Science.gov

Sample records for immune responses fever

  1. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    PubMed

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  2. Lack of Interference by Zoster Vaccine With the Immune Response to Yellow Fever Vaccine

    PubMed Central

    Stier, David M.; Weber, Ingrid B.; Staples, J. Erin

    2015-01-01

    Concerns exist about the serologic response to yellow fever (YF) vaccine when given within 28 days of another live virus vaccine. We report the case of a healthy adult who received 17D YF vaccine 21 days following administration of another live viral vaccine, and developed a protective level of immunity against YF virus. PMID:22414038

  3. Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy.

    PubMed

    Summerfield, Artur; Ruggli, Nicolas

    2015-01-01

    Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling. PMID:26664939

  4. Humoral immune response of dengue hemorrhagic fever cases in children from Tegucigalpa, Honduras.

    PubMed

    De Rivera, Ivette Lorenzana; Parham, Leda; Murillo, Wendy; Moncada, Walter; Vazquez, Susana

    2008-08-01

    The humoral immune response in Honduran dengue hemorrhagic fever (DHF) hospitalized pediatric cases from the epidemics of 2004 and 2005 was studied in sera collected from 5 to 7 days of fever onset. A total of 145 cases were included in the study: 40 classified as primary with DHF Grade I or II and 86 classified as secondary; from them, 73 were DHF Grade I or II and 13 were dengue shock syndrome (DSS) Grade III or IV. The highest number of primary cases was found in children < 1 year of age. The highest number of secondary cases was observed in children between 5 and 10 years of age. The IgA values showed a statistically significant difference between primary and secondary groups. The relationship between antibody responses and severity grade is discussed. This is the first study related to the humoral immune response and severity grade in DHF cases in Honduran children.

  5. Immune Response to Hepatitis A Vaccine Combined or Given Simultaneously with Typhoid Fever Vaccine.

    PubMed

    Vodopija; Baklaic; Vodopija; Clemens

    1997-09-01

    Background: Because both hepatitis A and typhoid vaccination are frequently indicated in the same traveler, a prospective, randomized controlled study was performed to evaluate the feasibility of simultaneous administration of hepatitis A and typhoid fever vaccines in adult volunteers. Methods: Two groups of 25 subjects received either separate injections of hepatitis A (Havrixtrade mark, SmithKline Beecham Biologicals) and typhoid fever (Typhim Vitrade mark, Pasteur-Mérieux) vaccines in opposite arms, or a syringe-mixed combination of both vaccines as a single injection. A booster dose of Havrix was given at 6 months. Results: The immune response to hepatitis A tended to be higher in the mixed-injection group, but this difference was significant (p=.048) only following the booster dose. Adverse reactions were generally mild with no differences between the two groups. Conclusion: A combined formulated vaccine against both typhoid fever and hepatitis A is feasible and offers more convenience without added adverse reactions to travelers who have appropriate indications for both vaccines.

  6. Immune response to vaccination against Argentine hemorrhagic Fever in an area where different arenaviruses coexist.

    PubMed

    Ambrosio, Ana M; Riera, Laura M; Saavedra, María Del Carmen; Sabattini, Marta S

    2006-01-01

    Neutralizing antibody (NT Ab) titers to Candid #1 (C#1) vaccine against Argentine hemorrhagic fever were studied for 2 years post-vaccination in 330 volunteers, to assess whether the kinetics and/or magnitude of this immune response is modified by previous infection with the arena viruses Junin (JUN) and lymphocytic choriomeningitis (LCM). A total of 160 volunteers received C#1, distributed as follows: without detectable pre-infection with arenaviruses (n = 54); with pre-existing antibodies to JUN (n = 55); with pre-existing antibodies to LCM (n = 51). The remaining 170 individuals received placebo. Levels of anti-JUN NT Ab displayed a trend in which titers increased with the virulence of the infecting strain, from C#1 (X = 49), through subclinical JUN infection (X = 229), vaccination following subclinical infection (X = 367) to JUN clinical infection (X =773). It was also found that the mean titer of NT Ab to C#1 did not vary significantly during 2 years of study and was: a) significantly lower than that elicited by wild strains of JUN, both clinical and subclinical infections (p < 0.01); b) significantly increased the titers of pre-existing anti-JUN Ab (p < 0.01); and c) was not modified by pre-existing anti-LCM Ab (p > 0.05). These data indicate that the immune response to C#1 boosts pre-existing immunity to JUN virus and is not changed by previous experience with LCM virus.

  7. Evolution of African swine fever virus genes related to evasion of host immune response.

    PubMed

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. PMID:27599940

  8. Mutual interference on the immune response to yellow fever vaccine and a combined vaccine against measles, mumps and rubella.

    PubMed

    Nascimento Silva, Juliana Romualdo; Camacho, Luiz Antonio B; Siqueira, Marilda M; Freire, Marcos de Silva; Castro, Yvone P; Maia, Maria de Lourdes S; Yamamura, Anna Maya Y; Martins, Reinaldo M; Leal, Maria de Luz F

    2011-08-26

    A randomized trial was conducted to assess the immunogenicity and reactogenicity of yellow fever vaccines (YFV) given either simultaneously in separate injections, or 30 days or more after a combined measles-mumps-rubella (MMR) vaccine. Volunteers were also randomized to YFV produced from 17DD and WHO-17D-213 substrains. The study group comprised 1769 healthy 12-month-old children brought to health care centers in Brasilia for routine vaccination. The reactogenicity was of the type and frequency expected for the vaccines and no severe adverse event was associated to either vaccine. Seroconversion and seropositivity 30 days or more after vaccination against yellow fever was similar across groups defined by YFV substrain. Subjects injected YFV and MMR simultaneously had lower seroconversion rates--90% for rubella, 70% for yellow fever and 61% for mumps--compared with those vaccinated 30 days apart--97% for rubella, 87% for yellow fever and 71% for mumps. Seroconversion rates for measles were higher than 98% in both comparison groups. Geometric mean titers for rubella and for yellow fever were approximately three times higher among those who got the vaccines 30 days apart. For measles and mumps antibodies GMTs were similar across groups. MMR's interference in immune response of YFV and YFV's interference in immune response of rubella and mumps components of MMR had never been reported before but are consistent with previous observations from other live vaccines. These results may affect the recommendations regarding primary vaccination with yellow fever vaccine and MMR.

  9. The role of B cells in the immune response to pestivirus (classical Swine Fever virus).

    PubMed

    Sánchez-Cordón, P J; Romero-Trevejo, J L; Pedrera, M; Raya, A I; Gómez-Villamandos, J C

    2006-07-01

    Pigs inoculated with the Alfort 187 isolate of classical swine fever (CSF) virus were used to study the immunological mechanisms associated with the humoral immune response in the disease. Quantitative and qualitative changes in the B-cell population (lambda light chain [C-lambda]-positive, immunoglobulins [Ig]-M-positive, and IgG-positive were demonstrated in the spleen, thymus and ileocaecal lymph node. Blood and serum samples were used to examine changes in leucocytes, albumin/globulin ratios and specific antibodies against CSF virus titration. Despite the lymphoid depletion shown by infected animals, an increase in B cells and potentially immunoglobulin-producing C-lambda+ plasma cells was observed in the lymphoid organs from the onset of disease. The increase in C-lambda+ B cells was matched by a parallel increase in IgM+ cells, which attained peak values from 7 days post-inoculation (dpi), while IgG+ cells increased from 11 dpi onwards. The enhanced biosynthetic capacity of these cells may have been linked to the initiation of a humoral response to CSF virus, and to the progressive decline in the albumin/globulin ratios of inoculated animals. Activation, proliferation and differentiation of B cells coincided with the presence of viral antigen, and with an intense phagocytic and biosynthetic activity of monocytes-macrophages and T lymphocytes. The previously reported increase of cytokine (TNFalpha, IL-1alpha and IL-6) production by monocytes-macrophages, and the release of IL-2, IL-4 and IFNgamma by T lymphocytes, may play a role in the initiation of the humoral immune response in CSF. These changes may have influenced the late appearance of virus-specific antibodies in the study, as well as the progressive increase of immunoglobulins.

  10. Autoimmune component in individuals during immune response to inactivated combined vaccine against Q fever.

    PubMed

    Krutitskaya, L; Tokarevich, N; Zhebrun, A; Kartseva, N; Tarasevich, I; Yablonskaya, V; Fatalieva, S; Misnikov, O P; Vasilenko, A Z

    1996-09-01

    Serum samples from 20 individuals immunized with inactivated combined vaccine (ICV) against Q fever and 10 individuals that received placebo were investigated on days 14, 21, 28 and 60 after immunization by isotope specific enzyme-linked immunosorbent assay (ELISA) for the presence of antibodies directed to human IgA, IgM and IgG, and their fragments (F(ab')2, Fab, Fc). None of the subjects that received placebo exhibited significant increase of reactivity with any of the used antigens. By contrast, the sera of immunized individuals tended to show increased autoantibody activity with diverse antigens. Forty % of sera of immunized subjects exhibited anti-Fab activity, 20% of the sera recognized IgA, F(ab')2- and Fc-fragments, and 15% of the sera recognized IgG and IgM. Although there was wide variation in antibody levels and in isotypic heterogeneity of autoantibodies induced by immunization, anti-Fab autoantibodies were represented mainly by IgG and IgA isotypes but not IgM isotype. A direct correlation between the anti-Coxiella burnetii (anti-C.b.) antibody level and the anti-Fab IgG activity, and between the anti-C.b. antibody level and the anti-Fab IgA activity was found. In the group of vaccinees reacting strongly to the vaccine against Q fever, this correlation significantly increased for both the anti-Fab IgG and the anti-Fab IgA activities. No correlation was found with the sera in the group of the subjects that received placebo.

  11. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  12. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis.

    PubMed

    Konsman, J P; Luheshi, G N; Bluthé, R M; Dantzer, R

    2000-12-01

    Cytokines act on the brain to induce fever and behavioural depression after infection. Although several mechanisms of cytokine-to-brain communication have been proposed, their physiological significance is unclear. We propose that behavioural depression is mediated by the vagus nerve activating limbic structures, while fever would primarily be due to humoral mechanisms affecting the preoptic area, including interleukin-6 (IL-6) action on the organum vasculosum of the laminae terminalis (OVLT) and induction of prostaglandins. This study assessed the effects of subdiaphragmatic vagotomy in rats on fever, behavioural depression, as measured by the social interaction test, and Fos expression in the brain. These responses were compared with induction of the prostaglandin-producing enzyme cyclooxygenase-2 and the transcription factor Stat3 that translocates after binding of IL-6. Vagotomy blocked behavioural depression after intraperitoneal injection of recombinant rat IL-1beta (25 microg/kg) or lipopolysaccharide (250 microg/kg; LPS) and prevented Fos expression in limbic structures and ventromedial preoptic area, but not in the OVLT. Fever was not affected by vagotomy, but associated with translocation of Stat3 in the OVLT and cyclooxygenase-2 induction around blood vessels. These results indicate that the recently proposed vagal link between the immune system and the brain activates limbic structures to induce behavioural depression after abdominal inflammation. Although the vagus might play a role in fever in response to low doses of LPS by activating the ventromedial preoptic area, it is likely to be overridden during more severe infection by action of circulating IL-6 on the OVLT or prostaglandins induced along blood vessels of the preoptic area.

  13. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    PubMed Central

    Carlson, Jolene; O’Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G.; Krug, Peter W.; Gladue, Douglas P.; Higgs, Stephen; Borca, Manuel V.

    2016-01-01

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms. PMID:27782090

  14. Pathogenesis and Immune Response of Crimean-Congo Hemorrhagic Fever Virus in a STAT-1 Knockout Mouse Model▿ †

    PubMed Central

    Bente, Dennis A.; Alimonti, Judie B.; Shieh, Wun-Ju; Camus, Gaëlle; Ströher, Ute; Zaki, Sherif; Jones, Steven M.

    2010-01-01

    Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) causes a severe hemorrhagic syndrome in humans but not in its vertebrate animal hosts. The pathogenesis of the disease is largely not understood due to the lack of an animal model. Laboratory animals typically show no overt signs of disease. Here, we describe a new small-animal model to study CCHFV pathogenesis that manifests clinical disease, similar to that seen in humans, without adaptation of the virus to the host. Our studies revealed that mice deficient in the STAT-1 signaling molecule were highly susceptible to infection, succumbing within 3 to 5 days. After CCHFV challenge, mice exhibited fever, leukopenia, thrombocytopenia, and highly elevated liver enzymes. Rapid viremic dissemination and extensive replication in visceral organs, mainly in liver and spleen, were associated with prominent histopathologic changes in these organs. Dramatically elevated proinflammatory cytokine levels were detected in the blood of the animals, suggestive of a cytokine storm. Immunologic analysis revealed delayed immune cell activation and intensive lymphocyte depletion. Furthermore, this study also demonstrated that ribavirin, a suggested treatment in human cases, protects mice from lethal CCHFV challenge. In conclusion, our data demonstrate that the interferon response is crucial in controlling CCHFV replication in this model, and this is the first study that offers an in-depth in vivo analysis of CCHFV pathophysiology. This new mouse model exhibits key features of fatal human CCHF, proves useful for the testing of therapeutic strategies, and can be used to study virus attenuation. PMID:20739514

  15. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    SciTech Connect

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  16. Evaluation of specific humoral immune response in pigs vaccinated with cell culture adapted classical swine fever vaccine

    PubMed Central

    Nath, Mrinal K.; Sarma, D. K.; Das, B. C.; Deka, P.; Kalita, D.; Dutta, J. B.; Mahato, G.; Sarma, S.; Roychoudhury, P.

    2016-01-01

    Aim: To determine an efficient vaccination schedule on the basis of the humoral immune response of cell culture adapted live classical swine fever virus (CSFV) vaccinated pigs and maternally derived antibody (MDA) in piglets of vaccinated sows. Materials and Methods: A cell culture adapted live CSFV vaccine was subjected to different vaccination schedule in the present study. Serum samples were collected before vaccination (day 0) and 7, 14, 28, 42, 56, 180, 194, 208, 270, 284 and 298 days after vaccination and were analyzed by liquid phase blocking enzyme-linked immunosorbent assay. Moreover, MDA titre was detected in the serum of piglets at 21 and 42 days of age after farrowing of the vaccinated sows. Results: On 28 days after vaccination, serum samples of 83.33% vaccinated pigs showed the desirable level of antibody titer (log10 1.50 at 1:32 dilution), whereas 100% animals showed log10 1.50 at 1:32 dilution after 42 days of vaccination. Animals received a booster dose at 28 and 180 days post vaccination showed stable high-level antibody titre till the end of the study period. Further, piglets born from pigs vaccinated 1 month after conception showed the desirable level of MDA up to 42 days of age. Conclusion: CSF causes major losses in pig industry. Lapinised vaccines against CSFV are used routinely in endemic countries. In the present study, a cell culture adapted live attenuated vaccine has been evaluated. Based on the level of humoral immune response of vaccinated pigs and MDA titer in piglets born from immunized sows, it may be concluded that the more effective vaccination schedule for prevention of CSF is primary vaccination at 2 months of age followed by booster vaccination at 28 and 180 days post primary vaccination and at 1 month of gestation. PMID:27057117

  17. Glycoprotein E2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits.

    PubMed

    Zhang, Huawei; Li, Xiangmin; Peng, Guiqing; Tang, Chenkai; Zhu, Shixuan; Qian, Suhong; Xu, Jinfang; Qian, Ping

    2014-11-20

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious and devastating disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. Several CSFV genotypes, including 1.1, 2.1, 2.2, and 2.3, have been identified in Mainland China. The glycoprotein E2 of genotypes 1.1 and 2.1 was expressed by using a baculovirus system and tested for its protective immunity in rabbits to develop novel CSF vaccines that elicit a broad immune response. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with E2 of genotypes 1.1 (CSFV-1.1E2), 2.1 (CSFV-2.1E2), or their combination (CSFV-1.1 + 2.1E2). A commercial CSF vaccine (C-strain) and phosphate-buffered saline (PBS) were used as positive or negative controls, respectively. All animals were challenged with CSFV C-strain at 4 weeks and then boosted with the same dose. All rabbits inoculated with CSFV-1.1E2, CSFV-2.1E2, and CSFV-1.1 + 2.1E2 elicited high levels of ELISA antibody, neutralizing antibody, and lymphocyte proliferative responses to CSFV. The rabbits inoculated with CSFV-1.1E2 and CSFV-1.1 + 2.1E2 received complete protection against CSFV C-strain. Two of the four rabbits vaccinated with CSFV-2.1E2 were completely protected. These results demonstrate that CSFV-1.1E2 and CSFV-1.1 + 2.1E2 not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits. Therefore, CSFV-1.1E2 and CSFV-1.1 + 2.1E2 are promising candidate subunit vaccines against CSF.

  18. Fever, immunity, and molecular adaptations.

    PubMed

    Hasday, Jeffrey D; Thompson, Christopher; Singh, Ishwar S

    2014-01-01

    The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided. PMID:24692136

  19. Immune response

    MedlinePlus

    ... cells. T cells are responsible for cell-mediated immunity. This type of immunity becomes deficient in persons with HIV, the virus ... blood. B lymphocytes provide the body with humoral immunity as they circulate in the fluids in search ...

  20. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    PubMed Central

    van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Introduction Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. Methods and Findings PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07–3.1%). On day 180, these cells were still present (median 0.06%, range 0.02–0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. Conclusion The

  1. The 1970 yellow fever epidemic in Okwoga District, Benue Plateau State, Nigeria. 3. Serological responses in persons with and without pre-existing heterologous group B immunity.

    PubMed

    Monath, T P; Wilson, D C; Casals, J

    1973-01-01

    Serological studies of persons infected with yellow fever (YF) during the 1970 epidemic in Okwoga District, Nigeria, indicated that epidemic YF occurred despite a high prevalence of pre-existing group B arbovirus immunity, which increased with age. The viruses involved were primarily dengue, Zika, and Wesselsbron. Patterns of responses of haemagglutination-inhibiting, complement-fixing, and neutralizing antibodies in primary YF and in superinfections are defined in this paper.

  2. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    PubMed Central

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando

    2016-01-01

    ABSTRACT The live attenuated yellow fever virus (YFV) vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. PMID:26861019

  3. Pepper Mild Mottle Virus, a Plant Virus Associated with Specific Immune Responses, Fever, Abdominal Pains, and Pruritus in Humans

    PubMed Central

    Colson, Philippe; Richet, Hervé; Desnues, Christelle; Balique, Fanny; Moal, Valérie; Grob, Jean-Jacques; Berbis, Philippe; Lecoq, Hervé; Harlé, Jean-Robert; Berland, Yvon; Raoult, Didier

    2010-01-01

    Background Recently, metagenomic studies have identified viable Pepper mild mottle virus (PMMoV), a plant virus, in the stool of healthy subjects. However, its source and role as pathogen have not been determined. Methods and Findings 21 commercialized food products containing peppers, 357 stool samples from 304 adults and 208 stool samples from 137 children were tested for PMMoV using real-time PCR, sequencing, and electron microscopy. Anti-PMMoV IgM antibody testing was concurrently performed. A case-control study tested the association of biological and clinical symptoms with the presence of PMMoV in the stool. Twelve (57%) food products were positive for PMMoV RNA sequencing. Stool samples from twenty-two (7.2%) adults and one child (0.7%) were positive for PMMoV by real-time PCR. Positive cases were significantly more likely to have been sampled in Dermatology Units (p<10−6), to be seropositive for anti-PMMoV IgM antibodies (p = 0.026) and to be patients who exhibited fever, abdominal pains, and pruritus (p = 0.045, 0.038 and 0.046, respectively). Conclusions Our study identified a local source of PMMoV and linked the presence of PMMoV RNA in stool with a specific immune response and clinical symptoms. Although clinical symptoms may be imputable to another cofactor, including spicy food, our data suggest the possibility of a direct or indirect pathogenic role of plant viruses in humans. PMID:20386604

  4. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  5. Fever and the thermal regulation of immunity: the immune system feels the heat.

    PubMed

    Evans, Sharon S; Repasky, Elizabeth A; Fisher, Daniel T

    2015-06-01

    Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  6. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.

  7. [Hsp70 Fused with the Envelope Glycoprotein E0 of Classical Swine Fever Virus Enhances Immune Responses in Balb/c Mice].

    PubMed

    Xu, Qianqian; Zhang, Xiaomin; Jing, Jiao; Shi, Baojun; Wang, Shiqi; Zhou, Bin; Chen, Puyan

    2015-07-01

    Heat-shock protein (Hsp) 70 potentiates specific immune responses to some antigenic peptides fused to it. Here, the prokaryotic plasmids harboring the envelope glycoprotein E0 gene of classical swine fever virus (CSFV) and/or the Hsp70 gene of Haemophilus parasuis were constructed and expressed in Escherichia coli Rosseta 2(R2). The fusion proteins were then purified. Groups of Balb/c mice were immunized with these fusion proteins, respectively, and sera collected 7 days after the third immunization. Immune effects were determined via an enzyme-linked immunosorbent assay and flow cytometric analyses. E0-Hsp70 fusion protein and E0+Hsp70 mixture significantly improved the titer of E-specific antibody, levels of CD4+ and CD8+ T cells, and release of interferon-γ. These findings suggested that Hsp70 can significantly enhance the immune effects of the envelope glycoprotein E0 of CSFV, thereby laying the foundation of further application in pigs. PMID:26524908

  8. Case of Yellow Fever Vaccine–Associated Viscerotropic Disease with Prolonged Viremia, Robust Adaptive Immune Responses, and Polymorphisms in CCR5 and RANTES Genes

    PubMed Central

    Pulendran, Bali; Miller, Joseph; Querec, Troy D.; Akondy, Rama; Moseley, Nelson; Laur, Oscar; Glidewell, John; Monson, Nathan; Zhu, Tuofu; Zhu, Haiying; Staprans, Sylvija; Lee, David; Brinton, Margo A.; Perelygin, Andrey A.; Vellozzi, Claudia; Brachman, Philip; Lalor, Susan; Teuwen, Dirk; Eidex, Rachel B.; Cetron, Marty; Priddy, Frances; del Rio, Carlos; Altman, John; Ahmed, Rafi

    2013-01-01

    Background The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines. Despite its excellent safety record, some cases of viscerotropic adverse events develop, which are sometimes fatal. The mechanisms underlying such events remain a mystery. Here, we present an analysis of the immunologic and genetic factors driving disease in a 64-year-old male who developed viscerotropic symptoms. Methods We obtained clinical, serologic, virologic, immunologic and genetic data on this case patient. Results Viral RNA was detected in the blood 33 days after vaccination, in contrast to the expected clearance of virus by day 7 after vaccination in healthy vaccinees. Vaccination induced robust antigen-specific T and B cell responses, which suggested that persistent virus was not due to adaptive immunity of suboptimal magnitude. The genes encoding OAS1, OAS2, TLR3, and DC-SIGN, which mediate antiviral innate immunity, were wild type. However, there were heterozygous genetic polymorphisms in chemokine receptor CCR5, and its ligand RANTES, which influence the migration of effector T cells and CD14+CD16bright monocytes to tissues. Consistent with this, there was a 200-fold increase in the number of CD14+CD16bright monocytes in the blood during viremia and even several months after virus clearance. Conclusion; In this patient, viscerotropic disease was not due to the impaired magnitude of adaptive immunity but instead to anomalies in the innate immune system and a possible disruption of the CCR5-RANTES axis. PMID:18598196

  9. Kinetics of selected plasma cytokines during innate-adaptive immune response transition in adult cattle infected with the bovine ephemeral fever virus.

    PubMed

    Barigye, R; Melville, L F; Davis, S; Walsh, S; Hunt, N; Hunt, R

    2016-04-15

    While virus neutralizing antibodies are known to be variably protective against bovine ephemeral fever (BEF) virus (BEFV) infections, the cytokine events that mediate the nascent adaptive immune response have not been defined in cattle. This study determined the plasma kinetics of IL-2, IFN-γ, IL-6, and IL-10 during the period of innate-immune response transition and evaluated the relationship between the virus neutralizing antibody response and viraemia in BEFV-infected cattle. Plasma from four virus-infected and uninfected negative control animals was tested by cytokine-specific immunoenzymatic assays, viraemia monitored by qRT-PCR, and virus neutralizing antibody titres determined using a standard protocol. Unlike the negative controls, plasma IL-6 and IL-10 were increased in all the virus-infected animals starting several days prior to initiation of viraemia. In one animal, plasma IL-2 and IFN-γ were consistently higher than in the other three virus-infected animals and the negative control mean. The animal with the strongest IL-2 and IFN-γ responses had the shortest viraemia while the heifer with the lowest IL-2/IFN-γ indices demonstrated the longest viraemia. Evidently, increase in plasma IL-6 and IL-10 precedes seroconversion during BEFV infections in cattle suggesting the two cytokines may influence immunological events that pave way to B-cell activation and seroconversion. While there is remarkable variability in IL-2 and IFN-γ expression amongst BEFV-infected animals, increased plasma levels of the two cytokines appear to be associated with a shorter viraemia. Ongoing studies will help define the precise role of T cells in anti-BEFV adaptive immune responses. PMID:27016765

  10. Induction of immune responses in mice and pigs by oral administration of classical swine fever virus E2 protein expressed in rice calli.

    PubMed

    Jung, Myunghwan; Shin, Yun Ji; Kim, Ju; Cha, Seung-Bin; Lee, Won-Jung; Shin, Min-Kyoung; Shin, Seung Won; Yang, Moon-Sik; Jang, Yong-Suk; Kwon, Tae-Ho; Yoo, Han Sang

    2014-12-01

    Classical swine fever (CSF), caused by the CSF virus (CSFV), is a highly contagious disease in pigs. In Korea, vaccination using a live-attenuated strain (LOM strain) has been used to control the disease. However, parenteral vaccination using a live-attenuated strain still faces a number of problems related to storage, cost, injection stress, and differentiation of CSFV infected and vaccinated pigs. Therefore, two kinds of new candidates for oral vaccination have been developed based on the translation of the E2 gene of the SW03 strain, which was isolated from an outbreak of CSF in 2002 in Korea, in transgenic rice calli (TRCs) from Oriza sativa L. cv. Dongjin to express a recombinant E2 protein (rE2-TRCs). The expression of the recombinant E2 protein (rE2) in rE2-TRCs was confirmed using Northern blot, SDS-PAGE, and Western blot analysis. Immune responses to the rE2-TRC in mice and pigs were investigated after oral administration. The administration of rE2-TRCs increased E2-specific antibodies titers and antibody-secreting cells when compared to animals receiving the vector alone (p < 0.05 and p < 0.01). In addition, mice receiving rE2-TRCs had a higher level of CD8+ lymphocytes and Th1 cytokine immune responses to purified rE2 (prE2) in vitro than the controls (p < 0.05 and p < 0.01). Pigs receiving rE2-TRCs also showed an increase in IL-8, CCL2, and the CD8+ subpopulation in response to stimulation with prE2. These results suggest that oral administration of rE2-TRCs can induce E2-specific immune responses.

  11. Fever, hyperthermia and the heat shock response.

    PubMed

    Singh, Ishwar S; Hasday, Jeffrey D

    2013-08-01

    The heat shock response is a highly conserved primitive response that is essential for survival against a wide range of stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms raise their core body temperature and temporarily subject themselves to thermal stress in the face of infections. The present review documents studies showing the potential overlap between the febrile response and the heat shock response and how both activate the same common transcriptional programme (although with different magnitudes) including the stress-activated transcription factor, heat shock factor-1, to modify host defences in the context of infection, inflammation and injury. The review focuses primarily on how hyperthermia within the febrile range that often accompanies infections and inflammation acts as a biological response modifier and modifies innate immune responses. The characteristic 2-3 °C increase in core body temperature during fever activates and utilises elements of the heat shock response pathway to modify cytokine and chemokine gene expression, cellular signalling and immune cell mobilisation to sites of inflammation, infection and injury. Interestingly, typical proinflammatory agonists such as Toll-like receptor agonists modify the heat shock-induced transcriptional programme and expression of HSP genes following co-exposure to febrile range hyperthermia or heat shock, suggesting a complex reciprocal regulation between the inflammatory pathway and the heat shock response pathway. PMID:23863046

  12. Monoacylglycerol Lipase Regulates Fever Response

    PubMed Central

    Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Moroncini, Gianluca; Viader, Andreu; Nomura, Daniel K.; Cravatt, Benjamin F.; Conti, Bruno

    2015-01-01

    Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system. PMID:26287872

  13. Coxiella burnetii Induces Inflammatory Interferon-Like Signature in Plasmacytoid Dendritic Cells: A New Feature of Immune Response in Q Fever

    PubMed Central

    Ka, Mignane B.; Mezouar, Soraya; Ben Amara, Amira; Raoult, Didier; Ghigo, Eric; Olive, Daniel; Mege, Jean-Louis

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play a major role in antiviral immunity via the production of type I interferons (IFNs). There is some evidence that pDCs interact with bacteria but it is not yet clear whether they are protective or contribute to bacterial pathogenicity. We wished to investigate whether Coxiella burnetii, the agent of Q fever, interacts with pDCs. The stimulation of pDCs with C. burnetii increased the expression of activation and migratory markers (CD86 and CCR7) as determined by flow cytometry and modulated gene expression program as revealed by a microarray approach. Indeed, genes encoding for pro-inflammatory cytokines, chemokines, and type I INF were up-regulated. The up-regulation of type I IFN was correlated with an increase in IFN-α release by C. burnetii-stimulated pDCs. We also investigated pDCs in patients with Q fever endocarditis. Using flow cytometry and a specific gating strategy, we found that the number of circulating pDCs was significantly lower in patients with Q fever endocarditis as compared to healthy donors. In addition, the remaining circulating pDCs expressed activation and migratory markers. As a whole, our study identified non-previously reported activation of pDCs by C. burnetii and their modulation during Q fever. PMID:27446817

  14. Coxiella burnetii Induces Inflammatory Interferon-Like Signature in Plasmacytoid Dendritic Cells: A New Feature of Immune Response in Q Fever.

    PubMed

    Ka, Mignane B; Mezouar, Soraya; Ben Amara, Amira; Raoult, Didier; Ghigo, Eric; Olive, Daniel; Mege, Jean-Louis

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play a major role in antiviral immunity via the production of type I interferons (IFNs). There is some evidence that pDCs interact with bacteria but it is not yet clear whether they are protective or contribute to bacterial pathogenicity. We wished to investigate whether Coxiella burnetii, the agent of Q fever, interacts with pDCs. The stimulation of pDCs with C. burnetii increased the expression of activation and migratory markers (CD86 and CCR7) as determined by flow cytometry and modulated gene expression program as revealed by a microarray approach. Indeed, genes encoding for pro-inflammatory cytokines, chemokines, and type I INF were up-regulated. The up-regulation of type I IFN was correlated with an increase in IFN-α release by C. burnetii-stimulated pDCs. We also investigated pDCs in patients with Q fever endocarditis. Using flow cytometry and a specific gating strategy, we found that the number of circulating pDCs was significantly lower in patients with Q fever endocarditis as compared to healthy donors. In addition, the remaining circulating pDCs expressed activation and migratory markers. As a whole, our study identified non-previously reported activation of pDCs by C. burnetii and their modulation during Q fever. PMID:27446817

  15. Genetic control of the innate immune response to Borrelia hermsii influences the course of relapsing fever in inbred strains of mice.

    PubMed

    Benoit, Vivian M; Petrich, Annett; Alugupalli, Kishore R; Marty-Roix, Robin; Moter, Annette; Leong, John M; Boyartchuk, Victor L

    2010-02-01

    Host susceptibility to infection is controlled in large measure by the genetic makeup of the host. Spirochetes of the genus Borrelia include nearly 40 species of vector-borne spirochetes that are capable of infecting a wide range of mammalian hosts, causing Lyme disease and relapsing fever. Relapsing fever is associated with high-level bacteremia, as well as hematologic manifestations, such as thrombocytopenia (i.e., low platelet numbers) and anemia. To facilitate studies of genetic control of susceptibility to Borrelia hermsii infection, we performed a systematic analysis of the course of infection using immunocompetent and immunocompromised inbred strains of mice. Our analysis revealed that sensitivity to B. hermsii infections is genetically controlled. In addition, whereas the role of adaptive immunity to relapsing fever-causing spirochetes is well documented, we found that innate immunity contributes significantly to the reduction of bacterial burden. Similar to human infection, the progression of the disease in mice was associated with thrombocytopenia and anemia. Histological and fluorescence in situ hybridization (FISH) analysis of infected tissues indicated that red blood cells (RBCs) were removed by tissue-resident macrophages, a process that could lead to anemia. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream by tissue phagocytes. PMID:19995898

  16. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    PubMed

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus.

  17. Immune Responses and Lassa Virus Infection

    PubMed Central

    Russier, Marion; Pannetier, Delphine; Baize, Sylvain

    2012-01-01

    Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis. PMID:23202504

  18. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade

    PubMed Central

    Stojanov, Silvia; Lapidus, Sivia; Chitkara, Puja; Feder, Henry; Salazar, Juan C.; Fleisher, Thomas A.; Brown, Margaret R.; Edwards, Kathryn M.; Ward, Michael M.; Colbert, Robert A.; Sun, Hong-Wei; Wood, Geryl M.; Barham, Beverly K.; Jones, Anne; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Athreya, Balu; Barron, Karyl S.; Kastner, Daniel L.

    2011-01-01

    The syndrome of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) is the most common periodic fever disease in children. However, the pathogenesis is unknown. Using a systems biology approach we analyzed blood samples from PFAPA patients whose genetic testing excluded hereditary periodic fevers (HPFs), and from healthy children and pediatric HPF patients. Gene expression profiling could clearly distinguish PFAPA flares from asymptomatic intervals, HPF flares, and healthy controls. During PFAPA attacks, complement (C1QB, C2, SERPING1), IL-1–related (IL-1B, IL-1RN, CASP1, IL18RAP), and IFN-induced (AIM2, IP-10/CXCL10) genes were significantly overexpressed, but T cell-associated transcripts (CD3, CD8B) were down-regulated. On the protein level, PFAPA flares were accompanied by significantly increased serum levels of chemokines for activated T lymphocytes (IP-10/CXCL10, MIG/CXCL9), G-CSF, and proinflammatory cytokines (IL-18, IL-6). PFAPA flares also manifested a relative lymphopenia. Activated CD4+/CD25+ T-lymphocyte counts correlated negatively with serum concentrations of IP-10/CXCL10, whereas CD4+/HLA-DR+ T lymphocyte counts correlated positively with serum concentrations of the counterregulatory IL-1 receptor antagonist. Based on the evidence for IL-1β activation in PFAPA flares, we treated five PFAPA patients with a recombinant IL-1 receptor antagonist. All patients showed a prompt clinical and IP-10/CXCL10 response. Our data suggest an environmentally triggered activation of complement and IL-1β/-18 during PFAPA flares, with induction of Th1-chemokines and subsequent retention of activated T cells in peripheral tissues. IL-1 inhibition may thus be beneficial for treatment of PFAPA attacks, with IP-10/CXCL10 serving as a potential biomarker. PMID:21478439

  19. Protective host immune responses to Salmonella infection.

    PubMed

    Pham, Oanh H; McSorley, Stephen J

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.

  20. Immune Responses in Neonates

    PubMed Central

    Basha, Saleem; Surendran, Naveen; Pichichero, Michael

    2015-01-01

    Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents. PMID:25088080

  1. Safety and immunogenicity of combined rabies and typhoid fever immunization.

    PubMed

    Fritzell, C; Rollin, P E; Touir, M; Sureau, P; Teulieres, L

    1992-01-01

    The prevalence of rabies and typhoid fever in many developing countries poses a serious health hazard to travellers. The development of a combined immunization schedule would be advantageous. A study was performed on 104 adult volunteers using purified Vero cell rabies vaccine and Typhim Vi, a purified capsular polysaccharide, either separately or in combination. No significant difference was observed in immunogenicity or tolerance between the two groups. A 3-year follow-up study is planned.

  2. TpUB05, a Homologue of the Immunodominant Plasmodium falciparum Protein UB05, Is a Marker of Protective Immune Responses in Cattle Experimentally Vaccinated against East Coast Fever

    PubMed Central

    Dinga, Jerome Nyhalah; Wamalwa, Mark; Njimoh, Dieudonné Lemuh; Njahira, Moses N.; Djikeng, Appolinaire; Skilton, Rob; Titanji, Vincent Pryde Kehdingha; Pellé, Roger

    2015-01-01

    Introduction East Coast fever, a devastating disease of cattle, can be controlled partially by vaccination with live T. parva sporozoites. The antigens responsible for conferring immunity are not fully characterized. Recently it was shown that the P. falciparum immunodominant protein UB05 is highly conserved in T. parva, the causative agent of East Coast fever. The aim of the present investigation was to determine the role of the homologue TpUB05 in protective immunity to East Coast fever. Methods The cloning, sequencing and expression of TpUB05 were done according to standard protocols. Bioinformatics analysis of TpUB05 gene was carried out using algorithms found in the public domain. Polyclonal antiserum against recombinant TpUB05 were raised in rabbits and used for further analysis by Western blotting, ELISA, immunolocalization and in vitro infection neutralization assay. The ability of recombinant TpUB05 (r-TpUB05) to stimulate bovine PBMCs ex-vivo to produce IFN-γ or to proliferate was tested using ELISpot and [3H]-thymidine incorporation assays, respectively. Results All the 20 cattle immunised by the infection and treatment method (ITM) developed significantly higher levels of TpUB05 specific antibodies (p<0.0001) compared to the non-vaccinated ones. Similarly, r-TpUB05 highly stimulated bovine PMBCs from 8/12 (67%) of ITM-immunized cattle tested to produce IFN-γ and proliferate (p< 0.029) as compared to the 04 naїve cattle included as controls. Polyclonal TpUB05 antiserum raised against r-TpUB05 also marginally inhibited infection (p < 0.046) of bovine PBMCs by T. parva sporozoites. In further experiments RT-PCR showed that the TpUB05 gene is expressed by the parasite. This was confirmed by immunolocalization studies which revealed TpUB05 expression by schizonts and piroplasms. Bioinformatics analysis also revealed that this antigen possesses two transmembrane domains, a N-glycosylation site and several O-glycosylation sites. Conclusion It was concluded

  3. Complex Adaptive Immunity to Enteric Fevers in Humans: Lessons Learned and the Path Forward

    PubMed Central

    Sztein, Marcelo B.; Salerno-Goncalves, Rosangela; McArthur, Monica A.

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8+ cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host’s gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues. PMID:25386175

  4. Lost Trust: A Yellow Fever Patient Response

    PubMed Central

    Runge, John S.

    2013-01-01

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care. PMID:24348220

  5. IMMUNE RESPONSES IN VITRO

    PubMed Central

    Pierce, Carl W.; Solliday, Susan M.; Asofsky, Richard

    1972-01-01

    Suppression of Ig class-specific PFC responses by class-specific antibody to mouse immunoglobulin was studied in cultures of spleen cells from immunized mice. In contrast to cultures from normal mice where anti-µ suppressed responses in all Ig classes, anti-µ had progressively less suppressive effect on γ1 and γ2 responses in cultures from immunized mice with time after immunization. This was most pronounced at 10 days after immunization when anti-µ suppressed γM and γA responses, but had no or slight effect on γ1 or γ2 responses which were still suppressed with anti-γ1 and anti-γ2. These changes in precursor cell susceptibility to anti-µ were antigen specific. PMID:4536707

  6. Congenital yellow fever virus infection after immunization in pregnancy.

    PubMed

    Tsai, T F; Paul, R; Lynberg, M C; Letson, G W

    1993-12-01

    To determine whether yellow fever (YF) vaccine administered in pregnancy causes fetal infection, women who were vaccinated during unrecognized pregnancy in a mass campaign in Trinidad were studied retrospectively. Maternal and cord or infant blood were tested for IgM and neutralizing antibodies to YF and dengue viruses. One of 41 infants had IgM and elevated neutralizing antibodies to YF virus, indicating congenital infection. The infant, the first reported case of YF virus infection after immunization in pregnancy, was delivered after an uncomplicated full-term pregnancy and appeared normal. Congenital dengue 1 infection may have occurred in another case. The frequency of fetal infection and adverse events after such exposure could not be estimated; however, the neurotropism of YF virus for the developing nervous system and the now documented possibility of transplacental infection underscores the admonition that YF vaccination in pregnancy should be avoided.

  7. Sequential Immune Responses: The Weapons of Immunity

    PubMed Central

    Mills, Charles D.; Ley, Klaus; Buchmann, Kurt; Canton, Johnathan

    2016-01-01

    Sequential immune responses (SIR) is a new model that describes what ‘immunity’ means in higher animals. Existing models, such as self/nonself discrimination or danger, focus on how immune responses are initiated. However, initiation is not protection. SIR describes the actual immune responses that provide protection. SIR resulted from a comprehensive analysis of the evolution of immune systems that revealed that several very different types of host innate responses occur (and at different tempos) which together provide host protection. SIR1 uses rapidly activated enzymes like the NADPH oxidases and is present in all animal cells. SIR2 is mediated by the first ‘immune’ cells: macrophage-like cells. SIR3 evolved in animals like invertebrates and provides enhanced protection through advanced macrophage recognition and killing of pathogens and through other innate immune cells such as neutrophils. Finally, in vertebrates, macrophages developed SIR4: the ability to present antigens to T cells. Though much slower than SIR1–3, adaptive responses provide a unique new protection for higher vertebrates. Importantly, newer SIR responses were added on top of older, evolutionarily conserved functions to provide ‘layers’ of host protection. SIR transcends existing models by elucidating the different weapons of immunity that provide host protection in higher animals. PMID:25871013

  8. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus.

    PubMed

    Argilaguet, Jordi M; Pérez-Martín, Eva; López, Sergio; Goethe, Martin; Escribano, J M; Giesow, Katrin; Keil, Günther M; Rodríguez, Fernando

    2013-04-01

    Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development.

  9. Immune enhancement of yellow fever virus neurovirulence for mice: studies of mechanisms involved.

    PubMed

    Gould, E A; Buckley, A; Groeger, B K; Cane, P A; Doenhoff, M

    1987-12-01

    Enhancement of yellow fever virus neurovirulence for mice by specific antibody was studied with the French neurotropic vaccine strain. Experimental conditions for enhancement required mice between 14 and 40 days old and intraperitoneal administration of a selected monoclonal antibody 24 h before or up to 72 h after intracerebral virus challenge. Virus infectivity titrations were similar in brains of antibody-treated and untreated mice. Virus recovered from brains of mice with enhanced viral infections was neither qualitatively nor quantitatively different from standard virus. Humoral immune responses in enhanced infections were normal, macrophages did not become infected and viraemia was not significant. Both hydrocortisone treatment and complement depletion with cobra venom resulted in prolongation of mouse survival times but virulence enhancement persisted. Antithymocyte serum had no effect on enhancement although it reduced the humoral immune response. It is proposed that virulence enhancement is due to the combined effects of virus-specific antibody on infected cells, complement-mediated cytolysis and resultant host anti-cellular activity. There is no analogy between mechanisms effecting increased arbovirus growth in vitro in the presence of specific antibody and increased yellow fever virus neurovirulence in vivo after parenteral administration of antibody.

  10. Detection and Response for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  11. Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus.

    PubMed

    Arnold, Pieter A; White, Craig R; Johnson, Karyn N

    2015-12-01

    Behavioural fever is a widely conserved response to infection. The host increases body temperature (Tb) by altering their preferred temperature (Tp), generating a fever and delaying or avoiding pathogen-induced mortality. This response is not ubiquitous in insects, however, although few studies have investigated this response to viral infection. Here, we examined the change in Tp of Drosophila in response to virus infection using a thermal gradient. No difference in Tp was observed. We suggest that the lack of behavioural fever could be due to the increased energy cost of maintaining a higher Tb whilst the immune response is active. To the best of our knowledge, this is the first study to assay for changes in Tp of infected Drosophila.

  12. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus.

    PubMed

    Sun, Yuan; Li, Na; Li, Hong-Yu; Li, Miao; Qiu, Hua-Ji

    2010-09-15

    Classical swine fever (CSF) - caused by the classical swine fever virus (CSFV) - is a fatal disease of pigs that is responsible for extensive losses to the swine industry worldwide. We had demonstrated previously that a prime-boost vaccination strategy using an alphavirus (Semliki Forest virus, SFV) replicon-vectored DNA vaccine (pSFV1CS-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of CSFV induced enhanced immune responses in a mouse model. In this study, we evaluated further the efficacy of the heterologous prime-boost immunization approach in pigs, the natural host of CSFV. The results showed that the pigs (n=5) receiving pSFV1CS-E2/rAdV-E2 heterologous prime-boost immunization developed significantly higher titers of CSFV-specific neutralizing antibodies and comparable CD4(+) and CD8(+) T-cell proliferation, compared to the pigs receiving double immunizations with rAdV-E2 alone. When challenged with virulent CSFV Shimen strain, the pigs of the heterologous prime-boost group did not show clinical symptoms or viremia, which were observed in one of the 5 pigs immunized with rAdV-E2 alone and all the 5 control pigs immunized with an empty adenovirus. The results demonstrate that the heterologous DNA prime and recombinant adenovirus boost strategy can induce solid protective immunity.

  13. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015.

    PubMed

    Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc

    2015-06-19

    On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses.

  14. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015.

    PubMed

    Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc

    2015-06-19

    On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses. PMID:26086636

  15. Human immune responses in cryptosporidiosis

    PubMed Central

    Borad, Anoli; Ward, Honorine

    2010-01-01

    Immune responses play a critical role in protection from, and resolution of, cryptosporidiosis. However, the nature of these responses, particularly in humans, is not completely understood. Both innate and adaptive immune responses are important. Innate immune responses may be mediated by Toll-like receptor pathways, antimicrobial peptides, prostaglandins, mannose-binding lectin, cytokines and chemokines. Cell-mediated responses, particularly those involving CD4+ T cells and IFN-γ play a dominant role. Mucosal antibody responses may also be involved. Proteins mediating attachment and invasion may serve as putative protective antigens. Further knowledge of human immune responses in cryptosporidiosis is essential in order to develop targeted prophylactic and therapeutic interventions. This review focuses on recent advances and future prospects in the understanding of human immune responses to Cryptosporidium infection. PMID:20210556

  16. [Modulation of immune response by bacterial lipopolysaccharides].

    PubMed

    Aldapa-Vega, Gustavo; Pastelín-Palacios, Rodolfo; Isibasi, Armando; Moreno-Eutimio, Mario A; López-Macías, Constantino

    2016-01-01

    Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants. PMID:27560917

  17. [Modulation of immune response by bacterial lipopolysaccharides].

    PubMed

    Aldapa-Vega, Gustavo; Pastelín-Palacios, Rodolfo; Isibasi, Armando; Moreno-Eutimio, Mario A; López-Macías, Constantino

    2016-01-01

    Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  18. Expression Library Immunization Can Confer Protection against Lethal Challenge with African Swine Fever Virus

    PubMed Central

    Lacasta, Anna; Ballester, María; Monteagudo, Paula L.; Rodríguez, Javier M.; Salas, María L.; Accensi, Francesc; Pina-Pedrero, Sonia; Bensaid, Albert; Argilaguet, Jordi; López-Soria, Sergio; Hutet, Evelyne; Le Potier, Marie Frédérique

    2014-01-01

    ABSTRACT African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8+ T cells in blood. Aiming to demonstrate the presence of additional CD8+ T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 104 hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion

  19. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  20. Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever.

    PubMed

    Raynes, Jeremy M; Frost, Hannah R C; Williamson, Deborah A; Young, Paul G; Baker, Edward N; Steemson, John D; Loh, Jacelyn M; Proft, Thomas; Dunbar, P R; Atatoa Carr, Polly E; Bell, Anita; Moreland, Nicole J

    2016-01-01

    Acute rheumatic fever (ARF) is an autoimmune response to Group A Streptococcus (GAS) infection. Repeated GAS exposures are proposed to 'prime' the immune system for autoimmunity. This notion of immune-priming by multiple GAS infections was first postulated in the 1960s, but direct experimental evidence to support the hypothesis has been lacking. Here, we present novel methodology, based on antibody responses to GAS T-antigens, that enables previous GAS exposures to be mapped in patient sera. T-antigens are surface expressed, type specific antigens and GAS strains fall into 18 major clades or T-types. A panel of recombinant T-antigens was generated and immunoassays were performed in parallel with serum depletion experiments allowing type-specific T-antigen antibodies to be distinguished from cross-reactive antibodies. At least two distinct GAS exposures were detected in each of the ARF sera tested. Furthermore, no two sera had the same T-antigen reactivity profile suggesting that each patient was exposed to a unique series of GAS T-types prior to developing ARF. The methods have provided much-needed experimental evidence to substantiate the immune-priming hypothesis, and will facilitate further serological profiling studies that explore the multifaceted interactions between GAS and the host. PMID:27499748

  1. Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever

    PubMed Central

    Raynes, Jeremy M.; Frost, Hannah R. C.; Williamson, Deborah A.; Young, Paul G.; Baker, Edward N.; Steemson, John D.; Loh, Jacelyn M.; Proft, Thomas; Dunbar, P. R.; Atatoa Carr, Polly E.; Bell, Anita; Moreland, Nicole J.

    2016-01-01

    Acute rheumatic fever (ARF) is an autoimmune response to Group A Streptococcus (GAS) infection. Repeated GAS exposures are proposed to ‘prime’ the immune system for autoimmunity. This notion of immune-priming by multiple GAS infections was first postulated in the 1960s, but direct experimental evidence to support the hypothesis has been lacking. Here, we present novel methodology, based on antibody responses to GAS T-antigens, that enables previous GAS exposures to be mapped in patient sera. T-antigens are surface expressed, type specific antigens and GAS strains fall into 18 major clades or T-types. A panel of recombinant T-antigens was generated and immunoassays were performed in parallel with serum depletion experiments allowing type-specific T-antigen antibodies to be distinguished from cross-reactive antibodies. At least two distinct GAS exposures were detected in each of the ARF sera tested. Furthermore, no two sera had the same T-antigen reactivity profile suggesting that each patient was exposed to a unique series of GAS T-types prior to developing ARF. The methods have provided much-needed experimental evidence to substantiate the immune-priming hypothesis, and will facilitate further serological profiling studies that explore the multifaceted interactions between GAS and the host. PMID:27499748

  2. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  3. Fever

    MedlinePlus

    A fever is a body temperature that is higher than normal. It is not an illness. It is part of your body's defense against infection. Most bacteria ... cause infections do well at the body's normal temperature (98.6 F). A slight fever can make ...

  4. Leptin Regulation of Immune Responses.

    PubMed

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  5. Regulation of the immune response

    PubMed Central

    Chan, P. L.; Sinclair, N. R. StC.

    1973-01-01

    Intact IgG antibody can terminate established immune responses, whereas F(ab′)2 antibody cannot do so. The difference between the two antibodies appears to be qualitative. F(ab′)2 antibody, but not pepsin-digested normal serum, can interfere with the suppression and termination of immune responses induced by intact IgG antibody. These results are discussed in terms of the tripartite inactivation model. PMID:4576780

  6. Fever

    MedlinePlus

    ... of charts. A fever is defined as a temperature 1° or more above the normal 98.6°. Minor infections may cause mild or short-term temperature elevations. Temperatures of 103° and above are considered ...

  7. Immune responses to improving welfare.

    PubMed

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  8. Efficacy and Duration of Immunity after Yellow Fever Vaccination: Systematic Review on the Need for a Booster Every 10 Years

    PubMed Central

    Gotuzzo, Eduardo; Yactayo, Sergio; Córdova, Erika

    2013-01-01

    Current regulations stipulate a yellow fever (YF) booster every 10 years. We conducted a systematic review of the protective efficacy and duration of immunity of YF vaccine in residents of disease-endemic areas and in travelers to assess the need for a booster in these two settings and in selected populations (human immunodeficiency virus–infected persons, infants, children, pregnant women, and severely malnourished persons). Thirty-six studies and 22 reports were included. We identified 12 studies of immunogenicity, 8 of duration of immunity, 8 of vaccine response in infants and children, 7 of human-immunodeficiency virus–infected persons, 2 of pregnant women, and 1 of severely malnourished children. Based on currently available data, a single dose of YF vaccine is highly immunogenic and confers sustained life-long protective immunity against YF. Therefore, a booster dose of YF vaccine is not needed. Special considerations for selected populations are detailed. PMID:24006295

  9. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics. PMID:24742338

  10. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  11. Dynamic Metabolism in Immune Response

    PubMed Central

    Al-Hommrani, Mazen; Chakraborty, Paramita; Chatterjee, Shilpak; Mehrotra, Shikhar

    2016-01-01

    Cell, the basic unit of life depends for its survival on nutrients and thereby energy to perform its physiological function. Cells of lymphoid and myeloid origin are key in evoking an immune response against “self” or “non-self” antigens. The thymus derived lymphoid cells called T cells are a heterogenous group with distinct phenotypic and molecular signatures that have been shown to respond against an infection (bacterial, viral, protozoan) or cancer. Recent studies have unearthed the key differences in energy metabolism between the various T cell subsets, natural killer cells, dendritic cells, macrophages and myeloid derived suppressor cells. While a number of groups are dwelling into the nuances of the metabolism and its role in immune response at various strata, this review focuses on dynamic state of metabolism that is operational within various cellular compartments that interact to mount an effective immune response to alleviate disease state.

  12. Immune response to fungal infections.

    PubMed

    Blanco, Jose L; Garcia, Marta E

    2008-09-15

    The immune mechanisms of defence against fungal infections are numerous, and range from protective mechanisms that were present early in evolution (innate immunity) to sophisticated adaptive mechanisms that are induced specifically during infection and disease (adaptive immunity). The first-line innate mechanism is the presence of physical barriers in the form of skin and mucous membranes, which is complemented by cell membranes, cellular receptors and humoral factors. There has been a debate about the relative contribution of humoral and cellular immunity to host defence against fungal infections. For a long time it was considered that cell-mediated immunity (CMI) was important, but humoral immunity had little or no role. However, it is accepted now that CMI is the main mechanism of defence, but that certain types of antibody response are protective. In general, Th1-type CMI is required for clearance of a fungal infection, while Th2 immunity usually results in susceptibility to infection. Aspergillosis, which is a disease caused by the fungus Aspergillus, has been the subject of many studies, including details of the immune response. Attempts to relate aspergillosis to some form of immunosuppression in animals, as is the case with humans, have not been successful to date. The defence against Aspergillus is based on recognition of the pathogen, a rapidly deployed and highly effective innate effector phase, and a delayed but robust adaptive effector phase. Candida albicans, part of the normal microbial flora associated with mucous surfaces, can be present as congenital candidiasis or as acquired defects of cell-mediated immunity. Resistance to this yeast is associated with Th1 CMI, whereas Th2 immunity is associated with susceptibility to systemic infection. Dermatophytes produce skin alterations in humans and other animals, and the essential role of the CMI response is to destroy the fungi and produce an immunoprotective status against re-infection. The resolution

  13. Dengue Fever: A Rare Cause Of Immune Thrombocytopenia.

    PubMed

    Ramírez-Fonseca, Tania; Segarra-Torres, Amaury; Jaume-Anselmi, Francisco; Ramírez-Rivera, José

    2015-01-01

    Immune thrombocytopenia (ITP) is a rare autoimmune disorder characterized by low platelet count and skin-mucosal bleeding. In adults it is usually idiopathic and may have a chronic onset, while in children it is usually acute following a viral illness. Dengue has been rarely reported as a cause of ITP. We report a case of a young adult woman that presented with acute ITP following a dengue virus infection.

  14. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  15. Regulation of the immune response

    PubMed Central

    Chan, P. L.; Sinclair, N. R. StC.

    1971-01-01

    Pepsin digested, F(ab')2 antibody has less ability to inhibit an antibody response than has intact IgG antibody, when the antibodies were given one day after antigen. F(ab')2 antibody has to be given with antigen to attain maximal suppression, while IgG antibody, administered after antigen, is still highly immunosuppressive. The IgG antibody was able to terminate established immune responses, whereas F(ab')2 antibody could not do so. We interpret these findings to indicate that F(ab')2 antibody suppresses immune responses by simple masking of antigen, whereas IgG antibody alters the immune response through a further activity which takes place after antibody has combined with antigen. This further activity involves the Fc portion of antibody. Two alterations in immune mechanism are suggested: (1) increased destruction of antigen and (2) inactivation of the antibody forming cell precursor population by antigen—antibody complexes. This latter possibility is considered in detail. The tripartite inactivation model has been constructed to explain the presently known observations concerning immunosuppression by antibody and to make a prediction which has been verified. A further prediction concerning the affinities of antibodies produced under IgG or F(ab')2 antibody-mediated immunosuppression is put forward. Thymus-bone marrow cell synergism does not give a simple thymus cell dose-response relationship but a multi-phasic relationship where the response increases once the dose of thymus cells is decreased to a sufficiently low level. Such a dose-response relationship is not explainable in terms of the usual mechanisms proposed for thymus-bone marrow cell interaction and this deviation from a simple dose-response relationship is interpreted in terms of the proposed function of thymus-derived cells in controlling antibody feedback regulation. PMID:4943149

  16. Immune responses to improving welfare

    PubMed Central

    Berghman, L. R.

    2016-01-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that “increased vigilance of the immune system is by definition better” because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as “sickness behavior,” includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  17. Immune Responses in Hookworm Infections

    PubMed Central

    Loukas, Alex; Prociv, Paul

    2001-01-01

    Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinoophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections. PMID:11585781

  18. Innate Immunity Correlates with Host Fitness in Wild Boar (Sus scrofa) Exposed to Classical Swine Fever

    PubMed Central

    Rossi, Sophie; Doucelin, Anaïs; Le Potier, Marie-Frédérique; Eraud, Cyril; Gilot-Fromont, Emmanuelle

    2013-01-01

    Constitutive humoral immunity (CHI) is thought to be a first-line of protection against pathogens invading vertebrate hosts. However, clear evidence that CHI correlates with host fitness in natural conditions is still lacking. This study explores the relationship between CHI, measured using a haemagglutination-haemolysis assay (HAHL), and resistance to classical swine fever virus (CSFV) among wild boar piglets. The individual dynamics of HAHL during piglet growth was analysed, using 423 serum samples from 92 piglets repeatedly captured in the absence of CSFV (in 2006) within two areas showing contrasting food availability. Natural antibody levels increased with age, but, in the youngest piglets antibody levels were higher in individuals from areas with the highest food availability. Complement activity depended on natural antibody levels and piglets' body condition. In the presence of CSFV (i.e., in 2005 within one area), serum samples from piglets that were repeatedly captured were used to assess whether piglet HAHL levels affected CSFV status at a later capture. The correlation between CHI and resistance to CSFV was tested using 79 HAHL measures from 23 piglets captured during a CSFV outbreak. Both natural antibodies and complement activity levels measured at a given time correlated negatively to the subsequent probability of becoming viremic. Finally, capture-mark-recapture models showed that piglets with medium/high average complement activity, independently of their age, were significantly less at risk of becoming viremic and more likely to develop a specific immune response than piglets with low complement activity. Additionally, piglets with high average complement activity showed the highest survival prospects. This study provides evidence linking CHI to individual fitness within a natural mammal population. The results also highlight the potential of HAHL assays to explore the dynamics and co-evolution between wildlife mammal hosts and blood

  19. Fever

    MedlinePlus

    ... much fruit juice or apple juice and avoid sports drinks in younger children. Although eating is fine, ... trouble with the immune system (because of chronic steroid therapy, a bone marrow or organ transplant, spleen ...

  20. Surviving Sepsis: Taming a Deadly Immune Response

    MedlinePlus

    ... disclaimer . Subscribe Surviving Sepsis Taming a Deadly Immune Response Many people have never heard of sepsis, or ... tract infection) and then a powerful and harmful response by your body’s own immune system . “With sepsis, ...

  1. Immune responses to resistance exercise.

    PubMed

    Freidenreich, Daniel J; Volek, Jeff S

    2012-01-01

    Resistance exercise induces changes in leukocyte redistribution, phenotypical surface expression and leukocyte functionality. Several factors have been shown to alter the temporal pattern and/or magnitude of response including manipulation of acute program variables, the aging process, and nutritional supplementation. Rest period length and load can modify the temporal pattern and/or magnitude of leukocytosis post exercise. Aging diminishes both the duration and magnitude of the post exercise leukocytosis and reduces leukocyte functionality. The few studies that assessed the effects of nutritional supplements (e.g., carbohydrate, whey protein, caffeine) peri-resistance exercise showed minimal effects on leukocyte responses. Sex differences exist in the timing and magnitude of leukocyte infiltration into skeletal muscle. The immune response to resistance exercise is only a small part of the recovery paradigm. A better understanding of how acute program variables and other factors such as aging, sex and nutritional supplementation affect the immune response to resistance exercise is important in the context of improving recovery, performance and health.

  2. Antibody response to 17D yellow fever vaccine in Ghanaian infants.

    PubMed Central

    Osei-Kwasi, M.; Dunyo, S. K.; Koram, K. A.; Afari, E. A.; Odoom, J. K.; Nkrumah, F. K.

    2001-01-01

    OBJECTIVES: To assess the seroresponses to yellow fever vaccination at 6 and 9 months of age; assess any possible adverse effects of immunization with the 17D yellow fever vaccine in infants, particularly at 6 months of age. METHODS: Four hundred and twenty infants who had completed BCG, OPV and DPT immunizations were randomized to receive yellow fever immunization at either 6 or 9 months. A single dose of 0.5 ml of the reconstituted vaccine was administered to each infant by subcutaneous injection. To determine the yellow fever antibody levels of the infants, each donated 1 ml whole blood prior to immunization and 3 months post-immunization. Each serum sample was titred on Vero cells against the vaccine virus. FINDINGS: The most common adverse reactions reported were fever, cough, diarrhoea and mild reactions at the inoculation site. The incidences of adverse reactions were not statistically different in both groups. None of the pre-immunization sera in both age groups had detectable yellow fever antibodies. Infants immunized at 6 months recorded seroconversion of 98.6% and those immunized at 9 months recorded 98% seroconversion. The GMT of their antibodies were 158.5 and 129.8, respectively. CONCLUSIONS: The results indicate that seroresponses to yellow fever immunization at 6 and 9 months as determined by seroconversion and GMTs of antibodies are similar. The findings of good seroresponses at 6 months without significant adverse effects would suggest that the 17D yellow fever vaccine could be recommended for use in children at 6 months in outbreak situations or in high risk endemic areas. PMID:11731813

  3. EVOLUTION OF THE IMMUNE RESPONSE

    PubMed Central

    Papermaster, Ben W.; Condie, Richard M.; Finstad, Joanne; Good, Robert A.

    1964-01-01

    1. The California hagfish, Eptatretus stoutii, seems to be completely lacking in adaptive immunity: it forms no detectable circulating antibody despite intensive stimulation with a range of antigens; it does not show reactivity to old tuberculin following sensitization with BCG; and gives no evidence of homograft immunity. 2. Studies on the sea lamprey, Petromyzon marinus, have been limited to the response to bacteriophage T2 and hemocyanin in small groups of spawning animals. They suggest that the lamprey may have a low degree of immunologic reactivity. 3. One holostean, the bowfin (Amia calva) and the guitarfish (Rhinobatos productus), an elasmobranch, showed a low level of primary response to phage and hemocyanin. The response is slow and antibody levels low. Both the bowfin and the guitarfish showed a vigorous secondary response to phage, but neither showed much enhancement of reactivity to hemocyanin in the secondary response. The bowfin formed precipitating antibody to hemocyanin, but the guitarfish did not. Both hemagglutinating and precipitating antibody to hemocyanin were also observed in the primary response of the black bass. 4. The bowfin was successfully sensitized to Ascaris antigen, and lesions of the delayed type developed after challenge at varying intervals following sensitization. 5. The horned shark (Heterodontus franciscii) regularly cleared hemocyanin from the circulation after both primary and secondary antigenic stimulation, and regularly formed hemagglutinating antibody, but not precipitating antibody, after both primary and secondary stimulation with this antigen. These animals regularly cleared bacteriophage from the circulation after both the primary and secondary stimulation with bacteriophage T2. Significant but small amounts of antibody were produced in a few animals in the primary response, and larger amounts in the responding animals after secondary antigenic stimulation. 6. Studies by starch gel and immunoelectrophoresis show that

  4. Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever.

    PubMed

    Martins, Flaviano S; Elian, Samir D A; Vieira, Angélica T; Tiago, Fabiana C P; Martins, Ariane K S; Silva, Flávia C P; Souza, Ericka L S; Sousa, Lirlândia P; Araújo, Helena R C; Pimenta, Paulo F; Bonjardim, Cláudio A; Arantes, Rosa M E; Teixeira, Mauro M; Nicoli, Jacques R

    2011-04-01

    Salmonella spp. are Gram-negative, facultative, intracellular pathogens that cause several diarrheal diseases ranging from self-limiting gastroenteritis to typhoid fever. Previous results from our laboratory showed that Saccharomyces cerevisiae strain UFMG 905 isolated from 'cachaça' production presented probiotic properties due to its ability to protect against experimental infection with Salmonella enterica serovar Typhimurium. In this study, the effects of oral treatment with S. cerevisiae 905 were evaluated at the immunological level in a murine model of typhoid fever. Treatment with S. cerevisiae 905 inhibited weight loss and increased survival rate after Salmonella challenge. Immunological data demonstrated that S. cerevisiae 905 decreased levels of proinflammatory cytokines and modulated the activation of mitogen-activated protein kinases (p38 and JNK, but not ERK1/2), NF-κB and AP-1, signaling pathways which are involved in the transcriptional activation of proinflammatory mediators. Experiments in germ-free mice revealed that probiotic effects were due, at least in part, to the binding of Salmonella to the yeast. In conclusion, S. cerevisiae 905 acts as a potential new biotherapy against S. Typhimurium infection due to its ability to bind bacteria and modulate signaling pathways involved in the activation of inflammation in a murine model of typhoid fever.

  5. Tilapia show immunization response against Ich

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  6. Cell-mediated immunity and lymphocyte populations in experimental Argentine hemorrhagic fever (Junín Virus).

    PubMed Central

    Carballal, G; Oubiña, J R; Rondinone, S N; Elsner, B; Frigerio, M J

    1981-01-01

    Guinea pigs infected with the XJ prototype strain of Junín virus reproduce the main features of Argentine hemorrhagic fever, showing hemorrhages, leukothrombocytopenia, and focal lymphoid tissue necrosis. Viral lymphotropism is shown by the presence of viral antigens, severe cytopathic effect, and high virus titers in lymphoid organs. A pronounced depression of humoral immune response to sheep erythrocytes as well as to the virus is described. This study was carried out to determine whether cellular immune response was also modified and which cell populations were affected. Delayed hypersensitivity skin reaction to purified protein derivative was found to be markedly depressed after infection. A noticeable decrease in both percentages and absolute T lymphocyte numbers, detected by E rosettes, in spleen and lymph nodes, together with a low absolute T cell number in peripheral blood, were observed. Total cell counts in spleen, lymph nodes, and peripheral blood were also reduced. On the contrary, no modification in percentages of B lymphocytes, as measured by EAC rosettes, was found. These results indicate that cell-mediated immunity is markedly impaired in guinea pigs infected with the XJ strain of Junín virus. Its relationship with the pathogenesis of the disease is discussed. PMID:6273314

  7. Adverse events following yellow fever immunization: Report and analysis of 67 neurological cases in Brazil.

    PubMed

    Martins, Reinaldo de Menezes; Pavão, Ana Luiza Braz; de Oliveira, Patrícia Mouta Nunes; dos Santos, Paulo Roberto Gomes; Carvalho, Sandra Maria D; Mohrdieck, Renate; Fernandes, Alexandre Ribeiro; Sato, Helena Keico; de Figueiredo, Patricia Mandali; von Doellinger, Vanessa Dos Reis; Leal, Maria da Luz Fernandes; Homma, Akira; Maia, Maria de Lourdes S

    2014-11-20

    Neurological adverse events following administration of the 17DD substrain of yellow fever vaccine (YEL-AND) in the Brazilian population are described and analyzed. Based on information obtained from the National Immunization Program through passive surveillance or intensified passive surveillance, from 2007 to 2012, descriptive analysis, national and regional rates of YFV associated neurotropic, neurological autoimmune disease, and reporting rate ratios with their respective 95% confidence intervals were calculated for first time vaccinees stratified on age and year. Sixty-seven neurological cases were found, with the highest rate of neurological adverse events in the age group from 5 to 9 years (2.66 per 100,000 vaccine doses in Rio Grande do Sul state, and 0.83 per 100,000 doses in national analysis). Two cases had a combination of neurotropic and autoimmune features. This is the largest sample of YEL-AND already analyzed. Rates are similar to other recent studies, but on this study the age group from 5 to 9 years of age had the highest risk. As neurological adverse events have in general a good prognosis, they should not contraindicate the use of yellow fever vaccine in face of risk of infection by yellow fever virus.

  8. The Xs and Y of immune responses to viral vaccines.

    PubMed

    Klein, Sabra L; Jedlicka, Anne; Pekosz, Andrew

    2010-05-01

    The biological differences associated with the sex of an individual are a major source of variation, affecting immune responses to vaccination. Compelling clinical data illustrate that men and women differ in their innate, humoral, and cell-mediated responses to viral vaccines. Sex affects the frequency and severity of adverse effects of vaccination, including fever, pain, and inflammation. Pregnancy can also substantially alter immune responses to vaccines. Data from clinical trials and animal models of vaccine efficacy lay the groundwork for future studies aimed at identifying the biological mechanisms that underlie sex-specific responses to vaccines, including genetic and hormonal factors. An understanding and appreciation of the effect of sex and pregnancy on immune responses might change the strategies used by public health officials to start efficient vaccination programmes (optimising the timing and dose of the vaccine so that the maximum number of people are immunised), ensure sufficient levels of immune responses, minimise adverse effects, and allow for more efficient protection of populations that are high priority (eg, pregnant women and individuals with comorbid conditions).

  9. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    PubMed

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  10. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.

  11. Immune response during space flight.

    PubMed

    Criswell-Hudak, B S

    1991-01-01

    The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks. PMID:1915698

  12. Regulation of the immune response

    PubMed Central

    Sinclair, N. R. St C.; Lees, R. K.; Chan, P. L.; Khan, R. H.

    1970-01-01

    The ability of F(ab′)2 antibody preparations to suppress an immune response is much less than that of intact 7S antibody. The activity possessed by F(ab′)2 preparations withstood repurification procedures, hence contamination with intact 7S antibody is unlikely. Daily or thrice daily injections of antibody did not make equal the suppressive activities of F(ab′)2 and intact antibody, indicating that rapid excretion of F(ab′)2 antibody is not the sole factor involved in the difference in immunosuppressive potency between intact 7S and F(ab′)2 antibody. Some possibilities for distinct differences in the mechanism of the immuno-suppressive action of F(ab′)2 and 7S antibodies are raised and discussed. PMID:4922025

  13. Spaceflight and immune responses of Rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.

  14. Laparoscopic surgery and the systemic immune response.

    PubMed Central

    Vittimberga, F J; Foley, D P; Meyers, W C; Callery, M P

    1998-01-01

    OBJECTIVE: The authors review studies relating to the immune responses evoked by laparoscopic surgery. SUMMARY BACKGROUND DATA: Laparoscopic surgery has gained rapid acceptance based on clinical grounds. Patients benefit from faster recovery, decreased pain, and quicker return to normal activities. Only more recently have attempts been made to identify the metabolic and immune responses that may underlie this clinical success. The immune responses to laparoscopy are now being evaluated in relation to the present knowledge of immune responses to traditional laparotomy and surgery in general. METHODS: A review of the published literature of the immune and metabolic responses to laparoscopy was performed. Laparoscopic surgery is compared with the traditional laparotomy on the basis of local and systemic immune responses and patterns of tumor growth. The impact of pneumoperitoneum and insufflation gases on the immune response is also reviewed. CONCLUSIONS: The systemic immune responses for surgery in general may not apply to laparoscopic surgery. The body's response to laparoscopy is one of lesser immune activation as opposed to immunosuppression. PMID:9527054

  15. Noninvasive imaging of immune responses

    PubMed Central

    Rashidian, Mohammad; Keliher, Edmund J.; Bilate, Angelina M.; Duarte, Joao N.; Wojtkiewicz, Gregory R.; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D.; Weissleder, Ralph; Ploegh, Hidde L.

    2015-01-01

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with 18F or 64Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund’s adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked. PMID:25902531

  16. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?

    PubMed Central

    Martins, M Â; Silva, M L; Marciano, A P V; Peruhype-Magalhães, V; Eloi-Santos, S M; Ribeiro, J G L; Correa-Oliveira, R; Homma, A; Kroon, E G; Teixeira-Carvalho, A; Martins-Filho, O A

    2007-01-01

    Over past decades the 17DD yellow fever vaccine has proved to be effective in controlling yellow fever and promises to be a vaccine vector for other diseases, but the cellular and molecular mechanisms by which it elicits such broad-based immunity are still unclear. In this study we describe a detailed phenotypic investigation of major and minor peripheral blood lymphocyte subpopulations aimed at characterizing the kinetics of the adaptive immune response following primary 17DD vaccination. Our major finding is a decreased frequency of circulating CD19+ cells at day 7 followed by emerging activation/modulation phenotypic features (CD19+interleukin(IL)10R+/CD19+CD32+) at day 15. Increased frequency of CD4+human leucocyte antigen D-related(HLA-DR+) at day 7 and CD8+HLA-DR+ at day 30 suggest distinct kinetics of T cell activation, with CD4+ T cells being activated early and CD8+ T cells representing a later event following 17DD vaccination. Up-regulation of modulatory features on CD4+ and CD8+ cells at day 15 seems to be the key event leading to lower frequency of CD38+ T cells at day 30. Taken together, our findings demonstrate the co-existence of phenotypic features associated with activation events and modulatory pathways. Positive correlations between CD4+HLA-DR+ cells and CD4+CD25high regulatory T cells and the association between the type 0 chemokine receptor CCR2 and the activation status of CD4+ and CD8+ cells further support this hypothesis. We hypothesize that this controlled microenviroment seems to be the key to prevent the development of serious adverse events, and even deaths, associated with the 17DD vaccine reported in the literature. PMID:17309541

  17. Re-assessment of tick control after immunization against East Coast fever in the Eastern Province of Zambia.

    PubMed

    Berkvens, D L

    1991-01-01

    East Coast Fever, caused by the protozoon Theileria parva and transmitted by the ixodid tick Rhipicephalus appendiculatus is one of the most important cattle diseases in east and central Africa, responsible for considerable direct losses and necessitating expensive control measures. Traditionally, the disease was controlled by means of intensive tick control. The Belgian Animal Disease Control Project was requested to study the disease epizootiology and vector ecology in order to formulate and implement a control program adapted to the requirements and capabilities of the cattle owners in the Eastern Province of Zambia. The weaknesses of a rigorous tick control program were demonstrated. It was decided to initiate an immunization program in the enzootic areas. The overall calf mortality rate was lowered by 90% and it was shown that none of the other tick-borne diseases caused significant problems in the absence of tick control. The tick ecology studies had indicated that the climatic conditions in the area were so unfavourable that the important vector species (Amblyomma variegatum, Boophilus microplus and R. appendiculatus) would not attain problem levels. It was therefore recommended to suspend all tick control in the area. Control of East Coast Fever in the epizootic and disease-free areas is still a more complex issue. It appears unlikely that the latter will remain disease-free, because of the proximity of the enzootic areas and because of considerable cattle movement in the province. Given the advantages of control by immunization, it can be argued that a longterm solution should be based on this approach.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Hypothalamic neurohormones and immune responses

    PubMed Central

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  19. REGULATION OF THE IMMUNE RESPONSE

    PubMed Central

    Sinclair, Nicholas R. StC.

    1969-01-01

    The ability of 7S and F(ab')2 antibody fragments to suppress priming with low doses of antigen was compared. The 7S preparation was approximately 100–1000 times more potent than the F(ab')2 preparation when the agglutinin titers of the two preparations were the same. The presence of any ability to suppress priming in the F(ab')2 preparation may reflect an inherent capacity of the F(ab')2 antibody or contamination with small amounts of 7S antibody. The difference between 7S and F(ab')2 antibody in ability to suppress priming is attributed to the lack of the Fc portion on the F(ab')2 antibody. The Fc portion may be needed to prevent rapid excretion of antibody from the body, to induce rapid phagocytosis of antigen-antibody complexes with consequent breakdown and elimination of antigen, or to inactivate or suppress the antigen-sensitive cells from reacting to antigenic determinants. More detailed studies will permit a better assessment of the importance of these three possible regulatory roles of the Fc portion of the immunoglobulin in the immune response. PMID:5305714

  20. Probiotics and lung immune responses.

    PubMed

    Forsythe, Paul

    2014-01-01

    There is increasing interest in the potential for microbe-based therapeutic approaches to asthma and respiratory infection. However, to date, clinical trials of probiotics in the treatment of respiratory disease have met with limited success. It is becoming clear that to identify the true therapeutic potential of microbes we must move away from a purely empirical approach to clinical trials and adopt knowledge-based selection of candidate probiotics strains, dose, and means of administration. Animal models have played a key role in the identification of mechanisms underlying the immunomodulatory capacity of specific bacteria. Microbe-induced changes in dendritic cell phenotype and function appear key to orchestrating the multiple pathways, involving inter alia, T cells, natural killer cells, and alveolar macrophages, associated with the protective effect of probiotics. Moving forward, the development of knowledge-based strategies for microbe-based therapeutics in respiratory disease will be aided by greater understanding of how specific bacterial structural motifs activate unique combinations of pattern recognition receptors on dendritic cells and thus direct desired immune responses.

  1. Reactive astrogliosis in response to hemorrhagic fever virus: microarray profile of Junin virus-infected human astrocytes

    PubMed Central

    2014-01-01

    Background Arenavirus Junin is the causative agent of Argentine hemorrhagic fever. Limited information is available concerning the pathogenesis of this human disease, especially the pathogenesis of acute and late neurological symptoms. Methods In our study we present for the first time cDNA microarray profile of human astrocytes infected with the virulent strain of Junin virus. Transcriptional profiling was confirmed by quantitative real-time RT-PCR and cytokine/chemokine/growth factor assay. Results We demonstrated the impact of virus infection on immune/inflammatory response/interferon signaling and apoptosis. Pro-apoptotic response and amplification with time of pro-inflammatory cascade of human astrocytes suggested neurodegenerative dysfunctional reactive astrogliosis in response to Junin virus infection. Conclusion Our results suggest potential pathogenic role of astroglial cells in the development of neurological symptoms and late neurological syndrome during Argentine hemorrhagic fever. PMID:25015256

  2. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity

    PubMed Central

    Griffin, Diane E.

    2016-01-01

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10–14 days. The first appearance of the disease is a 2–3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4+ and CD8+ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity. PMID:27754341

  3. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination.

    PubMed

    Akondy, Rama S; Johnson, Philip L F; Nakaya, Helder I; Edupuganti, Srilatha; Mulligan, Mark J; Lawson, Benton; Miller, Joseph D; Pulendran, Bali; Antia, Rustom; Ahmed, Rafi

    2015-03-10

    CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R(2) ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell-based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell-based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.

  4. The immune response and antibacterial therapy.

    PubMed

    Anuforom, Olachi; Wallace, Graham R; Piddock, Laura V

    2015-04-01

    The host's immune defence mechanisms are indispensable factors in surviving bacterial infections. However, in many circumstances, the immune system alone is inadequate. Since the 1940s, the use of antibacterial therapy has saved millions of lives, improving the span and quality of life of individuals. Unfortunately, we are now facing an era where antibacterial agents are threatened by resistance. In addition to targeting bacteria, some antibacterial agents affect various aspects of the immune response to infection. Since many antibacterial drugs are failing in efficacy due to resistance, it has been strongly suggested that any synergy between these drugs and the immune response be exploited in the treatment of bacterial infections. This review explores the influence of antibacterial therapy on the immune response and new approaches that could exploit this interaction for the treatment of bacterial infections.

  5. Infectivity titration of hemorrhagic fever with renal syndrome virus: use of immune adherence hemagglutination for detection of virus growth.

    PubMed

    Matsuura, Y; Sugiyama, K; Morita, C; Morikawa, S; Shiga, S; Komatsu, T; Akao, Y; Kitamura, T

    1984-09-01

    Serial dilutions of hemorrhagic fever with renal syndrome viruses were inoculated into Vero-E6 cells in microplates. After 2 weeks of incubation, infected cells were disrupted by freezing and thawing, and virus antigens were detected by immune adherence hemagglutination. The infectivity titers of the virus as determined by this method were in close agreement with those obtained by the immunofluorescent antigen endpoint method. Then, a neutralization method was established. Japanese hemorrhagic fever with renal syndrome isolates, strains SR-11 and TR-352, were found to be distinct from Hantaan virus, strain 76-118, by the neutralization test.

  6. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection.

    PubMed

    Lacasta, Anna; Monteagudo, Paula L; Jiménez-Marín, Ángeles; Accensi, Francesc; Ballester, María; Argilaguet, Jordi; Galindo-Cardiel, Iván; Segalés, Joaquim; Salas, María L; Domínguez, Javier; Moreno, Ángela; Garrido, Juan J; Rodríguez, Fernando

    2015-11-20

    African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8(+) T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.

  7. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile. PMID:26626017

  8. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  9. Gene expression profiling of anticancer immune responses.

    PubMed

    Wang, Ena; Panelli, Monica C; Monsurró, Vladia; Marincola, Francesco M

    2004-06-01

    Anticancer immune responses can be enhanced by immune manipulation, however, the biological mechanism responsible for these immune responses remains largely unexplained. Conventional immunology researchers have extensively studied specific interactions between immune and cancer cells, and additional investigations have identified co-factors that may enhance the effectiveness of such interactions. As the molecular understanding of individual interactions increases, it is becoming apparent that no single mechanism can explain the phenomenon of tumor rejection. The contribution of several components of the innate and adaptive immune response is likely to be required for successful tumor rejection. These components may be variably recruited and activated by molecules with immune modulatory properties being produced by tumor and bystander cells within the tumor micro-environment. Such complexity can only be appreciated and solved by high-throughput tools capable of providing a global view of biological processes as they occur. This review will present selected examples of how high-throughput gene expression profiling may contribute to the understanding of anticancer immune responses. As reviews on technological aspects of the genomic analysis of cancer are already available, this review will provide a speculative discussion about their potential usefulness.

  10. Plant Immune Responses: Aphids Strike Back.

    PubMed

    Reymond, Philippe; Calandra, Thierry

    2015-07-20

    To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses.

  11. A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs.

    PubMed

    Oreshkova, Nadia; van Keulen, Lucien; Kant, Jet; Moormann, Rob J M; Kortekaas, Jeroen

    2013-01-01

    Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 10(6.3) TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine.

  12. The immune response to resistance exercise.

    PubMed

    Simonson, S R

    2001-08-01

    The immune response to exercise has received increased attention in the last decade. Most of this attention has focused on aerobic exercise (AEX), whereas the effect of resistance exercise (REX) has received comparatively little notice. Resistance exercise and AEX have different physiologic impacts; perhaps this also applies to the immune system. The purpose of this review was to determine a consensus from the REX immune studies that have been completed. This is complicated by the multitude of immune parameters, the varying methods used to assess them, and the paucity of studies performed. Thus, it is difficult to make a blanket statement. There is a REX-induced leukocytosis. Resistance conditioning (RCO) does not alter this response or affect the resting immune system. From these data, it appears that neither REX nor RCO demonstrates a significant impact on peripheral immunosurveillance. PMID:11710669

  13. Mucosal Immunization of Cynomolgus Macaques with the VSVΔG/ZEBOVGP Vaccine Stimulates Strong Ebola GP-Specific Immune Responses

    PubMed Central

    Alimonti, Judie B.; Melito, P. Leno; Feldmann, Friedericke; Dick, Daryl; Ströher, Ute; Feldmann, Heinz; Jones, Steven M.

    2009-01-01

    Background Zaire ebolavirus (ZEBOV) produces a lethal viral hemorrhagic fever in humans and non-human primates. Methodology/Principal Findings We demonstrate that the VSVΔG/ZEBOVGP vaccine given 28 days pre-challenge either intranasally (IN), orally (OR), or intramuscularly (IM) protects non-human primates against a lethal systemic challenge of ZEBOV, and induces cellular and humoral immune responses. We demonstrated that ZEBOVGP-specific T-cell and humoral responses induced in the IN and OR groups, following an immunization and challenge, produced the most IFN-γ and IL-2 secreting cells, and long term memory responses. Conclusions/Significance We have shown conclusively that mucosal immunization can protect from systemic ZEBOV challenge and that mucosal delivery, particularly IN immunization, seems to be more potent than IM injection in the immune parameters we have tested. Mucosal immunization would be a huge benefit in any emergency mass vaccination campaign during a natural outbreak, or following intentional release, or for mucosal immunization of great apes in the wild. PMID:19440245

  14. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  15. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells

    PubMed Central

    Lam, L. K. Metthew; Klimstra, William B.

    2016-01-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. PMID:27463517

  16. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    PubMed

    Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D

    2016-07-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. PMID:27463517

  17. Immune Response to Biologic Scaffold Materials

    PubMed Central

    Badylak, Stephen F.; Gilbert, Thomas W.

    2008-01-01

    Biologic scaffold materials composed of mammalian extracellular matrix are commonly used in regenerative medicine and in surgical procedures for the reconstruction of numerous tissue and organs. These biologic materials are typically allogeneic or xenogeneic in origin and are derived from tissues such as small intestine, urinary bladder, dermis, and pericardium. The innate and acquired host immune response to these biologic materials and the effect of the immune response upon downstream remodeling events has been largely unexplored. Variables that affect the host response include manufacturing processes, the rate of scaffold degradation, and the presence of cross species antigens. This manuscript provides an overview of studies that have evaluated the immune response to biologic scaffold materials and variables that affect this response. PMID:18083531

  18. Host innate immune responses to sepsis

    PubMed Central

    Wiersinga, Willem Joost; Leopold, Stije J; Cranendonk, Duncan R; van der Poll, Tom

    2014-01-01

    The immune response to sepsis can be seen as a pattern recognition receptor-mediated dysregulation of the immune system following pathogen invasion in which a careful balance between inflammatory and anti-inflammatory responses is vital. Invasive infection triggers both pro-inflammatory and anti-inflammatory host responses, the magnitude of which depends on multiple factors, including pathogen virulence, site of infection, host genetics, and comorbidities. Toll-like receptors, the inflammasomes, and other pattern recognition receptors initiate the immune response after recognition of danger signals derived from microorganisms, so-called pathogen-associated molecular patterns or derived from the host, so-called danger-associated molecular patterns. Further dissection of the role of host–pathogen interactions, the cytokine response, the coagulation cascade, and their multidirectional interactions in sepsis should lead toward the development of new therapeutic strategies in sepsis. PMID:23774844

  19. Epidemiological, serological and herd immunity of Crimean-Congo haemorrhagic fever in Kosovo.

    PubMed

    Humolli, Isme; Dedushaj, Isuf; Zupanac, Tatjana Avsic; Muçaj, Sefedin

    2010-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is primarily a zoonotic disease, mostly present as sporadic cases, but outbreaks also occur, especially in the family. Disease as endemic form is presents in some countries of Africa, Europe and Asia. In 2001, outbreak of CCHF was registered in Kosova, Albania, Pakistan, Iran, and South Africa. Goal of the research was to establish a pattern of the disease, its natural flow and herd immunity. For this purpose we used epidemiological methods, laboratory confirmation (ELISA, PCR) and t-test and chi2-test for results significance verification. Morbidity rate of the disease for the period of fifteen years (1995-2009) is 0.49 in 100,000 inhabitants, and lethality rate is 26.76 deaths on 100 lab confirmed cases. CCHF in Kosovo is present in 50% of the territory with common characteristics: altitude, hot climate, low bush and farming. Hyper endemic zones are in Central and South West of Kosovo. Seroprevalence in entire healthy population is found to be 24.3%. Presence of the CCHF antibodies was found in 14% of livestock, and in 32.6% of sheep. A phylogenetic aspect of the CCHFvirus isolated in Kosovo is the same as of the virus isolated in Drosdov (Russia).

  20. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    PubMed

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  1. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response.

    PubMed

    Reese, Tiffany A; Bi, Kevin; Kambal, Amal; Filali-Mouhim, Ali; Beura, Lalit K; Bürger, Matheus C; Pulendran, Bali; Sekaly, Rafick-Pierre; Jameson, Stephen C; Masopust, David; Haining, W Nicholas; Virgin, Herbert W

    2016-05-11

    Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans. PMID:27107939

  2. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  3. Recent advances in vaccines against viral haemorrhagic fevers.

    PubMed

    Baize, S; Marianneau, P; Georges-Courbot, M C; Deubel, V

    2001-10-01

    Development of vaccines against viral haemorrhagic fevers is a public health priority. Recent advances in our knowledge of pathogenesis and of the immune responses elicited by these viruses emphasize the crucial role of the immune system in the control of infection, but also its probable involvement in pathogenesis. Several vaccine candidates against viral haemorrhagic fevers have been evaluated in animals during the past year. Together, these data suggest that a vaccine approach against viral haemorrhagic fevers is feasible, should induce well-balanced immune responses with cellular and humoral components, and should avoid the potential deleterious effects that are associated with such immune responses. PMID:11964870

  4. Recent advances in vaccines against viral haemorrhagic fevers.

    PubMed

    Baize, S; Marianneau, P; Georges-Courbot, M C; Deubel, V

    2001-10-01

    Development of vaccines against viral haemorrhagic fevers is a public health priority. Recent advances in our knowledge of pathogenesis and of the immune responses elicited by these viruses emphasize the crucial role of the immune system in the control of infection, but also its probable involvement in pathogenesis. Several vaccine candidates against viral haemorrhagic fevers have been evaluated in animals during the past year. Together, these data suggest that a vaccine approach against viral haemorrhagic fevers is feasible, should induce well-balanced immune responses with cellular and humoral components, and should avoid the potential deleterious effects that are associated with such immune responses.

  5. Cytomegalovirus infection improves immune responses to influenza

    PubMed Central

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai; Angel, Cesar J Lopez; Onengut-Gumuscu, Suna; Kidd, Brian; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-01-01

    Cytomegalovirus (CMV) is a beta-herpes virus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV serostatus. In contrast, CMV-infected young adults exhibited an overall up-regulation of immune components including enhanced antibody responses to influenza vaccination, increased CD8+ T cell sensitivity, and elevated levels of circulating IFN-γ compared to uninfected individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the continued coexistence of CMV and mammals throughout their evolution. PMID:25834109

  6. Clinical and biochemical responses to the treatment of milk fever.

    PubMed

    Mullen, P A

    1975-08-01

    One hundred and eighty-six cases of milk fever in 80 herds spread over five counties were used to compare treatment with 8g calcium plus 500 mg magnesium in aspartate with the conventional 12-36g calcium as borogluconate. The data obtained from both the herds and their individual cases show that the treatments gave broadly similar results, and a single intravenous treatment cured 74-7 per cent of cases. It appeared that milk fever was not likely to recur with each succeeding parturition. No breed susceptibility was recognised. No correlation was found between the severity of the clinical signs and the inorganic phosphate concentrations. An incidence of milk fever of 8-79 per cent was recorded.

  7. PASSIVE ANTIBODY AND THE IMMUNE RESPONSE

    PubMed Central

    McBride, Raymond A.; Schierman, Louis W.

    1971-01-01

    The isoimmune response of fowl inoculated with RBC coated with antibody was investigated. Anti-B antiserum from a single animal was used to coat different donor type RBC. With each donor type RBC the immune response to the coated determinants is suppressed. Enhancement of the immune response to noncoated determinants occurs when they are products of an allelic gene or belong to a different blood group system. Coating some B antigen determinants suppresses the response to noncoated determinants of the same antigen, i.e., determinants which are products of the same B gene. Varying the quantity of passive antibody revealed that the degree of suppression and the degree of enhancement are negatively correlated. These findings support the concept that antibody-coated determinants function as carrier for noncoated determinants, provided a certain physical association exists between them. A further interpretation of these studies is that in certain situations an antibody to one antigen may interfere with events which lead to an immune response to a different antigen. The possibility, that the protection afforded by ABO incompatibility against Rh isoimmunization is because of a similar phenomenon, is discussed. A hypothesis is presented which states that where the immune response to certain antigens behaves as a dominantly inherited trait, and is associated with histocompatibility type, the nonresponder animals possess an antibody (perhaps cell bound) which interferes with the response to determinants for which it does not have specificity. Responders are assumed to lack this antibody because it has specificity for their major histocompatibility antigens. PMID:4106486

  8. Radiation triggering immune response and inflammation.

    PubMed

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  9. Antimicrobial peptides in innate immune responses.

    PubMed

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  10. Redox regulation of the immune response.

    PubMed

    Gostner, Johanna M; Becker, Kathrin; Fuchs, Dietmar; Sucher, Robert

    2013-01-01

    Reactive oxygen and nitrogen species (ROS-RNS) and other redox active molecules fulfill key functions in immunity. Beside the initiation of cytocidal reactions within the pathogen defense strategy, redox reactions trigger and shape the immune response and are further involved in termination and initialization of cellular restorative processes. Regulatory mechanisms provided by redox-activated signaling events guarantee the correct spatial and temporal proceeding of immunological processes, and continued imbalances in redox homeostasis lead to crucial failures of control mechanisms, thus promoting the development of pathological conditions. Interferon-gamma is the most potent inducer of ROS-RNS formation in target cells like macrophages. Immune-regulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase and neopterin production by GTP-cyclohydrolase-I are initiated during T helper cell type 1 (Th1-type) immune response concomitant to the production of ROS-RNS by immunocompetent cells. Therefore, increased neopterin production and tryptophan breakdown is representative of an activated cellular immune system and can be used for the in vivo and in vitro monitoring of oxidative stress. In parallel, the activation of the redox-sensitive transcription factor nuclear factor-kappa B is a central element in immunity leading to cell type and stimulus-specific expression of responsive genes. Furthermore, T cell activation and proliferation are strongly dependent on the redox potential of the extracellular microenvironment. T cell commitment to Th1, Th2, regulatory T cell, and other phenotypes appears to crucially depend on the activation of redox-sensitive signaling cascades, where oxidative conditions support Th1 development while 'antioxidative' stress leads to a shift to allergic Th2-type immune responses.

  11. Yellow fever vaccination coverage following massive emergency immunization campaigns in rural Uganda, May 2011: a community cluster survey

    PubMed Central

    2013-01-01

    Background Following an outbreak of yellow fever in northern Uganda in December 2010, Ministry of Health conducted a massive emergency vaccination campaign in January 2011. The reported vaccination coverage in Pader District was 75.9%. Administrative coverage though timely, is affected by incorrect population estimates and over or under reporting of vaccination doses administered. This paper presents the validated yellow fever vaccination coverage following massive emergency immunization campaigns in Pader district. Methods A cross sectional cluster survey was carried out in May 2011 among communities in Pader district and 680 respondents were indentified using the modified World Health Organization (WHO) 40 × 17 cluster survey sampling methodology. Respondents were aged nine months and above. Interviewer administered questionnaires were used to collect data on demographic characteristics, vaccination status and reasons for none vaccination. Vaccination status was assessed using self reports and vaccination card evidence. Our main outcomes were measures of yellow fever vaccination coverage in each age-specific stratum, overall, and disaggregated by age and sex, adjusting for the clustered design and the size of the population in each stratum. Results Of the 680 survey respondents, 654 (96.1%, 95% CI 94.9 – 97.8) reported being vaccinated during the last campaign but only 353 (51.6%, 95% CI 47.2 – 56.1) had valid yellow fever vaccination cards. Of the 280 children below 5 years, 269 (96.1%, 95% CI 93.7 – 98.7) were vaccinated and nearly all males 299 (96.9%, 95% CI 94.3 – 99.5) were vaccinated. The main reasons for none vaccination were; having travelled out of Pader district during the campaign period (40.0%), lack of transport to immunization posts (28.0%) and, sickness at the time of vaccination (16.0%). Conclusions Our results show that actual yellow fever vaccination coverage was high and satisfactory in Pader district since it was above the

  12. Immune response from a resource allocation perspective

    PubMed Central

    Rauw, Wendy M.

    2012-01-01

    The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production. PMID:23413205

  13. Adaptive immune responses to Candida albicans infection.

    PubMed

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  14. Antibody responses to an immunodominant nonstructural 1 synthetic peptide in patients with dengue fever and dengue hemorrhagic fever.

    PubMed

    Huang, J H; Wey, J J; Sun, Y C; Chin, C; Chien, L J; Wu, Y C

    1999-01-01

    Two flaviviruses, dengue (DEN) virus and Japanese encephalitis (JE) virus, are important because of their global distribution and the frequency of epidemics in tropical and subtropical areas. To study the B-cell epitopes of nonstructural 1 (NS1) glycoprotein and anti-NS1 antibody response in DEN infection, a series of 15-mer synthetic peptides from the predicted B-cell linear epitopes of DEN-2 NS1 protein were prepared. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze antibody responses to these peptides from sera of both DEN and JE patients. One peptide derived from DEN-2 NS1, D2 NS1-P1 (amino acids 1-15), was identified as the immunodominant epitope that reacted with sera from dengue fever (DF) patients but not JE patients. The isotype of D2 NS1-P1-specific antibodies was mainly immunoglobulin M (IgM) in all sera that tested positive. A specificity study demonstrated that sera from all four DEN types reacted with D2 NS1-P1. A dynamics study showed that specific antibodies to this peptide could be detected as early as 2 days after the onset of symptoms. We observed significant anti-D2 NS1-P1 antibody responses in 45% of patients with primary and secondary infections with DF or with dengue hemorrhagic fever. This is the first report demonstrating that significant anti-DEN NS1 antibodies can be induced in the sera of patients with primary DEN infection.

  15. Immune Response in Mussels To Environmental Pollution.

    ERIC Educational Resources Information Center

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  16. Salmonella enterica serovar Typhi-specific immunoglobulin A antibody responses in plasma and antibody in lymphocyte supernatant specimens in Bangladeshi patients with suspected typhoid fever.

    PubMed

    Sheikh, Alaullah; Bhuiyan, M Saruar; Khanam, Farhana; Chowdhury, Fahima; Saha, Amit; Ahmed, Dilruba; Jamil, K M A; LaRocque, Regina C; Harris, Jason B; Ahmad, Mian Mashhud; Charles, Richelle; Brooks, W Abdullah; Calderwood, Stephen B; Cravioto, Alejandro; Ryan, Edward T; Qadri, Firdausi

    2009-11-01

    Many currently available diagnostic tests for typhoid fever lack sensitivity and/or specificity, especially in areas of the world where the disease is endemic. In order to identify a diagnostic test that better correlates with typhoid fever, we evaluated immune responses to Salmonella enterica serovar Typhi (serovar Typhi) in individuals with suspected typhoid fever in Dhaka, Bangladesh. We enrolled 112 individuals with suspected typhoid fever, cultured day 0 blood for serovar Typhi organisms, and performed Widal assays on days 0, 5, and 20. We harvested peripheral blood lymphocytes and analyzed antibody levels in supernatants collected on days 0, 5, and 20 (using an antibody-in-lymphocyte-supernatant [ALS] assay), as well as in plasma on these days. We measured ALS reactivity to a serovar Typhi membrane preparation (MP), a formalin-inactivated whole-cell preparation, and serovar Typhi lipopolysaccharide. We measured responses in healthy Bangladeshi, as well as in Bangladeshi febrile patients with confirmed dengue fever or leptospirosis. We categorized suspected typhoid fever individuals into different groups (groups I to V) based on blood culture results, Widal titer, and clinical features. Responses to MP antigen in the immunoglobulin A isotype were detectable at the time of presentation in the plasma of 81% of patients. The ALS assay, however, tested positive in all patients with documented or highly suspicious typhoid, suggesting that such a response could be the basis of improved diagnostic point-of-care-assay for serovar Typhi infection. It can be important for use in epidemiological studies, as well as in difficult cases involving fevers of unknown origin. PMID:19741090

  17. Vesicle trafficking in plant immune responses.

    PubMed

    Robatzek, Silke

    2007-01-01

    In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study. PMID:17081192

  18. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  19. ANTIGEN RECOGNITION AND THE IMMUNE RESPONSE

    PubMed Central

    Bush, Maurice E.; Alkan, Sefik S.; Nitecki, Danute E.; Goodman, Joel W.

    1972-01-01

    L-Tyrosine-p-azobenzenearsonate (RAT) induces cellular immunity without humoral antibody in guinea pigs. Asymmetric bifunctional antigens composed of one RAT moiety and one dinitrophenyl (DNP) group separated by flexible spacers induce anti-RAT cellular immunity and an anti-DNP humoral response. Symmetrical bifunctional antigens of similar design but comprised of two RAT determinants induce cellular immunity without demonstrable anti-RAT antibody. However, when the flexible spacer is replaced by a rigid decaproline chain, humoral anti-RAT responses are provoked. Since RAT contains both electropositive (azo) and electronegative (arsonate) centers, the failure of bifunctional RAT compounds with flexible spacers to induce humoral immunity might be ascribed either to intramolecular stacking, which compromises their bifunctional character, or to interaction of both determinants with receptors on the same cell surface, which would fail to satisfy the requirement for cooperation. In order to distinguish between these alternatives, symmetrical bifunctional antigens composed of two L-tyrosine-p-azophenyltrimethylammonium (TAT) determinants separated by flexible or rigid spacers were synthesized. TAT is immunogenic and does not cross-react with RAT. Furthermore, it contains only electropositive centers and consequently bifunctional molecules do not undergo intramolecular stacking. Immunization with either flexibly or rigidly spaced bifunctional TAT antigens raised anti-TAT antibody. These results conclusively demonstrate that "self-help," cooperation between bone marrow-derived and thymus-derived lymphocytes of identical or similar specificity, can occur, provided the determinants on the antigen are prevented from associating with each other. PMID:4118413

  20. Effect of age on the risk of Fever and seizures following immunization with measles-containing vaccines in children.

    PubMed

    Rowhani-Rahbar, Ali; Fireman, Bruce; Lewis, Edwin; Nordin, James; Naleway, Allison; Jacobsen, Steven J; Jackson, Lisa A; Tse, Alison; Belongia, Edward A; Hambidge, Simon J; Weintraub, Eric; Baxter, Roger; Klein, Nicola P

    2013-12-01

    IMPORTANCE The first dose of live attenuated measles-containing vaccines is associated with an increased risk of febrile seizures 7 to 10 days following immunization among 12- to 23-month-old children. The combination measles, mumps, rubella, and varicella vaccine is associated with a 2-fold increased risk of febrile seizures 7 to 10 days following immunization compared with the separately administered measles, mumps, and rubella and varicella vaccines. It is unknown whether the magnitude of these increased risks depends on age at immunization. OBJECTIVE To examine the potential modifying effect of age on the risk of fever and seizures following immunization with measles-containing vaccines. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study at 8 Vaccine Safety Datalink sites of a total of 840,348 children 12 to 23 months of age who had received a measles-containing vaccine from 2001 through 2011. EXPOSURES Any measles-containing vaccines and measles-containing vaccines by type. MAIN OUTCOMES AND MEASURES Fever and seizure events occurring during a 42-day postimmunization observation period. RESULTS In the analysis of any measles-containing vaccines, the increased risk of seizures during the 7- to 10-day risk interval, using the remainder of the observation period as the control interval, was significantly greater among older children (relative risk, 6.5; 95% CI, 5.3-8.1; attributable risk, 9.5 excess cases per 10,000 doses; 95% CI, 7.6-11.5) than among younger children (relative risk, 3.4; 95% CI, 3.0-3.9; attributable risk = 4.0 excess cases per 10,000 doses; 95% CI, 3.4-4.6). The relative risk of postimmunization fever was significantly greater among older children than among younger children; however, its attributable risk was not. In the analysis of vaccine type, measles, mumps, rubella, and varicella vaccine was associated with a 1.4-fold increase in the risk of fever and 2-fold increase in the risk of seizures compared with measles, mumps, and

  1. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses

    PubMed Central

    Koma, Takaaki; Huang, Cheng; Kolokoltsova, Olga A; Brasier, Allan R; Paessler, Slobodan

    2013-01-01

    Arenaviruses are enveloped, negative-stranded RNA viruses that belong to the family Arenaviridae. This diverse family can be further classified into OW (Old World) and NW (New World) arenaviruses based on their antigenicity, phylogeny, and geographical distribution. Many of the NW arenaviruses are highly pathogenic viruses that cause systemic human infections characterized by hemorrhagic fever and/or neurological manifestations, constituting public health problems in their endemic regions. NW arenavirus infection induces a variety of host innate immune responses, which could contribute to the viral pathogenesis and/or influence the final outcome of virus infection in vitro as well as in vivo. On the other hand, NW arenaviruses have also developed several strategies to counteract the host innate immune response. We will review current knowledge regarding the interplay between the host innate immune response and NW arenavirus infection in vitro and in vivo, with emphasis on viral-encoded proteins and their effect on the type I interferon response. PMID:24075870

  2. Humoral immune responses in foetal sheep.

    PubMed Central

    Fahey, K J; Morris, B

    1978-01-01

    A total of fifty-two foetal sheep between 49 and 126 days gestation were injected with polymeric and monomeric flagellin, dinitrophenylated monomeric flagellin, chicken red blood cells, ovalbumin, ferritin, chicken gamma-globulin and the somatic antigens of Salmonella typhimurium in a variety of combinations. Immune responses were followed in these animals by taking serial blood samples from them through indwelling vascular cannulae and measuring the circulating titres of antibody. Of the antigens tested, ferritin induced immune responses in the youngest foetuses. A short time later in gestation, the majority of foetuses responded to chicken red blood cells, polymeric flagellin, monomeric flagellin and dinitrophenylated monomeric flagellin. Only older foetuses responded regularly to chicken gamma-globulin and ovalbumin. However, antibodies to all these antigens were first detected over the relatively short period of development between 64 and 82 days gestation and this made it difficult to define any precise order in the development of immune responsiveness. Of the antigens tested only the somatic antigens of S. typhimurium failed to induce a primary antibody response during foetal life. The character and magnitude of the antibody responses in foetuses changed throughout in utero development. Both the total amount of antibody produced and the duration of the response increased with foetal age. Foetuses younger than 87 days gestation did not synthesize 2-mercaptoethanol resistant antibodies or IgG1 immunoglobulin to any of the antigens tested, whereas most foetuses older than this regularly did so. PMID:711249

  3. CELLS INVOLVED IN THE IMMUNE RESPONSE

    PubMed Central

    Daguillard, Fritz; Richter, Maxwell

    1970-01-01

    There exists in the rabbit a population of lymphocytes carrying immunoglobulin-like receptors on their surface. These receptors interact with antigen and with anti-immunoglobulin antibodies and appear to mediate the recognition process leading to the humoral immune response. There exists in the rabbit a second population of lymphocytes capable of reacting with phytohemagglutinin. This population of lymphocytes is different from the one capable of reacting with soluble protein antigens or anti-immunoglobulin antiserum and is probably involved in the mediation of cellular immunity. PMID:5308064

  4. RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Spengler, Jessica R.; Patel, Jenish R.; Chakrabarti, Ayan K.; Zivcec, Marko; García-Sastre, Adolfo; Spiropoulou, Christina F.

    2015-01-01

    ABSTRACT In the cytoplasm, the retinoic acid-inducible gene I (RIG-I) senses the RNA genomes of several RNA viruses. RIG-I binds to viral RNA, eliciting an antiviral response via the cellular adaptor MAVS. Crimean-Congo hemorrhagic fever virus (CCHFV), a negative-sense RNA virus with a 5′-monophosphorylated genome, is a highly pathogenic zoonotic agent with significant public health implications. We found that, during CCHFV infection, RIG-I mediated a type I interferon (IFN) response via MAVS. Interfering with RIG-I signaling reduced IFN production and IFN-stimulated gene expression and increased viral replication. Immunostimulatory RNA was isolated from CCHFV-infected cells and from virion preparations, and RIG-I coimmunoprecipitation of infected cell lysates isolated immunostimulatory CCHFV RNA. This report serves as the first description of a pattern recognition receptor for CCHFV and highlights a critical signaling pathway in the antiviral response to CCHFV. IMPORTANCE CCHFV is a tick-borne virus with a significant public health impact. In order for cells to respond to virus infection, they must recognize the virus as foreign and initiate antiviral signaling. To date, the receptors involved in immune recognition of CCHFV are not known. Here, we investigate and identify RIG-I as a receptor involved in initiating an antiviral response to CCHFV. This receptor initially was not expected to play a role in CCHFV recognition because of characteristics of the viral genome. These findings are important in understanding the antiviral response to CCHFV and support continued investigation into the spectrum of potential viruses recognized by RIG-I. PMID:26223644

  5. Stable and long-lasting immune response in horses after DNA vaccination against equine arteritis virus.

    PubMed

    Giese, M; Bahr, U; Jakob, N J; Kehm, R; Handermann, M; Müller, H; Vahlenkamp, T H; Spiess, C; Schneider, T H; Schusse, G; Darai, G

    2002-10-01

    Equine arteritis virus (EAV) is the causative agent of the equine viral arteritis. It is a small RNA virus with a linear, non-segmented plus RNA genome. EAV is a member of the Arteriviridae family that includes porcine reproductive and respiratory syndrome virus (PRSSV), simian haemorrhagic fever virus (SHFV) and lactate dehydrogenase virus (LDV). The viral transmission is via respiratory and reproductive routes. Clinical signs in horses vary, and severe infection can lead to abortions in pregnant mares or neonatal foal death. The aim of this study was to investigate the development of the immune response in horses after immunization with a DNA vaccine harbouring and expressing EAV Open Reading Frames (ORF) 2, 5, and 7, in combination with equine interleukin 2 (eqIL2). Three boosters followed the basic immunization in two-week intervals. Each immunization was a combination of gene gun and intramuscular injection. All horses developed a high titer of neutralizing antibodies after basic immunization within 2 weeks. Remarkably, this immune response was found to be independent of the age of animals. The youngest horse was six-years old, and the oldest twenty-two years old. A remarkable difference in the immune response between the young and old were not observed. The duration of immunity was investigated during a period of one year. After 12 months, neutralizing antibodies were still detectable in all the vaccinated horses.

  6. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  7. CELLS INVOLVED IN THE IMMUNE RESPONSE

    PubMed Central

    Daguillard, Fritz; Richter, Maxwell

    1969-01-01

    Cells of the different lymphoid organs in the normal adult rabbit were investigated for their capacity to respond in vitro to a number of stimuli, such as phytohemagglutinin (PHA), anti-rabbit immunoglobulin antiserum (GARIG) and allogeneic and xenogeneic lymphoid cells, and for their capacity to adsorb radioactively-labeled anti-immunoglobulin antiserum. The bone marrow cells responded minimally to PHA, GARIG, and the allogeneic and xenogeneic stimuli. The thymus cells were unable to respond to stimulation with GARIG although they responded to the other stimuli. The cells of the other lymphoid organs tested responded to all the mitogenic agents, to varying degrees. On the basis of the results presented and the findings of other investigators, it is concluded that: 1. The response of the cells to GARIG indicates a potential capacity to mediate humoral immunity and requires the presence of immunoglobulin or immunoglobulin-like recognition sites on the cell surface. 2. The response of the cells to PHA and allogeneic and xenogeneic cells indicates a potential capacity to mediate cellular immunity and does not necessitate the presence of immunoglobulin-recognition sites on the cell surface. 3. The thymus in the normal adult rabbit consists of cells capable of mediating cellular immunity only. 4. The other lymphoid organs appear to possess cells capable of mediating humoral and cellular immunity. PMID:5307485

  8. Humoral innate immune response and disease

    PubMed Central

    Shishido, Stephanie N.; Varahan, Sriram; Yuan, Kai; Li, Xiangdong; Fleming, Sherry D.

    2012-01-01

    The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies. PMID:22771788

  9. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  10. [Dengue fever: clinical features].

    PubMed

    Dellamonica, P

    2009-10-01

    The vector for dengue fever and chikungunya, Aedes albopictus, was recently identified in Southeastern France, although the usual vector for dengue fever is Aedes aegypti, raising the possibility of cases occurring among the local population via viraemic individuals returning from endemic areas. Dengue fever is usually transmitted by Aedes aegypti. It is due to an arbovirus-flavivirus of which four different serotypes are known: Den 1 to 4. Each serotype is responsible for specific prolonged immunity but no cross-reactivity exists between serotypes. Clinically, the onset is abrupt with frontal headache, retro-orbital pain, myalgia, joint pain, prostration and, in many cases, a macular rash usually sparing the face and extremities. Haemorrhagic signs may occur, such as petechiae, purpura, epistaxis or bleeding gingivae. Two severe forms of dengue fever, particularly among children below 3 years of age, include dengue haemorrhagic fever (DHF) and DHF with shock (dengue shock syndrome). If a case is suspected in metropolitan France, the diagnosis should be systematically confirmed by positive specific IgM, RT-PCR or viral isolation. Treatment of dengue fever, whether in its uncomplicated form or with hemorrhagic manifestations or shock, remains symptomatic. There is no specific anti-viral treatment. A case should be notified to allow French health authorities to take the appropriate measures for vector control.

  11. Thrombocytopenia associated with dengue hemorrhagic fever responds to intravenous administration of anti-D (Rh(0)-D) immune globulin.

    PubMed

    de Castro, Reynaldo Angelo C; de Castro, Jo-Anne A; Barez, Marie Yvette C; Frias, Melchor V; Dixit, Jitendra; Genereux, Maurice

    2007-04-01

    Severe thrombocytopenia and increased vascular permeability are two major characteristics of dengue hemorrhagic fever (DHF). An immune mechanism of thrombocytopenia due to increased platelet destruction appears to be operative in patients with DHF (see Saito et al., 2004, Clin Exp Immunol 138: 299-303; Mitrakul, 1979, Am J Trop Med Hyg 26: 975-984; and Boonpucknavig, 1979, Am J Trop Med Hyg 28: 881-884). The interim data of two randomized placebo controlled trials in patients (N = 47) meeting WHO criteria for dengue hemorrhagic fever (DHF) with severe thrombocytopenia (platelets < or = 50,000/mm(3)) reveal that the increase in platelet count with anti-D immune globulin (WinRho SDF), 50 microg/kg (250 IU/kg) intravenously is more brisk than the placebo group. The mean maximum platelet count of the anti-D-treated group at 48 hours was 91,500/mm(3) compared with 69,333/mm(3) in the placebo group. 75% of the anti-D-treated group demonstrated an increase of platelet counts > or = 20,000 compared with only 58% in the placebo group. These data suggest that treatment of severe thrombocytopenia accompanying DHF with anti-D may be a useful and safe therapeutic option.

  12. Human cell-mediated immune responses to antigenic fractions of Salmonella typhi.

    PubMed Central

    Pérez, C; Calderón, G M; Ximénez, C; Melendro, E I

    1996-01-01

    The proliferative responses of peripheral blood mononuclear cells of 10 subjects that had typhoid fever, and healthy volunteers without history of typhoid fever or immunization against disease, were analysed with antigen fractions from two protein extracts of Salmonella typhi. Fractions from each extract were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis, transferred to nitrocellulose filters by electroblotting and processed to obtain antigen-bearing nitrocellulose particles for use in lymphocyte cultures. Although the individual proliferative responses were heterogeneous we identified two main immunogenic regions of 29-32 10(3) MW and 45-56 x 10(3) MW for both extracts. Even though there was no one particular antigenic fraction capable of stimulating lymphocytes from all individuals with a previous history of typhoid fever, the combination of three fractions 29-32, 41-45, 63-71 x 10(3) MW could be stimulatory for cells of 90% of these individuals. Also, four subjects that did not respond to unfractionated antigens gave proliferative responses to several fractions of the same extract. We have identified the main immunogenic fractions of S. typhi that might play a role during typhoid infection and postinfection immunity, and merit further purification and characterization. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8943724

  13. Staphylococcal manipulation of host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kim, Hwan Keun; Missiakas, Dominique; Schneewind, Olaf

    2015-01-01

    Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium’s ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus. PMID:26272408

  14. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  15. Ubiquitination in the Antiviral Immune Response

    PubMed Central

    Davis, Meredith E.; Gack, Michaela U.

    2016-01-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, ‘atypical’ nondegradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. PMID:25753787

  16. Inhibition of Innate Immune Responses Is Key to Pathogenesis by Arenaviruses.

    PubMed

    Meyer, Bjoern; Ly, Hinh

    2016-04-01

    Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options. PMID:26865707

  17. Inhibition of Innate Immune Responses Is Key to Pathogenesis by Arenaviruses

    PubMed Central

    Meyer, Bjoern

    2016-01-01

    Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options. PMID:26865707

  18. Spaceflight and Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1996-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.

  19. Immune response associated with nonmelanoma skin cancer.

    PubMed

    Strickland, F M; Kripke, M L

    1997-10-01

    It is now clear that UV radiation causes nonmelanoma skin cancer in at least two ways: by causing permanent changes in the genetic code and by preventing immunologic recognition of mutant cells. These are interacting rather than separate mechanisms. Damage to DNA results in disregulation of cellular proliferation and initiates immune suppression by stimulating the production of suppressive cytokines. These cytokines contribute to the loss of immunosurveillance. Ultraviolet radiation has both local and systemic immunosuppressive effects. Locally, it depletes and alters antigen-presenting LC at the site of UV irradiation. Systemic suppression results when Ts cells are induced, by altered LC, by inflammatory macrophages that enter the skin following UV irradiation, or by the action of cytokines. Damage to DNA appears to be one of the triggering events in inducing systemic immunosuppression via the release of immunosuppressive cytokines and mediators. Immunologic approaches to treating skin cancers so far have concentrated on nonspecifically stimulating immune cells that infiltrate these tumors, but induction of specific immune responses against these tumors with antitumor vaccines has received little attention as yet. Preventive measures include sun avoidance and the use of sunscreens to prevent DNA damage by UV light. Future strategies may employ means to reverse UV-induced immunosuppression by using anti-inflammatory agents, biologicals that accelerate DNA repair or prevent the generation of immunosuppressive cytokines, and specific immunotherapy with tumor antigens. New approaches for studying the immunology of human skin cancers are needed to accelerate progress in this field.

  20. Nedocromil sodium and the immune response.

    PubMed

    Ciprandi, G; Buscaglia, S; Albano, M; Bertolini, C; Truffelli, T; Catrullo, A; Scordamaglia, A; Canonica, G W

    1993-01-01

    Chromones are frequently employed in the treatment of allergic rhinoconjunctivitis and asthma. Following our recent investigations concerning the influence of some antiallergic drugs, such as cromoglycate sodium, steroids, oxatomide and ketotifen (H1 antihistamines), and theophylline, on the immune response, in the present study we analyzed the in vitro effects of a new chromone derivative, nedocromil, on the immune response. To this end, the proliferation of peripheral mononuclear cells (PMNCs) induced by mitogen (PHA) and by CD3, CD2 or CD28 monoclonal antibodies (MAbs) has been studied. Since the effects of nedocromil on immunological parameters are achieved at 10(-7) mol/l, in the experiments herein reported the drug was tested in the cultures at concentrations of 10(-8), 10(-7) and 10(-6) mol/l. Furthermore, the effect of nedocromil was evaluated on the surface expression of the following markers expressed by PMNCs upon activation: ICAM-1 (CD54), LFA-1 and alpha 1-acid glycoprotein (alpha 1-AGP). The results of the present investigation showed no effect of nedocromil on these immunological parameters. These data acquire clinical relevance when related to previous reports showing a depression of the immunological response exerted by other compounds, such as ketotifen, theophylline and steroids.

  1. Management of severe refractory thrombocytopenia in dengue hemorrhagic fever with intravenous anti-D immune globulin.

    PubMed

    Kharya, Gaurav; Yadav, Satya Prakash; Katewa, Satyendra; Sachdeva, Anupam

    2011-11-01

    Dengue hemorrhagic fever (DHF) is a potentially lethal complication of dengue fever due to shock and/or bleeding. Bleeding in DHF is due to thrombocytopenia and/or coagulopathy. The authors present their experience of usage of intravenous anti-D in 5 children with DHF and severe refractory thrombocytopenia (<10,000/mm(3)). It was administered in a dose of 50 to 75 μg/kg. Mean platelet count was 6800/mm(3) before and 33,600, 44,600, and 79,000/mm(3) after intravenous anti-D administration at 24, 48, and 72 hours, respectively. Average drop in hemoglobin after administration of anti-D was 2.28 g/dL. Intravenous anti-D can possibly be a treatment option for refractory thrombocytopenia in DHF.

  2. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    PubMed Central

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  3. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica.

    PubMed

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  4. Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge.

    PubMed

    Carroll, J A; Burdick, N C; Chase, C C; Coleman, S W; Spiers, D E

    2012-08-01

    Although livestock experience many stressors throughout their life, one of the most commonly experienced, and most difficult to control, is stress caused by fluctuations in environmental temperatures that extend beyond the thermoneutral (TN) zone for an animal. In swine, cold stress has long been recognized as a main cause of neonatal morbidity and mortality. A possible explanation for this increased morbidity and mortality may be related to their inability to generate a febrile response. Previously, we reported that the acute phase immune response, including the generation of fever, after exposure to lipopolysaccharide (LPS; Escherichia coli O111: B4; Sigma-Aldrich, St Louis, MO, USA) is substantially altered in neonatal pigs maintained in a cold environment (ie, 18°C). Neonatal pigs that were maintained in a cold environment and administered LPS experienced a period of hypothermia coupled with altered endocrine and proinflammatory cytokine responses that could prove detrimental. In cattle, we previously reported differences in the acute phase immune response of two diverse breeds of Bos taurus cattle (Angus and Romosinuano) when maintained under TN conditions and exposed to LPS. More recently we have reported that differences in the stress and immune responses of Angus and Romosinuano heifers varies, depending on whether the cattle were housed at either TN or heat stress air temperatures. Our data clearly show that even intermittent periods of heat stress similar to that experienced in production environments can have significant effects on the stress and innate immune responses of cattle. Understanding the effect of thermal stress on livestock is critical to developing and implementing alternative management practices to improve their overall health and well-being. PMID:22425434

  5. The effect of antibody-dependent enhancement, cross immunity, and vector population on the dynamics of dengue fever.

    PubMed

    Hu, K; Thoens, C; Bianco, S; Edlund, S; Davis, M; Douglas, J; Kaufman, J H

    2013-02-21

    Dengue is a major international public health concern and impacts one-third of the world's population. No specific vaccine and treatment are available for this vector-borne disease. There are four similar but distinct serotypes of dengue viruses (DENV). Infection with one serotype affords life-long immunity to that serotype but only temporary partial immunity, or cross immunity (CI), to others. This increases the risk of developing lethal complications upon re-infection, mainly because of the effect of antibody-dependent enhancement (ADE). There have been multiple studies of the dynamic behavior created by the interplay of ADE and CI using mathematical models. However, models in the literature seldom capture the vector population, which we consider important because combating the mosquito vector is the only way to contain dengue transmission in the absence of vaccines. We therefore propose two differential-equation models of dengue fever (DF) with different levels of complexity and details. Our results support the need for ADE to explain the complexity of the epidemiological data.

  6. Ebola haemorrhagic fever.

    PubMed

    Feldmann, Heinz; Geisbert, Thomas W

    2011-03-01

    Ebola viruses are the causative agents of a severe form of viral haemorrhagic fever in man, designated Ebola haemorrhagic fever, and are endemic in regions of central Africa. The exception is the species Reston Ebola virus, which has not been associated with human disease and is found in the Philippines. Ebola virus constitutes an important local public health threat in Africa, with a worldwide effect through imported infections and through the fear of misuse for biological terrorism. Ebola virus is thought to also have a detrimental effect on the great ape population in Africa. Case-fatality rates of the African species in man are as high as 90%, with no prophylaxis or treatment available. Ebola virus infections are characterised by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock.

  7. Precision Immunization: NASA Studies Immune Response to Flu Vaccine

    NASA Video Gallery

    NASA Human Research Program Twins Study investigator Emmanuel Mignot, M.D., Ph.D, known for discovering the cause of narcolepsy is related to the immune system, is studying twin astronauts Scott an...

  8. Novel evidence of microglial immune response in impairment of Dengue infection of CNS.

    PubMed

    Bhatt, Rushil S; Kothari, Sweta T; Gohil, Devanshi J; D'Souza, Marsha; Chowdhary, Abhay S

    2015-10-01

    Dengue, the most rampant zoonotic viral disease in tropics, contributes to 14% of acute febrile illness cases globally. Encephalitis in primary Dengue fever, with/without haemorrhage has been reported occasionally. Our study presents novel evidence for this rarity at the molecular level. Murine microglia (BV2) were infected in-vitro with Dengue virus (DENV) serotypes (1-4) and their immune response was evaluated. Gene expressions of TNF-α, IL-10, IFN-γ, and IL1-β constituted the pro-inflammatory response, levels of MCP-1 and IL-6 represented the regulatory mechanism and changes in the levels of Occludin, MMP-2, MMP-9 and TIMP-1 encompassed the break-down of the blood-brain barrier (BBB). Cytokine response was studied using RT-PCR, with relative fold change assessed using ΔΔCt method. We observed that DENV1 increased vascular permeability and trans-membrane transport, while DENV2 resulted in oxidative stress. DENV3 infection presented with impaired immune response and DENV4 manifested a chaotropic response of the BBB protein genes. However, no serotype was able to breakdown the BBB, thus validating the low prevalence of encephalitis in dengue. Our study is the first reported evidence of the microglial immune response resisting the entry of DENV into the CNS. It also supports the theory that primary Dengue infection results in the acute inflammation of the microglia, and the host immune response plays a critical role in development of encephalitis.

  9. Work stress and innate immune response.

    PubMed

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  10. Neuroendocrine and immune system responses with spaceflights.

    PubMed

    Tipton, C M; Greenleaf, J E; Jackson, C G

    1996-08-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldosterone, and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flights data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  11. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  12. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  13. Early clearance of Chikungunya virus in children is associated with a strong innate immune response.

    PubMed

    Simarmata, Diane; Ng, David Chun Ern; Kam, Yiu-Wing; Lee, Bernett; Sum, Magdline Sia Henry; Her, Zhisheng; Chow, Angela; Leo, Yee-Sin; Cardosa, Jane; Perera, David; Ooi, Mong H; Ng, Lisa F P

    2016-01-01

    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children. PMID:27180811

  14. Early clearance of Chikungunya virus in children is associated with a strong innate immune response

    PubMed Central

    Simarmata, Diane; Ng, David Chun Ern; Kam, Yiu-Wing; Lee, Bernett; Sum, Magdline Sia Henry; Her, Zhisheng; Chow, Angela; Leo, Yee-Sin; Cardosa, Jane; Perera, David; Ooi, Mong H.; Ng, Lisa F. P.

    2016-01-01

    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children. PMID:27180811

  15. Recurrent Fever in Children

    PubMed Central

    Torreggiani, Sofia; Filocamo, Giovanni; Esposito, Susanna

    2016-01-01

    Children presenting with recurrent fever may represent a diagnostic challenge. After excluding the most common etiologies, which include the consecutive occurrence of independent uncomplicated infections, a wide range of possible causes are considered. This article summarizes infectious and noninfectious causes of recurrent fever in pediatric patients. We highlight that, when investigating recurrent fever, it is important to consider age at onset, family history, duration of febrile episodes, length of interval between episodes, associated symptoms and response to treatment. Additionally, information regarding travel history and exposure to animals is helpful, especially with regard to infections. With the exclusion of repeated independent uncomplicated infections, many infective causes of recurrent fever are relatively rare in Western countries; therefore, clinicians should be attuned to suggestive case history data. It is important to rule out the possibility of an infectious process or a malignancy, in particular, if steroid therapy is being considered. After excluding an infectious or neoplastic etiology, immune-mediated and autoinflammatory diseases should be taken into consideration. Together with case history data, a careful physical exam during and between febrile episodes may give useful clues and guide laboratory investigations. However, despite a thorough evaluation, a recurrent fever may remain unexplained. A watchful follow-up is thus mandatory because new signs and symptoms may appear over time. PMID:27023528

  16. Learned helplessness and immunization: sensitivity to response-reinforcer independence in immunized rats.

    PubMed

    Warren, D A; Rosellini, R A; Plonsky, M; DeCola, J P

    1985-10-01

    In experiments 1 and 2, we examined the learned helplessness and immunization effects using a test in which appetitive responding was extinguished by delivering noncontingent reinforcers. Contrary to learned helplessness theory, "immunized" animals showed performance virtually identical to that of animals exposed only to inescapable shock, and different from nonshocked controls. Experiment 2 suggests that the helplessness effect and the lack of immunization are not due to direct response suppression resulting from shock. In Experiment 3, where the immunization effect was assessed by measuring the acquisition of a response to obtain food when there was a positive response-reinforcer contingency, immunization was observed. These results cannot be explained on the basis of proactive interference, but suggest that animals exposed to the immunization procedure acquire an expectancy of response-reinforcer independence during inescapable shock. Thus, immunization effects may reflect the differential expression of expectancies, rather than their differential acquisition as learned helplessness theory postulates.

  17. Cross-reactive immunity among different serotypes of virus causing haemorrhagic fever with renal syndrome.

    PubMed

    Asada, H; Balachandra, K; Tamura, M; Kondo, K; Yamanishi, K

    1989-04-01

    Spleen cells primed by Prospect Hill (PH) or Puumala (Pu) virus could cross-react with Hantaan virus (HV) 76-118 strain-infected target cells after in vitro stimulation with HV-infected cells, although anti-PH or anti-Pu immune serum showed no cross-reactive neutralizing (NT) activity to HV without complement. These results and our previous findings with cross-reactive cytotoxic T lymphocytes (CTLs) suggest that some epitopes recognized by CTLs might be common among the hantavirus genus, while the epitopes related to NT activity were mainly specific to each virus of this genus. Next, to evaluate the cross-reactive immunities demonstrated by in vitro study, we investigated the effect of transferring T lymphocytes and sera from BALB/c mice immunized with PH or Pu virus into nude mice before HV inoculation. Transferring T lymphocytes primed by PH or Pu virus reduced HV titres in lungs and spleens of nude mice, corresponding with the results of the in vitro CTL assays. Transferring anti-Pu immune serum also decreased HV titres in nude mice, which seemed to reflect complement-dependent NT activity. Moreover ICR mice previously immunized with PH or Pu virus showed resistance to challenge with a lethal dose of the HV KHF strain, indicating that cross-reactive immunity induced by PH or Pu virus could protect ICR mice against pathogenic HV infection.

  18. Molecular immune response of channel catfish immunized with live theronts of Ichthyophthirius multifiliis.

    PubMed

    Xu, De-Hai; Zhang, Qi-Zhong; Shoemaker, Craig A; Zhang, Dunhua; Moreira, Gabriel S A

    2016-07-01

    The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. The fish surviving natural infections or immunized with live theronts develop strong specific and non-specific immune responses. Little is known about how these immune genes are induced or how they interact and lead to specific immunity against Ichthyophthirius multifiliis in channel catfish Ictalurus punctatus. This study evaluated the differential expression of immune-related genes, including immunoglobulin, immune cell receptor, cytokine, complement factor and toll-like receptors in head kidney from channel catfish at different time points after immunization with live theronts of I. multifiliis. The immunized fish showed significantly higher anti-Ich antibody expressed as immobilization titer and ELISA titer than those of control fish. The vast majority of immunized fish (95%) survived theront challenge. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 hour (h4) to 2 days (d2) post immunization. Expression of immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) showed up-regulation from h4 to d6 post immunization, indicating that different immune cells were actively involved in cellular immune response. Cytokine gene expression (IL-1βa, IL-1βb, IFN-γ and TNF-α) increased rapidly at h4 post immunization and were at an up-regulated level until d2 compared to the bovine serum albumin control. Expression of complement factor and toll-like receptor genes exhibited a rapid increase from h4 to d2 post immunization. Results of this study demonstrated differential expression of genes involved in the specific or non-specific immune response post immunization and that the vaccination against Ich resulted in protection against infection by I. multifiliis.

  19. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  20. The immune response and its therapeutic modulation in bronchiectasis.

    PubMed

    Daheshia, Massoud; Prahl, James D; Carmichael, Jacob J; Parrish, John S; Seda, Gilbert

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.

  1. The immune response to resistive breathing.

    PubMed

    Vassilakopoulos, T; Roussos, C; Zakynthinos, S

    2004-12-01

    Resistive breathing is an "immune challenge" for the body, initiating an inflammatory response consisting of an elevation of plasma cytokines, and the recruitment and activation of lymphocyte subpopulations. These cytokines do not originate from monocytes, but are, instead, produced within the diaphragm, secondary to the increased muscle activation. Oxidative stress is a major stimulus for the cytokine induction, secondary to resistive breathing. The production of cytokines within the diaphragm may be mediating the diaphragm muscle fibre injury that occurs with strenuous contractions, or contributing towards the expected repair process. These cytokines may also compromise diaphragmatic contractility or contribute towards the development of muscle cachexia. They may also have systemic effects, mobilising glucose from the liver and free fatty acid from the adipose tissue to the strenuously working respiratory muscles. At the same time, they stimulate the hypothalamic-pituitary-adrenal axis, leading to production of adrenocorticotropin and beta-endorphins. The adrenocorticotropin response may represent an attempt of the organism to reduce the injury occurring in the respiratory muscles via the production of glucocorticoids and the induction of the acute phase-response proteins. The beta-endorphin response would decrease the activation of the respiratory muscles and change the pattern of breathing, which becomes more rapid and shallow, possibly in an attempt to reduce and/or prevent further injury to the respiratory muscles. PMID:15572550

  2. Human immune response to Mycobacterium tuberculosis antigens.

    PubMed Central

    Havlir, D V; Wallis, R S; Boom, W H; Daniel, T M; Chervenak, K; Ellner, J J

    1991-01-01

    Little is known about the immunodominant or protective antigens of Mycobacterium tuberculosis in humans. Cell-mediated immunity is necessary for protection, and healthy tuberculin-positive individuals are relatively resistant to exogenous reinfection. We compared the targets of the cell-mediated immune response in healthy tuberculin-positive individuals to those of tuberculosis patients and tuberculin-negative persons. By using T-cell Western blotting (immunoblotting) of nitrocellulose-bound M. tuberculosis culture filtrate, peaks of T-cell blastogenic activity were identified in the healthy tuberculin reactors at 30, 37, 44, 57, 64, 71 and 88 kDa. Three of these fractions (30, 64, and 71 kDa) coincided with previously characterized proteins: antigen 6/alpha antigen, HSP60, and HSP70, respectively. The blastogenic responses to purified M. tuberculosis antigen 6/alpha antigen and BCG HSP60 were assessed. When cultured with purified antigen 6/alpha antigen, lymphocytes of healthy tuberculin reactors demonstrated greater [3H]thymidine incorporation than either healthy tuberculin-negative controls or tuberculous patients (8,113 +/- 1,939 delta cpm versus 645 +/- 425 delta cpm and 1,019 +/- 710 delta cpm, respectively; P less than 0.01). Healthy reactors also responded to HSP60, although to a lesser degree than antigen 6/alpha antigen (4,276 +/- 1,095 delta cpm; P less than 0.05). Partially purified HSP70 bound to nitrocellulose paper elicited a significant lymphocyte blastogenic response in two of six of the tuberculous patients but in none of the eight healthy tuberculin reactors. Lymphocytes of none of five tuberculin-negative controls responded to recombinant antigens at 14 or 19 kDa or to HSP70. Antibody reactivity generally was inversely correlated with blastogenic response: tuberculous sera had high titer antibody to M. tuberculosis culture filtrate in a range from 35 to 180 kDa. This is the first systematic evaluation of the human response to a panel of native

  3. Nanomaterial Induced Immune Responses and Cytotoxicity.

    PubMed

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines.

  4. Local Immune Response in Helicobacter pylori Infection

    PubMed Central

    Kivrak Salim, Derya; Sahin, Mehmet; Köksoy, Sadi; Adanir, Haydar; Süleymanlar, Inci

    2016-01-01

    Abstract There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori–infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC). In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines—interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32—in H pylori–infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients. We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori–infected NGM group. This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients. PMID:27196487

  5. Nanomaterial Induced Immune Responses and Cytotoxicity.

    PubMed

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  6. Sensing immune responses with customized peptide microarrays.

    PubMed

    Schirwitz, Christopher; Loeffler, Felix F; Felgenhauer, Thomas; Stadler, Volker; Breitling, Frank; Bischoff, F Ralf

    2012-12-01

    The intent to solve biological and biomedical questions in high-throughput led to an immense interest in microarray technologies. Nowadays, DNA microarrays are routinely used to screen for oligonucleotide interactions within a large variety of potential interaction partners. To study interactions on the protein level with the same efficiency, protein and peptide microarrays offer similar advantages, but their production is more demanding. A new technology to produce peptide microarrays with a laser printer provides access to affordable and highly complex peptide microarrays. Such a peptide microarray can contain up to 775 peptide spots per cm², whereby the position of each peptide spot and, thus, the amino acid sequence of the corresponding peptide, is exactly known. Compared to other techniques, such as the SPOT synthesis, more features per cm² at lower costs can be synthesized which paves the way for laser printed peptide microarrays to take on roles as efficient and affordable biomedical sensors. Here, we describe the laser printer-based synthesis of peptide microarrays and focus on an application involving the blood sera of tetanus immunized individuals, indicating the potential of peptide arrays to sense immune responses.

  7. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  8. Neuroendocrine-immune interactions and responses to exercise.

    PubMed

    Fragala, Maren S; Kraemer, William J; Denegar, Craig R; Maresh, Carl M; Mastro, Andrea M; Volek, Jeff S

    2011-08-01

    This article reviews the interaction between the neuroendocrine and immune systems in response to exercise stress, considering gender differences. The body's response to exercise stress is a system-wide effort coordinated by the integration between the immune and the neuroendocrine systems. Although considered distinct systems, increasing evidence supports the close communication between them. Like any stressor, the body's response to exercise triggers a systematic series of neuroendocrine and immune events directed at bringing the system back to a state of homeostasis. Physical exercise presents a unique physiological stress where the neuroendocrine and immune systems contribute to accommodating the increase in physiological demands. These systems of the body also adapt to chronic overload, or exercise training. Such adaptations alleviate the magnitude of subsequent stress or minimize the exercise challenge to within homeostatic limits. This adaptive capacity of collaborating systems resembles the acquired, or adaptive, branch of the immune system, characterized by the memory capacity of the cells involved. Specific to the adaptive immune response, once a specific antigen is encountered, memory cells, or lymphocytes, mount a response that reduces the magnitude of the immune response to subsequent encounters of the same stress. In each case, the endocrine response to physical exercise and the adaptive branch of the immune system share the ability to adapt to a stressful encounter. Moreover, each of these systemic responses to stress is influenced by gender. In both the neuroendocrine responses to exercise and the adaptive (B lymphocyte) immune response, gender differences have been attributed to the 'protective' effects of estrogens. Thus, this review will create a paradigm to explain the neuroendocrine communication with leukocytes during exercise by reviewing (i) endocrine and immune interactions; (ii) endocrine and immune systems response to physiological stress

  9. Disentangling the relationship between tumor genetic programs and immune responsiveness.

    PubMed

    Bedognetti, Davide; Hendrickx, Wouter; Ceccarelli, Michele; Miller, Lance D; Seliger, Barbara

    2016-04-01

    Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches.

  10. Disentangling the relationship between tumor genetic programs and immune responsiveness.

    PubMed

    Bedognetti, Davide; Hendrickx, Wouter; Ceccarelli, Michele; Miller, Lance D; Seliger, Barbara

    2016-04-01

    Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches. PMID:26967649

  11. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  12. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  13. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  14. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans.

    PubMed

    Schulz, Axel Ronald; Mälzer, Julia Nora; Domingo, Cristina; Jürchott, Karsten; Grützkau, Andreas; Babel, Nina; Nienen, Mikalai; Jelinek, Tomas; Niedrig, Matthias; Thiel, Andreas

    2015-11-15

    Immunological competence declines progressively with age, resulting in increased susceptibility of the elderly to infection and impaired responses to vaccines. Underlying mechanisms remain largely obscure as they have been related to complex, individual systemic immune properties that are challenging to investigate. In this study, we explored age-related changes in human immunity during a primary virus infection experimentally induced by immunization with live-attenuated yellow fever (YF) vaccine. Applying detailed serology, advanced FACS analysis, and systems biology, we discovered that aged subjects developed fewer neutralizing Abs, mounted diminished YF-specific CD8(+) T cell responses, and showed quantitatively and qualitatively altered YF-specific CD4(+) T cell immunity. Among numerous immune signatures, low in vivo numbers of naive CD4(+) recent thymic emigrants and peripheral dendritic cells correlated well with reduced acute responsiveness and altered long-term persistence of human cellular immunity to YF vaccination. Hence, we reveal in this article that essential elements of immune responses such as recent thymic emigrants and dendritic cells strongly relate to productive immunity in the elderly, providing a conceivable explanation for diminished responsiveness to vaccination with neoantigens and infection with de novo pathogens in the aged population. PMID:26459351

  15. A model of immunity to Burkholderia pseudomallei: unique responses following immunization and acute lethal infection.

    PubMed

    Ulett, Glen C; Labrooy, Justin T; Currie, Bart J; Barnes, Jodie L; Ketheesan, Natkunam

    2005-01-01

    Burkholderia pseudomallei, the etiological agent of melioidosis, causes significant mortality in endemic regions, but little is known regarding the immune mechanisms required for successful protective immunity. To establish a model of immunization that could be used to study this we screened a library of B. pseudomallei strains for immunogenicity in mice. BALB/c mice were immunized with test strains, and 2 weeks later were given a lethal challenge (LC) of virulent B. pseudomallei. Among 49 strains tested, a single strain, CL04, exhibited strong immunoprotective capacity. Interestingly, CL04 had been cultured from a patient with chronic colonization of B. pseudomallei, which is a rare phenomenon. Mice immunized with 0.1 x LD50 (5 x 10(3) CFU) of CL04 had significantly better survival and lower bacterial loads after LC compared to naïve controls. Dose-response analysis demonstrated more robust immunity after higher immunizing doses, and bacterial inactivation by gamma irradiation diminished the protective effect, indicating a requirement for viable organism for immunity. CL04-induced immunity was demonstrated both in B. pseudomallei-susceptible BALB/c and -resistant C57BL/6 mice. We investigated the gene profile of CL04-induced immunity by analyzing responses to immunization using cDNA microarray. Unique responses involving granulocyte macrophage colony stimulating factor (GM-CSF), the proapoptotic regulator Bad and cyclin-dependent kinase (CDK5) were detected in immunized mice, but these responses were absent in naïve-LC mice. Further, responses differed between mouse strains, indicating dependence on host genetic background. This model will be useful in identifying elements of the immune response required for successful adaptive immunity against B. pseudomallei.

  16. The feasibility of a school-based VI polysaccharide vaccine mass immunization campaign in Hue City, central Vietnam: streamlining a typhoid fever preventive strategy.

    PubMed

    Thiem, Vu Dinh; Danovaro-Holliday, M Carolina; Canh, Do Gia; Son, Nguyen Dinh; Hoa, Nyugen Thai; Thuy, Dang Thi Dieu; Ochiai, R Leon; Lan, Nguyen Thi; Hop, Tran Quang; Ali, Mohammad; Park, Jin Kyung; Abu-Elyazeed, Remon; Holliday, Kris; Ivanoff, Bernard; Anh, Dang Duc; Pang, Tikki; Donner, Allan; Galindo, Claudia M; Trach, Dang Duc; Clemens, John D; Acosta, Camilo J

    2006-05-01

    We report the coverage, safety, and logistics of a school-based typhoid fever immunization campaign that took place in Hue City, central Vietnam; a typhoid fever endemic area. A cluster-randomized evaluation-blinded controlled trial was designed where 68 schools (cluster) were randomly allocated the single dose Vi polysaccharide vaccine (Typherix) or the active control hepatitis A vaccine (Havrix). A safety surveillance system was implemented. A total of 32,267 children were immunized with a coverage of 57.5%. Strong predictors for vaccination were attending primary schools, peri-urban location of the school, and low family income. Human resources were mainly schoolteachers and the campaign was completed in about 1 month. Most adverse events reported were mild. Safe injection and safe sharp-waste disposal practices were followed. A typhoid fever school-based immunization campaign was safe and logistically possible. Coverage was moderate and can be interpreted as the minimum that could have been achievable because individual written informed consent procedures were sought for the first time in Hue City and the trial nature of the campaign. The lessons learned, together with cost-effectiveness results to be obtained by the end of follow-up period, will hopefully accelerate the introduction of Vi typhoid fever vaccine in Vietnam.

  17. Opioid peptides and innate immune response in mollusc.

    PubMed

    Liu, Dong-Wu

    2008-01-01

    The nervous and the immune systems can exchange information through opioid peptides. Furthermore, some opioid peptides can function as endogenous messengers of the immune system, and participate in an important part in the regulation of the various components of the immune response. Since the capacity of immunocytes to release and respond to opioid neuropeptide messengers is not restricted to mammalian organisms, recent studies have indicated that invertebrate models have been particularly useful to understand the mechanisms of the immune response. Moreover, the immunocytes of molluscs resemble cells of the vertebrate monocyte/macrophage lineage and are activated by similar substances, which control the main immune responses, i.e. phagocytosis, chemotaxis, and cytotoxicity. Recently, Mytilus edulis has been the subject of recent studies to determine whether the relationship between the immune and nervous systems seen in vertebrates also exists in invertebrates. The focus of this review is to describe how the opioid peptides participate in immune processes in molluscs.

  18. Theoretical aspects of immunity.

    PubMed

    Deem, Michael W; Hejazi, Pooya

    2010-01-01

    The immune system recognizes a myriad of invading pathogens and their toxic products. It does so with a finite repertoire of antibodies and T cell receptors. We here describe theories that quantify the dynamics of the immune system. We describe how the immune system recognizes antigens by searching the large space of receptor molecules. We consider in some detail the theories that quantify the immune response to influenza and dengue fever. We review theoretical descriptions of the complementary evolution of pathogens that occurs in response to immune system pressure. Methods including bioinformatics, molecular simulation, random energy models, and quantum field theory contribute to a theoretical understanding of aspects of immunity.

  19. Lentiviral infection, immune response peptides and sleep.

    PubMed

    Darko, D F; Mitler, M M; Henriksen, S J

    1995-01-01

    The aberrant sleep documented in subjects with human immunodeficiency virus (HIV) infection is uniquely important because of the contribution this poor quality sleep makes to the fatigue, disability, and eventual unemployment that befalls these patients. Especially given this importance in clinical care, the research on the prominent sleep changes described in HIV infection remains modest in quantity. The chronic asymptomatic stage of HIV infection is associated with the most intriguing and singular sleep structure changes. Especially robust is the increase in slow wave sleep, particularly in latter portions of the sleep period. This finding is rare in other primary or secondary sleep disorders. The sleep structure alterations are among the most replicable of several pathophysiological sequelae in the brain associated with early HIV infection. It is unlikely that these sleep architecture changes are psychosocial in etiology, and they occur before medical pathology is evident. They are not associated with stress, anxiety, or depression. Evidence is accumulating to support a role for the somnogenic immune peptides tumor necrosis factor (TNF)alpha and interleukin (IL-1 beta) in the sleep changes and fatigue commonly seen in HIV infection. These peptides are elevated in the blood of HIV-infected individuals, and are somnogenic in clinical use and animal models. The peripheral production of these peptides may also have a role in the regulation of normal sleep physiology. The lentivirus family contains both HIV and the feline immunodeficiency virus (FIV). The use of the FIV model of HIV infection may provide a way to further investigate the mechanism of a neurotropic, neurotoxic virus initiating the immune acute phase response and affecting sleep. Neurotropic lentivirus infection is a microbiological probe facilitating neuroimmune investigation. PMID:7795894

  20. Spaceflight and immune responses of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  1. Spaceflight and Immune Responses of Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1997-01-01

    In the grant period, we perfected techniques for determination of interleukin production and leukocyte subset analysis of rhesus monkeys. These results are outlined in detail in publication number 2, appended to this report. Additionally, we participated in the ARRT restraint test to determine if restraint conditions for flight in the Space Shuttle could contribute to any effects of space flight on immune responses. All immunological parameters listed in the methods section were tested. Evaluation of the data suggests that the restraint conditions had minimal effects on the results observed, but handling of the monkeys could have had some effect. These results are outlined in detail in manuscript number 3, appended to this report. Additionally, to help us develop our rhesus monkey immunology studies, we carried out preliminary studies in mice to determine the effects of stressors on immunological parameters. We were able to show that there were gender-based differences in the response of immunological parameters to a stressor. These results are outlined in detail in manuscript number 4, appended to this report.

  2. Association of Symptoms and Severity of Rift Valley Fever with Genetic Polymorphisms in Human Innate Immune Pathways

    PubMed Central

    Hise, Amy G.; Traylor, Zachary; Hall, Noémi B.; Sutherland, Laura J.; Dahir, Saidi; Ermler, Megan E.; Muiruri, Samuel; Muchiri, Eric M.; Kazura, James W.; LaBeaud, A. Desirée; King, Charles H.; Stein, Catherine M.

    2015-01-01

    Background Multiple recent outbreaks of Rift Valley Fever (RVF) in Africa, Madagascar, and the Arabian Peninsula have resulted in significant morbidity, mortality, and financial loss due to related livestock epizootics. Presentation of human RVF varies from mild febrile illness to meningoencephalitis, hemorrhagic diathesis, and/or ophthalmitis with residual retinal scarring, but the determinants for severe disease are not understood. The aim of the present study was to identify human genes associated with RVF clinical disease in a high-risk population in Northeastern Province, Kenya. Methodology/Principal Findings We conducted a cross-sectional survey among residents (N = 1,080; 1–85 yrs) in 6 villages in the Sangailu Division of Ijara District. Participants completed questionnaires on past symptoms and exposures, physical exam, vision testing, and blood collection. Single nucleotide polymorphism (SNP) genotyping was performed on a subset of individuals who reported past clinical symptoms consistent with RVF and unrelated subjects. Four symptom clusters were defined: meningoencephalitis, hemorrhagic fever, eye disease, and RVF-not otherwise specified. SNPs in 46 viral sensing and response genes were investigated. Association was analyzed between SNP genotype, serology and RVF symptom clusters. The meningoencephalitis symptom phenotype cluster among seropositive patients was associated with polymorphisms in DDX58/RIG-I and TLR8. Having three or more RVF-related symptoms was significantly associated with polymorphisms in TICAM1/TRIF, MAVS, IFNAR1 and DDX58/RIG-I. SNPs significantly associated with eye disease included three different polymorphisms TLR8 and hemorrhagic fever symptoms associated with TLR3, TLR7, TLR8 and MyD88. Conclusions/Significance Of the 46 SNPs tested, TLR3, TLR7, TLR8, MyD88, TRIF, MAVS, and RIG-I were repeatedly associated with severe symptomatology, suggesting that these genes may have a robust association with RVFV-associated clinical

  3. Fast food fever: reviewing the impacts of the Western diet on immunity.

    PubMed

    Myles, Ian A

    2014-01-01

    While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet's impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today's modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease. PMID:24939238

  4. Fast food fever: reviewing the impacts of the Western diet on immunity

    PubMed Central

    2014-01-01

    While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet’s impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today’s modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease. PMID:24939238

  5. Regional Immune Response to Immunization with Escherichia coli O157:H7-Derived Intimin in Cattle

    PubMed Central

    Boland, Kathryn G.; Hayles, Andrea N.; Miller, Claire B.; Kerr, Tovah; Brown, Wendy C.

    2013-01-01

    Escherichia coli O157:H7 is an enteric pathogen of animals and humans that can result in deadly sequelae. Cattle are asymptomatic carriers and shedders of the bacteria and serve as an important reservoir of human infection. E. coli O157:H7 colonizes the gastrointestinal tract, most frequently at the rectoanal junction mucosa in cattle. Vaccination is a potentially highly effective means of decreasing cattle colonization and shedding and thereby decreasing human infections. Currently available vaccines are administered subcutaneously or intramuscularly, and immune responses have been evaluated solely by systemic immunoglobulin responses. This study evaluated local and systemic lymphoproliferative responses in addition to immunoglobulin responses following subcutaneous or mucosal (rectal) immunization with E. coli O157:H7 outer membrane protein intimin over three trials. In all three trials, significant local and systemic lymphoproliferative responses (P < 0.05) occurred following immunization in the majority of animals, as well as significant immunoglobulin responses (P < 0.001) in all animals. Surprisingly, local responses in the mesorectal lymph nodes were very similar between the subcutaneous and mucosal immunization groups. Moreover, the responses in mesorectal lymph nodes appeared targeted rather than generalized, as minimal or no significant responses were observed in the associated prescapular lymph nodes of subcutaneously immunized animals. The results indicate that both subcutaneous and mucosal immunizations are effective methods of inducing immune responses against E. coli O157:H7 in cattle. PMID:23408521

  6. Effect of antipyretic analgesics on immune responses to vaccination.

    PubMed

    Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B

    2016-09-01

    While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296

  7. [Risks and benefits of paracetamol in children with fever].

    PubMed

    de Bont, Eefje G P M; Brand, Paul L P; Dinant, Geert-Jan; van Well, Gijs T J; Cals, Jochen W L

    2014-01-01

    Worldwide, paracetamol is the most commonly used antipyretic for children and the drug of first choice for reducing fever named in the majority of practice guidelines. However, whether or not it is necessary or desirable to treat fever is questionable. The provision of accurate information on the causes and treatment of fever can decrease the help-seeking behaviour of parents. Paracetamol is both effective and advisable when there is a combination of fever and pain. Fever on its own does not require treatment and doctors should therefore show caution about advising paracetamol for children who have just this symptom. The effect of paracetamol on the general well-being of children with fever on its own has not been unequivocally proven. Treatment with paracetamol for the prevention of febrile convulsions has been proven ineffective. There are indications that inhibiting fever through paracetamol can adversely affect the immune response. The use of paracetamol can produce mild side effects and hepatotoxicity.

  8. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever

    PubMed Central

    Oestereich, Lisa; Lüdtke, Anja; Ruibal, Paula; Pallasch, Elisa; Kerber, Romy; Rieger, Toni; Wurr, Stephanie; Bockholt, Sabrina; Krasemann, Susanne

    2016-01-01

    Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology. PMID:27191716

  9. Maternal antibodies and infant immune responses to vaccines.

    PubMed

    Edwards, Kathryn M

    2015-11-25

    Infants are born with immature immune systems, making it difficult for them to effectively respond to the infectious pathogens encountered shortly after birth. Maternal antibody is actively transported across the placenta and serves to provide protection to the newborn during the first weeks to months of life. However, maternal antibody has been shown repeatedly to inhibit the immune responses of young children to vaccines. The mechanisms for this inhibition are presented and the impact on ultimate immune responses is discussed.

  10. Innate immune response development in nestling tree swallows

    USGS Publications Warehouse

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  11. Monitoring the immune response using real-time PCR.

    PubMed

    Stordeur, Patrick

    2009-01-01

    Induction of an immune response to a particular antigen is the basis of vaccination. This has been done for years to prevent infectious diseases, and has the potential for the treatment of cancer. The immune response is nowadays more precisely modulated rather than simply induced, like in case of immunotherapy of allergic diseases. Likewise, autoimmune diseases are associated with an inappropriate immune response, and many efforts are made for specifically inhibiting this unwanted response. A possible line of attack is the induction of an antigen-specific immune tolerance, which also has a use in the field of transplantation, where allogeneic responses are deleterious for the graft. In all of these fields of fundamental and clinical medicine, the modulation of immune response requires the assistance of laboratory tests, among which real-time PCR appears more and more helpful. This chapter describes a protocol to quantify immune-related mRNAs using reverse transcription-real-time PCR. The transcripts can be quantified in cultured cells or in cultured whole blood, after an incubation period in the presence of the antigen to which the immune response is analyzed. This is the typical approach to evaluate the efficacy of a vaccine. The transcripts can also be quantified directly in the biological sample, giving information about the in vivo immune status of the individual. The techniques to achieve these different methods are described, and are illustrated by the analysis of the response against the toxoid tetanus antigen.

  12. Sex-based differences in immune function and responses to vaccination

    PubMed Central

    Klein, Sabra L.; Marriott, Ian; Fish, Eleanor N.

    2015-01-01

    Females typically develop higher antibody responses and experience more adverse reactions following vaccination than males. These differences are observed in response to diverse vaccines, including the bacillus Calmette-Guerin vaccine, the measles, mumps and rubella vaccine, the yellow fever virus vaccine and influenza vaccines. Sex differences in the responses to vaccines are observed across diverse age groups, ranging from infants to aged individuals. Biological as well as behavioral differences between the sexes are likely to contribute to differences in the outcome of vaccination between the sexes. Immunological, hormonal, genetic and microbiota differences between males and females may also affect the outcome of vaccination. Identifying ways to reduce adverse reactions in females and increase immune responses in males will be necessary to adequately protect both sexes against infectious diseases. PMID:25573105

  13. Linear ubiquitination signals in adaptive immune responses

    PubMed Central

    Ikeda, Fumiyo

    2015-01-01

    Summary Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage-type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized Tumor Necrosis Factor (TNF) -induced canonical nuclear factor-kappa B (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. PMID:26085218

  14. Probiotics and the immune response to vaccines.

    PubMed

    MacDonald, Thomas T; Bell, Iona

    2010-08-01

    Probiotics are bacteria, but sometimes fungi, which when taken by the oral route may give some health benefits. The most compelling evidence for beneficial effects of probiotics is in the prevention and reduction in the duration of symptoms related to gut infectious disease. There is also evidence to show that some specific probiotics are beneficial in Clostridium difficile diarrhoea in the elderly. As further and better controlled clinical studies have appeared, some specific probiotics also appear to have beneficial effects in perhaps preventing and reducing the duration of symptoms due to acquired upper respiratory tract infections. In an attempt to explain these effects, attention has turned to the effects of some specific probiotics on the immune system. There is evidence that some specific probiotics can alter monocyte and natural killer cell function in the blood. Evidence is also accumulating that taking some specific probiotics can boost antibody responses to oral and systemically administered vaccines. The effect when shown is modest and is not always seen in different studies to all vaccines, but there is enough of a trend to make the area worthy of further investigation, particularly to tease out the mechanisms involved.

  15. The anticancer immune response: indispensable for therapeutic success?

    PubMed Central

    Zitvogel, Laurence; Apetoh, Lionel; Ghiringhelli, François; André, Fabrice; Tesniere, Antoine; Kroemer, Guido

    2008-01-01

    Although the impact of tumor immunology on the clinical management of most cancers is still negligible, there is increasing evidence that anticancer immune responses may contribute to the control of cancer after conventional chemotherapy. Thus, radiotherapy and some chemotherapeutic agents, in particular anthracyclines, can induce specific immune responses that result either in immunogenic cancer cell death or in immunostimulatory side effects. This anticancer immune response then helps to eliminate residual cancer cells (those that fail to be killed by chemotherapy) or maintains micrometastases in a stage of dormancy. Based on these premises, in this Review we address the question, How may it be possible to ameliorate conventional therapies by stimulating the anticancer immune response? Moreover, we discuss the rationale of clinical trials to evaluate and eventually increase the contribution of antitumor immune responses to the therapeutic management of neoplasia. PMID:18523649

  16. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response.

    PubMed

    van Der Most, R G; Murali-Krishna, K; Ahmed, R; Strauss, J H

    2000-09-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.

  17. Recent advances in the development of recombinant vaccines against classical swine fever virus: cellular responses also play a role in protection.

    PubMed

    Ganges, Llilianne; Núñez, José I; Sobrino, Francisco; Borrego, Belén; Fernández-Borges, Natalia; Frías-Lepoureau, María T; Rodríguez, Fernando

    2008-08-01

    Classical swine fever virus (CSFV) is the causative agent of one of the most devastating porcine haemorrhagic viral diseases, classical swine fever (CSF). CSFV mainly infects endothelial cells and macrophages and at the same time promotes bystander apoptosis of the surrounding T cells, causing strong immune suppression and high mortality rates. Most animals experience acute infection, during which they either die or survive by producing neutralising antibodies to the virus. However, in a few cases, the impaired immune system cannot control viral progression, leading to chronic infection. Efficient live attenuated vaccines against CSFV exist and are routinely used only in endemic countries. The ability of these vaccines to replicate in the host, even at very low rates, makes it extremely difficult to distinguish vaccinated from infected animals, favouring a restricted policy regarding vaccination against CSFV in non-endemic countries. There is a clear need for efficient and safer marker vaccines to assist in the control of future CSF outbreaks. In this review article, some of the most recent advances in the field of recombinant vaccines against CSFV are presented and the nature of the protective immune responses they induce is discussed.

  18. Immune response, not immune maintenance, is energetically costly in wild white-footed mice (Peromyscus leucopus).

    PubMed

    Derting, Terry L; Compton, Stephen

    2003-01-01

    Understanding the cost of immune function is essential for more accurate characterization of energy budgets of animals and better understanding of the role of immunity in the evolution of life-history strategies. We examined the energetic cost of maintaining a normally functioning immune system and mounting a mild immune response in wild male white-footed mice (Peromyscus leucopus). To evaluate the cost of maintaining immunocompetence, we compared resting and daily metabolic rates (RMR; DMR) and masses of body organs of mice whose immune systems were suppressed by cyclophosphamide with those of control mice. To evaluate the cost of mounting an immune response, we measured RMR, DMR, and organ masses in mice whose humoral and cell-mediated immune responses had been stimulated by injections of sheep red blood cells and phytohemagglutinin, respectively. Immunosuppression resulted in a significant reduction in circulating leukocytes, by 225%, but no significant effect on metabolic rates or organ masses. Immunochallenged animals showed no significant differences in metabolic rates compared with control animals but did exhibit significantly smaller dry masses of the small intestine and testes, by 74% and 22%, respectively. We concluded that the cost of maintaining the immune system was minimal. In contrast, there was a significant energetic cost of mounting an immune response that, depending on its magnitude, can be met through reductions in energy allocation to other physiological systems.

  19. Mechanisms of nutrient modulation of the immune response.

    PubMed

    Cunningham-Rundles, Susanna; McNeeley, David F; Moon, Aeri

    2005-06-01

    Lack of adequate macronutrients or selected micronutrients, especially zinc, selenium, iron, and the antioxidant vitamins, can lead to clinically significant immune deficiency and infections in children. Undernutrition in critical periods of gestation and neonatal maturation and during weaning impairs the development and differentiation of a normal immune system. Infections are both more frequent and more often become chronic in the malnourished child. Recent identification of genetic mechanisms is revealing critical pathways in the gastrointestinal immune response. New studies show that the development of tolerance, control of inflammation, and response to normal mucosal flora are interrelated and linked to specific immune mechanisms. Nutrients act as antioxidants and as cofactors at the level of cytokine regulation. Protein calorie malnutrition and zinc deficiency activate the hypothalamic-pituitary-adrenal axis. Increased circulating levels of glucocorticoids cause thymic atrophy and affect hematopoiesis. Chronic undernutrition and micronutrient deficiency compromise cytokine response and affect immune cell trafficking. The combination of chronic undernutrition and infection further weakens the immune response, leading to altered immune cell populations and a generalized increase in inflammatory mediators. Obesity caused by excess nutrition or excess storage of fats relative to energy expenditure is a form of malnutrition that is increasingly seen in children. Leptin is emerging as a cytokine-like immune regulator that has complex effects in both overnutrition and in the inflammatory response in malnutrition. Because the immune system is immature at birth, malnutrition in childhood might have long-term effects on health.

  20. Biomimetic and synthetic interfaces to tune immune responses (Review)

    PubMed Central

    Garapaty, Anusha; Champion, Julie A.

    2015-01-01

    Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell–cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell–particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease. PMID:26178262

  1. Sexual dimorphism in immunity: improving our understanding of vaccine immune responses in men.

    PubMed

    Furman, David

    2015-03-01

    Weaker immune responses are often observed in males compared to females. Since female hormones have proinflammatory properties and androgens have potent immunomodulatory effects, this sexual dimorphism in the immune response seems to be hormone dependent. Despite our current knowledge about the effect of sex hormones on immune cells, definition of the factors driving the sex differences in immunoclinical outcomes, such as the diminished response to infection and vaccination observed in men or the higher rates of autoimmunity observed in females, remains elusive. Recently, systems approaches to immune function have started to suggest a way toward establishing this connection. Such studies promise to improve our understanding of the mechanisms underlying the sexual dimorphism observed in the human immune system.

  2. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J

    2011-06-23

    Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.

  3. The X-files in immunity: sex-based differences predispose immune responses.

    PubMed

    Fish, Eleanor N

    2008-09-01

    Despite accumulating evidence in support of sex-based differences in innate and adaptive immune responses, in the susceptibility to infectious diseases and in the prevalence of autoimmune diseases, health research and clinical practice do not address these distinctions, and most research studies of immune responses do not stratify by sex. X-linked genes, hormones and societal context are among the many factors that contribute to disparate immune responses in males and females. It is crucial to address sex-based differences in disease pathogenesis and in the pharmacokinetics and pharmacodynamics of therapeutic medications to provide optimal disease management for both sexes.

  4. Innate and adaptive immune responses in neurodegeneration and repair.

    PubMed

    Amor, Sandra; Woodroofe, M Nicola

    2014-03-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases.

  5. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  6. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  7. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  8. Cell-mediated immune responses to COPV early proteins.

    PubMed

    Jain, Suchitra; Moore, Richard A; Anderson, Davina M; Gough, Gerald W; Stanley, Margaret A

    Cell-mediated immunity plays a key role in the regression of papillomavirus-induced warts and intra-epithelial lesions but the target antigens that induce this response are not clear. Canine oral papillomavirus (COPV) infection of the oral cavity in dogs is a well-characterized model of mucosal papillomavirus infection that permits analysis of the immune events during the infectious cycle. In this study we show that during the COPV infectious cycle, systemic T cell responses to peptides of several early proteins particularly the E2 protein, as assayed by delayed type hypersensitivity, lymphoproliferation and IFN-gamma ELISPOT, can be detected. The maximal response occurs in a narrow time window that coincides with maximal viral DNA replication and wart regression: thereafter, systemic T cell responses to early proteins decline quite rapidly. Vaccination using particle-mediated immunotherapeutic delivery (PMID) of codon-modified COPV E2 and E1 genes induces strong antigen-specific cell-mediated immune responses in the vaccinated animals. These data show that therapeutic immunization by PMID with codon-modified E2 is completely effective, that to E1 is partially protective, that this correlates with the intensity of antigen-specific cell-mediated immune responses and, further, they emphasize the importance of these responses and the route of immunization in the generation of protective immunity. PMID:16949120

  9. Innate immune responses in raccoons after raccoon rabies virus infection.

    PubMed

    Srithayakumar, Vythegi; Sribalachandran, Hariharan; Rosatte, Rick; Nadin-Davis, Susan A; Kyle, Christopher J

    2014-01-01

    Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.

  10. Yellow fever vaccine-associated adverse events following extensive immunization in Argentina.

    PubMed

    Biscayart, Cristián; Carrega, María Eugenia Pérez; Sagradini, Sandra; Gentile, Angela; Stecher, Daniel; Orduna, Tomás; Bentancourt, Silvia; Jiménez, Salvador García; Flynn, Luis Pedro; Arce, Gabriel Pirán; Uboldi, María Andrea; Bugna, Laura; Morales, María Alejandra; Digilio, Clara; Fabbri, Cintia; Enría, Delia; Diosque, Máximo; Vizzotti, Carla

    2014-03-01

    As a consequence of YF outbreaks that hit Brazil, Argentina, and Paraguay in 2008-2009, a significant demand for YF vaccination was subsequently observed in Argentina, a country where the usual vaccine recommendations are restricted to provinces that border Brazil, Paraguay, and Bolivia. The goal of this paper is to describe the adverse events following immunization (AEFI) against YF in Argentina during the outbreak in the northeastern province of Misiones, which occurred from January 2008 to January 2009. During this time, a total of nine cases were reported, almost two million doses of vaccine were administered, and a total of 165 AEFI were reported from different provinces. Case study analyses were performed using two AEFI classifications. Forty-nine events were classified as related to the YF vaccine (24 serious and 1 fatal case), and 12 events were classified as inconclusive. As the use of the YF 17D vaccine can be a challenge to health systems of countries with different endemicity patterns, a careful clinical and epidemiological evaluation should be performed before its prescription to minimize serious adverse events. PMID:24456625

  11. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  12. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  13. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.

  14. Yellow fever vaccination centers: concurrent vaccinations and updates on mosquito biology.

    PubMed

    Arya, Subhash C; Agarwal, Nirmala

    2012-09-01

    Mandatory visits to immunization centers that offer pre-travel Yellow fever vaccine to prospective travelers would be useful for briefing the basics of the biology of the mosquito responsible for Yellow fever spread. Pre- travel knowledge on the day-time rather the nocturnal biting habit of the mosquitoes of Aedes species would prevent from bites of the mosquitoes responsible for the spread of viruses causing Yellow fever, dengue or Chikungunya infection.

  15. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses

    PubMed Central

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies. PMID:27642236

  16. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses

    PubMed Central

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies.

  17. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses.

    PubMed

    Sujashvili, Rusudan

    2016-01-01

    T and B lymphocytes play a central role in protecting the human body from infectious pathogens but occasionally they can escape immune tolerance, become activated, and induce autoimmune diseases. All deregulated cellular processes are associated with improper functioning of the ubiquitin-proteasome system (UPS) in eukaryotic cells. The role of ubiquitin in regulation of immune responses and in autoimmune diseases is only beginning to emerge. Ubiquitin is found in intra- and extracellular fluids and is involved in regulation of numerous cellular processes. Extracellular ubiquitin ascribed a role in lymphocyte differentiation. It regulates differentiation and maturation of hematopoietic cell lines. Ubiquitination is involved in initiation, propagation, and termination of immune responses. Disrupted ubiquitination can lead to autoimmunity. Recent observations showed that it can suppress immune response and prevent inflammation. Exogenous ubiquitin may provide good potential as a new tool for targeted therapy for immune mediated disorders of various etiologies. PMID:27642236

  18. Global analysis of the immune response

    NASA Astrophysics Data System (ADS)

    Ribeiro, Leonardo C.; Dickman, Ronald; Bernardes, Américo T.

    2008-10-01

    The immune system may be seen as a complex system, characterized using tools developed in the study of such systems, for example, surface roughness and its associated Hurst exponent. We analyze densitometric (Panama blot) profiles of immune reactivity, to classify individuals into groups with similar roughness statistics. We focus on a population of individuals living in a region in which malaria endemic, as well as a control group from a disease-free region. Our analysis groups individuals according to the presence, or absence, of malaria symptoms and number of malaria manifestations. Applied to the Panama blot data, our method proves more effective at discriminating between groups than principal-components analysis or super-paramagnetic clustering. Our findings provide evidence that some phenomena observed in the immune system can be only understood from a global point of view. We observe similar tendencies between experimental immune profiles and those of artificial profiles, obtained from an immune network model. The statistical entropy of the experimental profiles is found to exhibit variations similar to those observed in the Hurst exponent.

  19. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness.

    PubMed

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  20. Subversion of the Immune Response by Rabies Virus.

    PubMed

    Scott, Terence P; Nel, Louis H

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses-including age, sex, cerebral lateralization and temperature-are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host's response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  1. Subversion of the Immune Response by Rabies Virus.

    PubMed

    Scott, Terence P; Nel, Louis H

    2016-08-19

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses-including age, sex, cerebral lateralization and temperature-are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host's response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.

  2. Tissue engineering tools for modulation of the immune response

    PubMed Central

    Boehler, Ryan M.; Graham, John G.; Shea, Lonnie D.

    2012-01-01

    Tissue engineering scaffolds have emerged as a powerful tool within regenerative medicine. These materials are being designed to create environments that promote regeneration through a combination of: (i) scaffold architecture, (ii) the use of scaffolds as vehicles for transplanting progenitor cells, and/or (iii) localized delivery of inductive factors or genes encoding for these inductive factors. This review describes the techniques associated with each of these components. Additionally, the immune response is increasingly recognized as a factor influencing regeneration. The immune reaction to an implant begins with an acute response to the injury and innate recognition of foreign materials, with the subsequent chronic immune response involving specific recognition of antigens (e.g., transplanted cells) by the adaptive immune response, which can eventually lead to rejection of the implant. Thus, we also describe the impact of each component on the immune response, and strategies (e.g., material design, anti-inflammatory cytokine delivery, and immune cell recruitment/transplantation) to modulate, yet not eliminate, the local immune response in order to promote regeneration, which represents another important tool for regenerative medicine. PMID:21988690

  3. Paradoxical acclimation responses in the thermal performance of insect immunity.

    PubMed

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  4. Superficial Immunity: Antimicrobial Responses Are More Than Skin Deep.

    PubMed

    Mack, Madison R; Kim, Brian S

    2016-07-19

    The skin barrier is essential for host defense, but how the skin provides protection when the barrier is breached is not well understood. In this issue of Immunity, Gallo and colleagues report that keratinocytes integrate signals from antimicrobial peptides via MAVS signaling to amplify their antiviral immune response. PMID:27438760

  5. [Adaptive immune response of people living near chemically hazardous object].

    PubMed

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  6. Clinical Consequences of Immune Response to CT Upper Genital Tract Infection in Women

    PubMed Central

    Askienazy-Elbhar, M.; Orfila, J.

    1996-01-01

    C. TRACHOMATIS (CT) infections of the upper genital tract in women are either acute, sub acute or chronic. CT infection has a tendency to be chronic, latent and persistent as a consequence of the host immune reaction to CT major outer membrane protein, 57 Kd heat shock protein and lipopolysaccharide. Chlamydial persistence can be induced as a result of inflammatory and/or immune regulated cytokines, Interferon γ depletion of tryptophan causes a stress response involving development of abnormal forms with increased levels of stress response proteins which maintain host immune responses with continuous fibrin exudate. The main clinical consequences are acute and chronic pelvic inflammatory disease, with infertility, ectopic pregnancy and, less frequently, chronic pelvic pain as late sequelae. PID, when acute, is marked by bilateral pelvic pain, plus other infectious signs in typical cases: fever, leucorrhea, red and purulent cervix. In 50% cases, infectious signs are slight or absent or there is an atypical clinical situation. Laparoscopy is the key for diagnosis. It allows the surgeon to have a direct look at the pelvic organs and perform microbiologic and histologic sampling. In severe cases, laparoscopy allows the surgeon to aspirate the purulent discharge and successfully treat pelvic abscesses. Chronic PID usually is clinically silent. It is in most cases discovered some years after the onset of CT infection, in women operated on for tubal infertility or ectopic pregnancy. Further studies, to evaluate treatments efficiency in chronic cases and factors leading to ectopic pregnancy or to recurrence, are indicated. PMID:18476090

  7. Taenia solium: immune response against oral or systemic immunization with purified recombinant calreticulin in mice.

    PubMed

    Fonseca-Coronado, Salvador; Ruiz-Tovar, Karina; Pérez-Tapia, Mayra; Mendlovic, Fela; Flisser, Ana

    2011-01-01

    Recombinant functional Taenia solium calreticulin (rTsCRT) confers different degrees of protection in the experimental model of intestinal taeniosis in hamsters. The aim of this study was to evaluate the immune response induced after oral or systemic immunization with an electroeluted rTsCRT in BALB/c mice. Oral immunization elicited high fecal IgA and the production of IL-4 and IL-5 by mesenteric lymph node cells after in vitro stimulation with rTSCRT, indicating a Th2 response. Mice subcutaneously immunized produced high amounts of serum IgG, being IgG1 (Th2-related) the predominant isotype, while in vitro stimulated spleen cells synthesized IL-4, IL-5 and also IFN-γ, indicating a mixed Th1/Th2 cellular response after systemic immunization. Our data show that purified rTsCRT induces polarized Th2 responses after oral immunization of mice, a common characteristic of protective immunity against helminths and, consequently, a desirable hallmark in the search for a vaccine.

  8. Subversion of the Immune Response by Rabies Virus

    PubMed Central

    Scott, Terence P.; Nel, Louis H.

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  9. Regulation of Immune Responses by mTOR

    PubMed Central

    Powell, Jonathan D.; Pollizzi, Kristen N.; Heikamp, Emily B.; Horton, Maureen R.

    2013-01-01

    mTOR is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental cues in the form of growth factors, amino acids, and energy. In the study of the immune system, mTOR is emerging as a critical regulator of immune function because of its role in sensing and integrating cues from the immune microenvironment. With the greater appreciation of cellular metabolism as an important regulator of immune cell function, mTOR is proving to be a vital link between immune function and metabolism. In this review, we discuss the ability of mTOR to direct the adaptive immune response. Specifically, we focus on the role of mTOR in promoting differentiation, activation, and function in T cells, B cells, and antigen-presenting cells. PMID:22136167

  10. Aberrant immune responses in arsenical skin cancers.

    PubMed

    Lee, Chih-Hung; Liao, Wei-Ting; Yu, Hsin-Su

    2011-09-01

    Arsenic is a well-known human carcinogen. It also impairs immune functions and activation in many aspects. However, only a small portion of arsenic-exposed population develops skin abnormalities, including Bowen's disease and skin cancers. Differential immune activation among the individuals might account for the different susceptibilities. In patients with arsenic-induced Bowen's disease, there is a selective CD4 T-cell apoptosis through tumor necrosis factor-alpha pathway, decrease in macrophage differentiation and phagocytosis, reduced Langerhans cell numbers and dendrites, altered regulatory T-cell distribution, and other immune alterations. Several lines of evidence from mouse and fish studies also confirmed the potent and multifaceted effects of arsenic in the immune system. The molecular bases of immunosuppression by arsenic in lymphocytes may include chromosomal and DNA abnormalities, decreased T-cell receptor activation, and the cellular status of oxidation and methylation. This article also reviews the causative and differential role of selective CD4 cell apoptosis and the carcinogenesis of arsenic-induced Bowen's disease.

  11. Endocrine Factors Modulating Immune Responses in Pregnancy

    PubMed Central

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune–immune interactions as well as immune–endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal–maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field. PMID:24847324

  12. Virus-like nanostructures for tuning immune response

    PubMed Central

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-01-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system. PMID:26577983

  13. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  14. Measuring Immune Responses to recombinant AAV Gene Transfer

    PubMed Central

    Martino, Ashley T.; Herzog, Roland W.; Anegon, Ignacio; Adjali, Oumeya

    2013-01-01

    Following AAV-based gene transfer, the occurrence of adaptive immune responses specific to the vector or the transgene product is a major roadblock to successful clinical translation. These responses include antibodies against the AAV capsid, which can be neutralizing and therefore prevent the ability to repeatedly administer the vector, and CD8+ cytotoxic T lymphocytes, which can eliminate transduced cells. In addition, humans may have both humoral and cellular pre-existing immunity, as a result from natural infection with parent virus or related serotypes. The need for assays to detect and measure these anti-capsid immune responses in humans and in experimental animals is profound. Here, ELISPOT, immunocapture (ELISA), and neutralization assays are explained and provided in detail. Furthermore, such techniques can readily be adapted to monitor and quantify immune responses against therapeutic transgene products encoded by the vector genome. PMID:22034034

  15. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    PubMed

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases.

  16. DNA Damage Response and Immune Defense: Links and Mechanisms.

    PubMed

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  17. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  18. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  19. Immunostimulant Adjuvant Patch Enhances Humoral and Cellular Immune Responses to DNA Immunization

    PubMed Central

    Mkrtichyan, Mikayel; Ghochikyan, Anahit; Movsesyan, Nina; Karapetyan, Adrine; Begoyan, Gayane; Yu, Jianmei; Glenn, Gregory M.; Ross, Ted M.; Agadjanyan, Michael G.; Cribbs, David H.

    2008-01-01

    The focus of this report is on the development of an improved DNA immunization protocol, which takes advantage of the strengths of DNA immunization, as well as those associated with adjuvant delivered by transcutaneous immunostimulatory (IS) patches. Because transcutaneous delivery of adjuvants to the skin at the vaccination site has been shown to amplify the immune response to protein antigens, we hypothesized that the same IS patch when placed on the skin at the site of DNA injection could further enhance the immune response to a DNA influenza vaccine. We have combined an influenza DNA vaccine, hemagglutinin fused with three copies of complement C3d, to enhance uptake and antigen presentation, with an IS patch containing heat-labile enterotoxin from Escherichia coli. Coadministration of a potent adjuvant in IS patches placed on the skin at the site of DNA vaccination dramatically amplifies anti-influenza antibody immune response. Supplementing DNA vaccines with IS patches may be a particularly valuable strategy because DNA vaccines can be rapidly modified in response to mutations in pathogens, and individuals with compromised immune systems such as transplant patients and the elderly will benefit from the enhanced antibody response induced by the IS patches. PMID:17961074

  20. Intraspleen DNA inoculation elicits protective cellular immune responses.

    PubMed

    Cano, A; Fragoso, G; Gevorkian, G; Terrazas, L I; Petrossian, P; Govezensky, T; Sciutto, E; Manoutcharian, K

    2001-04-01

    DNA immunization or inoculation is a recent vaccination method that induces both humoral and cellular immune responses in a range of hosts. Independent of the route or site of vaccination, the transfer of antigen-presenting cells (APC) or antigens into lymphoid organs is necessary. The aim of this investigation was to test whether intraspleen (i.s.) DNA inoculation is capable of inducing a protective immune response. We immunized mice by a single i.s. injection of a DNA construct expressing the immunoglobulin (Ig) heavy-chain variable domain (VH) in which the complementarity-determining regions (CDR) had been replaced by a Taenia crassiceps T-cell epitope. In these mice, immune responses and protective effects elicited by the vaccine were measured. We have shown here for the first time that i.s. DNA inoculation can induce protective cellular immune responses and activate CD8(+) T cells. Also, Ig V(H) appeared to be the minimal delivery unit of "antigenized" Ig capable of inducing T-cell activation in a lymphoid organ. The strategy of introducing T-cell epitopes into the molecular context of the V(H) domain in combination with i.s. DNA immunization could have important implications and applications for human immunotherapy.

  1. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    NASA Astrophysics Data System (ADS)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  2. The immune cellular response tested by lymphocyte transformation in the streptococcal infections.

    PubMed

    Mihalcu, F; Stefănescu, ? M; Teodorescu, ? M

    1975-01-01

    Thirty-five children between 6 and 17 years treated in the clinic for scarlet fever, rheumatic fever and other non-streptococcal infections as controls, were tested by lymphocyte transformation to four streptococcal antigens. In all cases of scarlet fever and especially of rheumatic fever the lymphocytes were better stimulated by streptococcal products than in the control group. The SO and the MAP fraction showed a good stimulating activity. The response in the rheumatic fever patients was not influenced by the steroid treatment, nor by the stage of the illness. A parallelism with high humoral and cellular responses to SO at the beginning of the acute rheumatic fever was observed, followed by a dissociation of both responses during the evolution with the maintenance of the cellular one and the decrease of the ASO titre.

  3. Understanding Interpretations of and Responses to Childhood Fever in the Chikhwawa District of Malawi

    PubMed Central

    Ewing, Victoria L.; Tolhurst, Rachel; Kapinda, Andrew; SanJoaquin, Miguel; Terlouw, Dianne J.; Richards, Esther; Lalloo, David G.

    2015-01-01

    Background Universal access to, and community uptake of malaria prevention and treatment strategies are critical to achieving current targets for malaria reduction. Each step in the treatment-seeking pathway must be considered in order to establish where opportunities for successful engagement and treatment occur. We describe local classifications of childhood febrile illnesses, present an overview of treatment-seeking, beginning with recognition of illness, and suggest how interventions could be used to target the barriers experienced. Methods Qualitative data were collected between September 2010 and February 2011. A total of 12 Focus Group Discussions and 22 Critical Incident Interviews were conducted with primary caregivers who had reported a recent febrile episode for one of their children. Findings and Conclusion The phrase ‘kutentha thupi’, or ‘hot body’ was used to describe fever, the most frequently mentioned causes of which were malungo (translated as ‘malaria’), mauka, nyankhwa and (m)tsempho. Differentiating the cause was challenging because these illnesses were described as having many similar non-specific symptoms, despite considerable differences in the perceived mechanisms of illness. Malungo was widely understood to be caused by mosquitoes. Commonly described symptoms included: fever, weakness, vomiting, diarrhoea and coughing. These symptoms matched well with the biomedical definition of malaria, although they also overlapped with symptoms of other illnesses in both the biomedical model and local illness classifications. In addition, malungo was used interchangeably to describe malaria and fever in general. Caregivers engaged in a three-phased approach to treatment seeking. Phase 1—Assessment; Phase 2—Seeking care outside the home; Phase 3—Evaluation of treatment response. Within this paper, the three-phased approach is explored to identify potential interventions to target barriers to appropriate treatment. Community engagement

  4. Protective immune responses to fungal infections.

    PubMed

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  5. Ontogeny of Intestinal Epithelial Innate Immune Responses

    PubMed Central

    Hornef, Mathias W.; Fulde, Marcus

    2014-01-01

    Emerging evidence indicates that processes during postnatal development might significantly influence the establishment of mucosal host-microbial homeostasis. Developmental and adaptive immunological processes but also environmental and microbial exposure early after birth might thus affect disease susceptibility and health during adult life. The present review aims at summarizing the current understanding of the intestinal epithelial innate immune system and its developmental and adaptive changes after birth. PMID:25346729

  6. Exonuclease Domain of the Lassa Virus Nucleoprotein Is Critical To Avoid RIG-I Signaling and To Inhibit the Innate Immune Response

    PubMed Central

    Reynard, Stéphanie; Russier, Marion; Fizet, Alexandra; Carnec, Xavier

    2014-01-01

    Lassa virus (LASV), which causes a viral hemorrhagic fever, inhibits the innate immune response. The exonuclease (ExoN) domain of its nucleoprotein (NP) is implicated in the suppression of retinoic acid-inducible gene I (RIG-I) signaling. We show here that a LASV in which ExoN function has been abolished strongly activates innate immunity and that this effect is dependent on RIG-I signaling. These results highlight the key role of NP ExoN function in the immune evasion that occurs during LASV infection. PMID:25253344

  7. Autophagy-associated immune responses and cancer immunotherapy

    PubMed Central

    Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-01-01

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed. PMID:26788909

  8. Cryptosporidiosis: host immune responses and the prospects for effective immunotherapies.

    PubMed

    McDonald, Vincent

    2011-11-01

    Cryptosporidium spp. that develop in intestinal epithelial cells are responsible for the diarrhoeal disease cryptosporidiosis, which is common in humans of all ages and in neonatal livestock. Following infection, parasite reproduction increases for a number of days before it is blunted and then impeded by innate and adaptive immune responses. Immunocompromised hosts often cannot establish strong immunity and develop chronic infections that can lead to death. Few drugs consistently inhibit parasite reproduction in the host, and chemotherapy might be ineffective in immunodeficient hosts. Future options for prevention or treatment of cryptosporidiosis might include vaccines or recombinant immunological molecules, but this will probably require a better understanding of both the mucosal immune system and intestinal immune responses to the parasite.

  9. Autophagy-associated immune responses and cancer immunotherapy.

    PubMed

    Pan, Hongming; Chen, Liuxi; Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-04-19

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed.

  10. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila.

    PubMed

    Ji, Yingbiao; Thomas, Colin; Tulin, Nikita; Lodhi, Niraj; Boamah, Ernest; Kolenko, Vladimir; Tulin, Alexei V

    2016-09-15

    Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin. PMID:27527593

  11. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila.

    PubMed

    Ji, Yingbiao; Thomas, Colin; Tulin, Nikita; Lodhi, Niraj; Boamah, Ernest; Kolenko, Vladimir; Tulin, Alexei V

    2016-09-15

    Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin.

  12. Poisons and fever.

    PubMed

    Gordon, C J; Rowsey, P J

    1998-02-01

    1. Dysfunction of the thermoregulatory system is one of many pathologies documented in experimental animals and humans exposed to toxic chemicals. The mechanism of action responsible for many types of poison-induced fevers is not understood. Some elevations in body temperature are attributed to the peripheral actions of some poisons that stimulate metabolic rate and cause a forced hyperthermia. Exposure to organophosphate (OP) pesticides and certain metal fumes appears to cause a prolonged, regulated elevation in body temperature (Tb). 2. Activation of cyclo-oxygenase (COX) and the production of prostaglandin (PG)E2 in central nervous system (CNS) thermoregulatory centres is required to elicit a fever. Activating the COX-PGE2 pathway by a poison may occur by one of three mechanisms: (i) induction of cell-mediated immune responses and the subsequent release of cytokines; (ii) induction of lipid peroxidation in the CNS; and (iii) direct neurochemical activation. 3. Radiotelemetric monitoring of core temperature in unstressed rodents has led to an experimental animal model of poison-induced fever. Rats administered the OP agents chlorpyrifos and diisopropyl fluorophosphate display an initial hypothermic response lasting approximately 24 h, followed by an elevation in diurnal core temperature for 24-72 h after exposure. The hyperthermia is apparently a result of the activation of the COX-PGE2 pathway because it is blocked by the anti-pyretic sodium salicylate. Overall, the delayed hyperthermia resulting from OP exposure involves activation of thermoregulatory pathways that may be similar to infection-mediated fever. PMID:9493505

  13. A cognitive computational model inspired by the immune system response.

    PubMed

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.

  14. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  15. A Cognitive Computational Model Inspired by the Immune System Response

    PubMed Central

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131

  16. Methylglyoxal modulates immune responses: relevance to diabetes

    PubMed Central

    Price, Claire L; Hassi, Hafid O S Al; English, Nicholas R; Blakemore, Alexandra I F; Stagg, Andrew J; Knight, Stella C

    2010-01-01

    Abstract Increased methylglyoxal (MG) concentrations and formation of advanced glycation end-products (AGEs) are major pathways of glycaemic damage in diabetes, leading to vascular and neuronal complications. Diabetes patients also suffer increased susceptibility to many common infections, the underlying causes of which remain elusive. We hypothesized that immune glycation damage may account for this increased susceptibility. We previously showed that the reaction mixture (RM) for MG glycation of peptide blocks up regulation of CD83 in myeloid cells and inhibits primary stimulation of T cells. Here, we continue to investigate immune glycation damage, assessing surface and intracellular cytokine protein expression by flow cytometry, T-cell proliferation using a carboxyfluorescein succinimidyl ester assay, and mRNA levels by RT-PCR. We show that the immunomodulatory component of this RM was MG itself, with MG alone causing equivalent block of CD83 and loss of primary stimulation. Block of CD83 expression could be reversed by MG scavenger N-acetyl cysteine. Further, MG within RM inhibited stimulated production of interleukin (IL)-10 protein from myeloid cells plus interferon (IFN)-γ and tumour necrosis factor (TNF)-α from T cells. Loss of IL-10 and IFN-γ was confirmed by RT-PCR analysis of mRNA, while TNF-α message was raised. Loss of TNF-α protein was also shown by ELISA of culture supernatants. In addition, MG reduced major histocompatibility complex (MHC) class I expression on the surface of myeloid cells and increased their propensity to apoptose. We conclude that MG is a potent suppressor of myeloid and T-cell immune function and may be a major player in diabetes-associated susceptibility to infection. PMID:19538479

  17. Immune allergic response in Asperger syndrome.

    PubMed

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  18. Humoral immune responses in Rana catesbiana frogs and tadpoles.

    PubMed

    Pross, S H; Rowlands, D T

    1976-07-01

    Rana catesbiana adult frogs and tadpoles were immunized with the bacteriophage F2, 0X-174, and T4 and the haptens 2,4 dinitrophenyl (DNP) and fluorescein (FTC). The haptens were conjugated with bovine serum albumin (BSA), bovine gamma globulin (BGG), or horsehoe crab hemocyanin (Hycn). Sera were obtained from immunized animals at invervals up to six months after immunization. The antibody activities were measured by bacteriophage neutralization techniques. Sucrose density gradients were used to separate the antibody classes. Both adults and tadpoles responded to each of the antigens tested. High molecular weight antibodies were predominant in both groups of animals. Low molecular weight antibody activity was not found in adults until nine weeks post immunization but, thereafter, this fraction increased throughout the immune response. Low molecular weight antibodies could also be identified in serum of tadpoles, but only under certain conditions. PMID:59790

  19. Exploring local immune responses to vaccines using efferent lymphatic cannulation.

    PubMed

    Mahakapuge, Thilini An; Every, Alison L; Scheerlinck, Jean-Pierre Y

    2015-04-01

    The early stages of the induction of a primary immune response to a vaccine can shape the overall quality of the immune memory generated and hence affect the success of the vaccine. This early interaction between a vaccine and the immune system occurs first at the site of vaccination and can be explored using afferent cannulation. Subsequently, the vaccine and adjuvant activates the local draining lymph node. These interactions can be studied in real time in vivo using efferent lymphatic duct cannulation in large animal models and are the subject of this review. Depending on how the vaccine is delivered, the draining lymph nodes of different organs can be accessed, facilitating the testing of tissue-specific vaccinations. The efferent lymphatic cannulation model provides an avenue to study the effect of both adjuvants and antigen on the local immune system, and hence opens a pathway toward developing more effective ways of inducing immunity.

  20. Modulation of Primary Immune Response by Different Vaccine Adjuvants

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Fiorino, Fabio; Pastore, Gabiria; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2016-01-01

    Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Here early biomarkers of adjuvanticity after primary immunization were investigated using four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood, and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w squalene), but not aluminum hydroxide (alum) or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed toward a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w squalene or CpG adjuvants. Tested adjuvants promoted the germinal center reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime–boost vaccine immunization protocols. PMID:27781036

  1. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  2. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    PubMed Central

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  3. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses

    PubMed Central

    Oyewumi, Moses O; Kumar, Amit; Cui, Zhengrong

    2010-01-01

    The development of novel immune adjuvants is emerging as a significant area of vaccine delivery based on the continued necessity to amplify immune responses to a wide array of new antigens that are poorly immunogenic. This article specifically focuses on the application of nanoparticles and microparticles as vaccine adjuvants. Many investigators are in agreement that the size of the particles is crucial to their adjuvant activities. However, reports on correlating the size of particle-based adjuvants and the resultant immune responses have been conflicting, with investigators on both sides of the fence with impressive data in support of the effectiveness of particles with small sizes (submicron) over those with larger sizes (micron) and vice versa, while other investigators reported data that showed submicron- and micron-sized particles are effective to the same degree as immune adjuvants. We have generated a list of biological, immunological and, more importantly, vaccine formulation parameters that may have contributed to the inconsistency from different studies and made recommendations on future studies attempting to correlate the size of particulate adjuvants and the immune responses induced. The information gathered could lead to strategies to optimize the performance of nano-microparticles as immune adjuvants. PMID:20822351

  4. Trachoma: Protective and Pathogenic Ocular Immune Responses to Chlamydia trachomatis

    PubMed Central

    Hu, Victor H.; Holland, Martin J.; Burton, Matthew J.

    2013-01-01

    Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development. PMID:23457650

  5. Transgenerational effects enhance specific immune response in a wild passerine

    PubMed Central

    Soriguer, Ramon C.; Figuerola, Jordi

    2016-01-01

    Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects). However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus) in Sevilla, SE Spain with Newcastle disease virus (NDV) vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers. PMID:27069782

  6. Transgenerational effects enhance specific immune response in a wild passerine.

    PubMed

    Broggi, Juli; Soriguer, Ramon C; Figuerola, Jordi

    2016-01-01

    Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects). However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus) in Sevilla, SE Spain with Newcastle disease virus (NDV) vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks' carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers. PMID:27069782

  7. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine.

    PubMed

    Dan, Xue-Ming; Zhang, Tuan-Wei; Li, Yan-Wei; Li, An-Xing

    2013-03-01

    In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.

  8. Specific immune responses in changed gaseous environments.

    PubMed

    Konstantinova, I V; Lebedev, K A; Zemskov, V M; Zazhirey, V D; Ganina, V I

    1971-01-01

    The capacity of lymphoid cells to participate in immunity reactions was evaluated by blast transformation of lymphocytes under the influence of phytohemagglutinin. Blast transformation was measured by cytologic analysis and autoradiographic investigation of the rate of RNA synthesis in cells (tritiated uridin used as label). An analysis of the material taken from the three test subjects during the year-long experiment showed that various situations affected significantly the blast transformation level of lymphocytes. The reaction was substantially reduced 10 days after a simulated emergency situation which involved a change in the atmosphere, increase of physical load, etc. The level of blast transformation increased 1.5 to 2 months after the simulation, exceeding the average value, then to be normalized. Atmospheric variations appear to be one of the factors that may change the activity of lymphoid cells. A parallel experiment was performed in which three subjects lived 10 days in a hyperoxic enclosed environment (53% O2). They showed a considerable intensification of blast transformation (by 2.2-2.6 times) and pronounced activation of the RNA synthesis. Investigations give evidence that a long-term enclosure exerts an effect on the reactivity of the systems involved in the development of basic immune reactions.

  9. The pathology of malignant catarrhal fever, with an emphasis on ovine herpesvirus 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enigmatic pathogenesis of malignant catarrhal fever (MCF) involves dysregulated immune responses in susceptible ruminant species. Economically important outbreaks of MCF are due to two of the 10 viruses that currently comprise the malignant catarrhal fever virus group: ovine herpesvirus 2 (OvHV-...

  10. Modulation of immune response in experimental Chagas disease

    PubMed Central

    Basso, Beatriz

    2013-01-01

    Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, affects nearly 18 million people in Latin America and 90 million are at risk of infection. The parasite presents two stages of medical importance in the host, the amastigote, intracellular replicating form, and the extracellular trypomastigote, the infective form. Thus infection by T. cruzi induces a complex immune response that involves effectors and regulatory mechanisms. That is why control of the infection requires a strong humoral and cellular immune response; hence, the outcome of host-parasite interaction in the early stages of infection is extremely important. A critical event during this period of the infection is innate immune response, in which the macrophage’s role is vital. Thus, after being phagocytized, the parasite is able to develop intracellularly; however, during later periods, these cells induce its elimination by means of toxic metabolites. In turn, as the infection progresses, adaptive immune response mechanisms are triggered through the TH1 and TH2 responses. Finally, T. cruzi, like other protozoa such as Leishmania and Toxoplasma, have numerous evasive mechanisms to the immune response that make it possible to spread around the host. In our Laboratory we have developed a vaccination model in mice with Trypanosoma rangeli, nonpathogenic to humans, which modulates the immune response to infection by T. cruzi, thus protecting them. Vaccinated animals showed an important innate response (modulation of NO and other metabolites, cytokines, activation of macrophages), a strong adaptive cellular response and significant increase in specific antibodies. The modulation caused early elimination of the parasites, low parasitaemia, the absence of histological lesions and high survival rates. Even though progress has been made in the knowledge of some of these mechanisms, new studies must be conducted which could target further prophylactic and therapeutic trials against T. cruzi

  11. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  12. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  13. Autophagy as a Stress Response Pathway in the Immune System.

    PubMed

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  14. The immune response against Candida spp. and Sporothrix schenckii.

    PubMed

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  15. Modeling the T cell immune response: a fascinating challenge

    PubMed Central

    Morel, Penelope A; Faeder, James R; Hawse, William F; Miskov-Zivanov, Natasa

    2014-01-01

    The immune system is designed to protect the organism from infection and to repair damaged tissue. An effective response requires recognition of the threat, the appropriate effector mechanism to clear the pathogen and a return to homeostasis with minimal damage to self-tissues. T cells play a central role in orchestrating the immune response at all stages of the response and have been the subject of intense study by both experimental immunologists and modelers. This review examines some of the more critical questions in T cell biology and describes the latest attempts to address those questions using approaches that combine mathematical modeling and experiments. PMID:25155903

  16. Harnessing DNA-induced immune responses for improving cancer vaccines.

    PubMed

    Herrada, Andrés A; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A; Lladser, Alvaro

    2012-11-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful "danger signals" by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance.

  17. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  18. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  19. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  20. How Neutrophils Shape Adaptive Immune Responses.

    PubMed

    Leliefeld, Pieter H C; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell-cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  1. Immunological Features Underlying Viral Hemorrhagic Fevers

    PubMed Central

    Messaoudi, Ilhem; Basler, Christopher F.

    2015-01-01

    Several enveloped RNA viruses of the arenavirus, bunyavirus, filovirus and flavivirus families are associated with a syndrome known as viral hemorrhagic fever (VHF). VHF is characterized by fever, vascular leakage, coagulation defects and multi organ system failure. VHF is currently viewed as a disease precipitated by viral suppression of innate immunity, which promotes systemic virus replication and excessive proinflammatory cytokine responses that trigger the manifestations of severe disease. However, the mechanisms by which immune dysregulation contributes to disease remain poorly understood. Infection of nonhuman primates closely recapitulates human VHF, notably Ebola and yellow fever, thereby providing excellent models to better define the immunological basis for this syndrome. Here we review the current state of our knowledge and suggest future directions that will better define the immunological mechanisms underlying VHF. PMID:26163194

  2. Arginine and citrulline and the immune response in sepsis.

    PubMed

    Wijnands, Karolina A P; Castermans, Tessy M R; Hommen, Merel P J; Meesters, Dennis M; Poeze, Martijn

    2015-02-18

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.

  3. Arginine and Citrulline and the Immune Response in Sepsis

    PubMed Central

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  4. Modulation of immune responses in stress by Yoga.

    PubMed

    Arora, Sarika; Bhattacharjee, Jayashree

    2008-07-01

    Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  5. Specific and nonspecific aspects of humoral immune response in leprosy.

    PubMed

    Kirsztajn, G M; Nishida, S K; Silva, M S; Lombardi, C; Ajzen, H; Pereira, A B

    1994-01-01

    1. We have studied some generic and specific aspects of the humoral immune response in 96 patients with leprosy (29 paucibacillary and 67 multibacillary individuals). We determined serum immunoglobulins (IgM, IgG and IgA), CH50, C1q, C3 and C4, circulating immune complexes (CIC), C-reactive protein (CRP), rheumatoid factor (RF) and antinuclear antibodies. No specific pattern of general humoral immune changes could be observed. 2. The specific immune response was studied by the detection of specific IgM anti-M. leprae antibodies. An immunoradiometric assay (IRMA) and an ELISA were compared for clinical effectiveness. IRMA showed greater sensitivity for the serodiagnosis of leprosy as compared to ELISA (88.1% vs 58.2% for multibacillary patients and 20.7% vs 10.3% for paucibacillary leprosy patients). Specificity was 96% for IRMA and 97% for ELISA. 3. Our results indicate that nonspecific changes in the humoral immune response are of little value in assessing leprosy patients and that immune assays for the detection of specific anti-M. leprae antibodies may be of value in the diagnosis, study and follow-up of these patients. PMID:8173529

  6. Selection for avian immune response: a commercial breeding company challenge.

    PubMed

    Fulton, J E

    2004-04-01

    Selection for immune function in the commercial breeding environment is a challenging proposition for commercial breeding companies. Immune response is only one of many traits that are under intensive selection, thus selection pressure needs to be carefully balanced across multiple traits. The selection environment (single bird cages, biosecure facilities, controlled environment) is a very different environment than the commercial production facilities (multiple bird cages, potential disease exposure, variable environment) in which birds are to produce. The testing of individual birds is difficult, time consuming, and expensive. It is essential that the results of any tests be relevant to actual disease or environmental challenge in the commercial environment. The use of genetic markers as indicators of immune function is being explored by breeding companies. Use of genetic markers would eliminate many of the limitations in enhancing immune function currently encountered by commercial breeding companies. Information on genetic markers would allow selection to proceed without subjecting breeding stock to disease conditions and could be done before production traits are measured. These markers could be candidate genes with known interaction or involvement with disease pathology or DNA markers that are closely linked to genetic regions that influence the immune response. The current major limitation to this approach is the paucity of mapped chicken immune response genes and the limited number of DNA markers mapped on the chicken genome. These limitations should be eliminated once the chicken genome is sequenced.

  7. Inflammatory response of Haemophilus influenzae biotype aegyptius causing Brazilian Purpuric Fever

    PubMed Central

    Cury, Gisele Cristiane Gentile; Pereira, Rafaella Fabiana Carneiro; de Hollanda, Luciana Maria; Lancellotti, Marcelo

    2014-01-01

    The Brazilian Purpuric Fever (BPF) is a systemic disease with many clinical features of meningococcal sepsis and is usually preceded by purulent conjunctivitis. The illness is caused by Haemophilus influenza biogroup aegyptius, which was associated exclusively with conjunctivitis. In this work construction of the las gene, hypothetically responsible for this virulence, were fusioned with ermAM cassette in Neisseria meningitidis virulent strains and had its DNA transfer to non BPF H. influenzae strains. The effect of the las transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants (in eight log scale of folding change RNA expression). This is the first molecular study involving the las transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to H. influenzae. PMID:25763053

  8. European survey on laboratory preparedness, response and diagnostic capacity for Crimean-Congo haemorrhagic fever, 2012.

    PubMed

    Fernandez-Garcia, M D; Negredo, A; Papa, A; Donoso-Mantke, O; Niedrig, M; Zeller, H; Tenorio, A; Franco, L

    2014-07-03

    Crimean-Congo haemorrhagic fever (CCHF) is an infectious viral disease that has (re-)emerged in the last decade in south-eastern Europe, and there is a risk for further geographical expansion to western Europe. Here we report the results of a survey covering 28 countries, conducted in 2012 among the member laboratories of the European Network for Diagnostics of 'Imported' Viral Diseases (ENIVD) to assess laboratory preparedness and response capacities for CCHF. The answers of 31 laboratories of the European region regarding CCHF case definition, training necessity, biosafety, quality assurance and diagnostic tests are presented. In addition, we identified the lack of a Regional Reference Expert Laboratory in or near endemic areas. Moreover, a comprehensive review of the biosafety level suitable to the reality of endemic areas is needed. These issues are challenges that should be addressed by European public health authorities. However, all respondent laboratories have suitable diagnostic capacities for the current situation.

  9. European survey on laboratory preparedness, response and diagnostic capacity for Crimean-Congo haemorrhagic fever, 2012.

    PubMed

    Fernandez-Garcia, M D; Negredo, A; Papa, A; Donoso-Mantke, O; Niedrig, M; Zeller, H; Tenorio, A; Franco, L

    2014-01-01

    Crimean-Congo haemorrhagic fever (CCHF) is an infectious viral disease that has (re-)emerged in the last decade in south-eastern Europe, and there is a risk for further geographical expansion to western Europe. Here we report the results of a survey covering 28 countries, conducted in 2012 among the member laboratories of the European Network for Diagnostics of 'Imported' Viral Diseases (ENIVD) to assess laboratory preparedness and response capacities for CCHF. The answers of 31 laboratories of the European region regarding CCHF case definition, training necessity, biosafety, quality assurance and diagnostic tests are presented. In addition, we identified the lack of a Regional Reference Expert Laboratory in or near endemic areas. Moreover, a comprehensive review of the biosafety level suitable to the reality of endemic areas is needed. These issues are challenges that should be addressed by European public health authorities. However, all respondent laboratories have suitable diagnostic capacities for the current situation. PMID:25011064

  10. Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae.

    PubMed

    Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier

    2009-03-23

    Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (P<0.05) IgY response compared to controls, although there was no significant difference in IgM response between treatments. A number of proteins were identified by western blotting using IgY antibodies from DGE immunized birds, most prominently at 40 and 230kDa. Analysis of proteins from approximately corresponding bands on SDS-PAGE confirmed the identity of tropomyosin, whilst other proteins showed high sequence homology with myosin and actin from other arachnid and insect species. Immunization of hens with DGE resulted in a 50.6% increase in mite mortality (P<0.001) 17h after feeding when tested by an in vitro mite feeding model. Data in this study demonstrate that somatic antigens from D. gallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol.

  11. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.

    PubMed

    Guillerey, Camille; Nakamura, Kyohei; Vuckovic, Slavica; Hill, Geoffrey R; Smyth, Mark J

    2016-04-01

    Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM. PMID:26801219

  12. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.

    PubMed

    Guillerey, Camille; Nakamura, Kyohei; Vuckovic, Slavica; Hill, Geoffrey R; Smyth, Mark J

    2016-04-01

    Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM.

  13. Rickettsia massiliae and Rickettsia conorii Israeli Spotted Fever Strain Differentially Regulate Endothelial Cell Responses.

    PubMed

    Bechelli, Jeremy; Smalley, Claire; Milhano, Natacha; Walker, David H; Fang, Rong

    2015-01-01

    Rickettsiae primarily target microvascular endothelial cells. However, it remains elusive how endothelial cell responses to rickettsiae play a role in the pathogenesis of rickettsial diseases. In the present study, we employed two rickettsial species with high sequence homology but differing virulence to investigate the pathological endothelial cell responses. Rickettsia massiliae is a newly documented human pathogen that causes a mild spotted fever rickettsiosis. The "Israeli spotted fever" strain of R. conorii (ISF) causes severe disease with a mortality rate up to 30% in hospitalized patients. At 48 hours post infection (HPI), R. conorii (ISF) induced a significant elevation of IL-8 and IL-6 while R. massiliae induced a statistically significant elevated amount of MCP-1 at both transcriptional and protein synthesis levels. Strikingly, R. conorii (ISF), but not R. massiliae, caused a significant level of cell death or injury in HMEC-1 cells at 72 HPI, demonstrated by live-dead cell staining, annexin V staining and lactate dehydrogenase release. Monolayers of endothelial cells infected with R. conorii (ISF) showed a statistically significant decrease in electrical resistance across the monolayer compared to both R. massiliae-infected and uninfected cells at 72 HPI, suggesting increased endothelial permeability. Interestingly, pharmacological inhibitors of caspase-1 significantly reduced the release of lactate dehydrogenase by R. conorii (ISF)-infected HMEC-1 cells, which suggests the role of caspase-1 in mediating the death of endothelial cells. Taken together, our data illustrated that a distinct proinflammatory cytokine profile and endothelial dysfunction, as evidenced by endothelial cell death/injury and increased permeability, are associated with the severity of rickettsial diseases.

  14. [Typhoid fever].

    PubMed

    Marchou, B

    1996-01-15

    Endemic in regions with poor hygienic conditions, Enteric fevers are imported in France by returning travellers. They are caused by Salmonella strains, mainly S. Typhi, transmitted via fecal-oral route. Salmonella reach the blood stream after proliferating in mesenteric lymph nodes. At an initial stage blood and bone marrow cultures, later on Widal-Felix serology permit diagnosis. Antibiotics have rendered death exceptional. Quinolones and ceftriaxone allow treatments shorter than 10 days. Immunization (Typhim Vi) and improvement of hygienic standards are the cornerstone of prevention.

  15. A Nonhuman Primate Scrub Typhus Model: Protective Immune Responses Induced by pKarp47 DNA Vaccination in Cynomolgus Macaques

    PubMed Central

    Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S.; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D.; Lombardini, Eric; Turner, Gareth D.; Day, Nicholas P. J.; Richards, Allen L.

    2015-01-01

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi–specific, IFN-γ–producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine

  16. A nonhuman primate scrub typhus model: protective immune responses induced by pKarp47 DNA vaccination in cynomolgus macaques.

    PubMed

    Paris, Daniel H; Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D; Lombardini, Eric; Turner, Gareth D; Day, Nicholas P J; Richards, Allen L

    2015-02-15

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi-specific, IFN-γ-producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine-induced immune

  17. Response of Holstein cows with milk fever to first treatment using two calcium regimens: a retrospective clinical study.

    PubMed

    Sasaki, Kouya; Sasaki, Kazuya; Sato, Yukiko; Devkota, Bhuminand; Furuhama, Kazuhisa; Yamagishi, Norio

    2013-01-01

    The responses of 64 Holstein cows with milk fever to first treatment with 500 ml of either of 2 intravenous calcium (Ca) solutions, one containing Ca alone (group A, n = 32) or 1 containing Ca, phosphate and magnesium (group B, n = 32), were evaluated by selected clinical signs and serum biochemical data. Based on the cow's ability to stand, treatment response was categorized into "immediate response" (stood after single treatment), "delayed response" (stood after repeated treatments) and "non-response" (slaughtered despite repeated treatments). No significant differences among the response categories were found between the two groups, suggesting that the solution containing Ca borogluconate alone was sufficient for the first treatment of milk fever.

  18. Adverse environmental conditions influence age-related innate immune responsiveness

    PubMed Central

    May, Linda; van den Biggelaar, Anita HJ; van Bodegom, David; Meij, Hans J; de Craen, Anton JM; Amankwa, Joseph; Frölich, Marijke; Kuningas, Maris; Westendorp, Rudi GJ

    2009-01-01

    Background- The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions. Methods- We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304) and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562). Results- We found a significant decrease in LPS-induced Interleukin (IL)-10 and Tumor Necrosis Factor (TNF) production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan. Conclusion- We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions. PMID:19480711

  19. A basic mathematical model of the immune response

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  20. A basic mathematical model of the immune response.

    PubMed

    Mayer, H.; Zaenker, K. S.; An Der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as "virgin state," "immune state" and "state of tolerance." The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response. (c) 1995 American Institute of Physics. PMID:12780168

  1. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity.

    PubMed

    Machain-Williams, C; Mammen, M P; Zeidner, N S; Beaty, B J; Prenni, J E; Nisalak, A; Blair, C D

    2012-01-01

    Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.

  2. Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    PubMed Central

    Juelich, Terry L.; Agar, Stacy L.; Poussard, Allison; Ragland, Dan; Freiberg, Alexander N.; Holbrook, Michael R.

    2012-01-01

    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the

  3. Immune responses of ducks infected with duck Tembusu virus.

    PubMed

    Li, Ning; Wang, Yao; Li, Rong; Liu, Jiyuan; Zhang, Jinzhou; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2015-01-01

    Duck Tembusu virus (DTMUV) can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8) and antiviral proteins (Mx, Oas, etc.) are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  4. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  5. Probiotics, antibiotics and the immune responses to vaccines.

    PubMed

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome.

  6. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.

  7. Probiotics, antibiotics and the immune responses to vaccines

    PubMed Central

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  8. Toll-Like Receptor 2-Mediated Innate Immune Responses against Junín Virus in Mice Lead to Antiviral Adaptive Immune Responses during Systemic Infection and Do Not Affect Viral Replication in the Brain

    PubMed Central

    Cuevas, Christian D.

    2014-01-01

    ABSTRACT Successful adaptive immunity to virus infection often depends on the initial innate response. Previously, we demonstrated that Junín virus, the etiological agent responsible for Argentine hemorrhagic fever (AHF), activates an early innate immune response via an interaction between the viral glycoprotein and Toll-like receptor 2 (TLR2). Here we show that TLR2/6 but not TLR1/2 heterodimers sense Junín virus glycoprotein and induce a cytokine response, which in turn upregulates the expression of the RNA helicases RIG-I and MDA5. NF-κB and Erk1/2 were important in the cytokine response, since both proteins were phosphorylated as a result of the interaction of virus with TLR2, and treatment with an Erk1/2-specific inhibitor blocked cytokine production. We show that the Junín virus glycoprotein activates cytokine production in a human macrophage cell line as well. Moreover, we show that TLR2-mediated immune response plays a role in viral clearance because wild-type mice cleared Candid 1 (JUNV C1), the vaccine strain of Junín virus, more rapidly than did TLR2 knockout mice. This clearance correlated with the generation of Junín virus-specific CD8+ T cells. However, infected wild-type and TLR2 knockout mice developed TLR2-independent blocking antibody responses with similar kinetics. We also show that microglia and astrocytes but not neurons are susceptible to infection with JUNV C1. Although JUNV C1 infection of the brain also triggered a TLR2-dependent cytokine response, virus levels were equivalent in wild-type and TLR2 knockout mice. IMPORTANCE Junín virus is transmitted by rodents native to Argentina and is associated with both systemic disease and, in some patients, neurological symptoms. Humans become infected when they inhale aerosolized Junín virus. AHF has a 15 to 30% mortality rate, and patients who clear the infection develop a strong antibody response to Junín virus. Here we investigated what factors determine the immune response to Jun

  9. Microgravity and immune responsiveness: implications for space travel.

    PubMed

    Borchers, Andrea T; Keen, Carl L; Gershwin, M Eric

    2002-10-01

    To date, several hundred cosmonauts and astronauts have flown in space, yet knowledge about the adaptation of their immune system to space flight is rather limited. It is evident that a variety of immune parameters are changed during and after space flight, but the magnitude and pattern of these changes can differ dramatically between missions and even between crew members on the same mission. A literature search was conducted involving a total of 335 papers published between 1972 and 2002 that dealt with the key words immune response, microgravity and astronauts/cosmonauts, isolation, gravity, and human health. The data from multiple studies suggested that major discrepancies in outcome are due to methodologic differences. However, the data also suggested major factors that affect and modulate the immune response during space travel. In part at least, these discrepancies can be attributed to methodologic differences. In addition, a variety of other features, in particular the types and extent of stressors encountered during space missions, are likely to contribute to the variability of immune responses during and after space flight. That stress plays an important role in the effects of space flight on immunologic parameters is suggested by the frequent findings that stress hormones are upregulated during and after space flight. Unfortunately, however, the existing data on hormonal parameters are almost as varied as those on immunologic changes, and correlations between the two datasets have only rarely been attempted. The functional implications of space flight-induced alterations in immune response largely remain to be elucidated, but the data suggest that long-term travel will be associated with the development of immune-compromised hosts.

  10. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.

  11. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  12. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids.

    PubMed

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  13. Mitochondrial DNA in the regulation of innate immune responses.

    PubMed

    Fang, Chunju; Wei, Xiawei; Wei, Yuquan

    2016-01-01

    Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production,mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity. PMID:26498951

  14. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  15. Immunosuppressive activity of tilmicosin on the immune responses in mice.

    PubMed

    Guan, Shuang; Song, Yu; Guo, Weixiao; Chu, Xiao; Zhang, Xiaozhe; Wang, Dacheng; Lu, Jing; Deng, Xuming

    2011-06-01

    Tilmicosin, a semi-synthetic macrolide antibiotic that is only used in the veterinary clinic, was evaluated for its immunosuppressive activity on the immune responses to ovalbumin (OVA) in mice. Tilmicosin suppressed concanavalin A (Con A)- and lipopolysaccharide (LPS)-stimulated splenocyte proliferation in vitro. BALB/c mice were immunized subcutaneously with OVA on day 1 and 4. Beginning on the day of boosting immunization, the mice were administered intraperitoneally with tilmicosin at a single dose of 10, 30, and 90 mg/kg for 10 consecutive days. On day 14, blood samples were collected for measuring specific total-immunoglobulin G (total-IgG), IgG1, IgG2b, and splenocytes were harvested for determining lymphocyte proliferation and interleukin-2 (IL-2), interferon-γ (IFN-γ), IL-4 production. The results demonstrated that tilmicosin could significantly suppress Con A-induced splenocyte proliferation in a dose-dependent manner, decrease LPS-and OVA-induced splenocyte proliferation only at high concentration, produced less IL-2, IL-4, and IFN-γ as compared to the control in the OVA-immunized mice. Moreover, the OVA-specific IgG, IgG1, and IgG2b levels in the OVA-immunized mice were reduced by tilmicosin. These results suggest that tilmicosin could suppress the cellular and humoral immune response in mice.

  16. Control of the Adaptive Immune Response by Tumor Vasculature

    PubMed Central

    Mauge, Laetitia; Terme, Magali; Tartour, Eric; Helley, Dominique

    2014-01-01

    The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy. PMID:24734218

  17. Mycobacterial infection induces a specific human innate immune response

    PubMed Central

    Blischak, John D.; Tailleux, Ludovic; Mitrano, Amy; Barreiro, Luis B.; Gilad, Yoav

    2015-01-01

    The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5–10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility. PMID:26586179

  18. Effects of NO/sub 2/ on immune responses

    SciTech Connect

    Lefkowitz, S.S.; McGrath, J.J.; Lefkowitz, D.L.

    1986-01-01

    The effects of NO/sub 2/ on immune responses of mice were investigated. Mice were exposed to various concentrations of NO/sub 2/ in inhalation chambers. After exposure the following parameters were measured: phagocytosis of polystyrene beads by both peritoneal and alveolar macrophages, production of antibody-forming cells from mice immunized with sheep erythrocytes, lymphocyte blastogenesis of splenic cells, and susceptibility to influenza virus. The production of antibody-forming cells was reduced in mice that were exposed to 5 ppm NO/sub 2/. The serum antibody titers, phagocytosis, and other immune parameters measured were not affected. Exposure to NO/sub 2/ did not affect mortality to influenza virus. These data indicate that certain immune parameters were altered by exposure to NO/sub 2/; however, NO/sub 2/ does not appear to be a major immunosuppressive factor at the concentrations tested.

  19. Intestinal infection with Trichinella spiralis induces distinct, regional immune responses

    PubMed Central

    Blum, L.K.; Mohanan, S.; Fabre, M.V.; Yafawi, R.E.; Appleton, J.A.

    2013-01-01

    The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract. PMID:23465441

  20. Bacterial RNA: An Underestimated Stimulus for Innate Immune Responses.

    PubMed

    Eigenbrod, Tatjana; Dalpke, Alexander H

    2015-07-15

    Although DNA of bacterial and viral origin, as well as viral RNA, have been intensively studied as triggers of innate immune responses, the stimulatory properties of bacterial RNA and its role during infections have just begun to be deciphered. Bacterial RNA is a strong inducer of type I IFN and NF-κB-dependent cytokines, and it also can activate the Nlrp3 inflammasome. In this review, we focus on the receptors and signaling pathways involved in innate immune activation by bacterial RNA and analyze the physiological relevance of bacterial RNA recognition during infections. Furthermore, we present the concept that RNA modifications can impair RNA-dependent immune activation. RNA modifications differ between eukaryotes and prokaryotes; thus, they can serve to define the innate pattern that is recognized. In this regard, we discuss the role of ribose 2'-O-methylation as a potential immune-escape mechanism. PMID:26138638

  1. Systemic and Mucosal Immune Responses to Cryptosporidium—Vaccine Development

    PubMed Central

    Ludington, Jacob G.; Ward, Honorine D.

    2015-01-01

    Cryptosporidium spp is a major cause of diarrheal disease worldwide, particularly in malnourished children and untreated AIDS patients in developing countries in whom it can cause severe, chronic and debilitating disease. Unfortunately, there is no consistently effective drug for these vulnerable populations and no vaccine, partly due to a limited understanding of both the parasite and the host immune response. In this review, we will discuss our current understanding of the systemic and mucosal immune responses to Cryptosporidium infection, discuss the feasibility of developing a Cryptosporidium vaccine and evaluate recent advances in Cryptosporidium vaccine development strategies PMID:26279971

  2. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    PubMed

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  3. Protective and pathologic immune responses against Candida albicans infection.

    PubMed

    Ashman, Robert B

    2008-05-01

    Candida albicans is an important opportunistic fungal pathogen. Clinical observations have indicated that both innate and adaptive immune responses are involved in recovery from initial infection, but analysis in murine models has shown that the contribution of the two arms of the cellular immune response differ in oral, vaginal, and systemic infections. The relative contributions of T cells and phagocytic cells, and the cytokines that mediate their interactions are discussed for each of the different manifestations of the disease, and the consequences of infection, in terms of protection and pathology, are evaluated.

  4. Quantifying the Early Immune Response and Adaptive Immune Response Kinetics in Mice Infected with Influenza A Virus ▿

    PubMed Central

    Miao, Hongyu; Hollenbaugh, Joseph A.; Zand, Martin S.; Holden-Wiltse, Jeanne; Mosmann, Tim R.; Perelson, Alan S.; Wu, Hulin; Topham, David J.

    2010-01-01

    Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity. PMID:20410284

  5. Understanding rheumatic fever.

    PubMed

    Azevedo, Pedro Ming; Pereira, Rosa Rodrigues; Guilherme, Luiza

    2012-05-01

    Through a comprehensive review of the recent findings on rheumatic fever, we intend to propose a new physiopathologic model for this disease. A Medline search was performed for all articles containing the terms rheumatic fever or rheumatic heart disease in title or abstract from 1970 to 2011. Best evidence qualitative technique was used to select the most relevant. The scientific interest on rheumatic fever has notably diminished throughout the twentieth century as evidenced by the comparison of the proportion of articles in which RF was a subject in 1950 (0.26%) and today (0.03%) [Pubmed]. However, RF remains a major medical and social problem in the developing world and in the so-called hotspots, where it still causes around 500.000 deaths each year, not too different from the pre-antibiotic era. The role of genetic factors in RF susceptibility is discussed. Familiar aggregation, similarity of disease patterns between siblings, identical twin, and HLA correlation studies are evidence for a genetic influence on RF susceptibility. The suspect-involved genes fall mainly into those capable of immunologic mediation. Molecular mimicry explains the triggering of RF, but an intense and sustained inflammation is needed to cause sequels. Also, RF patients vary greatly in terms of symptoms. It is likely that a genetic background directing immune response towards a predominantly Th1 or Th2 pattern contributes to these features. The recent findings on rheumatic fever provide important insight on its physiopathology that helps understanding this prototype post-infectious autoimmune disease giving insights on other autoimmune conditions. PMID:21953302

  6. Immunization with Single Oral Dose of Alginate-Encapsulated BCG Elicits Effective and Long-Lasting Mucosal Immune Responses.

    PubMed

    Hosseini, M; Dobakhti, F; Pakzad, S R; Ajdary, S

    2015-12-01

    Effective vaccination against pathogens, which enter the body through mucosal surfaces, requires the induction of both mucosal and systemic immune responses. Here, mucosal as well as systemic immune responses in the lung and spleen of BALB/c mice which were orally vaccinated with a single dose of alginate-encapsulated bacille Calmette-Guerin (BCG) were evaluated. Twenty weeks after immunization, the vaccinated mice were challenged intranasally with BCG. Twelve weeks after immunization and 5 weeks after challenge, the immune responses were evaluated. Moreover, immune responses were compared with those of mice that were vaccinated with free BCG by subcutaneous (sc) and oral routes. Twelve weeks after the immunization, serum IgG level was higher in the sc-immunized mice, while serum IgA level was higher in the orally immunized mice with encapsulated BCG. Significant productions of both IgG and IgA were only detected in lungs of mice orally immunized with encapsulated BCG. Proliferative and delayed-type hypersensitivity responses and IFN-γ production were significantly higher in mice immunized orally with encapsulated BCG, compared to mice immunized orally with free BCG. After challenge, the levels of IFN-γ were comparable between sc-immunized mice with free BCG and orally immunized with encapsulated BCG; however, significantly less IL-4 was detected in mice which had received encapsulated BCG via oral route. Moreover, significant control of the bacilli growth in the lung of the immunized mice after intranasal challenge with BCG was documented in mice vaccinated with encapsulated BCG. These results suggest that oral immunization with alginate-encapsulated BCG is an effective mean of inducing mucosal and systemic specific immune responses.

  7. Photodynamic therapy for cancer and activation of immune response

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  8. Epithelium: At the interface of innate and adaptive immune responses

    PubMed Central

    Schleimer, Robert P.; Kato, Atsushi; Kern, Robert; Kuperman, Douglas; Avila, Pedro C.

    2009-01-01

    Several diseases of the airways have a strong component of allergic inflammation in their cause, including allergic rhinitis, asthma, polypoid chronic rhinosinusitis, eosinophilic bronchitis, and others. Although the roles played by antigens and pathogens vary, these diseases have in common a pathology that includes marked activation of epithelial cells in the upper airways, the lower airways, or both. Substantial new evidence indicates an important role of epithelial cells as both mediators and regulators of innate immune responses and adaptive immune responses, as well as the transition from innate immunity to adaptive immunity. The purpose of this review is to discuss recent studies that bear on the molecular and cellular mechanisms by which epithelial cells help to shape the responses of dendritic cells, T cells, and B cells and inflammatory cell recruitment in the context of human disease. Evidence will be discussed that suggests that secreted products of epithelial cells and molecules expressed on their cell surfaces can profoundly influence both immunity and inflammation in the airways. PMID:17949801

  9. A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice.

    PubMed

    Rubio-Infante, Néstor; Govea-Alonso, Dania O; Romero-Maldonado, Andrea; García-Hernández, Ana Lilia; Ilhuicatzi-Alvarado, Damaris; Salazar-González, Jorge A; Korban, Schuyler S; Rosales-Mendoza, Sergio; Moreno-Fierros, Leticia

    2015-07-01

    Multi-HIV, a multiepitopic protein derived from both gp120 and gp41 envelope proteins of the human immunodeficiency virus (HIV), has been proposed as a vaccine prototype capable of inducing broad immune responses, as it carries various B and T cell epitopes from several HIV strains. In this study, the immunogenic properties of a Multi-HIV expressed in tobacco chloroplasts are evaluated in test mice. BALB/c mice orally immunized with tobacco-derived Multi-HIV have elicited antibody responses, including both the V3 loop of gp120 and the ELDKWA epitope of gp41. Based on splenocyte proliferation assays, stimulation with epitopes of the C4, V3 domain of gp120, and the ELDKWA domain of gp41 elicits positive cellular responses. Furthermore, specific interferon gamma production is observed in both CD4+ and CD8+ T cells stimulated with HIV peptides. These results demonstrate that plant-derived Multi-HIV induces T helper-specific responses. Altogether, these findings illustrate the immunogenic potential of plant-derived Multi-HIV in an oral immunization scheme. The potential of this low-cost immunization approach and its implications on HIV/AIDS vaccine development are discussed. PMID:25779638

  10. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major.

    PubMed

    Zarrati, Somayeh; Mahdavi, Mehdi; Tabatabaie, Fatemeh

    2016-06-01

    Leishmaniasis is a major infectious disease caused by protozoan parasites of the genus Leishmania. Despite of many efforts toward vaccine against Leishmania no effective vaccine has been approved yet. DNA vaccines can generate more powerful and broad immune responses than conventional vaccines. In order to increase immunity, the DNA vaccine has been supplemented with adjuvant. In this study a new nano-vaccine containing TSA recombinant plasmid and poly(methylmethacrylate) nanoparticles (act as adjuvant) was designed and its immunogenicity tested on BALB/c mouse. After three intramuscular injection of nano-vaccine (100 μg), the recombinant TSA protein (20 μg) was injected subcutaneously. Finally as a challenge animals were infected by Leishmania major. After the last injection of nano-vaccine, after protein booster injection, and also after challenge, cellular immune and antibody responses were evaluated by ELISA method. The findings of this study showed the new nano-vaccine was capable of induction both cytokines secretion and specific antibody responses, but predominant Th1 immune response characterized by IFN-γ production compared to control groups. Moreover, results revealed that nano-vaccine was effective in reducing parasite burden in the spleen of Leishmania major-infected BALB/c mice. Base on results, current candidate vaccine has potency for further studies. PMID:27413316

  11. Immune Responses to Low Back Pain Risk Factors

    PubMed Central

    Splittstoesser, Riley E.; Marras, William S.; Best, Thomas M.

    2013-01-01

    Objective Investigate effects of interactions between biomechanical, psychosocial and individual risk factors on the body’s immune inflammatory responses. Background Current theories for low back pain causation do not fully account for the body’s response to tissue loading and tissue trauma. Methods Two groups possessing a preference for the sensor or intuitor personality trait performed repetitive lifting combined with high or low mental workload on separate occasions. Spinal loading was assessed using an EMG-assisted subject-specific biomechanical model and immune markers were collected before and after exposure. Results Mental workload was associated with a small decrease in AP shear. Both conditions were characterized by a regulated time-dependent immune response making use of markers of inflammation, tissue trauma and muscle damage. Intuitors’ creatine kinase levels were increased following low mental workload compared to that observed in Sensors with the opposite trend occurring for high mental workload. Conclusions A temporally regulated immune response to lifting combined with mental workload exists. This response is influenced by personality and mental workload. PMID:22317743

  12. Cytomegalovirus infection enhances the immune response to influenza.

    PubMed

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai S; Angel, Cesar J L; Onengut-Gumuscu, Suna; Kidd, Brian A; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-04-01

    Cytomegalovirus (CMV) is a β-herpesvirus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli, and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV status. In contrast, CMV-seropositive young adults exhibited enhanced antibody responses to influenza vaccination, increased CD8(+) T cell sensitivity, and elevated levels of circulating interferon-γ compared to seronegative individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the ubiquity of CMV infection in humans and many other species. PMID:25834109

  13. Verification of immune response optimality through cybernetic modeling.

    PubMed

    Batt, B C; Kompala, D S

    1990-02-01

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included. PMID:2338827

  14. Hantaviruses Induce Antiviral and Pro-Inflammatory Innate Immune Responses in Astrocytic Cells and the Brain

    PubMed Central

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang

    2014-01-01

    Abstract Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain. PMID:24937036

  15. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain.

    PubMed

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang; Song, Jin-Won

    2014-08-01

    Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.

  16. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    PubMed Central

    Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877

  17. Immune response of the Antarctic teleost Trematomus bernacchii to immunization with Psychrobacter sp. (TAD1).

    PubMed

    Buonocore, Francesco; Bernini, Chiara; Coscia, Maria Rosaria; Giacomelli, Stefano; de Pascale, Donatella; Randelli, Elisa; Stocchi, Valentina; Scapigliati, Giuseppe

    2016-09-01

    Adult Trematomus bernacchii have been immunized intraperitoneally with heat-killed cells of the Antarctic marine bacterium Psychrobacter sp. (TAD1) up to 60 days. After immunizations and sampling at various times, fish sera were tested for specific IgM by ELISA, and different tissues (head kidney and spleen) were investigated for transcription of master genes of the acquired immune response (IgM, IgT, TRβ, TRγ). Results from ELISA assays showed a time-dependent induction of specific serum anti-TAD1 IgM, and western blot analysis of TAD1 lysates probed with fish sera revealed enhanced immunoreactivity in immunized animals compared to controls. Quantitative PCR analysis of transcripts coding for IgM, IgT, TRβ, TRγ was performed in T. bernacchii tissues to assess basal expression, and then on cDNAs of cells from head kidney and spleen of fish injected for 8, 24, and 72 h with inactivated TAD1. The results showed a differential basal expression of transcripts in the examined tissues, and a time-dependent strong up-regulation of IgT, TRβ, TRγ genes upon in vivo stimulation with TAD1. These results represent a first in vivo study on the mounting of a specific immune response in an Antarctic teleost species. PMID:27417227

  18. Elevated EBNA1 Immune Responses Predict Conversion to Multiple Sclerosis

    PubMed Central

    Lünemann, Jan D.; Tintoré, Mar; Messmer, Brady; Strowig, Till; Rovira, Álex; Perkal, Héctor; Caballero, Estrella; Münz, Christian; Montalban, Xavier; Comabella, Manuel

    2009-01-01

    Objective The aims of the study were to determine the immune responses to candidate viral triggers of multiple sclerosis (MS) in patients with clinically isolated syndromes (CIS), and to evaluate their potential value in predicting conversion to MS. Methods Immune responses to Epstein-Barr virus (EBV), human herpesvirus 6, cytomegalovirus (HCMV), and measles were determined in a cohort of 147 CIS patients with a mean follow-up of 7 years and compared with 50 demographically matched controls. Results Compared to controls, CIS patients showed increased humoral (p<0.0001) and cellular (p=0.007) immune responses to the EBV-encoded nuclear antigen-1 (EBNA1), but not to other EBV-derived proteins. IgG responses to other virus antigens and frequencies of T cells specific for HCMV and influenza virus gene products were unchanged in CIS patients. EBNA1 was the only viral antigen towards which immune responses correlated with number of T2 lesions (p=0.006) and number of Barkhof criteria (p=0.001) at baseline, and with number of T2 lesions (p=0.012 both at 1 and 5 years), presence of new T2 lesions (p=0.003 and p=0.028 at 1 and 5 years), and EDSS (p=0.015 and p=0.010 at 1 and 5 years) during follow-up. In a univariate Cox regression model, increased EBNA1-specific IgG responses predicted conversion to MS based on McDonald criteria [hazard ratio (95% confidence interval), 2.2 (1.2–4.3); p=0.003]. Interpretation Our results indicate that elevated immune responses towards EBNA1 are selectively increased in CIS patients and suggest that EBNA1-specific IgG titers could be used as a prognostic marker for disease conversion and disability progression. PMID:20225269

  19. Elevated levels of CXCL10 in the Periodic Fever, Aphthous stomatitis, Pharyngitis and cervical Adenitis syndrome (PFAPA) during and between febrile episodes; an indication of a persistent activation of the innate immune system

    PubMed Central

    2013-01-01

    Background The Periodic Fever, Aphthous stomatitis, Pharyngitis and cervical Adenitis syndrome (PFAPA) is the most common periodic fever syndrome in childhood. Clinically, PFAPA may resemble autoinflammatory diseases, but the etiology is not fully understood. Methods We measured inflammatory proteins in plasma and hematologic parameters in children with PFAPA during and between febrile episodes, and in a control group with suspected bacterial pneumonia. In children with PFAPA, a first blood sample was taken within 24 hours of a febrile episode and a second sample between episodes. In children with pneumonia, the first sample was taken shortly after admission and a second sample after full recovery. Results A total of 22 children with PFAPA and 14 children with pneumonia were included. In children with PFAPA, levels of interleukin (IL) 6, CXCL10 and CCL4 were significantly increased during febrile episodes. The levels of IL-6 and CXCL10 were higher in children with PFAPA during febrile episodes than in children with pneumonia. The levels of CXCL10 remained higher in children with PFAPA between febrile episodes compared to children with pneumonia after recovery. Children with PFAPA had a relative eosinopenia and lymphocytopenia with reduced numbers of both CD4+ and CD8+ T cells during febrile episodes. This pattern was not observed in the children with pneumonia. Conclusions The results indicate an innate immune response as the initial step in PFAPA, and a subsequent adaptive response with activation and redistribution of T cells. Moreover, an activation of the innate immune system involving CXCL10 may persist between febrile episodes. CXCL10 may be a possibly clinical marker in children with PFAPA. PMID:24134207

  20. Adjuvant effects of saponins on animal immune responses*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Xiao, Chen-wen; Arijo, Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed. PMID:17323426

  1. HIV-1 and the immune response to TB

    PubMed Central

    Walker, Naomi F; Meintjes, Graeme; Wilkinson, Robert J

    2013-01-01

    TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV–TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs. PMID:23653664

  2. Durable and sustained immune tolerance to ERT in Pompe disease with entrenched immune responses

    PubMed Central

    Kazi, Zoheb B.; Prater, Sean N.; Kobori, Joyce A.; Viskochil, David; Bailey, Carrie; Gera, Renuka; Stockton, David W.; McIntosh, Paul; Rosenberg, Amy S.; Kishnani, Priya S.

    2016-01-01

    BACKGROUND Enzyme replacement therapy (ERT) has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD), a rapidly progressive neuromuscular disorder. Yet marked interindividual variability in response to ERT, primarily attributable to the development of antibodies to ERT, remains an ongoing challenge. Immune tolerance to ongoing ERT has yet to be described in the setting of an entrenched immune response. METHODS Three infantile Pompe patients who developed high and sustained rhGAA IgG antibody titers (HSAT) and received a bortezomib-based immune tolerance induction (ITI) regimen were included in the study and were followed longitudinally to monitor the long-term safety and efficacy. A trial to taper the ITI protocol was attempted to monitor if true immune tolerance was achieved. RESULTS Bortezomib-based ITI protocol was safely tolerated and led to a significant decline in rhGAA antibody titers with concomitant sustained clinical improvement. Two of the 3 IPD patients were successfully weaned off all ITI protocol medications and continue to maintain low/no antibody titers. ITI protocol was significantly tapered in the third IPD patient. B cell recovery was observed in all 3 IPD patients. CONCLUSION This is the first report to our knowledge on successful induction of long-term immune tolerance in patients with IPD and HSAT refractory to agents such as cyclophosphamide, rituximab, and methotrexate, based on an approach using the proteasome inhibitor bortezomib. As immune responses limit the efficacy and cost-effectiveness of therapy for many conditions, proteasome inhibitors may have new therapeutic applications. FUNDING This research was supported by a grant from the Genzyme Corporation, a Sanofi Company (Cambridge, Massachusetts, USA), and in part by the Lysosomal Disease Network, a part of NIH Rare Diseases Clinical Research Network (RDCRN). PMID:27493997

  3. Fish immune responses against endoparasitic nematodes - experimental models.

    PubMed

    Buchmann, K

    2012-09-01

    Vertebrates mount a series of immune reactions when invaded by helminths but antihelmintic immune strategies allow, in many cases, the first invaders of the non-immune host to survive for prolonged periods, whereas subsequent larval invaders of the same parasite species face increased host resistance and thereby decreased colonization success. This concomitant immunity may represent a trade-off between adverse side effects (associated with killing of large helminths in the host tissue) and the need for future protection against invasion. Encapsulation and isolation of large live endoparasitic larvae may be associated with less pathology compared to coping with excess dead parasite tissue in host organs. Likewise, live adult nematodes may be accepted in tissues at a certain activity level for the same reasons. Various host cell receptors bind helminth molecules after which signal-transducing events lead to mobilization of specific reaction patterns depending on the combination of receptors and ligands involved. Both innate and adaptive responses (humoral and cellular) are prominent actors, but skewing of the Th1 lymphocyte response towards a Th2 type is a characteristic element of antihelminthic responses in mammalian hosts. Similar patterns may be expected also to occur in at least some fish species, such as salmonids, producing relevant cytokines, MHCII and CD4+ cells required for these lymphocyte subpopulations. Atlantic cod, Gadus morhua L., is without these immunological elements that indicate that alternative reaction pathways exist in at least some fish groups. Recent achievements within teleost immunology have made it possible to track these host responses in fish and the present work outlines the main immune reactions in fish against helminths and suggests three experimental fish models for exploration of these immune pathways in fish infected with nematodes.

  4. HTLV-1, Immune Response and Autoimmunity

    PubMed Central

    Quaresma, Juarez A S; Yoshikawa, Gilberto T; Koyama, Roberta V L; Dias, George A S; Fujihara, Satomi; Fuzii, Hellen T

    2015-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren’s Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity. PMID:26712781

  5. Optimal control strategy for abnormal innate immune response.

    PubMed

    Tan, Jinying; Zou, Xiufen

    2015-01-01

    Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t)) or enhancing interferon activity (u2(t)), has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t)) and (u2(t)) simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases.

  6. Veni, vidi, vici: in vivo molecular imaging of immune response.

    PubMed

    Gross, Shimon; Moss, Britney L; Piwnica-Worms, David

    2007-10-01

    "I came, I saw, I conquered," Julius Caesar proclaimed, highlighting the importance of direct visualization as a winning strategy. Continuing the "From the Field" series (see Editorial [2007] 26, 131), Gross et al. summarize how modern molecular imaging techniques can successfully dissect the complexities of immune response in vivo. PMID:17967405

  7. Anticarrier immunity suppresses the antibody response to polysaccharide antigens after intranasal immunization with the polysaccharide-protein conjugate.

    PubMed Central

    Bergquist, C; Lagergård, T; Holmgren, J

    1997-01-01

    We have conjugated cholera toxin (CT) B subunit (CTB) to dextran and studied the effect in mice of previous immunization with CT and CTB on the response to dextran after intranasal immunizations with conjugate. Preexisting immunity to CTB was found to inhibit both the lung mucosal response and serum antibody response to dextran, but this effect could be overcome by using a higher dose of conjugate and delaying the conjugate immunization until the CTB antibody titers had declined. The role of anti-CTB antibodies on the mucosal surface was probably to prevent uptake of the conjugate through a mechanism of immune exclusion. Passively transferred serum antibodies against CTB, on the other hand, suppressed both the serum response and the local antibody response against CTB but did not affect the response to dextran after intranasal immunization with conjugate. PMID:9125533

  8. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  9. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  10. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  11. Yellow Fever

    MedlinePlus

    ... tropical and subtropical areas in South America and Africa. The virus is transmitted to people by the ... fever Maps of Yellow fever endemic areas in Africa and South America Yellow fever vaccination Prevention Vaccine ...

  12. Humoural immune response and pathological analysis in patients with false immune diagnosis of cystic echinococcosis

    PubMed Central

    Chen, X; Zhang, J; Feng, X; Chen, X; Yin, S; Wen, H; Zheng, S

    2014-01-01

    The patients with false immune diagnosis of hydatid disease were investigated for the humoural immune response to analyse the possible reasons and mechanism leading to false immune diagnosis. Two hundred and thirty-nine patients with nature-unknown cysts and 30 healthy controls were detected by immunological assays (four hydatid antigen-based immunogold filtration assay and enzyme-linked immune absorbent assay) and ultrasound. Sensitivity of and specificity of immunological assay and ultrasound were calculated, respectively. The serological diagnosis was compared with surgical pathology to screen the patients with false immune diagnosis for the immunoglobulin measurement and pathological analysis. The history and cyst characteristics were also reviewed. The results indicate the immunoglobulin has little influence on false immunodiagnosis. The false-negative immunodiagnosis was caused by the cysts' inactive status while the false positive caused by previous rupture, antigen cross-reaction. The clinical diagnosis of cystic echinococcosis requires a combination of immunodiagnosis and ultrasonography, which is the necessary complementary confirmation. PMID:24372157

  13. Effect of age and maternal antibodies on the systemic and mucosal immune response after neonatal immunization in a porcine model

    PubMed Central

    Guzman-Bautista, Edgar R; Garcia-Ruiz, Carlos E; Gama-Espinosa, Alicia L; Ramirez-Estudillo, Carmen; Rojas-Gomez, Oscar I; Vega-Lopez, Marco A

    2014-01-01

    Newborn mammals are highly susceptible to respiratory infections. Although maternal antibodies (MatAb) offer them some protection, they may also interfere with their systemic immune response to vaccination. However, the impact of MatAb on the neonatal mucosal immune response remains incompletely described. This study was performed to determine the effect of ovalbumin (OVA)-specific MatAb on the anti-OVA antibody response in sera, nasal secretions and saliva from specific pathogen-free Vietnamese miniature piglets immunized at 7 or 14 days of age. Our results demonstrated that MatAb increased antigen-specific IgA and IgG responses in sera, and transiently enhanced an early secretory IgA response in nasal secretions of piglets immunized at 7 days of age. In contrast, we detected a lower mucosal (nasal secretion and saliva) anti-OVA IgG response in piglets with MatAb immunized at 14 days of age, compared with piglets with no MatAb, suggesting a modulatory effect of antigen-specific maternal factors on the isotype transfer to the mucosal immune exclusion system. In our porcine model, we demonstrated that passive maternal immunity positively modulated the systemic and nasal immune responses of animals immunized early in life. Our results, therefore, open the possibility of inducing systemic and respiratory mucosal immunity in the presence of MatAb through early vaccination. PMID:24754050

  14. Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response

    PubMed Central

    Turroni, Francesca; Taverniti, Valentina; Ruas-Madiedo, Patricia; Duranti, Sabrina; Guglielmetti, Simone; Lugli, Gabriele Andrea; Gioiosa, Laura; Palanza, Paola; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host. PMID:24242237

  15. Reprogramming immune responses via microRNA modulation

    PubMed Central

    Cubillos-Ruiz, Juan R.; Rutkowski, Melanie R; Tchou, Julia; Conejo-Garcia, Jose R.

    2013-01-01

    It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. PMID:25285232

  16. Immune-Stimulatory Dinucleotide at the 5′-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses

    PubMed Central

    2013-01-01

    Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immune-stimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)-mediated immune responses. Chemical modifications such as 2′-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5′-side abrogate TLR9-mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5′-end region and the other toward the 3′-end region, incorporated 2′-O-methylribonucleotides selectively preceding the 5′- or 3′-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5′-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents. PMID:24900663

  17. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  18. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs.

  19. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  20. The effects of pollutants on the allergic immune response.

    PubMed

    Kemeny, D M

    2000-11-01

    An increase in the prevalence of allergy and allergic diseases has taken place in the industrialised countries. Allergic diseases represent a major health problem, and appear linked to affluence and modern lifestyle. In the 20th century air pollution from industrial sources largely has been replaced by diesel exhaust and other traffic pollution. Further, the indoor environment in which we spend most of our time has changed dramatically. In order to understand the contribution of pollution and other environmental changes to the development of allergy, we need to understand the biologic processes that underlie allergic immune responses. In the present paper, immune regulatory pathways that control the allergic immune response are delineated. Castor bean dust causes widespread allergic sensitisation. The investigations that made clear the importance of CD8 T cells for the regulation of IgE production were triggered by studies of castor bean allergy. A special focus is in this review placed on the regulatory role of CD8 T cells in the development of the allergic immune response.

  1. Host Immune Status and Response to Hepatitis E Virus Infection

    PubMed Central

    Krain, Lisa J.; Nelson, Kenrad E.

    2014-01-01

    SUMMARY Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available. PMID:24396140

  2. Stimulating immune responses to fight cancer: Basic biology and mechanisms.

    PubMed

    O'Byrne, Kenneth

    2015-04-01

    Chronic inflammation is now recognized as a major cause of malignant disease. In concert with various mechanisms (including DNA instability), hypoxia and activation of inflammatory bioactive lipid pathways and pro-inflammatory cytokines open the doorway to malignant transformation and proliferation, angiogenesis, and metastasis in many cancers. A balance between stimulatory and inhibitory signals regulates the immune response to cancer. These include inhibitory checkpoints that modulate the extent and duration of the immune response and may be activated by tumor cells. This contributes to immune resistance, especially against tumor antigen-specific T-cells. Targeting these checkpoints is an evolving approach to cancer immunotherapy, designed to foster an immune response. The current focus of these trials is on the programmed cell death protein 1 (PD-1) receptor and its ligands (PD-L1, PD-L2) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Researchers have developed anti-PD-1 and anti-PDL-1 antibodies that interfere with the ligands and receptor and allow the tumor cell to be recognized and attacked by tumor-infiltrating T-cells. These are currently being studied in lung cancer. Likewise, CTLA-4 inhibitors, which have had success treating advanced melanoma, are being studied in lung cancer with encouraging results.

  3. Host immune status and response to hepatitis E virus infection.

    PubMed

    Krain, Lisa J; Nelson, Kenrad E; Labrique, Alain B

    2014-01-01

    Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available.

  4. Antiapoptotic Role for Lifeguard in T Cell Mediated Immune Response

    PubMed Central

    Verma, Inder M.

    2015-01-01

    Anti-apoptotic protein Lifeguard (LFG) is upregulated on T cells upon in vitro activation. To investigate its role in T cell immunity we infected wild type and LFG knockout bone marrow chimaeras mice with LCMV. We observed a decreased number of LFG KO activated CD8 and CD4 T cells throughout the infection and a marked decrease in LFG KO LCMV specific memory T cells. WT and KO T cells proliferated at the same rate, however, LFG KO CD44hi T cells showed increased cell death during the initial phase of the immune response. LFG KO and WT T cells were equally sensitive to the FAS antibody Jo-2 in ex vivo cultures, and blocking extrinsic pathways of cell death in vivo with Fas L or caspase 8 inhibitors did not rescue the increased apoptosis in LFG KO T cells. Our data suggest that LFG plays a role in T cell survival during the initial phase of anti-viral immune response by protecting pre-existing memory T cells and possibly newly activated T cells resulting in a diminished immune response and a decreased number of LCMV specific memory T cells. PMID:26565411

  5. Eicosanoid involvement in the regulation of behavioral fever in the desert locust, Schistocerca gregaria.

    PubMed

    Bundey, S; Raymond, S; Dean, P; Roberts, S K; Dillon, R J; Charnley, A K

    2003-04-01

    The desert locust Schistocerca gregaria behaviorally thermoregulates in order to try and maintain a favoured "set point" body temperature. Locusts infected with the deuteromycete fungal pathogen Metarhizium anisopliae var acridumchoose a significantly elevated temperature. This "behavioral fever" greatly delays the progress of mycosis. We have confirmed this phenomenon and shown that desert locusts also fever when infected with the bacterial pathogen Serratia marcescens. Elevation in the prefered environmental temperature occurs also upon injection with laminarin and lipopolysaccharide (microbial cell wall components). Since such treatments also stimulate the immune system it would appear that "behavioral fever" is probably a feature of the immune response. The eicosanoid biosynthesis inhibitor dexamethasone prevented laminarin invoked fever. This effect was reversable by arachidonic acid. Therefore in common with the febrile response in mammals behavioral fever in insects may be mediated locally by circulating eicosanoids.

  6. Regulation of frontline antibody responses by innate immune signals

    PubMed Central

    Chorny, Alejo; Puga, Irene; Cerutti, Andrea

    2012-01-01

    Mature B cells generate protective immunity by undergoing immunoglobulin (Ig) class switching and somatic hypermutation, two Ig gene-diversifying processes that usually require cognate interactions with T cells that express CD40 ligand. This T-cell-dependent pathway provides immunological memory but is relatively slow to occur. Thus, it must be integrated with a faster, T-cell-independent pathway for B-cell activation through CD40 ligand-like molecules that are released by innate immune cells in response to microbial products. Here, we discuss recent advances in our understanding of the interplay between the innate immune system and B cells, particularly “frontline” B cells located in the marginal zone of the spleen and in the intestine. PMID:22477522

  7. The Reticular Cell Network: A Robust Backbone for Immune Responses

    PubMed Central

    Textor, Johannes; Mandl, Judith N.; de Boer, Rob J.

    2016-01-01

    Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During infections, the network can suffer damage. A new study has now investigated the network’s structure in detail, using methods from graph theory. The study showed that the network is remarkably robust to damage: it can still support immune responses even when half of the reticular cells are destroyed. This is a further important example of how network connectivity achieves tolerance to failure, a property shared with other important biological and nonbiological networks. PMID:27727272

  8. Genomics of immune response to typhoid and cholera vaccines

    PubMed Central

    Majumder, Partha P.

    2015-01-01

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways. PMID:25964454

  9. Genomics of immune response to typhoid and cholera vaccines.

    PubMed

    Majumder, Partha P

    2015-06-19

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.

  10. B lymphocyte immune response gene phenotype is genetically determined

    SciTech Connect

    Tse, H.Y.; Mond, J.J.; Longo, D.L.

    1982-04-01

    We examined the effects of the developmental milieu on the capacity of B cells to undergo immune response gene-controlled, T cell-dependent polyclonal proliferation. Although I-Aq poly(Glu60 Ala30 Tyr10)n (GAT)-nonresponder T cells developing in a responder environment become phenotypic GAT-responders, I-Aq B cells remain unresponsive to GAT, even after maturation in a GAT-responder animal. Conversely, (B10.A x B10.Q)F1 ((GAT responder x GAT nonresponder)F1) T cells developing in a B10.Q GAT nonresponder host fail to respond to GAT, but F1 B cells from the same F1 leads to parent chimeras make excellent proliferative responses in the presence of GAT and responder T cells. Thus, by this assay, B cell immune response gene function is genetically determined and is not affected by the developmental milieu.

  11. Immune response triggered by Brucella abortus following infection or vaccination.

    PubMed

    Dorneles, Elaine M S; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-07-17

    Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts.

  12. Abnormal immune responses of Bloom's syndrome lymphocytes in vitro.

    PubMed Central

    Hütteroth, T H; Litwin, S D; German, J

    1975-01-01

    Bloom's syndrome is a rare autosmal recessive disorder, first characterized by growth retardation and asum-sensitive facial telangiectasia and more recently demonstarted to have increased chromosome instability, a predisposition to malignancy, and increased susecptibitily to infection. The present report ocncern the immune function of Bloom's syndrom lymphoctes in vitro. Four affected homozgotes and five heterozygotes were studied. An abnormal serum concentartion of at least one class of immunoglobin was present in three out of four homozgotes. Affected homozgotes were shown capable of both a humoral and cellular response after antigenic challenge, the responses in general being weak but detectable. Blood lymphocytes from Bloom's syndrome individuals were cultured in impaired proliferavite response and synthesized less immunoglobulin at the end of 5 days than did normal controls. In contrast, they had a normal proliferative response to phytohemagglutinin except at highest concentrations of the mitogen. In the mixed lymphocte culture, Bloom's syndrome lymphocytes proved to be poor responder cells but normal stimulator cells. Lmyphoctes from the heterozgotes produced normal responses in these three systems. Distrubed immunity appears to be on of several major consequences of homozygosity for the Bloom's syndrome gene. Although the explanation for this pleiotropism is at present obscure, the idea was advanced that the aberrant immune function is, along with the major clincial feature-small body size, amanifestation of defect in cellular proliferation. PMID:124745

  13. Humoral immune responses in CD40 ligand-deficient mice

    PubMed Central

    1994-01-01

    Individuals with X-linked hyper-IgM syndrome fail to express functional CD40 ligand (CD40L) and, as a consequence, are incapable of mounting protective antibody responses to opportunistic bacterial infections. To address the role of CD40L in humoral immunity, we created, through homologous recombination, mice deficient in CD40L expression. These mice exhibited no gross developmental deficiencies or health abnormalities and contained normal percentages of B and T cell subpopulations. CD40L-deficient mice did display selective deficiencies in humoral immunity; basal serum isotype levels were significantly lower than observed in normal mice, and IgE was undetectable. Furthermore, the CD40L-deficient mice failed to mount secondary antigen- specific responses to immunization with a thymus-dependent antigen, trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH). By contrast, the CD40L-deficient mice produced antigen-specific antibody of all isotypes except IgE in response to the thymus-independent antigen, DNP-Ficoll. These results underscore the requirement of CD40L for T cell-dependent antibody responses. Moreover, Ig class switching to isotypes other than IgE can occur in vivo in the absence of CD40L, supporting the notion that alternative B cell signaling pathways regulate responses to thymus-independent antigens. PMID:7964465

  14. Radiation-induced immune responses: mechanisms and therapeutic perspectives

    PubMed Central

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok

    2016-01-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field. PMID:27722125

  15. Humoral Immune Response to Primary Rubella Virus Infection

    PubMed Central

    Wilson, Kim M.; Di Camillo, Carlie; Doughty, Larissa; Dax, Elizabeth M.

    2006-01-01

    An assay capable of distinguishing between the immune response generated by recent exposure to rubella virus and the immune response existing as a result of past exposure or immunization is required for the diagnosis of primary rubella virus infection, especially in pregnant women. Avidity assays, which are based on the premise that chaotropic agents can be used to selectively dissociate the low-avidity antibodies generated early in the course of infection, have become routinely used in an effort to accomplish this. We have thoroughly investigated the immunological basis of an avidity assay using a viral lysate-based assay and an enzyme-linked immunosorbent assay (ELISA) based on a peptide analogue of the putative immunodominant region of the E1 glycoprotein (E1208-239). The relative affinities of the antibodies directed against E1208-239 were measured by surface plasmon resonance and were found to correlate well with the avidity index calculated from the ELISA results. We found that the immune response generated during primary rubella virus infection consists of an initial low-affinity peak of immunoglobulin M (IgM) reactivity followed by transient peaks of low-avidity IgG3 and IgA reactivity. The predominant response is an IgG1 response which increases in concentration and affinity progressively over the course of infection. Incubation with the chaotropic agent used in the avidity assay abolished the detection of the early low-affinity peaks of IgM, IgA, and IgG3 reactivity while leaving the high-affinity IgG1 response relatively unaffected. The present study supported the premise that avidity assays based on appropriate antigens can be useful to confirm primary rubella virus infection. PMID:16522781

  16. Experimental infection with bovine ephemeral fever virus and analysis of its antibody response cattle.

    PubMed

    Zheng, F Y; Chen, Q W; Li, Z; Gong, X W; Wang, J D; Yin, H

    2016-02-01

    Bovine ephemeral fever (BEF) is an arthropod-borne viral disease that occurs throughout mainland China. LS11 obtained in the 2011 BEF epidemic was a wild strain, and its virulence and antibody response have never been studied in China. Therefore, the issues were investigated in this work. Experimental cattle were intravenously infected with different doses of BEF virus, and some non-infected cattle were simultaneously monitored. Blood and serum samples were collected from all animals over the course of our study. Infected cattle were challenged for a second time with BEF virus to determine protective period of the antibodies. BEF virus was detected in blood samples from infected cattle, but not in monitored cattle. The neutralizing antibodies (nAbs) against BEFV were easier to be detected and persisted for longer periods in cattle infected with higher doses of BEFV than in those infected with lower doses. When the titer of nAbs was equal to 5 or 6, re-infected cattle still could mount a challenge against BEFV. However, after 3 or 6months, when nAbs were no longer apparent, re-infected cattle displayed typical symptoms of BEF. Our findings indicated that vaccination should be performed once the titer of nAb decreased to 5 or 6.

  17. Immunoregulation of fetal and anti-paternal immune responses.

    PubMed

    Seavey, Matthew M; Mosmann, Tim R

    2008-01-01

    Immunological tolerance to the fetus is essential for fetal survival during pregnancy. The semi-allogeneic fetus expresses genes foreign to the mother that can be recognized by maternal T cells. Under times of stress or infection, deleterious immune responses can result in fetal destruction and/or maternal death. Exposure to non-maternal antigens begins as early as insemination and some of the mechanisms required to prevent maternal priming against these antigens are in place before sexual encounter. Continuous and overlapping regulatory mechanisms must cooperate to allow the best chances for fertilization, implantation, and healthy gestation, simultaneously protecting the fetus from maternal immune attack yet making minimal compromises in resistance to infection. Several types of immune cell from both the innate and adaptive arms of the immune system help protect both the mother and fetus during pregnancy. It's the intricate communication and interplay between the immune system and the endocrine system that will ultimately decide the success or fate of the developing fetus. PMID:18213524

  18. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis.

    PubMed Central

    Pal, P G; Horwitz, M A

    1992-01-01

    We have studied the capacity of a selected fraction of Mycobacterium tuberculosis extracellular proteins (EP) released into broth culture by mid-logarithmic-growth-phase organisms to induce cell-mediated immune responses and protective immunity in a guinea pig model of pulmonary tuberculosis. Guinea pigs infected with M. tuberculosis by aerosol but not uninfected control guinea pigs exhibit strong cell-mediated immune responses to EP, manifest by dose-dependent cutaneous delayed-type hypersensitivity and splenic lymphocyte proliferation. Guinea pigs immunized subcutaneously with EP but not sham-immunized control guinea pigs also develop strong cell-mediated immune responses to EP, manifest by dose-dependent cutaneous delayed-type hypersensitivity and splenic lymphocyte proliferation. EP is nonlethal and nontoxic to guinea pigs upon subcutaneous immunization. Guinea pigs immunized with EP and then challenged with aerosolized M. tuberculosis exhibit protective immunity. In five independent experiments, EP-immunized guinea pigs were consistently protected against clinical illness, including weight loss. Compared with EP-immunized guinea pigs, sham-immunized control guinea pigs lost 12.9 +/- 2.0% (mean +/- SE) of their total weight. EP-immunized guinea pigs also had a 10-fold reduction in viable M. tuberculosis bacilli in their lungs and spleens (P = 0.004 and 0.001, respectively) compared with sham-immunized control animals. In the two experiments in which some guinea pigs died after aerosol challenge, EP-immunized animals were protected from death. Whereas all 12 (100%) EP-immunized guinea pigs survived challenge with aerosolized M. tuberculosis, only 6 of 12 (50%) sham-immunized control guinea pigs survived challenge (P = 0.007, Fisher exact test). This study demonstrates that actively growing M. tuberculosis cells release immunoprotective molecules extracellularly, that a subunit vaccine against tuberculosis is feasible, and that extracellular molecules of M

  19. Symptoms of dengue fever in relation to host immunologic response and virus serotype, Puerto Rico, 1990-1991.

    PubMed

    Cobra, C; Rigau-Pérez, J G; Kuno, G; Vorndam, V

    1995-12-01

    The authors investigated the role of secondary immunologic response, virus serotype, age, and sex on the clinical manifestations of dengue fever in Puerto Rico. From surveillance data for 1990 and 1991, this study identified 3,926 laboratory-positive cases, including 889 for whom dengue immunologic status and symptoms could be ascertained. Of those, 622 cases were virologically confirmed, and 267 cases were serologically confirmed. More than 50% of all positive patients reported fever, chills, headache, eye pain, body pains, joint pains, nausea, vomiting, or skin rash. The frequency of reporting signs, symptoms, and hospitalization was significantly higher among persons with secondary infections diagnosed by serological methods. Only rash was more common among those with primary infections. Symptom reporting increased with age; body pains, joint pains, and rash were significantly more frequently reported by female patients. No significant difference in symptom frequency was found among the virologically confirmed cases, comparing primary and secondary cases or infections due to different serotypes. The data for serologically confirmed cases suggest that in Puerto Rico the manifestations of dengue fever are, as with dengue hemorrhagic fever in Asia, more prominent among those who are experiencing secondary infections, and this effect may be more marked in the younger age groups.

  20. Boutonneuse fever.

    PubMed Central

    Moraga, F A; Martinez-Roig, A; Alonso, J L; Boronat, M; Domingo, F

    1982-01-01

    Sixty children, aged between 2 and 10 years, had boutonneuse fever during the summer months of 1979 and 1980. They presented with fever and a generalised maculopapular rash. The tàche noire could be seen at the site of the tick bite in 38 (63%) of them. The antibody response, assayed nonspecifically, by the Weil-Felix reaction was positive in 52. A singe titre of more than 1:80 or a 4-fold increase between two paired specimens separated by a 7-day interval was considered diagnostic. Maximum titres were reached at the end of the second week of convalescence in 81% of patients. Treatment with oral oxytetracycline was effective in all cases. Images Fig. 1 Fig. 2 Fig. 3 PMID:7065712

  1. Immune response to measles vaccine in Peruvian children.

    PubMed Central

    Bautista-López, N. L.; Vaisberg, A.; Kanashiro, R.; Hernández, H.; Ward, B. J.

    2001-01-01

    OBJECTIVE: To evaluate the immune response in Peruvian children following measles vaccination. METHODS: Fifty-five Peruvian children received Schwarz measles vaccine (about 10(3) plaque forming units) at about 9 months of age. Blood samples were taken before vaccination, then twice after vaccination: one sample at between 1 and 4 weeks after vaccination and the final sample 3 months post vaccination for evaluation of immune cell phenotype and lymphoproliferative responses to measles and non-measles antigens. Measles-specific antibodies were measured by plaque reduction neutralization. FINDINGS: The humoral response developed rapidly after vaccination; only 4 of the 55 children (7%) had plaque reduction neutralization titres <200 mlU/ml 3 months after vaccination. However, only 8 out of 35 children tested (23%) had lymphoproliferative responses to measles antigens 3-4 weeks after vaccination. Children with poor lymphoproliferative responses to measles antigens had readily detectable lymphoproliferative responses to other antigens. Flow cytometric analysis of peripheral blood mononuclear cells revealed diffuse immune system activation at the time of vaccination in most children. The capacity to mount a lymphoproliferative response to measles antigens was associated with expression of CD45RO on CD4+ T-cells. CONCLUSION: The 55 Peruvian children had excellent antibody responses after measles vaccination, but only 23% (8 out of 35) generated detectable lymphoproliferative responses to measles antigens (compared with 55-67% in children in the industrialized world). This difference may contribute to the less than uniform success of measles vaccination programmes in the developing world. PMID:11731811

  2. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  3. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48.

    PubMed

    Schlesinger, J J; Brandriss, M W; Walsh, E E

    1985-10-01

    The protective capacity of antiviral antibodies has generally been considered to depend on their interactions with structural components of the virion. Here we report protection against lethal 17D yellow fever virus (YF) encephalitis of mice by passive administration of nonneutralizing monoclonal antibodies to a 17D YF-specified nonstructural glycoprotein, gp48, and by active immunization with purified gp48. Among five anti-gp48 monoclonal antibodies tested, two with high titer complement-fixing (CF) activity were protective, whereas three antibodies with little or no CF activity were not. The ability of antibodies to protect correlated with their ability to promote complement-mediated cytolysis (CMC) of 51Cr-labeled 17D YF-infected mouse neuroblastoma (Neuro 2a) cells. Purified gp48, prepared from lysates of 17D YF-infected Vero cells by immunoaffinity chromatography, was shown to bear both YF type-specific and flavivirus group-reactive determinants in a solid phase radioimmunoassay. Immunization of mice with purified gp48 resulted in solid protection in the absence of detectable anti-virion antibody, measured by neutralization and radioimmunoprecipitation assays. The results are consistent with plasma membrane expression of gp48 and susceptibility of 17D YF-infected neural cells to CMC, a possible mechanism of host defense in 17D YF encephalitis. Protection provided by immunization with gp48, which bears a group-reactive determinant and is highly conserved among flaviviruses, may have implications in regard to flavivirus vaccine design.

  4. How B cells Shape the Immune Response against Mycobacterium tuberculosis

    PubMed Central

    Maglione, Paul J.; Chan, John

    2009-01-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against nonviral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against nonviral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought. PMID:19283721

  5. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni

    PubMed Central

    Radomska, Katarzyna A.; Vaezirad, Mahdi M.; Verstappen, Koen M.; Wösten, Marc M. S. M.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20–40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization. PMID:27760175

  6. Acidic chitinase primes the protective immune response to gastrointestinal nematodes.

    PubMed

    Vannella, Kevin M; Ramalingam, Thirumalai R; Hart, Kevin M; de Queiroz Prado, Rafael; Sciurba, Joshua; Barron, Luke; Borthwick, Lee A; Smith, Allen D; Mentink-Kane, Margaret; White, Sandra; Thompson, Robert W; Cheever, Allen W; Bock, Kevin; Moore, Ian; Fitz, Lori J; Urban, Joseph F; Wynn, Thomas A

    2016-05-01

    Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung. PMID:27043413

  7. Inhibition of the immune response to experimental fresh osteoarticular allografts

    SciTech Connect

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. 3d.; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M. )

    1989-06-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed.

  8. [Adaptive immune response and associated trigger factors in atopic dermatitis].

    PubMed

    Heratizadeh, A; Werfel, T; Rösner, L M

    2015-02-01

    Due to a broad variety of extrinsic trigger factors, patients with atopic dermatitis (AD) are characterized by complex response mechanisms of the adaptive immune system. Notably, skin colonization with Staphylococcus aureus seems to be of particular interest since not only exotoxins, but also other proteins of S. aureus can induce specific humoral and cellular immune responses which partially also correlate with the severity of AD. In a subgroup of AD patients Malassezia species induce specific IgE- and T cell-responses which has been demonstrated by atopy patch tests. Moreover, Mala s 13 is characterized by high cross-reactivity to the human corresponding protein (thioredoxin). Induction of a potential autoallergy due to molecular mimicry seems therefore to be relevant for Malassezia-sensitized AD patients. In addition, sensitization mechanisms to autoallergens aside from cross-reactivity are under current investigation. Regarding inhalant allergens, research projects are in progress with the aim to elucidate allergen-specific immune response mechanisms in more depth. For grass-pollen allergens a flare-up of AD following controlled exposure has been observed while for house dust mite-allergens a polarization towards Th2 and Th2/Th17 T cell phenotypes can be observed. These and further findings might finally contribute to the development of specific and effective treatments for aeroallergen-sensitized AD patients. PMID:25532900

  9. Systemic PPARgamma ligation inhibits allergic immune response in the skin.

    PubMed

    Dahten, Anja; Koch, Christin; Ernst, Dennis; Schnöller, Corinna; Hartmann, Susanne; Worm, Margitta

    2008-09-01

    We have shown previously that specific ligands of the peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibit the systemic allergic immune response. The objective of this study was to investigate the impact of PPARgamma-ligand treatment on the local allergic immune response. We established a murine model exhibiting clinical and histological features of AD-like skin lesions with high reproducibility. In this model, the PPARgamma ligand was applied in an either preventive or therapeutic manner via systemic and local routes. The affected skin areas were assessed by standardized skin score, histological analyses, and immunohistochemical examinations. Our data show that systemic application of PPARgamma ligand by a preventive protocol led to significantly reduced onset of eczematous skin lesions. This was confirmed by histology, showing decreased skin thickness accompanied by significantly reduced infiltrations of CD4+ and CD8+ lymphocytes but also mast cells. Additionally, early allergen-specific IgE and IgG1 responses were reduced (day 21/35), whereas IgG2a levels remained unchanged. In conclusion, our results demonstrate that PPARgamma-ligand treatment inhibits not only systemic allergic immune response, but also local allergen-mediated dermatitis. Our findings point to therapeutic strategies, including a PPARgamma-ligand-based treatment. PMID:18401424

  10. Tailoring the Immune Response via Customization of Pathogen Gene Expression.

    PubMed

    Runco, Lisa M; Stauft, Charles B; Coleman, J Robert

    2014-01-01

    The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development. PMID:24719769

  11. CD28 Aptamers as Powerful Immune Response Modulators

    PubMed Central

    Pastor, Fernando; Soldevilla, Mario M; Villanueva, Helena; Kolonias, Despina; Inoges, Susana; de Cerio, Ascensión L; Kandzia, Romy; Klimyuk, Victor; Gleba, Yuri; Gilboa, Eli; Bendandi, Maurizio

    2013-01-01

    CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7), precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist) to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy. PMID:23756353

  12. Cell-Mediated Immune Responses in Paraneoplastic Neurological Syndromes

    PubMed Central

    Zaborowski, Mikolaj Piotr

    2013-01-01

    Paraneoplastic neurological syndromes (PNS) are disorders of the nervous system that are associated with remote effects of malignancy. PNS are considered to have an autoimmune pathology. It has been suggested that immune antitumor responses are the origin of improved outcome in PNS. We describe cell-mediated immune responses in PNS and their potential contributions to antitumor reactions. Experimental and neuropathological studies have revealed infiltrates in nervous tissue and disturbances in lymphocyte populations in both cerebrospinal fluid and peripheral blood. A predominance of cytotoxic T lymphocytes (CTLs) over T helper cells has been observed. CTLs can be specifically aggressive against antigens shared by tumors and nervous tissue. Based on genetic studies, a common clonal origin of lymphocytes from blood, tumor, and nervous tissue is suggested. Suppressive regulatory T (Treg) lymphocytes are dysfunctional. Simultaneously, in tumor tissue, more intense cell-mediated immune responses are observed, which often coincide with a less aggressive course of neoplastic disease. An increased titer of onconeural antibodies is also related to better prognoses in patients without PNS. The evaluation of onconeural and neuronal surface antibodies was recommended in current guidelines. The link between PNS emergence and antitumor responses may result from more active CTLs and less functional Treg lymphocytes. PMID:24575143

  13. [Desensitization at the first stage of IGE-mediated response as hay fever prophylaxis].

    PubMed

    Gniazdowska, B; Gniazdowski, R

    The aim of our work was to assess the prophylactic aspects of desensitization at the first stage of IgE-mediated response to grass pollen antigens (GPA). Forty six patients aged 10-45 (Me = 20.45) years (group I) and 50 patients aged 11-45 (Me = 19.17) years (group II) were included in to the study. All of them: 1) suffered from allergic rhinitis due to house dust (HD), feathers (F), weed (W) or tree (T) pollen, 2) had also some other allergic diseases, 3) had positive family history of allergic disorders, 4) had reproducible, strongly positive skin reaction of type I to GPA, but 5) did not show any clinical symptoms of hypersensitivity to GPA. Specific immunotherapy with HD, F, W, and T aqueous extracts was administered to both groups for at least 3 successive years, while parallel desensitization with GPA aqueous extract was carried out in group I, only. The symptoms of grass pollinosis were searcher for and the effects of immunotherapy were evaluated in all the patients over the period of at least 5 successive years after the complete course of vaccines administration. Clinical signs of hypersensitivity to GPA became evident in 6 patients (13.04%) of group I and in 27 patients (54.00%) of group II (p less than 0.001). Thus the desensitization at the first stage of IgE-mediated response to GPA effectively prevented development of the symptomatic hay fever. However, the disease revealed itself in few cases still much later and its course was much milder than in people who were not subjected to such a preventive desensitization.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2098734

  14. Anti-tumor immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  15. Clustered lot quality assurance sampling: a tool to monitor immunization coverage rapidly during a national yellow fever and polio vaccination campaign in Cameroon, May 2009.

    PubMed

    Pezzoli, L; Tchio, R; Dzossa, A D; Ndjomo, S; Takeu, A; Anya, B; Ticha, J; Ronveaux, O; Lewis, R F

    2012-01-01

    We used the clustered lot quality assurance sampling (clustered-LQAS) technique to identify districts with low immunization coverage and guide mop-up actions during the last 4 days of a combined oral polio vaccine (OPV) and yellow fever (YF) vaccination campaign conducted in Cameroon in May 2009. We monitored 17 pre-selected districts at risk for low coverage. We designed LQAS plans to reject districts with YF vaccination coverage <90% and with OPV coverage <95%. In each lot the sample size was 50 (five clusters of 10) with decision values of 3 for assessing OPV and 7 for YF coverage. We 'rejected' 10 districts for low YF coverage and 14 for low OPV coverage. Hence we recommended a 2-day extension of the campaign. Clustered-LQAS proved to be useful in guiding the campaign vaccination strategy before the completion of the operations.

  16. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge.

    PubMed

    Catalán, Tamara P; Wozniak, Aniela; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-03-01

    Although the study of thermoregulation in insects has shown that infected animals tend to prefer higher temperatures than healthy individuals, the immune response and energetic consequences of this preference remain unknown. We examined the effect of environmental temperature and the energetic costs associated to the activation of the immune response of Tenebrio molitor larvae following a lipopolysaccharide (LPS) challenge. We measured the effect of temperature on immune parameters including phenoloxidase (PO) activity and antibacterial responses. Further as proximal and distal costs of the immune response we determined the standard metabolic rate (SMR) and the loss of body mass (m(b)), respectively. Immune response was stronger at 30°C than was at 10 or 20°C. While SMR at 10 and 20°C did not differ between immune treatments, at 30°C SMR of LPS-treated larvae was almost 25-60% higher than SMR of PBS-treated and naïve larvae. In addition, the loss in m(b) was 1.9 and 4.2 times higher in LPS-treated larvae than in PBS-treated and naïve controls. The immune responses exhibited a positive correlation with temperature and both, SMR and m(b) change, were sensitive to environmental temperature. These data suggest a significant effect of environmental temperature on the immune response and on the energetic costs of immunity. PMID:22019347

  17. Immune responses in humans after 60 days of confinement

    NASA Technical Reports Server (NTRS)

    Schmitt, D. A.; Peres, C.; Sonnenfeld, G.; Tkackzuk, J.; Arquier, M.; Mauco, G.; Ohayon, E.

    1995-01-01

    A confinement experiment in a normobaric diving chamber was undertaken to better understand the effect of confinement and isolation on human psychology and physiology. Pre- and postconfinement blood samples were obtained from four test subjects and control donors to analyze immune responses. No modification in the levels of CD2+, CD3+, CD4+, CD8+, CD19+, and CD56+ cells was observed after confinement. Mitogen-induced T-lymphocyte proliferation and interleukin-2 receptor expression were not altered significantly. Whole blood interferon-alpha and gamma-induction and plasma cortisol levels were also unchanged, as was natural killer cell activity. These data suggest that in humans, no specific components of the immune response are affected by a 2-month isolation and confinement of a small group.

  18. Responsive immunization and intervention for infectious diseases in social networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Zhang, Haifeng; Zeng, Guanghong

    2014-06-01

    By using the microscopic Markov-chain approximation approach, we investigate the epidemic spreading and the responsive immunization in social networks. It is assumed that individual vaccination behavior depends on the local information of an epidemic. Our results suggest that the responsive immunization has negligible impact on the epidemic threshold and the critical value of initial epidemic outbreak, but it can effectively inhibit the outbreak of epidemic. We also analyze the influence of the intervention on the disease dynamics, where the vaccination is available only to those individuals whose number of neighbors is greater than a certain value. Simulation analysis implies that the intervention strategy can effectively reduce the vaccine use under the epidemic control.

  19. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  20. Viral dynamics model with CTL immune response incorporating antiretroviral therapy.

    PubMed

    Wang, Yan; Zhou, Yicang; Brauer, Fred; Heffernan, Jane M

    2013-10-01

    We present two HIV models that include the CTL immune response, antiretroviral therapy and a full logistic growth term for uninfected CD4+ T-cells. The difference between the two models lies in the inclusion or omission of a loss term in the free virus equation. We obtain critical conditions for the existence of one, two or three steady states, and analyze the stability of these steady states. Through numerical simulation we find substantial differences in the reproduction numbers and the behaviour at the infected steady state between the two models, for certain parameter sets. We explore the effect of varying the combination drug efficacy on model behaviour, and the possibility of reconstituting the CTL immune response through antiretroviral therapy. Furthermore, we employ Latin hypercube sampling to investigate the existence of multiple infected equilibria. PMID:22930342

  1. Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep

    PubMed Central

    Bennett, Kristine E.; Drolet, Barbara S.; Lindsay, Robbin; Mecham, James O.; Reeves, Will K.; Weingartl, Hana M.; Wilson, William C.

    2015-01-01

    Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. In North America, there are susceptible ruminant hosts and competent mosquito vectors, yet there are no fully licensed animal vaccines for this arthropod-borne virus, should it be introduced. Studies in sheep and cattle have found the attenuated strain of RVFV, MP-12, to be both safe and efficacious based on early testing, and a 2-year conditional license for use in U.S. livestock has been issued. The purpose of this study was to further determine the vaccine's potential to infect mosquitoes, the duration of humoral immunity to 24 months postvaccination, and the ability to prevent disease and viremia from a virulent challenge. Vaccination experiments conducted in sheep found no evidence of a potential for vector transmission to 4 North American mosquito species. Neutralizing antibodies were elicited, with titers of >1:40 still present at 24 months postvaccination. Vaccinates were protected from clinical signs and detectable viremia after challenge with virulent virus, while control sheep had fever and high-titered viremia extending for 5 days. Antibodies to three viral proteins (nucleocapsid N, the N-terminal half of glycoprotein GN, and the nonstructural protein from the short segment NSs) were also detected to 24 months using competitive enzyme-linked immunosorbent assays. This study demonstrates that the MP-12 vaccine given as a single dose in sheep generates protective immunity to a virulent challenge with antibody duration of at least 2 years, with no evidence of a risk for vector transmission. PMID:26041042

  2. Physical Theory of the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2012-10-01

    I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.

  3. Antiviral immune responses in CTLA4 transgenic mice.

    PubMed Central

    Zimmermann, C; Seiler, P; Lane, P; Zinkernagel, R M

    1997-01-01

    The role of B7 binding CD28 in the regulation of T- and B-cell responses against viral antigens was assessed in transgenic mice expressing soluble CTLA4-Hgamma1 (CTLA4-Ig tg mice) that blocks B7-CD28 interactions. The results indicate that transgenic soluble CTLA4 does not significantly alter cytotoxic T-cell responses against replicating lymphocytic choriomeningitis virus (LCMV) or vaccinia virus but drastically impairs the induction of cytotoxic T-cell responses against abortively replicating vesicular stomatitis virus (VSV). While the T-independent neutralizing immunoglobulin M (IgM) responses were within normal ranges, the switch to IgG was reduced 4- to 16-fold after immunization with abortively replicating VSV and more than 30-fold after immunization with an inert VSV glycoprotein antigen in transgenic mice. IgG antibody responses to LCMV, as detected by enzyme-linked immunosorbent assay and by neutralizing action, were reduced about 3- to 20-fold and more than 50-fold, respectively. These results suggest that responses in CTLA4-Ig tg mice are mounted according to their independence of T help. While immune responses to nonreplicating or poorly replicating antigens are in general most dependent on T help and B7-CD28 interactions, they are most impaired in CTLA4-Ig tg mice. The results of the present experiments also indicate that highly replicating viruses, because of greater quantities of available antigens and by inducing as-yet-undefined factors and/or cell surface changes, are capable of compensating for the decrease in T help caused by the blocking effects of soluble CTLA4. PMID:9032309

  4. Evaluation of immune responses to an oral typhoid vaccine, Ty21a, in children from 2 to 5 years of age in Bangladesh.

    PubMed

    Bhuiyan, Taufiqur R; Choudhury, Feroza K; Khanam, Farhana; Saha, Amit; Sayeed, Md Abu; Salma, Umme; Lundgren, Anna; Sack, David A; Svennerholm, Ann-Mari; Qadri, Firdausi

    2014-02-19

    Young children are very susceptible to typhoid fever, emphasizing the need for vaccination in under five age groups. The parenteral Vi polysaccharide vaccine is not immunogenic in children under 2 years and the oral Ty21a vaccine (Vivotif) available in capsular formulation is only recommended for those over 5 years. We studied immune responses to a liquid formulation of Ty21a in children 2-5 years of age. Since children in developing countries are in general hypo responsive to oral vaccines, the study was designed to determine if anti-helminthic treatment prior to vaccination, improves responses. In a pilot study in 20 children aged 4-5 years, the immune responses in plasma and in antibody in lymphocyte secretions (ALS) to the enteric coated capsule formulation of Ty21a was found to be comparable to a liquid formulation (P>0.05). Based on this, children (n=252) aged ≥ 2-<3 years and ≥3-<5 years were randomized to receive a liquid formulation of Ty21a with and without previous anti-helminthic treatment. The vaccine was well tolerated with only a few mild adverse events recorded in <1% of the children. De-worming did not improve immune responses and both age groups developed 32-71% IgA, IgG, and IgM responses in plasma and 63-86% IgA responses in ALS and stool specimens to a membrane preparation (MP) of Ty21a. An early MP specific proliferative T cell response was also seen. We recommend that safety and efficacy studies with a liquid formulation of the vaccine are carried out in children under five, including those less than two years of age to determine if Ty21a is protective in these age groups and applicable as a public health tool for controlling typhoid fever in high prevalence areas of typhoid fever including Bangladesh.

  5. Evaluation of immune responses to an oral typhoid vaccine, Ty21a, in children from 2 to 5 years of age in Bangladesh.

    PubMed

    Bhuiyan, Taufiqur R; Choudhury, Feroza K; Khanam, Farhana; Saha, Amit; Sayeed, Md Abu; Salma, Umme; Lundgren, Anna; Sack, David A; Svennerholm, Ann-Mari; Qadri, Firdausi

    2014-02-19

    Young children are very susceptible to typhoid fever, emphasizing the need for vaccination in under five age groups. The parenteral Vi polysaccharide vaccine is not immunogenic in children under 2 years and the oral Ty21a vaccine (Vivotif) available in capsular formulation is only recommended for those over 5 years. We studied immune responses to a liquid formulation of Ty21a in children 2-5 years of age. Since children in developing countries are in general hypo responsive to oral vaccines, the study was designed to determine if anti-helminthic treatment prior to vaccination, improves responses. In a pilot study in 20 children aged 4-5 years, the immune responses in plasma and in antibody in lymphocyte secretions (ALS) to the enteric coated capsule formulation of Ty21a was found to be comparable to a liquid formulation (P>0.05). Based on this, children (n=252) aged ≥ 2-<3 years and ≥3-<5 years were randomized to receive a liquid formulation of Ty21a with and without previous anti-helminthic treatment. The vaccine was well tolerated with only a few mild adverse events recorded in <1% of the children. De-worming did not improve immune responses and both age groups developed 32-71% IgA, IgG, and IgM responses in plasma and 63-86% IgA responses in ALS and stool specimens to a membrane preparation (MP) of Ty21a. An early MP specific proliferative T cell response was also seen. We recommend that safety and efficacy studies with a liquid formulation of the vaccine are carried out in children under five, including those less than two years of age to determine if Ty21a is protective in these age groups and applicable as a public health tool for controlling typhoid fever in high prevalence areas of typhoid fever including Bangladesh. PMID:24440210

  6. Immune response to racotumomab in a child with relapsed neuroblastoma.

    PubMed

    Sampor, C; Guthmann, M D; Scursoni, A; Cacciavillano, W; Torbidoni, A; Galluzzo, L; Camarero, S; Lopez, J; de Dávila, M T G; Fainboim, L; Chantada, G L

    2012-01-01

    Immunotherapy targeting ganglioside antigens is a powerful tool for the treatment of high risk neuroblastoma. However, only treatment with anti-GD2 antibodies has been used in clinical practice and other options may be pursued. We report the use of racotumomab, an anti-idiotype vaccine against N-glycolyl neuraminic acid (NeuGc)- containing gangliosides, eliciting an immune response in a child with relapsed neuroblastoma expressing the NeuGcGM3 ganglioside.

  7. Immune response to Streptococcus pyogenes and the susceptibility to psoriasis.

    PubMed

    Muto, M; Fujikura, Y; Hamamoto, Y; Ichimiya, M; Ohmura, A; Sasazuki, T; Fukumoto, T; Asagami, C

    1996-05-01

    Monoclonal antibodies directed against type 12 Group A streptococcal cell wall antigens cross-react with nuclei and cytoplasm of cells from skin and synovium from controls, uninvolved skin of psoriatics and psoriatic plaques. Patients with psoriasis had high serum titres of antibody against the M12 (C-region) streptococcal antigen compared to controls. An abnormal immune response directed against a "self' antigen after initiation by Group A streptococcal infection may play an important role in the exacerbation or development of psoriasis.

  8. Dysregulation of the humoral immune response in old mice.

    PubMed

    Zhao, K S; Wang, Y F; Guéret, R; Weksler, M E

    1995-06-01

    The increase in autoantibodies with age of both experimental animals and humans has been thought to reflect a shift in the antibody repertoire from foreign to self antigens. In mice, before immunization, the age-associated increase in antibodies reactive with a prototypic autoantigen, bromelain-treated autologous erythrocytes (BrMRBC), reflected a 3-fold increase in serum IgM and the number of IgM-secreting spleen cells in old compared with young mice. However, the percentage of the IgM-secreting spleen cell repertoire reactive with BrMRBC in old mice was actually approximately 50% that in young mice. In contrast, after immunization with sheep erythrocytes (SRBC), old mice showed a 5-fold increase in the percentage of IgM-secreting cells reactive with BrMRBC while young mice showed no significant increase. The converse is true for the percentage of IgM-secreting spleen cells in old mice specific for SBRC, which is 10% the number generated by young mice. The increased autoantibody response of old mice is not, however, linked to their poor response to the nominal antigen. Thus, immunization with phosphorylcholine (PC) conjugated keyhole limpet hemocyanin, an antigen that induces a comparable anti-PC response in old and young mice, also induced more autoantibody forming cells in old than young mice. The increased autoantibody response of old mice after immunization can be accounted for by both an increased number of Ig-secreting spleen cells as well as an increased percentage of the expressed repertoire of IgM-secreting spleen cells that react with autoantigens.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. The Immune Response to Papillomavirus During Infection Persistence and Regression

    PubMed Central

    Hibma, Merilyn H

    2012-01-01

    Human papillomavirus (HPV) infections cause a significant global health burden, predominantly due to HPV-associated cancers. HPV infects only the epidermal cells of cutaneous and mucosal skin, without penetration into the dermal tissues. Infections may persist for months or years, contributed by an array of viral immune evasion mechanisms. However in the majority of cases immunity-based regression of HPV lesions does eventually occur. The role of the innate immune response to HPV in persistence and regression of HPV infection is not well understood. Although an initial inflammatory infiltrate may contribute to disease regression, sustained inflammation at the HPV-induced lesions, characterized by macrophage and neutrophil infiltration, has been observed in persistence. Pathogen-associated molecular patterns (PAMPs) are important in innate recognition. The double stranded DNA and an L1 and L2 capsid components of the HPV virion are potential PAMPs that can trigger signaling through cellular pattern recognition receptors, including toll-like receptors (TLR). TLR expression is increased in regressing HPV disease but is reduced in persistent lesions, suggesting a role for TLR in HPV regression. With regard to the adaptive immune response, a key indicator of regression in humans is infiltration of the lesion with both CD4 and CD8 T cells. In individuals with persistent lesions, CD8 T cell and immune suppressive regulatory T cells (Tregs) infiltrate the infection site. There is no association between persistence or regression and the presence of serum antibodies to the viral capsid antigens of HPV. There is still much to be learned about the immunological events that trigger regression of HPV disease. Understanding the viral and host factors that influence persistence and regression is important for the development of better immunotherapeutic treatments for HPV-associated disease. PMID:23341859

  10. Immune response to firefly luciferase as a naked DNA.

    PubMed

    Jeon, Yong Hyun; Choi, Yun; Kang, Joo Hyun; Kim, Chul Woo; Jeong, Jae Min; Lee, Dong Soo; Chung, June-Key

    2007-05-01

    Firefly luciferase (Fluc) has been widely used as a reporter gene. The aim of this study was to investigate immune response to luciferase protein after an intradermal injection of pcDNA3.1-Fluc in immunocompetent BALB/c mice. We observed bioluminescence at injection sites from one to seven days post-injection when pcDNA3.1-Fluc was intradermally injected into ear-pinnae. To observe induced immune response, the percentages of CD8+IFNgamma+ cells in the draining lymphoid cells of immunocompetent BALB/c mice immunized by pcDNA3.1-Fluc were measured. And the tumor growths of CT26/Fluc in pcDNA3.1-Fluc group were monitored by observing bioluminescent signals and measuring tumor mass, and these were compared with those of the pcDNA3.1 group in immunocompetent BALB/c mice and immunodeficient Nu/Nu mice. In the immunocompetent BALB/c mice, percentages of CD8+IFNgamma+ cells in the pcDNA3.1-Fluc group were higher than those in the pcDNA3.1 group. Ten days after tumor inoculation, tumor growth inhibition was found in the pcDNA3.1-Fluc group, but not in the pcDNA3.1 group in the immunocompetent BALB/c mice. No significant difference in tumor growth inhibition was observed when CT26/Fluc was injected into immunodeficient Nu/Nu mice. In terms of cytokine profiles of draining lymphoid cells of immunized mice, IFNgamma protein levels in the pcDNA3.1-Fluc group were higher than in pcDNA3.1 group animals among the immunocompetent BALB/c mice. In conclusion, Fluc induced a Th1 immune response to Fluc protein delivered by injecting pcDNA3.1-Fluc into immunocompetent BALB/c mice. We suggest that immune response to the Fluc gene is cautionary in preclinical or clinical trials involving the Fluc gene, and that the immunologic potential of firefly luciferase as a naked DNA may be useful in cancer immunotherapy.

  11. Immune Responses to Pertussis Antigens in Infants and Toddlers after Immunization with Multicomponent Acellular Pertussis Vaccine

    PubMed Central

    Wang, Li; Chen, Qingxia

    2014-01-01

    Given the resurgence of pertussis despite high rates of vaccination with the diphtheria-tetanus-acellular pertussis (DTaP) vaccine, a better understanding of vaccine-induced immune responses to Bordetella pertussis is needed. We investigated the antibody, cell-mediated, and cytokine responses to B. pertussis antigens in children who received the primary vaccination series (at 2, 4, and 6 months) and first booster vaccination (at 15 to 18 months) with 5-component acellular pertussis (aP) vaccine. The majority of subjects demonstrated a 4-fold increase in antibody titer to all four pertussis antigens (pertussis toxin [PT], pertactin [PRN], filamentous hemagglutinin [FHA], and fimbriae [FIM]) following the primary series and booster vaccination. Following the primary vaccine series, the majority of subjects (52 to 67%) mounted a positive T cell proliferative response (stimulation index of ≥3) to the PT and PRN antigens, while few subjects (7 to 12%) mounted positive proliferative responses to FHA and FIM. One month after booster vaccination (age 16 to 19 months), our study revealed significant increase in gamma interferon (IFN-γ) production in response to the PT and FIM antigens, a significant increase in IL-2 production with the PT, FHA, and PRN antigens, and a lack of significant interleukin-4 (IL-4) secretion with any of the antigens. While previous reports documented a mixed Th1/Th2 or Th2-skewed response to DTaP vaccine in children, our data suggest that following the first DTaP booster, children aged 16 to 19 months have a cytokine profile consistent with a Th1 response, which is known to be essential for clearance of pertussis infection. To better define aP-induced immune responses following the booster vaccine, further studies are needed to assess cytokine responses pre- and postbooster in DTaP recipients. PMID:25253666

  12. DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans.

    PubMed

    Heung, Lena J; Hohl, Tobias M

    2016-06-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response to C. neoformans Infectious outcomes in DAP12(-/-) mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12(-/-) mice. In contrast to WT NK cells, DAP12(-/-) NK cells are able to repress C. neoformans growth in vitro Additionally, DAP12(-/-) macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing of C. neoformans These findings suggest that DAP12 acts as a brake on the pulmonary immune response to C. neoformans by promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages. PMID:27068093

  13. Immune surveillance and response to JC virus infection and PML

    PubMed Central

    Beltrami, Sarah; Gordon, Jennifer

    2014-01-01

    The ubiquitous human polyomavirus JC virus (JCV) is the established etiological agent of the debilitating and often fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Most healthy individuals have been infected with JCV and generate an immune response to the virus, yet remain persistently infected at subclinical levels. The onset of PML is rare in the general population, but has become an increasing concern in immunocompromised patients, where reactivation of JCV leads to uncontrolled replication in the CNS. Understanding viral persistence and the normal immune response to JCV provides insight into the circumstances which could lead to viral resurgence. Further, clues on the potential mechanisms of reactivation may be gleaned from the crosstalk among JCV and HIV-1, as well as the impact of monoclonal antibody therapies used for the treatment of autoimmune disorders, including multiple sclerosis, on the development of PML. In this review, we will discuss what is known about viral persistence and the immune response to JCV replication in immunocompromised individuals to elucidate the deficiencies in viral containment that permit viral reactivation and spread. PMID:24297501

  14. Hantaan virus triggers TLR4-dependent innate immune responses.

    PubMed

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  15. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  16. Evaluation of the Adaptive Immune Response to Respiratory Syncytial Virus.

    PubMed

    Knudson, Cory J; Weiss, Kayla A; Stoley, Megan E; Varga, Steven M

    2016-01-01

    Evaluation of the adaptive immune response is critical to the advancement of our basic knowledge and understanding of respiratory syncytial virus (RSV). The cellular composition in the lung following RSV infection is often evaluated using flow cytometry. However, a limitation of this approach has been the inability to readily distinguish cells that are within the lung parenchyma from cells that remain in the pulmonary blood vessels. Herein, we detail a procedure to evaluate the adaptive immune response via flow cytometric analysis that incorporates an in vivo intravascular staining technique. This technique allows for discrimination of immune cells in the lung tissue from cells that remain in the pulmonary vasculature following perfusion. Therefore at any given time point following an RSV infection, the leukocytic populations in the lung parenchyma can be quantified and phenotypically assessed with high resolution. While we focus on the T lymphocyte response in the lung, this technique can be readily adapted to examine various leukocytic cell types in the lung following RSV infection. PMID:27464699

  17. Evolutionary immune response to conserved domains in parasites and aeroallergens.

    PubMed

    Bielory, Brett Phillip; Mainardi, Timothy; Rottem, Menachem

    2013-01-01

    The immune response based on immunoglobulin E (IgE) evolved as a defense against specific parasitic infections. In the absence of active helminthic infections, the immune system has redirected its IgE epitopes toward innocuous environmental antigens. Helminths and aeroallergens have a similar stereotypical IgE response to unique antigens that can not be explained by chance alone. This study was designed to evaluate potential homology between conserved protein domains embedded in parasitic organisms and aeroallergens. Search and retrieval systems for nucleotide and protein sequences (Entrez, BLAST, and National Center for Biotechnology Information) were searched to identify conserved domains between allergens and certain parasites. A total score was developed that correlated positively with homology between compared sequences. Over 2000 domains were examined. We found matches with a high total score (>100) that signified a strong positive correlation between sequences in allergens (n = 30) and parasites (n = 13). Multiple shared conserved domains were identified between parasites and allergens. Parasite-allergen combinations with the most significant homology (greatest total score) were Plasmodium falciparum enolase and Hev b9 (total score, 612), Schistosoma mansoni albumin and Fel d 2 (total score, 991), Ascaris lumbricoides tropomyosin and Ani s3 (total score, 531), and Wuchereria bancrofti trypsin and Blo t3 (138). Homologous conserved domains exist in specific parasites and allergens, consistent with the theory that the human IgE-eosinophil immune response to common allergens is a direct consequence of stimulation by parasitic organisms. PMID:23406942

  18. Hemocyanins and the immune response: defense against the dark arts.

    PubMed

    Terwilliger, Nora B

    2007-10-01

    The innate immune response is a conserved trait shared by invertebrates and vertebrates. In crustaceans, circulating hemocytes play significant roles in the immune response, including the release of prophenoloxidases. Activated phenoloxidase (tyrosinase) participates in encapsulation and melanization of foreign organisms as well as sclerotization of the new exoskeleton after wound-repair or molting. Hemocyanin functions as a phenoloxidase under certain conditions and thus also participates in the immune response and molting. The relative contributions of hemocyte phenoloxidase and hemocyanin in the physiological ratio at which they occur in hemolymph have been investigated in the crab Cancer magister. Differences in activity, substrate affinity, and catalytic ability between the two enzymes indicate that hemocytes are the predominant source of phenoloxidase activity in crabs. In contrast, hemocyanin is the primary source of phenoloxidase activity in isopods and chelicerates whose hemocytes show no phenoloxidase activity. Quantitative PCR studies on the distribution of prophenoloxidase mRNA in the tissues of Carcinus maenas showed little effect relative to salinity stress. Phylogenetic analysis of hemocyanin, phenoloxidase, and other members of this arthropod gene family are consistent with the possibility that a common ancestral molecule had both phenoloxidase and oxygen-binding capabilities.

  19. A systematic review of humoral immune responses against tumor antigens.

    PubMed

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-10-01

    This review summarizes studies on humoral immune responses against tumor-associated antigens (TAAs) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3,619 articles on humoral immune responses and TAAs. In 145 studies, meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1, and Her2/neu. Antibodies against these TAAs were detected in 0-69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels are scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs.

  20. A systematic review of humoral immune responses against tumor antigens

    PubMed Central

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-01-01

    This review summarizes studies on humoral immune responses against tumor associated antigens (TAA) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3619 articles on humoral immune responses and TAAs. In 145 studies meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1 and Her2/neu. Antibodies against these TAAs were detected in 0 to 69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels is scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs. PMID:19562338

  1. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  2. Expression of the structural proteins of dengue 2 virus and yellow fever virus by recombinant vaccinia viruses.

    PubMed

    Hahn, Y S; Lenches, E M; Galler, R; Rice, C M; Dalrymple, J; Strauss, J H

    1990-01-01

    Vaccinia virus recombinants were constructed which contained cDNA sequences encoding the structural region of dengue 2 virus (PR159/S1 strain) or yellow fever virus (17D strain). The flavivirus cDNA sequences were expressed under the control of the vaccinia 7.5k early/late promotor. Cultured cells infected with these recombinants expressed immunologically reactive flavivirus structural proteins, precursor prM and E. These proteins appeared to be cleaved and glycosylated properly since they comigrated with the authentic proteins from dengue 2 virus- and yellow fever virus-infected cells. Mice immunized with the dengue/vaccinia recombinant showed a dengue-specific immune response that included low levels of neutralizing antibodies. Immunization of mice with the yellow fever/vaccinia recombinant was less effective at inducing an immune response to yellow fever virus and in only some of the mice were low titers of neutralizing antibodies produced.

  3. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    PubMed

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  4. MUC1-specific immune responses in human MUC1 transgenic mice immunized with various human MUC1 vaccines.

    PubMed

    Acres, B; Apostolopoulos, V; Balloul, J M; Wreschner, D; Xing, P X; Ali-Hadji, D; Bizouarne, N; Kieny, M P; McKenzie, I F

    2000-01-01

    Analyses of MUC1-specific cytotoxic T cell precursor (CTLp) frequencies were performed in mice immunized with three different MUC1 vaccine immunotherapeutic agents. Mice were immunized with either a fusion protein comprising MUC1 and glutathione S-transferase (MUC1-GST), MUC1-GST fusion protein coupled to mannan (MFP) or with a recombinant vaccinia virus expressing both MUC1 and interleukin-2. Mouse strain variations in immune responsiveness have been observed with these vaccines. We have constructed mice transgenic for the human MUC1 gene to study MUC1-specific immune responses and the risk of auto-immunity following MUC1 immunization. Transgenic mice immunized with MUC1 were observed to be partially tolerant in that the MUC1-specific antibody response is lower than that observed in syngeneic but non-transgenic mice. However, a significant MUC1-specific CTLp response to all three vaccines was observed, indicating the ability to overcome T cell, but to a lesser extent B cell, tolerance to MUC1 in these mice. Histological analysis indicates no evidence of auto-immunity to the cells expressing the human MUC1 molecule. These results suggest that it is possible to generate an immune response to a cancer-related antigen without damage to normal tissues expressing the antigen. PMID:10630311

  5. Injury and immune response: applying the danger theory to mosquitoes

    PubMed Central

    Moreno-García, Miguel; Recio-Tótoro, Benito; Claudio-Piedras, Fabiola; Lanz-Mendoza, Humberto

    2014-01-01

    The insect immune response can be activated by the recognition of both non-self and molecular by-products of tissue damage. Since pathogens and tissue damage usually arise at the same time during infection, the specific mechanisms of the immune response to microorganisms, and to tissue damage have not been unraveled. Consequently, some aspects of damage caused by microorganisms in vector-borne arthropods have been neglected. We herein reassess the Anopheles–Plasmodium interaction, incorporating Matzinger’s danger/damage hypothesis and George Salt’s injury assumptions. The invasive forms of the parasite cross the peritrophic matrix and midgut epithelia to reach the basal lamina and differentiate into an oocyst. The sporozoites produced in the oocyst are released into the hemolymph, and from there enter the salivary gland. During parasite development, wounds to midgut tissue and the basement membrane are produced. We describe the response of the different compartments where the parasite interacts with the mosquito. In the midgut, the response includes the expression of antimicrobial peptides, production of reactive oxygen species, and possible activation of midgut regenerative cells. In the basal membrane, wound repair mainly involves the production of molecules and the recruitment of hemocytes. We discuss the susceptibility to damage in tissues, and how the place and degree of damage may influence the differential response and the expression of damage associated molecular patterns (DAMPs). Knowledge about damage caused by parasites may lead to a deeper understanding of the relevance of tissue damage and the immune response it generates, as well as the origins and progression of infection in this insect–parasite interaction. PMID:25250040

  6. Therapeutic proteins and nanotechnology: immune response and stealth bioengineered constructs.

    PubMed

    Lopez-Marin, Luz M; Tamariz, Elisa; Acosta-Torres, Laura S; Castaño, Victor M

    2013-06-01

    With unique potentials for organ drug delivery and targeting, intravenous administration of drugs has represented a key tool in biomedicine. A major concern of this route is the rapid capture and destruction of foreign substances by circulating immune cells. Knowledge about the inter-relationships between drugs and blood cells is essential for a better control in drug stability and bioavailability. In this review, both classical pathways and novel insights into the immune mechanisms leading to drug clearance after systemic delivery are described. Drug surface chemistry and size have been identified as critical factors for the activation of host immune responses, and their modification has been extensively explored in order to evade immune surveillance. Common strategies to camouflage drug surfaces through polymer-grafting are presented, with special emphasis on Poly(Ethylene Glycol) (PEG) linkages, one of the most diverse strategies for modifying biomolecular surfaces. Finally, the use of "smart shields", such as PEG attachments shed at particular intracellular conditions, is briefly overviewed as an interesting approach for balancing circulation half lives VS bioavailability in polymer-grafted formulations.

  7. Control of the Immune Response by Pro-Angiogenic Factors

    PubMed Central

    Voron, Thibault; Marcheteau, Elie; Pernot, Simon; Colussi, Orianne; Tartour, Eric; Taieb, Julien; Terme, Magali

    2014-01-01

    The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction has been noted. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells, which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that vascular endothelial growth factor A (VEGF-A) exhibits immunosuppressive properties in addition to its pro-angiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid-derived suppressor cells, regulatory T cells, and inhibit the migration of T lymphocytes to the tumor. Other pro-angiogenic factors such as placental growth factor (PlGF) could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of pro-angiogenic factors (especially VEGF-A) on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients. PMID:24765614

  8. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    PubMed

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R

    2014-02-01

    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  9. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response

    PubMed Central

    Schmid-Hempel, Paul; Sadd, Ben M.

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters’ immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways. PMID:27442590

  10. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    PubMed

    Barribeau, Seth M; Schmid-Hempel, Paul; Sadd, Ben M

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways. PMID:27442590

  11. Immunization with the conjugate vaccine Vi-CRM₁₉₇ against Salmonella typhi induces Vi-specific mucosal and systemic immune responses in mice.

    PubMed

    Fiorino, Fabio; Ciabattini, Annalisa; Rondini, Simona; Pozzi, Gianni; Martin, Laura B; Medaglini, Donata

    2012-09-21

    Typhoid fever is a public health problem, especially among young children in developing countries. To address this need, a glycoconjugate vaccine Vi-CRM₁₉₇, composed of the polysaccharide antigen Vi covalently conjugated to the non-toxic mutant of diphtheria toxin CRM₁₉₇, is under development. Here, we assessed the antibody and cellular responses, both local and systemic, following subcutaneous injection of Vi-CRM₁₉₇. The glycoconjugate elicited Vi-specific serum IgG titers significantly higher than unconjugated Vi, with prevalence of IgG1 that persisted for at least 60 days after immunization. Vi-specific IgG, but not IgA, were present in intestinal washes. Lymphocytes proliferation after restimulation with Vi-CRM₁₉₇ was observed in spleen and mesenteric lymph nodes. These data confirm the immunogenicity of Vi-CRM₁₉₇ and demonstrate that the vaccine-specific antibody and cellular immune responses are present also in the intestinal tract, thus strengthening the suitability of Vi-CRM₁₉₇ as a promising candidate vaccine against Salmonella Typhi.

  12. Phylogeny of immune recognition: antigen processing/presentation in channel catfish immune responses to hemocyanins.

    PubMed

    Vallejo, A N; Miller, N W; Jørgensen, T; Clem, L W

    1990-10-15

    Studies were conducted to address the role(s) of antigen (Ag) processing/presentation in channel catfish immune responses. Vigorous and specific secondary in vitro proliferative and antibody (Ab) responses were obtained to keyhole limpet and Limulus polyphemus hemocyanins with peripheral blood leukocytes (PBL) from catfish previously primed in vivo with Ag. In addition, such antigen-specific in vitro proliferative and Ab responses were efficiently elicited by antigen-pulsed and subsequently paraformaldehyde-fixed autologous PBL used as putative antigen-presenting cells (APC) but not by APC fixed prior to Ag pulsing. Treatment of these putative APC with lysosomotropic agents, protease inhibitors, or the ionophore monensin prior to or during pulsing with Ag significantly inhibited both in vitro responses. Furthermore, the use of radiolabeled protein indicated that both untreated and inhibitor-treated PBL but not erythrocytes take up Ag; however, only untreated PBL were able to degrade Ag. Immune restriction was indicated by the use of allogeneic PBL as APC in that only strong MLRs were generated with no detectable antibodies produced in vitro. Finally, the employment of isolated leukocyte subpopulations demonstrated that both catfish B (sIg+) lymphocytes and monocytes were efficient Ag presentors. PMID:2208303

  13. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  14. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  15. Tissue communication in a systemic immune response of Drosophila

    PubMed Central

    Yang, Hairu; Hultmark, Dan

    2016-01-01

    ABSTRACT Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism. PMID:27116253

  16. Preexisting Immunity, More Than Aging, Influences Influenza Vaccine Responses

    PubMed Central

    Reber, Adrian J.; Kim, Jin Hyang; Biber, Renata; Talbot, H. Keipp; Coleman, Laura A.; Chirkova, Tatiana; Gross, F. Liaini; Steward-Clark, Evelene; Cao, Weiping; Jefferson, Stacie; Veguilla, Vic; Gillis, Eric; Meece, Jennifer; Bai, Yaohui; Tatum, Heather; Hancock, Kathy; Stevens, James; Spencer, Sarah; Chen, Jufu; Gargiullo, Paul; Braun, Elise; Griffin, Marie R.; Sundaram, Maria; Belongia, Edward A.; Shay, David K.; Katz, Jacqueline M.; Sambhara, Suryaprakash

    2015-01-01

    Background. Influenza disproportionately impacts older adults while current vaccines have reduced effectiveness in the older population. Methods. We conducted a comprehensive evaluation of cellular and humoral immune responses of adults aged 50 years and older to the 2008–2009 seasonal trivalent inactivated influenza vaccine and assessed factors influencing vaccine response. Results. Vaccination increased hemagglutination inhibition and neutralizing antibody; however, 66.3% of subjects did not reach hemagglutination inhibition titers ≥ 40 for H1N1, compared with 22.5% for H3N2. Increasing age had a minor negative impact on antibody responses, whereas prevaccination titers were the best predictors of postvaccination antibody levels. Preexisting memory B cells declined with age, especially for H3N2. However, older adults still demonstrated a significant increase in antigen-specific IgG+ and IgA+ memory B cells postvaccination. Despite reduced frequency of preexisting memory B cells associated with advanced age, fold-rise in memory B cell frequency in subjects 60+ was comparable to subjects age 50–59. Conclusions. Older adults mounted statistically significant humoral and cell-mediated immune responses, but many failed to reach hemagglutination inhibition titers ≥40, especially for H1N1. Although age had a modest negative effect on vaccine responses, prevaccination titers were the best predictor of postvaccination antibody levels, irrespective of age. PMID:26380344

  17. Tissue communication in a systemic immune response of Drosophila.

    PubMed

    Yang, Hairu; Hultmark, Dan

    2016-07-01

    Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism. PMID:27116253

  18. Early immune responses accompanying human asymptomatic Ebola infections

    PubMed Central

    Leroy, E M; Baize, S; Debre, P; Lansoud-Soukate, J; Mavoungou, E

    2001-01-01

    In a recent study we identified certain asymptomatic individuals infected by Ebola virus (EBOV) who mounted specific IgG and early and strong inflammatory responses. Here, we further characterized the primary immune response to EBOV during the course of asymptomatic infection in humans. Inflammatory responses occurred in temporal association with anti-inflammatory phase composed by soluble antagonist IL-1RA, circulating TNF receptors, IL-10 and cortisol. At the end of the inflammatory process, mRNA expression of T-cell cytokines (IL-2 and IL-4) and activation markers (CD28, CD40L and CTLA4) was up-regulated, strongly suggesting T-cell activation. This T-cell activation was followed by EBOV-specific IgG responses (mainly IgG3 ang IgG1), and by marked and sustained up-regulation of IFNγ, FasL and perforin mRNA expression, suggesting activation of cytotoxic cells. The terminal down-regulation of these latter markers coincided with the release of the apoptotic marker 41/7 NMP in blood and with the disappearance of viral RNA from PBMC, suggesting that infected cells are eliminated by cytotoxic mechanisms. Finally, RT-PCR analysis of TCR-Vβ repertoire usage showed that TCR-Vβ12 mRNA was never expressed during the infection. Taken together, these findings improve our understanding about immune response during human asymptomatic Ebola infection, and throw new light on protection against Ebola virus. PMID:11472407

  19. African Swine Fever Virus Blocks the Host Cell Antiviral Inflammatory Response through a Direct Inhibition of PKC-θ-Mediated p300 Transactivation▿

    PubMed Central

    Granja, Aitor G.; Sánchez, Elena G.; Sabina, Prado; Fresno, Manuel; Revilla, Yolanda

    2009-01-01

    During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-α) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-θ completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-θ enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-θ and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses. PMID:19004945

  20. Hypocretin/orexin loss changes the hypothalamic immune response.

    PubMed

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy.

  1. Hypocretin/orexin loss changes the hypothalamic immune response.

    PubMed

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. PMID:27318095

  2. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  3. Transgenic Leishmania and the immune response to infection.

    PubMed

    Beattie, L; Evans, K J; Kaye, P M; Smith, D F

    2008-04-01

    Genetic manipulation of single-celled organisms such as the Leishmania parasite enables in depth analysis of the consequences of genotypic change on biological function. In probing the immune responses to infection, use of transgenic Leishmania has the potential to unravel both the contribution of the parasite to the infection process and the cellular interactions and mechanisms that characterize the innate and adaptive immune responses of the host. Here, we briefly review recent technical advances in parasite genetics and explore how these methods are being used to investigate parasite virulence factors, elucidate immune regulatory mechanisms and contribute to the development of novel therapeutics for the leishmaniases. Recent developments in imaging technology, such as bioluminescence and intravital imaging, combined with parasite transfection with fluorescent or enzyme-encoding marker genes, provides a rich opportunity for novel assessment of intimate, real-time host-parasite interactions at a previously unexplored level. Further advances in transgenic technology, such as the introduction of robust inducible gene cassettes for expression in intracellular parasite stages or the development of RNA interference methods for down-regulation of parasite gene expression in the host, will further advance our ability to probe host-parasite interactions and unravel disease-promoting mechanisms in the leishmaniases.

  4. Immunomodulatory properties of beta-sitosterol in pig immune responses.

    PubMed

    Fraile, Lorenzo; Crisci, Elisa; Córdoba, Lorena; Navarro, María A; Osada, Jesús; Montoya, María

    2012-07-01

    The ability to control an immune response for the benefit and production efficiency of animals is the objective of immunomodulation in food-producing animals; substances that exert this control are called immunomodulators. A Spanish product (Inmunicín MAYMO®), based on food plant phytosterols, is being commercialized as complementary feed. The main component of this product is Beta-sitosterol (BSS). BSS and its glycoside (BSSG) have been shown to exhibit anti-inflammatory, anti-neoplasic, anti-pyretic and immune-modulating activity demonstrated by in vitro and in vivo experiments. The objective of the present study was to characterize the effect of BSS on the pig immune system using in vitro cell cultures first and to elucidate whether BSS possesses any in vivo activity in fattener pigs after vaccination with porcine reproductive and respiratory syndrome virus (PRRSV) modified life vaccine (MLV). Firstly, our in vitro results showed that BSS increased viable peripheral blood mononuclear cell (PBMC) numbers and it activated swine dendritic cells (DCs) in culture. Secondly, pigs treated with phytosterols prior to vaccination with PRRSV-MLV vaccine exhibited some changes in immunological parameters at different times post-vaccination, such as the proliferation ability of PBMC after phytohemaglutinin stimulation and increased apolipoprotein A1 plasma concentration which may contribute to enhance PRRSV vaccine response. In conclusion, the data in this report show that BSS can be considered an immunomodulator in pigs. PMID:22595193

  5. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    SciTech Connect

    Tawfik, A.F.; Colley, D.G.

    1986-01-01

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations.

  6. Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity

    PubMed Central

    Park, Mee Sook; Kim, Jin Il; Park, Sehee; Lee, Ilseob

    2016-01-01

    The human immune system has evolved to fight against foreign pathogens. It plays a central role in the body's defense mechanism. However, the immune memory geared to fight off a previously recognized pathogen, tends to remember an original form of the pathogen when a variant form subsequently invades. This has been termed 'original antigenic sin'. This adverse immunological effect can alter vaccine effectiveness and sometimes cause enhanced pathogenicity or additional inflammatory responses, according to the type of pathogen and the circumstances of infection. Here we aim to give a simplified conceptual understanding of virus infection and original antigenic sin by comparing and contrasting the two examples of recurring infections such as influenza and dengue viruses in humans. PMID:27799871

  7. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  8. [Evaluation of thermostable yellow fever vaccine from the Pasteur Institute on international travellers].

    PubMed

    Wolga, J; Rodhain, F; Hannoun, C; Dodin, A; Fritzell, B; Loucq, C; Stahl, J P; Mallaret, M R; Micoud, M

    1986-10-01

    The authors studied the tolerance and efficacy of the new stabilized 17D yellow fever vaccine produced by Pasteur Vaccins, on 50 international travellers at the University Hospital of Grenoble (France), comparing it with the standard 17D yellow fever vaccine. The short-term and long-term tolerance in all the travellers was excellent. The serological efficacy was estimated by seroneutralization assay with the vaccine virus Rockefeller 17D, which is the most sensitive and the most specific method. The seroconversion rate was 93.8%, the same as the rate obtained with the standard yellow fever vaccine in 50 other travellers. The authors studied also the serological response to the standard yellow fever vaccine associated with other vaccines (diphtheria, tetanus, oral or injectable poliomyelitis, and oral cholera): the seroconversion rates were similar to those obtained with the yellow fever vaccine alone, thus demonstrating that these associated vaccines do not interfere with immunization against yellow fever.

  9. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi)

    PubMed Central

    King, Paul T.; Sharma, Roleen

    2015-01-01

    Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management. PMID:26114124

  10. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    PubMed

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  11. Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response

    PubMed Central

    West, A. Phillip; Khoury-Hanold, William; Staron, Matthew; Tal, Michal C.; Pineda, Cristiana M.; Lang, Sabine M.; Bestwick, Megan; Duguay, Brett A.; Raimundo, Nuno; MacDuff, Donna A.; Kaech, Susan M.; Smiley, James R.; Means, Robert E.; Iwasaki, Akiko; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity. PMID:25642965

  12. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection

    PubMed Central

    Fu, Yan; Chryssafidis, Andreas L.; Browne, John A.; O'Sullivan, Jack; McGettigan, Paul A.; Mulcahy, Grace

    2016-01-01

    Background Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts’ immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines. Methodology/principal findings This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC) response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS), respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18) or activated (e.g. miR155-5p) in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including ‘Transforming Growth Factor Beta (TGFβ) signaling’, ‘Production of Nitric Oxide in Macrophages’, ‘Toll-like Receptor (TLRs) Signaling’, ‘Death Receptor Signaling’ and ‘IL17 Signaling’. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed. Significance In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq). This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines. PMID:27661612

  13. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    PubMed Central

    Chatterjee, Arunita; Roy, Debasish; Patnaik, Esha

    2016-01-01

    ABSTRACT Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs) as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs) through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual. PMID:27101844

  14. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVF MP-12 strain has been the most safety tested attenuated vaccine ...

  15. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the...

  16. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    PubMed

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfuncti