SOT recipients, a novel biomarker mimicking the CMV control mechanism is required. CMV-specific immune monitoring can be employed as a basic tool predicting CMV infection or disease after SOT, since uncontrolled CMV replication mostly originates from the impairment of immune responses against CMV under immunosuppressive conditions in SOT recipients. Several studies conducted during the past few decades have indicated the possibility of measuring the CMV-specific cell-mediated immune response in clinical situations. Among several analytical assays, the most advancing standardized tool is the QuantiFERON®-CMV assay. The T-Track® CMV kit that uses the standardized enzyme-linked immunospot assay is also widely employed. In addition to these assays, immunophenotyping and intracellular cytokine analysis using flow cytometry (with fluorescence-labeled monoclonal antibodies or peptide-major histocompatibility complex multimers) needs to be adequately standardized and validated for potential clinical applications. PMID:29027383
Jin, Chenggang; Roen, Diana R.; Lehmann, Paul V.; Kellermann, Gottfried H.
2013-01-01
Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B. burgdorferi. Using interferon-γ as a biomarker, we developed a new enzyme-linked immunospot method (iSpot LymeTM) to detect Borrelia antigen-specific effector/memory T cells that were activated in vivo by exposing them to recombinant Borrelia antigens ex vivo. To test this new method as a potential laboratory diagnostic tool, we performed a clinical study with a cohort of Borrelia positive patients and healthy controls. We demonstrated that the iSpot Lyme assay has a significantly higher specificity and sensitivity compared with the Western Blot assay that is currently used as a diagnostic measure. A comprehensive evaluation of the T cell response to Borrelia infection should, therefore, provide new insights into the pathogenesis, diagnosis, treatment and monitoring of Lyme disease. PMID:24709800
Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram
2016-01-01
Context and aims Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. Methods An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. Results In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80–1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48–0.55) being distinct from normal was observed. Conclusions The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. PMID:28007844
Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao
2017-04-01
Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.
Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng
2016-02-01
As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay
NASA Astrophysics Data System (ADS)
Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong
2005-12-01
In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.
Davis, Rachel; Giguère, Steeve
2005-11-15
To determine and compare sensitivity, specificity, accuracy, and predictive values of measurement of serum total protein concentration by refractometry as well as 5 commercially available kits for the diagnosis of failure of passive transfer (FPT) of immunity in foals. Prospective study. 65 foals with various medical problems and 35 clinically normal foals. IgG concentration in serum was assessed by use of zinc sulfate turbidity (assay C), glutaraldehyde coagulation (assay D), 2 semiquantitative immunoassays (assays F and G), and a quantitative immunoassay (assay H). Serum total protein concentration was assessed by refractometry. Radial immunodiffusion (assays A and B) was used as the reference method. For detection of IgG < 400 mg/dL, sensitivity of assay H (100%) was not significantly different from that of assays C, E, and G (88.9%). Specificity of assays H (96.0%) and G (95.8%) was significantly higher than that of assays C (79.4%) and E (78.1 %). For detection of IgG < 800 mg/dL, sensitivities of assays H (976%), D (92.9%), C (81.0%), and G (81.0%) were significantly higher than that of assay F (52.4%). Specificity of assays F (100%), G (94.7%), and H (82.8%) was significantly higher than that of assays C (56.9%) and D (58.6%). Serum total protein concentration < or = 4.5 g/dL was suggestive of FPT, whereas values > or = 6.0 g/dL indicated adequate IgG concentrations. Most assays were adequate as initial screening tests. However, their use as a definitive test would result in unnecessary treatment of foals with adequate IgG concentrations.
Zhou, Bangjun; Zeng, Lirong
2017-01-01
Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana . Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae . Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and plant immunity-associated ROS production.
Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus.
Vallejo, Andrés F; Rubiano, Kelly; Amado, Andres; Krystosik, Amy R; Herrera, Sócrates; Arévalo-Herrera, Myriam
2016-06-01
Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated by microscopy; 3) host cellular immune response did not appear to significantly affect mosquito infectivity; and 4) no statistically significant difference was observed in transmission between mosquitoes directly feeding on humans and artificial membrane feeding assays.
A Simple Method to Quantitate IP-10 in Dried Blood and Plasma Spots
Aabye, Martine G.; Eugen-Olsen, Jesper; Werlinrud, Anne Marie; Holm, Line Lindebo; Tuuminen, Tamara; Ravn, Pernille; Ruhwald, Morten
2012-01-01
Background Antigen specific release of IP-10 is an established marker for infection with M.tuberculosis. Compared to IFN-γ, IP-10 is released in 100-fold higher concentrations enabling the development of novel assays for detection. Dried blood spots are a convenient sample for high throughput newborn screening. Aim To develop a robust and sensitive ELISA-based assay for IP-10 detection in plasma, dried blood spots (DBS) and dried plasma spots (DPS); to validate the ELISA in clinically relevant samples; and to assess the performance of the assay for detection of Cytomegalovirus (CMV) and M.tuberculosis specific immune responses. Method We raised mice and rat monoclonal antibodies against human IP-10 and developed an ELISA. The assay was validated and applied to the detection of CMV and M.tuberculosis specific responses in 18 patients with immune reactivity towards M.tuberculosis and 32 healthy controls of which 22 had immune reactivity towards CMV and none towards M.tuberculosis. We compared the performance of this new assay to IFN-γ. Results The ELISA was reliable for IP-10 detection in both plasma and filter paper samples. The linear range of the ELISA was 2.5–600 pg/ml. IFN-γ was not readily detectable in DPS samples. IP-10 was stabile in filter paper samples for at least 4 weeks at 37°C. The correlation between IP-10 detected in plasma, DPS and DBS samples was excellent (r2>0.97). Conclusions This newly developed assay is reliable for IP-10 quantification in plasma, DBS and DPS samples from antigen stimulated and non-stimulated whole blood. The filter paper assays enable easy sample acquisition and transport at ambient temperature e.g. via the postal system. The system can potentially simplify diagnostic assays for M.tuberculosis and CMV infection. PMID:22761744
Frick, Chris; Dietz, Andrew C; Merritt, Katharine; Umbreit, Thomas H; Tomazic-Jezic, Vesna J
2006-01-01
The main causes for the long-term prosthetic implants' failure are the body's reaction to the implanted material or mechanical stress on the device resulting in the formation of wear particles. Particulate wear debris attracts macrophages, and depending on the chemical composition of the material and particle size, various levels of inflammatory response may occur. While transient inflammation is common, development of chronic inflammation may have serious consequences, leading to implant failure. Such a process may also cause systemic changes to immune functions and long-term effects on the host immune responses. In this study, we evaluated the effects of polystyrene (PS), polyethylene (PE), and polymethylmethacrylate (PMMA) particles on macrophage function and the generation of T-cell responses. Particles of various diameters were injected intraperitoneally into Balb/c mice, and immune functions were examined at 3, 10, and 21 days after the injection. The intensity of phagocytosis by peritoneal exudate cells (PECs) and the proliferative response of spleen cells from treated mice were evaluated. Enumeration of PECs revealed an increase in the total number of cells. Mice injected with PS or PE particles had a higher percentage of cells containing particles than PMMA-injected mice. Macrophages with PS or PE particles tended to adhere to and/or infiltrate peritoneal fibro-fatty tissues surrounding the spleen and pancreas, while the PMMA-carrying macrophages infiltrated the spleen, resulting in an increase of spleen size and "weight. The spleen cell proliferation assay revealed only mild and transient effects on the mitogen response in both PE and PS particle-injected mice. However, in the PMMA-injected mice we observed a lasting increase of the Con A response and a decrease of the LPS response. In vitro exposure of PECs from untreated mice showed a dose-response pattern in nitric oxide (NO) and TNFalpha production. While exposure to either PMMA or PE induced comparable levels of NO, exposure to PMMA induced a markedly higher production of TNFalpha than exposure to PE. The results indicate that particulate biomaterials may, in addition to the initial activation of phagocytes, significantly affect immune functions and compromise the host response to other antigenic stimuli.
Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A
2004-12-01
The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.
Lista, María José; Martins, Rodrigo Prado; Angrand, Gaelle; Quillévéré, Alicia; Daskalogianni, Chrysoula; Voisset, Cécile; Teulade-Fichou, Marie-Paule; Fåhraeus, Robin; Blondel, Marc
2017-08-31
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome replication and maintenance but also highly antigenic. Hence, EBV evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA at a minimal level to ensure its essential function thereby, at the same time, minimizing immune recognition. Defining intervention points where to interfere with EBNA1 immune evasion is an important step to trigger an immune response against EBV-carrying cancers. Thanks to a yeast-based assay that recapitulates all the aspects of EBNA1 self-limitation of expression, a recent study by Lista et al. [Nature Communications (2017) 7, 435-444] has uncovered the role of the host cell nucleolin (NCL) in this process via a direct interaction of this protein with G-quadruplexes (G4) formed in GAr-encoding sequence of EBNA1 mRNA. In addition, the G4 ligand PhenDC3 prevents NCL binding on EBNA1 mRNA and reverses GAr-mediated repression of translation and antigen presentation. This shows that the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to unveil EBV-carrying cancers to the immune system and that the yeast model can be successfully used for uncovering drugs and host factors that interfere with EBV stealthiness.
AbouShabana, N M; AbdelKader, R; Abdel-Rahman, S; Abdel-Gawad, H S; Abdel-Galil, A M
2018-05-22
The current study was conducted to investigate the effect of ExcelMOS® in enhancing the immune system of Sparus aurata broodstock and their impact on offspring health through displaying the maternal transfer of immunity. Broodstock were divided into two groups: one was injected intraperitoneally with ExcelMOS® 1 month before spawning, while the other group was used as a control (without injection). Comprehensive increase in survival rate was observed for larvae hatched from ExcelMOS®-injected broodstock than those of the control (P ≤ 0.05). Hematological analysis showed increases in leukocyte count and hematocrit percentage (P ≤ 0.05) and significant enhancement in immune assays as phagocytic, respiratory burst, lysozyme activities in ExcelMOS®-injected broodstock (P ≤ 0.05). Additionally, total immunoglobulin levels in the serum, eggs, and larvae resulted from ExcelMOS®-injected broodstock were highly significant (P ≤ 0.05) than those in the control ones. Transmission electron microscopy and semi-thin sections in posterior intestine of ExcelMOS®-injected broodstock revealed reinforcement of the epithelial barrier structure, intestinal integrity, and functionality in combination with the stimulation of innate immune system. In conclusion, immunostimulation of Sparus aurata broodstock using ExcelMOS® has improved survival of larvae and enhanced both innate and adaptive immune defense mechanisms. Further investigations are required to show the effect of ExcelMOS® on fish cultured in intensive culture systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eng, L.A.; Metz, C.B.
1986-09-01
The meaningful detection of antisperm antibody in immunologically infertile females has been confounded by the many methods of assay that exist. With many of these methods there is poor correlation of assay results with infertility. In this report, female rabbits were rendered partially or completely infertile by immunization with sperm fractions. A filter radioassay for antisperm antibody was developed that consists of incubating 10(7) sperm with sperm from immunized rabbits and /sup 14/C-Protein A, a long-lived and versatile indirect radiolabel for many antibodies of the IgG class. The spermatozoa are washed by rapid vacuum filtration on polycarbonate membrane filters insteadmore » of by time-consuming centrifugation. The filters with the collected spermatozoa are then counted in a liquid scintillation counter. Sera from female rabbits isoimmunized with sperm antigens show a highly significant correlation (r = -0.904; p less than 0.001) between assay results and infertility as measured by the percentage of eggs that underwent cleavage after artificial insemination.« less
Tsao, Nina; Cheng, Miao-Hui; Yang, Hsiu-Chen; Wang, Yu-Chieh; Liu, Yi-Ling; Kuo, Chih-Feng
2013-01-01
Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcal (GAS) infection. SPE B binds and cleaves antibody isotypes and further impairs the immune system by inhibiting complement activation. In this study, we examined the antibody-binding site of SPE B and used it to block SPE B actions during GAS infection. We constructed different segments of the spe B gene and induced them to express different recombinant fragments of SPE B. Using an enzyme-linked immunosorbent assay (ELISA), we found that residues 345-398 of the C-terminal domain of SPE B (rSPE B(345-398)), but not the N-terminal domain, was the major binding site for antibody isotypes. Using a competitive ELISA, we also found that rSPE B(345-398) bound to the Fc portion of IgG. The in vitro functional assays indicate that rSPE B(345-398) not only interfered with cleavage of antibody isotypes but also interfered with SPE B-induced inhibition of complement activation. Immunization of BALB/c mice using rSPE B(345-398) was able to induce production of a high titer of anti-rSPE B(345-398) antibodies and efficiently protected mice from GAS-induced death. These findings suggest that SPE B uses its C-terminal domain to bind the Fc portion of IgG and that immunization of mice with this binding domain (rSPE B(345-398)) could protect mice from GAS infection.
T cell function in tuatara (Sphenodon punctatus).
Burnham, D Kim; Keall, Susan N; Nelson, Nicola J; Daugherty, Charles H
2005-05-01
Tuatara are the sole survivors of an entire order of reptiles that thrived during the age of the dinosaurs. Therefore, knowledge of their physiology is critical to understanding the phylogeny of reptiles. Previous studies of the immune system of the tuatara did not assess T cell function. We analyzed T cell function among six captive tuatara by assessing concanavalin A (Con A), phytohemagglutinin (PHA) and mixed lymphocyte reaction (MLR) induced T cell proliferation. Peripheral blood mononuclear cells from six out of six and four out of four tuatara tested exhibited significant proliferative responses to Con A and PHA, respectively, as measured by an MTT reduction assay. A lower level of proliferation was detected in an MLR. However, Con A activated lymphocytes were not cytotoxic for a xenogeneic murine mastocytoma cell line (P815).
Parameters of the Immune System and Vitamin D Levels in Old Individuals.
Alves, Amanda Soares; Ishimura, Mayari Eika; Duarte, Yeda Aparecida de Oliveira; Bueno, Valquiria
2018-01-01
The increased number of individuals older than 80 years, centenarians, and supercentenarians is not a synonym for healthy aging, since severe infections, hospitalization, and disability are frequently observed. In this context, a possible strategy is to preserve the main characteristics/functions of the immune system with the aim to cause less damage to the organism during the aging process. Vitamin D acts on bone marrow, brain, breast, malignant cells, and immune system and has been recommended as a supplement. We aimed to evaluate whether immune parameters and vitamin D serum levels are correlated. We evaluated some features of the immune system using the peripheral blood of individuals older than 80 years ( n = 12) compared to young subjects ( n = 10). In addition, we correlated these findings with vitamin D serum levels. Old individuals presented metabolic parameters of healthy aging and maintained preserved some features of immunity such as CD4/CD8 ratio, and low production of pro-inflammatory cytokines after stimulus. On the other hand, we observed increase in the frequency of myeloid-derived suppressor cells, reduction in circulating leukocytes, in the percentage of total CD8+, and in CD8+ Naïve T cells, in addition to increase in the percentage of CD8+ effector memory re-expressing CD45RA (EMRA) T cells. We found seropositivity for CMV in 97.7%, which was correlated with the decrease of CD8+ Naïve T cells and increase in CD8+ EMRA T cells. Vitamin D levels were insufficient in 50% of old individuals and correlated positively with total CD8+ T cells and negatively with CD8+ EMRA T cells. In the studied population, longevity was correlated to maintenance of some immune parameters. Considering the limitations of the study as size of the sample and lack of functional assays, it was found that vitamin D in old individuals was correlated to some features of the immune system, mainly in the CD8 compartment.
Riis, Jenna L.; Granger, Douglas A.; DiPietro, Janet A.; Bandeen-Roche, Karen; Johnson, Sara B.
2015-01-01
There is growing interest in minimally-invasive measures of environmentally-responsive biological systems in developmental science. Contributing to that endeavor, this study explores the intercorrelations, correlates, and task-sensitivity of proinflammatory salivary cytokines in childhood. Saliva was sampled from 125 healthy five-year old children (49% male) across a series of cognitive and emotional challenge laboratory tasks. Samples were assayed for cytokines (IL-1β, IL-6, IL-8, TNFα), and markers of hypothalamic–pituitary– adrenal (HPA) and autonomic nervous system (ANS) activation (salivary cortisol and alpha-amylase [sAA]). Cytokines were positively intercorrelated and task-sensitivity varied. Except IL-8, cytokines were elevated in children with oral health issues and tobacco smoke exposure. Among boys, cytokines were positively related to sAA and negatively related to cortisol. The findings suggest that in healthy children, salivary cytokine levels reflect compartmentalized oral immune activity. Associations between ANS and HPA activity and cytokines in saliva may present opportunities for minimally-invasive methods to explore neuroendocrine-immune interactions during development. PMID:25604242
Detection of bacterial-reactive natural IgM antibodies in desert bighorn sheep populations
Palmer, Amy L.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Beechler, Brianna R.; Jolles, Anna E.; Epps, Clinton W.
2017-01-01
Ecoimmunology is a burgeoning field of ecology which studies immune responses in wildlife by utilizing general immune assays such as the detection of natural antibody. Unlike adaptive antibodies, natural antibodies are important in innate immune responses and often recognized conserved epitopes present in pathogens. Here, we describe a procedure for measuring natural antibodies reactive to bacterial antigens that may be applicable to a variety of organisms. IgM from desert bighorn sheep plasma samples was tested for reactivity to outer membrane proteins from Vibrio coralliilyticus, a marine bacterium to which sheep would have not been exposed. Immunoblotting demonstrated bighorn sheep IgM could bind to a variety of bacterial cell envelope proteins while ELISA analysis allowed for rapid determination of natural antibody levels in hundreds of individual animals. Natural antibody levels were correlated with the ability of plasma to kill laboratory strains of E. coli bacteria. Finally, we demonstrate that natural antibody levels varied in two distinct populations of desert bighorn sheep. These data demonstrate a novel and specific measure of natural antibody function and show that this varies in ecologically relevant ways. PMID:28662203
Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen.
Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice
2017-01-02
The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sequence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development.
Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen
Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice
2017-01-01
ABSTRACT The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sesec-typsecquence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development. PMID:27768518
Maternal-Fetal rejection reactions are unconstrained in preeclamptic women.
Nguyen, Tina A; Kahn, Daniel A; Loewendorf, Andrea I
2017-01-01
The risk factors for preeclampsia, extremes of maternal age, changing paternity, concomitant maternal autoimmunity, and/or birth intervals greater than 5 years, suggest an underlying immunopathology. We used peripheral blood and lymphocytes from the UteroPlacental Interface (UPI) of 3rd trimester healthy pregnant women in multicolor flow cytometry-and in vitro suppression assays. The major end-point was the characterization of activation markers, and potential effector functions of different CD4-and CD8 subsets as well as T regulatory cells (Treg). We observed a significant shift of peripheral CD4 -and CD8- T cells from naïve to memory phenotype in preeclamptic women compared to healthy pregnant women consistent with long-standing immune activation. While the proportions of the highly suppressive Cytokine and Activated Treg were increased in preeclampsia, Treg tolerance toward fetal antigens was dysfunctional. Thus, our observations indicate a long-standing inflammatory derangement driving immune activation in preeclampsia; in how far the Treg dysfunction is caused by/causes this immune activation in preeclampsia will be the object of future studies.
Chen, M Y; Hung, C C; Fang, C T; Hsieh, S M
2001-05-01
We discovered a patient with AIDS with persistent B19 infection who had slow resolution of anemia after he commenced receiving HAART without intravenous immunoglobulin. The patient's anemia recurred when the initial course of HAART failed, but it remitted slowly after salvage therapy was instituted. However, circulating B19 was still detectable by nested polymerase chain reaction 1 year after commencement of salvage therapy. Immunoglobulin G and immunoglobulin M antibodies against B19 were not detected by means of enzyme-linked immunosorbent assay when the anemia initially resolved, but they were detected after the patient commenced receiving salvage therapy. The absence of antibody response after the initial remission of parvovirus B19 infection suggested that cellular immunity was an important component of reconstituted immune function against B19 after the patient received HAART. The humoral response that was restored later was abnormal; it had strong reactivity to nonstructural protein NS-1 and poor generation of neutralizing antibodies against linear epitopes unique to minor capsid protein VP1.
Effect of Interleukin-18 Gene Polymorphisms on Sensitization to Wheat Flour in Bakery Workers
Kim, Seung-Hyun; Hur, Gyu-Young; Jin, Hyun Jung; Choi, Hyunna
2012-01-01
Lower respiratory symptoms in bakery workers may be induced by wheat flour and endotoxins. We hypothesized that endotoxins from wheat flour may stimulate innate immunity and that interleukin-18 (IL-18) gene polymorphisms may affect their regulatory role in innate immune responses to endotoxins. To investigate the genetic contribution of IL-18 to sensitization to wheat flour, we performed a genetic association study of IL-18 in Korean bakery workers. A total of 373 bakery workers undertook a questionnaire regarding work-related symptoms. Skin prick tests with common and occupational allergens were performed and specific antibodies to wheat flour were measured by ELISA. Three polymorphisms of the IL-18 gene (-607A/C, -137G/C, 8674C/G) were genotyped, and the functional effects of the polymorphisms were analyzed using the luciferase reporter assay. Genotypes of -137G/C (GC or CC) and haplotype ht3 [ACC] showed a significant association with the rate of sensitization to wheat flour. Luciferase activity assay indicated ht3 [AC] as a low transcript haplotype. In conclusion, the regulatory role of IL-18 in lipopolysaccharide-induced responses in bakery workers may be affected by this polymorphism, thus contributing to the development of sensitization to wheat flour and work-related respiratory symptoms. PMID:22468101
Anderson, Stacey E.; Meade, B. Jean; Long, Carrie M.; Lukomska, Ewa; Marshall, Nikki B.
2016-01-01
Triclosan is an antimicrobial chemical commonly used occupationally and by the general public. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of triclosan following dermal exposure using a murine model. Triclosan was not identified to be a sensitizer in the murine local lymph node assay (LLNA) when tested at concentrations ranging from 0.75–3.0%. Following a 28-day exposure, triclosan produced a significant increase in liver weight at concentrations of ≥ 1.5%. Exposure to the high dose (3.0%) also produced a significant increase in spleen weights and number of platelets. The absolute number of B-cells, T-cells, dendritic cells and NK cells were significantly increased in the skin draining lymph node, but not the spleen. An increase in the frequency of dendritic cells was also observed in the lymph node following exposure to 3.0% triclosan. The IgM antibody response to sheep red blood cells (SRBC) was significantly increased at 0.75% – but not at the higher concentrations – in the spleen and serum. These results demonstrate that dermal exposure to triclosan induces stimulation of the immune system in a murine model and raise concerns about potential human exposure. PMID:25812624
[Preparation and application of anti-ouabain IgY antibody].
Zhang, Ming-juan; Yang, Jun; Duan, Zong-ming; Qiang, Lei
2007-09-01
To prepare highly specific anti-ouabain polyclonal antibody for detecting endogenous ouabain in tissues. Ouabain-BSA compound was used to immunize hens, and the eggs were collected one week after the first immunization. The IgY antibodies in the egg yolk were separated and purified by PEG-6000 Method, and analyzed by 12% SDS-PAGE and enzyme-linked immunosorbent assay (ELISA) for titration. The IgY antibodies obtained were applied subsequently in ELISA and immunohistochemistry. The IgY titer increased rapidly after the second immunization, with the highest titer of 1:10240 that lasted for at least 4 weeks. Competitive ELISA for IgY detection showed an average intraassay coefficient of variation (CV) of 2.03% and an inter-assay CV of 2.34%. Immunohistochemistry visualized the location of the endogenous ouabain mainly in the cytoplasm of the zona reticularis of rat adrenal cortex. Immunization of hens allows efficient preparation of IgY antibody which can be used in routine immunoassays.
NASA Technical Reports Server (NTRS)
Kaufmann, I.; Draenert, R.; Gruber, M.; Feuerecker, M.; Crucian, B. E.; Mehta, S. L.; Roider, J.; Pierson, D. L.; Briegel, J. M.; Schelling, G.;
2013-01-01
Monitoring of humans either in the healthy men under extreme environmental stress like space flight, in human immunodeficiency virus (HIV) infected patients or in sepsis is of critical importance with regard to the timing of adequate therapeutic (counter-)measures. The in vivo skin delayed-type hypersensitivity test (DTH) served for many years as a tool to evaluate cell mediated immunity. However, this standardised in vivo test was removed from the market in 2002 due to the risk of antigen stabilization. To the best of our knowledge an alternative test as monitoring tool to determine cell mediated immunity is not available so far. For this purpose we tested a new alternative assay using elements of the skin DTH which is based on an ex vivo cytokine release from whole blood and asked if it is suitable and applicable to monitor immune changes in HIV infected patients and in patients with septic shock.
Combined total deficiency of C7 and C4B with systemic lupus erythematosus (SLE).
Segurado, O G; Arnaiz-Villena, A A; Iglesias-Casarrubios, P; Martinez-Laso, J; Vicario, J L; Fontan, G; Lopez-Trascasa, M
1992-01-01
The first inherited combined total deficiency of C7 and C4B complement components associated with SLE is described in a young female. Functional C7 assays showed a homozygous C7 deficiency in the propositus and her sister, and an heterozygous one in their parents. C4 molecular analyses showed that both the propositus and her mother had two HLA haplotypes carrying only C4A-specific DNA sequences and a normal C4 gene number. Thus, only C4A proteins could be expressed, with resultant normal C4 serum levels. The coexistence of a combined complete C7 and C4B deficiency may therefore abrogate essential functions of the complement cascade presumably related to immune complex handling and solubilization despite an excess of circulating C4A. These findings challenge the putative pathophysiological roles of C4A and C4B and stress the need to perform both functional assays and C4 allotyping in patients with autoimmune pathology and low haemolytic activity without low serum levels of a classical pathway complement component. Images Fig. 1 Fig. 2 PMID:1347491
Mulder, Cornelis K; Dong, Yun; Brugghe, Humphrey F; Timmermans, Hans A M; Tilstra, Wichard; Westdijk, Janny; van Riet, Elly; van Steeg, Harry; Hoogerhout, Peter; Eisel, Ulrich L M
2016-01-01
Soluble oligomeric (misfolded) species of amyloid-β (Aβ) are the main mediators of toxicity in Alzheimer's disease (AD). These oligomers subsequently form aggregates of insoluble fibrils that precipitate as extracellular and perivascular plaques in the brain. Active immunization against Aβ is a promising disease modifying strategy. However, eliciting an immune response against Aβ in general may interfere with its biological function and was shown to cause unwanted side-effects. Therefore, we have developed a novel experimental vaccine based on conformational neo-epitopes that are exposed in the misfolded oligomeric Aβ, inducing a specific antibody response. Here we investigate the protective effects of the experimental vaccine against oligomeric Aβ1-42-induced neuronal fiber loss in vivo. C57BL/6 mice were immunized or mock-immunized. Antibody responses were measured by enzyme-linked immunosorbent assay. Next, mice received a stereotactic injection of oligomeric Aβ1-42 into the nucleus basalis of Meynert (NBM) on one side of the brain (lesion side), and scrambled Aβ1-42 peptide in the contralateral NBM (control side). The densities of choline acetyltransferase-stained cholinergic fibers origination from the NBM were measured in the parietal neocortex postmortem. The percentage of fiber loss in the lesion side was determined relative to the control side of the brain. Immunized responders (79%) showed 23% less cholinergic fiber loss (p = 0.01) relative to mock-immunized mice. Moreover, fiber loss in immunized responders correlated negatively with the measured antibody responses (R2 = 0.29, p = 0.02). These results may provide a lead towards a (prophylactic) vaccine to prevent or at least attenuate (early onset) AD symptoms.
Spiegel, Holger; Boes, Alexander; Kastilan, Robin; Kapelski, Stephanie; Edgue, Güven; Beiss, Veronique; Chubodova, Ivana; Scheuermayer, Matthias; Pradel, Gabriele; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer
2015-10-01
Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunology of whales and dolphins.
Beineke, Andreas; Siebert, Ursula; Wohlsein, Peter; Baumgärtner, Wolfgang
2010-02-15
The increasing disease susceptibility in different whale and dolphin populations has led to speculation about a possible negative influence of environmental contaminants on the immune system and therefore on the health status of marine mammals. Despite current efforts in the immunology of marine mammals several aspects of immune functions in aquatic mammals remain unknown. However, assays for evaluating cellular immune responses, such as lymphocyte proliferation, respiratory burst as well as phagocytic and cytotoxic activity of leukocytes and humoral immune responses have been established for different cetacean species. Additionally, immunological and molecular techniques enable the detection and quantification of pro- and anti-inflammatory cytokines in lymphoid cells during inflammation or immune responses, respectively. Different T and B cell subsets as well as antigen-presenting cells can be detected by flow cytometry and immunohistochemistry. Despite great homologies between marine and terrestrial mammal lymphoid organs, some unique anatomical structures, particularly the complex lymphoepithelial laryngeal glands in cetaceans represent an adaptation to the marine environment. Additionally, physiological changes, such as age-related thymic atrophy and cystic degeneration of the "anal tonsil" of whales have to be taken into account when investigating these lymphoid structures. Systemic morbillivirus infections lead to fatalities in cetaceans associated with generalized lymphoid depletion. Similarly, chronic diseases and starvation are associated with a loss of functional lymphoid cells and decreased resistance against opportunistic infections. There is growing evidence for an immunotoxic effect of different environmental contaminants in whales and dolphins, as demonstrated in field studies. Furthermore, immunomodulatory properties of different persistent xenobiotics have been confirmed in cetacean lymphoid cells in vitro as well as in animal models in vivo. However, species-specific differences of the immune system and detoxification of xenobiotics between cetaceans and laboratory rodents have to be considered when interpreting these toxicological data for risk assessment in whales and dolphins. Copyright 2009 Elsevier B.V. All rights reserved.
The cellular and humoral immunity assay in patients with complicated urolithiasis.
Ceban, E; Banov, P; Galescu, A; Tanase, D
2017-01-01
Especially complicated, renal lithiasis contributes to the general inflammatory syndrome development that interferes with nonspecific, humoral and cellular immune system. The surgical treatment of nephrolithiasis is closely related to drug therapy of urinary infection, one of the reasons being the reduction of the immune status. The work is performed by evaluating the immunological status preoperatively in 58 patients with complicated lithiasis. The analysis of the status in these patients demonstrated that complicated urolithiasis results in significant changes in the immune system, these changes being expressed at the cellular and humoral level of immunity.
Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W
2015-05-01
Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ROLE OF GENETIC SUSCEPTIBILITY TO LATENT ADENOVIRAL INFECTION AND DECREASED LUNG FUNCTION
Kasuga, Ikuma; Hogg, James C.; Paré, Peter D.; Hayashi, Shizu; Sedgwick, Edward G.; Ruan, Jian; Wallace, Alison M.; He, Jian-Qing; Zhang, Xiaozhu; Sandford, Andrew J.
2009-01-01
Background Latent adenoviral infection may amplify cigarette smoke-induced lung inflammation and therefore play an important role in the development of chronic obstructive pulmonary disease (COPD). Adenoviruses can evade the human immune response via their 19-kDa protein (19K) which delays the expression of class I human leukocyte antigen (HLA) proteins. The 19K protein shows higher affinity to HLA-B7 and A2 compared with HLA-A1 and A3. The receptor for adenovirus (CXADR) and integrin β5 (ITGB5) are host factors which might affect adenovirus infection. Therefore, we investigated the contribution of HLA, CXADR, and ITGB5 genetic variants to the presence of the E1A gene and to level of lung function. Methods Study subjects were assayed for HLA-B7, A1, A2 and A3 by PCR-based assays using allele-specific primers. Polymorphisms of the CXADR and ITGB5 genes were genotyped by PCR-based restriction fragment length polymorphism assays. Detection of adenoviral E1A gene was performed by a real-time PCR TaqMan assay. Results E1A positive individuals have a lower FEV1 compared with E1A negative individuals. However, there was no significant difference in E1A positivity rate between the high (HLA-B7 and A2) and low (HLA-A1 and A3) 19K affinity groups. There was also no significant difference in FEV1 level between each affinity group. There was no significant difference in E1A positivity rate or lung function among the CXADR and ITGB5 genotypes. Conclusions Genetic variants in HLA, CXADR and ITGB5 do not influence latent adenoviral infections and are not associated with COPD. PMID:19502044
Park, Sung Kwon; Lee, Myung Hoon; Cho, Soo Hyun
2014-01-01
This study was performed to develop a rapid immuno-assay kit, by using a specific antigen to detect Hanwoo brand meat. We selected a synthetic antigen specific to our target antibody, named BIO-TAG (Tyr-D-Ala-Phe), by utilizing a computer-based analysis and literature review. BIO-TAG tagged with adjuvant was subcutaneously injected in sheep and Hanwoo. The serum and meat juice of the immunized or non-immunized animal were then analyzed, to measure the titer of antibody by ELISA and Western blot. The amount of antibodies against the BIO-TAG increased (p<0.05) in serum by vaccination. Furthermore, meat juice from the immunized Hanwoo showed greater (p<0.05) antibody titer, compared with those from non-immunized groups. To optimze the dilution factor, we performed dot-ELISA, with various combination levels of BIO-TAG. Results from dot-ELISA showed that 2 mg/mL BIO-TAG was sufficient to distinguish the immunized meat from non-immunized groups. These results support our hypothesis that simple immunization of Hanwoo generates a sufficient amount of antibodies to be detectable in the meat juice by means of the immune-assay. Therefore, specific Hanwoo brand meat can be more precisely identified by our rapid diagnostic kit. This technology can deter possible fraud of counterfeit meat brands in the Korean domestic market with ease and rapidity; and offers a new tool that guarantees consumers high quality Hanwoo brand beef. PMID:26761175
Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D
2014-01-15
Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. The aim of the study was to assess the production of antibody response against Russell's viper venom in mice after prophylactic immunization with ethanolic extract of fruits of Piper longum L. and piperine. The mice sera were tested for the presence of antibodies against Russell's viper venom by in vitro lethality neutralization assay and in vivo lethality neutralization assay. Polyvalent anti-snake venom serum (antivenom) manufactured by Haffkine Bio-Pharmaceutical Corporation Ltd. was used as standard. Further confirmation of presence of antibodies against the venom in sera of mice immunized with PLE and piperine was done using indirect enzyme-linked immunosorbent assay (ELISA) and double immunodiffusion test. Treatment with PLE-treated mice serum and piperine-treated mice serum was found to inhibit the lethal action of venom both in the in vitro lethality neutralization assay and in vivo lethality neutralization assay. ELISA testing indicated that there were significantly high (p<0.01) levels of cross reactions between the PLE and piperine treated mice serum and the venom antigens. In double immunodiffusion test, a white band was observed between the two wells of antigen and antibodies for both the PLE-treated and piperine-treated mice serum. Thus it can be concluded that immunization with ethanolic extract of fruits of Piper longum and piperine produced a high titre antibody response against Russell's viper venom in mice. The antibodies against PLE and piperine could be useful in antivenom therapy of Russell's viper bites. PLE and piperine may also have a potential interest in view of the development of antivenom formulations used as antidote against snake bites. Copyright © 2013 Elsevier GmbH. All rights reserved.
Vallejo, Abbe N.; Miller, Norman W.; Harvey, Nancy E.; Cuchens, Marvin A.; Warr, Gregory W.
1992-01-01
Studies were conducted to address further the role(s) of antigen processing and presentation in the induction of immune responses in a phylogenetically lower vertebrate, specifically a teleost, the channel catfish. In particular, studies were aimed at determining the subcellular compartments involved in antigen degradation by channel catfish antigen-presenting cells (APC) as well as ascertaining the reexpression of immunogenic peptides on the surfaces of APC. The results showed that exogenous protein antigens were actively endocytosed by APC as detected by flow cytometry. Use of radiolabeled antigen and subcellular fractionation protocols also showed that antigen localized in endosomes/lysosomes. Furthermore, there was an apparent redistribution of antigen between these organelles and the plasma membrane during the course of antigen pulsing. Functional assays for the induction of in vitro antigen-specific proliferation of immune catfish peripheral blood leukocytes (PBL) showed that membrane preparations from antigen-pulsed autologous APC were highly stimulatory. The magnitude of responses elicited with such membrane preparations was very similar to that of PBL cultures stimulated with native antigen-pulsed and fixed intact APC or prefixed intact APC incubated with a peptide fragment of the nominal antigen. Current data further corroborate our previous findings that steps akin to antigen processing and presentation are clearly important in the induction of immune responses in lower vertebrates like fish, in a manner similar to that seen in mammalian systems. Consequently, it would appear that many immune functions among the diverse taxa of vertebrates are remarkably conserved. PMID:1343103
Fernandez, Irina; Harlow, Lisa; Zang, Yunjuan; Liu-Bryan, Ru; Ridgway, William M.; Clemens, Paula R.; Ascherman, Dana P.
2013-01-01
We have previously shown that intramuscular administration of bacterially expressed murine histidyl-tRNA synthetase (HRS) triggers florid muscle inflammation (relative to appropriate control proteins) in various congenic strains of mice. Because severe disease develops even in the absence of adaptive immune responses to HRS, we sought to identify innate immune signaling components contributing to our model of HRS-induced myositis. In vitro stimulation assays demonstrated HRS-mediated activation of HEK293 cells transfected with either TLR2 or TLR4, revealing an excitatory capacity exceeding that of other bacterially expressed fusion proteins. Corresponding to this apparent functional redundancy of TLR signaling pathways, HRS immunization of B6.TLR2−/− and B6.TLR4−/− single knockout mice yielded significant lymphocytic infiltration of muscle tissue comparable to that produced in C57BL/6 WT mice. In contrast, concomitant elimination of TLR2 and TLR4 signaling in B6.TLR2−/−.TLR4−/− double knockout mice markedly reduced the severity of HRS-induced muscle inflammation. Complementary subfragment analysis demonstrated that amino acids 60–90 of HRS were absolutely required for in vitro as well as in vivo signaling via these MyD88-dependent TLR pathways—effects mediated, in part, through preferential binding of exogenous ligands capable of activating specific TLRs. Collectively, these experiments indicate that multiple MyD88-dependent signaling cascades contribute to this model of HRS-induced myositis, underscoring the antigenic versatility of HRS and confirming the importance of innate immunity in this system. PMID:23842751
Krawczyk, Adalbert; Ackermann, Jessica; Goitowski, Birgit; Trenschel, Rudolf; Ditschkowski, Markus; Timm, Jörg; Ottinger, Hellmut; Beelen, Dietrich W; Grüner, Nico; Fiedler, Melanie
CMV reactivation is a major cause of severe complications in allogeneic hematopoietic stem cell transplant (HSCT) recipients. The risk of CMV reactivation depends on the serostatus (+/-) of the donor (D) and recipient (R). The reconstitution of CMV-specific T-cell responses after transplantation is crucial for the control of CMV reactivation. The study aimed to determine the cellular immune status correlating with protection from high-level CMV viremia (>5000 copies/ml) and disease. We monitored CMV-specific cellular immune responses in 9 high-risk (D-/R+), 14 intermediate risk (D+/R+) and 3 low risk individuals (D+/R-), and 8 CMV negative controls (D-/R-). Interferon- γ (IFN-γ) levels as a marker for the CD8+ T-cell response were determined by the QuantiFERON-CMV-assay and compared to viral loads determined by PCR. Early CMV reactivation was detected in all high-risk and 13/14 intermediate risk individuals. High-level viremia was detected in 5/7 high and 7/14 intermediate risk patients. Reconstitution of the CMV-specific cellular immune response started from 3 months after transplantation and resulted in protection against CMV reactivation. Re-establishing of CMV-specific T-cell immune responses with IFN- γ levels >8.9 IU/ml is crucial for protection from high-level CMV viremia. Monitoring of HSCT-recipients with the QuantiFERON-CMV-assay might be of great benefit to optimize antiviral treatment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Kiselar, Janna G; Wang, Xiaowei; Dubyak, George R; El Sanadi, Caroline; Ghosh, Santosh K; Lundberg, Kathleen; Williams, Wesley M
2015-01-01
Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO). The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells. MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO. Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.
Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N
2013-02-21
Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.
Urokinase-type plasminogen activator: a new target for male contraception?
Qin, Ying; Han, Yan; Xiong, Cheng-Liang; Li, Hong-Gang; Hu, Lian; Zhang, Ling
2015-01-01
Urokinase-type plasminogen activator (uPA) is closely related to male reproduction. With the aim of investigating the possibility for uPA as a potential contraceptive target, in the present work, Kunming male mice were immunized by human uPA subcutaneous injection at three separate doses for 3 times. Then the potency of the anti-human uPA antibody in serum was analyzed, and mouse fertility was evaluated. Serum antibody titers for human uPA in immunized groups all reached 1:10,240 or higher levels by enzyme linked immunosorbent assay, and mating experiments revealed that pregnancy rates and the mean number of embryos implanted after mating declined obviously (P < 0.05) when compared with control groups. However, the mating capacity and reproductive organ weights had no obvious change, and histological analysis of the testes and epididymides also showed normal morphology for immunized male mice. Sperm function tests suggested that the sperm concentration, sperm viability, sperm motility, and in vitro fertilization rate for the cauda epididymis sperm in uPA-immunized groups were lower than those in the controls (P < 0.05). Together, these observations indicated that subcutaneous injection human uPA to the male mice could effectively reduce their fertility, and uPA could become a new target for immunocontraception in male contraceptive development.
Porter, W P; Jaeger, J W; Carlson, I H
1999-01-01
This paper describes the results of 5 years of research on interactive effects of mixtures of aldicarb, atrazine, and nitrate on endocrine, immune, and nervous system function. The concentrations of chemicals used were the same order of magnitude as current maximum contaminant levels (MCLs) for all three compounds. Such levels occur in groundwater across the United States. Dosing was through voluntary consumption of drinking water. We used fractional and full factorial designs with center replicates to determine multifactor effects. We used chronic doses in experiments that varied in duration from 22 to 103 days. We tested for changes in thyroid hormone levels, ability to make antibodies to foreign proteins, and aggression in wild deer mice, Peromyscus maniculatus, and white outbred Swiss Webster mice, Mus musculus, ND4 strain. Endocrine, immune, and behavior changes occurred due to doses of mixtures, but rarely due to single compounds at the same concentrations. Immune assay data suggest the possibility of seasonal effects at low doses. We present a multiple-level model to help interpret the data in the context of human health and biological conservation concerns. We discuss six testing deficiencies of currently registered pesticides, and suggest areas of human health concerns if present trends in pesticide use continue.
Modulatory effects of several herbal extracts on avian peripheral blood cell immune responses.
Dorhoi, A; Dobrean, V; Zăhan, M; Virag, P
2006-05-01
Standardized ethanol extracts of Allium sativum (garlic), Glycyrrhiza glabra (licorice), Plantago major (plantain) and Hippophae rhamnoides (sea buckthorn) were assessed for their effects on cellular immunity in laying hens. Birds (n = 25) had blood samples taken and both specific and non-specific immune cell responsiveness were evaluated by a leukocyte proliferation assay, carbon clearance test and SRBC phagocytosis in monocyte-derived macrophage cultures. Licorice and sea buckthorn (50 microg/mL) clearly enhanced the macrophage membrane function (p < 0.05 and p < 0.01, respectively). Dual effects on circulating phagocytes were revealed for plantain and sea buckthorn, while garlic at 200 microg/mL impaired the phagocytic capacity of blood cells. None of the tested extracts showed mitogenic properties, but high concentrations of sea buckthorn (400 microg/mL) inhibited leukocyte proliferation. Small concentrations (20 microg/mL) of licorice proved the co-mitogenic potential for both T and B avian lymphocytes (p < 0.05). Certain extracts definitely enhanced the fowl innate and/or specific cell immunity and may therefore improve host resistance in poultry. Considering the chicken as an important non-mammalian model that also serves as an available laboratory approach for some human diseases, herbs exerting immunomodulatory properties may find relevant clinical applications. Copyright 2006 John Wiley & Sons, Ltd.
Chen, Yong-Gui; Yuan, Kai; Zhang, Ze-Zhi; Yuan, Feng-Hua; Weng, Shao-Ping; Yue, Hai-Tao; He, Jian-Guo; Chen, Yi-Hong
2016-04-01
Innate immunity in shrimp is important in resisting bacterial infection. The NF-κB pathway is pivotal in such an immune response. This study cloned and functionally characterized the solute carrier family (SLC) 15 member A 4 (LvSLC15A4) gene in Litopenaeus vannamei. The open reading frame of LvSLC15A4 is 1, 902 bp long and encodes a putative 633-amino acid protein, which is localized in the plasma membrane and intracellular vesicular compartments. Results of the reporter gene assay showed that LvSLC15A4 upregulated NF-κB target genes, including the immediate-early gene 1 of white spot syndrome virus, as well as several antimicrobial peptide genes, such as pen4, CecA, AttA, and Mtk in S2 cells. Moreover, knocked-down expression of LvSLC15A4 reduced pen4 expression in L. vannamei. LvSLC15A4 down-regulation also increased the cumulative mortality of Vibrio parahemolyticus-infected L. vannamei. Furthermore, LvSLC15A4 expression was induced by unfolded protein response (UPR) in L. vannamei hematocytes. These results suggest that LvSLC15A4 participates in L. vannamei innate immunity via the NF-κB pathway and thus may be related to UPR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Du, Minmin; Zhao, Jiuhai; Tzeng, David T W; Liu, Yuanyuan; Deng, Lei; Yang, Tianxia; Zhai, Qingzhe; Wu, Fangming; Huang, Zhuo; Zhou, Ming; Wang, Qiaomei; Chen, Qian; Zhong, Silin; Li, Chang-Bao; Li, Chuanyou
2017-08-01
The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato ( Solanum lycopersicum ) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea , MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes. © 2017 American Society of Plant Biologists. All rights reserved.
Liu, Yuanyuan; Deng, Lei; Wu, Fangming; Huang, Zhuo; Zhou, Ming; Chen, Qian; Zhong, Silin
2017-01-01
The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes. PMID:28733419
Misumi, Ichiro; Yada, Takashi; Leong, Jo-Ann C; Schreck, Carl B
2009-02-01
We evaluated the direct effects of in vitro exposures to tributyltin (TBT), a widely used biocide, on the cell-mediated immune system of Chinook salmon (Oncorhynchus tshawytscha). Splenic and pronephric leukocytes isolated from juvenile Chinook salmon were exposed to TBT (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/l) in cell cultures for 24 h. Effects of TBT on cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry. Splenic and pronephric leukocytes in the presence of TBT experienced a concentration-dependent decrease in viability in cell cultures. Apoptosis was detected as one of the mechanisms of cell death after TBT exposure. In addition, pronephric lymphocytes exhibited a greater sensitivity to TBT exposure than pronephric granulocytes. The functional ability of splenic B-cells to undergo blastogenesis upon lipopolysaccharide stimulation was also significantly inhibited in the presence of 0.05, 0.07, or 0.10 mg/l of TBT in the cell cultures. Flow cytometric assay using a fluorescent conjugated monoclonal antibody against salmon surface immunoglobulin was employed for the conclusive identification of B-cells in the Chinook salmon leukocytes. Our findings suggest that adverse effects of TBT on the function or development of fish immune systems could lead to an increase in disease susceptibility and its subsequent ecological implications.
Li, Jun; Zhang, Yang; Zhang, Yuehuan; Liu, Ying; Xiang, Zhiming; Qu, Fufa; Yu, Ziniu
2015-06-01
Members of the suppressor of cytokine signaling (SOCS) family are crucial for the control of a variety of signal transduction pathways that are involved in the immunity, growth and development of organisms. However, in mollusks, the identity and function of SOCS proteins remain largely unclear. In the present study, three SOCS genes, CgSOCS2, CgSOCS5 and CgSOCS7, have been identified by searching and analyzing the Pacific oyster genome. Structural analysis indicated that the CgSOCS share conserved functional domains with their vertebrate counterparts. Phylogenetic analysis showed that the three SOCS genes clustered into two distinct groups, the type I and II subfamilies, indicating that these subfamilies had common ancestors. Tissue-specific expression results showed that the three genes were constitutively expressed in all examined tissues and were highly expressed in immune-related tissues, such as the hemocytes, gills and digestive gland. The expression of CgSOCS can also be induced to varying degrees in hemocytes after challenge with pathogen-associated molecular patterns (PAMPs). Moreover, dual-luciferase reporter assays showed that the over-expression of CgSOCS2 and CgSOCS7, but not CgSOC5, can activate an NF-κB reporter gene. Collectively, these results demonstrated that the CgSOCS might play an important role in the innate immune responses of the Pacific oyster. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liang, Meihua; Zhan, Fei; Zhao, Juan; Li, Qi; Wuyang, Jiazi; Mu, Guannan; Li, Dianjun; Zhang, Yanqiao; Huang, Xiaoyi
2016-07-19
Platinum-based chemotherapy is emerging as the first line of treatment for castration resistant prostate cancer. Among the family of platinum (IV)-based compounds, a member known as CPA-7 inhibits the growth of multiple cancer cell lines. However, how and to what extent CPA-7 elicits its anti-prostate cancer effects in vivo is largely unknown. In this study, we firstly assessed the potential toxicity of the synthesized CPA-7 in a prostate cancer model as well as in normal mice. Next, we evaluated the in vitro effects of CPA-7 on the growth of prostate cancer cells using cell counting assay, and calculated the tumor sizes and cumulative survival rate of the tumor bearing mice by Kaplan-Meier method during CPA-7 treatment. Then we measured the expression level of the activated form of STAT3 (one targets of CPA-7) and its transcriptive activity post CPA-7 treatment by synergistically using western blot, IHC, and firefly luciferase reporter assays. Finally, effects of CPA-7 on immune cell trafficking in the tumor draining lymph nodes and in the spleens are evaluated with flow cytometry. Treatment with CPA-7 significantly inhibited growth of prostate cancer cells in vitro, and also in mice resulting in a prolonged survival and a decreased recurrence rate. These therapeutic effects are due, at least in part, to functional depletion of STAT3 in prostate tumor tissue as well as in the surrounding areas of tumor cell invasion. CPA-7 treatment also resulted in a reduced level of regulatory T cells and increased levels of cytotoxic T and T helper cells in the spleen and in tumor infiltrating lymph nodes. This favorable effect on immune cell trafficking may account for the amnestic immune response against recurrent prostate cancer. CPA-7 is a promising new therapeutic agent for prostate cancer that both inhibits tumor cell proliferation and stimulates anti-tumor immunity. It has potential as first line treatment and/or as an adjuvant for refractory prostate cancer.
Jeewandara, Chandima; Adikari, Thiruni N.; Gomes, Laksiri; Fernando, Samitha; Fernando, R. H.; Perera, M. K. T.; Ariyaratne, Dinuka; Kamaladasa, Achala; Salimi, Maryam; Prathapan, Shamini
2015-01-01
Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. PMID:25875020
2011-01-01
Background The mechanisms by which chronic hepatitis B is completely resolved through antiviral therapy are unknown, and the contribution of acquired T cell immunity to hepatitis B surface antigen (HBsAg) seroclearance has not been investigated. Therefore, we measured the T-cell responses to core and envelope antigens in patients with HBsAg seroclearance. Methods Fourteen subjects with HBsAg seroclearance following antiviral treatment for chronic hepatitis B, 7 HBeAg-positive immunotolerant HBV carriers and 9 HBeAg-negative inactive HBsAg carriers were recruited. HBV-specific T-cell responses to recombinant HBV core (rHBcAg) and envelope (rHBsAg) proteins and pools of core and envelope peptides were measured using an ELISPOT assay detecting interferon-gamma and intracellular cytokine staining (ICS) assays detecting interferon-gamma or interleukin 2. Results Interferon-gamma ELISPOT assays showed a low frequency of weak responses to the rHBsAg and S peptide pool in the HBsAg seroclearance group, and the response frequency to the rHBcAg and the C peptide pool was higher than to the rHBsAg (P < 0.001) and S peptide pool (P = 0.001) respectively. A higher response frequency to C than S peptide pools was confirmed in the interferon-gamma ICS assays for both CD4+ (P = 0.033) and CD8+ (P = 0.040) T cells in the HBsAg seroclearance group. The responses to C and S antigens in the inactive carriers were similar. Conclusions There was a low frequency of CD4+ and CD8+ T cell immune responses to envelope antigens in Chinese subjects with HBsAg seroclearance following antiviral therapy. It is unlikely that these immune responses are responsible for HBsAg seroclearance in these subjects. PMID:21320337
Chris Maple, P A; Gray, Jim; Brown, Kevin; Brown, David
2009-04-01
Infection by Varicella Zoster virus (VZV) during pregnancy has been associated with adverse foetal development and more severe disease in the mother. Accurate determination of VZV immunity in pregnant women exposed to VZV, with no history of chickenpox, guides therapeutic interventions. The accepted gold standard assay for the determination of immunity/protection against Varicella Zoster virus was for many years the fluorescent antibody to membrane antigen (FAMA) assay which is labour intensive and subjective. A validated alternative is the Merck glycoprotein EIA (Merck Sharp & Dohme Research Laboratories, West Point, PA, USA) which reports VZV IgG levels in enzyme units per ml (EU/ml) because an internal, non-international reference serum is used as calibrator. Comparison of different VZV IgG detection assays is hampered by a lack of an agreed cut-off in standardised units. A time resolved fluorescence immunoassay (TRFIA) for VZV IgG using British Standard VZV antibody has been developed and standardised. The limit of detection of VZV IgG by this assay was of the order 39-78mIU/ml. Following comparison with the Merck glycoprotein EIA and the application of the USA Advisory Committee on Immunization Practices recommended 5.0EU/ml cut-off the following standardised cut-offs in mIU/ml are proposed. A VZV TRFIA IgG cut-off of less than 100mIU/ml VZV IgG equates with susceptibility and an equivocal range of 100mIU/ml to less than 150mIU/ml is proposed. VZV IgG levels of 150mIU/ml, or greater, are indicative of natural infection at some time and the ability to mount a protective immune response is inferred.
A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus.
Voisset, Cécile; Daskalogianni, Chrysoula; Contesse, Marie-Astrid; Mazars, Anne; Arbach, Hratch; Le Cann, Marie; Soubigou, Flavie; Apcher, Sébastien; Fåhraeus, Robin; Blondel, Marc
2014-04-01
Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.
Mackus, Marlou; Kruijff, Deborah de; Otten, Leila S; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C
2017-04-12
Altered immune functioning has been demonstrated in individuals with autism spectrum disorder (ASD). The current study explores the relationship between perceived immune functioning and experiencing ASD traits in healthy young adults. N = 410 students from Utrecht University completed a survey on immune functioning and autistic traits. In addition to a 1-item perceived immune functioning rating, the Immune Function Questionnaire (IFQ) was completed to assess perceived immune functioning. The Dutch translation of the Autism-Spectrum Quotient (AQ) was completed to examine variation in autistic traits, including the domains "social insights and behavior", "difficulties with change", "communication", "phantasy and imagination", and "detail orientation". The 1-item perceived immune functioning score did not significantly correlate with the total AQ score. However, a significant negative correlation was found between perceived immune functioning and the AQ subscale "difficulties with change" (r = -0.119, p = 0.019). In women, 1-item perceived immune functioning correlated significantly with the AQ subscales "difficulties with change" (r = -0.149, p = 0.029) and "communication" (r = -0.145, p = 0.032). In men, none of the AQ subscales significantly correlated with 1-item perceived immune functioning. In conclusion, a modest relationship between perceived immune functioning and several autistic traits was found.
Pyridostigmine bromide (PYR) alters immune function in B6C3F1 mice.
Peden-Adams, M M; Dudley, A C; EuDaly, J G; Allen, C T; Gilkeson, G S; Keil, D E
2004-02-01
Pyridostigmine bromide (PYR) is an anticholinesterase drug indicated for the treatment of myasthenia gravis and neuromuscular blockade reversal. It acts as a reversible cholinesterase inhibitor and was used as a pretreatment for soldiers during Operation Desert Storm to protect against possible nerve gas attacks. Since that time, PYR has been implicated as a possible causative agent contributing to Gulf War Illness. PYR's mechanism of action has been well-delineated with regards to its effects on the nervous system, yet little is known regarding potential effects on immunological function. To evaluate the effects of PYR on immunological function, adult female B6C3F1 mice were gavaged daily for 14 days with PYR (0, 1, 5, 10, or 20 mg/kg/day). Immune parameters assessed were lymphoproliferation, natural killer cell activity, the SRBC-specific antibody plaque-forming cell (PFC) response, thymus and spleen weight and cellularity, and thymic and splenic CD4/CD8 lymphocyte subpopulations. Exposure to PYR did not alter splenic and thymus weight or splenic cellularity. However, 20 mg PYR/kg/day decreased thymic cellularity with decreases in both CD4+/CD8+ (20 mg/kg/day) and CD4-/CD8- (10 and 20 mg/kg/day) cell types. Functional immune assays indicated that lymphocyte proliferative responses and natural killer cell activity were normal; whereas exposure to PYR significantly decreased primary IgM antibody responses to a T-cell dependent antigen at the 1, 5, 10 and 20 mg/kg treatment levels for 14 days. This is the first study to examine the immunotoxicological effects of PYR and demonstrate that this compound selectively suppresses humoral antibody responses.
Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen
2011-11-15
The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.
Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity1[OPEN
Kim, Denis; Schreiber, Stefan; Zeier, Tatyana; Schuck, Stefan; Reichel-Deland, Vanessa
2017-01-01
The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae. Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction. PMID:28330936
Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping
2011-08-01
There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs. Copyright © 2011 Elsevier B.V. All rights reserved.
Gupta, Shalini; Indelicato, Stephen R; Jethwa, Vijay; Kawabata, Thomas; Kelley, Marian; Mire-Sluis, Anthony R; Richards, Susan M; Rup, Bonita; Shores, Elizabeth; Swanson, Steven J; Wakshull, Eric
2007-04-10
The administration of biological therapeutics can evoke some level of immune response to the drug product in the receiving subjects. An immune response comprised of neutralizing antibodies can lead to loss of efficacy or potentially more serious clinical sequelae. Therefore, it is important to monitor the immunogenicity of biological therapeutics throughout the drug product development cycle. Immunoassays are typically used to screen for the presence and development of anti-drug product antibodies. However, in-vitro cell-based assays prove extremely useful for the characterization of immunoassay-positive samples to determine if the detected antibodies have neutralizing properties. This document provides scientific recommendations based on the experience of the authors for the development of cell-based assays for the detection of neutralizing antibodies in non-clinical and clinical studies.
Han, Sang Hoon
2017-09-01
The current cytomegalovirus (CMV) prevention strategies in solid organ transplantation (SOT) recipients have contributed towards overcoming the detrimental effects caused by CMV lytic infection, and improving the long-term success rate of graft survival. Although the quantification of CMV in peripheral blood is the standard method, and an excellent end-point for diagnosing CMV replication and modulating the anti-CMV prevention strategies in SOT recipients, a novel biomarker mimicking the CMV control mechanism is required. CMV-specific immune monitoring can be employed as a basic tool predicting CMV infection or disease after SOT, since uncontrolled CMV replication mostly originates from the impairment of immune responses against CMV under immunosuppressive conditions in SOT recipients. Several studies conducted during the past few decades have indicated the possibility of measuring the CMV-specific cell-mediated immune response in clinical situations. Among several analytical assays, the most advancing standardized tool is the QuantiFERON®-CMV assay. The T-Track® CMV kit that uses the standardized enzyme-linked immunospot assay is also widely employed. In addition to these assays, immunophenotyping and intracellular cytokine analysis using flow cytometry (with fluorescence-labeled monoclonal antibodies or peptide-major histocompatibility complex multimers) needs to be adequately standardized and validated for potential clinical applications. Copyright © 2017 by The Korean Society of Infectious Diseases and Korean Society for Chemotherapy.
A new ELISA for determination of potency in snake antivenoms.
Rial, A; Morais, V; Rossi, S; Massaldi, H
2006-09-15
A competitive ELISA for potency determination of bothropic equine antivenom was developed and compared to the conventional in vivo ED(50) assay, with the aim of partially substituting the in vivo assay in the monitoring of antivenom immunoglobulin levels. On this purpose, blood samples were taken at different times during and after the immunization protocol of the lot of horses used for production of snake antivenom at the Instituto de Higiene, Uruguay. Both the competitive ELISA and the ED(50) assay were performed on those samples. In addition, a group of five commercial pepsin-digested antivenoms were tested by both methods. A significant (P<0.001) correlation (Pearson's r=0.957) was found between the ELISA titres and the corresponding ED(50) values, indicating that the in vitro test can estimate the neutralizing antibody capacity of the sera as well as the in vivo assay. By means of this new ELISA, it was found that the immunized animals maintained good venom antibody titres, in the order of 20-50% of the maximum achieved, even 10 month after the end of the immunization schedule. The main advantage of our ELISA design is its ability to correctly estimate the neutralization capacity of crude hyperimmune plasma and antivenom sera independently of their antibody composition in terms of whole IgG or F(ab')(2) fragment.
Tolerance assays: measuring the unknown.
Newell, Kenneth A; Larsen, Christian P
2006-06-15
Distinguishing transplant recipients who will benefit from a reduction in, or even the withdrawal of, immunosuppression from those who require intensive, lifelong immunosuppression will be dependent on developing strategies for immune monitoring. Currently, no assays have been shown to accurately predict the development or presence of donor-specific tolerance in humans after transplantation. In this overview we describe and discuss those assays that we believe may be useful for identifying tolerant transplant recipients. Validation of "tolerance" assays will be critical for the safe development of tolerance regimens in humans.
Carrio, Roberto; Zhang, Ge; Drake, Donald R; Schanen, Brian C
2018-05-07
Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4 + T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4 + T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4 + T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4 + T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.
Millar, E L; Rennick, L J; Weissbrich, B; Schneider-Schaulies, J; Duprex, W P; Rima, B K
2016-01-04
Products expressed from the second (P/V/C) gene are important in replication and abrogating innate immune responses during acute measles virus (MV) infection. Thirteen clone sets were derived from the P/V/C genes of measles virus (MV) RNA extracted from brains of a unique collection of seven cases of subacute sclerosing panencephalitis (SSPE) caused by persistent MV in the central nervous system (CNS). Whether these functions are fully maintained when MV replicates in the CNS has not been previously determined. Co-transcriptional editing of the P mRNAs by non-template insertion of guanine (G) nucleotides, which generates mRNAs encoding the viral V protein, occurs much less frequently (9%) in the SSPE derived samples than during the acute infection (30-50%). Thus it is likely that less V protein, which is involved in combatting the innate immune response, is produced. The P genes in MV from SSPE cases were not altered by biased hypermutation but exhibited a high degree of variation within each case. Most but not all SSPE derived phospho-(P) proteins were functional in mini genome replication/transcription assays. An eight amino acid truncation of the carboxyl-terminus made the P protein non-functional while the insertion of an additional glycine residue by insertion of G nucleotides at the editing site had no effect on protein function. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-01-01
Background The coinhibitory receptor Programmed Death-1 (PD-1) inhibits effector functions of activated T cells and prevents autoimmunity, however, cancer hijack this pathway to escape from immune attack. The costimulatory receptor glucocorticoid-induced TNFR related protein (GITR) is up-regulated on activated T cells and increases their proliferation, activation and cytokine production. We hypothesize that concomitant PD-1 blockade and GITR triggering would synergistically improve the effector functions of tumor-infiltrating T cells and increase the antitumor immunity. In present study, we evaluated the antitumor effects and mechanisms of combined PD-1 blockade and GITR triggering in a clinically highly relevant murine ID8 ovarian cancer model. Methods Mice with 7 days-established peritoneal ID8 ovarian cancer were treated intraperitoneally (i.p.) with either control, anti-PD-1, anti-GITR or anti-PD-1/GITR monoclonal antibody (mAb) and their survival was evaluated; the phenotype and function of tumor-associated immune cells in peritoneal cavity of treated mice was analyzed by flow cytometry, and systemic antigen-specific immune response was evaluated by ELISA and cytotoxicity assay. Results Combined anti-PD-1/GITR mAb treatment remarkably inhibited peritoneal ID8 tumor growth with 20% of mice tumor free 90 days after tumor challenge while treatment with either anti-PD-1 or anti-GITR mAb alone exhibited little antitumor effect. The durable antitumor effect was associated with a memory immune response and conferred by CD4+ cells and CD8+ T cells. The treatment of anti-PD-1/GITR mAb increased the frequencies of interferon-γ-producing effector T cells and decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state in peritoneal cavity. In addition, combined treatment of anti-PD-1/GITR mAb mounted an antigen-specific immune response as evidenced by antigen-specific IFN-γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. Conclusions Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic. PMID:24502656
Broniowska, Żaneta; Ślusarczyk, Joanna; Starek-Świechowicz, Beata; Trojan, Ewa; Pomierny, Bartosz; Krzyżanowska, Weronika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława
2018-04-13
Benzophenones used as UV filters, in addition to the effects on the skin, can be absorbed into the blood and affect the function of certain organs. So far, their effects on the sex hormone receptors and gonadal function have been studied, but not much is known about their potential action on other systems. The aim of the present study was to determine the effect of benzophenone-2 (BP-2) on immune system activity, hypothalamic-pituitary-thyroid (HPT) axis activity and hematological parameters. BP-2 was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks to male Wistar rats. Immunological and hematological parameters and HPT axis activity were assayed 24 h after the last administration. It was found that BP-2 did not change relative weights of the thymus and spleen and did not exert toxic effect on tymocytes and splenocytes. However, this compound increased proliferative activity of splenocytes, enhanced metabolic activity of splenocytes and thymocytes and nitric oxide production of these cells. In animals exposed to BP-2, the HPT axis activity was increased, as evidenced by reduction in the thyroid stimulating hormone (TRH) level and increase in free fraction of triiodothyronine (fT3) and thyroxin (fT4) in blood. BP-2 had no effect on leukocyte, erythrocyte and platelet counts or on morphology and hemoglobin content in erythrocytes. The conducted research showed that dermal, sub-chronic BP-2 administration evoked hyperthyroidism, increased activity or function of the immune cells but did not affect hematological parameters. We suggest that topical administration of BP-2 leading to a prolonged elevated BP-2 level in blood causes hyperthyroidism, which in turn may be responsible for the increased immune cell activity or function. However, only future research can explain the mechanism and functional importance of the changes in thyroid hormones and immunological parameters observed after exposure to BP-2. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Degang; Shui, Tiejun; Miranda, Jake W; Gilson, Danny J; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun
2016-01-01
The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.
Yamanaka, Atsushi; Suzuki, Ryosuke; Konishi, Eiji
2014-07-23
Dengue fever and dengue hemorrhagic fever are endemic throughout tropical and subtropical countries. Four serotypes of dengue viruses (DENV-1 to DENV-4), each with several genotypes including various subclades, are co-distributed in most endemic areas. Infection-neutralizing and -enhancing antibodies are believed to play protective and pathogenic roles, respectively. Measurement of these functional antibodies against a variety of viral strains is thus important for evaluating coverage and safety of dengue vaccine candidates. Although transportation of live virus materials beyond national borders is increasingly limited, this difficulty may be overcome using biotechnology that enables generation of an antibody-assay antigen equivalent to authentic virus based on viral sequence information. A rapid system to produce flavivirus single-round infectious particles (SRIPs) was recently developed using a Japanese encephalitis virus (JEV) subgenomic replicon plasmid. This system allows production of chimeric SRIPs that have surface proteins of other flaviviruses. In the present study, SRIPs of DENV-1 (D1-SRIPs) were evaluated as an antigen for functional antibody assays. Inclusion of the whole mature capsid gene of JEV into the replicon plasmid provided higher D1-SRIP yields than did its exclusion in cases where a DENV-1 surface-protein-expressing plasmid was used for co-transfection of 293T cells with the replicon plasmid. In an assay to measure the balance between neutralizing and enhancing activities, dose (antibody dilution)-dependent activity curves in dengue-immune human sera or mouse monoclonal antibodies obtained using D1-SRIP antigen were equivalent to those obtained using DENV-1 antigen. Similar results were obtained using additional DENV-2 and DENV-3 systems. In a conventional Vero-cell neutralization test, a significant correlation was shown between antibody titers obtained using D1-SRIP and DENV-1 antigens. These results demonstrate the utility of D1-SRIPs as an alternative antigen to authentic DENV-1 in functional antibody assays. SRIP antigens may contribute to dengue vaccine candidate evaluation, understanding of dengue pathogenesis, and development of serodiagnostic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Sang Hee; Son, Geon Hui; Bhattacharjee, Saikat; Kim, Hye Jin; Nam, Ji Chul; Nguyen, Phuong Dung T; Hong, Jong Chan; Gassmann, Walter
2014-06-01
The plant immune system must be tightly controlled both positively and negatively to maintain normal plant growth and health. We previously identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator specifically of effector-triggered immunity. SRFR1 is localized in both a cytoplasmic microsomal compartment and in the nucleus. Its TPR domain has sequence similarity to TPR domains of transcriptional repressors in other organisms, suggesting that SRFR1 may negatively regulate effector-triggered immunity via transcriptional control. We show here that excluding SRFR1 from the nucleus prevented complementation of the srfr1 phenotype. To identify transcription factors that interact with SRFR1, we screened an Arabidopsis transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor family. Specific interactions were verified in planta. Although single or double T-DNA mutant tcp8, tcp14 or tcp15 lines were not more susceptible to bacteria expressing AvrRps4, the triple tcp8 tcp14 tcp15 mutant displayed decreased effector-triggered immunity mediated by the resistance genes RPS2, RPS4, RPS6 and RPM1. In addition, expression of PATHOGENESIS-RELATED PROTEIN2 was attenuated in srfr1-4 tcp8-1 tcp14-5 tcp15-3 plants compared to srfr1-4 plants. To date, TCP transcription factors have been implicated mostly in developmental processes. Our data indicate that one function of a subset of TCP proteins is to regulate defense gene expression in antagonism to SRFR1, and suggest a mechanism for an intimate connection between plant development and immunity. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Ching, Natascha; Deville, Jaime G; Nielsen, Karin A; Ank, Bonnie; Wei, Lian S; Sim, Myung Shin; Wolinsky, Steven M; Bryson, Yvonne J
2007-01-01
Human immunodeficiency virus type 1 (HIV-1) infected children treated with highly active antiretroviral therapy (HAART) may develop a significant reduction of plasma viremia associated with an increase in CD4+ T-cell counts. Functional capacity of this reconstituted immune system in response to recall antigens is important to maintain protective immunity to vaccine-preventable diseases. We therefore determined cellular and humoral immune responses to tetanus toxoid (TT) booster in perinatally HIV-1-infected children and adolescents receiving HAART. Immune responses were prospectively evaluated pre- and post-tetanus booster using lymphocyte proliferation assay (LPA) stimulation index (SI > or = 3.0) and tetanus antibody (TAb > or = 0.15) in 15 patients. The median interval from primary tetanus immunization series was 6 years (range 2-12 years). We compared patients by their virological response to HAART (complete responders, CR, n=7; incomplete responders, ICR, n=8). There were no significant differences in median age 12.6 years (CR: 12.9; ICR: 10.6) or median CD4 T-cell pre-booster (CR: 35%/819; ICR: 26%/429) between groups. Tetanus LPA responses were observed in one patient prior to booster and in seven patients post-booster. In contrast, 38% of patients had protective TAb pre-booster, but 92% developed protective TAb post-booster. All of the CR and 5/6 ICR patients developed protective TAb. HIV-1-infected children and adolescents had modest LPA responses to tetanus following booster, similar to HIV-1-infected adults. However, the majority of patients developed protective TAb levels after booster and maintained the response. Shorter intervals may need to be considered for TT immunization boosters in HIV-1-infected pediatric patients, as only 38% had protective TAb at baseline.
Hou, Jue; Wang, Shuhui; Jia, Manxue; Li, Dan; Liu, Ying; Li, Zhengpeng; Zhu, Hong; Xu, Huifang; Sun, Meiping; Lu, Li; Zhou, Zhinan; Peng, Hong; Zhang, Qichen; Fu, Shihong; Liang, Guodong; Yao, Lena; Yu, Xuesong; Carpp, Lindsay N; Huang, Yunda; McElrath, Julie; Self, Steve; Shao, Yiming
2017-08-15
In this study, we used a systems vaccinology approach to identify temporal changes in immune response signatures to the yellow fever (YF)-17D vaccine, with the aim of comprehensively characterizing immune responses associated with protective immunity. We conducted a cohort study in which 21 healthy subjects in China were administered one dose of the YF-17D vaccine; PBMCs were collected at 0 h and then at 4 h and days 1, 2, 3, 5, 7, 14, 28, 84, and 168 postvaccination, and analyzed by transcriptional profiling and immunological assays. At 4 h postvaccination, genes associated with innate cell differentiation and cytokine pathways were dramatically downregulated, whereas receptor genes were upregulated, compared with their baseline levels at 0 h. Immune response pathways were primarily upregulated on days 5 and 7, accompanied by the upregulation of the transcriptional factors JUP, STAT1, and EIF2AK2. We also observed robust activation of innate immunity within 2 d postvaccination and a durable adaptive response, as assessed by transcriptional profiling. Coexpression network analysis indicated that lysosome activity and lymphocyte proliferation were associated with dendritic cell (DC) and CD4 + T cell responses; FGL2, NFAM1, CCR1, and TNFSF13B were involved in these associations. Moreover, individuals who were baseline-seropositive for Abs against another flavivirus exhibited significantly impaired DC, NK cell, and T cell function in response to YF-17D vaccination. Overall, our findings indicate that YF-17D vaccination induces a prompt innate immune response and DC activation, a robust Ag-specific T cell response, and a persistent B cell/memory B cell response. Copyright © 2017 by The American Association of Immunologists, Inc.
Mydlarz, Laura D; Couch, Courtney S; Weil, Ernesto; Smith, Garriet; Harvell, C Drew
2009-11-16
One prominent hypothesis regarding climate change and scleractinian corals is that thermal stress compromises immune competence. To test this hypothesis we tracked how the immune defenses of bleached, apparently healthy and yellow band disease (YBD) diseased Montastraea faveolata colonies varied with natural thermal stress in southwestern Puerto Rico. Colonies were monitored for 21 mo from the peak of the bleaching event in October 2005 to August 2007. Since sea surface temperature was significantly higher in summer and fall 2005 than 2006, year of collection was used as a proxy for temperature stress, and colony fragments collected in 2005 were compared with those collected in 2006. Mortality rate was high (43% overall) and all colonies (except one) either died or became infected with YBD by August 2007. YBD-infected tissue did not bleach (i.e. expel zooxanthellae) during the 2005 bleaching event, even when healthy tissue of these colonies bleached. Immune activity was assayed by measuring prophenoloxidase (PPO), peroxidase (POX), lysozyme-like (LYS) and antibacterial (AB) activity. Immune activity was variable between all coral samples, but there was a significant elevation of PPO activity in bleached colonies collected in 2005 relative to apparently healthy and YBD-diseased corals in 2006. In YBD-diseased colonies, LYS and AB activity were elevated in both healthy and infected tissue, indicating a systemic response; activity levels in these colonies were higher compared to those that appeared healthy. In both these immune parameters, there was a trend for suppression of activity in corals that were bleached in 2005. These data, while complicated by between-genet variability, illustrate the complex interaction between disease and temperature stress on immune function.
Woodhams, Douglas C.; Brandt, Hannelore; Baumgartner, Simone; Kielgast, Jos; Küpfer, Eliane; Tobler, Ursina; Davis, Leyla R.; Schmidt, Benedikt R.; Bel, Christian; Hodel, Sandro; Knight, Rob; McKenzie, Valerie
2014-01-01
Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions. PMID:24789229
Rovati, B; Mariucci, S; Delfanti, S; Grasso, D; Tinelli, C; Torre, C; De Amici, M; Pedrazzoli, P
2016-06-01
Chemotherapy-induced immune suppression has mainly been studied in patients with advanced cancer, but the influence of chemotherapy on the immune system in early stage cancer patients has so far not been studied systematically. The aim of the present study was to monitor the immune system during anthracycline- and taxane-based adjuvant chemotherapy in early stage breast cancer patients, to assess the impact of circulating tumor cells on selected immune parameters and to reveal putative angiogenic effects of circulating endothelial cells. Peripheral blood samples from 20 early stage breast cancer patients were analyzed using a flow cytometric multi-color of antibodies to enumerate lymphocyte and dendritic cell subsets, as well as endothelial and tumor cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of various serological factors. During chemotherapy, all immunological parameters and angiogenesis surrogate biomarkers showed significant decreases. The numbers of circulating tumor cells showed significant inverse correlations with the numbers of T helper cells, a lymphocyte subset directly related to effective anti-tumor responses. Reduced T helper cell numbers may contribute to systemic immunosuppression and, as such, the activation of dormant tumor cells. From our results we conclude that adjuvant chemotherapy suppresses immune function in early stage breast cancer patients. In addition, we conclude that the presence of circulating tumor cells, defined as pan-cytokeratin(+), CD326(+), CD45(-) cells, may serve as an important indicator of a patient's immune status. Further investigations are needed to firmly define circulating tumor cells as a predictor for the success of breast cancer adjuvant chemotherapy.
Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency.
Pindolia, Kirit; Li, Hong; Cardwell, Cisley; Wolf, Barry
2014-05-01
Biotinidase deficiency is an autosomal recessively inherited metabolic disorder that can be easily and effectively treated with pharmacological doses of the vitamin, biotin. Untreated children with profound biotinidase deficiency may exhibit neurological, cutaneous and cellular immunological abnormalities, specifically candida infections. To better understand the immunological dysfunction in some symptomatic individuals with biotinidase deficiency, we studied various aspects of immunological function in a genetically engineered knock-out mouse with biotinidase deficiency. The mouse has no detectable biotinidase activity and develops neurological and cutaneous symptoms similar to those seen in symptomatic children with the disorder. Mice with profound biotinidase deficiency on a biotin-restricted diet had smaller thymuses and spleens than identical mice fed a biotin-replete diet or wildtype mice on either diet; however, the organ to body weight ratios were not significantly different. Thymus histology was normal. Splenocyte subpopulation study showed a significant increase in CD4 positive cells. In addition, in vitro lymphocyte proliferation assays consistently showed diminished proliferation in response to various immunological stimuli. Not all symptomatic individuals with profound biotinidase deficiency develop immunological dysfunction; however, our results do show significant alterations in cellular immunological function that may contribute and/or provide a mechanism(s) for the cellular immunity abnormalities in individuals with biotinidase deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
Santos, Radleigh; Buying, Alcinette; Sabri, Nazila; Yu, John; Gringeri, Anthony; Bender, James; Janetzki, Sylvia; Pinilla, Clemencia; Judkowski, Valeria A.
2014-01-01
Immune monitoring of functional responses is a fundamental parameter to establish correlates of protection in clinical trials evaluating vaccines and therapies to boost antigen-specific responses. The IFNγ ELISPOT assay is a well-standardized and validated method for the determination of functional IFNγ-producing T-cells in peripheral blood mononuclear cells (PBMC); however, its performance greatly depends on the quality and integrity of the cryopreserved PBMC. Here, we investigate the effect of overnight (ON) resting of the PBMC on the detection of CD8-restricted peptide-specific responses by IFNγ ELISPOT. The study used PBMC from healthy donors to evaluate the CD8 T-cell response to five pooled or individual HLA-A2 viral peptides. The results were analyzed using a modification of the existing distribution free resampling (DFR) recommended for the analysis of ELISPOT data to ensure the most rigorous possible standard of significance. The results of the study demonstrate that ON resting of PBMC samples prior to IFNγ ELISPOT increases both the magnitude and the statistical significance of the responses. In addition, a comparison of the results with a 13-day preculture of PBMC with the peptides before testing demonstrates that ON resting is sufficient for the efficient evaluation of immune functioning. PMID:25546016
Immunogenicity testing of therapeutic antibodies in ocular fluids after intravitreal injection.
Wessels, Uwe; Zadak, Markus; Reiser, Astrid; Brockhaus, Janis; Ritter, Mirko; Abdolzade-Bavil, Afsaneh; Heinrich, Julia; Stubenrauch, Kay
2018-04-11
High drug concentrations in ocular fluids after intravitreal administration preclude the use of drug-sensitive immunoassays. A drug-tolerant immunoassay is therefore desirable for immunogenicity testing in ophthalmology. Immune complex (IC) antidrug antibody (ADA) assays were established for two species. The assays were compared with the bridging assay in ocular and plasma samples from two preclinical studies. The IC assays showed high drug tolerance, which enabled a reliable ADA detection in ocular fluids after intravitreal administration. The IC assays were superior to the bridging assay in the analysis of ocular fluids with high drug concentrations. The IC assay allows a reliable ADA detection in matrices with high drug concentrations, such as ocular fluids.
Saldan, Alda; Forner, Gabriella; Mengoli, Carlo; Tinto, Daniel; Fallico, Loredana; Peracchi, Marta; Gussetti, Nadia
2016-01-01
Human cytomegalovirus (CMV) infection is a major cause of congenital infection leading to birth defects and sensorineural anomalies, including deafness. Recently, cell-mediated immunity (CMI) in pregnant women has been shown to correlate with congenital CMV transmission. In this study, two interferon gamma release assays (IGRA), the CMV enzyme-linked immunosorbent spot (ELISPOT) and CMV QuantiFERON assays, detecting CMV-specific CMI were compared. These assays were performed for 80 CMV-infected (57 primarily and 23 nonprimarily) pregnant women and 115 controls, including 89 healthy CMV-seropositive pregnant women without active CMV infection, 15 CMV-seronegative pregnant women, and 11 seropositive or seronegative nonpregnant women. Statistical tests, including frequency distribution analysis, nonparametric Kruskal-Wallis equality-of-populations rank test, Wilcoxon rank sum test for equality on unmatched data, and lowess smoothing local regression, were employed to determine statistical differences between groups and correlation between the assays. The CMV ELISPOT and CMV QuantiFERON assay data were not normally distributed and did not display equal variance. The CMV ELISPOT but not CMV QuantiFERON assay displayed significant higher values for primarily CMV-infected women than for the healthy seropositive pregnant and nonpregnant groups (P = 0.0057 and 0.0379, respectively) and those with nonprimary infections (P = 0.0104). The lowess local regression model comparing the assays on an individual basis showed a value bandwidth of 0.8. Both assays were highly accurate in discriminating CMV-seronegative pregnant women. The CMV ELISPOT assay was more effective than CMV-QuantiFERON in differentiating primary from the nonprimary infections. A substantial degree of variability exists between CMV ELISPOT and CMV QuantiFERON assay results for CMV-seropositive pregnant women. PMID:26962091
Compston, Lara Isobel; Sarkobie, Francis; Li, Chengyao; Candotti, Daniel; Opare-Sem, Ohene; Allain, Jean-Pierre
2008-07-01
In common with latent viruses such as herpesviruses, parvovirus B19, HBV and GBV-C are contained successfully by the immune response and persist in the host. When immune control breaks down, reactivation of both latent and persistent viruses occurs. Two multiplex assays were developed (B19, HBV, HHV-8), (EBV, CMV, VZV) for blood screening, and tested on blood donor samples from Ghana to determine baseline prevalence of viraemia in immunocompetent persons. Single-virus real-time quantitative PCR (qPCR) assays were optimised for viral load determination of positive initial screening. The qPCR method utilised was absolute quantification with external standards. Multiplex and single-virus qPCR assays had similar sensitivity, except for the B19 assay in which sensitivity was 100-fold lower. Assays were optimised for reproducibility and repeatability, with R(2) of 0.9 being obtained for most assays. With the exception of B19 and CMV, assays had 100% detection limit ranging between 10(1) and 10(2) copies, IU or arbitrary units under single-virus and multiplex assay conditions. The prevalence of viraemia was 1.6% HBV (0.8% DNA+/HBsAg-, 0.8% DNA+/HBsAg+), 0.8% parvovirus B19, and 3.3% GBV-C viraemia in the plasma fraction. The prevalence of four herpesviruses was 1.0% HHV-8, 0.85% CMV, and 8.3% EBV, and no detectable VZV viraemia.
Vassilieva, Elena V.; Kalluri, Haripriya; McAllister, Devin; Taherbhai, Misha T.; Esser, E. Stein; Pewin, Winston P.; Pulit-Penaloza, Joanna A.; Prausnitz, Mark R.; Compans, Richard W.; Skountzou, Ioanna
2015-01-01
Prevention of seasonal influenza epidemics and pandemics relies on widespread vaccination coverage to induce protective immunity. In addition to a good antigenic match with the circulating viruses, the effectiveness of individual strains represented in the trivalent vaccines depends on their immunogenicity. In this study we evaluated the immunogenicity of H1N1, H3N2 and B seasonal influenza virus vaccine strains delivered individually with a novel dissolving microneedle patch and the stability of this formulation during storage at 25°C. Our data demonstrate that all strains retained their antigenic activity after incorporation in the dissolving patches as measured by SRID assay and immune responses to vaccination in BALB/c mice. After a single immunization all three antigens delivered with microneedle patches induced superior neutralizing antibody titers compared to intramuscular immunization. Cutaneous antigen delivery was especially beneficial for the less immunogenic B strain. Mice immunized with dissolving microneedle patches encapsulating influenza A/Brisbane/59/07 (H1N1) vaccine were fully protected against lethal challenge by homologous mouse-adapted influenza virus. All vaccine components retained activity during storage at room temperature for at least three months as measured in vitro by SRID assay and in vivo by mouse immunization studies. Our data demonstrate that dissolving microneedle patches are a promising advance for influenza cutaneous vaccination due to improved immune responses using less immunogenic influenza antigens and enhanced stability. PMID:25895053
Zauberman, Ayelet; Cohen, Sara; Levy, Yinon; Halperin, Gideon; Lazar, Shirley; Velan, Baruch; Shafferman, Avigdor; Flashner, Yehuda; Mamroud, Emanuelle
2008-03-20
Plague is a life-threatening disease caused by Yersinia pestis, for which effective-licensed vaccines and reliable predictors of in vivo immunity are lacking. V antigen (LcrV) is a major Y. pestis virulence factor that mediates translocation of the cytotoxic Yersinia protein effectors (Yops). It is a well-established protective antigen and a part of currently tested plague subunit vaccines. We have developed a highly sensitive in vitro macrophage cytotoxicity neutralization assay which is mediated by anti-LcrV antibodies; and studied the potential use of these neutralizing antibodies as an in vitro correlate of plague immunity in mice. The assay is based on a Y. pestis strain with enhanced cytotoxicity to macrophages in which endogenous yopJ was replaced by the more effectively translocated yopP of Y. enterocolitica O:8. Mice passively immunized with rabbit anti-LcrV IgG or actively immunized with recombinant LcrV were protected against lethal doses of a virulent Y. pestis strain, in a mouse model of bubonic plague. This protection significantly correlated with the in vitro neutralizing activity of the antisera but not with their corresponding ELISA titers. In actively immunized mice, a cutoff value for serum neutralizing activity, above which survival was assured with high degree of confidence, could be established for different vaccination regimes. The impact of overall findings on the potential use of serum neutralizing activity as a correlate of protective immunity is discussed.
Cavanagh, David R.; Kocken, Clemens H. M.; White, John H.; Cowan, Graeme J. M.; Samuel, Kay; Dubbeld, Martin A.; der Wel, Annemarie Voorberg-van; Thomas, Alan W.; McBride, Jana S.; Arnot, David E.
2014-01-01
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals. PMID:24421900
Tokita, Daisuke; Sumpter, Tina L.; Raimondi, Giorgio; Zahorchak, Alan F.; Wang, Zhiliang; Nakao, Atsunori; Mazariegos, George V.; Abe, Masanori; Thomson, Angus W.
2008-01-01
Background/Aims The liver is comparatively rich in plasmacytoid (p) dendritic cells (DC),- innate immune effector cells that are also thought to play key roles in the induction and regulation of adaptive immunity. Methods Liver and spleen pDC were purified from fms-like tyrosine kinase ligand-reated control or lipopolysaccharide-injected C57BL/10 mice. Flow cytometric and molecular biologic assays were used to characterize their function and interaction with naturally-occurring regulatory T cells (Treg). Results While IL-10 production was greater for freshly-isolated liver compared with splenic pDC, the former produced less bioactive IL-12p70. Moreover, liver pDC expressed a low Delta4/Jagged1 Notch ligand ratio, skewed towards T helper 2 cell differentiation/cytokine production, and promoted allogeneic CD4+ T cell apoptosis. T cell proliferation in response to liver pDC was, however, enhanced by blocking IL-10 function at the initiation of cultures. In the absence of naturally occurring CD4+CD25+ regulatory T cells, similar levels of T cell proliferation were induced by liver and spleen pDC and the pro-apoptotic activity of liver pDC was reversed. Conclusion The inferior T cell allostimulatory activity of in vivo-stimulated liver pDC may depend on the presence and function of Treg, a property that may contribute to inherent liver tolerogenicity. PMID:18926588
Kim, Duk Kyung; Lillehoj, Hyun S; Lee, Sung Hyen; Lillehoj, Erik P; Bravo, David
2013-01-14
The effects of a compound including the secondary metabolites of garlic, propyl thiosulphinate (PTS) and propyl thiosulphinate oxide (PTSO), on the in vitro and in vivo parameters of chicken gut immunity during experimental Eimeria acervulina infection were evaluated. In in vitro assays, the compound comprised of PTSO (67 %) and PTS (33 %) dose-dependently killed invasive E. acervulina sporozoites and stimulated higher spleen cell proliferation. Broiler chickens continuously fed from hatch with PTSO/PTS compound-supplemented diet and orally challenged with live E. acervulina oocysts had increased body weight gain, decreased faecal oocyst excretion and greater E. acervulina profilin antibody responses, compared with chickens fed a non-supplemented diet. Differential gene expression by microarray hybridisation identified 1227 transcripts whose levels were significantly altered in the intestinal lymphocytes of PTSO/PTS-fed birds compared with non-supplemented controls (552 up-regulated, 675 down-regulated). Biological pathway analysis identified the altered transcripts as belonging to the categories 'Disease and Disorder' and 'Physiological System Development and Function'. In the former category, the most significant function identified was 'Inflammatory Response', while the most significant function in the latter category was 'Cardiovascular System Development and Function'. This new information documents the immunologic and genomic changes that occur in chickens following PTSO/PTS dietary supplementation, which are relevant to protective immunity during avian coccidiosis.
Agarwal, Atima; Sankaran, Sumathi; Vajpayee, Madhu; Sreenivas, V; Seth, Pradeep; Dandekar, Satya
2014-01-01
Background Assays with specificity and cost effectiveness are needed for the measurement of HIV-1 burden to monitor disease progression or response to anti-retroviral therapy (ART) in HIV-1 subtype C infected patients. Objectives The objective of this study was to develop and validate an affordable; one step Real-Time RT-PCR assay with high specificity and sensitivity to measure plasma HIV-1 loads in HIV-1 subtype C infected patients. Results We developed an RT-PCR assay to detect and quantitate plasma HIV-1 levels in HIV-1 subtype C infected patients. An inverse correlation between plasma viral loads (PVL) and CD4+ T-cell numbers was detected at all CDC stages. Significant correlations were found between CD8+ T-cell activation and PVL, as well as with the clinical and immunological status of the patients. Conclusions The RT-PCR assay provides a sensitive method to measure PVL in HIV-1 subtype C infected patients. Viral loads correlated with immune activation and can be used to monitor HIV care in India. PMID:17962068
Ward, Jordan D.; Mullaney, Brendan; Schiller, Benjamin J.; He, Le D.; Petnic, Sarah E.; Couillault, Carole; Pujol, Nathalie; Bernal, Teresita U.; Van Gilst, Marc R.; Ashrafi, Kaveh; Ewbank, Jonathan J.; Yamamoto, Keith R.
2014-01-01
Metazoan transcription factors control distinct networks of genes in specific tissues, yet understanding how these networks are integrated into physiology, development, and homeostasis remains challenging. Inactivation of the nuclear hormone receptor nhr-25 ameliorates developmental and metabolic phenotypes associated with loss of function of an acyl-CoA synthetase gene, acs-3. ACS-3 activity prevents aberrantly high NHR-25 activity. Here, we investigated this relationship further by examining gene expression patterns following acs-3 and nhr-25 inactivation. Unexpectedly, we found that the acs-3 mutation or nhr-25 RNAi resulted in similar transcriptomes with enrichment in innate immunity and stress response gene expression. Mutants of either gene exhibited distinct sensitivities to pathogens and environmental stresses. Only nhr-25 was required for wild-type levels of resistance to the bacterial pathogen P. aeruginosa and only acs-3 was required for wild-type levels of resistance to osmotic stress and the oxidative stress generator, juglone. Inactivation of either acs-3 or nhr-25 compromised lifespan and resistance to the fungal pathogen D. coniospora. Double mutants exhibited more severe defects in the lifespan and P. aeruginosa assays, but were similar to the single mutants in other assays. Finally, acs-3 mutants displayed defects in their epidermal surface barrier, potentially accounting for the observed sensitivities. Together, these data indicate that inactivation of either acs-3 or nhr-25 causes stress sensitivity and increased expression of innate immunity/stress genes, most likely by different mechanisms. Elevated expression of these immune/stress genes appears to abrogate the transcriptional signatures relevant to metabolism and development. PMID:24651852
Antigenic relatedness of glucosyltransferase enzymes from streptococcus mutans.
Smith, D J; Taubman, M A
1977-01-01
The antigenic relationship of glucosyltransferases (GTF) produced by different serotypes of Streptococcus mutans was studied by using a functional inhibition assay. Rat, rabbit, or hamster immune fluids, directed to cell-associated or supernatant-derived GTF, were tested against ammonium sulfate-precipitated culture supernatants containing GTF from seven strains of S. mutans representing six different serotypes. An antigenic relationship was shown to exist among GTF from serotypes a, d, and g, since both rat and rabbit antisera directed to serotype a or g GTF inhibited GTF of serotypes d and g similarly and both antisera also inhibited serotype a GTF. Furthermore, serum inhibition patterns indicated that GTF of serotypes c and e, and possibly b, are antigenically related to each other, but are antigenically distinct from GTF of serotype a, d, or g. Serum antibody directed to antigens other than enzyme (e.g., serotype-specific antigen or teichoic acid) had little effect on the inhibition assay. Salivas from rats immunized with cell-associated or supernatant-derived GTF exhibited low but consistent inhibition of GTF activity, which generally corresponded to the serum patterns. The sera of two groups of hamsters immunized with GTF (serotype g), enriched either in water-insoluble or water-soluble glucan synthetic activity, gave patterns of inhibition quite similar to those seen with sera from more heterogenous cell-associated or crude supernatant-derived GTF preparations. Both groups of hamster sera also gave virtually identical patterns, suggesting that the two enzyme forms used as antigen share common antigenic determinants. The results from the three animal models suggest that among the cariogenic organisms tested, two (serotypes a, d, g and b, c, e), or perhaps three (serotypes a, d, g; b; and c, e), different subsets of GTF exist that have distinct antigenic determinants within a subset.
Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S.
2011-01-01
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+ T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+ T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols. PMID:21367979
Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S
2011-05-01
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4(+) T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4(+) T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.
de Silva, Thushan I; Gould, Victoria; Mohammed, Nuredin I; Cope, Alethea; Meijer, Adam; Zutt, Ilse; Reimerink, Johan; Kampmann, Beate; Hoschler, Katja; Zambon, Maria; Tregoning, John S
2017-10-01
We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
Yousofi, Alireza; Daneshmandi, Saeed; Soleimani, Neda; Bagheri, Kambiz; Karimi, Mohammad Hossein
2012-04-01
Parsley (Petroselinum crispum) has been traditionally used for the treatment of allergy, autoimmune and chronic inflammatory disorders. The present study aims to investigate the suppressive effects of parsley essential oil on mouse splenocytes and macrophages cells. Parsley essential oil was harvested. It was treated on splenocytes and phytohemagglutinin (PHA) (5 μg/mL) and lipopolysaccharide (LPS) (10 μg/mL) activated splenocytes in different concentrations (0.01-100 μg/mL); then, proliferation was assayed by methyl tetrazolium (MTT) method. Treatment was also performed on the macrophages and LPS-stimulated macrophages (10 μg/ml) and the nitrite levels were measured using the diazotization method based on the Griess reaction and MTT assay for evaluation of the viability of the macrophages. Proliferation of splenocytes in all the treated groups was suppressed. In PHA-stimulated splenocytes, the suppression was seen in all the examined concentrations (0.01-100 μg/mL), while in the unstimulated and LPS-stimulated groups suppression was relatively dose dependent and in high concentration (10 and100 μg/mL).The viability of the macrophages in all groups was the same and in the unstimulated groups; NO suppression was significant in all the concentrations but in LPS-stimulated groups, it was significant in the three higher concentrations (1, 10, and100 μg/mL). The results of this study indicate that parsley essential oil may be able to suppress the cellular and humoral immune response. It can also suppress both NO production and the functions of macrophages as the main innate immune cells. These results may suggest that parsley essential oil is a proper suppressant for different applications.
Wang, Jiann-Hsiung; Chou, Shih-Jen; Li, Tsung-Hsien; Leu, Ming-Yih; Ho, Hsiao-Kuan
2017-01-01
Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR) is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales (Delphinapterus leucas) that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ) were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4) with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNAlater™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset. PMID:28970970
Tsai, Ming-An; Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Li, Tsung-Hsien; Leu, Ming-Yih; Ho, Hsiao-Kuan; Yang, Wei Cheng
2017-01-01
Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR) is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales ( Delphinapterus leucas ) that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ) were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4) with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNA later ™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset.
Schmoeckel, Katrin; Mrochen, Daniel M; Hühn, Jochen; Pötschke, Christian; Bröker, Barbara M
2018-01-01
Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen "overload" by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness.
Hühn, Jochen; Pötschke, Christian
2018-01-01
Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen “overload” by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness. PMID:29415028
Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo
2014-01-01
Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345
International reference preparations of typhoid vaccine
Melikova, E. N.; Lesnjak, S. V.
1967-01-01
International collaborative laboratory studies on the International Reference Preparations of Typhoid Vaccine have so far failed to provide data on which international units for these vaccines can be based. Further assays carried out using the active mouse protection test, with immunization by the subcutaneous, intraperitoneal or intravenous route, confirmed the findings by some workers that the International Reference Preparation of Typhoid Vaccine (Acetone-Inactivated) (vaccine K) was more effective than the International Reference Preparation of Typhoid Vaccine (Heat-Phenol-Inactivated) (vaccine L), and indicated that intraperitoneal immunization was the most promising method. Vaccine K, together with the material extracted by the acetone in the preparation of the vaccine, had a significantly lower effectiveness (at the 5% probability level) only when intraperitoneal immunization was used. The reasons for the differences found between the various vaccines and routes of immunization are discussed at length. It is suggested that challenge with a strain of Salmonella moscow instead of the strain of Salm. typhi used until now gives a true infection and forms the basis of a reliable method for the potency assay of typhoid vaccines. PMID:5301738
Human immune circadian system in prolonged mild hypoxia during simulated flights.
Coste, Olivier; Van Beers, Pascal; Bogdan, André; Touitou, Yvan
2007-01-01
An impairment of immunity is reported after long-haul flights, and the mild hypobaric hypoxia caused by pressurization in the passenger airline cabin may contribute to it. In this controlled crossover study, the effects of two levels of hypoxia, equivalent to 8000 and 12,000 feet above sea level, on the rhythm of CD3, CD4, and CD8 lymphocytes and plasma concentrations of the immunoglobulins A, G, and M were assessed. Fourteen healthy male volunteers, aged 23 to 39 years, spent 8.5 h in a hypobaric chamber (08:00 to 16:30 h), simulating an altitude condition at 8,000 feet. This was followed by an additional 8.5 h study four weeks later simulating altitude conditions at 12,000 feet. The variables were assayed every 2 h over two 24 h cycles (control and hypoxic-exposure cycles). No significant effect of hypoxia on the studied circadian immune profiles were found. Therefore, the authors conclude that mild hypobaric hypoxia does not seem to be responsible for any quantitative changes during long-haul flights in the immune assays commonly used in routine clinical medicine practice.
Horsfall, A C; Venables, P J; Mumford, P A; Maini, R N
1981-01-01
The Raji cell assay is regarded as a test for the detection and quantitation of immune complexes. It is frequently positive in sera from patients with SLE. We have demonstrated a relationship between Raji cell binding and antibodies to DNA and soluble cellular antigens. In five sera containing high titres of antibodies of known single specificity, most of the Raji cell binding occurred in the 7S IgG fraction where the majority of anti-nuclear antibody was also found. When each of these sera was incubated with its specific antigen, Raji cell binding increased. Subsequent fractionation showed that this binding was in the high molecular weight fraction (greater than 200,000 daltons) and that Raji cell binding and antibody activity were abolished in the 7S fraction. These data confirm that Raji cell bind immune complexes but also indicate that 7S anti-nuclear antibodies may interact directly with Raji cells by an unknown mechanism. Therefore, in sera of patients with anti-nuclear antibodies, binding to Raji cells does not necessarily imply the presence of immune complexes alone. PMID:6975676
Li, Yi-Ping; Kang, Hye Na; Babiuk, Lorne A; Liu, Qiang
2006-01-01
AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays. RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations. PMID:17131474
Immune Response to Giardia duodenalis
Faubert, Gaétan
2000-01-01
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquituous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen. PMID:10627490
Fujisaki, Koki; Abe, Yoshiko; Ito, Akiko; Saitoh, Hiromasa; Yoshida, Kentaro; Kanzaki, Hiroyuki; Kanzaki, Eiko; Utsushi, Hiroe; Yamashita, Tetsuro; Kamoun, Sophien; Terauchi, Ryohei
2015-09-01
Vesicle trafficking including the exocytosis pathway is intimately associated with host immunity against pathogens. However, we still have insufficient knowledge about how it contributes to immunity, and how pathogen factors affect it. In this study, we explore host factors that interact with the Magnaporthe oryzae effector AVR-Pii. Gel filtration chromatography and co-immunoprecipitation assays identified a 150 kDa complex of proteins in the soluble fraction comprising AVR-Pii and OsExo70-F2 and OsExo70-F3, two rice Exo70 proteins presumably involved in exocytosis. Simultaneous knockdown of OsExo70-F2 and F3 totally abrogated Pii immune receptor-dependent resistance, but had no effect on Pia- and Pik-dependent resistance. Knockdown levels of OsExo70-F3 but not OsExo70-F2 correlated with reduction of Pii function, suggesting that OsExo70-F3 is specifically involved in Pii-dependent resistance. Under our current experimental conditions, over-expression of AVR-Pii or knockdown of OsExo70-F2 and -F3 genes in rice did not affect the virulence of compatible isolates of M. oryzae. AVR-Pii interaction with OsExo70-F3 appears to play a crucial role in immunity triggered by Pii, suggesting a role for OsExo70 as a decoy or helper in Pii/AVR-Pii interactions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Rondaan, Christien; de Haan, Aalzen; Horst, Gerda; Hempel, J Cordelia; van Leer, Coretta; Bos, Nicolaas A; van Assen, Sander; Bijl, Marc; Westra, Johanna
2014-11-01
Patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and granulomatosis with polyangiitis (Wegener's) (GPA) have a 3-20-fold increased risk of herpes zoster compared to the general population. The aim of this study was to evaluate if susceptibility is due to decreased levels of cellular and/or humoral immunity to the varicella-zoster virus (VZV). A cross-sectional study of VZV-specific immunity was performed in 38 SLE patients, 33 GPA patients, and 51 healthy controls. Levels of IgG and IgM antibodies to VZV were measured using an in-house glycoprotein enzyme-linked immunosorbent assay (ELISA). Cellular responses to VZV were determined by interferon-γ (IFNγ) enzyme-linked immunospot (ELISpot) assay and carboxyfluorescein succinimidyl ester (CFSE) dye dilution proliferation assay. Levels of IgG antibodies to VZV were increased in SLE patients as compared to healthy controls, but levels of IgM antibodies to VZV were not. Antibody levels in GPA patients did not differ significantly from levels in healthy controls. In response to stimulation with VZV, decreased numbers of IFNγ spot-forming cells were found among SLE patients (although not GPA patients) as compared to healthy controls. Proliferation of CD4+ T cells in response to stimulation with VZV was decreased in SLE patients but not GPA patients. SLE patients have increased levels of IgG antibodies against VZV, while cellular immunity is decreased. In GPA patients, antibody levels as well as cellular responses to VZV were comparable to those in healthy controls. These data suggest that increased prevalence of herpes zoster in SLE patients is due to a poor cellular response. Vaccination strategies should aim to boost cellular immunity against VZV. Copyright © 2014 by the American College of Rheumatology.
Vis, Bradley; Pele, Laetitia C.; Faria, Nuno; Powell, Jonathan J.
2017-01-01
Abstract Pigment grade titanium dioxide is composed of sub‐micron sized particles, including a nanofraction, and is widely utilized in food, cosmetic, pharmaceutical, and biomedical industries. Oral exposure to pigment grade titanium dioxide results in at least some material entering the circulation in humans, although subsequent interactions with blood immune cells are unknown. Pigment grade titanium dioxide is employed for its strong light scattering properties, and this work exploited that attribute to determine whether single cell–particle associations could be determined in immune cells of human whole blood at “real life” concentrations. In vitro assays, initially using isolated peripheral blood mononuclear cells, identified titanium dioxide associated with the surface of, and within, immune cells by darkfield reflectance in imaging flow cytometry. This was confirmed at the population level by side scatter measurements using conventional flow cytometry. Next, it was demonstrated that imaging flow cytometry could quantify titanium dioxide particle‐bearing cells, within the immune cell populations of fresh whole blood, down to titanium dioxide levels of 10 parts per billion, which is in the range anticipated for human blood following titanium dioxide ingestion. Moreover, surface association and internal localization of titanium dioxide particles could be discriminated in the assays. Overall, results showed that in addition to the anticipated activity of blood monocytes internalizing titanium dioxide particles, neutrophil internalization and cell membrane adhesion also occurred, the latter for both phagocytic and nonphagocytic cell types. What happens in vivo and whether this contributes to activation of one or more of these different cells types in blood merits further attention. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC. PMID:28941170
Identification of coeliac disease triggering glutenin peptides in adults.
Donnelly, Suzanne C; Šuligoj, Tanja; Ellis, H Julia; Ciclitira, Paul J
2016-07-01
Coeliac disease affects approximately 1% of Northern American and European populations. It is caused by an inappropriate immune response to dietary gluten. Gluten comprises of two major protein fractions: gliadins and glutenins. Glutenins have recently been found to be toxic to coeliac individuals. Proliferation assays suggest in some but not all paediatric coeliac individuals there may be immunological stimulation with high molecular weight (HMW) glutenins. Less evidence pertains to low molecular weight (LMW) glutenins. The aim is to assess adaptive, T-cell driven, and innate immune response in adult coeliac individuals towards HMW glutenin peptide, glut04, and LMW glutenin peptide, glt156. Coeliac patients were recruited attending endoscopy for routine monitoring. Adaptive immune response towards glut04 and glt156 was measured by proliferation assays and measurement of interferon-γ secretion in 28 T-cell lines. The innate immune response was assessed by measurement of enterocyte cell height (ECH) in coeliac small intestinal biopsies following overnight incubation in organ culture chambers in a further nine individuals. There were 3/28 and 2/28 positive proliferation results using gluten-sensitive T-cells with glut04 and glt156, respectively. All coeliac biopsies tested in organ culture chambers demonstrated clear reduction in ECH with peptic-tryptic digest of whole industrial gluten, glut04 and glt156 when compared to negative control ovalbumin (p < 0.005). Three individuals had both T-cell and organ culture study data. Their proliferation assays showed no stimulation of the T-cells. This study demonstrates glutenin epitopes glut04 and glt156, while minor T-cell epitopes, are important in their ability to trigger the innate immune response.
Parra, Javier; Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio
2012-02-17
Azoxystrobin is a modern strobilurin fungicide used around the world to combat prime diseases affecting highly valuable crops. Accordingly, residues of this chemical are frequently found in food, even though mostly under maximum tolerated levels. We herein describe the development of an indirect competitive immunoassay for the determination of azoxystrobin residues. A panel of monoclonal antibodies displaying subnanomolar affinity to azoxystrobin was generated using, as immunizing haptens in mice, four functionalized derivatives carrying the same spacer arm located at different rationally chosen positions. This collection of antibodies was thoroughly characterized with homologous and heterologous antigens, and the immunoassay consisting of monoclonal antibody AZo6#49 and the coating conjugate OVA-AZb6, which displayed an IC(50) value of 0.102 μg L(-1) and a LOD of 0.017 μg L(-1), was eventually optimized. The response to different pH and ionic strength conditions of the specific assay was studied using a biparametric approach. In addition, the influence of Tween 20 and organic solvents over the assay parameters was also evaluated. After optimization, the developed immunochemical assay was applied to the analysis of azoxystrobin in spiked juices of relevant fruits and vegetables, showing excellent recoveries between 2 and 500 μg L(-1). Copyright © 2011 Elsevier B.V. All rights reserved.
Development of a simplified and convenient assay for cell-mediated immunity to the mumps virus.
Otani, Naruhito; Shima, Masayuki; Nakajima, Kazuhiko; Takesue, Yoshio; Okuno, Toshiomi
2014-09-01
Because methods for measuring cell-mediated immunity (CMI) to the mumps virus are expensive, time-consuming, and technically demanding, the role of CMI in mumps virus infection remains unclear. To address this issue, we report here the development of a simplified method for measuring mumps virus-specific CMI that is suitable for use in diverse laboratory and clinical settings. A mumps vaccine was cultured with whole blood, and interferon (IFN)-γ released into the culture supernatant was measured using an enzyme-linked immunosorbent assay. IFN-γ production in blood from vaccinated subjects markedly increased in response to the vaccine and decreased before the antibody titer decreased in some cases, suggesting that this assay may be used as a simple surrogate method for measuring CMI specific for the mumps virus. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of Ascent to High Altitude on Human Antimycobacterial Immunity
Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.
2013-01-01
Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was associated with decreased mycobacterial growth in whole blood relative to controls, consistent with altitude-related augmentation of antimycobacterial cellular immunity. PMID:24058530
Tibaldi, Carmelo; Lunghi, Alice; Baldini, Editta
2017-01-01
The recent discovery of immune checkpoints inhibitors, especially anti-programmed cell death protein 1 (PD-1) and anti-programmed cell death protein ligand 1 (PD-L1) monoclonal antibodies, has opened new scenarios in the management of non-small cell lung cancer (NSCLC) and this new class of drugs has achieved a rapid development in the treatment of this disease. However, considering the costs of these drugs and the fact that only a subset of patients experience long-term disease control, the identification of predictive biomarkers for the selection of candidates suitable for treatment has become a priority. The research focused mainly on the expression of the PD-L1 receptor on both tumor cells and/or immune infiltrates determined by immunohistochemistry (IHC). However, different checkpoint inhibitors were tested, different IHC assays were used, different targets were considered (tumor cells, immune infiltrates or both) and different expression thresholds were employed in clinical trials. In some trials the assay was used prospectively to select the patients, while in other trials it was evaluated retrospectively. Some confusion emerges, which makes it difficult to easily compare the literature data and to translate them in practice management. This mini-review shows the possibilities and pitfalls of the PD-L1 expression to predict the activity and efficacy of anti PD1/PD-L1 monoclonal antibodies in the treatment of NSCLC. PMID:28848698
Medina-Córdova, Noé; Reyes-Becerril, Martha; Ascencio, Felipe; Castellanos, Thelma; Campa-Córdova, Angel I; Angulo, Carlos
2018-05-12
Debaryomyces hansenii has been described to be effective probiotic and immunostimulatory marine yeast in fish. Nonetheless, to the best of our knowledge, it has been not assayed in ruminants. This study attempts to describe the immunostimulatory effects of its β-glucan content through in vitro assays using goat peripheral blood leukocytes at 24 h of stimulation. The structural characterization of yeast glucans by proton nuclear magnetic resonance indicated structures containing (1-6)-branched (1-3)-β-D-glucan. In vitro assays using peripheral blood leukocytes stimulated with β-glucans derived from three D. hansenii strains and zymosan revealed that β-glucans significantly increased cell immune parameters, such as phagocytic ability, reactive oxygen species production (respiratory burst), peroxidase activity and nitric oxide production. Antioxidant enzymes revealed an increase in superoxide dismutase and catalase activities in leukocytes stimulated with yeast β-glucans. This study revealed that yeast β-glucans were able to activate dectin-1 mRNA gene expression in leukocytes. The TLR4 gene expression was up-regulated in leukocytes after stimulation with yeast β-glucans. In conclusion, β-glucans were able to modulate the immune system by promoting cell viability, phagocytic activity, antioxidant immune response and immune-related gene expression in leukocytes. Therefore, β-glucans derived from Debaryomyces hansenii should be considered a potential immunostimulant for goat production systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Forrest, Bruce D.; Pride, Michael W.; Dunning, Andrew J.; Capeding, Maria Rosario Z.; Chotpitayasunondh, Tawee; Tam, John S.; Rappaport, Ruth; Eldridge, John H.; Gruber, William C.
2008-01-01
The highly sensitive gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay permits the investigation of the role of cell-mediated immunity (CMI) in the protection of young children against influenza. Preliminary studies of young children confirmed that the IFN-γ ELISPOT assay was a more sensitive measure of influenza memory immune responses than serum antibody and that among seronegative children aged 6 to <36 months, an intranasal dose of 107 fluorescent focus units (FFU) of a live attenuated influenza virus vaccine (CAIV-T) elicited substantial CMI responses. A commercial inactivated influenza virus vaccine elicited CMI responses only in children with some previous exposure to related influenza viruses as determined by detectable antibody levels prevaccination. The role of CMI in actual protection against community-acquired, culture-confirmed clinical influenza by CAIV-T was investigated in a large randomized, double-blind, placebo-controlled dose-ranging efficacy trial with 2,172 children aged 6 to <36 months in the Philippines and Thailand. The estimated protection curve indicated that the majority of infants and young children with ≥100 spot-forming cells/106 peripheral blood mononuclear cells were protected against clinical influenza, establishing a possible target level of CMI for future influenza vaccine development. The ELISPOT assay for IFN-γ is a sensitive and reproducible measure of CMI and memory immune responses and contributes to establishing requirements for the future development of vaccines against influenza, especially those used for children. PMID:18448618
Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P
2015-06-29
Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.
Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi
2018-01-01
The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575
Toriizuka, K; Okumura, M; Iijima, K; Haruyama, K; Cyong, J C
1999-01-01
The effects of acupuncture on the disorders elicited by abnormalities of endocrine system were investigated in ovariectomized mice. Female mice (strain; C57BL/6) were ovariectomized (OVX) and acupuncture points, Shenshu ([Japanese pictograph see text] : BL23) on both side of the back were continuously stimulated by subcutaneous needles for 20 days. After completion of experimental sessions, animals were sacrificed and specific brain regions were assayed for catecholamine contents by high performance liquid chromatography with electro chemical detector (ECD-HPLC). The mitogenic activities of splenic lymphocytes were measured by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTS) assay and alkaline phosphatase (ALP) assay. Furthermore, the effects of needle stimulation on learning and memory ability were studied by the step-through type passive avoidance test. Norepinephrine and dopamine contents in the frontoparietal cerebral cortex, ventral hippocampus and olfactory bulb were decreased in the OVX group, and both MTS activity and ALP activity were decreased 20 days after ovariectomy. The mean latent period was also shortened in the passive avoidance test in the OVX group. However, applying needle stimulation increased norepinephrine and dopamine contents in the brain regions, and enhanced mitogenic activities of splenic lymphocytes. The stimulation also improved memory-related behavior. It was concluded from this study that after mice were stimulated by subcutaneous needle insertion, overall changes were observed in central nervous system (including retention of memory) and immune functions. The study suggests that acupuncture improves the memory loss and decrease of immune responses accompanying aging and/or menopause, and the that it may have an important role in medical care for the elderly.
Taupin, J L; Acres, B; Dott, K; Schmitt, D; Kieny, M P; Gualde, N; Moreau, J F
1993-09-01
Insertion of various cDNAs in the genome of the vaccinia virus (VV) enables the in vivo and in vitro study of the functional role and/or the immunogenicity of the virally encoded recombinant proteins. We have prepared a recombinant VV expressing the cDNA of the human cytokine HILDA/LIF (human interleukin for DA cells/leukaemia inhibitory factor), and used this virus to immunize mice against this protein, which is very homologous to its murine counterpart (approximately 80% homology). We also constructed and expressed by the same system a chimeric gene encoding the HILDA/LIF protein fused to the 37 COOH-terminal amino-acids of the human decay accelerating factor (DAF). This sequence proved to be sufficient for the targeting of the fusion protein to the cell membrane, where it is linked to the phosphatidylinositols. Both recombinant VVs induced cytokine-specific antibodies in mice as analysed with an ELISA where the recombinant HILDA/LIF was plastic-coated and a cytofluorometric assay where the LIF-DAF molecule was present at the cell surface of stably transfected P815. In the latter case HILDA/LIF remained biologically active suggesting that it was expressed in its native form. The LIF-DAF fusion protein was found to exhibit a better capacity to elicit an antibody response against the native form of the cytokine as detected in cytofluorometric assays. Whatever the recombinant virus used to immunize the mice, the MoAbs obtained were positive either in the ELISA or in the cytofluorometric assays but one, which suggested that the plastic coating induced a conformational change of HILDA/LIF.
Stemmer, K; Kotzbeck, P; Zani, F; Bauer, M; Neff, C; Müller, T D; Pfluger, P T; Seeley, R J; Divanovic, S
2015-05-01
Obesity-related cancers represent public health burdens of the first order. Nevertheless, suitable mouse models to unravel molecular mechanisms linking obesity to human cancer are still not available. One translational model is the immunocompromised Foxn1 (winged-helix/forkead transcription factor) nude mouse transplanted with human tumor xenografts. However, most xenograft studies are conducted in nude mice on an in-bred BALB/c background that entails protection from diet-induced obesity. To overcome such resistance to obesity and its sequelae, we here propose the dual strategy of utilizing Foxn1 nude mice on a C57BL/6 background and housing them at their thermoneutral zone. C57BL/6 nude and corresponding wild-type mice, housed at 23 or 33 °C, were subjected to either low-fat diet or high-fat diet (HFD). Energy expenditure, locomotor activity, body core temperature, respiratory quotient as well as food and water intake were analyzed using indirect calorimetry. Immune function at different housing temperatures was assessed by using an in vivo cytokine capture assay. Our data clearly demonstrate that conventional housing protects C57BL/6 nude mice from HFD-induced obesity, potentially via increased energy expenditure. In contrast, HFD-fed C57BL/6 nude mice housed at thermoneutral conditions develop adiposity, increased hepatic triglyceride accumulation, adipose tissue inflammation and glucose intolerance. Moreover, increased circulating levels of lipopolysaccharide-driven cytokines suggest a greatly enhanced immune response in C57BL/6 nude mice housed at thermoneutrality. Our data reveals mild cold stress as a major modulator for energy and body weight homeostasis as well as immune function in C57BL/6 nude mice. Adjusting housing temperatures to the thermoneutral zone may ultimately be key to successfully study growth and progression of human tumors in a diet-induced obese environment.
Stemmer, K; Kotzbeck, P; Zani, F; Bauer, M; Neff, C; Müller, TD; Pfluger, PT; Seeley, RJ; Divanovic, S
2014-01-01
OBJECTIVES Obesity-related cancers represent public health burdens of the first order. Nevertheless, suitable mouse models to unravel molecular mechanisms linking obesity to human cancer are still not available. One translational model is the immunocompromised Foxn1 (winged-helix/forkead transcription factor) nude mouse transplanted with human tumor xenografts. However, most xenograft studies are conducted in nude mice on an in-bred BALB/c background that entails protection from diet-induced obesity. To overcome such resistance to obesity and its sequelae, we here propose the dual strategy of utilizing Foxn1 nude mice on a C57BL/6 background and housing them at their thermoneutral zone. METHODS C57BL/6 nude and corresponding wild-type mice, housed at 23 or 33 °C, were subjected to either low-fat diet or high-fat diet (HFD). Energy expenditure, locomotor activity, body core temperature, respiratory quotient as well as food and water intake were analyzed using indirect calorimetry. Immune function at different housing temperatures was assessed by using an in vivo cytokine capture assay. RESULTS Our data clearly demonstrate that conventional housing protects C57BL/6 nude mice from HFD-induced obesity, potentially via increased energy expenditure. In contrast, HFD-fed C57BL/6 nude mice housed at thermoneutral conditions develop adiposity, increased hepatic triglyceride accumulation, adipose tissue inflammation and glucose intolerance. Moreover, increased circulating levels of lipopolysaccharide-driven cytokines suggest a greatly enhanced immune response in C57BL/6 nude mice housed at thermoneutrality. CONCLUSION Our data reveals mild cold stress as a major modulator for energy and body weight homeostasis as well as immune function in C57BL/6 nude mice. Adjusting housing temperatures to the thermoneutral zone may ultimately be key to successfully study growth and progression of human tumors in a diet-induced obese environment. PMID:25349057
Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua
2012-07-01
Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. Copyright © 2012 Elsevier GmbH. All rights reserved.
Tullio, Vivian; Mandras, Narcisa; Allizond, Valeria; Nostro, Antonia; Roana, Janira; Merlino, Chiara; Banche, Giuliana; Scalas, Daniela; Cuffini, Anna Maria
2012-10-01
The essential oils have started to be recognized for their potential antimicrobial role only in recent years. Clinical experience showed that the efficacy of antimicrobial agents depends not only on their direct effect on a given microorganism but also on the functional activity of the host immune system. Since data on the effects of essential oils on the innate immune system are scanty and fragmentary, the aim of this study was to evaluate the influence of thyme (red) essential oil (EO), at subinhibitory/inhibitory concentrations, on intracellular killing activity by human polymorphonuclear granulocytes (PMNs) against Candida albicans. In order to provide a frame of reference for the activity of this EO, its in vitro killing activity in the absence of PMNs was also evaluated.Results showed that EO at subminimal inhibitory (subMIC)/minimal inhibitory (MIC) concentrations significantly enhanced intracellular killing of C. albicans in comparison with EO-free controls and was comparable to the positive control (fluconazole). In in vitro killing assays without PMNs, we observed progressive growth of the yeast cells in the presence of EO subMIC/MIC concentrations. A positive antifungal interaction with phagocytes could explain why this EO, which appeared to be only fungistatic in time-kill assays, had efficacy in killing yeast cells once incubated with PMNs. Georg Thieme Verlag KG Stuttgart · New York.
Topical application of quercetin improves wound healing in pressure ulcer lesions.
Yin, Guimei; Wang, Zhijing; Wang, Zhaoxia; Wang, Xirui
2018-05-07
The ischemia-reperfusion (I/R) induced skin lesion has been identified as primary cause of pressure ulcers. To date, attempts to prevent pressure ulcers have not produced a significant improvement. Quercetin, one of the most widely distributed flavonoids in fruits and vegetables, exhibits its antioxidant and anti-inflammatory properties against many diseases, including ischemic heart disease, atherosclerosis, and renal injury. In vitro wound scratch assay was first used to assess the function of quercetin in wounding cell model. Next, animal pressure ulcers model was established with two cycles of I/R. The impact of quercetin in the wound recovery, immune cell infiltration and pro-inflammatory cytokines production was investigated in this model. Mechanistic regulation of quercetin at the wound site was also studied. Quercetin accelerated wound closure in cell scratch assay. Dose response study suggested 1 μM quercetin for in vivo study. In I/R injury model, quercetin treatment significantly accelerated wound closure, reduced immune cell infiltration and pro-inflammatory cytokines production. Signaling study showed quercetin treatment inhibited MAPK but not NFĸB activation. Quercetin treatment improved the wound healing process in I/R lesions by suppressing MAPK pathway. Our results supported that quercetin could be a potential therapeutic agent for pressure ulcers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Lother, Jasmin; Breitschopf, Tanja; Krappmann, Sven; Morton, C Oliver; Bouzani, Maria; Kurzai, Oliver; Gunzer, Matthias; Hasenberg, Mike; Einsele, Hermann; Loeffler, Juergen
2014-11-01
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.
Alpert, Michael D.; Heyer, Lisa N.; Williams, David E. J.; Harvey, Jackson D.; Greenough, Thomas; Allhorn, Maria
2012-01-01
The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4+ T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies—frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays. PMID:22933282
Zhai, Juping; Ding, Mengyuan; Yang, Tianjie; Zuo, Bin; Weng, Zhen; Zhao, Yunxiao; He, Jun; Wu, Qingyu; Ruan, Changgeng; He, Yang
2017-10-23
Platelet autoantibody detection is critical for immune thrombocytopenia (ITP) diagnosis and prognosis. Therefore, we aimed to establish a quantitative flow cytometric immunobead assay (FCIA) for ITP platelet autoantibodies evaluation. Capture microbeads coupled with anti-GPIX, -GPIb, -GPIIb, -GPIIIa and P-selectin antibodies were used to bind the platelet-bound autoantibodies complex generated from plasma samples of 250 ITP patients, 163 non-ITP patients and 243 healthy controls, a fluorescein isothiocyanate (FITC)-conjugated secondary antibody was the detector reagent and mean fluorescence intensity (MFI) signals were recorded by flow cytometry. Intra- and inter-assay variations of the quantitative FCIA assay were assessed. Comparisons of the specificity, sensitivity and accuracy between quantitative and qualitative FCIA or monoclonal antibody immobilization of platelet antigen (MAIPA) assay were performed. Finally, treatment process was monitored by our quantitative FCIA in 8 newly diagnosed ITPs. The coefficient of variations (CV) of the quantitative FCIA assay were respectively 9.4, 3.8, 5.4, 5.1 and 5.8% for anti-GPIX, -GPIb, -GPIIIa, -GPIIb and -P-selectin autoantibodies. Elevated levels of autoantibodies against platelet glycoproteins GPIX, GPIb, GPIIIa, GPIIb and P-selectin were detected by our quantitative FCIA in ITP patients compared to non-ITP patients or healthy controls. The sensitivity, specificity and accuracy of our quantitative assay were respectively 73.13, 81.98 and 78.65% when combining all 5 autoantibodies, while the sensitivity, specificity and accuracy of MAIPA assay were respectively 41.46, 90.41 and 72.81%. A quantitative FCIA assay was established. Reduced levels of platelet autoantibodies could be confirmed by our quantitative FCIA in ITP patients after corticosteroid treatment. Our quantitative assay is not only good for ITP diagnosis but also for ITP treatment monitoring.
Lin, Shih-Wen; Ghosh, Arpita; Porras, Carolina; Markt, Sarah C; Rodriguez, Ana Cecilia; Schiffman, Mark; Wacholder, Sholom; Kemp, Troy J; Pinto, Ligia A; Gonzalez, Paula; Wentzensen, Nicolas; Esser, Mark T; Matys, Katie; Meuree, Ariane; Quint, Wim; van Doorn, Leen-Jan; Herrero, Rolando; Hildesheim, Allan; Safaeian, Mahboobeh
2013-01-01
Several serological assays have been developed to detect antibodies elicited against infections with oncogenic human papillomavirus (HPV) type 16. The association between antibody levels measured by various assays and subsequent HPV infection risk may differ. We compared HPV16-specific antibody levels previously measured by a virus-like particle (VLP)-based direct enzyme-linked immunoassay (ELISA) with levels measured by additional assays and evaluated the protection against HPV16 infection conferred at different levels of the assays. Replicate enrollment serum aliquots from 388 unvaccinated women in the control arm of the Costa Rica HPV vaccine trial were measured for HPV16 seropositivity using three serological assays: a VLP-based direct ELISA; a VLP-based competitive Luminex immunoassay (cLIA); and a secreted alkaline phosphatase protein neutralization assay (SEAP-NA). We assessed the association of assay seropositivity and risk of subsequent HPV16 infection over four years of follow-up by calculating sampling-adjusted odds ratios (OR) and HPV16 seropositivity based on standard cutoff from the cLIA was significantly associated with protection from subsequent HPV16 infection (OR = 0.48, CI = 0.27-0.86, compared with seronegatives). Compared with seronegatives, the highest seropositive tertile antibody levels from the direct ELISA (OR = 0.53, CI = 0.28-0.90) as well as the SEAP-NA (OR = 0.20, CI = 0.06, 0.64) were also significantly associated with protection from HPV16 infection. Enrollment HPV16 seropositivity by any of the three serological assays evaluated was associated with protection from subsequent infection, although cutoffs for immune protection were different. We defined the assays and seropositivity levels after natural infection that better measure and translate to protective immunity.
Laborde, Rady J.; Sanchez-Ferras, Oraly; Luzardo, María C.; Cruz-Leal, Yoelys; Fernández, Audry; Mesa, Circe; Oliver, Liliana; Canet, Liem; Abreu-Butin, Liane; Nogueira, Catarina V.; Tejuca, Mayra; Pazos, Fabiola; Álvarez, Carlos; Alonso, María E.; Longo-Maugéri, Ieda M.; Starnbach, Michael N.; Higgins, Darren E.; Fernández, Luis E.; Lanio, María E.
2017-01-01
Vaccine strategies to enhance CD8+ CTL responses remain a current challenge because they should overcome the plasmatic and endosomal membranes for favoring exogenous Ag access to the cytosol of APCs. As a way to avoid this hurdle, sticholysin (St) II, a pore-forming protein from the Caribbean Sea anemone Stichodactyla helianthus, was encapsulated with OVA into liposomes (Lp/OVA/StII) to assess their efficacy to induce a CTL response. OVA-specific CD8+ T cells transferred to mice immunized with Lp/OVA/StII experienced a greater expansion than when the recipients were injected with the vesicles without St, mostly exhibiting a memory phenotype. Consequently, Lp/OVA/StII induced a more potent effector function, as shown by CTLs, in vivo assays. Furthermore, treatment of E.G7-OVA tumor-bearing mice with Lp/OVA/StII significantly reduced tumor growth being more noticeable in the preventive assay. The contribution of CD4+ and CD8+ T cells to CTL and antitumor activity, respectively, was elucidated. Interestingly, the irreversibly inactive variant of the StI mutant StI W111C, encapsulated with OVA into Lp, elicited a similar OVA-specific CTL response to that observed with Lp/OVA/StII or vesicles encapsulating recombinant StI or the reversibly inactive StI W111C dimer. These findings suggest the relative independence between StII pore-forming activity and its immuno-modulatory properties. In addition, StII-induced in vitro maturation of dendritic cells might be supporting these properties. These results are the first evidence, to our knowledge, that StII, a pore-forming protein from a marine eukaryotic organism, encapsulated into Lp functions as an adjuvant to induce a robust specific CTL response. PMID:28258198
Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid
2017-05-01
Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao
2016-09-15
Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. Copyright © 2016 Elsevier Inc. All rights reserved.
Developing immune function assays to monitor fish health in field studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C.D.; Kergosien, D.H.; Adams, S.M.
1995-12-31
The East Fork Poplar Creek system, a 24km long stream in TN that receives point source discharges of contaminants near its headwaters, was chosen to evaluate a field approach to fish immunotoxicology. Previous studies in this stream have shown that cytochrome P4501A activity, liver somatic indices, macrophage aggregates, and parasitic liver lesions are significantly elevated in sunfish with the degree of impact decreasing with distance from the contaminant source. Red-breasted sunfish were collected between May 23 and June 3 of 1994. Captured fish were anesthetized in MS-222 and processed by two different methods. One group was sacrificed at each samplingmore » station, weights and lengths recorded, and the spleen and anterior kidney tissues removed and placed in buffer on ice. The other group was kept in MS-222 for 2 hr and transported to the laboratory. The spleen and anterior kidney from each fish were then prepared as a single cell suspension and shipped overnight to Mississippi State University. Cells were then washed by centrifugation and resuspended in appropriate media to evaluate PMA-stimulated phagocyte oxidative burst and non-specific cytotoxic cell (NCC) activity against K562 tumor targets. Oxidative burst responses were dramatically suppressed in both groups at stations near the headwaters but returned to reference levels further downstream. There were no differences between treatment groups at each station. NCC activities did not follow gradient-response patterns observed with phagocyte oxidative burst data and there were inconsistent differences between treatment groups at each station. These data show that simple immune function assays, such as phagocyte oxidative burst responses, can be used as an ancillary biomarker in fish health monitoring.« less
Erkes, Dan A.; Smith, Corinne J.; Wilski, Nicole A.; Caldeira-Dantas, Sofia; Mohgbeli, Toktam; Snyder, Christopher M.
2017-01-01
It is well known that CD8+ tumor infiltrating lymphocytes (TIL) are correlated with positive prognoses in cancer patients and used to determine efficacy of immune therapies. While it is generally assumed that CD8+ TIL will be tumor associated antigen (TAA)-specific, it is unknown whether CD8+ T cells with specificity for common pathogens also infiltrate tumors. If so, the presence of these T cells could alter the interpretation of prognostic and diagnostic TIL assays. We compared TAA-specific and virus-specific CD8+ T cells in the same tumors using murine cytomegalovirus (MCMV), a herpesvirus that causes a persistent/latent infection, and Vaccinia virus (VacV), a poxvirus that is cleared by the host. Virus-specific CD8+ TIL migrated into cutaneous melanoma lesions during acute infection with either virus, as well as after a cleared VacV infection, and during a persistent/latent MCMV infection. Virus-specific TILs developed independent of viral antigen in the tumor and interestingly, expressed low or intermediate levels of full-length PD-1 in the tumor environment. Importantly, PD-1 expression could be markedly induced by antigen, but did not correlate with dysfunction for virus-specific TIL, in sharp contrast to TAA-specific TIL in the same tumors. These data suggest that CD8+ TIL can reflect an individual's immune status, rather than exclusively representing TAA-specific T cells, and that PD-1 expression on CD8+ TIL is not always associated with repeated antigen encounter or dysfunction. Thus, functional virus-specific CD8+ TIL could skew the results of prognostic or diagnostic TIL assays. PMID:28202614