Science.gov

Sample records for immune responses fever

  1. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    PubMed

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  2. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1986-05-01

    the period 246 Lassa Fever Immune Plasma (LFIP) units were obtained by plasmapheresis , 106 were forwarded to USAMRIID. During the whole life of the...Fever in Plasmapheresis #20 - the inception of the Contract LV has been isolated from 139 of 213 LF patients and another 71 presumptive LF cases have...During the year plasmapheresis at Curran Lutheran Hospital (CLH) and Phebe Hospital (PH) resulted in the collection of 246 units of Lassa Fever

  3. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1983-08-01

    Lassa fever , a new virus disease of man from West Africa . Clinical... Lassa fever in missionaries stationed in West Africa . Bull. W.H.O. 52: 593-598 (1975). 5. Clayton, A.J. Lassa immune serum. Bull. W.H.O. 55: 435-439...1977). 6. Leifer, E., Gocke, D.J., & Bourne, H. Lassa fever , a new virus disease of man from West Africa . II. Report of a laboratory acquired

  4. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1979-08-01

    1974. 5. Frame, J. D. Surveillance of Lassa Fever amohg missionaries stationed in West Africa . Bull. WVHO 52: 593-59a, 1975 6. Monath, T.- P. Lassa ...A883 049 COLUMBIA UNIV NEW YORK DIV OF TROPIAL MEDIC.NE F/S 6/5 LASSA FEVER IMMUNE PLASMA U) AUG 79 J D FRAME DAMD17-79-C-9024 UNCLASSIFIED...NL’mmmEmmEmmEE.inuuuuwi LLVIL j~~AD’ LEVEL REPORT NO. 1I 0) LASSA FEVER IMMUNE PLASMA Annual Summary Report John 0. Frame, M.D. i Division of Tropical

  5. Profiling the Humoral Immune Response of Acute and Chronic Q Fever by Protein Microarray*

    PubMed Central

    Vigil, Adam; Chen, Chen; Jain, Aarti; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Pablo, Jozelyn; Hendrix, Laura R.; Samuel, James E.; Felgner, Philip L.

    2011-01-01

    Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response. PMID:21817167

  6. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever.

    PubMed

    Quaresma, Juarez A S; Pagliari, Carla; Medeiros, Daniele B A; Duarte, Maria I S; Vasconcelos, Pedro F C

    2013-09-01

    Yellow fever is a viral hemorrhagic fever, which affects people living in Africa and South America and is caused by the yellow fever virus, the prototype species in the Flavivirus genus (Flaviviridae family). Yellow fever virus infection can produce a wide spectrum of symptoms, ranging from asymptomatic infection or oligosymptomatic illness to severe disease with a high fatality rate. In this review, we focus in the mechanisms associated with the physiopathology of yellow fever in humans and animal models. It has been demonstrated that several factors play a role in the pathological outcome of the severe form of the disease including direct viral cytopathic effect, necrosis and apoptosis of hepatocyte cells in the midzone, and a minimal inflammatory response as well as low-flow hypoxia and cytokine overproduction. New information has filled several gaps in the understanding of yellow fever pathogenesis and helped comprehend the course of illness. Finally, we discuss prospects for an immune therapy in the light of new immunologic, viral, and pathologic tools.

  7. Mutual interference on the immune response to yellow fever vaccine and a combined vaccine against measles, mumps and rubella.

    PubMed

    Nascimento Silva, Juliana Romualdo; Camacho, Luiz Antonio B; Siqueira, Marilda M; Freire, Marcos de Silva; Castro, Yvone P; Maia, Maria de Lourdes S; Yamamura, Anna Maya Y; Martins, Reinaldo M; Leal, Maria de Luz F

    2011-08-26

    A randomized trial was conducted to assess the immunogenicity and reactogenicity of yellow fever vaccines (YFV) given either simultaneously in separate injections, or 30 days or more after a combined measles-mumps-rubella (MMR) vaccine. Volunteers were also randomized to YFV produced from 17DD and WHO-17D-213 substrains. The study group comprised 1769 healthy 12-month-old children brought to health care centers in Brasilia for routine vaccination. The reactogenicity was of the type and frequency expected for the vaccines and no severe adverse event was associated to either vaccine. Seroconversion and seropositivity 30 days or more after vaccination against yellow fever was similar across groups defined by YFV substrain. Subjects injected YFV and MMR simultaneously had lower seroconversion rates--90% for rubella, 70% for yellow fever and 61% for mumps--compared with those vaccinated 30 days apart--97% for rubella, 87% for yellow fever and 71% for mumps. Seroconversion rates for measles were higher than 98% in both comparison groups. Geometric mean titers for rubella and for yellow fever were approximately three times higher among those who got the vaccines 30 days apart. For measles and mumps antibodies GMTs were similar across groups. MMR's interference in immune response of YFV and YFV's interference in immune response of rubella and mumps components of MMR had never been reported before but are consistent with previous observations from other live vaccines. These results may affect the recommendations regarding primary vaccination with yellow fever vaccine and MMR.

  8. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1980-08-01

    extension. *References 1. Frame, J.D., Baldwin, J.M., Jr., Gocke, J. and Troup, J.M. Lassa * fever , a new virus disease of man from West Africa . 1...missionaries stationed In West Africa . Bull. WHO 52: 593-598, 1975. 6. Monath, T.P. Lassa fever : review of epidemiology. Bull. WHO S2: 577-592, 1975. 7...A .2~ .!. . .~ *~ - ~ ~-~**~ 7 -7 - M~L - . Statement of the Problem: Investigations of Lassa fever , a recently discovered viral disease of West

  9. Lassa Fever Immune Plasma

    DTIC Science & Technology

    1990-10-31

    5. Frame, JD. Surveillance of Lassa fever in missionaries stationed in West Africa . Bull. W. H. 0. 52: 593-598 (1979). 6. Leifer, E, Gocke, D J...man from Africa . I. Clinical description and pathological findings. Am. J. TroD. Med. Hva. 19: 670-675. 2. White, HA Lassa fever . A study of 23...Bourne, H. Lassa fever , a new virus disease of man from Africa . II. Report of a laboratory acquired infection treated with plasma from a person recently

  10. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1983-06-01

    to perform the indirect fluorescent antibody test. He is also able to conduct surveys, and to supervise plasmapheresis . Recently a Clinical...Miscellaneous 44 Total 3,902 2. Plasmapheresis The primary objective of the program was the collection of units of plasma from convalescents from...Lassa fever. Details regarding the criteria means and results of plasmapheresis are given in Chapter 2. One hundred twenty two plasma units were collected

  11. Lassa Fever Immune Plasma

    DTIC Science & Technology

    1988-07-31

    E. Yalley-Ogunro, was engaged in visits to the field stations at CLH and PH for plasmapheresis , in testing patients for indirect fluorescent... Plasmapheresis yielded 358 plasma units, of which 180 were forwarded to USAMRIID. They are to be tested there for the concentratrion of neutralizing...Activities 5 Plasmapheresis 6 Lassa fever cases 6 Passive immunotherapy 7 Conclusion 8 References 9 Map - Northern Liberia 10 Appendix - Tables 1. Lassa

  12. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1987-07-31

    both plasmapheresis and serodiagnosis were limited. 153Plasmapheresis at the Curran Lutheran Hospital (CLH) and Phebe Hospital (PH) yielded 153 plasma...Page Summary 1 Foreward 2 Narrative 4 Introduction 4 Activities 5 Plasmapheresis 6 Lassa fever cases 6 Passive immunotherapy 7 Conclusion 8 References 8...education of the Field Investigator, Mr. J.E. Yalley- Ogunro, in diagnostic techniques which will be used in therapeutic investigations, continued

  13. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1986-07-31

    10606 Lassa fever nfi 1 6 1 1 Lassa virus I9.AU TRACT (C *ont~u 0’mYO er~~~n of aeguM*# 4wvv &I muinw) Plasmapheresis was conducted at Curran Lutheran...Army Medical Research Institute of Infectious Diseases (USAMRTID), and ultimately, therapeutic trials of the plasma and comparison of its...effectiveness with ribavirin, an antiviral agent. Plasmapheresis was conducted at Curran Lutheran Hospital (CLH), and increasingly at Phebe Hospital (PH) with 255

  14. Humoral Immune Responses of Dengue Fever Patients Using Epitope-Specific Serotype-2 Virus-Like Particle Antigens

    PubMed Central

    Crill, Wayne D.; Hughes, Holly R.; Delorey, Mark J.; Chang, Gwong-Jen J.

    2009-01-01

    Dengue virus (DENV) is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF) or in its most severe manifestation dengue hemorrhagic fever (DHF). Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E) protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease and immunological

  15. IGG Subclass and Isotype Specific Immunoglobulin Responses to LASSA fever and Venezuelan Equine Encephalomyelitis: Natural Infection and Immunication

    DTIC Science & Technology

    1989-03-01

    DAIC FLL COpy AD-A218 815 A_ ARMY PROJECT ORDER NO: 88PP8804 TITLE: IGG SUBCLASS & ISOTYPE SPECIFIC IMMUNOGLOBULIN RESPONSES TO LASSA FEVER...TITLE (include Security Classification) IGG SUBCLASS & ISOTYPE SPECIFIC IMMUNOGLOBULIN RESPONSES TO LASSA FEVER & VENEZUELAN EQUINE ENCEPHALOMYELITIS...Immunoglobulin; IgG Sub- 06 01 classes; Lassa Fever; VEE; PO; Togavirus; IgG; IgA; IgM; 06 13 Arenavirus; Hemmorhagic Fever: BD; RA I 19, ABSTRACT

  16. Low-Dose Priming Before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine Against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella Burnetii

    DTIC Science & Technology

    2008-10-01

    Vaccination with the Phase I Chloroform-Methanol Residue Vaccine against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella burnetii David... I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are...inadvertently vaccinated. The phase I chloroform- methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers

  17. Importance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model.

    PubMed

    Fresnay, Stephanie; McArthur, Monica A; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2017-01-01

    Typhoid fever, caused by the human-restricted organism Salmonella enterica serovar Typhi (S. Typhi), constitutes a major global health problem. The development of improved attenuated vaccines is pressing, but delayed by the lack of appropriate preclinical models. Herein, we report that high levels of S. Typhi-responsive CD8+ T cells at baseline significantly correlate with an increased risk of disease in humans challenged with a high dose (~10(4) CFU) wild-type S. Typhi. Typhoid fever development was associated with higher multifunctional S. Typhi-responsive CD8+ T effector memory cells at baseline. Early decreases of these cells in circulation following challenge were observed in both S. Typhi-responsive integrin α4β7- and integrin α4β7+ CD8+ T effector memory (TEM) cells, suggesting their potential to home to both mucosal and extra-intestinal sites. Participants with higher baseline levels of S. Typhi-responsive CD8+ T memory cells had a higher risk of acquiring disease, but among those who acquired disease, those with a higher baseline responses took longer to develop disease. In contrast, protection against disease was associated with low or absent S. Typhi-responsive T cells at baseline and no changes in circulation following challenge. These data highlight the importance of pre-existing S. Typhi-responsive immunity in predicting clinical outcome following infection with wild-type S. Typhi and provide novel insights into the complex mechanisms involved in protective immunity to natural infection in a stringent human model with a high challenge dose. They also contribute important information on the immunological responses to be assessed in the appraisal and selection of new generation typhoid vaccines.

  18. Importance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model

    PubMed Central

    Fresnay, Stephanie; McArthur, Monica A.; Magder, Laurence S.; Darton, Thomas C.; Jones, Claire; Waddington, Claire S.; Blohmke, Christoph J.; Angus, Brian; Levine, Myron M.; Pollard, Andrew J.; Sztein, Marcelo B.

    2017-01-01

    Typhoid fever, caused by the human-restricted organism Salmonella enterica serovar Typhi (S. Typhi), constitutes a major global health problem. The development of improved attenuated vaccines is pressing, but delayed by the lack of appropriate preclinical models. Herein, we report that high levels of S. Typhi-responsive CD8+ T cells at baseline significantly correlate with an increased risk of disease in humans challenged with a high dose (~104 CFU) wild-type S. Typhi. Typhoid fever development was associated with higher multifunctional S. Typhi-responsive CD8+ T effector memory cells at baseline. Early decreases of these cells in circulation following challenge were observed in both S. Typhi-responsive integrin α4β7− and integrin α4β7+ CD8+ T effector memory (TEM) cells, suggesting their potential to home to both mucosal and extra-intestinal sites. Participants with higher baseline levels of S. Typhi-responsive CD8+ T memory cells had a higher risk of acquiring disease, but among those who acquired disease, those with a higher baseline responses took longer to develop disease. In contrast, protection against disease was associated with low or absent S. Typhi-responsive T cells at baseline and no changes in circulation following challenge. These data highlight the importance of pre-existing S. Typhi-responsive immunity in predicting clinical outcome following infection with wild-type S. Typhi and provide novel insights into the complex mechanisms involved in protective immunity to natural infection in a stringent human model with a high challenge dose. They also contribute important information on the immunological responses to be assessed in the appraisal and selection of new generation typhoid vaccines. PMID:28303138

  19. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    PubMed Central

    Carlson, Jolene; O’Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G.; Krug, Peter W.; Gladue, Douglas P.; Higgs, Stephen; Borca, Manuel V.

    2016-01-01

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms. PMID:27782090

  20. Pathogenesis and Immune Response of Crimean-Congo Hemorrhagic Fever Virus in a STAT-1 Knockout Mouse Model▿ †

    PubMed Central

    Bente, Dennis A.; Alimonti, Judie B.; Shieh, Wun-Ju; Camus, Gaëlle; Ströher, Ute; Zaki, Sherif; Jones, Steven M.

    2010-01-01

    Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) causes a severe hemorrhagic syndrome in humans but not in its vertebrate animal hosts. The pathogenesis of the disease is largely not understood due to the lack of an animal model. Laboratory animals typically show no overt signs of disease. Here, we describe a new small-animal model to study CCHFV pathogenesis that manifests clinical disease, similar to that seen in humans, without adaptation of the virus to the host. Our studies revealed that mice deficient in the STAT-1 signaling molecule were highly susceptible to infection, succumbing within 3 to 5 days. After CCHFV challenge, mice exhibited fever, leukopenia, thrombocytopenia, and highly elevated liver enzymes. Rapid viremic dissemination and extensive replication in visceral organs, mainly in liver and spleen, were associated with prominent histopathologic changes in these organs. Dramatically elevated proinflammatory cytokine levels were detected in the blood of the animals, suggestive of a cytokine storm. Immunologic analysis revealed delayed immune cell activation and intensive lymphocyte depletion. Furthermore, this study also demonstrated that ribavirin, a suggested treatment in human cases, protects mice from lethal CCHFV challenge. In conclusion, our data demonstrate that the interferon response is crucial in controlling CCHFV replication in this model, and this is the first study that offers an in-depth in vivo analysis of CCHFV pathophysiology. This new mouse model exhibits key features of fatal human CCHF, proves useful for the testing of therapeutic strategies, and can be used to study virus attenuation. PMID:20739514

  1. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    SciTech Connect

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  2. Evaluation of specific humoral immune response in pigs vaccinated with cell culture adapted classical swine fever vaccine

    PubMed Central

    Nath, Mrinal K.; Sarma, D. K.; Das, B. C.; Deka, P.; Kalita, D.; Dutta, J. B.; Mahato, G.; Sarma, S.; Roychoudhury, P.

    2016-01-01

    Aim: To determine an efficient vaccination schedule on the basis of the humoral immune response of cell culture adapted live classical swine fever virus (CSFV) vaccinated pigs and maternally derived antibody (MDA) in piglets of vaccinated sows. Materials and Methods: A cell culture adapted live CSFV vaccine was subjected to different vaccination schedule in the present study. Serum samples were collected before vaccination (day 0) and 7, 14, 28, 42, 56, 180, 194, 208, 270, 284 and 298 days after vaccination and were analyzed by liquid phase blocking enzyme-linked immunosorbent assay. Moreover, MDA titre was detected in the serum of piglets at 21 and 42 days of age after farrowing of the vaccinated sows. Results: On 28 days after vaccination, serum samples of 83.33% vaccinated pigs showed the desirable level of antibody titer (log10 1.50 at 1:32 dilution), whereas 100% animals showed log10 1.50 at 1:32 dilution after 42 days of vaccination. Animals received a booster dose at 28 and 180 days post vaccination showed stable high-level antibody titre till the end of the study period. Further, piglets born from pigs vaccinated 1 month after conception showed the desirable level of MDA up to 42 days of age. Conclusion: CSF causes major losses in pig industry. Lapinised vaccines against CSFV are used routinely in endemic countries. In the present study, a cell culture adapted live attenuated vaccine has been evaluated. Based on the level of humoral immune response of vaccinated pigs and MDA titer in piglets born from immunized sows, it may be concluded that the more effective vaccination schedule for prevention of CSF is primary vaccination at 2 months of age followed by booster vaccination at 28 and 180 days post primary vaccination and at 1 month of gestation. PMID:27057117

  3. Glycoprotein E2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits.

    PubMed

    Zhang, Huawei; Li, Xiangmin; Peng, Guiqing; Tang, Chenkai; Zhu, Shixuan; Qian, Suhong; Xu, Jinfang; Qian, Ping

    2014-11-20

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious and devastating disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. Several CSFV genotypes, including 1.1, 2.1, 2.2, and 2.3, have been identified in Mainland China. The glycoprotein E2 of genotypes 1.1 and 2.1 was expressed by using a baculovirus system and tested for its protective immunity in rabbits to develop novel CSF vaccines that elicit a broad immune response. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with E2 of genotypes 1.1 (CSFV-1.1E2), 2.1 (CSFV-2.1E2), or their combination (CSFV-1.1 + 2.1E2). A commercial CSF vaccine (C-strain) and phosphate-buffered saline (PBS) were used as positive or negative controls, respectively. All animals were challenged with CSFV C-strain at 4 weeks and then boosted with the same dose. All rabbits inoculated with CSFV-1.1E2, CSFV-2.1E2, and CSFV-1.1 + 2.1E2 elicited high levels of ELISA antibody, neutralizing antibody, and lymphocyte proliferative responses to CSFV. The rabbits inoculated with CSFV-1.1E2 and CSFV-1.1 + 2.1E2 received complete protection against CSFV C-strain. Two of the four rabbits vaccinated with CSFV-2.1E2 were completely protected. These results demonstrate that CSFV-1.1E2 and CSFV-1.1 + 2.1E2 not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits. Therefore, CSFV-1.1E2 and CSFV-1.1 + 2.1E2 are promising candidate subunit vaccines against CSF.

  4. Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever.

    PubMed

    Wallace, D B; Ellis, C E; Espach, A; Smith, S J; Greyling, R R; Viljoen, G J

    2006-11-30

    The glycoprotein (GP) and nucleocapsid (NC) genes of Rift Valley fever virus (RVFV) were expressed in different expression systems and were evaluated for their ability to protect mice from virulent challenge using a prime-boost regime. Mice vaccinated with a lumpy skin disease virus-vectored recombinant vaccine (rLSDV-RVFV) expressing the two RVFV glycoproteins (G1 and G2) developed neutralising antibodies and were fully protected when challenged, as were those vaccinated with a crude extract of truncated G2 glycoprotein (tG2). By contrast mice vaccinated with a DNA vaccine expressing G1 and G2 did not sero-convert with only 20% of them surviving challenge. Mice vaccinated with the DNA vaccine and boosted with rLSDV-RVFV also failed to sero-convert but 40% survived challenge. Surprisingly, although none of the mice immunised with the purified NC protein sero-converted, 60% of them survived virulent challenge. The rLSDV-RVFV construct was then further evaluated in sheep for its dual protective abilities against RVFV and sheeppox virus (SPV). Vaccinated sheep sero-converted for both viruses and were protected against RVFV challenge, however, neither the immunised or negative control animals showed any significant reactions to the virulent SPV challenge.

  5. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  6. Plasmid DNA Initiates Replication of Yellow Fever Vaccine In Vitro and Elicits Virus-Specific Immune Response in Mice

    PubMed Central

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20µg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. PMID:25129436

  7. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.

  8. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response.

    PubMed

    Zhou, Bin; Liu, Ke; Jiang, Yan; Wei, Jian-Chao; Chen, Pu-Yan

    2011-07-30

    Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV). Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865) and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716), were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF) piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine) than that of mono-epitope peptide(rE2-a or rE2-b). Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals) vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  9. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever.

    PubMed Central

    Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J

    1989-01-01

    The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status. Images PMID:2768450

  10. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever.

    PubMed

    Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J

    1989-07-01

    The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status.

  11. Induction of immune responses in mice and pigs by oral administration of classical swine fever virus E2 protein expressed in rice calli.

    PubMed

    Jung, Myunghwan; Shin, Yun Ji; Kim, Ju; Cha, Seung-Bin; Lee, Won-Jung; Shin, Min-Kyoung; Shin, Seung Won; Yang, Moon-Sik; Jang, Yong-Suk; Kwon, Tae-Ho; Yoo, Han Sang

    2014-12-01

    Classical swine fever (CSF), caused by the CSF virus (CSFV), is a highly contagious disease in pigs. In Korea, vaccination using a live-attenuated strain (LOM strain) has been used to control the disease. However, parenteral vaccination using a live-attenuated strain still faces a number of problems related to storage, cost, injection stress, and differentiation of CSFV infected and vaccinated pigs. Therefore, two kinds of new candidates for oral vaccination have been developed based on the translation of the E2 gene of the SW03 strain, which was isolated from an outbreak of CSF in 2002 in Korea, in transgenic rice calli (TRCs) from Oriza sativa L. cv. Dongjin to express a recombinant E2 protein (rE2-TRCs). The expression of the recombinant E2 protein (rE2) in rE2-TRCs was confirmed using Northern blot, SDS-PAGE, and Western blot analysis. Immune responses to the rE2-TRC in mice and pigs were investigated after oral administration. The administration of rE2-TRCs increased E2-specific antibodies titers and antibody-secreting cells when compared to animals receiving the vector alone (p < 0.05 and p < 0.01). In addition, mice receiving rE2-TRCs had a higher level of CD8+ lymphocytes and Th1 cytokine immune responses to purified rE2 (prE2) in vitro than the controls (p < 0.05 and p < 0.01). Pigs receiving rE2-TRCs also showed an increase in IL-8, CCL2, and the CD8+ subpopulation in response to stimulation with prE2. These results suggest that oral administration of rE2-TRCs can induce E2-specific immune responses.

  12. Monoacylglycerol Lipase Regulates Fever Response.

    PubMed

    Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Moroncini, Gianluca; Viader, Andreu; Nomura, Daniel K; Cravatt, Benjamin F; Conti, Bruno

    2015-01-01

    Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  13. Immune response

    MedlinePlus Videos and Cool Tools

    The immune system includes specialized white blood cells, called lymphocytes that adapt themselves to fight specific foreign invaders. These cells develop into two groups in the bone marrow. From the bone ...

  14. Coxiella burnetii Induces Inflammatory Interferon-Like Signature in Plasmacytoid Dendritic Cells: A New Feature of Immune Response in Q Fever

    PubMed Central

    Ka, Mignane B.; Mezouar, Soraya; Ben Amara, Amira; Raoult, Didier; Ghigo, Eric; Olive, Daniel; Mege, Jean-Louis

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play a major role in antiviral immunity via the production of type I interferons (IFNs). There is some evidence that pDCs interact with bacteria but it is not yet clear whether they are protective or contribute to bacterial pathogenicity. We wished to investigate whether Coxiella burnetii, the agent of Q fever, interacts with pDCs. The stimulation of pDCs with C. burnetii increased the expression of activation and migratory markers (CD86 and CCR7) as determined by flow cytometry and modulated gene expression program as revealed by a microarray approach. Indeed, genes encoding for pro-inflammatory cytokines, chemokines, and type I INF were up-regulated. The up-regulation of type I IFN was correlated with an increase in IFN-α release by C. burnetii-stimulated pDCs. We also investigated pDCs in patients with Q fever endocarditis. Using flow cytometry and a specific gating strategy, we found that the number of circulating pDCs was significantly lower in patients with Q fever endocarditis as compared to healthy donors. In addition, the remaining circulating pDCs expressed activation and migratory markers. As a whole, our study identified non-previously reported activation of pDCs by C. burnetii and their modulation during Q fever. PMID:27446817

  15. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    PubMed

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus.

  16. Uterine Microbiota and Immune Parameters Associated with Fever in Dairy Cows with Metritis

    PubMed Central

    Jeon, Soo Jin; Cunha, Federico; Ma, Xiaojie; Martinez, Natalia; Vieira-Neto, Achilles; Daetz, Rodolfo; Bicalho, Rodrigo C.; Lima, Svetlana; Santos, Jose E. P.; Jeong, K. Casey

    2016-01-01

    Objective This study aimed to evaluate bacterial and host factors causing a fever in cows with metritis. For that, we investigated uterine microbiota using a metagenomic sequencing of the 16S rRNA gene (Study 1), and immune response parameters (Study 2) in metritic cows with and without a fever. Principal Findings (Study1) Bacterial communities were similar between the MNoFever and MFever groups based on distance metrics of relative abundance of bacteria. Metritic cows showed a greater prevalence of Bacteroidetes, and Bacteroides and Porphyromonas were the largest contributors to that difference. A comparison of relative abundance at the species level pointed to Bacteroides pyogenes as a fever-related species which was significantly abundant in the MFever than the MNoFever and Healthy groups; however, absolute abundance of Bacteroides pyogenes determined by droplet digital PCR (ddPCR) was similar between MFever and MNoFever groups, but higher than the Healthy group. The same trend was observed in the total number of bacteria. Principal Findings (Study2) The activity of polymorphonuclear leukocyte (PMN) and the production of TNFα, PGE2 metabolite, and PGE2 were evaluated in serum, before disease onset, at 0 and 3 DPP. Cows in the MNoFever had decreased proportion of PMN undergoing phagocytosis and oxidative burst compared with the MFever. The low PMN activity in the MNoFever was coupled with the low production of TNFα, but similar PGE2 metabolite and circulating PGE2. Conclusion/Significance Our study is the first to show a similar microbiome between metritic cows with and without a fever, which indicates that the host response may be more important for fever development than the microbiome. Bacteroides pyogenes was identified as an important pathogen for the development of metritis but not fever. The decreased inflammatory response may explain the lack of a febrile response in the MNoFever group. PMID:27802303

  17. STUDIES ON INFECTION AND IMMUNITY IN EXPERIMENTAL TYPHOID FEVER

    PubMed Central

    Edsall, Geoffrey; Gaines, Sidney; Landy, Maurice; Tigertt, W. D.; Sprinz, Helmuth; Trapani, R.-J.; Mandel, Adrian D.; Benenson, A. S.

    1960-01-01

    A disease resembling human typhoid fever has been induced by feeding live cultures of Salmonella typhosa to young chimpanzees, thus confirming the classical reports of Grünbaum and of Metchnikoff and Besredka. Detailed clinical observations, results of stool and blood cultures, and serological studies have confirmed the impression that the disease produced in chimpanzees closely resembles the mild form of human typhoid fever frequently seen in childhood. Gross and histologic examination of intestines, mesenteric lymph nodes, liver, spleen, and other organs of orally infected chimpanzees has demonstrated that the pathological findings are essentially indistinguishable from those seen in mild typhoid fever in man. The clinical spectrum of disease seen in chimpanzees ranged from moderately severe illness, through transitory illness, to afebrile infection with or without bacteriemia (but invariably with an antibody response), occasionally leading to the development of persisting biliary infection and the carrier state. Thus the range of illness observed in chimpanzees resembled that seen in man, except that the severe and complicated forms of typhoid fever were not observed in the chimpanzee. A reason for this difference is proposed and discussed. In contrast to the limitations imposed upon the interpretation of human epidemiologic observations, it has been possible to demonstrate in the chimpanzee that clinical variation in disease pattern from animal to animal may occur despite the administration of the same dose of the same bacterial strain simultaneously to an entire group of animals under study; in other words, variation in clinical pattern is dependent on inherent, non-specific host factors as well as on dose, strain or preceding state of immunity. Variation in dose and in challenge strain of S. typhosa employed also appeared to have an effect upon the likelihood of producing febrile as against afebrile infection in chimpanzees. The dose required to produce

  18. Immune responses and Lassa virus infection.

    PubMed

    Russier, Marion; Pannetier, Delphine; Baize, Sylvain

    2012-11-05

    Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis.

  19. T cell responses and dengue haemorrhagic fever.

    PubMed

    Screaton, Gavin; Mongkolsapaya, Juthathip

    2006-01-01

    The enhancement of severe disease upon secondary infection makes dengue almost unique among infectious pathogens and presents a serious challenge to vaccine design. Several key observations have been made which shed light onto this phenomenon particularly that antibodies can enhance Fc receptor-dependent uptake of virus into macrophages thereby increasing virus replication. Furthermore there seems to be a relationship between the peak virus load and disease severity. However, a second key feature of dengue is that the life-threatening symptoms do not correlate with the period of high viraemia; instead they occur at a time when the virus load is in steep decline. The coincidence of severe disease manifestations with defervescence and virus control suggests that the symptoms may be a consequence of the immune response to the virus rather than virus induced cytopathology. One of the key elements in the immune response to viruses are T cells which can both secrete a host of inflammatory cytokines and also be directly cytotoxic to infected cells. There are a number of experimental models of T cell-induced immunopathology including in responses to viruses. Particularly interesting in this respect are models of RSV-induced immunopathology, which have direct relevance to vaccine design as a formalin-inactivated vaccine to RSV actually enhanced disease in children when they became naturally infected with RSV, an echo of the disease enhancement seen in dengue. We will present an analysis of CD8+ T cell responses to a number of novel T cell epitopes during dengue infection and also analyse the function and cytokine secretion of these cells. We suggest that an exaggerated and partially misdirected T cell response seen in secondary dengue infection may be part of the complex series of events leading to dengue haemorrhagic fever and shock.

  20. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade.

    PubMed

    Stojanov, Silvia; Lapidus, Sivia; Chitkara, Puja; Feder, Henry; Salazar, Juan C; Fleisher, Thomas A; Brown, Margaret R; Edwards, Kathryn M; Ward, Michael M; Colbert, Robert A; Sun, Hong-Wei; Wood, Geryl M; Barham, Beverly K; Jones, Anne; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Athreya, Balu; Barron, Karyl S; Kastner, Daniel L

    2011-04-26

    The syndrome of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) is the most common periodic fever disease in children. However, the pathogenesis is unknown. Using a systems biology approach we analyzed blood samples from PFAPA patients whose genetic testing excluded hereditary periodic fevers (HPFs), and from healthy children and pediatric HPF patients. Gene expression profiling could clearly distinguish PFAPA flares from asymptomatic intervals, HPF flares, and healthy controls. During PFAPA attacks, complement (C1QB, C2, SERPING1), IL-1-related (IL-1B, IL-1RN, CASP1, IL18RAP), and IFN-induced (AIM2, IP-10/CXCL10) genes were significantly overexpressed, but T cell-associated transcripts (CD3, CD8B) were down-regulated. On the protein level, PFAPA flares were accompanied by significantly increased serum levels of chemokines for activated T lymphocytes (IP-10/CXCL10, MIG/CXCL9), G-CSF, and proinflammatory cytokines (IL-18, IL-6). PFAPA flares also manifested a relative lymphopenia. Activated CD4(+)/CD25(+) T-lymphocyte counts correlated negatively with serum concentrations of IP-10/CXCL10, whereas CD4(+)/HLA-DR(+) T lymphocyte counts correlated positively with serum concentrations of the counterregulatory IL-1 receptor antagonist. Based on the evidence for IL-1β activation in PFAPA flares, we treated five PFAPA patients with a recombinant IL-1 receptor antagonist. All patients showed a prompt clinical and IP-10/CXCL10 response. Our data suggest an environmentally triggered activation of complement and IL-1β/-18 during PFAPA flares, with induction of Th1-chemokines and subsequent retention of activated T cells in peripheral tissues. IL-1 inhibition may thus be beneficial for treatment of PFAPA attacks, with IP-10/CXCL10 serving as a potential biomarker.

  1. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1991-06-30

    illness, dengue fever (DF) and dengue hemorrhagic fever (DfIF)/dengue shock syndrome (DSS) (5). Dengue fever is a self- limited febrile disease which is...this syndrome (4). Therefore, dengue virus infections are one of the most important human infectious diseases . Immune responses to dengue viruses have...Number Male Female (Range) Primary Secondary DHF 59 28 31 8.9 + 3.0 7 52 (4-14) DF 41 22 19 9.8 + 2.1 6 35 (5-14) Uncharacterized febrile diseases 26

  2. Protective host immune responses to Salmonella infection.

    PubMed

    Pham, Oanh H; McSorley, Stephen J

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.

  3. Immune Responses in Neonates

    PubMed Central

    Basha, Saleem; Surendran, Naveen; Pichichero, Michael

    2015-01-01

    Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents. PMID:25088080

  4. TpUB05, a Homologue of the Immunodominant Plasmodium falciparum Protein UB05, Is a Marker of Protective Immune Responses in Cattle Experimentally Vaccinated against East Coast Fever

    PubMed Central

    Dinga, Jerome Nyhalah; Wamalwa, Mark; Njimoh, Dieudonné Lemuh; Njahira, Moses N.; Djikeng, Appolinaire; Skilton, Rob; Titanji, Vincent Pryde Kehdingha; Pellé, Roger

    2015-01-01

    Introduction East Coast fever, a devastating disease of cattle, can be controlled partially by vaccination with live T. parva sporozoites. The antigens responsible for conferring immunity are not fully characterized. Recently it was shown that the P. falciparum immunodominant protein UB05 is highly conserved in T. parva, the causative agent of East Coast fever. The aim of the present investigation was to determine the role of the homologue TpUB05 in protective immunity to East Coast fever. Methods The cloning, sequencing and expression of TpUB05 were done according to standard protocols. Bioinformatics analysis of TpUB05 gene was carried out using algorithms found in the public domain. Polyclonal antiserum against recombinant TpUB05 were raised in rabbits and used for further analysis by Western blotting, ELISA, immunolocalization and in vitro infection neutralization assay. The ability of recombinant TpUB05 (r-TpUB05) to stimulate bovine PBMCs ex-vivo to produce IFN-γ or to proliferate was tested using ELISpot and [3H]-thymidine incorporation assays, respectively. Results All the 20 cattle immunised by the infection and treatment method (ITM) developed significantly higher levels of TpUB05 specific antibodies (p<0.0001) compared to the non-vaccinated ones. Similarly, r-TpUB05 highly stimulated bovine PMBCs from 8/12 (67%) of ITM-immunized cattle tested to produce IFN-γ and proliferate (p< 0.029) as compared to the 04 naїve cattle included as controls. Polyclonal TpUB05 antiserum raised against r-TpUB05 also marginally inhibited infection (p < 0.046) of bovine PBMCs by T. parva sporozoites. In further experiments RT-PCR showed that the TpUB05 gene is expressed by the parasite. This was confirmed by immunolocalization studies which revealed TpUB05 expression by schizonts and piroplasms. Bioinformatics analysis also revealed that this antigen possesses two transmembrane domains, a N-glycosylation site and several O-glycosylation sites. Conclusion It was concluded

  5. Lost Trust: A Yellow Fever Patient Response

    PubMed Central

    Runge, John S.

    2013-01-01

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care. PMID:24348220

  6. Lost trust: a yellow fever patient response.

    PubMed

    Runge, John S

    2013-12-13

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care.

  7. Lassa fever: implications of T-cell immunity for vaccine development.

    PubMed

    ter Meulen, J

    1999-08-20

    Lassa fever is a re-emerging viral hemorrhagic fever, which causes significant human morbidity in endemic regions of West Africa. Attempts to vaccinate against this virus in animal models including non-human primates have revealed that eliciting a strong cellular immune response protects from clinical disease, but not infection, in the absence of measurable neutralizing antibodies. As there is renewed interest in developing a vaccine against Lassa fever for use in humans, several questions should be addressed in view of the scarce knowledge of the mechanisms of natural immunity against this disease. MHC-dependency of a vaccine relying mainly on the induction of T-cell immunity and its ability to cross-protect against different Lassa virus strains will be important issues. Furthermore, the question whether the vaccine can prevent human-to-human transmission of the virus should be discussed and the possibility that vaccination could predispose to immunopathology should be excluded. We are addressing some of the above mentioned problems concerning natural immunity through field studies in the Republic of Guinea, West Africa, and are presently studying the CD4 cell responses of Lassa antibody positive subjects on the basis of T-cell proliferation assays using recombinant Lassa virus proteins.

  8. Immune responses to metastases

    SciTech Connect

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors.

  9. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses

    PubMed Central

    Hastie, Kathryn M.; Bale, Shridhar; Kimberlin, Christopher R.; Saphire, Erica Ollmann

    2013-01-01

    The innate immune system is one of the first lines of defense against invading pathogens. Pathogens have, in turn, evolved different strategies to counteract these responses. Recent studies have illuminated how the hemorrhagic fever viruses Ebola and Lassa fever prevent host sensing of double-stranded RNA (dsRNA), a key hallmark of viral infection. The ebolavirus protein VP35 adopts a unique bimodal configuration to mask key cellular recognition sites on dsRNA. Conversely, the Lassa fever virus nucleoprotein, NP, actually digests the dsRNA signature. Collectively, these structural and functional studies shed new light on the mechanisms of pathogenesis of these viruses and provide new targets for therapeutic intervention. PMID:22482712

  10. Exercise boosts immune response.

    PubMed

    Sander, Ruth

    2012-06-29

    Ageing is associated with a decline in normal functioning of the immune system described as 'immunosenescence'. This contributes to poorer vaccine response and increased incidence of infection and malignancy seen in older people. Regular exercise can enhance vaccination response, increase T-cells and boost the function of the natural killer cells in the immune system. Exercise also lowers levels of the inflammatory cytokines that cause the 'inflamm-ageing' that is thought to play a role in conditions including cardiovascular disease; type 2 diabetes; Alzheimer's disease; osteoporosis and some cancers.

  11. Rapid Assay of Cellular Immunity in Q Fever.

    DTIC Science & Technology

    1995-10-01

    mediated immune responses of adults to vaccination, challenge with Rickettsia rickettsii , or both. Am. J. Trop. Med. Hyg.;46:105-115 DuPont, H.T., Thirion, X... rickettsia Coxiella burnetti. C. bumetti is a strict intracellular pathogen belonging to the family Rickettsiae . It is found in many parts of the world... rickettsia was related in part to the cellular immune response (Dumler et al, 1992; Holland, et al. 1993). B. Phase I Technical Objectives and Technical

  12. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).

    PubMed

    Telang, A; Qayum, A A; Parker, A; Sacchetta, B R; Byrnes, G R

    2012-09-01

    We report key physiological traits that link larval nutritional experience to adult immune status in the yellow fever mosquito Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae). Many lines of defence make up the innate immune system of mosquitoes. Among defences, the epithelium-lined midgut is the first barrier, circulating haemocytes are cellular components of innate immunity and, when triggered, the Toll and Imd pathways signal production of antimicrobial peptides (AMP) as part of humoral defences. We quantified three lines of defence in Ae. aegypti in response to larval nutritional stress, and our data show that important female immune functions are modified by the larval rearing environment. Adult midgut basal lamina thickness was not affected by larval nutrient stress as has been observed in another Aedes sp. However, nutrient stresses experienced by larvae lead to a reduced number of haemocytes in females. Transcripts of Spaetzle (upstream regulator of Toll pathway that leads to induction of AMPs) and some immune-related genes were less abundant in stressed larvae but showed increased expression in females derived from stressed larvae. Results indicate a potential for compensation by the humoral branch for a reduced cellular branch of innate immunity in adults in response to larval nutrient stress.

  13. IMMUNITY TO YELLOW FEVER ENCEPHALITIS OF MONKEYS AND MICE IMMUNIZED BY NEURAL AND EXTRANEURAL ROUTES

    PubMed Central

    Fox, John P.

    1943-01-01

    Monkeys and mice surviving cerebral infection with yellow fever virus of relatively avirulent strains have been found to resist maximal intracerebral doses of yellow fever virus of a highly neurotropic strain. Such animals, however, do not resist more than very small doses of intracerebrally inoculated virus of Eastern equine encephalomyelitis. Animals immunized by extraneural routes, on the other hand, are not uniformly resistant to neural infection with neurotropic yellow fever virus. Monkeys which have undergone systemic infection with virus of the avirulent 17D strain or of several jungle strains resist only small intracerebral doses of neurotropic virus; while mice, even when possessed of very high serum-antibody levels as the result of intraperitoneal hyperimmunization, manifest only an irregular resistance to intracerebral challenge inocula. The difference in the resistance of neurally and extraneurally immunized animals is not related to similar differences in the levels of protective antibody in the sera. Indeed, the average of the serum-antibody titers of the hyperimmune mice is several times that of the intracerebral immunes. A possibly significant relation does exist, however, between the resistance of mice to neural infection and the content of protective antibody in the brain. The protective activity of suspensions of brains from mice surviving cerebral infection was found to be several times that of brain suspensions from the hyperimmunized animals. It is concluded that the superior resistance to neural infection of animals whose immunity results from a previous non-fatal infection of the nervous system is effected by a specific local mechanism which is based at least in part upon an increased concentration of antibody in the cerebral tissue. PMID:19871299

  14. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1988-07-31

    Security Classification) (U) Human Immune Response to Dengue Infections 12. PERSONAL AUTHOR(S) Francis A. Ennis 13a. TYPE OF’REPORTn 13b. TIME COVERED 14...8217SUBJECT TERMS (Continue on reverse if necessary and identify by Nock rumber) FIELD GROUP SUB-GROUP RA .1, Dengue virus, T lymphopytes. 06 03 InB-GROP1.In...responses to dengue antigens in vitro to elucidate the possible role of T lymphocytes in the pathogeneeis of dengue hemorrhagic fever and dengue

  15. Selenium and immune responses

    SciTech Connect

    Kiremidjian-Schumacher, L.; Stotzky, G.

    1987-04-01

    Selenium (Se) affects all components of the immune system, i.e., the development and expression of nonspecific, humoral, and cell-mediated responses. In general, a deficiency in Se appears to result in immunosuppression, whereas supplementation with low doses of Se appears to result in augmentation and/or restoration of immunologic functions. A deficiency of Se has been shown to inhibit (1) resistance to microbial and viral infections, (2) neutrophil function, (3) antibody production, (4) proliferation of T and B lymphocytes in response to mitogens, and (5) cytodestruction by T lymphocytes and NK cells. Supplementation with Se has been shown to stimulate (1) the function of neutrophils, (2) production of antibodies, (3) proliferation of T and B lymphocytes in response to mitogens, (4) production of lymphokines, (5) NK cell-mediated cytodestruction, (6) delayed-type hypersensitivity reactions and allograft rejection, and (7) the ability of a host to reject transplanted malignant tumors. The mechanism(s) whereby Se affects the immune system is speculative. The effects of Se on the function of glutathione peroxidase and on the cellular levels of reduced glutathione and H/sub 2/Se, as well as the ability of Se to interact with cell membranes, probably represent only a few of many regulatory mechanisms. The manipulation of cellular levels of Se may be significant for the maintenance of general health and for the control of immunodeficiency disorders and the chemoprevention of cancer.

  16. Lassa fever: response to an imported case.

    PubMed

    Zweighaft, R M; Fraser, D W; Hattwick, M A; Winkler, W G; Jordan, W C; Alter, M; Wolfe, M; Wulff, H; Johnson, K M

    1977-10-13

    In February, 1976, a Peace Corps worker returned to the United States from Sierra Leone with an undiagnosed illness later recognized as Lassa fever. To assess the risk of transmission and to contain a potential outbreak, we identified 552 contacts as having had exposure to the patient before the start of strict isolation procedures, and maintained intensive surveillance on these contacts for 21 days. At the end of the surveillance period, no illness had developed in contacts. One month later, a serologic survey among 29 of the contacts judged to be at high risk gave no evidence of infection. In response to the importation of this communicable and highly fatal disease, procedures for the isolation of the patient, the identification, surveillance and management of contacts and the handling of laboratory specimens were developed and implemented. These procedures could be adapted to future introductions of highly contagious diseases.

  17. Cellular immunity in ASFV responses.

    PubMed

    Takamatsu, Haru-Hisa; Denyer, Michael S; Lacasta, Anna; Stirling, Catrina M A; Argilaguet, Jordi M; Netherton, Christopher L; Oura, Chris A L; Martins, Carlos; Rodríguez, Fernando

    2013-04-01

    African swine fever virus (ASFV) infection usually results in an acute haemorrhagic disease with a mortality rate approaching 100% in domestic pigs. However, pigs can survive infection with less-virulent isolates of ASFV and may become chronically infected. Surviving animals are resistant to challenge with homologous or, in some cases, closely related isolates of the virus indicating that pigs can develop protective immunity against ASFV. During asymptomatic, non-virulent ASFV infections natural killer cell activity increases in pigs, suggesting this cell type plays a role in ASFV immunity. Furthermore, depletion of CD8(+) lymphocytes from ASFV immune pigs demolishes protective immunity against related virulent viruses. This suggests that ASFV specific antibody alone is not sufficient for protection against ASFV infection and that there is an important role for the CD8(+) lymphocyte subset in ASFV protective immunity. These results were supported by DNA immunization studies, demonstrating a correlation between the protection afforded against lethal challenge and the detection of a large number of vaccine-induced antigen-specific CD8(+) T-cells. Peripheral blood mononuclear cells (PBMCs) from ASF immune pigs protected from clinical disease show higher proportions of ASFV specific CD4(+)CD8(high+) double positive cytotoxic T cells than PBMCs from ASF immune but clinically diseased pig. The frequency of ASFV specific IFNγ producing T cells induced by immunization correlates to the degree of protection from ASFV challenge, and this may prove to be a useful indicator of any potential cross-protection against heterologous ASFV isolates.

  18. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus.

    PubMed

    Argilaguet, Jordi M; Pérez-Martín, Eva; López, Sergio; Goethe, Martin; Escribano, J M; Giesow, Katrin; Keil, Günther M; Rodríguez, Fernando

    2013-04-01

    Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development.

  19. Detection and Response for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  20. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015.

    PubMed

    Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc

    2015-06-19

    On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses.

  1. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi

    PubMed Central

    Stone, Brandee L.; Brissette, Catherine A.

    2017-01-01

    The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi. PMID:28154563

  2. Human immune responses in cryptosporidiosis

    PubMed Central

    Borad, Anoli; Ward, Honorine

    2010-01-01

    Immune responses play a critical role in protection from, and resolution of, cryptosporidiosis. However, the nature of these responses, particularly in humans, is not completely understood. Both innate and adaptive immune responses are important. Innate immune responses may be mediated by Toll-like receptor pathways, antimicrobial peptides, prostaglandins, mannose-binding lectin, cytokines and chemokines. Cell-mediated responses, particularly those involving CD4+ T cells and IFN-γ play a dominant role. Mucosal antibody responses may also be involved. Proteins mediating attachment and invasion may serve as putative protective antigens. Further knowledge of human immune responses in cryptosporidiosis is essential in order to develop targeted prophylactic and therapeutic interventions. This review focuses on recent advances and future prospects in the understanding of human immune responses to Cryptosporidium infection. PMID:20210556

  3. [Modulation of immune response by bacterial lipopolysaccharides].

    PubMed

    Aldapa-Vega, Gustavo; Pastelín-Palacios, Rodolfo; Isibasi, Armando; Moreno-Eutimio, Mario A; López-Macías, Constantino

    2016-01-01

    Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  4. Remune. Immune Response.

    PubMed

    Lai, Derhsing; Jones, Taff

    2002-03-01

    The Immune Response Corp (IRC) is developing Remune, a potential HIV therapeutic vaccine. Remune is based on the Salk Immunogen, which is derived from an HIV isolate which has been inactivated by chemical depletion of glycoprotein 120 (gp120). Preliminary data suggested that Remune, in combination with antiviral drug therapy, results in undetectable levels of HIV. Phase III trials commenced in May 1997 and it was initially expected that registration filings would be made in 1999. However, following interim analysis of the 2500-patient, multicenter, double-blind, pivotal phase III study (study 806) in May 1999, an independent panel recommended concluding the clinical endpoint trial and IRC and licensee, Agouron, decided to pursue alternative regulatory strategies, including initiating two additional phase III surrogate marker trials. Despite this, Agouron gave IRC notice of termination of its continued development in July 2001. In August 2001, IRC informed Agouron that, due to the total number of endpoints to date falling short of that previously assumed by Agouron, it did not intend to continue Agouron's Study 202 of Remune. In July 2001, licensee Trinity Medical Group filed an NDA with the governing health authorities in Thailand for Remune. The Thai FDA certified Immune Response's Remune manufacturing facility as being in compliance with GMP standards, following an on site inspection by Thai officials in November 2001 that was performed as a requirement of Trinity's Thai NDA. As a result of this certification, Trinity expected that a "timely determination" could be made by the Thai FDA. Rhĵne-Poulenc Rorer discontinued its part in the development of Remune, with all manufacturing, marketing and distribution rights reverting to IRC. After Agouron returned rights to Remune in July 2001, IRC heldfull rights in the US, Europe and Japan, while collaborating with its partners Trinity Medical Group and Roemmers Laboratory in the Southeast Asian and Latin American

  5. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  6. Expression Library Immunization Can Confer Protection against Lethal Challenge with African Swine Fever Virus

    PubMed Central

    Lacasta, Anna; Ballester, María; Monteagudo, Paula L.; Rodríguez, Javier M.; Salas, María L.; Accensi, Francesc; Pina-Pedrero, Sonia; Bensaid, Albert; Argilaguet, Jordi; López-Soria, Sergio; Hutet, Evelyne; Le Potier, Marie Frédérique

    2014-01-01

    ABSTRACT African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8+ T cells in blood. Aiming to demonstrate the presence of additional CD8+ T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 104 hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion

  7. Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever

    PubMed Central

    Raynes, Jeremy M.; Frost, Hannah R. C.; Williamson, Deborah A.; Young, Paul G.; Baker, Edward N.; Steemson, John D.; Loh, Jacelyn M.; Proft, Thomas; Dunbar, P. R.; Atatoa Carr, Polly E.; Bell, Anita; Moreland, Nicole J.

    2016-01-01

    Acute rheumatic fever (ARF) is an autoimmune response to Group A Streptococcus (GAS) infection. Repeated GAS exposures are proposed to ‘prime’ the immune system for autoimmunity. This notion of immune-priming by multiple GAS infections was first postulated in the 1960s, but direct experimental evidence to support the hypothesis has been lacking. Here, we present novel methodology, based on antibody responses to GAS T-antigens, that enables previous GAS exposures to be mapped in patient sera. T-antigens are surface expressed, type specific antigens and GAS strains fall into 18 major clades or T-types. A panel of recombinant T-antigens was generated and immunoassays were performed in parallel with serum depletion experiments allowing type-specific T-antigen antibodies to be distinguished from cross-reactive antibodies. At least two distinct GAS exposures were detected in each of the ARF sera tested. Furthermore, no two sera had the same T-antigen reactivity profile suggesting that each patient was exposed to a unique series of GAS T-types prior to developing ARF. The methods have provided much-needed experimental evidence to substantiate the immune-priming hypothesis, and will facilitate further serological profiling studies that explore the multifaceted interactions between GAS and the host. PMID:27499748

  8. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  9. Immune Responses in Parasitic Diseases

    DTIC Science & Technology

    1982-09-01

    RESPONSES IN PARASITIC DISEASES Final Scientific Report Daniel J. Stechschulte, M.D. Herbert B. Lindsley, M.D. September 1982 (July 1974 - December 1979...REPORT & PERIOD COVERED IMMUNE RESPONSES IN PARASITIC DISEASES Final Report July 1977 - Dec. 1979 6. PERFORMING ORG. REPORT NUMBER S 4 7. AUTNIOR(a) 6...DAMD 17-74-C-4136 AD_______________ IMMUNE RESPONSES IN PARASITIC DISEASES Final Scientific Report Daniel J. Stechschulte, M.D. Herbert B. Lindsley

  10. Program for Preparation of Immune Globulin against Bolivian Hemorrhagic Fever

    DTIC Science & Technology

    hemorrhagic fever. Donors were recruited from the rural area of San Joaquin, Bolivia, where a temporary plasmapheresis unit was established, using project...funds. The collected plasma was fractionated in the United States where one half was retained for prophylactic or therapeutic use following potential

  11. Leptin Regulation of Immune Responses.

    PubMed

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  12. Fever

    MedlinePlus

    A fever is a body temperature that is higher than normal. It is not an illness. It is part of your body's defense against infection. Most bacteria ... cause infections do well at the body's normal temperature (98.6 F). A slight fever can make ...

  13. Fever

    MedlinePlus

    ... Shortfall Questionnaire FeverA fever is defined as a temperature 1° or more above the normal 98.6°. Minor infections may cause mild or short-term temperature elevations. Temperatures of 103° and above are considered ...

  14. Immune responses to improving welfare.

    PubMed

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  15. Safety, Immunogenicity and Duration of Immunity Elicited by an Inactivated Bovine Ephemeral Fever Vaccine

    PubMed Central

    Aziz-Boaron, Orly; Leibovitz, Keren; Gelman, Boris; Kedmi, Maor; Klement, Eyal

    2013-01-01

    Bovine ephemeral fever (BEF) is an economically important viral vector-borne cattle disease. Several live-attenuated, inactivated and recombinant vaccines have been tested, demonstrating varying efficacy. However, to the best of our knowledge, duration of immunity conferred by an inactivated vaccine has never been reported. In the last decade, Israel has faced an increasing number of BEF outbreaks. The need for an effective vaccine compatible with strains circulating in the Middle East region led to the development of a MONTANIDE™ ISA 206 VG (water-in-oil-in-water), inactivated vaccine based on a local strain. We tested the safety, immunogenicity and duration of immunity conferred by this vaccine. The induced neutralizing antibody (NA) response was followed for 493 days in 40 cows vaccinated by different protocols. The vaccine did not cause adverse reactions or a decrease in milk production. All cows [except 2 (6.7%) which did not respond to vaccination] showed a significant rise in NA titer of up to 1:256 following the second, third or fourth booster vaccination. Neutralizing antibody levels declined gradually to 1:16 up to 120 days post vaccination. This decline continued in cows vaccinated only twice, whereas cows vaccinated 3 or 4 times showed stable titers of approximately 1:16 for up to 267 days post vaccination. At least three vaccinations with the inactivated BEF vaccine were needed to confer long-lasting immunity. These results may have significant implications for the choice of vaccination protocol with inactivated BEF vaccines. Complementary challenge data should however be added to the above results in order to determine what is the minimal NA response conferring protection from clinical disease. PMID:24349225

  16. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  17. Leptin modulates the late fever response to LPS in diet-induced obese animals.

    PubMed

    Pohl, Joanna; Woodside, Barbara; Luheshi, Giamal N

    2014-11-01

    Leptin is an important modulator of both inflammation and energy homeostasis, making it a key interface between the inflammatory response to pathogenic stimuli and the energy status of the host. In previous studies we demonstrated that sickness responses to systemic immune challenge, including fever, are significantly exacerbated in diet induced obese animals. To investigate whether this exacerbation is functionally linked to the obesity associated increase in circulating levels of leptin, a species-specific leptin antiserum (LAS) was used to neutralize endogenous leptin in diet-induced obese adult male Wistar rats treated with a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) (100μg/kg). LAS significantly reduced the magnitude of the later phases of the fever response, and attenuated the circulating levels of IL-6, IL-1ra and bioactivity of leptin in the obese animals. In addition, the antiserum significantly attenuated the hypothalamic expression of IL-1ß, IκBα, COX2, SOCS3 and IL-6 in both lean and obese rats 10h after the LPS injection and NF-IL6 in the hypothalamus of obese rats only. The relatively late rise in brain IL-6 suggested a role in mediating the extended fever response in obese animals and we tested this by neutralizing brain IL-6 using an IL6-AS injected intracerebroventricularly (4μl, icv). The IL6-AS significantly but transiently (between 9h and 12h post LPS) reduced the late fever response of obese rats. These results demonstrate that leptin plays an important part in modulating the late portion of the fever response to LPS, likely through the induction of hypothalamic IL-6 in obese animals.

  18. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  19. Transcriptional Profiling of the Immune Response to Marburg Virus Infection

    PubMed Central

    Yen, Judy; Caballero, Ignacio S.; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J.

    2015-01-01

    ABSTRACT Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the

  20. Immune Response to Giardia duodenalis

    PubMed Central

    Faubert, Gaétan

    2000-01-01

    The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquituous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen. PMID:10627490

  1. Immune responses to improving welfare

    PubMed Central

    Berghman, L. R.

    2016-01-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that “increased vigilance of the immune system is by definition better” because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as “sickness behavior,” includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  2. [Immune response to influenza vaccination].

    PubMed

    Alvarez, I; Corral, J; Arranz, A; Foruria, A; Landa, V; Lejarza, J R; Marijuán, L; Martínez, J M

    1989-01-01

    The present study investigated the level of immunity of the population against three strains of the influenza virus (A Chile/1/83 -A Philippines/2/82 and B URSS/100/83) before and three months after vaccination, and the immune response to whole virus vaccine as compared with fragmented virus vaccine. A high percentage of the population had titers greater than or equal to 1/10 before vaccination for the Chile (54%) and Philippines (65.7%) strains, while titers against the URSS strain were lower (25.4%). There was a definitive increase in antibody titer in the vaccinated population, although it was lower than expected. The overall response to both vaccines, with protecting titers greater than or equal to 1/40 after vaccination was 65.2% for the Chile strain, 74.6% for the Philippines strain, and 15% for the URSS strain. No differences in the overall immune response were found between the groups vaccinated with whole and fragmented virus.

  3. Response to Imported Case of Marburg Hemorrhagic Fever, the Netherlands

    PubMed Central

    Koopmans, Marion P.G.; Vossen, Ann C.T.M.; van Doornum, Gerard J.J.; Günther, Stephan; van den Berkmortel, Franchette; Verduin, Kees M.; Dittrich, Sabine; Emmerich, Petra; Osterhaus, Albert D.M.E.; van Dissel, Jaap T.; Coutinho, Roel A.

    2009-01-01

    On July 10, 2008, Marburg hemorrhagic fever was confirmed in a Dutch patient who had vacationed recently in Uganda. Exposure most likely occurred in the Python Cave (Maramagambo Forest), which harbors bat species that elsewhere in Africa have been found positive for Marburg virus. A multidisciplinary response team was convened to perform a structured risk assessment, perform risk classification of contacts, issue guidelines for follow-up, provide information, and monitor the crisis response. In total, 130 contacts were identified (66 classified as high risk and 64 as low risk) and monitored for 21 days after their last possible exposure. The case raised questions specific to international travel, postexposure prophylaxis for Marburg virus, and laboratory testing of contacts with fever. We present lessons learned and results of the follow-up serosurvey of contacts and focus on factors that prevented overreaction during an event with a high public health impact. PMID:19751577

  4. Response to imported case of Marburg hemorrhagic fever, the Netherland.

    PubMed

    Timen, Aura; Koopmans, Marion P G; Vossen, Ann C T M; van Doornum, Gerard J J; Günther, Stephan; van den Berkmortel, Franchette; Verduin, Kees M; Dittrich, Sabine; Emmerich, Petra; Osterhaus, Albert D M E; van Dissel, Jaap T; Coutinho, Roel A

    2009-08-01

    On July 10, 2008, Marburg hemorrhagic fever was confirmed in a Dutch patient who had vacationed recently in Uganda. Exposure most likely occurred in the Python Cave (Maramagambo Forest), which harbors bat species that elsewhere in Africa have been found positive for Marburg virus. A multidisciplinary response team was convened to perform a structured risk assessment, perform risk classification of contacts, issue guidelines for follow-up, provide information, and monitor the crisis response. In total, 130 contacts were identified (66 classified as high risk and 64 as low risk) and monitored for 21 days after their last possible exposure. The case raised questions specific to international travel, postexposure prophylaxis for Marburg virus, and laboratory testing of contacts with fever. We present lessons learned and results of the follow-up serosurvey of contacts and focus on factors that prevented overreaction during an event with a high public health impact.

  5. Conditioning of the immune response.

    PubMed

    Ader, R; Cohen, N

    1991-10-01

    Experimental studies in humans and experimental animals document the acquisition and extinction of classically conditioned alterations of different parameters of humoral- and cell-mediated immune responses. Although the aversive effects of cyclophosphamide in a taste aversion learning paradigm has been the most frequently used model, conditioned immunomodulatory effects are not confined to this conditioning procedure, and they are not limited to cyclophosphamide or, for that matter, the use of immunomodulating drugs as unconditioned stimuli. Conditioned changes in immunologic reactivity have also been found to modulate the progression of spontaneously-developing or experimentally-induced pathophysiological processes in experimental animals. The available data on the immunoregulatory effects of conditioning indicate that the immune system, like other systems operating in the interests of homeostasis, is integrated with other physiological processes and is therefore influenced by and capable of influencing the brain.

  6. Immune responses to bioengineered organs

    PubMed Central

    Ochando, Jordi; Charron, Dominique; Baptista, Pedro M.; Uygun, Basak E.

    2017-01-01

    Purpose of review Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. Recent findings Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. Summary Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs. PMID:27926545

  7. EVOLUTION OF THE IMMUNE RESPONSE

    PubMed Central

    Papermaster, Ben W.; Condie, Richard M.; Finstad, Joanne; Good, Robert A.

    1964-01-01

    1. The California hagfish, Eptatretus stoutii, seems to be completely lacking in adaptive immunity: it forms no detectable circulating antibody despite intensive stimulation with a range of antigens; it does not show reactivity to old tuberculin following sensitization with BCG; and gives no evidence of homograft immunity. 2. Studies on the sea lamprey, Petromyzon marinus, have been limited to the response to bacteriophage T2 and hemocyanin in small groups of spawning animals. They suggest that the lamprey may have a low degree of immunologic reactivity. 3. One holostean, the bowfin (Amia calva) and the guitarfish (Rhinobatos productus), an elasmobranch, showed a low level of primary response to phage and hemocyanin. The response is slow and antibody levels low. Both the bowfin and the guitarfish showed a vigorous secondary response to phage, but neither showed much enhancement of reactivity to hemocyanin in the secondary response. The bowfin formed precipitating antibody to hemocyanin, but the guitarfish did not. Both hemagglutinating and precipitating antibody to hemocyanin were also observed in the primary response of the black bass. 4. The bowfin was successfully sensitized to Ascaris antigen, and lesions of the delayed type developed after challenge at varying intervals following sensitization. 5. The horned shark (Heterodontus franciscii) regularly cleared hemocyanin from the circulation after both primary and secondary antigenic stimulation, and regularly formed hemagglutinating antibody, but not precipitating antibody, after both primary and secondary stimulation with this antigen. These animals regularly cleared bacteriophage from the circulation after both the primary and secondary stimulation with bacteriophage T2. Significant but small amounts of antibody were produced in a few animals in the primary response, and larger amounts in the responding animals after secondary antigenic stimulation. 6. Studies by starch gel and immunoelectrophoresis show that

  8. Single-Dose Immunization with Virus Replicon Particles Confers Rapid Robust Protection against Rift Valley Fever Virus Challenge

    PubMed Central

    Dodd, Kimberly A.; Metcalfe, Maureen G.; Nichol, Stuart T.; Albariño, César G.

    2012-01-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRPRVF) vaccine candidate. Using a mouse model, we show that VRPRVF immunization provides the optimal balance of safety and single-dose robust efficacy. VRPRVF can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRPRVF proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRPRVF, although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD50). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRPRVF immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection. PMID:22345465

  9. [Producing an immunizing agent: images from the production of a yellow fever vaccine].

    PubMed

    Lacerda, Aline L

    2003-01-01

    Through analysis of a set of photographs on the production of a yellow fever vaccine in Brazil, the article discusses the use of images as a research source in the history of medicine and public health. part of a historical archive belonging to the Fundação Rockefeller, stored at the Casa de Oswaldo Cruz/Fiocruz the photographs were produced between the 1930s and 1940s by the Fundação Rockefeller and Brazil's National Yellow Fever Service, institutions then responsible for research and control of the disease in Brazil. The article raises some questions generally posed by those who employ images as sources or objects of interpretation in the production of historical knowledge, and also points to the theoretical, conceptual, and methodological aspects involved in this process of analyzing images. It goes on to interpret these photographs from the beginning of the yellow fever vaccine.

  10. Antibody response to 17D yellow fever vaccine in Ghanaian infants.

    PubMed Central

    Osei-Kwasi, M.; Dunyo, S. K.; Koram, K. A.; Afari, E. A.; Odoom, J. K.; Nkrumah, F. K.

    2001-01-01

    OBJECTIVES: To assess the seroresponses to yellow fever vaccination at 6 and 9 months of age; assess any possible adverse effects of immunization with the 17D yellow fever vaccine in infants, particularly at 6 months of age. METHODS: Four hundred and twenty infants who had completed BCG, OPV and DPT immunizations were randomized to receive yellow fever immunization at either 6 or 9 months. A single dose of 0.5 ml of the reconstituted vaccine was administered to each infant by subcutaneous injection. To determine the yellow fever antibody levels of the infants, each donated 1 ml whole blood prior to immunization and 3 months post-immunization. Each serum sample was titred on Vero cells against the vaccine virus. FINDINGS: The most common adverse reactions reported were fever, cough, diarrhoea and mild reactions at the inoculation site. The incidences of adverse reactions were not statistically different in both groups. None of the pre-immunization sera in both age groups had detectable yellow fever antibodies. Infants immunized at 6 months recorded seroconversion of 98.6% and those immunized at 9 months recorded 98% seroconversion. The GMT of their antibodies were 158.5 and 129.8, respectively. CONCLUSIONS: The results indicate that seroresponses to yellow fever immunization at 6 and 9 months as determined by seroconversion and GMTs of antibodies are similar. The findings of good seroresponses at 6 months without significant adverse effects would suggest that the 17D yellow fever vaccine could be recommended for use in children at 6 months in outbreak situations or in high risk endemic areas. PMID:11731813

  11. A genetic inference on cancer immune responsiveness

    PubMed Central

    Wang, Ena; Uccellini, Lorenzo; Marincola, Francesco M.

    2012-01-01

    A cancer immune signature implicating good prognosis and responsiveness to immunotherapy was described that is observed also in other aspects of immune-mediated, tissue-specific destruction (TSD). Its determinism remains, however, elusive. Based on limited but unique clinical observations, we propose a multifactorial genetic model of human cancer immune responsiveness. PMID:22754772

  12. Tilapia show immunization response against Ich

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  13. Clinical response in patients with dengue fever to oral calcium plus vitamin D administration: study of 5 cases.

    PubMed

    Sánchez-Valdéz, Emilio; Delgado-Aradillas, Melissa; Torres-Martínez, José Angel; Torres-Benítez, José Martín

    2009-01-01

    A dengue epidemic is one of the most important public health problems in the tropical and subtropical areas of the World. In 2005, 7,062 dengue cases were reported in Tamaulipas on Mexico's eastern coast, including 1,832 (26%) cases classified as Dengue Hemorrhagic Fever (DHF). Dengue fever (DF) is characterized by fever, intense headache, myalgias, arthralgias, rash, nausea and vomiting. A proportion of infected persons may develop DHF characterized by prominent hemorrhagic manifestations associated with thrombocytopenia. An immune mechanism of thrombocytopenia due to increased platelet destruction appears to be operative in patients with DHF. Excessive capillary permeability may lead to Dengue Shock Syndrome (DSS). Patients with DHF/DSS who also have prolonged fever (> 5 days) are at high risk for concurrent bacteremia. Standard treatment is limited to electrolytic solutions, rest, measurements of body temperature, blood pressure, hematocrit, platelet count, and administration of antipyretics like paracetamol when fever is too high. Extracellular calcium plays a key role in platelet aggregation and for the regulation of the immune response in personsinfected with Dengue Virus (DV), and dihydroxy-vitamin D has recently been found to alter IL-12 expression anddendritic cell maturation. We report the cases of five patients who received oral calcium carbonate plus Vitamin D3, who improved overall clinical condition and reduced the duration of signs and symptoms of DF.

  14. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  15. Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever.

    PubMed

    Martins, Flaviano S; Elian, Samir D A; Vieira, Angélica T; Tiago, Fabiana C P; Martins, Ariane K S; Silva, Flávia C P; Souza, Ericka L S; Sousa, Lirlândia P; Araújo, Helena R C; Pimenta, Paulo F; Bonjardim, Cláudio A; Arantes, Rosa M E; Teixeira, Mauro M; Nicoli, Jacques R

    2011-04-01

    Salmonella spp. are Gram-negative, facultative, intracellular pathogens that cause several diarrheal diseases ranging from self-limiting gastroenteritis to typhoid fever. Previous results from our laboratory showed that Saccharomyces cerevisiae strain UFMG 905 isolated from 'cachaça' production presented probiotic properties due to its ability to protect against experimental infection with Salmonella enterica serovar Typhimurium. In this study, the effects of oral treatment with S. cerevisiae 905 were evaluated at the immunological level in a murine model of typhoid fever. Treatment with S. cerevisiae 905 inhibited weight loss and increased survival rate after Salmonella challenge. Immunological data demonstrated that S. cerevisiae 905 decreased levels of proinflammatory cytokines and modulated the activation of mitogen-activated protein kinases (p38 and JNK, but not ERK1/2), NF-κB and AP-1, signaling pathways which are involved in the transcriptional activation of proinflammatory mediators. Experiments in germ-free mice revealed that probiotic effects were due, at least in part, to the binding of Salmonella to the yeast. In conclusion, S. cerevisiae 905 acts as a potential new biotherapy against S. Typhimurium infection due to its ability to bind bacteria and modulate signaling pathways involved in the activation of inflammation in a murine model of typhoid fever.

  16. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination.

    PubMed

    Wilson, William C; Bawa, Bhupinder; Drolet, Barbara S; Lehiy, Chris; Faburay, Bonto; Jasperson, Dane C; Reister, Lindsey; Gaudreault, Natasha N; Carlson, Jolene; Ma, Wenjun; Morozov, Igor; McVey, D Scott; Richt, Jürgen A

    2014-08-06

    Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVFV MP-12 strain has been the most safety tested attenuated vaccine strain; thus it is being considered as a potential vaccine for the US national veterinary stockpile. This study was designed to establish safety protocols for large animal research with virulent RVF viruses, establish a target host immune response baseline using RVF MP-12 strain, and independently evaluate this strain as a potential US emergency response vaccine. Ten, approximately four month-old lambs and calves were vaccinated with RVF MP-12 strain; two additional animals per species provided negative control specimens. The animals were monitored for clinical and immune response, fever, and viremia. Two animals per species were sacrificed on 2, 3, 4, 10 and 28 days post infection and full necropsies were performed for histopathological examination. No clinical or febrile responses were observed in this study. The onset and titer of the immune response is discussed. There was no significant histopathology in the lambs; however, 6 out of 10 vaccinated calves had multifocal, random areas of hepatocellular degeneration and necrosis. RVF MP12 antigen was detected in these areas of necrosis by immunohistochemistry in one calf. This study provides independent and baseline information on the RVF MP-12 attenuated vaccination in vaccine relevant age target species and indicates the importance of performing safety testing on vaccine relevant aged target animals.

  17. Mathematical modeling provides kinetic details of the human immune response to vaccination

    PubMed Central

    Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.

    2015-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280

  18. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    PubMed

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  19. Adverse events following yellow fever immunization: Report and analysis of 67 neurological cases in Brazil.

    PubMed

    Martins, Reinaldo de Menezes; Pavão, Ana Luiza Braz; de Oliveira, Patrícia Mouta Nunes; dos Santos, Paulo Roberto Gomes; Carvalho, Sandra Maria D; Mohrdieck, Renate; Fernandes, Alexandre Ribeiro; Sato, Helena Keico; de Figueiredo, Patricia Mandali; von Doellinger, Vanessa Dos Reis; Leal, Maria da Luz Fernandes; Homma, Akira; Maia, Maria de Lourdes S

    2014-11-20

    Neurological adverse events following administration of the 17DD substrain of yellow fever vaccine (YEL-AND) in the Brazilian population are described and analyzed. Based on information obtained from the National Immunization Program through passive surveillance or intensified passive surveillance, from 2007 to 2012, descriptive analysis, national and regional rates of YFV associated neurotropic, neurological autoimmune disease, and reporting rate ratios with their respective 95% confidence intervals were calculated for first time vaccinees stratified on age and year. Sixty-seven neurological cases were found, with the highest rate of neurological adverse events in the age group from 5 to 9 years (2.66 per 100,000 vaccine doses in Rio Grande do Sul state, and 0.83 per 100,000 doses in national analysis). Two cases had a combination of neurotropic and autoimmune features. This is the largest sample of YEL-AND already analyzed. Rates are similar to other recent studies, but on this study the age group from 5 to 9 years of age had the highest risk. As neurological adverse events have in general a good prognosis, they should not contraindicate the use of yellow fever vaccine in face of risk of infection by yellow fever virus.

  20. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.

  1. Onset and duration of immunity in guinea pigs and mice induced with different Q fever vaccines.

    PubMed

    Kazár, J; Votruba, D; Propper, P; Schramek, S

    1986-11-01

    Protective effects of different types of Q fever vaccines, namely untreated Coxiella burnetii phase I cells (Cb I) or Cb I cells treated with chloroform-methanol (CM) mixture (Cb I-CM) and of a Q fever chemovaccine obtained by trichloroacetic acid extraction (TCAE) from intact Cb I cells, were compared in mice and guinea pigs at different intervals after intraperitoneal (i.p.) or subcutaneous (s.c.) immunizations. The highest degree of protection at all intervals studied was achieved with Cb I cells, irrespective of the route of immunization and i.p. or aerosol challenge. This vaccine exerted a protective effect in guinea pigs and mice as early as after one or two weeks post-immunization, the effect lasting for at least 40 weeks in mice (i.p. challenge) and 12 months in guinea pigs (aerosol challenge). Addition of small amount of Cb I cells to TCAE increased resistance of guinea pigs to aerosol challenge. Degree, onset and duration of protection to either type of virulent challenge afforded by Cb I-CM cells and TCAE was similar, but when compared with that of Cb I cells it was lower, started later (from the 2nd week in guinea pigs and the 3rd week in mice), and in mice it lasted for a shorter period (20 weeks only). The resistance to virulent challenge in guinea pigs did not depend on the levels of microagglutination (MA) antibodies and in mice it was reflected by delayed type hypersensitivity (DTH) reaction and adoptively transferred splenocytes, rather than by MA antibody titres and passive transfer of immune sera to recipient mice.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    PubMed

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  3. Spaceflight and immune responses of Rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.

  4. Noninvasive imaging of immune responses

    PubMed Central

    Rashidian, Mohammad; Keliher, Edmund J.; Bilate, Angelina M.; Duarte, Joao N.; Wojtkiewicz, Gregory R.; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D.; Weissleder, Ralph; Ploegh, Hidde L.

    2015-01-01

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with 18F or 64Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund’s adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked. PMID:25902531

  5. Hypothalamic neurohormones and immune responses

    PubMed Central

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  6. Hypothalamic neurohormones and immune responses.

    PubMed

    Quintanar, J Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  7. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?

    PubMed Central

    Martins, M Â; Silva, M L; Marciano, A P V; Peruhype-Magalhães, V; Eloi-Santos, S M; Ribeiro, J G L; Correa-Oliveira, R; Homma, A; Kroon, E G; Teixeira-Carvalho, A; Martins-Filho, O A

    2007-01-01

    Over past decades the 17DD yellow fever vaccine has proved to be effective in controlling yellow fever and promises to be a vaccine vector for other diseases, but the cellular and molecular mechanisms by which it elicits such broad-based immunity are still unclear. In this study we describe a detailed phenotypic investigation of major and minor peripheral blood lymphocyte subpopulations aimed at characterizing the kinetics of the adaptive immune response following primary 17DD vaccination. Our major finding is a decreased frequency of circulating CD19+ cells at day 7 followed by emerging activation/modulation phenotypic features (CD19+interleukin(IL)10R+/CD19+CD32+) at day 15. Increased frequency of CD4+human leucocyte antigen D-related(HLA-DR+) at day 7 and CD8+HLA-DR+ at day 30 suggest distinct kinetics of T cell activation, with CD4+ T cells being activated early and CD8+ T cells representing a later event following 17DD vaccination. Up-regulation of modulatory features on CD4+ and CD8+ cells at day 15 seems to be the key event leading to lower frequency of CD38+ T cells at day 30. Taken together, our findings demonstrate the co-existence of phenotypic features associated with activation events and modulatory pathways. Positive correlations between CD4+HLA-DR+ cells and CD4+CD25high regulatory T cells and the association between the type 0 chemokine receptor CCR2 and the activation status of CD4+ and CD8+ cells further support this hypothesis. We hypothesize that this controlled microenviroment seems to be the key to prevent the development of serious adverse events, and even deaths, associated with the 17DD vaccine reported in the literature. PMID:17309541

  8. The Immune Response to Astrovirus Infection

    PubMed Central

    Marvin, Shauna A.

    2016-01-01

    Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are clinically importantly pathogens in the elderly and immunocompromised populations. Although the use of cell culture systems and small animal models have enhanced our understanding of astrovirus infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies from humans and animals suggest that adaptive immunity is important in restricting classic and novel astrovirus infections, while studies from animal models and cell culture systems suggest that an innate immune system plays a role in limiting astrovirus replication. The relative contribution of each arm of the immune system in restricting astrovirus infection remains unknown. This review summarizes our current understanding of the immune response to astrovirus infection and highlights some of the key questions that stem from these studies. A full understanding of the immune response to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis. PMID:28042824

  9. Immune response in Dobrava-Belgrade virus infections.

    PubMed

    Tsergouli, Katerina; Papa, Anna

    2016-12-01

    Dobrava-Belgrade virus (DOBV) is a hantavirus that causes a disease in humans known as hemorrhagic fever with renal syndrome. Hallmarks of hantaviral infections are increased vascular permeability due to dysregulation of the endothelial cell barrier and acute thrombocytopenia. In order to gain insight into the immune response in DOBV infections, the serum levels of 27 cytokines in 24 hospitalized Greek HFRS patients were evaluated. Compared to the control group, significantly higher IL-1ra, IL-6, IL-8, IL-9, IL-10, GM-CSF, IP-10, MIP-1b, TNF-α and VEGF levels were found in severe cases, while in non-severe cases, IL-13 and TNF-α levels were significantly higher (p < 0.05). In all groups, IP-10 was increased and RANTES was decreased. Significant and time- (after onset of illness) dependent differences among fatal, severe and non-severe cases were seen. VEGF was positively associated with disease severity. A strong immune response was seen during the first week of illness, especially in severe cases, while the response in non-severe cases was weaker and delayed. The Th1 response was strong in non-severe cases and weak in the fatal case, while a mixed Th1/Th2 immune response was seen in the survivors of severe disease.

  10. Mucosal immunization of rhesus macaques with Rift Valley Fever MP-12 vaccine.

    PubMed

    Morrill, John C; Peters, C J

    2011-08-15

    Rhesus macaques given 5 × 10(4) or 1 × 10(5) plaque-forming units (pfu) of Rift Valley fever (RVF) MP-12 vaccine by oral, intranasal drops, or small particle aerosol showed no adverse effects up to 56 days after administration. All monkeys given the vaccine by aerosol or intranasal drops developed 80% plaque reduction neutralization titers of ≥ 1:40 by day 21 after inoculation. Only 2 of 4 monkeys given the vaccine by oral instillation developed detectable neutralizing antibodies. All monkeys vaccinated by mucosal routes that developed detectable neutralizing antibodies were protected against viremia when challenged with 1 × 10(5) pfu of virulent RVF virus delivered by a small particle aerosol at 56 days after vaccination. A single inoculation of the RVF MP-12 live attenuated vaccine by the aerosol or intranasal route may provide an alternative route of protective immunization to RVFV in addition to conventional intramuscular injection.

  11. A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever.

    PubMed

    do Valle, Tânia Zaverucha; Billecocq, Agnès; Guillemot, Laurent; Alberts, Rudi; Gommet, Céline; Geffers, Robert; Calabrese, Kátia; Schughart, Klaus; Bouloy, Michèle; Montagutelli, Xavier; Panthier, Jean-Jacques

    2010-11-15

    Rift Valley fever (RVF) is an arthropod-borne viral disease repeatedly reported in many African countries and, more recently, in Saudi Arabia and Yemen. RVF virus (RVFV) primarily infects domesticated ruminants, resulting in miscarriage in pregnant females and death for newborns and young animals. It also has the ability to infect humans, causing a feverish syndrome, meningoencephalitis, or hemorrhagic fever. The various outcomes of RVFV infection in animals and humans argue for the existence of host genetic determinants controlling the disease. We investigated the susceptibility of inbred mouse strains to infection with the virulent RVFV ZH548 strain. Compared with classical BALB/cByJ mice, wild-derived Mus m. musculus MBT/Pas mice exhibited earlier and greater viremia and died sooner, a result in sharp contrast with their resistance to infection with West Nile virus and influenza A. Infection of mouse embryonic fibroblasts (MEFs) from MBT/Pas mice with RVFV also resulted in higher viral production. Microarray and quantitative RT-PCR experiments showed that BALB/cByJ MEFs displayed a significant activation of the type I IFN pathway. In contrast, MBT/Pas MEFs elicited a delayed and partial type I IFN response to RVFV infection. RNA interference-mediated inhibition of genes that were not induced by RVFV in MBT/Pas MEFs increased viral production in BALB/cByJ MEFs, thus demonstrating their functional importance in limiting viral replication. We conclude that the failure of MBT/Pas murine strain to induce, in due course, a complete innate immune response is instrumental in the selective susceptibility to RVF.

  12. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.

    PubMed

    Griffin, Diane E

    2016-10-12

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10-14 days. The first appearance of the disease is a 2-3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4⁺ and CD8⁺ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.

  13. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity

    PubMed Central

    Griffin, Diane E.

    2016-01-01

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10–14 days. The first appearance of the disease is a 2–3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4+ and CD8+ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity. PMID:27754341

  14. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1983-09-01

    A-Al?l 362 HUMAN IMMUNE RESPONSES TO DENGUE YXRUSES(U) MASSACHUSETTS UNIV MEDICAL SCHOOL NORCESTER F A ENNIS SE 83" I ?-2C23 UNCLASSI FIED SE 3IRD?8...SHEET PREVIOUS EDITION MAY BE USED UNTILDTIC FORM 70A OUMNPRESIGSETSTOCK IS EXHAUSTED.DEC 83 AD IHuman Immune Responses to Dengue Viruses Annual Report...edilon may be ued Y01dxffnUICFMCASIAZIlow f~ rolit SUMMARY The purpose of this contract is to analyse the immune responses to dengue virus infections

  15. Human Immune Response to Dengue Infections.

    DTIC Science & Technology

    1987-07-30

    W5l "I± H"MN IMMUNE RESPONSE TO DENGUE INFECTIONS(U) i/il MASSACHUSETTS UNIV MEDICAL CENTER NORCESTER MR1 F R ENIS 36 JUL 87 DAMD7-86-C-6200...1 U . AD HUMAN IMMUNE RESPONSE TO DENGUE INFECTIONS ANNUAL REPORT In 00 FRANCIS A. ENNIS JULY 30, 1987 Supported by U.S. ARMY MEDICAL RESEARCH...Human Immune Response to Dengue Infections 12. PERSONAL AUTHOR(S) Ennis, Francis A. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year

  16. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination.

    PubMed

    Akondy, Rama S; Johnson, Philip L F; Nakaya, Helder I; Edupuganti, Srilatha; Mulligan, Mark J; Lawson, Benton; Miller, Joseph D; Pulendran, Bali; Antia, Rustom; Ahmed, Rafi

    2015-03-10

    CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R(2) ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell-based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell-based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.

  17. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  18. Adaptive immune responses to Acanthamoeba cysts.

    PubMed

    McClellan, Kathy; Howard, Kevin; Mayhew, Elizabeth; Niederkorn, Jerry; Alizadeh, Hassan

    2002-09-01

    Acanthamoeba cysts are not eliminated from the corneas of human subjects or experimentally infected animals. The persistence of Acanthamoeba cysts in the cornea indicates that either the cysts escape immunological elimination or are not recognized by the host's immunological elements. The aim of this study was to determine the immunogenicity and antigenicity of the Acanthamoeba cyst. Mice were immunized intraperitoneally and serum anti-Acanthamoeba IgG was measured by ELISA. Lymphoproliferative assay and delayed type hypersensitivity (DTH) responses to Acanthamoeba castellanii cyst and trophozoite antigens were used to determine the cell mediated immune responses against Acanthamoeba cysts. A. castellanii cysts were both immunogenic and antigenic, producing anti-Acanthamoeba serum IgG, T lymphocyte proliferation, and delayed type hypersensitivity responses. These results indicate that Acanthamoeba cysts are recognized by the immune system. The persistence of the organism in the human cornea means that these adaptive immune responses fail to kill Acanthamoeba cysts.

  19. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection.

    PubMed

    Lacasta, Anna; Monteagudo, Paula L; Jiménez-Marín, Ángeles; Accensi, Francesc; Ballester, María; Argilaguet, Jordi; Galindo-Cardiel, Iván; Segalés, Joaquim; Salas, María L; Domínguez, Javier; Moreno, Ángela; Garrido, Juan J; Rodríguez, Fernando

    2015-11-20

    African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8(+) T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.

  20. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  1. A Single Vaccination with an Improved Nonspreading Rift Valley Fever Virus Vaccine Provides Sterile Immunity in Lambs

    PubMed Central

    Oreshkova, Nadia; van Keulen, Lucien; Kant, Jet; Moormann, Rob J. M.; Kortekaas, Jeroen

    2013-01-01

    Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 106.3 TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine. PMID:24167574

  2. Host DNA damage response facilitates African swine fever virus infection.

    PubMed

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2013-07-26

    Studies with different viral infection models on virus interactions with the host cell nucleus have opened new perspectives on our understanding of the molecular basis of these interactions in African swine fever virus (ASFV) infection. The present study aims to characterize the host DNA damage response (DDR) occurring upon in vitro infection with the ASFV-Ba71V isolate. We evaluated protein levels during ASFV time-course infection, of several signalling cascade factors belonging to DDR pathways involved in double strand break repair - Ataxia Telangiectasia Mutated (ATM), ATM-Rad 3 related (ATR) and DNA dependent protein kinase catalytic subunit (DNA-PKcs). DDR inhibitory trials using caffeine and wortmannin and ATR inducible-expression cell lines were used to confirm specific pathway activation during viral infection. Our results show that ASFV specifically elicits ATR-mediated pathway activation from the early phase of infection with increased levels of H2AX, RPA32, p53, ATR and Chk1 phosphorylated forms. Viral p72 synthesis was abrogated by ATR kinase inhibitors and also in ATR-kd cells. Furthermore, a reduction of viral progeny was identified in these cells when compared to the outcome of infection in ATR-wt. Overall, our results strongly suggest that the ATR pathway plays an essential role for successful ASFV infection of host cells.

  3. Immune response to lipoproteins in atherosclerosis.

    PubMed

    Samson, Sonia; Mundkur, Lakshmi; Kakkar, Vijay V

    2012-01-01

    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL) has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  4. Corticosteroid-responsive prolonged thrombocytopenia following dengue haemorrhagic fever.

    PubMed

    Leong, K W; Srinivas, P

    1993-09-01

    A case of prolonged thrombocytopenia following dengue haemorrhagic fever in a 15 year old boy is reported. The mechanism was presumed to be immunological and he responded dramatically to oral prednisolone.

  5. Humoral immune response to the antigen administered as an immune complex.

    PubMed

    Marusić, M; Marusić-Galesić, S; Pokrić, B

    1992-12-01

    Antigen (HSA) bound in immune complexes at equivalence with syngeneic anti-HSA antibodies elicit much stronger humoral immune response then soluble HSA. On the other hand, administration of immune complexes formed with xenogeneic (rabbit) anti-HSA antibodies suppressed humoral immune response against HSA, but not against rabbit IgG in mice. We suggest that immunization with antigen bound in immune complex might represent a powerful tool in enhancing humoral immune responses.

  6. Immunization of African Indigenous Pigs with Attenuated Genotype I African Swine Fever Virus OURT88/3 Induces Protection Against Challenge with Virulent Strains of Genotype I.

    PubMed

    Mulumba-Mfumu, L K; Goatley, L C; Saegerman, C; Takamatsu, H-H; Dixon, L K

    2016-10-01

    The attenuated African swine fever virus genotype I strain OURT88/3 has previously been shown to induce protection of European breeds of domestic pigs against challenge with virulent isolates. To determine whether protective immune responses could also be induced in indigenous breeds of pigs from the Kinshassa region in Democratic Republic of Congo, we immunized a group of eight pigs with OURT88/3 strain and challenged the pigs 3 weeks later with virulent genotype I strain OURT88/1. Four of the pigs were protected against challenge. Three of the eight pigs died from African swine fever virus and a fourth from an unknown cause. The remaining four pigs all survived challenge with a recent virulent genotype I strain from the Democratic Republic of Congo, DRC 085/10. Control groups of non-immune pigs challenged with OURT88/1 or DRC 085/10 developed signs of acute ASFV as expected and had high levels of virus genome in blood.

  7. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells

    PubMed Central

    Lam, L. K. Metthew; Klimstra, William B.

    2016-01-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. PMID:27463517

  8. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1984-08-01

    ND-R171 381 HUR IMMUNE RESPONSES TO DENGUE VIRUSES(U) 1/1 MASSRCHUSETTS UNIY M9DICAL SCHOOL WORCESTER F R~ ENNIS RUG 94 DRMt17-2-C-2233 UNCLASSIFIED...Responses to Dengue Viruses Annual Report 0(August 1983-July 1984) Francis A. Ennis, M.D. August 1984 Supported by U.S. Army Medical Research and...3M1- NO. SON No. Frederick, Maryland 21701-5012 61102A 61102BSI0 AA 104 11. TITLE Oxkf* Samqy Oao" Human Immune Responses to Dengue Viruses 12. PERSON

  9. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  10. Effect of cellular mobility on immune response

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  11. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1989-07-31

    lhuman Immune Response to Dengue Infections 12. PERSONAL AUTHOR(S) Francis A. Ennis 13a. TYPE OF REPORT 13b. TIME COVERED T14. DATE OF REPORT (Year, Month...Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue 4-immune donor generated virus-specific serotype cross-reactive CD4- CD8...class I-restricted cytotoxic T lymphocytes (CL) capable of lysing dengue virus-infected autologous fibroblasts and cells pulsed with dengue I

  12. Epidemiological, serological and herd immunity of Crimean-Congo haemorrhagic fever in Kosovo.

    PubMed

    Humolli, Isme; Dedushaj, Isuf; Zupanac, Tatjana Avsic; Muçaj, Sefedin

    2010-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is primarily a zoonotic disease, mostly present as sporadic cases, but outbreaks also occur, especially in the family. Disease as endemic form is presents in some countries of Africa, Europe and Asia. In 2001, outbreak of CCHF was registered in Kosova, Albania, Pakistan, Iran, and South Africa. Goal of the research was to establish a pattern of the disease, its natural flow and herd immunity. For this purpose we used epidemiological methods, laboratory confirmation (ELISA, PCR) and t-test and chi2-test for results significance verification. Morbidity rate of the disease for the period of fifteen years (1995-2009) is 0.49 in 100,000 inhabitants, and lethality rate is 26.76 deaths on 100 lab confirmed cases. CCHF in Kosovo is present in 50% of the territory with common characteristics: altitude, hot climate, low bush and farming. Hyper endemic zones are in Central and South West of Kosovo. Seroprevalence in entire healthy population is found to be 24.3%. Presence of the CCHF antibodies was found in 14% of livestock, and in 32.6% of sheep. A phylogenetic aspect of the CCHFvirus isolated in Kosovo is the same as of the virus isolated in Drosdov (Russia).

  13. Innate Immune Responses to AAV Vectors.

    PubMed

    Rogers, Geoffrey L; Martino, Ashley T; Aslanidi, George V; Jayandharan, Giridhara R; Srivastava, Arun; Herzog, Roland W

    2011-01-01

    Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV immunology have focused on the elimination of transgene-expressing cells by the adaptive immune system, yet the innate immune system also has a critical role, both in the initial response to the vector and in prompting a deleterious adaptive immune response. Responses to AAV vectors are primarily mediated by the TLR9-MyD88 pathway, which induces the production of pro-inflammatory cytokines by activating the NF-κB pathways and inducing type I IFN production; self-complementary AAV vectors enhance these inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene expression in cells transduced by AAV. This review highlights these recent discoveries regarding innate immune responses to AAV and discusses strategies to ablate these potentially detrimental signaling pathways.

  14. Cytomegalovirus infection improves immune responses to influenza

    PubMed Central

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai; Angel, Cesar J Lopez; Onengut-Gumuscu, Suna; Kidd, Brian; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-01-01

    Cytomegalovirus (CMV) is a beta-herpes virus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV serostatus. In contrast, CMV-infected young adults exhibited an overall up-regulation of immune components including enhanced antibody responses to influenza vaccination, increased CD8+ T cell sensitivity, and elevated levels of circulating IFN-γ compared to uninfected individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the continued coexistence of CMV and mammals throughout their evolution. PMID:25834109

  15. Vaccination Strategies for Mucosal Immune Responses

    PubMed Central

    Ogra, Pearay L.; Faden, Howard; Welliver, Robert C.

    2001-01-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans. PMID:11292646

  16. Bacterial vaginosis and the cervicovaginal immune response

    PubMed Central

    Mitchell, Caroline; Marrazzo, Jeanne

    2014-01-01

    Bacterial vaginosis (BV) is a common cause of vaginal discharge in reproductive age women around the world, and is associated with several poor reproductive health outcomes, including HIV-1 acquisition. One possible mechanism for this association is the inflammatory immune response induced by BV in the cervical and vaginal mucosae. There is significant heterogeneity in reports of markers of cervicovaginal inflammation in women with bacterial vaginosis, likely due to microbial and host diversity, as well as differences in study design. In this article we review the characteristics of the mucosal immune response in BV, the potential role of lactobacilli in modulating that response, and the impact of individual BV-associated bacterial species on mucosal immunity. We focus on inflammatory markers that are proposed to increase the risk of HIV-1 acquisition. PMID:24832618

  17. Radiation triggering immune response and inflammation.

    PubMed

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  18. Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection.

    PubMed

    Fraisier, Christophe; Rodrigues, Raquel; Vu Hai, Vinh; Belghazi, Maya; Bourdon, Stéphanie; Paranhos-Baccala, Glaucia; Camoin, Luc; Almeras, Lionel; Peyrefitte, Christophe Nicolas

    2014-01-22

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus responsible for hemorrhagic manifestations and multiple organ failure, with a high mortality rate. In infected humans, damage to endothelial cells and vascular leakage may be a direct result of virus infection or an immune response-mediated indirect effect. The main target cells are mononuclear phagocytes, endothelial cells and hepatocytes; the liver being a key target for the virus, which was described as susceptible to interferon host response and to induce apoptosis. To better understand the early liver cell alterations due to virus infection, the protein profile of in vitro CCHFV-infected HepG2 cells was analyzed using two quantitative proteomic approaches, 2D-DIGE and iTRAQ. A set of 243 differentially expressed proteins was identified. Bioinformatics analysis (Ingenuity Pathways Analysis) revealed multiple host cell pathways and functions altered after CCHFV infection, with notably 106 proteins related to cell death, including 79 associated with apoptosis. Different protein networks emerged with associated pathways involved in inflammation, oxidative stress and apoptosis, ubiquitination/sumoylation, regulation of the nucleo-cytoplasmic transport, and virus entry. Collectively, this study revealed host liver protein abundances that were modified at the early stages of CCHFV infection, offering an unparalleled opportunity of the description of the potential pathogenesis processes and of possible targets for antiviral research.

  19. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  20. Immune Response in Human Cerebral Cavernous Malformations

    PubMed Central

    Shi, Changbin; Shenkar, Robert; Du, Hongyan; Duckworth, Edward; Raja, Harish; Batjer, H. Hunt; Awad, Issam A.

    2009-01-01

    Background and Purpose Preliminary observations suggesting the presence of B and plasma cells and oligoclonality of immunoglobulin (Ig) G in cerebral cavernous malformations (CCMs) have motivated a systematic study correlating the infiltration of the immune cells with clinical activity and antigen-triggered immune response in surgically excised lesions. Methods Infiltration of plasma, B, T and HLA-DR expressing cells and macrophages within 23 excised CCMs was related to clinical activity. Relative amounts of Ig isotypes were determined. IgG clonality of mRNA from CCMs was assessed by spectratyping, cloning and sequencing. Results Infiltration of the immune cells ranged widely within CCM lesions and cells were generally co-expressed with each other. Immune cell infiltration did not associate with recent bleeding and lesion growth. Significantly more B lymphocytes in CCM lesions were associated with venous anomaly. More T cells were present in solitary lesions. More T cells and less macrophages were present in CCMs from younger subjects. IgG isotype was present in all CCM lesions. Most lesions also expressed IgM and IgA, with IgM predominance over IgA correlating with recent CCM growth. Oligoclonality was shown in IgG mRNA from CCMs, but not from peripheral blood lymphocytes, with only eight CDR3 sequences observed among 134 clones from two CCM lesions. Conclusions An antigen-directed oligoclonal IgG immune response is present within CCM lesions regardless of recent clinical activity. Apparent differences in immune response in younger patients and in lesions with recent growth will need confirmation in other series. The pathogenicity of oligoclonal immune response will require systematic hypothesis testing in recently available CCM murine models. PMID:19286587

  1. Immune Responses in Parasitic Diseases.

    DTIC Science & Technology

    1982-09-01

    prepared in pure form so that quantitative radial immunodiffusion studies are feasible. The IgGl response to T. rhodesiense infection in the rat has been...sera of infected animals and definitely-separate and quantitate the 19S from 8S species by combining radial immunodiffusion techniques and sucrose

  2. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1986-08-01

    D-Ai8i 71S UMAN IMMUNE RESPONSES TO DENGUE VIRUSES(U) MASSACHUSETTS UNIV M DICAL CENTER WORCESTER MA F A ENNIS 81 AUG 86 DAD17-82-C-2233 UNCLSE...Classification) (U) Human Immune Responses to Dengue Viruses 12. PERSONAL AUTHOR(S) Ennis. Francis A. 13a. TYPE OF REPORT 13b. TIME COVERED 414. DATE OF...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP06 13 Virus; Dengue ; Arbovirus; Immunology 06 03 I9% ABSTRACT

  3. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1985-08-01

    t-Ril 630 HuMAN IMMUNE RESPONSES TO DENGUE VIRUSES(U) 1 - MASSACHUSETTS UNIV MEDICAL SCHOOL WORCESTER F A ENNIS 01 AUGO 95 DAMDI-2-C-2233 UNCASSIFIED...Classification) (U) Human Immune Responses to Dengue Viruses 12. PERSONAL AUTHOR(S) Ennis, Francis A. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF...on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP06 13 Virus; Dengue ; Arbovirus; Immunology 06 13 19. ABSTRACT (Continue on

  4. Human Immune Response to Dengue Infections.

    DTIC Science & Technology

    1991-06-30

    DTIC AD-A240 717 AD ____ HUMAN IMMUNE RESPONSE TO DENGUE INFECTIONS ANNUAL REPORT FRANCIS A. ENNIS JUNE 30, 1991 Supported by U.S. ARMY MEDICAL...Immune Response to Dengue Infections DAMDI7-86-C-6208 6. AUTHOR(S) 61102A 1 3M161102BS13 AA Francis A. Ennis WUDA3 12059 7. PERFORMING ORGANIZATION...of NS3, respectively. We also established 16 dengue virus-specific CD8+ CD4_ T cell clones. The clone #/2.8 recognize dengue virus types 2 and 4, and

  5. Immune response inhibits associative learning in insects.

    PubMed Central

    Mallon, Eamonn B; Brockmann, Axel; Schmid-Hempel, Paul

    2003-01-01

    In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysaccharide (LPS) have reduced abilities to associate an odour with sugar reward in a classical conditioning paradigm. The cost of an immune response therefore not only affects survival of the host, as previously shown, but also everyday behaviour and memory formation. PMID:14667337

  6. A nonequilibrium phase transition in immune response

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qi, An-Shen

    2004-07-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied. In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions, the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  7. Immune response from a resource allocation perspective

    PubMed Central

    Rauw, Wendy M.

    2012-01-01

    The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production. PMID:23413205

  8. The Innate Immune Response Against Staphylococcus aureus.

    PubMed

    Bekeredjian-Ding, Isabelle; Stein, Christoph; Uebele, Julia

    2015-12-15

    The innate immune system harbors a multitude of different receptor systems and cells that are constantly prepared to sense and eliminate invading microbial pathogens. Staphylococcus aureus enters the body on its exposed epithelial surfaces, e.g., on skin and mucosa. The initial interaction with epithelial cells is governed by Toll-like receptor (TLR)-2-mediated local production of soluble mediators, including cytokines, chemokines, and antimicrobial peptides. The overall goal is to achieve a steady state of immune mediators and colonizing bacteria. Following cell and tissue invasion clearance of bacteria depends on intracellular microbial sensors and subsequent activation of the inflammasomes. Tissue-resident mast cells and macrophages recruit neutrophils, macrophages, and NK cells. This inflammatory response supports the generation of IL-17 producing NKT, γδ T cells, and T helper cells. Local dendritic cells migrate to the lymph nodes and fine-tune the adaptive immune response. The scope of this chapter is to provide an overview on the major cell types and receptors involved in innate immune defense against S. aureus. By segregating the different stages of infection from epithelial barrier to intracellular and systemic infection, this chapter highlights the different qualities of the innate immune response to S. aureus at different stages of invasiveness.

  9. Peroxiredoxin 5 modulates immune response in Drosophila

    PubMed Central

    Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Orr, William C.

    2010-01-01

    Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response. PMID:20600624

  10. Adaptive immune responses to Candida albicans infection

    PubMed Central

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections. PMID:25607781

  11. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  12. Antibody responses to an immunodominant nonstructural 1 synthetic peptide in patients with dengue fever and dengue hemorrhagic fever.

    PubMed

    Huang, J H; Wey, J J; Sun, Y C; Chin, C; Chien, L J; Wu, Y C

    1999-01-01

    Two flaviviruses, dengue (DEN) virus and Japanese encephalitis (JE) virus, are important because of their global distribution and the frequency of epidemics in tropical and subtropical areas. To study the B-cell epitopes of nonstructural 1 (NS1) glycoprotein and anti-NS1 antibody response in DEN infection, a series of 15-mer synthetic peptides from the predicted B-cell linear epitopes of DEN-2 NS1 protein were prepared. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze antibody responses to these peptides from sera of both DEN and JE patients. One peptide derived from DEN-2 NS1, D2 NS1-P1 (amino acids 1-15), was identified as the immunodominant epitope that reacted with sera from dengue fever (DF) patients but not JE patients. The isotype of D2 NS1-P1-specific antibodies was mainly immunoglobulin M (IgM) in all sera that tested positive. A specificity study demonstrated that sera from all four DEN types reacted with D2 NS1-P1. A dynamics study showed that specific antibodies to this peptide could be detected as early as 2 days after the onset of symptoms. We observed significant anti-D2 NS1-P1 antibody responses in 45% of patients with primary and secondary infections with DF or with dengue hemorrhagic fever. This is the first report demonstrating that significant anti-DEN NS1 antibodies can be induced in the sera of patients with primary DEN infection.

  13. [Immune response genes products in human physiology].

    PubMed

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  14. Immune Response in Mussels To Environmental Pollution.

    ERIC Educational Resources Information Center

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  15. Adaptive immune cells temper initial innate responses

    PubMed Central

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2008-01-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells1–4. Lymphocytedeficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1–deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25−Foxp3− or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses. PMID:17891146

  16. Adaptive immune cells temper initial innate responses.

    PubMed

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2007-10-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells. Lymphocyte-deficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1-deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25-Foxp3- or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses.

  17. Innate immune responses to hepatitis C virus.

    PubMed

    Schoggins, John W; Rice, Charles M

    2013-01-01

    The innate immune response provides the first line of defense against invading viral pathogens. Incoming viruses are sensed by dedicated host factors that, when triggered, initiate multiple signal transduction pathways. Activation of these pathways leads to the induction of highly orchestrated transcriptional programs designed to limit virus replication and spread. In recent years, our understanding of innate immune responses targeting hepatitis C virus (HCV) has increased substantially, largely due to the development of new systems and methodologies to study HCV-host interactions in vitro and in vivo. However, significant gaps still remain. Here, we aim to provide a comprehensive view of the innate immune response to HCV, focusing primarily on knowledge gained from cell culture models of HCV infection, as well as data from human patients infected with HCV. While some paradigms of the host response to HCV revealed in cell culture translate to human infection in vivo, others are less clear. Further insight into the similarities and differences in these systems will not only reveal directions for future studies on HCV immunity, but may also guide the development of novel strategies to control HCV and other viral infections.

  18. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  19. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses

    PubMed Central

    Koma, Takaaki; Huang, Cheng; Kolokoltsova, Olga A; Brasier, Allan R; Paessler, Slobodan

    2013-01-01

    Arenaviruses are enveloped, negative-stranded RNA viruses that belong to the family Arenaviridae. This diverse family can be further classified into OW (Old World) and NW (New World) arenaviruses based on their antigenicity, phylogeny, and geographical distribution. Many of the NW arenaviruses are highly pathogenic viruses that cause systemic human infections characterized by hemorrhagic fever and/or neurological manifestations, constituting public health problems in their endemic regions. NW arenavirus infection induces a variety of host innate immune responses, which could contribute to the viral pathogenesis and/or influence the final outcome of virus infection in vitro as well as in vivo. On the other hand, NW arenaviruses have also developed several strategies to counteract the host innate immune response. We will review current knowledge regarding the interplay between the host innate immune response and NW arenavirus infection in vitro and in vivo, with emphasis on viral-encoded proteins and their effect on the type I interferon response. PMID:24075870

  20. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses.

    PubMed

    Koma, Takaaki; Huang, Cheng; Kolokoltsova, Olga A; Brasier, Allan R; Paessler, Slobodan

    2013-12-13

    Arenaviruses are enveloped, negative-stranded RNA viruses that belong to the family Arenaviridae. This diverse family can be further classified into OW (Old World) and NW (New World) arenaviruses based on their antigenicity, phylogeny, and geographical distribution. Many of the NW arenaviruses are highly pathogenic viruses that cause systemic human infections characterized by hemorrhagic fever and/or neurological manifestations, constituting public health problems in their endemic regions. NW arenavirus infection induces a variety of host innate immune responses, which could contribute to the viral pathogenesis and/or influence the final outcome of virus infection in vitro and in vivo. On the other hand, NW arenaviruses have also developed several strategies to counteract the host innate immune response. We will review current knowledge regarding the interplay between the host innate immune response and NW arenavirus infection in vitro and in vivo, with emphasis on viral-encoded proteins and their effect on the type I interferon response.

  1. Humoral Immune Response to AAV

    PubMed Central

    Calcedo, Roberto; Wilson, James M.

    2013-01-01

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy. PMID:24151496

  2. Humoral Immune Response to AAV.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2013-10-18

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  3. Humoral immune responses in foetal sheep.

    PubMed Central

    Fahey, K J; Morris, B

    1978-01-01

    A total of fifty-two foetal sheep between 49 and 126 days gestation were injected with polymeric and monomeric flagellin, dinitrophenylated monomeric flagellin, chicken red blood cells, ovalbumin, ferritin, chicken gamma-globulin and the somatic antigens of Salmonella typhimurium in a variety of combinations. Immune responses were followed in these animals by taking serial blood samples from them through indwelling vascular cannulae and measuring the circulating titres of antibody. Of the antigens tested, ferritin induced immune responses in the youngest foetuses. A short time later in gestation, the majority of foetuses responded to chicken red blood cells, polymeric flagellin, monomeric flagellin and dinitrophenylated monomeric flagellin. Only older foetuses responded regularly to chicken gamma-globulin and ovalbumin. However, antibodies to all these antigens were first detected over the relatively short period of development between 64 and 82 days gestation and this made it difficult to define any precise order in the development of immune responsiveness. Of the antigens tested only the somatic antigens of S. typhimurium failed to induce a primary antibody response during foetal life. The character and magnitude of the antibody responses in foetuses changed throughout in utero development. Both the total amount of antibody produced and the duration of the response increased with foetal age. Foetuses younger than 87 days gestation did not synthesize 2-mercaptoethanol resistant antibodies or IgG1 immunoglobulin to any of the antigens tested, whereas most foetuses older than this regularly did so. PMID:711249

  4. Ovine model for studying pulmonary immune responses

    SciTech Connect

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  5. Space flight, microgravity, stress, and immune responses

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established.

  6. RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Spengler, Jessica R.; Patel, Jenish R.; Chakrabarti, Ayan K.; Zivcec, Marko; García-Sastre, Adolfo; Spiropoulou, Christina F.

    2015-01-01

    ABSTRACT In the cytoplasm, the retinoic acid-inducible gene I (RIG-I) senses the RNA genomes of several RNA viruses. RIG-I binds to viral RNA, eliciting an antiviral response via the cellular adaptor MAVS. Crimean-Congo hemorrhagic fever virus (CCHFV), a negative-sense RNA virus with a 5′-monophosphorylated genome, is a highly pathogenic zoonotic agent with significant public health implications. We found that, during CCHFV infection, RIG-I mediated a type I interferon (IFN) response via MAVS. Interfering with RIG-I signaling reduced IFN production and IFN-stimulated gene expression and increased viral replication. Immunostimulatory RNA was isolated from CCHFV-infected cells and from virion preparations, and RIG-I coimmunoprecipitation of infected cell lysates isolated immunostimulatory CCHFV RNA. This report serves as the first description of a pattern recognition receptor for CCHFV and highlights a critical signaling pathway in the antiviral response to CCHFV. IMPORTANCE CCHFV is a tick-borne virus with a significant public health impact. In order for cells to respond to virus infection, they must recognize the virus as foreign and initiate antiviral signaling. To date, the receptors involved in immune recognition of CCHFV are not known. Here, we investigate and identify RIG-I as a receptor involved in initiating an antiviral response to CCHFV. This receptor initially was not expected to play a role in CCHFV recognition because of characteristics of the viral genome. These findings are important in understanding the antiviral response to CCHFV and support continued investigation into the spectrum of potential viruses recognized by RIG-I. PMID:26223644

  7. Effect of age on the risk of Fever and seizures following immunization with measles-containing vaccines in children.

    PubMed

    Rowhani-Rahbar, Ali; Fireman, Bruce; Lewis, Edwin; Nordin, James; Naleway, Allison; Jacobsen, Steven J; Jackson, Lisa A; Tse, Alison; Belongia, Edward A; Hambidge, Simon J; Weintraub, Eric; Baxter, Roger; Klein, Nicola P

    2013-12-01

    IMPORTANCE The first dose of live attenuated measles-containing vaccines is associated with an increased risk of febrile seizures 7 to 10 days following immunization among 12- to 23-month-old children. The combination measles, mumps, rubella, and varicella vaccine is associated with a 2-fold increased risk of febrile seizures 7 to 10 days following immunization compared with the separately administered measles, mumps, and rubella and varicella vaccines. It is unknown whether the magnitude of these increased risks depends on age at immunization. OBJECTIVE To examine the potential modifying effect of age on the risk of fever and seizures following immunization with measles-containing vaccines. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study at 8 Vaccine Safety Datalink sites of a total of 840,348 children 12 to 23 months of age who had received a measles-containing vaccine from 2001 through 2011. EXPOSURES Any measles-containing vaccines and measles-containing vaccines by type. MAIN OUTCOMES AND MEASURES Fever and seizure events occurring during a 42-day postimmunization observation period. RESULTS In the analysis of any measles-containing vaccines, the increased risk of seizures during the 7- to 10-day risk interval, using the remainder of the observation period as the control interval, was significantly greater among older children (relative risk, 6.5; 95% CI, 5.3-8.1; attributable risk, 9.5 excess cases per 10,000 doses; 95% CI, 7.6-11.5) than among younger children (relative risk, 3.4; 95% CI, 3.0-3.9; attributable risk = 4.0 excess cases per 10,000 doses; 95% CI, 3.4-4.6). The relative risk of postimmunization fever was significantly greater among older children than among younger children; however, its attributable risk was not. In the analysis of vaccine type, measles, mumps, rubella, and varicella vaccine was associated with a 1.4-fold increase in the risk of fever and 2-fold increase in the risk of seizures compared with measles, mumps, and

  8. Immune responses to infectious diseases in bivalves.

    PubMed

    Allam, Bassem; Raftos, David

    2015-10-01

    Many species of bivalve mollusks (phylum Mollusca, class Bivalvia) are important in fisheries and aquaculture, whilst others are critical to ecosystem structure and function. These crucial roles mean that considerable attention has been paid to the immune responses of bivalves such as oysters, clams and mussels against infectious diseases that can threaten the viability of entire populations. As with many invertebrates, bivalves have a comprehensive repertoire of immune cells, genes and proteins. Hemocytes represent the backbone of the bivalve immune system. However, it is clear that mucosal tissues at the interface with the environment also play a critical role in host defense. Bivalve immune cells express a range of pattern recognition receptors and are highly responsive to the recognition of microbe-associated molecular patterns. Their responses to infection include chemotaxis, phagolysosomal activity, encapsulation, complex intracellular signaling and transcriptional activity, apoptosis, and the induction of anti-viral states. Bivalves also express a range of inducible extracellular recognition and effector proteins, such as lectins, peptidoglycan-recognition proteins, thioester bearing proteins, lipopolysaccharide and β1,3-glucan-binding proteins, fibrinogen-related proteins (FREPs) and antimicrobial proteins. The identification of FREPs and other highly diversified gene families in bivalves leaves open the possibility that some of their responses to infection may involve a high degree of pathogen specificity and immune priming. The current review article provides a comprehensive, but not exhaustive, description of these factors and how they are regulated by infectious agents. It concludes that one of the remaining challenges is to use new "omics" technologies to understand how this diverse array of factors is integrated and controlled during infection.

  9. Microbes and mucosal immune responses in asthma.

    PubMed

    Hansel, Trevor T; Johnston, Sebastian L; Openshaw, Peter J

    2013-03-09

    The substantial increase in the worldwide prevalence of asthma and atopy has been attributed to lifestyle changes that reduce exposure to bacteria. A recent insight is that the largely bacterial microbiome maintains a state of basal immune homoeostasis, which modulates immune responses to microbial pathogens. However, some respiratory viral infections cause bronchiolitis of infancy and childhood wheeze, and can exacerbate established asthma; whereas allergens can partly mimic infectious agents. New insights into the host’s innate sensing systems, combined with recently developed methods that characterise commensal and pathogenic microbial exposure, now allow a unified theory for how microbes cause mucosal inflammation in asthma. The respiratory mucosa provides a key microbial interface where epithelial and dendritic cells interact with a range of functionally distinct lymphocytes. Lymphoid cells then control a range of pathways, both innate and specific, which organise the host mucosal immune response. Fundamental to innate immune responses to microbes are the interactions between pathogen-associated molecular patterns and pattern recognition receptors, which are associated with production of type I interferons, proinflammatory cytokines, and the T-helper-2 cell pathway in predisposed people. These coordinated, dynamic immune responses underlie the differing asthma phenotypes, which we delineate in terms of Seven Ages of Asthma. An understanding of the role of microbes in the atopic march towards asthma, and in causing exacerbations of established asthma, provides the rationale for new specific treatments that can be assessed in clinical trials. On the basis of these new ideas, specific host biomarkers might then allow personalised treatment to become a reality for patients with asthma.

  10. The adaptive immune response in celiac disease.

    PubMed

    Qiao, Shuo-Wang; Iversen, Rasmus; Ráki, Melinda; Sollid, Ludvig M

    2012-07-01

    Compared to other human leukocyte antigen (HLA)-associated diseases such as type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, fundamental aspects of the pathogenesis in celiac disease are relatively well understood. This is mostly because the causative antigen in celiac disease-cereal gluten proteins-is known and the culprit HLA molecules are well defined. This has facilitated the dissection of the disease-relevant CD4+ T cells interacting with the disease-associated HLA molecules. In addition, celiac disease has distinct antibody responses to gluten and the autoantigen transglutaminase 2, which give strong handles to understand all sides of the adaptive immune response leading to disease. Here we review recent developments in the understanding of the role of T cells, B cells, and antigen-presenting cells in the pathogenic immune response of this instructive disorder.

  11. Cytokines and Immune Responses in Murine Atherosclerosis.

    PubMed

    Kusters, Pascal J H; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

  12. Regeneration, tissue injury and the immune response

    PubMed Central

    Godwin, James W; Brockes, Jeremy P

    2006-01-01

    The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular. PMID:17005015

  13. Goats, germs, and fever: Are the pyrin mutations responsible for familial Mediterranean fever protective against Brucellosis?

    PubMed

    Ross, John J

    2007-01-01

    Mutations in the MEFV gene are highly prevalent in the Middle East and Mediterranean basin, with carrier rates of up to 1:3 in some populations. More than 50 mutations in the MEFV gene have been described. The high prevalence, multiple mutations, and geographic localization to the Middle East suggest a positive selection advantage for the abnormal gene operating in this area over the last several thousand years. To date, no satisfactory explanation of this phenomenon has been made. Rather, many harmful effects of these mutations have been described. MEFV gene mutations cause familial Mediterranean fever in homozygotes, a disease associated with recurrent febrile inflammatory episodes, and death from renal failure and amyloidosis. Heterozygotes with MEFV mutations are predisposed to premature coronary disease, and rheumatologic conditions such as Behçet's disease. MEFV mutations do not appear to protect against tuberculosis. Brucellosis is still highly endemic in the Middle East because of the traditional reliance for meat and dairy production on goats and sheep, the major vectors for this zoonosis. Brucellosis causes a prolonged febrile illness lasting for months and even years, and it may have exacted a major toll among Bronze Age peasant populations in the Middle East. The gene product for MEFV, pyrin, normally inhibits interleukin-1beta production. Mutations in MEFV result in a pro-inflammatory state, with a Th1 polarization and high levels of interferon-gamma. This may actually be protective against intracellular pathogens such as brucellosis. The possible heterozygote advantage of MEFV mutations against brucellosis may therefore be a balanced polymorphism, analogous to the protective effect against malaria that maintains high levels of sickle cell trait in sub-Saharan Africa.

  14. Changing the energy of an immune response

    PubMed Central

    Delmastro-Greenwood, Meghan M; Piganelli, Jon D

    2013-01-01

    The breakdown of nutrients into the critical energy source ATP is the general purpose of cellular metabolism and is essential for sustaining life. Similarly, the immune system is composed of different cell subsets that are indispensable for defending the host against pathogens and disease. The interplay between metabolic pathways and immune cells leads to a plethora of different signaling pathways as well as cellular activities. The activation of T cells via glycolysis-mediated upregulation of surface markers, for example, is necessary for an appropriate effector response against an infection. However, tight regulation of immune cell metabolism is required for protecting the host and resuming homeostasis. An imbalance of immunological metabolic function and/or metabolic byproducts (reactive oxygen species) can oftentimes lead to diseases. In the case of cancer, overactive glucose metabolism can lead to hyperproliferation of cells and subsequent decreases in cytotoxic T cell activity, which attack and destroy the tumor. For this reason and many more, targeting metabolism in immune cells may be a novel therapeutic strategy for treatment of disease. The metabolic pathways of immune cells and the possibilities of immunometabolic therapies will be discussed. PMID:23885324

  15. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  16. Humoral innate immune response and disease

    PubMed Central

    Shishido, Stephanie N.; Varahan, Sriram; Yuan, Kai; Li, Xiangdong; Fleming, Sherry D.

    2012-01-01

    The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies. PMID:22771788

  17. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1990-07-31

    WUDA312059 11. TITLE (Include Security Classification) (U) Human Immune Response to Dengue Infections 12. PERSONAL AUTHOR(S) Francis A. Ennis 13a. TYPE OF...COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP RA 1; Vaccines; Dengue ; Cell...mediated; HLA; Interferon 0@ 03 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Thirteen dengue virus-specific, cytotoxic CD4

  18. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  19. Immune responses to pertussis vaccines and disease.

    PubMed

    Edwards, Kathryn M; Berbers, Guy A M

    2014-04-01

    In this article we discuss the following: (1) acellular vaccines are immunogenic, but responses vary by vaccine; (2) pertussis antibody levels rapidly wane but promptly increase after vaccination; (3) whole-cell vaccines vary in immunogenicity and efficacy; (4) whole-cell vaccines and naturally occurring pertussis generate predominantly T-helper 1 (Th1) responses, whereas acellular vaccines generate mixed Th1/Th2 responses; (5) active transplacental transport of pertussis antibody is documented; (6) neonatal immunization with diphtheria toxoid, tetanus toxoid, and acellular pertussis vaccine has been associated with some suppression of pertussis antibody, but suppression has been seen less often with acellular vaccines; (7) memory B cells persist in both acellular vaccine- and whole cell vaccine-primed children; and (8) in acellular vaccine-primed children, T-cell responses remain elevated and do not increase with vaccine boosters, whereas in whole-cell vaccine-primed children, these responses can be increased by vaccine boosting and natural exposure. Despite these findings, challenges remain in understanding the immune response to pertussis vaccines.

  20. Cellular immune responses towards regulatory cells.

    PubMed

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  1. Control of the innate immune response by the mevalonate pathway

    PubMed Central

    Akula, Murali K.; Shi, Man; Jiang, Zhaozhao; Foster, Celia E.; Miao, David; Li, Annie S.; Zhang, Xiaoman; Gavin, Ruth M.; Forde, Sorcha D.; Germain, Gail; Carpenter, Susan; Rosadini, Charles V.; Gritsman, Kira; Chae, Jae Jin; Hampton, Randolph; Silverman, Neal; Gravallese, Ellen M.; Kagan, Jonathan C.; Fitzgerald, Katherine A.; Kastner, Daniel L.; Golenbock, Douglas T.; Bergo, Martin O.; Wang, Donghai

    2016-01-01

    Deficiency of mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate (GGPP), a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, protein post-translational modification catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) cause autoinflammatory Familial Mediterranean Fever (FMF) syndrome. Here, we show that protein geranylgeranylation enables Toll-like receptor (TLR)-induced phosphatidylinositol-3-OH kinase PI(3)K) activation by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages deficient for GGTase I or p110δ exhibited constitutive interleukin-1β release that was MEFV-dependent, but NLRP3-, AIM2- and NLRC4- inflammasome independent. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows for an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome. PMID:27270400

  2. Yellow Fever Vaccine: What You Need to Know

    MedlinePlus

    ... www. immunize. org/ vis 1 What is yellow fever? Yellow fever is a serious disease caused by the ... serious cases) 2 How can I prevent yellow fever? Yellow fever vaccine Yellow fever vaccine can prevent yellow ...

  3. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.

  4. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  5. Thrombocytopenia associated with dengue hemorrhagic fever responds to intravenous administration of anti-D (Rh(0)-D) immune globulin.

    PubMed

    de Castro, Reynaldo Angelo C; de Castro, Jo-Anne A; Barez, Marie Yvette C; Frias, Melchor V; Dixit, Jitendra; Genereux, Maurice

    2007-04-01

    Severe thrombocytopenia and increased vascular permeability are two major characteristics of dengue hemorrhagic fever (DHF). An immune mechanism of thrombocytopenia due to increased platelet destruction appears to be operative in patients with DHF (see Saito et al., 2004, Clin Exp Immunol 138: 299-303; Mitrakul, 1979, Am J Trop Med Hyg 26: 975-984; and Boonpucknavig, 1979, Am J Trop Med Hyg 28: 881-884). The interim data of two randomized placebo controlled trials in patients (N = 47) meeting WHO criteria for dengue hemorrhagic fever (DHF) with severe thrombocytopenia (platelets < or = 50,000/mm(3)) reveal that the increase in platelet count with anti-D immune globulin (WinRho SDF), 50 microg/kg (250 IU/kg) intravenously is more brisk than the placebo group. The mean maximum platelet count of the anti-D-treated group at 48 hours was 91,500/mm(3) compared with 69,333/mm(3) in the placebo group. 75% of the anti-D-treated group demonstrated an increase of platelet counts > or = 20,000 compared with only 58% in the placebo group. These data suggest that treatment of severe thrombocytopenia accompanying DHF with anti-D may be a useful and safe therapeutic option.

  6. Immune-Mediated Fever in the Dog. Occurrence of Antinuclear Antibodies, Rheumatoid Factor, Tumor Necrosis Factor and Interleukin-6 in Serum

    PubMed Central

    Bohnhorst, Øvrebø; Hanssen, I; Moen, Torolf

    2002-01-01

    Contents of antinuclear antibodies (ANA), rheumatoid factor (RF), tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were measured in serum from 20 dogs with immune-mediated fever. Seven out of 20 patients were ANA positive, 1 out of 20 was positive to antibodies against extractable nuclear antigens (ENA), 1 out of 20 was positive to antibodies against deoxynucleoproteins (DNP), 2 out of 13 were RF positive and none out of 20 patients had antibodies against native DNA in the serum. TNF-α was not detected in any serum of 15 dogs with immune-mediated fever, while 10 out of 13 presented with elevated IL-6. The results varied between patients, but the IL-6 level was high in most of them. This indicate a role for IL-6 in the pathogenesis of immune-mediated fever in most cases. PMID:12564546

  7. IL-1 and T Helper Immune Responses

    PubMed Central

    Santarlasci, Veronica; Cosmi, Lorenzo; Maggi, Laura; Liotta, Francesco; Annunziato, Francesco

    2013-01-01

    CD4 T cells play a critical role in mediating adaptive immunity to a variety of pathogens as well as in tumor immunity. If not adequately regulated, CD4 T cells can be also involved in autoimmunity, asthma, and allergic responses. During TCR activation in a particular cytokine milieu, naïve CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, and Th17, as defined by their pattern of cytokine production and function. IL-1, the prototypic proinflammatory cytokine, has been shown to influence growth and differentiation of immunocompetent lymphocytes. The differential expression of IL-1RI on human CD4 T cell subsets confers distinct capacities to acquire specific effector functions. In this review, we summarize the role of IL-1 on CD4 T cells, in terms of differentiation, activation, and maintenance or survival. PMID:23874332

  8. Inhibition of Innate Immune Responses Is Key to Pathogenesis by Arenaviruses.

    PubMed

    Meyer, Bjoern; Ly, Hinh

    2016-04-01

    Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options.

  9. Inhibition of Innate Immune Responses Is Key to Pathogenesis by Arenaviruses

    PubMed Central

    Meyer, Bjoern

    2016-01-01

    Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options. PMID:26865707

  10. RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs.

    PubMed

    Pathak, Shalu Kumari; Kumar, Amit; Bhuwana, G; Sah, Vaishali; Upmanyu, Vikramadiya; Tiwari, A K; Sahoo, A P; Sahoo, A R; Wani, Sajjad A; Panigrahi, Manjit; Sahoo, N R; Kumar, Ravi

    2017-03-30

    In present investigation, differential expression of transcriptome after classical swine fever (CSF) vaccination has been explored at the cellular level in crossbred and indigenous (desi) piglets. RNA Sequencing by Expectation-Maximization (RSEM) package was used to quantify gene expression from RNA Sequencing data, and differentially expressed genes (DEGs) were identified using EBSeq, DESeq2, and edgeR softwares. After analysis, 5222, 6037, and 6210 common DEGs were identified in indigenous post-vaccinated verses pre-vaccinated, crossbred post-vaccinated verses pre-vaccinated, and post-vaccinated crossbred verses indigenous pigs, respectively. Functional annotation of these DEGs showed enrichment of antigen processing-cross presentation, B cell receptor signaling, T cell receptor signaling, NF-κB signaling, and TNF signaling pathways. The interaction network among the immune genes included more number of genes with greater connectivity in vaccinated crossbred than the indigenous piglets. Higher expression of IRF3, IL1β, TAP1, CSK, SLA2, SLADM, and NF-kB in crossbred piglets in comparison to indigenous explains the better humoral response observed in crossbred piglets. Here, we predicted that the processed CSFV antigen through the T cell receptor signaling cascade triggers the B cell receptor-signaling pathway to finally activate MAPK kinase and NF-κB signaling pathways in B cell. This activation results in expression of genes/transcription factors that lead to B cell ontogeny, auto immunity and immune response through antibody production. Further, immunologically important genes were validated by qRT-PCR.

  11. Spaceflight and Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1996-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.

  12. [Fever after travel return].

    PubMed

    Schedel, I

    2004-06-01

    Between 20 and 70 percent of the 50 million people who travel from the industrialized world to the developing world each year report some illness associated with their travel. Approximately 3 percent of people traveling internationally for short periods (<2 weeks) report fever even after travel. Careful assessment of the travel history, likely incubation period, exposure history, associated signs and symptoms, duration of fever, immunization status use or nonuse of antimalarial chemoprophylaxis, and degree of compliance with a chemoprophylactic regimen, if used, helps to establish the diagnosis. Determining an approximate incubation period can be particular helpful in ruling out possible causes of fever. Specific examinations targeting the individual infection, assumed to be responsible for the development of febrile disease may ascertain diagnosis and lead to effective treatment.

  13. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1986-07-01

    AD-AISI 652 NUMAN IMMUNE RESPONSES TO DENGUE YIRUSES(U) / MASSACHUSETTS UNJY MEDICAL CENTER WORCESTER "A F A ENNIS 61 JUL 86 DRMDI?-82-C-2233...A S. PAGE COUNT Ie ..U rO l-9SJulyl (vw = T 21 Virus; Dengue ; Arbovirus; Immunology -- 4b he,. SAaaY~d the Interaction between the peripheral blood...lymphocytes (PBL) of non- 10m.0 deors ad dengue virus-Infected cells, which results in Interferon (113) production. AutelepMu mecyts@ or the Zpstein

  14. Monitoring Regulatory Immune Responses in Tumor Immunotherapy Clinical Trials

    PubMed Central

    Olson, Brian M.; McNeel, Douglas G.

    2013-01-01

    While immune monitoring of tumor immunotherapy often focuses on the generation of productive Th1-type inflammatory immune responses, the importance of regulatory immune responses is often overlooked, despite the well-documented effects of regulatory immune responses in suppressing anti-tumor immunity. In a variety of malignancies, the frequency of regulatory cell populations has been shown to correlate with disease progression and a poor prognosis, further emphasizing the importance of characterizing the effects of immunotherapy on these populations. This review focuses on the role of suppressive immune populations (regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages) in inhibiting anti-tumor immunity, how these populations have been used in the immune monitoring of clinical trials, the prognostic value of these responses, and how the monitoring of these regulatory responses can be improved in the future. PMID:23653893

  15. Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge.

    PubMed

    Carroll, J A; Burdick, N C; Chase, C C; Coleman, S W; Spiers, D E

    2012-08-01

    Although livestock experience many stressors throughout their life, one of the most commonly experienced, and most difficult to control, is stress caused by fluctuations in environmental temperatures that extend beyond the thermoneutral (TN) zone for an animal. In swine, cold stress has long been recognized as a main cause of neonatal morbidity and mortality. A possible explanation for this increased morbidity and mortality may be related to their inability to generate a febrile response. Previously, we reported that the acute phase immune response, including the generation of fever, after exposure to lipopolysaccharide (LPS; Escherichia coli O111: B4; Sigma-Aldrich, St Louis, MO, USA) is substantially altered in neonatal pigs maintained in a cold environment (ie, 18°C). Neonatal pigs that were maintained in a cold environment and administered LPS experienced a period of hypothermia coupled with altered endocrine and proinflammatory cytokine responses that could prove detrimental. In cattle, we previously reported differences in the acute phase immune response of two diverse breeds of Bos taurus cattle (Angus and Romosinuano) when maintained under TN conditions and exposed to LPS. More recently we have reported that differences in the stress and immune responses of Angus and Romosinuano heifers varies, depending on whether the cattle were housed at either TN or heat stress air temperatures. Our data clearly show that even intermittent periods of heat stress similar to that experienced in production environments can have significant effects on the stress and innate immune responses of cattle. Understanding the effect of thermal stress on livestock is critical to developing and implementing alternative management practices to improve their overall health and well-being.

  16. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins.

    PubMed

    James, Eddie A; LaFond, Rebecca E; Gates, Theresa J; Mai, Duy T; Malhotra, Uma; Kwok, William W

    2013-12-01

    Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8(+) T cell responses, less is known about YFV-specific CD4(+) T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4(+) T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4(+) T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4(+) T cell responses that contract, forming a detectable memory population.

  17. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    PubMed Central

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  18. Immune responses to coiled coil supramolecular biomaterials.

    PubMed

    Rudra, Jai S; Tripathi, Pulak K; Hildeman, David A; Jung, Jangwook P; Collier, Joel H

    2010-11-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response.

  19. Immune and inflammatory gene expressions are different in Behçet’s disease compared to those in Familial Mediterranean Fever

    PubMed Central

    Özdemir, Filiz Türe; Demiralp, Emel Ekşioğlu; Aydın, Sibel Z.; Atagündüz, Pamir; Ergun, Tülin; Direskeneli, Haner

    2016-01-01

    Objective The immune classification of Behçet’s disease (BD) is still controversial. In this study, we aimed to compare the immune/inflammatory gene expressions in BD with those in familial Mediterranean fever (FMF), an autoinflammatory disorder with innate immune activation. Material and Methods CD4+ T cells and CD14+ monocytes were isolated from the peripheral blood mononuclear cells of Behçet’s disease patients (n=10), FMF (n=6) patients, and healthy controls (n=4) with microbeads, and then, the mRNA was isolated. The expressions of 440 genes associated with immune and inflammatory responses were studied with a focused DNA microarray using a chemiluminescent tagging system. Changes above 1.5-fold and below 0.8-fold were accepted to be significant. Results In BD patients, in the CD4+ T-lymphocyte subset, interleukin 18 receptor accessory protein (1.7-fold), IL-7 receptor (1.9-fold), and prokineticin 2 (2.5-fold) were all increased compared to those in FMF patients, whereas chemokine (C-X3-C motif ) receptor-1 (CX3CR1) (0.7-fold) and endothelial cell growth factor-1 (0.6-fold) were decreased. In the CD14+ monocyte population, the V-fos FBJ murine osteosarcoma viral oncogene homolog (1.5-fold), Interleukin-8 (IL-8) (2.1-fold), and Tumor Necrosis Factor alpha (TNF-α) (1.8-fold) were all increased, whereas the chemokine (C-C motif ) ligand 5 (CCL5) (0.6-fold), C-C chemokine receptor type 7 (0.6-fold), and CX3CR1 (0.7-fold) were decreased, again when compared to those in FMF. Compared to healthy controls in the CD4+ T-lymphocyte population, in both BD and FMF patients, pro-platelet basic protein and CD27 had elevated expression. In BD and FMF patients, 24 and 19 genes, respectively, were downregulated, with 15 overlapping genes between both disorders. In the CD14+ monocytes population, chemokine (C-C motif ) receptor-1 (CCR1) was upregulated both in BD and FMF patients compared to that in the controls, whereas CCL5 was downregulated. Conclusion Immune and

  20. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  1. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  2. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  3. Precision Immunization: NASA Studies Immune Response to Flu Vaccine

    NASA Video Gallery

    NASA Human Research Program Twins Study investigator Emmanuel Mignot, M.D., Ph.D, known for discovering the cause of narcolepsy is related to the immune system, is studying twin astronauts Scott an...

  4. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  5. Early clearance of Chikungunya virus in children is associated with a strong innate immune response.

    PubMed

    Simarmata, Diane; Ng, David Chun Ern; Kam, Yiu-Wing; Lee, Bernett; Sum, Magdline Sia Henry; Her, Zhisheng; Chow, Angela; Leo, Yee-Sin; Cardosa, Jane; Perera, David; Ooi, Mong H; Ng, Lisa F P

    2016-05-16

    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children.

  6. Early clearance of Chikungunya virus in children is associated with a strong innate immune response

    PubMed Central

    Simarmata, Diane; Ng, David Chun Ern; Kam, Yiu-Wing; Lee, Bernett; Sum, Magdline Sia Henry; Her, Zhisheng; Chow, Angela; Leo, Yee-Sin; Cardosa, Jane; Perera, David; Ooi, Mong H.; Ng, Lisa F. P.

    2016-01-01

    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children. PMID:27180811

  7. Ebola haemorrhagic fever

    PubMed Central

    Feldmann, Heinz; Geisbert, Thomas W

    2012-01-01

    Ebola viruses are the causative agents of a severe form of viral haemorrhagic fever in man, designated Ebola haemorrhagic fever, and are endemic in regions of central Africa. The exception is the species Reston Ebola virus, which has not been associated with human disease and is found in the Philippines. Ebola virus constitutes an important local public health threat in Africa, with a worldwide effect through imported infections and through the fear of misuse for biological terrorism. Ebola virus is thought to also have a detrimental effect on the great ape population in Africa. Case-fatality rates of the African species in man are as high as 90%, with no prophylaxis or treatment available. Ebola virus infections are characterised by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock. PMID:21084112

  8. Ontogeny of the Bovine Immune Response 1

    PubMed Central

    Schultz, R. D.; Dunne, H. W.; Heist, C. E.

    1973-01-01

    The ontogenesis of the bovine immune response was studied in three embryos (<40 days) and 106 fetuses of various ages. In the absence of overt antigenic stimulation, fetuses had lymphoid development of the thymus at 42 days of gestation, the spleen was structurally present at 55 days, and certain peripheral lymph nodes were present at 60 days. Mesenteric lymph nodes were structurally present by 100 days of gestation, and lymphoid tissue of the gastrointestinal tract, particularly the lower ileum, was observed in histologic sections of a 175-day fetus with a bacterial infection. Pyroninophilic cells, plasma cells, and germinal centers were present in lymph node sections of antigenically stimulated fetuses. Lymphoid tissue developed more rapidly in fetuses with bacteria, viral antigens, or apparent maternal red-blood-cell antigens than in the normal fetus. Thymic and splenic indices reached maximal values in the 205- to 220-day fetal age group. Immunoglobulin M (IgM)-containing cells were first observed, by immunofluorescence, in a single fetus at 59 days of gestation. Immunoglobulin G (IgG)-containing cells were observed at 145 days of gestation in one fetus with a bacterial and viral infection. IgM-containing cells were observed in 36 fetuses and IgM and IgG cells were present in seven fetuses. Spleen, lymph nodes, thymus, bone marrow, and liver of one fetus from a dam with lymphosarcoma had immunoglobulin-containing cells. Hemal lymph nodes, blood (buffy coat), Peyer patches, and heart and lung sections from fetuses with immunoglobulin-containing cells in spleen or lymph node did not have immunoglobulin-containing cells. Antigens of the virus of bovine virus diarrhea-mucosal disease (BVD) were detected in one fetus, and antigens of infectious bovine rhinotracheitis (IBR) virus were detected in three fetuses; however, viruses were not isolated in primary bovine embryonic kidney cells. Two of the three fetuses with IBR virus antigens had neutralizing serum antibody

  9. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  10. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response.

    PubMed

    Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K

    2013-03-01

    The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.

  11. The immune response and its therapeutic modulation in bronchiectasis.

    PubMed

    Daheshia, Massoud; Prahl, James D; Carmichael, Jacob J; Parrish, John S; Seda, Gilbert

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.

  12. Local Immune Response in Helicobacter pylori Infection

    PubMed Central

    Kivrak Salim, Derya; Sahin, Mehmet; Köksoy, Sadi; Adanir, Haydar; Süleymanlar, Inci

    2016-01-01

    Abstract There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori–infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC). In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines—interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32—in H pylori–infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients. We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori–infected NGM group. This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients. PMID:27196487

  13. Recurrent Fever in Children

    PubMed Central

    Torreggiani, Sofia; Filocamo, Giovanni; Esposito, Susanna

    2016-01-01

    Children presenting with recurrent fever may represent a diagnostic challenge. After excluding the most common etiologies, which include the consecutive occurrence of independent uncomplicated infections, a wide range of possible causes are considered. This article summarizes infectious and noninfectious causes of recurrent fever in pediatric patients. We highlight that, when investigating recurrent fever, it is important to consider age at onset, family history, duration of febrile episodes, length of interval between episodes, associated symptoms and response to treatment. Additionally, information regarding travel history and exposure to animals is helpful, especially with regard to infections. With the exclusion of repeated independent uncomplicated infections, many infective causes of recurrent fever are relatively rare in Western countries; therefore, clinicians should be attuned to suggestive case history data. It is important to rule out the possibility of an infectious process or a malignancy, in particular, if steroid therapy is being considered. After excluding an infectious or neoplastic etiology, immune-mediated and autoinflammatory diseases should be taken into consideration. Together with case history data, a careful physical exam during and between febrile episodes may give useful clues and guide laboratory investigations. However, despite a thorough evaluation, a recurrent fever may remain unexplained. A watchful follow-up is thus mandatory because new signs and symptoms may appear over time. PMID:27023528

  14. Recurrent Fever in Children.

    PubMed

    Torreggiani, Sofia; Filocamo, Giovanni; Esposito, Susanna

    2016-03-25

    Children presenting with recurrent fever may represent a diagnostic challenge. After excluding the most common etiologies, which include the consecutive occurrence of independent uncomplicated infections, a wide range of possible causes are considered. This article summarizes infectious and noninfectious causes of recurrent fever in pediatric patients. We highlight that, when investigating recurrent fever, it is important to consider age at onset, family history, duration of febrile episodes, length of interval between episodes, associated symptoms and response to treatment. Additionally, information regarding travel history and exposure to animals is helpful, especially with regard to infections. With the exclusion of repeated independent uncomplicated infections, many infective causes of recurrent fever are relatively rare in Western countries; therefore, clinicians should be attuned to suggestive case history data. It is important to rule out the possibility of an infectious process or a malignancy, in particular, if steroid therapy is being considered. After excluding an infectious or neoplastic etiology, immune-mediated and autoinflammatory diseases should be taken into consideration. Together with case history data, a careful physical exam during and between febrile episodes may give useful clues and guide laboratory investigations. However, despite a thorough evaluation, a recurrent fever may remain unexplained. A watchful follow-up is thus mandatory because new signs and symptoms may appear over time.

  15. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  16. Cell-autonomous stress responses in innate immunity.

    PubMed

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response.

  17. Natural selection on immune responsiveness in blue tits Parus caeruleus.

    PubMed

    Råberg, Lars; Stjernman, Martin

    2003-07-01

    What is the form of natural selection on immune responsiveness? For a population at evolutionary equilibrium, there are two different scenarios. First, it is generally assumed that immune defense has both benefits and costs. If variation in immune responsiveness is due to variation in how individuals trade off these costs and benefits, one would expect immune responsiveness to be subject to stabilizing selection. Second, it is well known that an individual's immune responsiveness is often dependent on its overall condition. If immune responsiveness is condition-dependent, one would expect immune responsiveness to be under positive directional selection. We would therefore expect that the form of natural selection on immune responsiveness depends on the relative magnitude of these two sources of variation: variation in how individuals trade off the costs and benefits of defense, and variation in condition. We measured primary and secondary antibody responsiveness to diphtheria-tetanus vaccine in blue tits during winter and investigated the relationship between responsiveness and survival to the following breeding season. We use responsiveness to these antigens as measures of an individual's ability or propensity to mount an antibody response in case of an infection. Interestingly, different measures of responsiveness were subject to different selective regimes: primary responsiveness to diphtheria was subject to stabilizing selection, whereas secondary responsiveness to tetanus was subject to positive directional selection. In contrast, there was no significant selection on primary responsiveness to tetanus or secondary responsiveness to diphtheria. The finding of stabilizing selection on a measure of responsiveness is evidence that immune defense can incur fitness costs; a central but little-tested assumption of theories of the ecology and evolution of immunological defense. The finding of directional selection on a measure of responsiveness is consistent with the

  18. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  19. Fetal immune response following prematurely ruptured membranes.

    PubMed

    Cederqvist, L L; Francis, L C; Zervoudakis, I A; Becker, C G; Litwin, S D

    1976-10-01

    Concentrations of immunoglobulins (Ig)A1, and IgA2, IgD, IgE, IgG, and IgM have been determined in cord blood, amniotic fluid, and maternal serum in a group of patients with a history of prematurely ruptured membranes (PRM) prior to the onset of labor and in a control group of patients undergoing normal delivery and without a history of infection during pregnancy. IgA and IgD were determined by sensitive hemagglutination-inhibition tests; IgG and IgM, by radial immunodiffusion; IgE, by a radioimmunoassay. There was evidence for an immune response in 10 of 16 cases of PRM: five of 16 had increased IgA but normal IgM; three of 16 had increased IgA and IgM; two of 16 had high IgM and normal IgA in cord blood. In patients with significantly increased levels of either IgA or IgM or both, there was a decreased level of IgD. These changes are most likely the result of the immune response to ascending infection from the maternal genitals. The sensitive testing method employed could demonstrate the presence of IgD in 53 per cent of normal cord blood samples and 72 per cent of amniotic fluid samples obtained at term. IgE was found in all normal cord blood and amniotic fluid samples tested. By concentrating the amniotic fluid up to 180-fold, IgM was demonstrated in all normal samples tested. The potential importance of IgA determinations in cord blood in addition to IgM determination for detection of intrauterine infections is stressed.

  20. Chemical agents and the immune response.

    PubMed Central

    Luster, M I; Rosenthal, G J

    1993-01-01

    Our desire to understand the potential adverse human health effects of environmental chemical exposure has coincided with an increased understanding of the immune system and an appreciation of its complex regulatory network. This has spawned a broad interest in the area of immunotoxicology within the scientific community as well as certain concerns in the public sector regarding chemical-induced hypersensitivity and immunosuppression. The incidence of alleged human sensitization to chemicals has increased, in part, due to the fact that chemical companies are moving to larger and/or different markets. It has been estimated that 35 million Americans suffer from allergic disease, of which 2-5% are from occupational exposure. Although there is not yet a clear understanding of dose-response relationships or disease predisposition, there are many well-defined examples (isocyanates, anhydrides) of chemical sensitizers in humans and experimental animals. Evidence that chemicals suppress immune responses in humans is considerably less well established, although there is a public perception that chemicals generally cause immunosuppression. This perception has been fueled by highly publicized legal cases and scientific controversies within the academic and industrial communities. As a consequence of these public and scientific concerns, many of the regulatory agencies are developing immunotoxicity testing guidelines. At the present, however, there are limitations on adequate human methodology and data that allow the extrapolation of animal data to assess human risk. The potential for human immunosuppression remains of concern, however, because of a large database generated from animal studies that demonstrates immunosuppression as well as reports of immunosuppression in humans inadvertently (e.g., halogenated aromatic hydrocarbons) or occupationally (asbestos, benzene) exposed to xenobiotics.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. PMID:8354170

  1. Time of appearance and distribution of cells capable of secondary immune response following primary immunization

    PubMed Central

    Vischer, T. L.; Stastny, P.

    1967-01-01

    Immunological memory was studied by measurement of tritiated thymidine incorporation in tissue culture. After primary immunization with keyhole limpet haemocyanin (KLH) secondary responsiveness could be detected as early as the 2nd day after immunization with Freund's adjuvant into the footpads and on the 4th day after injection of KLH intravenously. In each case immunological memory developed first in the area of the injection, that is, the popliteal lymph nodes after footpad immunization and the spleen after intravenous injection. The secondary response could also be detected in the lymphoid cells of the blood. Cell suspensions enriched in small lymphocytes showed a similar reactivity. Cells from the thymus, however, did not develop immunological memory. Rabbits immunized with BSA showed a relatively weaker response which was clearly detectable only when Freund's adjuvant was used for immunization. The results suggest that a response essentially of a secondary type may play an important role in what is usually considered the primary immune response. PMID:6027423

  2. Immune response of pregnant cows to bovine rotavirus immunization.

    PubMed

    Saif, L J; Smith, K L; Landmeier, B J; Bohl, E H; Theil, K W; Todhunter, D A

    1984-01-01

    Fifteen pregnant Holstein cows were freely assigned to 3 experimental groups (5 cows in each group). Cows in group I were inoculated IM and intramammarily (IMm) with Ohio Agricultural Research and Development Center (OARDC) tissue culture-propagated modified-live Nebraska calf diarrhea bovine rotavirus with added adjuvant (OARDC vaccine-immunized cows). Group II cows were given IM injections of a commercial modified-live rotavirus-coronavirus vaccine (commercial vaccine-immunized cows), and the remaining 5 cows were noninoculated controls (group III). Rotavirus antibody in colostrum and milk was mainly associated with immunoglobulin (Ig)G1, and less so with IgG2, IgA, and IgM, as analyzed by the enzyme-linked immunosorbent assay (ELISA), using monospecific anti-bovine IgG1, IgG2, IgM, and IgA sera. In serum, the rotavirus antibody was distributed almost equally between IgG1 and IgG2. The same relationships appeared in both immunized and nonvaccinated cows. All OARDC vaccine-injected cows had virus-neutralization (VN) and ELISA IgG1 rotavirus antibody titers in serum and mammary secretions at significantly increased levels (at least 100-fold; P less than 0.05) compared with the titers in groups II (commercial vaccine-immunized cows) and III (controls). Serum, colostrum, and milk antibody titers from these latter 2 groups did not differ statistically. The ELISA IgG2, IgA, and IgM rotavirus antibody titers also were significantly greater in mammary secretions from OARDC vaccine-immunized cows than in groups II and III cows. There was a high correlation between ELISA IgG1 and VN rotavirus antibody titers for all samples tested (r = 0.97, P less than 0.001), but ELISA IgG1 antibody titers were consistently higher than VN titers. The ELISA IgG1 and VN antibody titers of milk samples collected from cows 30 days after parturition were higher from the OARDC vaccine-immunized cows (ELISA IgG1, geometric mean titer (GMT) = 3,511; VN GMT = 1,689) than were titers from the

  3. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  4. Neutralizing antibody response to booster vaccination with the 17d yellow fever vaccine.

    PubMed

    Hepburn, M J; Kortepeter, M G; Pittman, P R; Boudreau, E F; Mangiafico, J A; Buck, P A; Norris, S L; Anderson, E L

    2006-04-05

    A retrospective review was conducted of yellow fever vaccination among laboratory workers receiving annual serologic assessment to determine the initial and long-term response after boosting. Patients were divided into three groups based on pre-vaccination serology: Group 1, 1:10; Group 2, 1:20-1:40 and Group 3, >1:40. The percent with > or = four-fold increase in titers after booster vaccination were: 78% (646/829, Group 1), 65% (79/121, Group 2) and 10% (8/79, Group 3) (p<0.0001). The median times to titer failure (<1:40) were 798 days (Group 1), 3340 days (Group 2) and 7709 days (Group 3) (p<0.0001). Pre-vaccination serology influenced the initial and long-term response to yellow fever booster vaccination.

  5. Fever as a risk factor for increased response to vitamin K antagonists: a review of the evidence and potential mechanisms.

    PubMed

    Self, Timothy H; Oliphant, Carrie S; Reaves, Anne B; Richardson, Amy M; Sands, Christopher W

    2015-01-01

    Numerous factors affect the response to vitamin K antagonists (VKA) including age, dietary vitamin K, other drugs, pharmacogenetics, and disease states. In antithrombotic guidelines, fever is mentioned as a factor that may increase response to VKA. The purpose of this article is to review the available evidence regarding the effect of fever on response to VKA, and to discuss possible mechanisms of this effect. We performed a search of the English literature from 1943 to June 2014, using the key words fever AND warfarin, acenocoumarol, phenprocoumon, coumarin anticoagulants and VKA; fever AND vitamin K dependent clotting factors II, VII, IX, and X. One animal investigation and 6 studies in humans suggest fever increases response to VKA, but one study did not find a significant effect. The magnitude of this effect is variable. Possible mechanisms for the increased effect of VKA associated with fever are increased catabolism of vitamin K dependent clotting factors, decreased vitamin K intake, and inhibition of VKA metabolism. More rigorous studies are needed to confirm that fever increases response to warfarin and other VKA.

  6. [Surveillance system for adverse events following immunization against yellow fever in Burkina Faso in 2008. Good practice recommendations].

    PubMed

    Yaméogo, T M; Breugelmans, J G; Kambou, J L; Badolo, O; Tiendrebéogo, S; Traoré, E; Avokey, F; Yactayo, S

    2009-08-01

    Yellow fever (YF) remains a public health problem in Africa. In 2007 and 2008, Togo, Senegal, Mali and Burkina Faso became the first countries to implement mass YF immunization campaigns within the framework of the Yellow Fever Initiative. The goal of this initiative led by the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) with the support of The Global Alliance for Vaccines and Immunization (GAVI) is to organize mass YF immunization campaigns in 12 African countries at high risk forYF transmission between 2006 and 2013. A total of 290 million USD have been allocated for vaccination of 180 million people with the highly effective attenuated 17DYF vaccine. Working in partnership with the WHO, the 12 member states are to identify and target high risk areas with the dual aim of preventing epidemics and increasing immunization coverage. Surveillance of adverse events following immunization (AEFI) is a mandatory component for organization of these campaigns. Purpose. The purpose of this article is to describe the AEFI surveillance system implemented in Burkina Faso in 2008. Methods. The strategy used in Burkina Faso was based on a combination of regular passive surveillance and active surveillance. General guidelines and related operational processes were established including reporting forms, investigation forms, and procedures for collection, storage and transport of biological specimens. Classification of cases was based on clearly defined criteria. Any patient meeting the defined criteria and requiring hospitalization was considered as a serious case. In addition to case definition criteria, serious cases were tracked according to presented signs and symptoms using a line-listing form at two university hospital centers in Ouagadougou and one regional hospital center. Emergency room admission records and patient charts were examined during the surveillance period (30 days after the end of the immunization campaign) and on

  7. Opioid peptides and innate immune response in mollusc.

    PubMed

    Liu, Dong-Wu

    2008-01-01

    The nervous and the immune systems can exchange information through opioid peptides. Furthermore, some opioid peptides can function as endogenous messengers of the immune system, and participate in an important part in the regulation of the various components of the immune response. Since the capacity of immunocytes to release and respond to opioid neuropeptide messengers is not restricted to mammalian organisms, recent studies have indicated that invertebrate models have been particularly useful to understand the mechanisms of the immune response. Moreover, the immunocytes of molluscs resemble cells of the vertebrate monocyte/macrophage lineage and are activated by similar substances, which control the main immune responses, i.e. phagocytosis, chemotaxis, and cytotoxicity. Recently, Mytilus edulis has been the subject of recent studies to determine whether the relationship between the immune and nervous systems seen in vertebrates also exists in invertebrates. The focus of this review is to describe how the opioid peptides participate in immune processes in molluscs.

  8. GENETIC CONTROL OF THE IMMUNE RESPONSE

    PubMed Central

    McDevitt, Hugh O.; Deak, Beverly D.; Shreffler, Donald C.; Klein, Jan; Stimpfling, Jack H.; Snell, George D.

    1972-01-01

    Eleven strains of mice bearing recombinant H-2 chromosomes derived from known crossover events between known H-2 types were immunized with a series of branched, multichain, synthetic polypeptide antigens [(T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L]. Results with nine of the eleven H-2 recombinants indicated that the gene(s) controlling immune response to these synthetic polypeptides (Ir-1) is on the centromeric or H-2K part of the recombinant H-2 chromosome. Results with two of the eleven recombinant H-2 chromosomes indicated that Ir-1 was on the telomeric or H-2D part of the recombinant H-2 chromosome. Both of these recombinants were derived from crossovers between the H-2K locus and the Ss-Slp locus near the center of the H-2 region. One of these recombinants, H-2y, was derived from a known single crossover event. These results indicate that Ir-1 lies near the center of the H-2 region between the H-2K locus and the Ss-Slp locus. The results of a four-point linkage test were consistent with these results. In 484 offspring of a cross designed to detect recombinants between H-2 and Ir-1, only two putative recombinants were detected. Both of these recombinants were confirmed by progeny testing. Extensive analysis of one of them has shown that the crossover event occurred within the H-2 region. (Testing of the second recombinant is currently under way.) Thus, in the linkage test, recombinants between H-2 and Ir-1 are in fact intra-H-2 crossovers. These results permit assignment of Ir-1 to a position between the H-2K locus and the Ss-Slp locus. PMID:4554451

  9. Spaceflight and immune responses of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  10. Spaceflight and Immune Responses of Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1997-01-01

    In the grant period, we perfected techniques for determination of interleukin production and leukocyte subset analysis of rhesus monkeys. These results are outlined in detail in publication number 2, appended to this report. Additionally, we participated in the ARRT restraint test to determine if restraint conditions for flight in the Space Shuttle could contribute to any effects of space flight on immune responses. All immunological parameters listed in the methods section were tested. Evaluation of the data suggests that the restraint conditions had minimal effects on the results observed, but handling of the monkeys could have had some effect. These results are outlined in detail in manuscript number 3, appended to this report. Additionally, to help us develop our rhesus monkey immunology studies, we carried out preliminary studies in mice to determine the effects of stressors on immunological parameters. We were able to show that there were gender-based differences in the response of immunological parameters to a stressor. These results are outlined in detail in manuscript number 4, appended to this report.

  11. Maternal antibodies reduce costs of an immune response during development.

    PubMed

    Grindstaff, Jennifer L

    2008-03-01

    Young vertebrates are dependent primarily on innate immunity and maternally derived antibodies for immune defense. This reliance on innate immunity and the associated inflammatory response often leads to reduced growth rates after antigenic challenge. However, if offspring have maternal antibodies that recognize an antigen, these antibodies should block stimulation of the inflammatory response and reduce growth suppression. To determine whether maternal and/or offspring antigen exposure affect antibody transmission and offspring growth, female Japanese quail (Coturnix japonica) and their newly hatched chicks were immunized. Mothers were immunized with lipopolysaccharide (LPS), killed avian reovirus vaccine (AR), or were given a control, phosphate-buffered saline, injection. Within each family, one-third of offspring were immunized with LPS, one-third were immunized with AR, and one-third were given the control treatment. Maternal immunization significantly affected the specific types of antibodies that were transmitted. In general, immunization depressed offspring growth. However, offspring immunized with the same antigen as their mother exhibited elevated growth in comparison to siblings immunized with a different antigen. This suggests that the growth suppressive effects of antigen exposure during development can be partially ameliorated by the presence of maternal antibodies, but in the absence of specific maternal antibodies, offspring are dependent on more costly innate immune defenses. Together, the results suggest that the local disease environment of mothers prior to reproduction significantly affects maternal antibody transmission and these maternal antibodies may allow offspring to partially maintain growth during infection in addition to providing passive humoral immune defense.

  12. Immune function trade-offs in response to parasite threats.

    PubMed

    Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W

    2017-04-01

    Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection.

  13. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    DTIC Science & Technology

    2006-07-06

    caused by penicillin -resistant Streptococcus pneumoniae in rabbits. Antimicrob. Agents Chemother. 46: 1760- 1765. Takeuchi, O., Hoshino, K., and...2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE The host immune response to Streptococcus pneumoniae ...host immune response to Streptococcus pneumoniae : bridging innate and adaptive immunity Katherine Shi-Hui Lee Thesis directed by: Clifford M

  14. The unfolded protein response in immunity and inflammation

    PubMed Central

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J.; Blumberg, Richard S.

    2017-01-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  15. Innate immune response development in nestling tree swallows

    USGS Publications Warehouse

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  16. Association of Symptoms and Severity of Rift Valley Fever with Genetic Polymorphisms in Human Innate Immune Pathways

    PubMed Central

    Hise, Amy G.; Traylor, Zachary; Hall, Noémi B.; Sutherland, Laura J.; Dahir, Saidi; Ermler, Megan E.; Muiruri, Samuel; Muchiri, Eric M.; Kazura, James W.; LaBeaud, A. Desirée; King, Charles H.; Stein, Catherine M.

    2015-01-01

    Background Multiple recent outbreaks of Rift Valley Fever (RVF) in Africa, Madagascar, and the Arabian Peninsula have resulted in significant morbidity, mortality, and financial loss due to related livestock epizootics. Presentation of human RVF varies from mild febrile illness to meningoencephalitis, hemorrhagic diathesis, and/or ophthalmitis with residual retinal scarring, but the determinants for severe disease are not understood. The aim of the present study was to identify human genes associated with RVF clinical disease in a high-risk population in Northeastern Province, Kenya. Methodology/Principal Findings We conducted a cross-sectional survey among residents (N = 1,080; 1–85 yrs) in 6 villages in the Sangailu Division of Ijara District. Participants completed questionnaires on past symptoms and exposures, physical exam, vision testing, and blood collection. Single nucleotide polymorphism (SNP) genotyping was performed on a subset of individuals who reported past clinical symptoms consistent with RVF and unrelated subjects. Four symptom clusters were defined: meningoencephalitis, hemorrhagic fever, eye disease, and RVF-not otherwise specified. SNPs in 46 viral sensing and response genes were investigated. Association was analyzed between SNP genotype, serology and RVF symptom clusters. The meningoencephalitis symptom phenotype cluster among seropositive patients was associated with polymorphisms in DDX58/RIG-I and TLR8. Having three or more RVF-related symptoms was significantly associated with polymorphisms in TICAM1/TRIF, MAVS, IFNAR1 and DDX58/RIG-I. SNPs significantly associated with eye disease included three different polymorphisms TLR8 and hemorrhagic fever symptoms associated with TLR3, TLR7, TLR8 and MyD88. Conclusions/Significance Of the 46 SNPs tested, TLR3, TLR7, TLR8, MyD88, TRIF, MAVS, and RIG-I were repeatedly associated with severe symptomatology, suggesting that these genes may have a robust association with RVFV-associated clinical

  17. Linear ubiquitination signals in adaptive immune responses.

    PubMed

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.

  18. Probiotics and the immune response to vaccines.

    PubMed

    MacDonald, Thomas T; Bell, Iona

    2010-08-01

    Probiotics are bacteria, but sometimes fungi, which when taken by the oral route may give some health benefits. The most compelling evidence for beneficial effects of probiotics is in the prevention and reduction in the duration of symptoms related to gut infectious disease. There is also evidence to show that some specific probiotics are beneficial in Clostridium difficile diarrhoea in the elderly. As further and better controlled clinical studies have appeared, some specific probiotics also appear to have beneficial effects in perhaps preventing and reducing the duration of symptoms due to acquired upper respiratory tract infections. In an attempt to explain these effects, attention has turned to the effects of some specific probiotics on the immune system. There is evidence that some specific probiotics can alter monocyte and natural killer cell function in the blood. Evidence is also accumulating that taking some specific probiotics can boost antibody responses to oral and systemically administered vaccines. The effect when shown is modest and is not always seen in different studies to all vaccines, but there is enough of a trend to make the area worthy of further investigation, particularly to tease out the mechanisms involved.

  19. Importins and exportins regulating allergic immune responses.

    PubMed

    Aggarwal, Ankita; Agrawal, Devendra K

    2014-01-01

    Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  20. Suppression of immune response to Listeria monocytogenes: mechanism(s) of immune complex suppression.

    PubMed Central

    Virgin, H W; Wittenberg, G F; Bancroft, G J; Unanue, E R

    1985-01-01

    We have investigated possible mechanisms underlying immune complex suppression of resistance to Listeria monocytogenes. Inhibition of resistance was found when immune complexes were formed in vivo in immune mice or in nonimmune mice adoptively transferred with specific antibody. Suppression was also found when nonimmune mice were injected with immune complexes preformed in vitro. We investigated the role of complement by decomplementing mice with cobra venom factor purified by high-pressure liquid chromatography. Complete depletion of serum C3 did not eliminate immune complex suppression of resistance to L. monocytogenes, suggesting that complement activation is not required for immune complex suppression. Infection-induced changes in the surface phenotype and functional properties of macrophages from normal and immune complex-suppressed mice were also investigated. Macrophage expression of both H-2K and Ia molecules increased during the response of normal mice to L. monocytogenes. However, these changes were not found in immune complex-suppressed mice. In contrast, membrane interleukin 1 expression was increased in macrophages from suppressed mice compared with macrophages from normal mice. Macrophages from L. monocytogenes-infected normal and immune complex-suppressed mice expressed cytotoxicity against tumor cells in vitro. We conclude that immune complexes do not inhibit resistance to L. monocytogenes by activation of complement or decreasing macrophage cytotoxic activity. Rather, defects in Ia expression by macrophages from suppressed mice might be one component responsible for immune complex suppression of resistance to L. monocytogenes. PMID:3932204

  1. [Immune response and digestive cancers: Prognostic and therapeutic implications].

    PubMed

    Bibeau, Frédéric; Bazille, Céline; Svrcek, Magali; Pierson, Rémi; Lagorce-Pagès, Christine; Cohen, Romain; André, Thierry

    2017-02-01

    The aim of this article is to emphasize the impact of the immune response in digestive cancers, especially from colorectal (CRC) origin. In this setting, an adaptive lymphocytic infiltrate underlines the prognostic impact of the immune response, because it is associated to a favorable outcome. The next challenge will be to validate, in a prospective therapeutic trial, the integration of the immune response as decisional parameter for adjuvant therapy. The immune response is also a predictive parameter in microsatellite instable metastatic CRC, characterized by an adaptive lymphocytic infiltrate, leading to a very high response rate to immune therapies. However, prognostic and predictive biomarkers still need to be optimized in order to better select patients. These data are also valuable for digestive non-colorectal cancers, which are briefly analyzed. The methodology for the assessment of these prognostic and predictive biomarkers, which represents an important issue in precision medicine, is also discussed.

  2. Evaluating immune responses after sipuleucel-T therapy.

    PubMed

    Strauss, Julius; Madan, Ravi A; Figg, William D

    2015-01-01

    Following FDA approval of sipuleucel-T in 2010 for metastatic castration resistant prostate cancer (mCRPC), several studies have described the effect of sipuleucel-T on peripheral immune responses. Retrospective associations have also been made with immune responses and survival. A recently published study by Fong et al. was the first to characterize the immune response of sipuleucel-T in the tumor microenvironment. The findings of this study have been hypothesis generating, yet it remains unclear whether the peri-tumor immune response described is predictive of survival. Increasing evidence suggests that radiographic or PSA progression does not accurately reflect survival with sipuleucel-T and other immunotherapies. Finding an immune biomarker which can accurately reflect clinical benefit and validating it prospectively offers the potential for a predictive indicator of response in an area where none currently exists.

  3. Fast food fever: reviewing the impacts of the Western diet on immunity

    PubMed Central

    2014-01-01

    While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet’s impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today’s modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease. PMID:24939238

  4. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever.

    PubMed

    Oestereich, Lisa; Lüdtke, Anja; Ruibal, Paula; Pallasch, Elisa; Kerber, Romy; Rieger, Toni; Wurr, Stephanie; Bockholt, Sabrina; Pérez-Girón, José V; Krasemann, Susanne; Günther, Stephan; Muñoz-Fontela, César

    2016-05-01

    Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.

  5. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever

    PubMed Central

    Oestereich, Lisa; Lüdtke, Anja; Ruibal, Paula; Pallasch, Elisa; Kerber, Romy; Rieger, Toni; Wurr, Stephanie; Bockholt, Sabrina; Krasemann, Susanne

    2016-01-01

    Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology. PMID:27191716

  6. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response.

    PubMed

    van Der Most, R G; Murali-Krishna, K; Ahmed, R; Strauss, J H

    2000-09-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.

  7. Biomimetic and synthetic interfaces to tune immune responses (Review)

    PubMed Central

    Garapaty, Anusha; Champion, Julie A.

    2015-01-01

    Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell–cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell–particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease. PMID:26178262

  8. Evaluation of two yellow fever vaccines for routine immunization programs in Argentina.

    PubMed

    Ripoll, Carlos; Ponce, Amalia; Wilson, Mario M; Sharif, Norma; Vides, José B; Armoni, Judith; Teuwen, Dirk E

    2008-01-01

    Although highly effective vaccines have been available for almost 70 years, an estimated 200,000 cases of YF, including 30,000 deaths, still occur annually. This study evaluated the safety of two yellow fever (YF) vaccines [Stamaril and Vacina Contra Febre Amarela (VCFA)]. A total of 2,514 subjects were randomized equally to receive Stamaril or VCFA. Immediate reactions occurring within 30 minutes after vaccination, and solicited local and systemic reactions occurring within eight days, were monitored. Unsolicited local, systemic adverse events and serious adverse events (SAE) were recorded for 21 days after vaccination. Solicited local and systemic adverse reactions were reported by 15.3-17.6% and 30.4-31.6% of the Stamaril and VCFA groups, respectively. Only 56 of the 2,514 study subjects (2.2%) reported a severe solicited adverse reaction, 25 in the Stamaril group (1.99%) and 31 in the VFCA group (2.49%), (p=0.403). Ten subjects (0.8%) in each group reported at least one severe solicited local reaction (p = 0.988). A total of 18 Stamaril subjects (1.43%) and 21 VCFA subjects (1.68%) reported at least one severe solicited systemic reaction (p = 0.617) One SAE considered related to vaccination occurred, polymyalgia in the VCFA group. No immediate reactions to vaccination were seen. Vaccine-related unsolicited events were infrequent, 1.4% in the Stamaril group and 2.0% VCFA group, generally of mild or moderate intensity. We conclude that the safety profiles of Stamaril and VCFA support routine vaccination to prevent YF in residents of and travelers to endemic areas of South America and Africa.

  9. Immune responses and disease enhancement during respiratory syncytial virus infection.

    PubMed

    Openshaw, Peter J M; Tregoning, John S

    2005-07-01

    Respiratory syncytial virus (RSV) is one of the commonest and most troublesome viruses of infancy. It causes most cases of bronchiolitis, which is associated with wheezing in later childhood. In primary infection, the peak of disease typically coincides with the development of specific T- and B-cell responses, which seem, in large part, to be responsible for disease. Animal models clearly show that a range of immune responses can enhance disease severity, particularly after vaccination with formalin-inactivated RSV. Prior immune sensitization leads to exuberant chemokine production, an excessive cellular influx, and an overabundance of cytokines during RSV challenge. Under different circumstances, specific mediators and T-cell subsets and antibody-antigen immune complex deposition are incriminated as major factors in disease. Animal models of immune enhancement permit a deep understanding of the role of specific immune responses in RSV disease, assist in vaccine design, and indicate which immunomodulatory therapy might be beneficial to children with bronchiolitis.

  10. Analysis of the Caenorhabditis elegans innate immune response to Coxiella burnetii

    PubMed Central

    Battisti, James M; Watson, Lance A; Naung, Myo T; Drobish, Adam M; Voronina, Ekaterina; Minnick, Michael F

    2016-01-01

    The nematode Caenorhabditis elegans is well established as a system for characterization and discovery of molecular mechanisms mediating microbe-specific inducible innate immune responses to human pathogens. Coxiella burnetii is an obligate intracellular bacterium that causes a flu-like syndrome in humans (Q fever), as well as abortions in domesticated livestock, worldwide. Initially, when wild type C. elegans (N2 strain) was exposed to mCherry-expressing C. burnetii (CCB) a number of overt pathological manifestations resulted, including intestinal distension, deformed anal region and a decreased lifespan. However, nematodes fed autoclave-killed CCB did not exhibit these symptoms. Although vertebrates detect C. burnetii via TLRs, pathologies in tol-1(−) mutant nematodes were indistinguishable from N2, and indicate nematodes do not employ this orthologue for detection of C. burnetii. sek-1(−) MAP kinase mutant nematodes succumbed to infection faster, suggesting that this signaling pathway plays a role in immune activation, as previously shown for orthologues in vertebrates during a C. burnetii infection. C. elegans daf-2(−) mutants are hyper-immune and exhibited significantly reduced pathological consequences during challenge. Collectively, these results demonstrate the utility of C. elegans for studying the innate immune response against C. burnetii and could lead to discovery of novel methods for prevention and treatment of disease in humans and livestock. PMID:27884946

  11. Social Behavior, Prolactin and the Immune Response

    DTIC Science & Technology

    1989-04-01

    on the immune processes. (Locke, Ader, Besedovsky, Hall, Solomon & Strom, 1985). The term psychoneuroimmunology has been coined by researchers to...34mind and immunity" covering a five year period (Locke and Hornig-Rohan, 1983) and a collection of seminal papers on psychoneuroimmunology (Locke, et...In: Psychoneuroimmunology (R. Ader, ed.), Academic Press, NY, 1981, 609-617. Friedman, S. B., Glasgow, L. A. and Ader, R. Psychological factors

  12. Innate and adaptive immune responses in neurodegeneration and repair.

    PubMed

    Amor, Sandra; Woodroofe, M Nicola

    2014-03-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases.

  13. Transcutaneous DNA immunization following waxing-based hair depilation elicits both humoral and cellular immune responses

    PubMed Central

    Xiao, Gang; Li, Xinran; Kumar, Amit; Cui, Zhengrong

    2012-01-01

    Previously, we showed that transcutaneous (TC) DNA immunization by applying plasmid DNA onto a mouse skin area wherein the hair follicles were induced into growth stage by plucking the hair using warm waxing induced strong and functional antigen-specific antibody responses. In the present study, using plasmids that encode β-galactosidase gene or ovalbumin (OVA) gene, we showed that this mode of TC DNA immunization not only induced specific antibody responses, but also induced antigen-specific cytotoxic T lymphocyte responses. In fact, TC DNA immunization using a plasmid that encodes OVA gene prevented the growth of OVA-expressing B16-OVA tumor cells in the immunized mice. Moreover, we provided additional evidence supporting that hair follicles are essential for this mode of TC DNA immunization. PMID:22771558

  14. Sexual dimorphism in immunity: improving our understanding of vaccine immune responses in men.

    PubMed

    Furman, David

    2015-03-01

    Weaker immune responses are often observed in males compared to females. Since female hormones have proinflammatory properties and androgens have potent immunomodulatory effects, this sexual dimorphism in the immune response seems to be hormone dependent. Despite our current knowledge about the effect of sex hormones on immune cells, definition of the factors driving the sex differences in immunoclinical outcomes, such as the diminished response to infection and vaccination observed in men or the higher rates of autoimmunity observed in females, remains elusive. Recently, systems approaches to immune function have started to suggest a way toward establishing this connection. Such studies promise to improve our understanding of the mechanisms underlying the sexual dimorphism observed in the human immune system.

  15. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  16. Dose-response model of Rocky Mountain spotted fever (RMSF) for human.

    PubMed

    Tamrakar, Sushil B; Haas, Charles N

    2011-10-01

    Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID₅₀) exposed human population, N₅₀, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID₁₀ and ID₂₀ are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship.

  17. Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep

    DTIC Science & Technology

    2015-08-01

    Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep 5a. CONTRACT NUMBER 5b. GRANT...Distribution A: Approved for public release; distribution is unlimited. Case Number: SAF-2014-0410, 17 Jul 2014 13. SUPPLEMENTARY NOTES Clin Vaccine ...there are susceptible ruminant hosts and competent mosquito vectors, yet there are no fully licensed animal vaccines for this arthropod-borne virus

  18. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  19. Innate immune responses in raccoons after raccoon rabies virus infection.

    PubMed

    Srithayakumar, Vythegi; Sribalachandran, Hariharan; Rosatte, Rick; Nadin-Davis, Susan A; Kyle, Christopher J

    2014-01-01

    Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.

  20. PDT-apoptotic tumor cells induce macrophage immune response

    NASA Astrophysics Data System (ADS)

    Zhou, Fei-fan; Xing, Da; Chen, Wei R.

    2008-02-01

    Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-α release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

  1. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  2. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    PubMed

    Marcu, Oana; Lera, Matthew P; Sanchez, Max E; Levic, Edina; Higgins, Laura A; Shmygelska, Alena; Fahlen, Thomas F; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-11

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  3. [Immune response in the pathogenesis of hepatitis C virus infection].

    PubMed

    Chalupa, P; Holub, M; Davidová, A; Arientová, S; Beran, O

    2015-10-01

    The pathogenesis of hepatitis C virus (HCV) infection is regulated by the host immunity and several metabolic factors affecting liver metabolism, including oxidative stress, insulin resistance, and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV infection. Cytotoxic lymphocytes have a crucial role in viral eradication or viral persistence. Major cause of viral persistence during HCV infection could be the development of a weak antiviral immune response to the viral antigens, with corresponding inability to eradicate infected cells.

  4. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  5. Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner.

    PubMed

    Beaumier, Coreen M; Mathew, Anuja; Bashyam, Hema S; Rothman, Alan L

    2008-02-15

    Dengue virus is the causative agent of dengue fever and the more-severe dengue hemorrhagic fever (DHF). Human studies suggest that the increased risk of DHF during secondary infection is due to immunopathology partially mediated by cross-reactive memory T cells from the primary infection. To model T cell responses to sequential infections, we immunized mice with different sequences of dengue virus serotypes and measured the frequency of peptide-specific T cells after infection. The acute response after heterologous secondary infections was enhanced compared with the acute or memory response after primary infection. Also, the hierarchy of epitope-specific responses was influenced by the specific sequence of infection. Adoptive-transfer experiments showed that memory T cells responded preferentially to the secondary infection. These findings demonstrate that cross-reactive T cells from a primary infection alter the immune response during a heterologous secondary infection.

  6. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  7. Yellow fever vaccination centers: concurrent vaccinations and updates on mosquito biology.

    PubMed

    Arya, Subhash C; Agarwal, Nirmala

    2012-09-01

    Mandatory visits to immunization centers that offer pre-travel Yellow fever vaccine to prospective travelers would be useful for briefing the basics of the biology of the mosquito responsible for Yellow fever spread. Pre- travel knowledge on the day-time rather the nocturnal biting habit of the mosquitoes of Aedes species would prevent from bites of the mosquitoes responsible for the spread of viruses causing Yellow fever, dengue or Chikungunya infection.

  8. Interferon regulatory factor 3 in adaptive immune responses.

    PubMed

    Ysebrant de Lendonck, Laure; Martinet, Valerie; Goriely, Stanislas

    2014-10-01

    Interferon regulatory factor (IRF) 3 plays a key role in innate responses against viruses. Indeed, activation of this transcription factor triggers the expression of type I interferons and downstream interferon-stimulated genes in infected cells. Recent evidences indicate that this pathway also modulates adaptive immune responses. This review focuses on the different mechanisms that are implicated in this process. We discuss the role of IRF3 within antigen-presenting cells and T lymphocytes in the polarization of the cellular immune response and its implication in the pathogenesis of immune disorders.

  9. Global analysis of the immune response

    NASA Astrophysics Data System (ADS)

    Ribeiro, Leonardo C.; Dickman, Ronald; Bernardes, Américo T.

    2008-10-01

    The immune system may be seen as a complex system, characterized using tools developed in the study of such systems, for example, surface roughness and its associated Hurst exponent. We analyze densitometric (Panama blot) profiles of immune reactivity, to classify individuals into groups with similar roughness statistics. We focus on a population of individuals living in a region in which malaria endemic, as well as a control group from a disease-free region. Our analysis groups individuals according to the presence, or absence, of malaria symptoms and number of malaria manifestations. Applied to the Panama blot data, our method proves more effective at discriminating between groups than principal-components analysis or super-paramagnetic clustering. Our findings provide evidence that some phenomena observed in the immune system can be only understood from a global point of view. We observe similar tendencies between experimental immune profiles and those of artificial profiles, obtained from an immune network model. The statistical entropy of the experimental profiles is found to exhibit variations similar to those observed in the Hurst exponent.

  10. Dysregulation of serum gamma interferon levels in vascular chronic Q Fever patients provides insights into disease pathogenesis.

    PubMed

    Pennings, Jeroen L A; Kremers, Marjolein N T; Hodemaekers, Hennie M; Hagenaars, Julia C J P; Koning, Olivier H J; Renders, Nicole H M; Hermans, Mirjam H A; de Klerk, Arja; Notermans, Daan W; Wever, Peter C; Janssen, Riny

    2015-06-01

    A large community outbreak of Q fever occurred in the Netherlands in the period 2007 to 2010. Some of the infected patients developed chronic Q fever, which typically includes pathogen dissemination to predisposed cardiovascular sites, with potentially fatal consequences. To identify the immune mechanisms responsible for ineffective clearance of Coxiella burnetii in patients who developed chronic Q fever, we compared serum concentrations of 47 inflammation-associated markers among patients with acute Q fever, vascular chronic Q fever, and past resolved Q fever. Serum levels of gamma interferon were strongly increased in acute but not in vascular chronic Q fever patients, compared to past resolved Q fever patients. Interleukin-18 levels showed a comparable increase in acute as well as vascular chronic Q fever patients. Additionally, vascular chronic Q fever patients had lower serum levels of gamma interferon-inducible protein 10 (IP-10) and transforming growth factor β (TGF-β) than did acute Q fever patients. Serum responses for these and other markers indicate that type I immune responses to C. burnetii are affected in chronic Q fever patients. This may be attributed to an affected immune system in cardiovascular patients, which enables local C. burnetii replication at affected cardiovascular sites.

  11. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    PubMed Central

    Mooij, Merel

    2017-01-01

    The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection. PMID:28280748

  12. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    PubMed Central

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20–30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  13. Tissue engineering tools for modulation of the immune response

    PubMed Central

    Boehler, Ryan M.; Graham, John G.; Shea, Lonnie D.

    2012-01-01

    Tissue engineering scaffolds have emerged as a powerful tool within regenerative medicine. These materials are being designed to create environments that promote regeneration through a combination of: (i) scaffold architecture, (ii) the use of scaffolds as vehicles for transplanting progenitor cells, and/or (iii) localized delivery of inductive factors or genes encoding for these inductive factors. This review describes the techniques associated with each of these components. Additionally, the immune response is increasingly recognized as a factor influencing regeneration. The immune reaction to an implant begins with an acute response to the injury and innate recognition of foreign materials, with the subsequent chronic immune response involving specific recognition of antigens (e.g., transplanted cells) by the adaptive immune response, which can eventually lead to rejection of the implant. Thus, we also describe the impact of each component on the immune response, and strategies (e.g., material design, anti-inflammatory cytokine delivery, and immune cell recruitment/transplantation) to modulate, yet not eliminate, the local immune response in order to promote regeneration, which represents another important tool for regenerative medicine. PMID:21988690

  14. Subversion of the Immune Response by Rabies Virus.

    PubMed

    Scott, Terence P; Nel, Louis H

    2016-08-19

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses-including age, sex, cerebral lateralization and temperature-are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host's response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.

  15. Immune and stress responses in oysters with insights on adaptation.

    PubMed

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments.

  16. Photodynamic therapy and immune response in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Canti, Gianfranco L.; Cubeddu, Rinaldo; Taroni, Paola; Valentini, Gianluca

    1999-06-01

    Since immune response of the host is important in the control of tumor growth and spreading, and the Photodynamic therapy (PDT) is able to increase the antitumor immunity, in our laboratory we examine the effect of PDT on immune compartment of tumor bearing mice. Lymphocytes and macrophages collected from tumor bearing mice pretreated with PDT are cytotoxic in vitro and in vivo against the parental tumor lines, in contrast the same immune cells population collected from tumor bearing mice pretreated only with laser light are unable to lyse the parental tumor cells. In adoptive immunotherapy experiments, treatment of mice bearing MS-2 tumor with adoptive transfer of immune lymphocytes collected from mice pretreated with PDT is able to significantly increase the survival time; in contrast the lymphocytes collected from mice pretreated only with laser light were not able to modify the survival time suggesting that the laser treatment alone did not increase the immune response of the host. In conclusion these results demonstrate that the PDT induce a strong immune response on the host and the stimulated lymphocytes generated could be used for an adoptive immunotherapy approach; moreover laser treatment alone (thermal effect) is unable to modulate the immune response of the host.

  17. Yellow fever vaccine-associated adverse events following extensive immunization in Argentina.

    PubMed

    Biscayart, Cristián; Carrega, María Eugenia Pérez; Sagradini, Sandra; Gentile, Angela; Stecher, Daniel; Orduna, Tomás; Bentancourt, Silvia; Jiménez, Salvador García; Flynn, Luis Pedro; Arce, Gabriel Pirán; Uboldi, María Andrea; Bugna, Laura; Morales, María Alejandra; Digilio, Clara; Fabbri, Cintia; Enría, Delia; Diosque, Máximo; Vizzotti, Carla

    2014-03-05

    As a consequence of YF outbreaks that hit Brazil, Argentina, and Paraguay in 2008-2009, a significant demand for YF vaccination was subsequently observed in Argentina, a country where the usual vaccine recommendations are restricted to provinces that border Brazil, Paraguay, and Bolivia. The goal of this paper is to describe the adverse events following immunization (AEFI) against YF in Argentina during the outbreak in the northeastern province of Misiones, which occurred from January 2008 to January 2009. During this time, a total of nine cases were reported, almost two million doses of vaccine were administered, and a total of 165 AEFI were reported from different provinces. Case study analyses were performed using two AEFI classifications. Forty-nine events were classified as related to the YF vaccine (24 serious and 1 fatal case), and 12 events were classified as inconclusive. As the use of the YF 17D vaccine can be a challenge to health systems of countries with different endemicity patterns, a careful clinical and epidemiological evaluation should be performed before its prescription to minimize serious adverse events.

  18. Subversion of the Immune Response by Rabies Virus

    PubMed Central

    Scott, Terence P.; Nel, Louis H.

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  19. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    PubMed Central

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses. PMID:24213131

  20. DNA-mediated immunization and the energetic immune response to hepatitis B surface antigen.

    PubMed

    Whalen, R G; Davis, H L

    1995-04-01

    A new and unusual approach for evoking an immune response has recently been introduced--that of DNA-based immunization. Purified plasmid DNA, containing protein coding sequences and the necessary regulatory elements to express them, can be introduced into tissues of the organism by means of a parenteral injection or by particle bombardment. The number of cells transfected and the amount of protein produced is sufficient to produce a remarkably strong and broad-based immune response to a wide variety of foreign proteins. The absence of an exogenous infectious agent or immunogen results in the abrupt appearance of a foreign protein within the normal cells of an immunologically mature and healthy animal and provokes an energetic and efficient reaction to this form of antigen presentation. This review summarizes the results obtained with the various experimental models that have been described to date and considers in greater depth the immune response to the surface antigen of the human hepatitis B virus that has been achieved using DNA-based immunization. Several issues are addressed in a prospective manner in order to anticipate some future developments and to point out topics likely to be pertinent to this field. DNA-mediated induction of immune responses may soon be applied as a form of therapeutic treatment. Although this method may constitute a revolution for vaccination, many issues must first be dealt with, especially concerning the safety of using DNA as an immunizing molecule.

  1. Taenia solium: immune response against oral or systemic immunization with purified recombinant calreticulin in mice.

    PubMed

    Fonseca-Coronado, Salvador; Ruiz-Tovar, Karina; Pérez-Tapia, Mayra; Mendlovic, Fela; Flisser, Ana

    2011-01-01

    Recombinant functional Taenia solium calreticulin (rTsCRT) confers different degrees of protection in the experimental model of intestinal taeniosis in hamsters. The aim of this study was to evaluate the immune response induced after oral or systemic immunization with an electroeluted rTsCRT in BALB/c mice. Oral immunization elicited high fecal IgA and the production of IL-4 and IL-5 by mesenteric lymph node cells after in vitro stimulation with rTSCRT, indicating a Th2 response. Mice subcutaneously immunized produced high amounts of serum IgG, being IgG1 (Th2-related) the predominant isotype, while in vitro stimulated spleen cells synthesized IL-4, IL-5 and also IFN-γ, indicating a mixed Th1/Th2 cellular response after systemic immunization. Our data show that purified rTsCRT induces polarized Th2 responses after oral immunization of mice, a common characteristic of protective immunity against helminths and, consequently, a desirable hallmark in the search for a vaccine.

  2. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  3. Virus-like nanostructures for tuning immune response

    PubMed Central

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-01-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system. PMID:26577983

  4. Proteomic contributions to our understanding of vaccine and immune responses

    PubMed Central

    Galassie, Allison C.; Link, Andrew J.

    2015-01-01

    Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses. PMID:26172619

  5. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    PubMed

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases.

  6. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  7. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  8. Heat-Based Tumor Ablation: Role of the Immune Response.

    PubMed

    Wu, Feng

    2016-01-01

    The ideal cancer therapy not only induces the death of all localized tumor cells with less damage to surrounding normal tissue, but also activates a systemic antitumor immunity. Heat-based tumor ablation has the potential to be such a treatment as it can minimal-invasively ablate a targeted tumor below the skin surface, and may subsequently augment host antitumor immunity. This chapter primarily introduces increasing pre-clinical and clinical evidence linking antitumor immune response to thermal tumor ablation, and then discusses the potential mechanisms involved in ablation-enhanced host antitumor immunity. The seminal studies performed so far indicate that although it is not possible to make definite conclusions on the connection between thermal ablation and antitumor immune response, it is nonetheless important to conduct extensive studies on the subject in order to elucidate the processes involved.

  9. [Defects in immune system response by our organisms].

    PubMed

    Español, Teresa

    2005-09-01

    When some of the mechanisms in our immune response system fail, this can be due to external problems such as infections or transplants or due to congenital errors, known as Primary Immunologic Deficiencies. Dr. Español briefly reviews the most important characteristics of our immune response system, and then continues with an analysis of the defects of this system, especially those defects which are classified as Primary Immunologic Deficiencies.

  10. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    NASA Astrophysics Data System (ADS)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  11. Advances in Overcoming Immune Responses following Hemophilia Gene Therapy

    PubMed Central

    Miao, Carol H.

    2012-01-01

    Both Clinical trials and pre-clinical experiments for hemophilia gene therapy showed that it is important to overcome potential immune responses against gene transfer vectors and/or transgene products to ensure the success of gene therapy. Recently various approaches have been investigated to prevent or modulate such responses. Gene transfer vectors have been specifically engineered and immunosuppressive regimens have been administered to avoid or manipulate the immune responses against the vectors. In order to prevent cytotoxic lymphocyte or antibody formation induced by transgene expression, novel approaches have been developed, including methods to manipulate antigen presentation, development of variant genes encoding less immunogenic proteins or gene transfer protocols to evade immune responses, as well as immunosuppressive strategies to target either T and/or B cell responses. Most of these successful protocols involve the induction of activated regulatory T cells to create a regulatory immune environment during tolerance induction. Recent development of these strategies to evade vector-specific immune responses and induce long-term immune tolerance specific to the transgene product will be discussed. PMID:22737594

  12. Circadian rhythm and the immune response: a review.

    PubMed

    Habbal, O A; Al-Jabri, A A

    2009-01-01

    For long, the immune system has been thought of as an effector mechanism reacting to antigenic challenge with defensive responses designed to eliminate 'foreign' material and return to a standby or surveillance mode. However, the recent concept now supported by substantial evidence suggests that immunity is not effector biased but is also a sensory organ and forms part of an integrated homeostatic network. The bidirectional information flow between the neuroendocrine and immune systems functions to maintain and protect the internal homeostasis of the organism. The paradox of this interwined function is that homeostasis may require the neuroendocrine system to work for or against the immune system, as is the case in infection. Potential dangers necessitate activation of the immune system, and such a response may pose risks to the integrity of the host. This occurs when an overly vigorous response may be detrimental and kill the host, as is the case of toxic shock syndrome. Therefore, the constant monitoring role of the neuroendocrine system to control and, when necessary, regulate the function of the immune system is crucial for the homeostatic integrity of the host. This reciprocity of functional need determines the mode of action to determine the context of a perceived threat and the best way to respond. Any breakdown in this two-way communication may manifest itself in problems such as autoimmunity, septic shock, or chronic infection. In this article, we review our current knowledge of circadian rhythm and its relation to the immune response.

  13. Antigen processing and immune regulation in the response to tumours.

    PubMed

    Reeves, Emma; James, Edward

    2017-01-01

    The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8(+) cytotoxic and CD4(+) helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8(+) cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4(+) T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8(+) cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.

  14. Transcriptional Profiling of the Circulating Immune Response to Lassa Virus in an Aerosol Model of Exposure

    PubMed Central

    Honko, Anna N.; Garamszegi, Sara; Caballero, Ignacio S.; Johnson, Joshua C.; Mucker, Eric M.; Trefry, John C.; Hensley, Lisa E.; Connor, John H.

    2013-01-01

    Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response. PMID:23638192

  15. Transcriptional profiling of the circulating immune response to lassa virus in an aerosol model of exposure.

    PubMed

    Malhotra, Shikha; Yen, Judy Y; Honko, Anna N; Garamszegi, Sara; Caballero, Ignacio S; Johnson, Joshua C; Mucker, Eric M; Trefry, John C; Hensley, Lisa E; Connor, John H

    2013-01-01

    Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response.

  16. Understanding Interpretations of and Responses to Childhood Fever in the Chikhwawa District of Malawi

    PubMed Central

    Ewing, Victoria L.; Tolhurst, Rachel; Kapinda, Andrew; SanJoaquin, Miguel; Terlouw, Dianne J.; Richards, Esther; Lalloo, David G.

    2015-01-01

    Background Universal access to, and community uptake of malaria prevention and treatment strategies are critical to achieving current targets for malaria reduction. Each step in the treatment-seeking pathway must be considered in order to establish where opportunities for successful engagement and treatment occur. We describe local classifications of childhood febrile illnesses, present an overview of treatment-seeking, beginning with recognition of illness, and suggest how interventions could be used to target the barriers experienced. Methods Qualitative data were collected between September 2010 and February 2011. A total of 12 Focus Group Discussions and 22 Critical Incident Interviews were conducted with primary caregivers who had reported a recent febrile episode for one of their children. Findings and Conclusion The phrase ‘kutentha thupi’, or ‘hot body’ was used to describe fever, the most frequently mentioned causes of which were malungo (translated as ‘malaria’), mauka, nyankhwa and (m)tsempho. Differentiating the cause was challenging because these illnesses were described as having many similar non-specific symptoms, despite considerable differences in the perceived mechanisms of illness. Malungo was widely understood to be caused by mosquitoes. Commonly described symptoms included: fever, weakness, vomiting, diarrhoea and coughing. These symptoms matched well with the biomedical definition of malaria, although they also overlapped with symptoms of other illnesses in both the biomedical model and local illness classifications. In addition, malungo was used interchangeably to describe malaria and fever in general. Caregivers engaged in a three-phased approach to treatment seeking. Phase 1—Assessment; Phase 2—Seeking care outside the home; Phase 3—Evaluation of treatment response. Within this paper, the three-phased approach is explored to identify potential interventions to target barriers to appropriate treatment. Community engagement

  17. Protective immune responses to fungal infections.

    PubMed

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  18. Mucosal immune responses following intestinal nematode infection

    PubMed Central

    Zaph, C; Cooper, P J; Harris, N L

    2014-01-01

    In most natural environments, the large majority of mammals harbour parasitic helminths that often live as adults within the intestine for prolonged periods (1–2 years) 1. Although these organisms have been eradicated to a large extent within westernized human populations, those living within rural areas of developing countries continue to suffer from high infection rates. Indeed, recent estimates indicate that approximately 2·5 billion people worldwide, mainly children, currently suffer from infection with intestinal helminths (also known as geohelminths and soil-transmitted helminths) 2. Paradoxically, the eradication of helminths is thought to contribute to the increased incidence of autoimmune diseases and allergy observed in developed countries. In this review, we will summarize our current understanding of host–helminth interactions at the mucosal surface that result in parasite expulsion or permit the establishment of chronic infections with luminal dwelling adult worms. We will also provide insight into the adaptive immune mechanisms that provide immune protection against re-infection with helminth larvae, a process that is likely to be key to the future development of successful vaccination strategies. Lastly, the contribution of helminths to immune modulation and particularly to the treatment of allergy and inflammatory bowel disease will be discussed. PMID:25201407

  19. Exonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response.

    PubMed

    Reynard, Stéphanie; Russier, Marion; Fizet, Alexandra; Carnec, Xavier; Baize, Sylvain

    2014-12-01

    Lassa virus (LASV), which causes a viral hemorrhagic fever, inhibits the innate immune response. The exonuclease (ExoN) domain of its nucleoprotein (NP) is implicated in the suppression of retinoic acid-inducible gene I (RIG-I) signaling. We show here that a LASV in which ExoN function has been abolished strongly activates innate immunity and that this effect is dependent on RIG-I signaling. These results highlight the key role of NP ExoN function in the immune evasion that occurs during LASV infection.

  20. Autophagy-associated immune responses and cancer immunotherapy.

    PubMed

    Pan, Hongming; Chen, Liuxi; Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-04-19

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed.

  1. Sex Drives Dimorphic Immune Responses to Viral Infections.

    PubMed

    Ghosh, Soumitra; Klein, Robyn S

    2017-03-01

    New attention to sexual dimorphism in normal mammalian physiology and disease has uncovered a previously unappreciated breadth of mechanisms by which females and males differentially exhibit quantitative phenotypes. Thus, in addition to the established modifying effects of hormones, which prenatally and postpubertally pattern cells and tissues in a sexually dimorphic fashion, sex differences are caused by extragonadal and dosage effects of genes encoded on sex chromosomes. Sex differences in immune responses, especially during autoimmunity, have been studied predominantly within the context of sex hormone effects. More recently, immune response genes have been localized to sex chromosomes themselves or found to be regulated by sex chromosome genes. Thus, understanding how sex impacts immunity requires the elucidation of complex interactions among sex hormones, sex chromosomes, and immune response genes. In this Brief Review, we discuss current knowledge and new insights into these intricate relationships in the context of viral infections.

  2. Immune responses to methamphetamine by active immunization with peptide-based, molecular adjuvant-containing vaccines.

    PubMed

    Duryee, Michael J; Bevins, Rick A; Reichel, Carmela M; Murray, Jennifer E; Dong, Yuxiang; Thiele, Geoffrey M; Sanderson, Sam D

    2009-05-14

    Vaccines to methamphetamine (meth) were designed by covalently attaching a meth hapten (METH) to peptide constructs that contained a conformationally biased, response-selective molecular adjuvant, YSFKPMPLaR (EP54). Rats immunized with EP54-containing meth vaccines generated serum antibody titers to authentic meth, an immune outcome that altered meth self-administration. Immunization increased meth self-administration suggesting pharmacokinetic antagonism. The ability of immune sera to bind a METH-modified target protein dramatically decreased during and shortly after the meth self-administration assay, suggesting effective sequestration of free meth. However, the binding ability of immune sera to the METH-modified target protein was recovered 34 days after meth-free clearance time.

  3. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila.

    PubMed

    Ji, Yingbiao; Thomas, Colin; Tulin, Nikita; Lodhi, Niraj; Boamah, Ernest; Kolenko, Vladimir; Tulin, Alexei V

    2016-09-15

    Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin.

  4. A cognitive computational model inspired by the immune system response.

    PubMed

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.

  5. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  6. The immune and inflammatory response to orf virus.

    PubMed

    Haig, D M; McInnes, C; Deane, D; Reid, H; Mercer, A

    1997-06-01

    Orf virus is a zoonotic, epitheliotropic DNA parapox virus that principally infects sheep and goats. The fact that the virus can repeatedly reinfect sheep has provoked an interest in the underlying cellular, virological and molecular mechanisms for its apparent escape from the host protective immune response. The local immune and inflammatory response in skin and the cell phenotype and cytokine response in lymph analysed around a single lymph node are characteristic of an anti-viral response. An unusual feature is the dense accumulation of MHC Class II+ dendritic cells in the skin lesion. The function of these cells is not known. Orf virus virulence genes and activities have been identified that may interfere with the development of the host protective immune and inflammatory response.

  7. Maternal responses to childhood fevers: a comparison of rural and urban residents in coastal Kenya.

    PubMed

    Molyneux, C S; Mung'Ala-Odera, V; Harpham, T; Snow, R W

    1999-12-01

    Urbanization is an important demographic phenomenon in sub-Saharan Africa, and rural-urban migration remains a major contributor to urban growth. In a context of sustained economic recession, these demographic processes have been associated with a rise in urban poverty and ill health. Developments in health service provision need to reflect new needs arising from demographic and disease ecology change. In malaria-endemic coastal Kenya, we compared lifelong rural (n = 248) and urban resident (n = 284) Mijikenda mothers' responses to childhood fevers. Despite marked differences between the rural and urban study areas in demographic structure and physical access to biomedical services, rural and urban mothers' treatment-seeking patterns were similar: most mothers sought only biomedical treatment (88%). Shop-bought medicines were used first or only in 69% of the rural and urban fevers that were treated, and government or private clinics were contacted in 49%. A higher proportion of urban informal vendors stocked prescription-only drugs, and urban mothers more likely to contact a private than a government facility. We conclude that improving self-treatment has enormous potential to reduce morbidity and mortality in low-income urban areas, as has frequently been argued for rural areas. However, because of the underlying socio-economic, cultural and structural differences between rural and urban areas, rural approaches to tackle this may have to be modified in urban environments.

  8. Methylglyoxal modulates immune responses: relevance to diabetes.

    PubMed

    Price, Claire L; Hassi, Hafid O S Al; English, Nicholas R; Blakemore, Alexandra I F; Stagg, Andrew J; Knight, Stella C

    2010-06-01

    Increased methylglyoxal (MG) concentrations and formation of advanced glycation end-products (AGEs) are major pathways of glycaemic damage in diabetes, leading to vascular and neuronal complications. Diabetes patients also suffer increased susceptibility to many common infections, the underlying causes of which remain elusive. We hypothesized that immune glycation damage may account for this increased susceptibility. We previously showed that the reaction mixture (RM) for MG glycation of peptide blocks up regulation of CD83 in myeloid cells and inhibits primary stimulation of T cells. Here, we continue to investigate immune glycation damage, assessing surface and intracellular cytokine protein expression by flow cytometry, T-cell proliferation using a carboxyfluorescein succinimidyl ester assay, and mRNA levels by RT-PCR. We show that the immunomodulatory component of this RM was MG itself, with MG alone causing equivalent block of CD83 and loss of primary stimulation. Block of CD83 expression could be reversed by MG scavenger N-acetyl cysteine. Further, MG within RM inhibited stimulated production of interleukin (IL)-10 protein from myeloid cells plus interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha from T cells. Loss of IL-10 and IFN-gamma was confirmed by RT-PCR analysis of mRNA, while TNF-alpha message was raised. Loss of TNF-alpha protein was also shown by ELISA of culture supernatants. In addition, MG reduced major histocompatibility complex (MHC) class I expression on the surface of myeloid cells and increased their propensity to apoptose. We conclude that MG is a potent suppressor of myeloid and T-cell immune function and may be a major player in diabetes-associated susceptibility to infection.

  9. [Effect of anabolic steroid on immune response].

    PubMed

    Yamagishi, H; Kobayashi, M; Konosu, H; Kurioka, H; Naito, K; Sonoyama, T; Nishimoto, T; Hashimoto, I

    1984-03-01

    Using lymphocyte, monocyte and eosinophil counts of the peripheral blood, PHA-blastoid transformation, immunoglobulin and beta 2-microglobulin, the influence of anabolic steroid on the immune reactivity of the host was dissected by administration of Deca-Durabolin ( nandrolone decanoate) to both tumor-bearing host and tumor-free host after operation for alimentary tract. The number of peripheral lymphocytes and monocytes, the PHA-blastoid transformation of peripheral lymphocytes and the IgG level were increased, and the beta 2-microglobulin level showed the tendency of decrease after the administration of Deca-Durabolin.

  10. Immune allergic response in Asperger syndrome.

    PubMed

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  11. Subverting the adaptive immune resistance mechanism to improve clinical responses to immune checkpoint blockade therapy

    PubMed Central

    Kim, Young J

    2015-01-01

    The correlation between tumor-infiltrating lymphocyte (TIL)-expression of programmed cell death ligand 1 (PD-L1) and clinical responsiveness to the PD-1 blocking antibody nivolumab implicates adaptive immune evasion mechanisms in cancer. We review our findings that tumor cell PD-L1 expression is induced by interferon γ (IFNγ) producing TILs. We provide a mechanistic rationale for combining IFNγ+ T helper type 1 (Th1)-inducing cancer vaccines with PD-1 immune checkpoint blockade. PMID:25964860

  12. Modulation of Primary Immune Response by Different Vaccine Adjuvants

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Fiorino, Fabio; Pastore, Gabiria; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2016-01-01

    Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Here early biomarkers of adjuvanticity after primary immunization were investigated using four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood, and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w squalene), but not aluminum hydroxide (alum) or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed toward a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w squalene or CpG adjuvants. Tested adjuvants promoted the germinal center reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime–boost vaccine immunization protocols. PMID:27781036

  13. Transgenerational effects enhance specific immune response in a wild passerine.

    PubMed

    Broggi, Juli; Soriguer, Ramon C; Figuerola, Jordi

    2016-01-01

    Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects). However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus) in Sevilla, SE Spain with Newcastle disease virus (NDV) vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks' carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  14. Transgenerational effects enhance specific immune response in a wild passerine

    PubMed Central

    Soriguer, Ramon C.; Figuerola, Jordi

    2016-01-01

    Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects). However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus) in Sevilla, SE Spain with Newcastle disease virus (NDV) vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers. PMID:27069782

  15. Trachoma: Protective and Pathogenic Ocular Immune Responses to Chlamydia trachomatis

    PubMed Central

    Hu, Victor H.; Holland, Martin J.; Burton, Matthew J.

    2013-01-01

    Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development. PMID:23457650

  16. Semiquantitative measure of immune responses against erythropoietic stem cell antigens

    SciTech Connect

    Harrison, D.E.

    1987-01-01

    A semiquantitative assay was developed and used to measure the effects of immune responses against 16 independent non-H-2 antigenic loci on erythropoietic stem cells. The assay compares repopulation in genetically anemic WBB6F1-W/Wv recipients that have normal immune responses, and in lethally irradiated WBB6F1 +/+ mice whose immune responses are suppressed by the irradiation. The differences in repopulating ability between these two types of recipients measure how immune responses affect erythropoietic stem cells. Stem cell repopulating abilities for the cells with antigens specified by the Thy-1, H-1, H-24, Ly-1, H-37, and H-17 loci were affected slightly, if at all. Repopulating abilities were moderately reduced by responses against antigens specified by H-15, 16, Ea-2, and Ly-2, 3 loci, and against the differences between the B6 and B10 genotypes, although marrow of these types cured W/Wv recipients. A surprising result occurred for the antigen specified by the H-8 locus, in which immune responses strongly reduced repopulating abilities, although this type of marrow cell cured W/Wv recipients. A comparison of these results with skin graft survival times suggests that the antigens specified by the H-17 and H-24 loci are strongly immunogenic on skin but not on marrow stem cells, while those specified by the H-12 and H-8 loci are strongly immunogenic on marrow stem cells but not on skin.

  17. Modulation of immune response in experimental Chagas disease.

    PubMed

    Basso, Beatriz

    2013-02-20

    Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, affects nearly 18 million people in Latin America and 90 million are at risk of infection. The parasite presents two stages of medical importance in the host, the amastigote, intracellular replicating form, and the extracellular trypomastigote, the infective form. Thus infection by T. cruzi induces a complex immune response that involves effectors and regulatory mechanisms. That is why control of the infection requires a strong humoral and cellular immune response; hence, the outcome of host-parasite interaction in the early stages of infection is extremely important. A critical event during this period of the infection is innate immune response, in which the macrophage's role is vital. Thus, after being phagocytized, the parasite is able to develop intracellularly; however, during later periods, these cells induce its elimination by means of toxic metabolites. In turn, as the infection progresses, adaptive immune response mechanisms are triggered through the TH1 and TH2 responses. Finally, T. cruzi, like other protozoa such as Leishmania and Toxoplasma, have numerous evasive mechanisms to the immune response that make it possible to spread around the host. In our Laboratory we have developed a vaccination model in mice with Trypanosoma rangeli, nonpathogenic to humans, which modulates the immune response to infection by T. cruzi, thus protecting them. Vaccinated animals showed an important innate response (modulation of NO and other metabolites, cytokines, activation of macrophages), a strong adaptive cellular response and significant increase in specific antibodies. The modulation caused early elimination of the parasites, low parasitaemia, the absence of histological lesions and high survival rates. Even though progress has been made in the knowledge of some of these mechanisms, new studies must be conducted which could target further prophylactic and therapeutic trials against T. cruzi

  18. The pathology of malignant catarrhal fever, with an emphasis on ovine herpesvirus 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enigmatic pathogenesis of malignant catarrhal fever (MCF) involves dysregulated immune responses in susceptible ruminant species. Economically important outbreaks of MCF are due to two of the 10 viruses that currently comprise the malignant catarrhal fever virus group: ovine herpesvirus 2 (OvHV-...

  19. Dengue Fever

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Dengue Fever KidsHealth > For Parents > Dengue Fever Print A ... can help lower the chances of infection. About Dengue Fever Dengue (DEN-gee) fever is caused by ...

  20. Factors influencing innate immunity and vaccine responses in infancy

    PubMed Central

    Kampmann, Beate; Jones, Christine E

    2015-01-01

    Despite significant progress in reducing the burden of mortality in children under the age of five, reducing mortality in newborns remains a major challenge. Infection plays a significant role in infant deaths and interventions such as early vaccination or antenatal immunization could make a significant contribution to prevention of such deaths. In the last few years, we have gained new insights into immune ontogeny and are now beginning to understand the impact of vaccines, nutrition and environmental factors on ‘training′ of the immune response in early life. This review article sets out to explain why vaccine responses can be heterogeneous between populations and individuals by providing examples chosen to illustrate the impact of host, pathogen and environmental factors on shaping the immune ‘interactome′ in young children. PMID:25964459

  1. The immune response against Candida spp. and Sporothrix schenckii.

    PubMed

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  2. Autophagy as a Stress Response Pathway in the Immune System.

    PubMed

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  3. Chitin and Its Effects on Inflammatory and Immune Responses.

    PubMed

    Elieh Ali Komi, Daniel; Sharma, Lokesh; Dela Cruz, Charles S

    2017-03-01

    Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.

  4. Emerging functions of the unfolded protein response in immunity

    PubMed Central

    Janssens, Sophie; Pulendran, Bali; Lambrecht, Bart N.

    2015-01-01

    The unfolded protein response (UPR) has traditionally been viewed as an adaptive response triggered upon accumulation of unfolded proteins in the endoplasmic reticulum (ER), aimed at restoring ER function. The UPR can also be an anticipatory response that is activated well before the disruption of protein homeostasis. UPR signaling intersects at many levels with the innate and adaptive immune response. In some immune cell types like dendritic cells and B cells, particular UPR sensors appear constitutively active in the absence of traditional UPR gene program induction, necessary for antigen presentation and immunoglobulin synthesis. The UPR also influences Toll-like receptor signaling and NF-κB activation, and some pathogens subvert the UPR. This review summarizes these emerging non-canonical functions of the UPR in immunity. PMID:25232821

  5. Modulation of Human Immune Response by Fungal Biocontrol Agents

    PubMed Central

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  6. Modulation of Human Immune Response by Fungal Biocontrol Agents.

    PubMed

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A; Vannier-Santos, Marcos A; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses.

  7. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  8. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    DTIC Science & Technology

    2003-08-01

    antigens expressed on breast tumors. Towards this end we are developing peptide mimotopes of tumor associated carbohydrate antigens as they are T cell...dependent antigens. In our progress to date we have shown the 1) immunization with peptide mimotope activates a specific cellular response to a model murine...tumor cell line; 2) vaccination of mice with peptide eradicates established tumor; 3) Immunization with DNA format of the peptide suppresses tumor

  9. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  10. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  11. Innate immune responses of temperamental and calm cattle after transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to investigate measures of cellular innate immune responses among calm and temperamental Brahman bulls in response to handling and transportation. Sixteen Brahman bulls (344 ± 37 days of age; 271.6 ± 45.5 kg BW) classified as either calm (n = 8) or temperamental (n = 8) were loaded...

  12. Enhancing the Immune Response to Recombinant Plague Antigens

    DTIC Science & Technology

    2006-05-01

    parvovirus (CPMV). In those studies, animals primed IN and boosted SC developed significantly higher serum anti-CPMV IgG2a responses than did animals...Wakelin. 2003. Effect of priming/booster immunisation protocols on immune response to canine parvovirus peptide induced by vaccination with a chimaeric

  13. The architects of B and T cell immune responses.

    PubMed

    Lane, Peter J L

    2008-08-15

    Published work links adult lymphoid tissue-inducer cells (LTi) with T cell-dependent antibody responses. In this issue of Immunity, Tsuji et al. (2008) associate LTi with T cell-independent IgA antibody responses in the gut.

  14. First assessment of classical swine fever marker vaccine candidate CP7_E2alf for oral immunization of wild boar under field conditions.

    PubMed

    Feliziani, Francesco; Blome, Sandra; Petrini, Stefano; Giammarioli, Monica; Iscaro, Carmen; Severi, Giulio; Convito, Luca; Pietschmann, Jana; Beer, Martin; De Mia, Gian Mario

    2014-04-11

    Oral vaccination against classical swine fever (CSF) is a potent tool to control disease outbreaks in wild boar. So far, vaccination campaigns have been carried out using live attenuated vaccines that do not allow serological differentiation of infected from vaccinated animals (DIVA). Although this drawback is acceptable for wild boar, the use of marker vaccines would facilitate studies on disease and vaccination dynamics. Recently, the CSF marker vaccine candidate CP7_E2alf was assessed for oral immunization under laboratory conditions. Promising results prompted efforts to study the vaccine candidate under field conditions and in bait formulation. In this context, two oral vaccination campaigns were carried out with CP7_E2alf bait vaccines in two areas called 'faunistic-hunting farms' in the region of Umbria, Italy. One campaign was conducted using single vaccination, the second with the routinely employed double vaccination strategy. Both campaigns were carried out before concerted hunting actions were performed. Bait uptake, vaccine virus detection and antibody responses were assessed along with inspections upon gutting. As a comparator, seven wild boar were hand-fed with baits under laboratory conditions. In the field, bait uptake ranged from 63.7% to 98.7%, whereas antibody prevalence reached only 33.3-35.1%. The marker serology showed a strong influence of sample quality on the test outcome with a total of 85% of samples being classified correctly. Vaccine virus was not detectable. Under hand feeding conditions, six out of seven wild boar took up at least one bait, and five of them showed detectable antibody levels seven weeks after vaccination. These results were supplemented by stability tests. Appropriate stability of vaccine virus was shown both under field and laboratory conditions. In total, most results were in line with our expectations. However, optimization of the DIVA assay has to be attempted in the future.

  15. Development of a novel DNA SynCon tetravalent dengue vaccine that elicits immune responses against four serotypes.

    PubMed

    Ramanathan, Mathura P; Kuo, Yuan-Chia; Selling, Bernard H; Li, Qianjun; Sardesai, Niranjan Y; Kim, J Joseph; Weiner, David B

    2009-10-30

    The increased transmission and geographic spread of dengue fever (DF) and its most severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), make it one of the most important mosquito-borne viral disease of humans. Four distinct serotypes of dengue viruses are transmitted to humans through the bites of the mosquitoes. Currently there is no vaccine or antiviral drug against DV infections. Cross-protection between dengue virus serotypes is limited and antibody dependent enhancement (ADE) contributes significantly to the severity of the disease. The major challenge is to induce a broad durable immune response against all four serotypes of dengue virus simultaneously while avoiding the possible exacerbation of risk of developing the severe forms of disease through incomplete or modified responses. In order to address this worldwide concern, we present a synthetic consensus (SynCon) human codon optimized DNA vaccine that elicits immunity against all four dengue serotypes. We cloned consensus DIII domain of E protein from all serotypes and expressed them as a single open reading frame in a mammalian expression vector, called pDV-U-DIII (dengue-vaccine universal). In mice, this dengue-universal construct elicits significant level of anti-DIII antibody that neutralizes all four dengue subtypes and prevents cell death induced by dengue infection. This is the first SynCon DNA vaccine that provides tetravalent immunity against all four serotypes of dengue virus.

  16. Reduced cellular immune response in social insect lineages

    PubMed Central

    Sconiers, Warren B.; Frank, Steven D.; Dunn, Robert R.; Tarpy, David R.

    2016-01-01

    Social living poses challenges for individual fitness because of the increased risk of disease transmission among conspecifics. Despite this challenge, sociality is an evolutionarily successful lifestyle, occurring in the most abundant and diverse group of organisms on earth—the social insects. Two contrasting hypotheses predict the evolutionary consequences of sociality on immune systems. The social group hypothesis posits that sociality leads to stronger individual immune systems because of the higher risk of disease transmission in social species. By contrast, the relaxed selection hypothesis proposes that social species have evolved behavioural immune defences that lower disease risk within the group, resulting in lower immunity at the individual level. We tested these hypotheses by measuring the encapsulation response in 11 eusocial and non-eusocial insect lineages. We built phylogenetic mixed linear models to investigate the effect of behaviour, colony size and body size on cellular immune response. We found a significantly negative effect of colony size on encapsulation response (Markov chain Monte Carlo generalized linear mixed model (mcmcGLMM) p < 0.05; phylogenetic generalized least squares (PGLS) p < 0.05). Our findings suggest that insects living in large societies may rely more on behavioural mechanisms, such as hygienic behaviours, than on immune function to reduce the risk of disease transmission among nest-mates. PMID:26961895

  17. TIGIT predominantly regulates the immune response via regulatory T cells

    PubMed Central

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J.; Teng, Michele W.L.; Smyth, Mark J.; Kuchroo, Vijay K.; Anderson, Ana C.

    2015-01-01

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings. PMID:26413872

  18. Modulation of immune responses in stress by Yoga

    PubMed Central

    Arora, Sarika; Bhattacharjee, Jayashree

    2008-01-01

    Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress. PMID:21829284

  19. TIGIT predominantly regulates the immune response via regulatory T cells.

    PubMed

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J; Teng, Michele W L; Smyth, Mark J; Kuchroo, Vijay K; Anderson, Ana C

    2015-11-02

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings.

  20. Inflammatory response of Haemophilus influenzae biotype aegyptius causing Brazilian Purpuric Fever.

    PubMed

    Cury, Gisele Cristiane Gentile; Pereira, Rafaella Fabiana Carneiro; de Hollanda, Luciana Maria; Lancellotti, Marcelo

    2014-01-01

    The Brazilian Purpuric Fever (BPF) is a systemic disease with many clinical features of meningococcal sepsis and is usually preceded by purulent conjunctivitis. The illness is caused by Haemophilus influenza biogroup aegyptius, which was associated exclusively with conjunctivitis. In this work construction of the las gene, hypothetically responsible for this virulence, were fusioned with ermAM cassette in Neisseria meningitidis virulent strains and had its DNA transfer to non BPF H. influenzae strains. The effect of the las transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants (in eight log scale of folding change RNA expression). This is the first molecular study involving the las transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to H. influenzae.

  1. Coexistence of hereditary angioedema in a case of familial Mediterranean fever with partial response to colchicine

    PubMed Central

    Bahceci, Semiha Erdem; Genel, Ferah; Gulez, Nesrin

    2015-01-01

    Hereditary angioedema (HAE) is a very rare and potentially life-threatening genetic disease characterised by episodes of edema in various parts of the body, including the extremities, face, and airway. The disease is usually associated with attacks of abdominal pain. On the other hand, familial Mediterranean fever (FMF) is an inherited condition characterised by recurrent episodes of painful inflammation in the abdomen, chest, or joints. In this report, we present a child with FMF and undiagnosed HAE, which made him a partial responder to colchicine treatment. Consequently, HAE must be considered in differential diagnosis of cases in which a partial response is obtained from FMF treatment, particularly in countries where FMF is frequently encountered, because early diagnosis of HAE can facilitate prevention of life-threatening complications, such as upper airway obstruction. To our knowledge, our patient is the first patient reported in the literature with the diagnosis of HAE and FMF together. PMID:26155193

  2. Genetics of the immune response: identifying immune variation within the MHC and throughout the genome.

    PubMed

    Geraghty, Daniel E; Daza, Riza; Williams, Luke M; Vu, Quyen; Ishitani, Akiko

    2002-12-01

    With the advent of modern genomic sequencing technology the ability to obtain new sequence data and to acquire allelic polymorphism data from a broad range of samples has become routine. In this regard, our investigations have started with the most polymorphic of genetic regions fundamental to the immune response in the major histocompatibility complex (MHC). Starting with the completed human MHC genomic sequence, we have developed a resource of methods and information that provide ready access to a large portion of human and nonhuman primate MHCs. This resource consists of a set of primer pairs or amplicons that can be used to isolate about 15% of the 4.0 Mb MHC. Essentially similar studies are now being carried out on a set of immune response loci to broaden the usefulness of the data and tools developed. A panel of 100 genes involved in the immune response have been targeted for single nucleotide polymorphism (SNP) discovery efforts that will analyze 120 Mb of sequence data for the presence of immune-related SNPs. The SNP data provided from the MHC and from the immune response panel has been adapted for use in studies of evolution, MHC disease associations, and clinical transplantation.

  3. Genetic control of the innate immune response

    PubMed Central

    Wells, Christine A; Ravasi, Timothy; Faulkner, Geoffrey J; Carninci, Piero; Okazaki, Yasushi; Hayashizaki, Yoshihide; Sweet, Matthew; Wainwright, Brandon J; Hume, David A

    2003-01-01

    Background Susceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS), a major determinant of responses to gram-negative microorganisms. Results The mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4). Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J) and delayed (BALB/c and C3H/ARC) transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1) or propensity to bias Th1 versus Th2 T cell activation responses. Conclusion Macrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP), such as LPS. PMID:12826024

  4. Junín Virus Infects Mouse Cells and Induces Innate Immune Responses

    PubMed Central

    Cuevas, Christian D.; Lavanya, Madakasira; Wang, Enxiu; Ross, Susan R.

    2011-01-01

    Junín virus is the causative agent for Argentine hemorrhagic fever, and its natural host is the New World rodent Calomys musculinus. The virus is transmitted to humans by aerosolization, and it is believed that many of the clinical symptoms are caused by cytokines produced by sentinel cells of the immune system. Here we used the Junín virus vaccine strain Candid 1 to determine whether mouse cells could be used to study virus entry and antiviral innate immune responses. We show that Candid 1 can infect and propagate in different mouse-derived cell lines through a low-pH-dependent, transferrin receptor 1-independent mechanism, suggesting that there is a second entry receptor. In addition, Candid 1 induced expression of the antiviral cytokines tumor necrosis factor alpha and beta interferon in macrophages, and this induction was independent of viral replication. Using Candid 1, as well as virus-like particles bearing the viral glycoprotein, to infect different primary cells and established macrophage cell lines with deletions in the Toll-like receptor (TLR) pathway, we show that TLR2 is a cellular sensor of both the Parodi and Candid 1 viral glycoproteins. Because Junín virus is highly lethal in humans, the use of an experimentally tractable model system, such as the mouse, could provide a better understanding of the antiviral innate cellular responses to Junín virus and the role of these responses in pathogenesis. PMID:21880772

  5. Immunological Features Underlying Viral Hemorrhagic Fevers

    PubMed Central

    Messaoudi, Ilhem; Basler, Christopher F.

    2015-01-01

    Several enveloped RNA viruses of the arenavirus, bunyavirus, filovirus and flavivirus families are associated with a syndrome known as viral hemorrhagic fever (VHF). VHF is characterized by fever, vascular leakage, coagulation defects and multi organ system failure. VHF is currently viewed as a disease precipitated by viral suppression of innate immunity, which promotes systemic virus replication and excessive proinflammatory cytokine responses that trigger the manifestations of severe disease. However, the mechanisms by which immune dysregulation contributes to disease remain poorly understood. Infection of nonhuman primates closely recapitulates human VHF, notably Ebola and yellow fever, thereby providing excellent models to better define the immunological basis for this syndrome. Here we review the current state of our knowledge and suggest future directions that will better define the immunological mechanisms underlying VHF. PMID:26163194

  6. Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae.

    PubMed

    Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier

    2009-03-23

    Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (P<0.05) IgY response compared to controls, although there was no significant difference in IgM response between treatments. A number of proteins were identified by western blotting using IgY antibodies from DGE immunized birds, most prominently at 40 and 230kDa. Analysis of proteins from approximately corresponding bands on SDS-PAGE confirmed the identity of tropomyosin, whilst other proteins showed high sequence homology with myosin and actin from other arachnid and insect species. Immunization of hens with DGE resulted in a 50.6% increase in mite mortality (P<0.001) 17h after feeding when tested by an in vitro mite feeding model. Data in this study demonstrate that somatic antigens from D. gallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol.

  7. A Nonhuman Primate Scrub Typhus Model: Protective Immune Responses Induced by pKarp47 DNA Vaccination in Cynomolgus Macaques

    PubMed Central

    Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S.; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D.; Lombardini, Eric; Turner, Gareth D.; Day, Nicholas P. J.; Richards, Allen L.

    2015-01-01

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi–specific, IFN-γ–producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine

  8. Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.

    PubMed

    Kuzmin, Ivan V; Schwarz, Toni M; Ilinykh, Philipp A; Jordan, Ingo; Ksiazek, Thomas G; Sachidanandam, Ravi; Basler, Christopher F; Bukreyev, Alexander

    2017-04-15

    Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk.IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with

  9. A basic mathematical model of the immune response

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  10. Notes from the Field: Rift Valley Fever Response - Kabale District, Uganda, March 2016.

    PubMed

    de St Maurice, Annabelle; Nyakarahuka, Luke; Purpura, Lawrence; Ervin, Elizabeth; Tumusiime, Alex; Balinandi, Stephen; Kayondo, Jackson; Mulei, Sophia; Namutebi, Anne Marion; Tusiime, Patrick; Wiersma, Steven; Nichol, Stuart; Rollin, Pierre; Klena, John; Knust, Barbara; Shoemaker, Trevor

    2016-11-04

    On March 9, 2016, a male butcher from Kabale District, Uganda, aged 45 years, reported to the Kabale Regional Referral Hospital with fever, fatigue, and headache associated with black tarry stools and bleeding from the nose. One day later, a student aged 16 years from a different sub-county in Kabale District developed similar symptoms and was admitted to the same hospital. The student also had a history of contact with livestock. Blood specimens collected from both patients were sent for testing for Marburg virus disease, Ebola virus disease, Rift Valley fever (RVF), and Crimean Congo Hemorrhagic fever at the Uganda Virus Research Institute, as part of the viral hemorrhagic fevers surveillance program. The Uganda Virus Research Institute serves as the national viral hemorrhagic fever reference laboratory and hosts the national surveillance program for viral hemorrhagic fevers, in collaboration with the CDC Viral Special Pathogens Branch and the Uganda Ministry of Health.

  11. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse.

    PubMed

    Gray, Kimberly K; Worthy, Melissa N; Juelich, Terry L; Agar, Stacy L; Poussard, Allison; Ragland, Dan; Freiberg, Alexander N; Holbrook, Michael R

    2012-01-01

    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the

  12. Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    PubMed Central

    Juelich, Terry L.; Agar, Stacy L.; Poussard, Allison; Ragland, Dan; Freiberg, Alexander N.; Holbrook, Michael R.

    2012-01-01

    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the

  13. Cellular immune response in multiple sclerosis plaques.

    PubMed Central

    Boyle, E. A.; McGeer, P. L.

    1990-01-01

    Multiple sclerosis plaques were immunohistochemically stained to exhibit cells expressing immune-system antigens. Human leukocyte antigen (HLA)-DR-positive cells formed dense rings around all plaque regions. The majority were reactive microglia/macrophages. Counterstaining with oil red O revealed heavy myelin debris within these cells. They were distinct from astrocytes, which were identified with an antibody to glial fibrillary acidic protein (GFAP) and which did not contain oil red O myelin debris. Numerous leukocytes and microglia were stained with antibody to leukocyte common antigen (LCA). Lymphocytes in cuffs around vessels, along the margins of capillary walls, and, sparingly, in the tissue matrix of affected areas, were stained with antibodies to CD4 (T-helper/inducer) and CD8 (T-cytotoxic/suppressor). In experimental allergic encephalomyelitis (EAE) induced in Lewis rats, a similar proliferation of Ia-positive (OX6, OX17) cells displaying reactive microglia/macrophage morphology was observed. These Ia-positive cells also were easily distinguished from GFAP-positive astrocytes. The results suggest that macrophages/reactive microglia, and not astrocytes, express class II MHC antigens in multiple sclerosis and EAE plaques. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:1698025

  14. Crosstalk between microbiota, pathogens and the innate immune responses.

    PubMed

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis.

  15. Determinants of early life immune responses to RSV infection.

    PubMed

    Ruckwardt, Tracy J; Morabito, Kaitlyn M; Graham, Barney S

    2016-02-01

    Respiratory syncytial virus causes significant morbidity and mortality in both developed and developing countries, and a vaccine that adequately protects from severe disease remains an important unmet need. RSV disease has an inordinate impact on the very young, and the physical and immunological immaturity of early life complicates vaccine design. Defining and targeting the functional capacities of early life immune responses and controlling responses during primary antigen exposure with selected vaccine delivery approaches will be important for protecting infants by active immunization. Alternatively, vaccination of older children and pregnant mothers may ameliorate disease burden indirectly until infants reach about six months of age, when they can generate more effective anti-RSV immune responses.

  16. Innate Immune Responses to Nanoparticle Exposure in the Lung.

    PubMed

    Thompson, Elizabeth A; Sayers, Brian C; Glista-Baker, Ellen E; Shipkowski, Kelly A; Taylor, Alexia J; Bonner, James C

    2014-01-01

    The nanotechnology revolution offers enormous societal and economic benefits for innovation in the fields of engineering, electronics, and medicine. Nevertheless, evidence from rodent studies show that biopersistent engineered nanomaterials (ENMs) stimulate immune, inflammatory, and fibroproliferative responses in the lung, suggesting possible risks for lung diseases or systemic immune disorders as a consequence of occupational, environmental, or consumer exposure. Due to their nanoscale dimensions and increased surface area per unit mass, ENMs have a much greater potential to reach the distal regions of the lung and generate ROS. High aspect ratio ENMs (e.g., nanotubes, nanofibers) activate inflammasomes in macrophages, triggering IL-1β release and neutrophilic infiltration into the lungs. Moreover, some ENMs alter allergen-induced eosinophilic inflammation by immunostimulation, immunosuppression, or modulating the balance between Th1, Th2, and Th17 cells, thereby influencing the nature of the inflammatory response. ENMs also migrate from the lungs across epithelial, endothelial, or mesothelial barriers to stimulate or suppress systemic immune responses.

  17. Innate and Adaptive Immune Response to Apoptotic Cells

    PubMed Central

    Peng, YuFeng; Martin, David A; Kenkel, Justin; Zhang, Kang; Ogden, Carol Anne; Elkon, Keith B.

    2007-01-01

    The immune system is constantly exposed to dying cells, most of which arise during central tolerance and from effete circulating immune cells. Under homeostatic conditions, phagocytes (predominantly macrophages and dendritic cells) belonging to the innate immune system, rapidly ingest cells and their debris. Apoptotic cell removal requires recognition of altered self on the apoptotic membrane, a process which is facilitated by natural antibodies and serum opsonins. Recognition, may be site and context specific. Uptake and ingestion of apoptotic cells promotes an immunosuppressive environment that avoids inflammatory responses to self antigens. However, it does not preclude a T cell response and it is likely that constant exposure to self antigen, particularly by immature dendritic cells, leads to T cell tolerance. Tolerance occurs by several different mechanisms including anergy and deletion (for CD8+ T cells) and induction of T regulatory cells (for CD4+ T cells). Failed apoptotic cell clearance promotes immune responses to self antigens, especially when the cellular contents are leaked from the cell (necrosis). Inflammatory responses may be induced by nucleic acid stimulation of toll like receptors and other immune sensors, specific intracellular proteins and non protein (uric acid) stimulation of inflammasomes. PMID:17888627

  18. Probiotics, antibiotics and the immune responses to vaccines.

    PubMed

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome.

  19. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    PubMed

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  20. Probiotics, antibiotics and the immune responses to vaccines

    PubMed Central

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  1. Innate immune responses in hepatitis C virus infection.

    PubMed

    Li, Kui; Lemon, Stanley M

    2013-01-01

    Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma worldwide and thus poses a significant public health threat. A hallmark of HCV infection is the extraordinary ability of the virus to persist in a majority of infected people. Innate immune responses represent the front line of defense of the human body against HCV immediately after infection. They also play a crucial role in orchestrating subsequent HCV-specific adaptive immunity that is pivotal for viral clearance. Accumulating evidence suggests that the host has evolved multifaceted innate immune mechanisms to sense HCV infection and elicit defense responses, while HCV has developed elaborate strategies to circumvent many of these. Defining the interplay of HCV with host innate immunity reveals mechanistic insights into hepatitis C pathogenesis and informs approaches to therapy. In this review, we summarize recent advances in understanding innate immune responses to HCV infection, focusing on induction and effector mechanisms of the interferon antiviral response as well as the evasion strategies of HCV.

  2. Effect of protein release rates from tablet formulations on the immune response after sublingual immunization.

    PubMed

    Borde, Annika; Ekman, Annelie; Holmgren, Jan; Larsson, Anette

    2012-11-20

    Dry vaccine formulations for sublingual administration would provide great advantages for public health use, especially in developing countries, since they are easy to administer and might also have improved stability properties. This study investigates the influence of protein release rate from mucoadhesive two-layer tablets on the elicited antibody responses after sublingual immunization. Two fast release tablets, one based on a mixture of lactose and microcrystalline cellulose (MCC) and one protein coated ethylcellulose (EC) tablet, and three hydrophilic matrix tablets with extended release (ER) properties based on HPMC 90 SH 100000 or Carbopol® 974-P NF were tested. The in vitro release profiles of the model protein ovalbumin (OVA) from these tablets were characterized and correlated to the in vivo potential of the tablets to induce an immune response after sublingual immunization in BALB/c mice. It could be concluded that a tablet with fast protein release elicits antibody titres not significantly different from titres obtained with OVA in solution, whereas low immune responses were observed with a slow release of OVA from the ER formulations. Thus, an ER tablet seems not favorable for vaccine delivery to the sublingual mucosa. Thus, we can present a fast releasing tablet formulation with attractive features for sublingual immunization, whereas the use of ER formulations for sublingual vaccination has to be investigated more in detail.

  3. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.

  4. Microgravity and immune responsiveness: implications for space travel.

    PubMed

    Borchers, Andrea T; Keen, Carl L; Gershwin, M Eric

    2002-10-01

    To date, several hundred cosmonauts and astronauts have flown in space, yet knowledge about the adaptation of their immune system to space flight is rather limited. It is evident that a variety of immune parameters are changed during and after space flight, but the magnitude and pattern of these changes can differ dramatically between missions and even between crew members on the same mission. A literature search was conducted involving a total of 335 papers published between 1972 and 2002 that dealt with the key words immune response, microgravity and astronauts/cosmonauts, isolation, gravity, and human health. The data from multiple studies suggested that major discrepancies in outcome are due to methodologic differences. However, the data also suggested major factors that affect and modulate the immune response during space travel. In part at least, these discrepancies can be attributed to methodologic differences. In addition, a variety of other features, in particular the types and extent of stressors encountered during space missions, are likely to contribute to the variability of immune responses during and after space flight. That stress plays an important role in the effects of space flight on immunologic parameters is suggested by the frequent findings that stress hormones are upregulated during and after space flight. Unfortunately, however, the existing data on hormonal parameters are almost as varied as those on immunologic changes, and correlations between the two datasets have only rarely been attempted. The functional implications of space flight-induced alterations in immune response largely remain to be elucidated, but the data suggest that long-term travel will be associated with the development of immune-compromised hosts.

  5. Suppressive influences in the immune response to cancer.

    PubMed

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  6. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  7. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    PubMed

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  8. Effects of NO/sub 2/ on immune responses

    SciTech Connect

    Lefkowitz, S.S.; McGrath, J.J.; Lefkowitz, D.L.

    1986-01-01

    The effects of NO/sub 2/ on immune responses of mice were investigated. Mice were exposed to various concentrations of NO/sub 2/ in inhalation chambers. After exposure the following parameters were measured: phagocytosis of polystyrene beads by both peritoneal and alveolar macrophages, production of antibody-forming cells from mice immunized with sheep erythrocytes, lymphocyte blastogenesis of splenic cells, and susceptibility to influenza virus. The production of antibody-forming cells was reduced in mice that were exposed to 5 ppm NO/sub 2/. The serum antibody titers, phagocytosis, and other immune parameters measured were not affected. Exposure to NO/sub 2/ did not affect mortality to influenza virus. These data indicate that certain immune parameters were altered by exposure to NO/sub 2/; however, NO/sub 2/ does not appear to be a major immunosuppressive factor at the concentrations tested.

  9. Host cell autophagy in immune response to zoonotic infections.

    PubMed

    Skendros, Panagiotis; Mitroulis, Ioannis

    2012-01-01

    Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  10. MATURATION OF THE IMMUNE RESPONSE IN VITRO

    PubMed Central

    Macario, Alberto J. L.; de Macario, Everly Conway; Franceschi, Claudio; Celada, Franco

    1972-01-01

    We have cultivated lymph node microfragments from β-D-galactosidase (Escherichia coli) primed rabbits and have measured their secondary response directed towards the whole molecule (precipitating antibodies) and to a single determinant (activating antibodies) of the antigen. By decreasing the size of the fragments to 105 cells, we began to observe heterogeneity among identical cultures in terms of positivity of response, antibody specificity, and titers. The affinity of "early" activating antibodies was inversely proportional to the dose of challenge. While no maturation was seen in low and excessive challenge, in all cultures receiving intermediate doses the association constant was raised several orders of magnitude within periods of 20 days. The relevance of these data to the mechanism of affinity selection of antigen-sensitive cells is discussed. PMID:4557772

  11. Photodynamic therapy for cancer and activation of immune response

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  12. Environmental Toxicants-Induced Immune Responses in the Olfactory Mucosa

    PubMed Central

    Imamura, Fumiaki; Hasegawa-Ishii, Sanae

    2016-01-01

    Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons directly project to the olfactory bulb (OB) that is a component of the central nervous system (CNS). Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the OB via the OM and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the OM, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the OB after inflammation has subsided. It is now known that immune cells and cytokines in the OM play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the OM affects the pathophysiology of OSNs. PMID:27867383

  13. miRNAs associated with immune response in teleost fish.

    PubMed

    Andreassen, Rune; Høyheim, Bjørn

    2017-02-28

    MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes

  14. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain.

    PubMed

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang; Song, Jin-Won

    2014-08-01

    Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.

  15. Effect of immunization route on mucosal and systemic immune response in Atlantic salmon (Salmo salar).

    PubMed

    Valdenegro-Vega, Victoria A; Crosbie, Philip; Vincent, Benita; Cain, Kenneth D; Nowak, Barbara F

    2013-01-15

    This study aimed to assess systemic and mucosal immune responses of Atlantic salmon (Salmo salar) exposed to two protein-hapten antigens - dinitrophenol (DNP) and fluorescein isothiocyanate (FITC) each conjugated with keyhole limpet haemocyanin (KLH) - administered using different delivery strategies. Fish were exposed to the antigens through different routes, and were given a booster 4 weeks post initial exposure. Both systemic and mucosal antibody responses were measured for a period of 12 weeks using an enzyme-linked immunosorbent assay (ELISA). Only fish exposed to both antigens via intraperitoneal (IP) injection showed increased systemic antibody response starting 6 weeks post immunization. No treatment was able to produce a mucosal antibody response; however there was an increase in antibody levels in the tissue supernatant from skin explants obtained 12 weeks post immunization from fish injected with FITC. Western blots probed with serum and culture supernatant from skin explants showed a specific response against the antigens. In conclusion, IP injection of hapten-antigen in Atlantic salmon was the best delivery route for inducing an antibody response against these antigens in this species. Even though IP injection did not induce an increase in antibody levels in the skin mucus, there was an increased systemic antibody response and an apparent increase of antibody production in mucosal tissues as demonstrated by the increased level of specific antibody levels in supernatants from the tissue explants.

  16. Immune Responses to Low Back Pain Risk Factors

    PubMed Central

    Splittstoesser, Riley E.; Marras, William S.; Best, Thomas M.

    2013-01-01

    Objective Investigate effects of interactions between biomechanical, psychosocial and individual risk factors on the body’s immune inflammatory responses. Background Current theories for low back pain causation do not fully account for the body’s response to tissue loading and tissue trauma. Methods Two groups possessing a preference for the sensor or intuitor personality trait performed repetitive lifting combined with high or low mental workload on separate occasions. Spinal loading was assessed using an EMG-assisted subject-specific biomechanical model and immune markers were collected before and after exposure. Results Mental workload was associated with a small decrease in AP shear. Both conditions were characterized by a regulated time-dependent immune response making use of markers of inflammation, tissue trauma and muscle damage. Intuitors’ creatine kinase levels were increased following low mental workload compared to that observed in Sensors with the opposite trend occurring for high mental workload. Conclusions A temporally regulated immune response to lifting combined with mental workload exists. This response is influenced by personality and mental workload. PMID:22317743

  17. Cytomegalovirus infection enhances the immune response to influenza.

    PubMed

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai S; Angel, Cesar J L; Onengut-Gumuscu, Suna; Kidd, Brian A; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-04-01

    Cytomegalovirus (CMV) is a β-herpesvirus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli, and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV status. In contrast, CMV-seropositive young adults exhibited enhanced antibody responses to influenza vaccination, increased CD8(+) T cell sensitivity, and elevated levels of circulating interferon-γ compared to seronegative individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the ubiquity of CMV infection in humans and many other species.

  18. Understanding rheumatic fever.

    PubMed

    Azevedo, Pedro Ming; Pereira, Rosa Rodrigues; Guilherme, Luiza

    2012-05-01

    Through a comprehensive review of the recent findings on rheumatic fever, we intend to propose a new physiopathologic model for this disease. A Medline search was performed for all articles containing the terms rheumatic fever or rheumatic heart disease in title or abstract from 1970 to 2011. Best evidence qualitative technique was used to select the most relevant. The scientific interest on rheumatic fever has notably diminished throughout the twentieth century as evidenced by the comparison of the proportion of articles in which RF was a subject in 1950 (0.26%) and today (0.03%) [Pubmed]. However, RF remains a major medical and social problem in the developing world and in the so-called hotspots, where it still causes around 500.000 deaths each year, not too different from the pre-antibiotic era. The role of genetic factors in RF susceptibility is discussed. Familiar aggregation, similarity of disease patterns between siblings, identical twin, and HLA correlation studies are evidence for a genetic influence on RF susceptibility. The suspect-involved genes fall mainly into those capable of immunologic mediation. Molecular mimicry explains the triggering of RF, but an intense and sustained inflammation is needed to cause sequels. Also, RF patients vary greatly in terms of symptoms. It is likely that a genetic background directing immune response towards a predominantly Th1 or Th2 pattern contributes to these features. The recent findings on rheumatic fever provide important insight on its physiopathology that helps understanding this prototype post-infectious autoimmune disease giving insights on other autoimmune conditions.

  19. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    PubMed Central

    Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877

  20. Inhalation challenge in humidifier fever.

    PubMed

    Edwards, J H; Cockcroft, A

    1981-05-01

    When exposed to an amount of contaminated humidifier water roughly equivalent to that inhaled over an 8-hour period at their work place, four out of six subjects developed symptoms of humidifier fever. Two non-exposed subjects failed to react to the same challenge. Characteristic lung function, temperature and leucocyte changes were recorded; however, a fall in gas transfer previously reported was not seen. That the reaction was immunologically mediated and not due to endotoxin activity was shown by a negative pyrogen response in rabbits inoculated intravenously with concentrated humidifier water. The nature of the immune response has not as yet been evaluated but it does not reside with the ability of humidifier fever antigens to activate complement. Skin testing produced an immediate weal and flare in the four subjects with precipitins and may reflect the presence of short-term anaphylactic IgG antibody.

  1. Recent progress in HIV vaccines inducing mucosal immune responses.

    PubMed

    Pavot, Vincent; Rochereau, Nicolas; Lawrence, Philip; Girard, Marc P; Genin, Christian; Verrier, Bernard; Paul, Stéphane

    2014-07-31

    In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.

  2. Adjuvant effects of saponins on animal immune responses*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Xiao, Chen-wen; Arijo, Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed. PMID:17323426

  3. The humoral immune response induced by snake venom toxins.

    PubMed

    da Silva, Wilmar Dias; Tambourgi, Denise V

    2011-10-01

    This review summarizes the key contributions to our knowledge regarding the immune response induced by snake venom toxins, focusing particularly on the production of antibodies and their venom-neutralizing effects. We cover the past and present state of the art of anti-snake venom production, followed by an overview of the venomous snakes and their venoms. The toxic properties of relevant snake venom toxins are approached in some details, with particular emphasis on the molecular domains responsible for binding to cells or plasma components in victims. The interactions of these domains are also reviewed, particularly the putatively relevant epitopes, along with the immune system and the resulting antibodies. We also review trials aimed at reducing the quantities of non-relevant antibodies in the antivenoms by substituting whole venoms with purified toxins to immunize animals, or the immunogenicity of the heterologous antivenom antibodies by humanizing their molecules.

  4. Induction and detection of immune responses by photoimmunotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Bartels, Kenneth E.; Liu, Hong; Nordquist, Robert E.

    2005-06-01

    A specific method of photoimmunotherapy, using a combination of selective photothermal laser tissue interactions and an in situ immunoadjuvant, has showed promising results in pre-clinical studies. Its effect on untreated remote metastases is especially interesting. To understand the mechanism of the combination of laser therapy and immunotherapy, immune responses have been investigated. The following laser photoimmunotherapy-induced tumor-specific immunological activities have been observed in our studies. 1. The photoimmunotherapy-cured tumor-bearing animal could resist repeated, dose escalated tumor rechallenges. 2. The serum from cured animals showed tumor-specific antibodies to enhance the binding to the tumor cells. 3. The serum from cured animals could also serve as antibody sources to bind certain specific tumor proteins. 4. In vivo, the spleen cells from cured animals showed anti-tumor immunity that could be adoptively transferred. The methods and the results of these immune responses are summarized.

  5. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    DTIC Science & Technology

    2011-01-01

    responses and protective efficacy induced by vacci- nation with irradiated P vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups...received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that...responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner.l11ese findings suggest that the

  6. Radiation, Inflammation, and Immune Responses in Cancer

    PubMed Central

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR. PMID:22675673

  7. A Drosophila immune response against Ras-induced overgrowth

    PubMed Central

    Hauling, Thomas; Krautz, Robert; Markus, Robert; Volkenhoff, Anne; Kucerova, Lucie; Theopold, Ulrich

    2014-01-01

    ABSTRACT Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12), both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria), which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity. PMID:24659248

  8. Durable and sustained immune tolerance to ERT in Pompe disease with entrenched immune responses

    PubMed Central

    Kazi, Zoheb B.; Prater, Sean N.; Kobori, Joyce A.; Viskochil, David; Bailey, Carrie; Gera, Renuka; Stockton, David W.; McIntosh, Paul; Rosenberg, Amy S.; Kishnani, Priya S.

    2016-01-01

    BACKGROUND. Enzyme replacement therapy (ERT) has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD), a rapidly progressive neuromuscular disorder. Yet marked interindividual variability in response to ERT, primarily attributable to the development of antibodies to ERT, remains an ongoing challenge. Immune tolerance to ongoing ERT has yet to be described in the setting of an entrenched immune response. METHODS. Three infantile Pompe patients who developed high and sustained rhGAA IgG antibody titers (HSAT) and received a bortezomib-based immune tolerance induction (ITI) regimen were included in the study and were followed longitudinally to monitor the long-term safety and efficacy. A trial to taper the ITI protocol was attempted to monitor if true immune tolerance was achieved. RESULTS. Bortezomib-based ITI protocol was safely tolerated and led to a significant decline in rhGAA antibody titers with concomitant sustained clinical improvement. Two of the 3 IPD patients were successfully weaned off all ITI protocol medications and continue to maintain low/no antibody titers. ITI protocol was significantly tapered in the third IPD patient. B cell recovery was observed in all 3 IPD patients. CONCLUSION. This is the first report to our knowledge on successful induction of long-term immune tolerance in patients with IPD and HSAT refractory to agents such as cyclophosphamide, rituximab, and methotrexate, based on an approach using the proteasome inhibitor bortezomib. As immune responses limit the efficacy and cost-effectiveness of therapy for many conditions, proteasome inhibitors may have new therapeutic applications. FUNDING. This research was supported by a grant from the Genzyme Corporation, a Sanofi Company (Cambridge, Massachusetts, USA), and in part by the Lysosomal Disease Network, a part of NIH Rare Diseases Clinical Research Network (RDCRN). PMID:27493997

  9. HTLV-1, Immune Response and Autoimmunity.

    PubMed

    Quaresma, Juarez A S; Yoshikawa, Gilberto T; Koyama, Roberta V L; Dias, George A S; Fujihara, Satomi; Fuzii, Hellen T

    2015-12-24

    Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren's Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4⁺ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4⁺ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.

  10. HTLV-1, Immune Response and Autoimmunity

    PubMed Central

    Quaresma, Juarez A S; Yoshikawa, Gilberto T; Koyama, Roberta V L; Dias, George A S; Fujihara, Satomi; Fuzii, Hellen T

    2015-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren’s Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity. PMID:26712781

  11. Elevated levels of CXCL10 in the Periodic Fever, Aphthous stomatitis, Pharyngitis and cervical Adenitis syndrome (PFAPA) during and between febrile episodes; an indication of a persistent activation of the innate immune system

    PubMed Central

    2013-01-01

    Background The Periodic Fever, Aphthous stomatitis, Pharyngitis and cervical Adenitis syndrome (PFAPA) is the most common periodic fever syndrome in childhood. Clinically, PFAPA may resemble autoinflammatory diseases, but the etiology is not fully understood. Methods We measured inflammatory proteins in plasma and hematologic parameters in children with PFAPA during and between febrile episodes, and in a control group with suspected bacterial pneumonia. In children with PFAPA, a first blood sample was taken within 24 hours of a febrile episode and a second sample between episodes. In children with pneumonia, the first sample was taken shortly after admission and a second sample after full recovery. Results A total of 22 children with PFAPA and 14 children with pneumonia were included. In children with PFAPA, levels of interleukin (IL) 6, CXCL10 and CCL4 were significantly increased during febrile episodes. The levels of IL-6 and CXCL10 were higher in children with PFAPA during febrile episodes than in children with pneumonia. The levels of CXCL10 remained higher in children with PFAPA between febrile episodes compared to children with pneumonia after recovery. Children with PFAPA had a relative eosinopenia and lymphocytopenia with reduced numbers of both CD4+ and CD8+ T cells during febrile episodes. This pattern was not observed in the children with pneumonia. Conclusions The results indicate an innate immune response as the initial step in PFAPA, and a subsequent adaptive response with activation and redistribution of T cells. Moreover, an activation of the innate immune system involving CXCL10 may persist between febrile episodes. CXCL10 may be a possibly clinical marker in children with PFAPA. PMID:24134207

  12. Towards a human Lassa fever vaccine.

    PubMed

    Fisher-Hoch, S P; McCormick, J B

    2001-01-01

    Arenaviruses, such as Lassa fever, establish chronic infections in rodents, leading to incidental transmission to humans. Lassa fever is a clinically severe disease, yet the absence of second attacks implies life-long immunity. The aim of this review is to consider whether such immunity could be provided by vaccines. The South American arenaviruses are controlled by neutralising antibody and a clinical trial of live, attenuated vaccine for Argentinian haemorrhagic fever provided 84% protection. In contrast, there is no evidence for protective humoral immunity against Old World arenaviruses which are controlled by cell-mediated immune responses. Nevertheless, vaccination with Lassa glycoproteins can protect monkeys from disease, implying that protection may be achievable, even though the immunological mechanisms are distinct. Recombinant vaccinia viruses expressing various forms of Lassa glycoproteins can protect both guinea-pigs and primates, while additional protective responses can be mounted against nucleocapsid genes. However, vaccines based upon vaccinia constructs are no longer tenable for African populations with a high seroprevalence of HIV infection. The scientific challenge now remains to find alternative methods of delivering T-cell immunity against glycoproteins from Lassa virus in ways which can overcome the local economic and political hurdles to vaccine development.

  13. Sharing the burden: antigen transport and firebreaks in immune responses.

    PubMed

    Handel, Andreas; Yates, Andrew; Pilyugin, Sergei S; Antia, Rustom

    2009-05-06

    Communication between cells is crucial for immune responses. An important means of communication during viral infections is the presentation of viral antigen on the surface of an infected cell. Recently, it has been shown that antigen can be shared between infected and uninfected cells through gap junctions, connexin-based channels, that allow the transport of small molecules. The uninfected cell receiving antigen can present it on its surface. Cells presenting viral antigen are detected and killed by cytotoxic T lymphocytes. The killing of uninfected cells can lead to increased immunopathology. However, the immune response might also profit from killing those uninfected bystander cells. One benefit might be the removal of future 'virus factories'. Another benefit might be through the creation of 'firebreaks', areas void of target cells, which increase the diffusion time of free virions, making their clearance more likely. Here, we use theoretical models and simulations to explore how the mechanism of gap junction-mediated antigen transport (GMAT) affects the dynamics of the virus and immune response. We show that under the assumption of a well-mixed system, GMAT leads to increased immunopathology, which always outweighs the benefit of reduced virus production due to the removal of future virus factories. By contrast, a spatially explicit model leads to quite different results. Here we find that the firebreak mechanism reduces both viral load and immunopathology. Our study thus shows the potential benefits of GMAT and illustrates how spatial effects may be crucial for the quantitative understanding of infection dynamics and immune responses.

  14. Regulation of the acute phase and immune responses

    SciTech Connect

    Sehgal, P.B.; Grieninger, G.; Tosato, G.

    1989-01-01

    This book contains the conference entitled Regulation of the acute phase and immune responses: Interleukin-L. Topics covered include: Interferon-B{sub 2}/26kDa Protein, Regulation of acute phase liver gene expression, and Genetics and regulation of expression of IL-6.

  15. Suppression of the Immune Response by Synthetic Adjuvants.

    DTIC Science & Technology

    1984-08-24

    RD-R145 073 SUPPRESSION OF THE IMMUNE RESPONSE BY’ SYNTHETIC / ADJUYANT5(U) MINNESOTA UNIV DULUTH DEPT OF MEDICAL MICROBIOLOGY AND IMMUNOLOGY A G...Ph.D. N00014-82-K-0635 9. PERFORMING ORGANIZATION NAME AND ADDIRESS 10. PROGRAM ELEME7T. PROJECT. TASK () Dept. of Medical Microbiology /ImmunologyARA

  16. Immune Response Genotypes and Risk of Young Adult Hodgkin Lymphoma

    DTIC Science & Technology

    2008-09-01

    1) To identify, enroll and collect blood specimens from 368 adolescents and young adults 18 years of age or older at the time of participation... Young Adult Hodgkin Lymphoma PRINCIPAL INVESTIGATOR: Wendy Cozen, Victoria Cortessis...COVERED 1 Sep 2007 – 31 Aug 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Genotypes and Risk of Young Adult Hodgkin Lymphoma 5b

  17. Immune Response to Plasmid- and Chromosome-Encoded Yersinia Antigens,

    DTIC Science & Technology

    The immune response of humans and mice to temperature-specific, plasmid- or chromosome-encoded proteins of Yersinia pestis and Yersinia ... enterocolitica was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Extracts from Y. pestis and Y. enterocolitica

  18. Radiation-induced augmentation of the immune response

    SciTech Connect

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis.

  19. Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases.

    PubMed

    Hansen, Jonathan J

    2015-10-01

    Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient's immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota.

  20. Tumor PDT-associated immune response: relevance of sphingolipids

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  1. Sulfated polysaccharides and immune response: promoter or inhibitor?

    PubMed

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  2. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  3. A Meta-Analysis of Serological Response Associated with Yellow Fever Vaccination

    PubMed Central

    Jean, Kévin; Donnelly, Christl A.; Ferguson, Neil M.; Garske, Tini

    2016-01-01

    Despite previous evidence of high level of efficacy, no synthetic metric of yellow fever (YF) vaccine efficacy is currently available. Based on the studies identified in a recent systematic review, we conducted a random-effects meta-analysis of the serological response associated with YF vaccination. Eleven studies conducted between 1965 and 2011 representing 4,868 individual observations were included in the meta-analysis. The pooled estimate of serological response was 97.5% (95% confidence interval [CI] = 82.9–99.7%). There was evidence of between-study heterogeneity (I2 = 89.1%), but this heterogeneity did not appear to be related to study size, study design, or seroconversion measurement or definition. Pooled estimates were significantly higher (P < 0.0001) among studies conducted in nonendemic settings (98.9%, 95% CI = 98.2–99.4%) than among those conducted in endemic settings (94.2%, 95% CI = 83.8–98.1%). These results provide background information against which to evaluate the efficacy of fractional doses of YF vaccine that may be used in outbreak situations. PMID:27928091

  4. The Immune Response to Sand Fly Salivary Proteins and Its Influence on Leishmania Immunity

    PubMed Central

    Gomes, Regis; Oliveira, Fabiano

    2012-01-01

    Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic. Immunization with a single salivary protein or exposure to uninfected bites was shown to result in a protective immune response against leishmaniasis. Antibodies to saliva were not required for this protection. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review the immunity to sand fly salivary proteins in the context of its vector–parasite–host combinations and their vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis. PMID:22593758

  5. Familial Mediterranean fever presenting as fever of unknown origin in Korea

    PubMed Central

    Lee, Jun Hee; Kim, Jong Hyun; Shim, Jung Ok; Lee, Kwang Chul; Lee, Joo Won; Chae, Jae Jin

    2016-01-01

    Familial Mediterranean fever (FMF) is the most common Mendelian autoinflammatory disease, characterized by uncontrolled activation of the innate immune system that manifests as recurrent brief fever and polyserositis (e.g., peritonitis, pleuritic, and arthritis). FMF is caused by autosomal recessive mutations of the Mediterranean fever gene, MEFV which encodes the pyrin protein. Although FMF predominantly affects people from Mediterranean and Middle Eastern ethnic origins, 3 cases of FMF have been reported in Korea since 2012. We report another case of FMF in Korea in which the patient presented with a month-long fever without serositis. After treatment with colchicine was initiated, the patient’s symptoms quickly subsided. The response to colchicine was helpful for diagnosis. We compare the FMF genotypes in Korea with in other countries. Studying FMF cases in Korea will help establish the best MEFV exons to use for screening and diagnosis of Korean FMF. PMID:28018446

  6. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  7. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  8. Role of Activin A in Immune Response to Breast Cancer

    DTIC Science & Technology

    2014-12-01

    20Gyx1. Data indicate that fractionated RT can mimic, at least in part, a viral infection and activate canonical defense pathways in neoplastic...and CXCL11 by TSA cells irradiated with 8Gyx3 but not 20Gyx1. Data indicate that fractionated RT can mimic, at least in part, a viral infection and...activate canonical path- ways of response to infections and potentially elicit powerful antitumor innate and adaptive immune responses. The changes

  9. The endogenous immune response modulates the course of IgA-immune complex mediated nephropathy.

    PubMed

    Chao, T-K; Rifai, A; Ka, S-M; Yang, S-M; Shui, H-A; Lin, Y-F; Sytwu, H-K; Lee, W-H; Kung, J T; Chen, A

    2006-07-01

    In animal models of IgA nephropathy, the inevitable endogenous immune response to passively administered antigens alone or in complex with specific IgA mask the exact role each might play in pathogenesis. To delineate the role the immune response might play, we have developed a passive model with exclusive IgA-immune complex-mediated nephropathy in B-cell-deficient (BCD) mice. Glomerular IgA immune deposits were induced by administration of purified IgA antiphosphorylcholine and the specific pneumococcal C-polysaccharide (PnC) antigen daily for 2 weeks into BCD and wild-type (WT) mice. In BCD mice IgA+PnC deposits induced severe glomerular injury and renal dysfunction. In contrast, WT mice developed intense glomerular IgG and IgM and C3 co-deposits of the IgA+PnC with significantly less renal injury. Cytofluorometric analysis revealed that PnC induced in BCD, but not in WT, a rapid and dramatic increase in number of activated CD3(+)/CD69(+) T-cell population. The nuclear factor-kappa B (NF-kappaB) transcription factor was activated early and progressively increased in response to glomerular IgA+PnC deposits. These results suggest that nephritogenic IgA+PnC immune deposits induce glomerular and renal dysfunction through activation of the NF-kappaB. This inflammatory pathway is modulated by the endogenous cellular and antibody response to the antigen affecting the course of IgA nephropathy progression.

  10. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice

    PubMed Central

    1996-01-01

    Interleukin (IL)-6, IL-1 beta, and tumor necrosis factor alpha (TNF- alpha) are considered to act as endogenous pyrogens. Because of the complex pattern of cross-inductions between these cytokines, the relative role of the central and peripheral production of these cytokines in eliciting the fever response has not yet been clarified. The purpose of this study was to determine the role of IL-6 in the fever response by making use of mice carrying a null mutation in the IL- 6 gene. The intraperitoneal injections of lipopolysaccharide (LPS) (50 micrograms/kg) and recombinant murine (rm) IL-1 beta (10 micrograms/kg), respectively, failed to evoke fever response in IL-6- deficient mice, whereas the same doses of LPS and rmIL-1 beta caused fever response in wild-type mice. The fever response could be induced in the IL-6-deficient mice by intracerebroventricular injection of recombinant human (rh) IL-6 (500 ng/mouse), whereas intracerebroventricular injection of rmIL-1 beta (100 ng/mouse) failed to produce fever response in the IL-6-deficient mice. These results suggest that central IL-6 is a necessary component of the fever response to both endogenous (IL-1 beta) and exogenous (LPS) pyrogens in mice and that IL-6 acts downstream from both peripheral and central IL- 1 beta. PMID:8551238

  11. Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response

    PubMed Central

    Turroni, Francesca; Taverniti, Valentina; Ruas-Madiedo, Patricia; Duranti, Sabrina; Guglielmetti, Simone; Lugli, Gabriele Andrea; Gioiosa, Laura; Palanza, Paola; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host. PMID:24242237

  12. Reprogramming immune responses via microRNA modulation

    PubMed Central

    Cubillos-Ruiz, Juan R.; Rutkowski, Melanie R; Tchou, Julia; Conejo-Garcia, Jose R.

    2013-01-01

    It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. PMID:25285232

  13. The Influence of Innate and Adaptive Immune Responses on Atherosclerosis

    PubMed Central

    Witztum, Joseph L.; Lichtman, Andrew H.

    2014-01-01

    Both the chronic development of atherosclerotic lesions and the acute changes in lesion phenotype that lead to clinical cardiovascular events are significantly influenced by the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall. The rapid pace of discovery of mechanisms of immunologic recognition, effector functions, and regulation has significantly influenced the study of atherosclerosis, and our new knowledge is beginning to affect how we treat this ubiquitous disease. In this review, we discuss recent advances in our understanding of how innate and adaptive immunity contribute to atherosclerosis, as well as therapeutic opportunities that arise from this knowledge. PMID:23937439

  14. [Association of ocular inflammation and innate immune response].

    PubMed

    Sonoda, Koh-Hei

    2008-03-01

    Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and

  15. Control of immune response by amino acid metabolism.

    PubMed

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  16. Effect of age and maternal antibodies on the systemic and mucosal immune response after neonatal immunization in a porcine model

    PubMed Central

    Guzman-Bautista, Edgar R; Garcia-Ruiz, Carlos E; Gama-Espinosa, Alicia L; Ramirez-Estudillo, Carmen; Rojas-Gomez, Oscar I; Vega-Lopez, Marco A

    2014-01-01

    Newborn mammals are highly susceptible to respiratory infections. Although maternal antibodies (MatAb) offer them some protection, they may also interfere with their systemic immune response to vaccination. However, the impact of MatAb on the neonatal mucosal immune response remains incompletely described. This study was performed to determine the effect of ovalbumin (OVA)-specific MatAb on the anti-OVA antibody response in sera, nasal secretions and saliva from specific pathogen-free Vietnamese miniature piglets immunized at 7 or 14 days of age. Our results demonstrated that MatAb increased antigen-specific IgA and IgG responses in sera, and transiently enhanced an early secretory IgA response in nasal secretions of piglets immunized at 7 days of age. In contrast, we detected a lower mucosal (nasal secretion and saliva) anti-OVA IgG response in piglets with MatAb immunized at 14 days of age, compared with piglets with no MatAb, suggesting a modulatory effect of antigen-specific maternal factors on the isotype transfer to the mucosal immune exclusion system. In our porcine model, we demonstrated that passive maternal immunity positively modulated the systemic and nasal immune responses of animals immunized early in life. Our results, therefore, open the possibility of inducing systemic and respiratory mucosal immunity in the presence of MatAb through early vaccination. PMID:24754050

  17. Stimulating immune responses to fight cancer: Basic biology and mechanisms.

    PubMed

    O'Byrne, Kenneth

    2015-04-01

    Chronic inflammation is now recognized as a major cause of malignant disease. In concert with various mechanisms (including DNA instability), hypoxia and activation of inflammatory bioactive lipid pathways and pro-inflammatory cytokines open the doorway to malignant transformation and proliferation, angiogenesis, and metastasis in many cancers. A balance between stimulatory and inhibitory signals regulates the immune response to cancer. These include inhibitory checkpoints that modulate the extent and duration of the immune response and may be activated by tumor cells. This contributes to immune resistance, especially against tumor antigen-specific T-cells. Targeting these checkpoints is an evolving approach to cancer immunotherapy, designed to foster an immune response. The current focus of these trials is on the programmed cell death protein 1 (PD-1) receptor and its ligands (PD-L1, PD-L2) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Researchers have developed anti-PD-1 and anti-PDL-1 antibodies that interfere with the ligands and receptor and allow the tumor cell to be recognized and attacked by tumor-infiltrating T-cells. These are currently being studied in lung cancer. Likewise, CTLA-4 inhibitors, which have had success treating advanced melanoma, are being studied in lung cancer with encouraging results.

  18. Bacillus cereus var. toyoi enhanced systemic immune response in piglets.

    PubMed

    Schierack, Peter; Wieler, Lothar H; Taras, David; Herwig, Volker; Tachu, Babila; Hlinak, Andreas; Schmidt, Michael F G; Scharek, Lydia

    2007-07-15

    Probiotic bacteria have been suggested to stimulate the host immune system. In this study we evaluated the immunomodulatory effects of probiotic Bacillus cereus var. toyoi on the systemic immunity of piglets. A pool of 70 piglets was divided into a probiotic or control group. We determined the ratios of peripheral blood mononuclear cell (PBMC) subsets and measured proliferative responses and cytokine production of PBMCs and effects on vaccination responses. Blood samples of probiotic-treated piglets showed a significantly lower frequency of CD8(high)/CD3+ T cells and CD8(low)/CD3+ T cells and a significant higher CD4+/CD8+ ratio. IL-4 and IFN-gamma production of polyclonally stimulated PBMCs was on average higher in the probiotic group. Specific proliferative responses of PBMCs to Influenza vaccination antigens were significantly higher and antibody titers against H3N2 Influenza and Mycoplasma vaccination antigens were on average higher in the probiotic group. In conclusion, B. cereus var. toyoi therefore alters the immune status of piglets as indicated by changes in the ratios as well as functionalities of systemic immune cell populations.

  19. RNA Editing, ADAR1, and the Innate Immune Response

    PubMed Central

    Wang, Qingde; Li, Xiaoni; Qi, Ruofan; Billiar, Timothy

    2017-01-01

    RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1–3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field. PMID:28106799

  20. Host Immune Status and Response to Hepatitis E Virus Infection

    PubMed Central

    Krain, Lisa J.; Nelson, Kenrad E.

    2014-01-01

    SUMMARY Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available. PMID:24396140

  1. Inflammation and immune response in COPD: where do we stand?

    PubMed

    Rovina, Nikoletta; Koutsoukou, Antonia; Koulouris, Nikolaos G

    2013-01-01

    Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release "danger signal". These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  2. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  3. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs.

  4. Immune Response to Coccidioidomycosis and the Development of a Vaccine

    PubMed Central

    Castro-Lopez, Natalia; Hung, Chiung-Yu

    2017-01-01

    Coccidioidomycosis is a fungal infection caused by Coccidioides posadasii and Coccidioides immitis. It is estimated that 150,000 new infections occur in the United States each year. The incidence of this infection continues to rise in endemic regions. There is an urgent need for the development of better therapeutic drugs and a vaccine against coccidioidomycosis. This review discusses the features of host innate and adaptive immune responses to Coccidioides infection. The focus is on the recent advances in the immune response and host-pathogen interactions, including the recognition of spherules by the host and defining the signal pathways that guide the development of the adaptive T-cell response to Coccidioides infection. Also discussed is an update on progress in developing a vaccine against these fungal pathogens. PMID:28300772

  5. Autophagy and the regulation of the immune response.

    PubMed

    Valdor, Rut; Macian, Fernando

    2012-12-01

    Autophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a crucial role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins and regulating protein levels in response to extracellular signals. In the last few years specific functions for different forms of autophagy have been identified in many tissues and organs. In the Immune System, autophagy functions range from the elimination infectious agents and the modulation of the inflammatory response, to the selection of antigens for presentation and the regulation of T cell homeostasis and activation. Here, we review the recent advances that have allowed us to better understand why autophagy is a crucial process in the regulation of the innate and adaptive immune responses.

  6. Genomics of immune response to typhoid and cholera vaccines.

    PubMed

    Majumder, Partha P

    2015-06-19

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.

  7. Immune Responses Associated with Resistance to Haemonchosis in Sheep

    PubMed Central

    Alba-Hurtado, Fernando; Muñoz-Guzmán, Marco Antonio

    2013-01-01

    This paper examines the known immunological and genetic factors associated with sheep resistance to infection by Haemonchus contortus. Such resistance is an inheritable genetic trait (h2, 0.22–0.63) associated with certain sheep breeds. Resistant sheep do not completely reject the disease; they only harbor fewer parasites than susceptible sheep and therefore have a lower fecal egg count. Protective immune response to haemonchosis is an expression of genetic resistance. Genes associated with resistance and susceptibility are described. Genetically resistant sheep have nonspecific mechanisms that block the initial colonization by Haemonchus contortus larvae. These sheep also have an efficacious Th2 type response (e.g., increases in blood and tissue eosinophils, specific IgE class antibodies, mast cells, IL-5, IL-13, and TNFα) that protects them against the infection; in contrast, susceptible sheep do not efficiently establish this type of immune response. Finally, the main reported antigens of H. contortus were reviewed. PMID:23509684

  8. B lymphocyte immune response gene phenotype is genetically determined

    SciTech Connect

    Tse, H.Y.; Mond, J.J.; Longo, D.L.

    1982-04-01

    We examined the effects of the developmental milieu on the capacity of B cells to undergo immune response gene-controlled, T cell-dependent polyclonal proliferation. Although I-Aq poly(Glu60 Ala30 Tyr10)n (GAT)-nonresponder T cells developing in a responder environment become phenotypic GAT-responders, I-Aq B cells remain unresponsive to GAT, even after maturation in a GAT-responder animal. Conversely, (B10.A x B10.Q)F1 ((GAT responder x GAT nonresponder)F1) T cells developing in a B10.Q GAT nonresponder host fail to respond to GAT, but F1 B cells from the same F1 leads to parent chimeras make excellent proliferative responses in the presence of GAT and responder T cells. Thus, by this assay, B cell immune response gene function is genetically determined and is not affected by the developmental milieu.

  9. Immune response triggered by Brucella abortus following infection or vaccination.

    PubMed

    Dorneles, Elaine M S; Teixeira-Carvalho, Andréa; Araújo, Márcio S S; Sriranganathan, Nammalwar; Lage, Andrey P

    2015-07-17

    Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts.

  10. Behavioural fever in zebrafish larvae.

    PubMed

    Rey, Sonia; Moiche, Visila; Boltaña, Sebastian; Teles, Mariana; MacKenzie, Simon

    2017-02-01

    Behavioural fever has been reported in different species of mobile ectotherms including the zebrafish, Danio rerio, in response to exogenous pyrogens. In this study we report, to our knowledge for the first time, upon the ontogenic onset of behavioural fever in zebrafish (Danio rerio) larvae. For this, zebrafish larvae (from first feeding to juveniles) were placed in a continuous thermal gradient providing the opportunity to select their preferred temperature. The novel thermal preference aquarium was based upon a continuous vertical column system and allows for non-invasive observation of larvae vertical distribution under isothermal (TR at 28 °C) and thermal gradient conditions (TCH: 28-32 °C). Larval thermal preference was assessed under both conditions with or without an immersion challenge, in order to detect the onset of the behavioural fever response. Our results defined the onset of the dsRNA induced behavioural fever at 18-20 days post fertilization (dpf). Significant differences were observed in dsRNA challenged larvae, which prefer higher temperatures (1-4 °C increase) throughout the experimental period as compared to non-challenged larvae. In parallel we measured the abundance of antiviral transcripts; viperin, gig2, irf7, trim25 and Mxb mRNAs in dsRNA challenged larvae under both thermal regimes: TR and TCh. Significant increases in the abundance of all measured transcripts were recorded under thermal choice conditions signifying that thermo-coupling and the resultant enhancement of the immune response to dsRNA challenge occurs from 18 dpf onwards in the zebrafish. The results are of importance as they identify a key developmental stage where the neuro-immune interface matures in the zebrafish likely providing increased resistance to viral infection.

  11. The Reticular Cell Network: A Robust Backbone for Immune Responses

    PubMed Central

    Textor, Johannes; Mandl, Judith N.; de Boer, Rob J.

    2016-01-01

    Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During infections, the network can suffer damage. A new study has now investigated the network’s structure in detail, using methods from graph theory. The study showed that the network is remarkably robust to damage: it can still support immune responses even when half of the reticular cells are destroyed. This is a further important example of how network connectivity achieves tolerance to failure, a property shared with other important biological and nonbiological networks. PMID:27727272

  12. Glycan-Based Cell Targeting To Modulate Immune Responses.

    PubMed

    Johannssen, Timo; Lepenies, Bernd

    2017-04-01

    Glycosylation is an integral post-translational modification present in more than half of all eukaryotic proteins. It affects key protein functions, including folding, stability, and immunogenicity. Glycoengineering approaches, such as the use of bacterial N-glycosylation systems, or expression systems, including yeasts, insect cells, and mammalian cells, have enabled access to defined and homogenous glycoproteins. Given that glycan structures on proteins can be recognized by host lectin receptors, they may facilitate cell-specific targeting and immune modulation. Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are attractive targets to shape immune responses. Multivalent glycan display on nanoparticles, liposomes, or dendrimers has successfully enabled CLR targeting. In this review, we discuss novel strategies to access defined glycan structures and highlight CLR targeting approaches for immune modulation.

  13. Profiling the host immune response to tuberculosis vaccines.

    PubMed

    Fletcher, Helen A

    2015-09-29

    There is an urgent need for improved vaccines for protection against tuberculosis (TB) disease and an immune correlate of protection would aid in the design, development and testing of a new TB vaccine candidates. The immune response to TB is likely to be multi-factorial and transcriptional profiling is a potentially useful tool for the simultaneous measurement of multiple immune processes. Although there are 16 candidate TB vaccines in clinical development the only published transcriptomics studies are from the MVA85A trials. With the publication of transcriptional signatures from the South African adolescent cohort study and the GC6 consortium also expected in 2015 the next year could see an increase of interest in the use of transcriptomics in TB vaccine development.

  14. Radiation-induced immune responses: mechanisms and therapeutic perspectives

    PubMed Central

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok

    2016-01-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field. PMID:27722125

  15. Abnormal immune responses of Bloom's syndrome lymphocytes in vitro.

    PubMed Central

    Hütteroth, T H; Litwin, S D; German, J

    1975-01-01

    Bloom's syndrome is a rare autosmal recessive disorder, first characterized by growth retardation and asum-sensitive facial telangiectasia and more recently demonstarted to have increased chromosome instability, a predisposition to malignancy, and increased susecptibitily to infection. The present report ocncern the immune function of Bloom's syndrom lymphoctes in vitro. Four affected homozgotes and five heterozygotes were studied. An abnormal serum concentartion of at least one class of immunoglobin was present in three out of four homozgotes. Affected homozgotes were shown capable of both a humoral and cellular response after antigenic challenge, the responses in general being weak but detectable. Blood lymphocytes from Bloom's syndrome individuals were cultured in impaired proliferavite response and synthesized less immunoglobulin at the end of 5 days than did normal controls. In contrast, they had a normal proliferative response to phytohemagglutinin except at highest concentrations of the mitogen. In the mixed lymphocte culture, Bloom's syndrome lymphocytes proved to be poor responder cells but normal stimulator cells. Lmyphoctes from the heterozgotes produced normal responses in these three systems. Distrubed immunity appears to be on of several major consequences of homozygosity for the Bloom's syndrome gene. Although the explanation for this pleiotropism is at present obscure, the idea was advanced that the aberrant immune function is, along with the major clincial feature-small body size, amanifestation of defect in cellular proliferation. PMID:124745

  16. Adaptive immune response during hepatitis C virus infection.

    PubMed

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-04-07

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed.

  17. B cells enhance early innate immune responses during bacterial sepsis

    PubMed Central

    Kelly-Scumpia, Kindra M.; Scumpia, Philip O.; Weinstein, Jason S.; Delano, Matthew J.; Cuenca, Alex G.; Nacionales, Dina C.; Wynn, James L.; Lee, Pui Y.; Kumagai, Yutaro; Efron, Philip A.; Akira, Shizuo; Wasserfall, Clive; Atkinson, Mark A.

    2011-01-01

    Microbes activate pattern recognition receptors to initiate adaptive immunity. T cells affect early innate inflammatory responses to viral infection, but both activation and suppression have been demonstrated. We identify a novel role for B cells in the early innate immune response during bacterial sepsis. We demonstrate that Rag1−/− mice display deficient early inflammatory responses and reduced survival during sepsis. Interestingly, B cell–deficient or anti-CD20 B cell–depleted mice, but not α/β T cell–deficient mice, display decreased inflammatory cytokine and chemokine production and reduced survival after sepsis. Both treatment of B cell–deficient mice with serum from wild-type (WT) mice and repletion of Rag1−/− mice with B cells improves sepsis survival, suggesting antibody-independent and antibody-dependent roles for B cells in the outcome to sepsis. During sepsis, marginal zone and follicular B cells are activated through type I interferon (IFN-I) receptor (IFN-α/β receptor [IFNAR]), and repleting Rag1−/− mice with WT, but not IFNAR−/−, B cells improves IFN-I–dependent and –independent early cytokine responses. Repleting B cell–deficient mice with the IFN-I–dependent chemokine, CXCL10 was also sufficient to improve sepsis survival. This study identifies a novel role for IFN-I–activated B cells in protective early innate immune responses during bacterial sepsis. PMID:21746813

  18. Immune responses of patients to orf virus infection.

    PubMed

    Yirrell, D L; Vestey, J P; Norval, M

    1994-04-01

    Orf is a disease of sheep and goats which is caused by a parapox virus. It can be transmitted to humans, and is considered an occupational hazard by those handling sheep. In this paper we present the first report of both cell-mediated and humoral immune responses to naturally acquired orf virus infection in humans. Lymphoproliferative responses of peripheral blood mononuclear cells of patients to an orf virus antigen were vigorous soon after infection, but rapidly declined. Orf virus antibody levels, detected by ELISA, were shown to rise during infection. Western blot analysis confirmed this, and demonstrated that the antibody produced in response to the infection was directed against the 40-kDa viral surface tubule protein. Where direct comparisons were possible, the immune response of humans to orf virus infection was similar to that previously reported for sheep. Evidence was obtained suggesting that prior exposure to vaccinia virus (smallpox vaccination) provided no protection from subsequent orf virus infection. In addition, orf virus infection did not enhance immune responses to vaccinia virus antigens.

  19. Innate and adaptive immune responses against Staphylococcus aureus skin infections.

    PubMed

    Krishna, Sheila; Miller, Lloyd S

    2012-03-01

    Staphylococcus aureus is an important human pathogen that is responsible for the vast majority of bacterial skin and soft tissue infections in humans. S. aureus can also become more invasive and cause life-threatening infections such as bacteremia, pneumonia, abscesses of various organs, meningitis, osteomyelitis, endocarditis, and sepsis. These infections represent a major public health threat due to the enormous numbers of these infections and the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. MSRA is endemic in hospitals worldwide and is rapidly spreading throughout the normal human population in the community. The increasing frequency of MRSA infections has complicated treatment as these strains are more virulent and are increasingly becoming resistant to multiple different classes of antibiotics. The important role of the immune response against S. aureus infections cannot be overemphasized as humans with certain genetic and acquired immunodeficiency disorders are at an increased risk for infection. Understanding the cutaneous immune responses against S. aureus is essential as most of these infections occur or originate from a site of infection or colonization of the skin and mucosa. This review will summarize the innate immune responses against S. aureus skin infections, including antimicrobial peptides that have direct antimicrobial activity against S. aureus as well as pattern recognition receptors and proinflammatory cytokines that promote neutrophil abscess formation in the skin, which is required for bacterial clearance. Finally, we will discuss the recent discoveries involving IL-17-mediated responses, which provide a key link between cutaneous innate and adaptive immune responses against S. aureus skin infections.

  20. Imported Chikungunya fever case in Greece in June 2014 and public health response.

    PubMed

    Tsiodras, Sotirios; Pervanidou, Danai; Papadopoulou, Elpida; Kavatha, Dimitra; Baka, Agoritsa; Koliopoulos, George; Badieritakis, Evangelos; Michaelakis, Antonios; Gavana, Elpida; Patsoula, Eleni; Tsimpos, Ioannis; Gioksari, Thalia; Kyriazopoulou, Evdoxia; Vakali, Annita; Pavli, Androula; Maltezou, Helena C; Georgakopoulou, Theano; Hadjichristodoulou, Christos; Kremastinou, Jenny; Papa, Anna

    2016-03-01

    We report about the first imported case of Chikungunya fever in Greece in a Greek traveler returning from the Dominican Republic and the associated public health response. We investigated the case and performed focused epidemiological and entomological investigation in all areas the patient visited during the infectious period, to identify the targeted interventions needed. Entomological investigation revealed the occurrence of the competent vector Aedes albopictus (Diptera: Culicidae) in the environment surrounding the hospital where the patient was admitted and in her workplace. All captured mosquitoes tested negative for Chikungunya virus. We further conducted clinical and laboratory examination of the patient's co-travelers, gave advice on appropriate personal preventive measures against mosquito bites to the patient and co-travelers and on vector control, and raised awareness among health professionals throughout Greece. The risk of introduction and local transmission of Chikungunya and other arboviruses in Greece and other European countries is present, as the competent vector exists in many parts of Europe. Public health professionals, travel medicine specialists and clinicians should maintain awareness regarding this possibility of importation of arbovirus cases in order to provide the appropriate advice, seek the prompt diagnosis, and implement appropriate interventions. Mobilization of various stakeholders will lead to enhanced epidemiological and entomological surveillance that will allow for improved risk assessment in each area.

  1. Experimental infection with bovine ephemeral fever virus and analysis of its antibody response cattle.

    PubMed

    Zheng, F Y; Chen, Q W; Li, Z; Gong, X W; Wang, J D; Yin, H

    2016-02-01

    Bovine ephemeral fever (BEF) is an arthropod-borne viral disease that occurs throughout mainland China. LS11 obtained in the 2011 BEF epidemic was a wild strain, and its virulence and antibody response have never been studied in China. Therefore, the issues were investigated in this work. Experimental cattle were intravenously infected with different doses of BEF virus, and some non-infected cattle were simultaneously monitored. Blood and serum samples were collected from all animals over the course of our study. Infected cattle were challenged for a second time with BEF virus to determine protective period of the antibodies. BEF virus was detected in blood samples from infected cattle, but not in monitored cattle. The neutralizing antibodies (nAbs) against BEFV were easier to be detected and persisted for longer periods in cattle infected with higher doses of BEFV than in those infected with lower doses. When the titer of nAbs was equal to 5 or 6, re-infected cattle still could mount a challenge against BEFV. However, after 3 or 6months, when nAbs were no longer apparent, re-infected cattle displayed typical symptoms of BEF. Our findings indicated that vaccination should be performed once the titer of nAb decreased to 5 or 6.

  2. Imported Chikungunya fever case in Greece in June 2014 and public health response

    PubMed Central

    Pervanidou, Danai; Papadopoulou, Elpida; Kavatha, Dimitra; Baka, Agoritsa; Koliopoulos, George; Badieritakis, Evangelos; Michaelakis, Antonios; Gavana, Elpida; Patsoula, Eleni; Tsimpos, Ioannis; Gioksari, Thalia; Kyriazopoulou, Evdoxia; Vakali, Annita; Pavli, Androula; Maltezou, Helena C.; Georgakopoulou, Theano; Hadjichristodoulou, Christos; Kremastinou, Jenny; Papa, Anna

    2016-01-01

    We report about the first imported case of Chikungunya fever in Greece in a Greek traveler returning from the Dominican Republic and the associated public health response. We investigated the case and performed focused epidemiological and entomological investigation in all areas the patient visited during the infectious period, to identify the targeted interventions needed. Entomological investigation revealed the occurrence of the competent vector Aedes albopictus (Diptera: Culicidae) in the environment surrounding the hospital where the patient was admitted and in her workplace. All captured mosquitoes tested negative for Chikungunya virus. We further conducted clinical and laboratory examination of the patient’s co-travelers, gave advice on appropriate personal preventive measures against mosquito bites to the patient and co-travelers and on vector control, and raised awareness among health professionals throughout Greece. The risk of introduction and local transmission of Chikungunya and other arboviruses in Greece and other European countries is present, as the competent vector exists in many parts of Europe. Public health professionals, travel medicine specialists and clinicians should maintain awareness regarding this possibility of importation of arbovirus cases in order to provide the appropriate advice, seek the prompt diagnosis, and implement appropriate interventions. Mobilization of various stakeholders will lead to enhanced epidemiological and entomological surveillance that will allow for improved risk assessment in each area. PMID:27159571

  3. Immune response to measles vaccine in Peruvian children.

    PubMed Central

    Bautista-López, N. L.; Vaisberg, A.; Kanashiro, R.; Hernández, H.; Ward, B. J.

    2001-01-01

    OBJECTIVE: To evaluate the immune response in Peruvian children following measles vaccination. METHODS: Fifty-five Peruvian children received Schwarz measles vaccine (about 10(3) plaque forming units) at about 9 months of age. Blood samples were taken before vaccination, then twice after vaccination: one sample at between 1 and 4 weeks after vaccination and the final sample 3 months post vaccination for evaluation of immune cell phenotype and lymphoproliferative responses to measles and non-measles antigens. Measles-specific antibodies were measured by plaque reduction neutralization. FINDINGS: The humoral response developed rapidly after vaccination; only 4 of the 55 children (7%) had plaque reduction neutralization titres <200 mlU/ml 3 months after vaccination. However, only 8 out of 35 children tested (23%) had lymphoproliferative responses to measles antigens 3-4 weeks after vaccination. Children with poor lymphoproliferative responses to measles antigens had readily detectable lymphoproliferative responses to other antigens. Flow cytometric analysis of peripheral blood mononuclear cells revealed diffuse immune system activation at the time of vaccination in most children. The capacity to mount a lymphoproliferative response to measles antigens was associated with expression of CD45RO on CD4+ T-cells. CONCLUSION: The 55 Peruvian children had excellent antibody responses after measles vaccination, but only 23% (8 out of 35) generated detectable lymphoproliferative responses to measles antigens (compared with 55-67% in children in the industrialized world). This difference may contribute to the less than uniform success of measles vaccination programmes in the developing world. PMID:11731811

  4. Clinical, virological and serological response of the West African dwarf sheep to experimental infection with different strains of Rift Valley fever virus.

    PubMed

    Tomori, O

    1979-03-01

    West African dwarf sheep were inoculated with three different strains of Rift Valley fever virus (RVFV). Using infective mouse serum as the source of virus classical RVFV disease characterised by sudden onset, a sharp but transient febrile response, viraemia, abortions and the development of specific RVFV antibodies in surviving animals was observed. The severity of clinical response was, however, dependent on the strain of virus used, with animals inoculated with Smithburn's neuroadapted strain showing a milder response than those inoculated with either the Nigerian or Lunyo strain. The inoculation of sheep with RVFV infective mouse brain material of the three different strains resulted in a mild febrile response with low level viraemia. Immune sera from sheep inoculated with both the Nigerian and Smithburn's neurotropic strains did not neutralise the Lunyo virus strain in a mouse intracerebral neutralisation test; the reverse, however, was not the case. The findings indicate that the West African dwarf sheep is highly susceptible to RVFV infection and that previous reports of only a mild clinical response following inoculation with the Nigerian strain were due to infective mouse brain rather than infective mouse serum.

  5. Animal Models in Q Fever: Pathological Responses of Inbred Mice to Phase 1 Coxiella burnetti

    DTIC Science & Technology

    1987-01-01

    Hosts involved in the epizootiology of Q fever range from animal ectoparasites to man (Ormsbee, 1965). A micro- organism adapted to growth in so many...initially for human use from the Henzerling strain of C. burnetii by Merrell-National Laboratories, Swiftwater, Pa., USA, and designated NDBR 105...Previous studies with mice and humans have correlated T-cell inresponsiveness with Q fever (Damrow et al., 1985; Koster et al., 1985a, b). Mouse resistance

  6. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  7. How B cells shape the immune response against Mycobacterium tuberculosis.

    PubMed

    Maglione, Paul J; Chan, John

    2009-03-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B-cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against non-viral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against non-viral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought.

  8. Responses of innate immune cells to group A Streptococcus.

    PubMed

    Fieber, Christina; Kovarik, Pavel

    2014-01-01

    Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies.

  9. Acidic chitinase primes the protective immune response to gastrointestinal nematodes.

    PubMed

    Vannella, Kevin M; Ramalingam, Thirumalai R; Hart, Kevin M; de Queiroz Prado, Rafael; Sciurba, Joshua; Barron, Luke; Borthwick, Lee A; Smith, Allen D; Mentink-Kane, Margaret; White, Sandra; Thompson, Robert W; Cheever, Allen W; Bock, Kevin; Moore, Ian; Fitz, Lori J; Urban, Joseph F; Wynn, Thomas A

    2016-05-01

    Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.

  10. Inhibition of the immune response to experimental fresh osteoarticular allografts

    SciTech Connect

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. 3d.; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M. )

    1989-06-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed.

  11. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    PubMed Central

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites. PMID:9321391

  12. Regulation of Cellular Immune Responses in Sepsis by Histone Modifications.

    PubMed

    Carson, W F; Kunkel, S L

    2017-01-01

    Severe sepsis, septic shock, and related inflammatory syndromes are driven by the aberrant expression of proinflammatory mediators by immune cells. During the acute phase of sepsis, overexpression of chemokines and cytokines drives physiological stress leading to organ failure and mortality. Following recovery from sepsis, the immune system exhibits profound immunosuppression, evidenced by an inability to produce the same proinflammatory mediators that are required for normal responses to infectious microorganisms. Gene expression in inflammatory responses is influenced by the transcriptional accessibility of the chromatin, with histone posttranslational modifications determining whether inflammatory gene loci are set to transcriptionally active, repressed, or poised states. Experimental evidence indicates that histone modifications play a central role in governing the cytokine storm of severe sepsis, and that aberrant chromatin modifications induced during the acute phase of sepsis may mediate chronic immunosuppression in sepsis survivors. This review will focus on the role of histone modifications in governing immune responses in severe sepsis, with an emphasis on specific leukocyte subsets and the histone modifications observed in these cells during chronic stages of sepsis. Additionally, the expression and function of chromatin-modifying enzymes (CMEs) will be discussed in the context of severe sepsis, as potential mediators of epigenetic regulation of gene expression in sepsis responses. In summary, this review will argue for the use of chromatin modifications and CME expression in leukocytes as potential biomarkers of immunosuppression in patients with severe sepsis.

  13. The Immune Response to Blood-Group Substances

    PubMed Central

    Holborow, E. J.; Loewi, G.

    1962-01-01

    Guinea pigs were immunized with purified human A and Lea blood-group substances. Skin testing revealed a delayed hypersensitivity response to A and Lea and other human blood-group substances, showing a very marked degree of cross-reactivity, irrespective of the immunizing antigen. Circulating antibody was tested for by eliciting systemic anaphylaxis, by direct cutaneous anaphylaxis using a dye-spreading method, and by the passive cutaneous anaphylaxis test of Ovary. Precipitation and red-cell agglutination tests were also employed. It was found that immunization with A substance consistently produced a major specific anti-A antibody and a minor separate antibody specific for Lea. Immunization with Lea substance did not consistently give rise to detectable circulating antibody. In those animals, however, in which antibody to Lea was found, a reaction with A substance could also be shown. These results could be explained in terms of a small amount of Lea activity in A substance, as revealed by agglutination-inhibition and P.C.A. tests. The results indicate that the polypeptide part of blood-group mucopolysaccharides is the entity chiefly concerned in producing and eliciting delayed hypersensitivity to these substances. The cross-reactivity of the delayed response supports the view that the different human blood-group mucopolysaccharides share a similar polypeptide component. The more precise nature of the circulating antibody is explicable in terms of a response to the specific polysaccharide entity of blood-group substances. These findings are considered in the light of previous work on the relationship of delayed hypersensitivity to the circulating antibody response. The question of a possible delayed response to carbohydrate antigen is left unanswered. PMID:13908295

  14. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression

    PubMed Central

    DeNardo, David G; Coussens, Lisa M

    2007-01-01

    Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed that immune cells functionally regulate epithelial cancer development and progression. Moreover, accumulated clinical and experimental data indicate that the outcome of an immune response toward an evolving breast neoplasm is largely determined by the type of immune response elicited. Acute tumor-directed immune responses involving cytolytic T lymphocytes appear to protect against tumor development, whereas immune responses involving chronic activation of humoral immunity, infiltration by Th2 cells, and protumor-polarized innate inflammatory cells result in the promotion of tumor development and disease progression. Herein we review this body of literature and summarize important new findings revealing the paradoxical role of innate and adaptive leukocytes as regulators of breast carcinogenesis. PMID:17705880

  15. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni

    PubMed Central

    Radomska, Katarzyna A.; Vaezirad, Mahdi M.; Verstappen, Koen M.; Wösten, Marc M. S. M.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20–40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization. PMID:27760175

  16. Tick-borne flaviviruses: dissecting host immune responses and virus countermeasures.

    PubMed

    Robertson, Shelly J; Mitzel, Dana N; Taylor, R Travis; Best, Sonja M; Bloom, Marshall E

    2009-01-01

    The tick-borne encephalitis (TBE) serocomplex of viruses, genus Flavivirus, includes a number of important human pathogens that cause serious neurological illnesses and hemorrhagic fevers. These viruses pose a significant public health problem due to high rates of morbidity and mortality, their emergence to new geographic areas, and the recent rise in the incidence of human infections. The most notable member of the TBE serocomplex is tick-borne encephalitis virus (TBEV), a neurotropic flavivirus that causes debilitating and sometimes fatal encephalitis. Although effective prophylactic anti-TBEV vaccines have been developed, there is currently no specific treatment for infection. To identify new targets for therapeutical intervention, it is imperative to understand interactions between TBEV and the host immune response to infection. Interferon (IFN) has a critical role in controlling flavivirus replication. Dendritic cells (DCs) represent an early target of TBEV infection and are major producers of IFN. Thus, interactions between DCs, IFN responses, and the virus are likely to substantially influence the outcome of infection. Early IFN and DC responses are modulated not only by the virus, but also by the tick vector and immunomodulatory compounds of tick saliva inoculated with virus into the skin. Our laboratory is examining interactions between the triad of virus, tick vector, and mammalian host that contribute to the pathogenesis of tick-borne flaviviruses. This work will provide a more detailed understanding of early events in virus infection and their impact on flavivirus pathogenesis.

  17. Tick-borne flaviviruses: dissecting host immune responses and virus countermeasures

    PubMed Central

    Robertson, Shelly J.; Mitzel, Dana N.; Taylor, R. Travis; Best, Sonja M.

    2009-01-01

    The tick-borne encephalitis (TBE) serocomplex of viruses, genus Flavivirus, includes a number of important human pathogens that cause serious neurological illnesses and hemorrhagic fevers. These viruses pose a significant public health problem due to high rates of morbidity and mortality, their emergence to new geographic areas, and the recent rise in the incidence of human infections. The most notable member of the TBE serocomplex is tick-borne encephalitis virus (TBEV), a neurotropic flavivirus that causes debilitating and sometimes fatal encephalitis. Although effective prophylactic anti-TBEV vaccines have been developed, there is currently no specific treatment for infection. To identify new targets for therapeutical intervention, it is imperative to understand interactions between TBEV and the host immune response to infection. Interferon (IFN) has a critical role in controlling flavivirus replication. Dendritic cells (DCs) represent an early target of TBEV infection and are major producers of IFN. Thus, interactions between DCs, IFN responses, and the virus are likely to substantially influence the outcome of infection. Early IFN and DC responses are modulated not only by the virus, but also by the tick vector and immunomodulatory compounds of tick saliva inoculated with virus into the skin. Our laboratory is examining interactions between the triad of virus, tick vector, and mammalian host that contribute to the pathogenesis of tick-borne flaviviruses. This work will provide a more detailed understanding of early events in virus infection and their impact on flavivirus pathogenesis. PMID:18841330

  18. Anti-tumor immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  19. Immune responses in humans after 60 days of confinement

    NASA Technical Reports Server (NTRS)

    Schmitt, D. A.; Peres, C.; Sonnenfeld, G.; Tkackzuk, J.; Arquier, M.; Mauco, G.; Ohayon, E.

    1995-01-01

    A confinement experiment in a normobaric diving chamber was undertaken to better understand the effect of confinement and isolation on human psychology and physiology. Pre- and postconfinement blood samples were obtained from four test subjects and control donors to analyze immune responses. No modification in the levels of CD2+, CD3+, CD4+, CD8+, CD19+, and CD56+ cells was observed after confinement. Mitogen-induced T-lymphocyte proliferation and interleukin-2 receptor expression were not altered significantly. Whole blood interferon-alpha and gamma-induction and plasma cortisol levels were also unchanged, as was natural killer cell activity. These data suggest that in humans, no specific components of the immune response are affected by a 2-month isolation and confinement of a small group.

  20. Responsive immunization and intervention for infectious diseases in social networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Zhang, Haifeng; Zeng, Guanghong

    2014-06-01

    By using the microscopic Markov-chain approximation approach, we investigate the epidemic spreading and the responsive immunization in social networks. It is assumed that individual vaccination behavior depends on the local information of an epidemic. Our results suggest that the responsive immunization has negligible impact on the epidemic threshold and the critical value of initial epidemic outbreak, but it can effectively inhibit the outbreak of epidemic. We also analyze the influence of the intervention on the disease dynamics, where the vaccination is available only to those individuals whose number of neighbors is greater than a certain value. Simulation analysis implies that the intervention strategy can effectively reduce the vaccine use under the epidemic control.

  1. Time-delayed model of immune response in plants.

    PubMed

    Neofytou, G; Kyrychko, Y N; Blyuss, K B

    2016-01-21

    In the studies of plant infections, the plant immune response is known to play an essential role. In this paper we derive and analyse a new mathematical model of plant immune response with particular account for post-transcriptional gene silencing (PTGS). Besides biologically accurate representation of the PTGS dynamics, the model explicitly includes two time delays to represent the maturation time of the growing plant tissue and the non-instantaneous nature of the PTGS. Through analytical and numerical analysis of stability of the steady states of the model we identify parameter regions associated with recovery and resistant phenotypes, as well as possible chronic infections. Dynamics of the system in these regimes is illustrated by numerical simulations of the model.

  2. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  3. Regulation of immune responses by L-arginine metabolism.

    PubMed

    Bronte, Vincenzo; Zanovello, Paola

    2005-08-01

    L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.

  4. A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus

    PubMed Central

    2010-01-01

    Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA administration would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given four i.p. injections of either 5 mg/kg MA or saline at two hour intervals. Twenty-four hours following the first MA injection, mice were given 100 μg/kg LPS or saline i.p. and blood and brains were collected. Here we report that mice exposed to MA developed higher fevers in response to LPS than did those given LPS alone. MA also exacerbated the LPS-induced increase in central cytokine mRNA. MA alone increased microglial Iba1 expression and expression was further increased when mice were exposed to both MA and LPS, suggesting that MA not only activated microglia but also influenced their response to a peripheral immune stimulus. Taken together, these data show that MA administration exacerbates the normal central immune response, most likely by altering microglia. PMID:21092194

  5. Immune response profiling in early rheumatoid arthritis: discovery of a novel interaction of treatment response with viral immunity

    PubMed Central

    2013-01-01

    Introduction It remains challenging to predict the outcomes of therapy in patients with rheumatoid arthritis (RA). The objective of this study was to identify immune response signatures that correlate with clinical treatment outcomes in patients with RA. Methods A cohort of 71 consecutive patients with early RA starting treatment with disease-modifying antirheumatic drugs (DMARDs) was recruited. Disease activity at baseline and after 21 to 24 weeks of follow-up was measured using the Disease Activity Score in 28 joints (DAS28). Immune response profiling was performed by analyzing multi-cytokine production from peripheral blood cells following incubation with a panel of stimuli, including a mixture of human cytomegalovirus (CMV) and Epstein-Barr virus (EBV) lysates. Profiles identified via principal components analysis (PCA) for each stimulus were then correlated with the ΔDAS28 from baseline to follow-up. A clinically meaningful improvement in the DAS28 was defined as a decrease of ≥1.2. Results A profile of T-cell cytokines (IL-13, IL-4, IL-5, IL-2, IL-12, and IFN-γ) produced in response to CMV/EBV was found to correlate with the ΔDAS28 from baseline to follow-up. At baseline, a higher magnitude of the CMV/EBV immune response profile predicted inadequate DAS28 improvement (mean PCA-1 scores: 65.6 versus 50.2; P = 0.029). The baseline CMV/EBV response was particularly driven by IFN-γ (P = 0.039) and IL-4 (P = 0.027). Among patients who attained clinically meaningful DAS28 improvement, the CMV/EBV PCA-1 score increased from baseline to follow-up (mean +11.6, SD 25.5), whereas among patients who responded inadequately to DMARD therapy, the CMV/EBV PCA-1 score decreased (mean -12.8, SD 25.4; P = 0.002). Irrespective of the ΔDAS28, methotrexate use was associated with up-regulation of the CMV/EBV response. The CMV/EBV profile was associated with positive CMV IgG (P <0.001), but not EBV IgG (P = 0.32), suggesting this response was related to

  6. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity.

    PubMed

    Kurata, Shoichiro; Ariki, Shigeru; Kawabata, Shun-ichiro

    2006-01-01

    In innate immunity, pattern recognition receptors discriminate between self- and infectious non-self-matter. Mammalian homologs of the Drosophila Toll protein, which are collectively referred to as Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS) and lipoproteins, whereas the Drosophila Toll protein does not act as a PAMP receptor, but rather binds to Spätzle, an endogenous peptide. In Drosophila, innate immune surveillance is mediated by members of the peptidoglycan recognition protein (PGRP) family, which recognize diverse bacteria-derived peptidoglycans and initiate appropriate immune reactions including the release of antimicrobial peptides and the activation of the prophenoloxidase cascade, the latter effecting localized wound healing, melanization, and microbial phagocytosis. In the horseshoe crab, LPS induces hemocyte exocytotic degranulation, resulting in the secretion of various defense molecules, such as coagulation factors, antimicrobial peptides, and lectins. Recent studies have demonstrated that the zymogen form of the serine protease factor C, a major granular component of hemocyte, also exists on the hemocyte surface and functions as a biosensor for LPS. The proteolytic activity of activated factor C initiates hemocyte exocytosis via a G protein mediated signal transduction pathway. Furthermore, it has become clear that an endogenous mechanism for the feedback amplification of the innate immune response exists and is dependent upon a granular component of the horseshoe crab hemocyte.

  7. Antibody- and cell-mediated immune responses to a synthetic oligosaccharide conjugate vaccine after booster immunization.

    PubMed

    Safari, Dodi; Dekker, Huberta A Th; de Jong, Ben; Rijkers, Ger T; Kamerling, Johannis P; Snippe, Harm

    2011-09-02

    Memory formation to CRM-neoglycoconjugate, a synthetic branched tetrasaccharide of Streptococcus pneumoniae type 14 polysaccharide (Pn14PS) that is conjugated to a CRM197 protein, was investigated using mice models. Mice were first immunized with the CRM-neoglycoconjugate and then boosted with either the same neoglycoconjugate or a native Pn14PS in order to investigate the effect of booster immunization. Boosting with the CRM-neoglycoconjugate resulted in increased levels of interleukin 5 (IL-5) in the serum on Day 1, followed by the appearance of high levels of specific anti-Pn14PS IgG antibodies on Day 7. Boosting with native Pn14PS resulted in neither IL-5 induction nor the generation of anti-Pn14PS IgG antibodies. In vitro (re)stimulation of spleen cells after booster injection with the neoglycoconjugate revealed the presence of IL-4 and IL-5. This was not seen in spleen cells obtained from mice boosted with the polysaccharide. When stimulated with heat-inactivated bacteria, however, the polysaccharide-boosted mice did have higher levels of IFN-γ and lower levels of IL-17 than both the CRM-neoglycoconjugate-boosted mice and the mock-immunized mice. In conclusion, neoglycoconjugate boosting is responsible for the activation of memory cells and the establishment of sustained immunity. Not only is a booster with native polysaccharide ineffective in inducing opsonic antibodies, but it also interferes with several immunoregulatory mechanisms.

  8. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge.

    PubMed

    Catalán, Tamara P; Wozniak, Aniela; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-03-01

    Although the study of thermoregulation in insects has shown that infected animals tend to prefer higher temperatures than healthy individuals, the immune response and energetic consequences of this preference remain unknown. We examined the effect of environmental temperature and the energetic costs associated to the activation of the immune response of Tenebrio molitor larvae following a lipopolysaccharide (LPS) challenge. We measured the effect of temperature on immune parameters including phenoloxidase (PO) activity and antibacterial responses. Further as proximal and distal costs of the immune response we determined the standard metabolic rate (SMR) and the loss of body mass (m(b)), respectively. Immune response was stronger at 30°C than was at 10 or 20°C. While SMR at 10 and 20°C did not differ between immune treatments, at 30°C SMR of LPS-treated larvae was almost 25-60% higher than SMR of PBS-treated and naïve larvae. In addition, the loss in m(b) was 1.9 and 4.2 times higher in LPS-treated larvae than in PBS-treated and naïve controls. The immune responses exhibited a positive correlation with temperature and both, SMR and m(b) change, were sensitive to environmental temperature. These data suggest a significant effect of environmental temperature on the immune response and on the energetic costs of immunity.

  9. Sharing the burden: antigen transport and firebreaks in immune responses

    PubMed Central

    Handel, Andreas; Yates, Andrew; Pilyugin, Sergei S.; Antia, Rustom

    2008-01-01

    Communication between cells is crucial for immune responses. An important means of communication during viral infections is the presentation of viral antigen on the surface of an infected cell. Recently, it has been shown that antigen can be shared between infected and uninfected cells through gap junctions, connexin-based channels, that allow the transport of small molecules. The uninfected cell receiving antigen can present it on its surface. Cells presenting viral antigen are detected and killed by cytotoxic T lymphocytes. The killing of uninfected cells can lead to increased immunopathology. However, the immune response might also profit from killing those uninfected bystander cells. One benefit might be the removal of future ‘virus factories’. Another benefit might be through the creation of ‘firebreaks’, areas void of target cells, which increase the diffusion time of free virions, making their clearance more likely. Here, we use theoretical models and simulations to explore how the mechanism of gap junction-mediated antigen transport (GMAT) affects the dynamics of the virus and immune response. We show that under the assumption of a well-mixed system, GMAT leads to increased immunopathology, which always outweighs the benefit of reduced virus production due to the removal of future virus factories. By contrast, a spatially explicit model leads to quite different results. Here we find that the firebreak mechanism reduces both viral load and immunopathology. Our study thus shows the potential benefits of GMAT and illustrates how spatial effects may be crucial for the quantitative understanding of infection dynamics and immune responses. PMID:18708323

  10. Immune responses of poultry to Newcastle disease virus.

    PubMed

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  11. Immune responses to colophony, an agent causing occupational asthma.

    PubMed Central

    Cullen, R T; Cherrie, B; Soutar, C A

    1992-01-01

    BACKGROUND: Inhalation of fumes from heated colophony (pine resin) is a recognised cause of occupational asthma, although the mechanisms by which colophony produces symptoms are unclear and specific immune responses to colophony have not been reported in sensitised workers. A study was carried out to determine whether colophony is antigenic. METHODS: The immune responses to colophony were studied in C57BL/6 mice and Dunkin Hartley guinea pigs after intraperitoneal injection of colophony conjugated to bovine serum albumin (BSA) or human IgG by a mixed anhydride procedure. Colophony and dinitrofluorobenzene were also compared in an assay of dermal sensitisation. RESULTS: Mice immunised with the colophony conjugates produced antibodies which recognised conjugates of both BSA and human IgG irrespective of which had been used as the immunogen. Solutions of unconjugated colophony inhibited the binding of antibodies to the BSA-colophony and BSA-abietic acid conjugates, confirming that the antibodies recognised one or more components in the colophony. Portuguese colophony also abrogated the antigen binding of serum from guinea pigs immunised with the BSA-colophony conjugate. Spleen cells from immunised mice proliferated in the presence of the conjugates. Although there was some cross reactivity in these responses, it was not as marked as in the antibody assays. Unconjugated colophony failed to induce an immune response when injected intraperitoneally with adjuvant. Skin sensitisation could not be induced in mice by topical application, or by subcutaneous or intradermal injection of unconjugated colophony. CONCLUSIONS: Colophony components have the potential to act as haptens and an immune component could be involved in the pathogenesis of occupational asthma in workers exposed to colophony. Colophony is not readily immunogenic unless conjugated ex vivo to proteins. Images PMID:1494769

  12. Enhancing the Immune Response to Recombinant Plague Antigens

    DTIC Science & Technology

    2007-05-01

    CONTRACT NUMBER Enhancing the Immune Response to Recombinant Plague Antigens 5b. GRANT NUMBER DAMD17-02-2-0058 5c. PROGRAM ELEMENT NUMBER 6...mally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge. Infect Im- mun 2003;71(7):3831...multiplying the empirically determined aerosol exposure concentration (CFU/liter air) in the chamber by the amount of air that was estimated to have been

  13. Intestinal immune response to human Cryptosporidium sp. infection

    DTIC Science & Technology

    2008-01-01

    and eliminate the infection, which typically causes acute, self-limited watery diarrhea lasting 5 to 10 days. However, in patients with defects in ...cellular immune responses (e.g., AIDS, malnutrition, or defects in the CD40- CD154 system), Cryptosporidium frequently causes persistent or chronic...diarrhea and may also involve the biliary tract (40). In malnourished children, persistent diarrhea is associated with increased susceptibility to recurrent

  14. Harnessing the exosome-induced immune response for cancer immunotherapy.

    PubMed

    Gehrmann, Ulf; Näslund, Tanja I; Hiltbrunner, Stefanie; Larssen, Pia; Gabrielsson, Susanne

    2014-10-01

    In recent years exosomes have emerged as potent stimulators of immune responses and as agents for cancer therapy. Exosomes can carry a broad variety of immunostimulatory molecules depending on the cell of origin and in vitro culture conditions. Dendritic cell-derived exosomes (dexosomes) have been shown to carry NK cell activating ligands and can be loaded with antigen to activate invariant NKT cells and to induce antigen-specific T and B cell responses. Dexosomes have been investigated as therapeutic agents against cancer in two phase I clinical trials, with a phase II clinical trial currently ongoing. Dexosomes were well tolerated but therapeutic success and immune activation were limited. Several reports suggest that multiple factors need to be considered in order to improve exosomal immunogenicity for cancer immunotherapy. These include antigen-loading strategies, exosome composition and exosomal trafficking in vivo. Hence, a better understanding of how to engineer and deliver exosomes to specific cells is crucial to generate strong immune responses and to improve the immunotherapeutic potential of exosomes.

  15. DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans

    PubMed Central

    Heung, Lena J.

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response to C. neoformans. Infectious outcomes in DAP12−/− mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12−/− mice. In contrast to WT NK cells, DAP12−/− NK cells are able to repress C. neoformans growth in vitro. Additionally, DAP12−/− macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing of C. neoformans. These findings suggest that DAP12 acts as a brake on the pulmonary immune response to C. neoformans by promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages. PMID:27068093

  16. Hantaan virus triggers TLR4-dependent innate immune responses.

    PubMed

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  17. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  18. An immunoenzymatic system to study in vitro immune responses

    PubMed Central

    Macario, A. J. L.; Conway De Macario, E.; Celada, F.

    1973-01-01

    A system for studying in vitro the antibody response against a single determinant and to all the determinants of a macromolecule (β-D-Galactosidase of Escherichia coli) is described. It consists of culturing fragments of rabbit lymph nodes (either preimmunized in vivo or not) and exposing them to antigen in vitro. Antibodies secreted into the culture during several days, and up to 3 months in the secondary response, were titrated for: (a) one-hit activation AMEF, the cross-reacting material produced by a point mutant Lac- E. coli; and (b) precipitation of wild type enzyme. Titrations of activating and binding antibodies are very sensitive owing to the amplification potential inherent in the enzymatic assays, which allows several antibody measurements on minute samples. In addition antigen decay in vitro was followed and correlated with the antibody response, showing faster disappearance when the latter took place. Time-course studies of the in vitro antibody response demonstrated that precipitating titres are higher and last longer than activating antibody titres. Repeated in vitro challenges showed decay of the memory potential of in vivo primed lymph nodes, as well as the possibility of inducing an immune response in vitro using non-primed lymph nodes. The results underline the amenability of the present system to the study of in vitro primary and secondary immune responses toward restricted portions of a macromolecule. PMID:4120932

  19. Physical Theory of the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2012-10-01

    I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.

  20. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  1. Biophotonics and immune responses-Highlights from a new SPIE photonics west conference (BIOS 2006).

    PubMed

    Chen, Wei R; Huang, Zheng

    2006-09-01

    This report summarizes some highlights from the "Biophotonics and Immune Responses", a new 2006 SPIE Photonics West Biomedical Optics (BIOS 2006) Conference. Some exciting recent progresses in host immune responses elicited by photodynamic therapy and other novel phototherapies are discussed.

  2. Injury and immune response: applying the danger theory to mosquitoes

    PubMed Central

    Moreno-García, Miguel; Recio-Tótoro, Benito; Claudio-Piedras, Fabiola; Lanz-Mendoza, Humberto

    2014-01-01

    The insect immune response can be activated by the recognition of both non-self and molecular by-products of tissue damage. Since pathogens and tissue damage usually arise at the same time during infection, the specific mechanisms of the immune response to microorganisms, and to tissue damage have not been unraveled. Consequently, some aspects of damage caused by microorganisms in vector-borne arthropods have been neglected. We herein reassess the Anopheles–Plasmodium interaction, incorporating Matzinger’s danger/damage hypothesis and George Salt’s injury assumptions. The invasive forms of the parasite cross the peritrophic matrix and midgut epithelia to reach the basal lamina and differentiate into an oocyst. The sporozoites produced in the oocyst are released into the hemolymph, and from there enter the salivary gland. During parasite development, wounds to midgut tissue and the basement membrane are produced. We describe the response of the different compartments where the parasite interacts with the mosquito. In the midgut, the response includes the expression of antimicrobial peptides, production of reactive oxygen species, and possible activation of midgut regenerative cells. In the basal membrane, wound repair mainly involves the production of molecules and the recruitment of hemocytes. We discuss the susceptibility to damage in tissues, and how the place and degree of damage may influence the differential response and the expression of damage associated molecular patterns (DAMPs). Knowledge about damage caused by parasites may lead to a deeper understanding of the relevance of tissue damage and the immune response it generates, as well as the origins and progression of infection in this insect–parasite interaction. PMID:25250040

  3. Control of the Immune Response by Pro-Angiogenic Factors

    PubMed Central

    Voron, Thibault; Marcheteau, Elie; Pernot, Simon; Colussi, Orianne; Tartour, Eric; Taieb, Julien; Terme, Magali

    2014-01-01

    The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction has been noted. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells, which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that vascular endothelial growth factor A (VEGF-A) exhibits immunosuppressive properties in addition to its pro-angiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid-derived suppressor cells, regulatory T cells, and inhibit the migration of T lymphocytes to the tumor. Other pro-angiogenic factors such as placental growth factor (PlGF) could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of pro-angiogenic factors (especially VEGF-A) on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients. PMID:24765614

  4. Effects of inhaled diesel exhaust on immune responses after lung immunization

    SciTech Connect

    Bice, D.E.; Mauderly, J.L.; Jones, R.K.; McClellan, R.O.

    1985-12-01

    The inhalation of diesel exhaust particles and the accumulation of these particles in the lung-associated lymph nodes could alter the development of immune responses after lung immunization. To study this possibility, Fischer 344 rats and CD-1 mice were exposed to three levels of diesel exhaust (nominal concentration--7000, 3500, or 350 micrograms particles/m3). Chamber controls and exposed animals were immunized by intratracheal instillation of sheep red blood cells (SRBC) after 6, 12, 18, and 24 months of exposure. The number of anti-SRBC IgM antibody-forming cells (AFC) in the lung-associated lymph nodes and spleen was evaluated after immunization. The lung-associated lymph nodes from rats and mice exposed to the high levels of diesel exhaust were black with accumulated diesel particles, and the number of lymphoid cells was significantly elevated at each sacrifice time, while rats exposed to the medium level of diesel exhaust also had elevated numbers of cells in these tissues at 12, 18, and 24 months of exposure. The total number of AFC in the lung-associated lymph nodes was significantly elevated (p less than 0.05) in rats exposed to medium and high levels of diesel exhaust, but no significant effects were observed in exposed mice. Data expressed as AFC/10(6) lymphoid cells in rats and mice, and the level of specific IgM, IgG, or IgA antibody in rat sera were not significantly altered. We conclude that the increased cellularity, and the presence of diesel particles in the lung-associated lymph nodes, had a minimal effect on the immune and antigen filtration functions of these tissues.

  5. Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep.

    PubMed

    Miller, Myrna M; Bennett, Kristine E; Drolet, Barbara S; Lindsay, Robbin; Mecham, James O; Reeves, Will K; Weingartl, Hana M; Wilson, William C

    2015-08-01

    Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. In North America, there are susceptible ruminant hosts and competent mosquito vectors, yet there are no fully licensed animal vaccines for this arthropod-borne virus, should it be introduced. Studies in sheep and cattle have found the attenuated strain of RVFV, MP-12, to be both safe and efficacious based on early testing, and a 2-year conditional license for use in U.S. livestock has been issued. The purpose of this study was to further determine the vaccine's potential to infect mosquitoes, the duration of humoral immunity to 24 months postvaccination, and the ability to prevent disease and viremia from a virulent challenge. Vaccination experiments conducted in sheep found no evidence of a potential for vector transmission to 4 North American mosquito species. Neutralizing antibodies were elicited, with titers of >1:40 still present at 24 months postvaccination. Vaccinates were protected from clinical signs and detectable viremia after challenge with virulent virus, while control sheep had fever and high-titered viremia extending for 5 days. Antibodies to three viral proteins (nucleocapsid N, the N-terminal half of glycoprotein GN, and the nonstructural protein from the short segment NSs) were also detected to 24 months using competitive enzyme-linked immunosorbent assays. This study demonstrates that the MP-12 vaccine given as a single dose in sheep generates protective immunity to a virulent challenge with antibody duration of at least 2 years, with no evidence of a risk for vector transmission.

  6. Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep

    PubMed Central

    Bennett, Kristine E.; Drolet, Barbara S.; Lindsay, Robbin; Mecham, James O.; Reeves, Will K.; Weingartl, Hana M.; Wilson, William C.

    2015-01-01

    Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. In North America, there are susceptible ruminant hosts and competent mosquito vectors, yet there are no fully licensed animal vaccines for this arthropod-borne virus, should it be introduced. Studies in sheep and cattle have found the attenuated strain of RVFV, MP-12, to be both safe and efficacious based on early testing, and a 2-year conditional license for use in U.S. livestock has been issued. The purpose of this study was to further determine the vaccine's potential to infect mosquitoes, the duration of humoral immunity to 24 months postvaccination, and the ability to prevent disease and viremia from a virulent challenge. Vaccination experiments conducted in sheep found no evidence of a potential for vector transmission to 4 North American mosquito species. Neutralizing antibodies were elicited, with titers of >1:40 still present at 24 months postvaccination. Vaccinates were protected from clinical signs and detectable viremia after challenge with virulent virus, while control sheep had fever and high-titered viremia extending for 5 days. Antibodies to three viral proteins (nucleocapsid N, the N-terminal half of glycoprotein GN, and the nonstructural protein from the short segment NSs) were also detected to 24 months using competitive enzyme-linked immunosorbent assays. This study demonstrates that the MP-12 vaccine given as a single dose in sheep generates protective immunity to a virulent challenge with antibody duration of at least 2 years, with no evidence of a risk for vector transmission. PMID:26041042

  7. Vascularized composite allograft-specific characteristics of immune responses.

    PubMed

    Issa, Fadi

    2016-06-01

    Vascularized composite allograft (VCA) transplantation, or reconstructive transplantation, has revolutionized the treatment of complex tissue and functional defects. Despite arriving during an age in which the immunology of solid organ transplant rejection has been investigated in much detail, these transplants have offered new perspectives from which to explore the immunobiology of transplantation. VCAs have a number of unique molecular, cellular, and architectural features which alter the character and intensity of the rejection response. While much is yet to be clarified, an understanding of these distinct mechanisms affords new possibilities for the control of immune responses in an effort to improve outcomes after VCA transplantation.

  8. PD-1 blockade induces responses by inhibiting adaptive immune resistance

    PubMed Central

    Tumeh, Paul C.; Harview, Christina L.; Yearley, Jennifer H.; Shintaku, I. Peter; Taylor, Emma J. M.; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N.; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio; Grogan, Tristan R.; Mateus, Christine; Tomasic, Gorana; Glaspy, John A.; Emerson, Ryan O.; Robins, Harlan; Pierce, Robert H.; Elashoff, David A.; Robert, Caroline; Ribas, Antoni

    2014-01-01

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance. PMID:25428505

  9. Genetic immunization is a simple method for eliciting an immune response

    NASA Astrophysics Data System (ADS)

    Tang, De-Chu; Devit, Michael; Johnston, Stephen A.

    1992-03-01

    To produce an immune reaction against a foreign protein usually requires purification of that protein, which is then injected into an animal. The isolation of enough pure protein is time-consuming and sometimes difficult. Here we report that such a response can also be elicited by introducing the gene encoding a protein directly into the skin of mice. This is achieved using a hand-held form of the biolistic system1-4 which can propel DNA-coated gold micro-projectiles directly into cells in the living animal3,5,6. Genetic immunization may be time- and labour-saving in producing antibodies and may offer a unique method for vaccination.

  10. Immunization with the conjugate vaccine Vi-CRM₁₉₇ against Salmonella typhi induces Vi-specific mucosal and systemic immune responses in mice.

    PubMed

    Fiorino, Fabio; Ciabattini, Annalisa; Rondini, Simona; Pozzi, Gianni; Martin, Laura B; Medaglini, Donata

    2012-09-21

    Typhoid fever is a public health problem, especially among young children in developing countries. To address this need, a glycoconjugate vaccine Vi-CRM₁₉₇, composed of the polysaccharide antigen Vi covalently conjugated to the non-toxic mutant of diphtheria toxin CRM₁₉₇, is under development. Here, we assessed the antibody and cellular responses, both local and systemic, following subcutaneous injection of Vi-CRM₁₉₇. The glycoconjugate elicited Vi-specific serum IgG titers significantly higher than unconjugated Vi, with prevalence of IgG1 that persisted for at least 60 days after immunization. Vi-specific IgG, but not IgA, were present in intestinal washes. Lymphocytes proliferation after restimulation with Vi-CRM₁₉₇ was observed in spleen and mesenteric lymph nodes. These data confirm the immunogenicity of Vi-CRM₁₉₇ and demonstrate that the vaccine-specific antibody and cellular immune responses are present also in the intestinal tract, thus strengthening the suitability of Vi-CRM₁₉₇ as a promising candidate vaccine against Salmonella Typhi.

  11. Tissue communication in a systemic immune response of Drosophila

    PubMed Central

    Yang, Hairu; Hultmark, Dan

    2016-01-01

    ABSTRACT Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism. PMID:27116253

  12. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  13. When your baby or infant has a fever

    MedlinePlus

    ... Geme JW, et al, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 176. Read More Acute respiratory distress syndrome Cough Fever Flu H1N1 influenza (Swine flu) Immune response Pneumonia - adults (community acquired) Stuffy or runny nose - children ...

  14. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  15. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    PubMed

    Barribeau, Seth M; Schmid-Hempel, Paul; Sadd, Ben M

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.

  16. Subacute, tetracycline-responsive, granulomatous osteomyelitis in an adult man, consistent with Q fever infection.

    PubMed

    Bayard, Cornelia; Dumoulin, Alexis; Ikenberg, Kristian; Günthard, Huldrych F

    2015-12-09

    Osteomyelitis due to Coxiella burnetii infection is a rare condition in adults. We report the case of a healthy young man presenting with subacute osteomyelitis of the left cheek bone, evolving gradually after an episode of acute febrile illness. Histological evaluation confirmed subacute granulomatous inflammation. Despite antibody titres not reaching the standard cut-off for chronic Q fever (phase I IgG 1/160, phase II IgG 1/2560), osteomyelitis was radiologically and histologically confirmed. A 6-month course of doxycycline/hydroxychloroquine brought clinical and radiological cure while various conventional antibiotic treatments had failed to improve the clinical condition. Currently, at 6-month follow-up, no relapse has occurred and antibody titres have declined. A shorter course of doxycycline/hydroxychloroquine than that used for chronic Q fever osteomyelitis may be sufficient to treat subacute Q fever osteomyelitis in some cases.

  17. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines