Sample records for immune system behavior

  1. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  2. Neuroendocrine-Immune Circuits, Phenotypes, and Interactions

    PubMed Central

    Ashley, Noah T.; Demas, Gregory E.

    2016-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499

  3. Neuroendocrine-immune circuits, phenotypes, and interactions.

    PubMed

    Ashley, Noah T; Demas, Gregory E

    2017-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior

    PubMed Central

    Lowry, C.A.; Hollis, J.H.; de Vries, A.; Pan, B.; Brunet, L.R.; Hunt, J.R.F.; Paton, J.F.R.; van Kampen, E.; Knight, D.M.; Evans, A.K.; Rook, G.A.W.; Lightman, S.L.

    2007-01-01

    Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes. PMID:17367941

  5. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors.

    PubMed

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  7. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  8. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment?

    PubMed

    Gładysz, Dominika; Krzywdzińska, Amanda; Hozyasz, Kamil K

    2018-01-06

    Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.

  9. A nonlinear delayed model for the immune response in the presence of viral mutation

    NASA Astrophysics Data System (ADS)

    Messias, D.; Gleria, Iram; Albuquerque, S. S.; Canabarro, Askery; Stanley, H. E.

    2018-02-01

    We consider a delayed nonlinear model of the dynamics of the immune system against a viral infection that contains a wild-type virus and a mutant. We consider the finite response time of the immune system and find sustained oscillatory behavior as well as chaotic behavior triggered by the presence of delays. We present a numeric analysis and some analytical results.

  10. Immunoadolescence: Neuroimmune development and adolescent behavior

    PubMed Central

    Brenhouse, Heather C.; Schwarz, Jaclyn M.

    2016-01-01

    The brain is increasingly appreciated to be a constantly rewired organ that yields age-specific behaviors and responses to the environment. Adolescence in particular is a unique period characterized by continued brain maturation, superimposed with transient needs of the organism to traverse a leap from parental dependence to independence. Here we describe how these needs require immune maturation, as well as brain maturation. Our immune system, which protects us from pathogens and regulates inflammation, is in constant communication with our nervous system. Together, neuro-immune signaling regulates our behavioral responses to the environment, making this interaction a likely substrate for adolescent development. We review here the identified as well as understudied components of neuro-immune interactions during adolescence. Synaptic pruning, neurite outgrowth, and neurotransmitter release during adolescence all regulate—and are regulated by—immune signals, which occur via blood-brain barrier dynamics and glial activity. We discuss these processes, as well as how immune signaling during this transitional period of development confers differential effects on behavior and vulnerability to mental illness. PMID:27260127

  11. How Psychological States Affect the Immune System: Implications for Interventions in the Context of HIV.

    ERIC Educational Resources Information Center

    Littrell, Jill

    1996-01-01

    Discusses the psychological states associated with enhanced immune system functioning and those associated with suppressed immune functioning. Reviews studies of psychological and behavioral interventions to boost the immune systems of people who are HIV positive. Suggests that group interventions can enhance psychological states associated with…

  12. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    PubMed

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  13. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  14. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  15. The effects of early life adversity on the immune system.

    PubMed

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proinflammatory T Cell Status Associated with Early Life Adversity.

    PubMed

    Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P

    2017-12-15

    Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p < 0.001), as well as increased numbers of CD25 + CD8 + T cells ( p = 0.036). ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    PubMed

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  18. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271

  19. Self-organizing behavior in a lattice model for co-evolution of virus and immune systems

    NASA Astrophysics Data System (ADS)

    Izmailian, N. Sh.; Papoyan, Vl. V.; Priezzhev, V. B.; Hu, Chin-Kun

    2007-04-01

    We propose a lattice model for the co-evolution of a virus population and an adaptive immune system. We show that, under some natural assumptions, both probability distribution of the virus population and the distribution of activity of the immune system tend during the evolution to a self-organized critical state.

  20. Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice.

    PubMed

    Deslauriers, Jessica; van Wijngaarde, Myrthe; Geyer, Mark A; Powell, Susan; Risbrough, Victoria B

    2017-04-14

    The prevalence of posttraumatic stress disorder (PTSD) is high in the armed services, with a rate up to 20%. Multiple studies have associated markers of inflammatory signaling prior to trauma with increased risk of PTSD, suggesting a potential role of the immune system in the development of this psychiatric disorder. One question that arises is if "priming" the immune system before acute trauma alters the stress response and increases enduring effects of trauma. We investigated the time course of inflammatory response to predator stress, a robust stressor that induces enduring PTSD-like behaviors, and the modulation of these effects via prior immune activation with the bacterial endotoxin, lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist. Mice exposed to predator stress exhibited decreased pro-/anti-inflammatory balance in the brain 6h after stress, suggesting that predator exposure acutely suppressed the immune system by increasing anti-inflammatory cytokines levels. Acute immune activation with LPS before a single predator stress did not alter the enduring avoidance behavior in stressed mice. Our findings suggest that acute inflammation, at least via TLR4 activation, is not sufficient to increase susceptibility for PTSD-like behaviors in this model. Future studies will examine if chronic inflammation is required to induce similar immune changes to those observed in PTSD patients in this model. Published by Elsevier B.V.

  1. Relations among Functional Systems in Behavior Analysis

    ERIC Educational Resources Information Center

    Thompson, Travis

    2007-01-01

    This paper proposes that an organism's integrated repertoire of operant behavior has the status of a biological system, similar to other biological systems, like the nervous, cardiovascular, or immune systems. Evidence from a number of sources indicates that the distinctions between biological and behavioral events is often misleading, engendering…

  2. Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation

    PubMed Central

    Norden, Diana M.; Godbout, Jonathan P.

    2012-01-01

    Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the coordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioral response following peripheral infection. With normal aging, however, microglia develop a more inflammatory phenotype. For instance, in several models of aging there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with aging is referred to as primed, reactive, or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in aging has behavioral and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared to adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behavior, depressive-like behavior and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits. PMID:23039106

  3. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration

    PubMed Central

    Sankowski, Roman; Mader, Simone; Valdés-Ferrer, Sergio Iván

    2015-01-01

    The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood–brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections – including anorexia, malaise, depression, and decreased physical activity – collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders. PMID:25698933

  4. Intranasal Immune Challenge Induces Sex-Dependent Depressive-Like Behavior and Cytokine Expression in the Brain

    PubMed Central

    Tonelli, Leonardo H; Holmes, Andrew; Postolache, Teodor T

    2007-01-01

    The association between activation of the immune system and mood disorders has been reported by several studies. However, the mechanisms by which the immune system affects mood are only partially understood. In the present study, we detected depressive-like behavior in a rat animal model which involves the induction of inflammation in the nasal cavities by intranasal (i.n.) instillation of bacterial lipopolysaccharides (LPS). Female rats showed depressive-like behavior as evidenced by the forced swim test after repeated i.n. administration of LPS. These responses were not paralleled by alterations in motor activity as measured by the open field test. In the same animals, corticosterone responses after the swimming sessions were the highest of all the groups evaluated. Real-time RT PCR was used to analyze the transcriptional regulation of the cytokines interleukin-1β, tumor necrosis factor-α, and interleukin-6 in several brain regions. Increased tumor necrosis factor-α was detected in the hippocampus and brainstem of female rats challenged with i.n. LPS. These results suggest that peripheral inflammation in the upper respiratory tract is an immune challenge capable of inducing depressive-like behavior, promoting exaggerated glucocorticoid responses to stress, and increasing cytokine transcription in the brain. These results further our understanding of the role that the immune system may play in the pathophysiology of depression. PMID:17593929

  5. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    USDA-ARS?s Scientific Manuscript database

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  6. Immune malfunction in the GPR39 zinc receptor of knockout mice: Its relationship to depressive disorder.

    PubMed

    Młyniec, Katarzyna; Trojan, Ewa; Ślusarczyk, Joanna; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Budziszewska, Bogusława; Skrzeszewski, Jakub; Siwek, Agata; Holst, Birgitte; Nowak, Gabriel

    2016-02-15

    Depression is a serious psychiatric disorder affecting not only the monaminergic, glutamatergic, and GABAergic neurosystems, but also the immune system. Patients suffering from depression show disturbance in the immune parameters as well as increased susceptibility to infections. Zinc is well known as an anti-inflammatory agent, and its link with depression has been proved, zinc deficiency causing depression- and anxiety-like behavior with immune malfunction. It has been discovered that trace-element zinc acts as a neurotransmitter in the central nervous system via zinc receptor GPR39. In this study we investigated whether GPR39 knockout would cause depressive-like behavior as measured by the forced swim test, and whether these changes would coexist with immune malfunction. In GPR39 knockout mice versus a wild-type control we found: i) depressive-like behavior; ii) significantly reduced thymus weight; (iii) reduced cell viability of splenocytes; iv) reduced proliferative response of splenocytes; and v) increased IL-6 production of splenocytes after ConA stimulation and decreased IL-1b and IL-6 release after LPS stimulation. The results indicate depressive-like behavior in GPR39 KO animals with an immune response similar to that observed in depressive disorder. Here for the first time we show immunological changes under GPR39-deficient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The S(c)ensory Immune System Theory.

    PubMed

    Veiga-Fernandes, Henrique; Freitas, António A

    2017-10-01

    Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stress, Anxiety, and Immunomodulation: A Pharmacological Analysis.

    PubMed

    Ray, A; Gulati, K; Rai, N

    2017-01-01

    Stress and stressful events are common occurrences in our daily lives and such aversive situations bring about complex changes in the biological system. Such stress responses influence the brain and behavior, neuroendocrine and immune systems, and these responses orchestrate to increase or decrease the ability of the organism to cope with such stressors. The brain via expression of complex behavioral paradigms controls peripheral responses to stress and a bidirectional link exists in the modulation of stress effects. Anxiety is a common neurobehavioral correlate of a variety of stressors, and both acute and chronic stress exposure could precipitate anxiety disorders. Psychoneuroimmunology involves interactions between the brain and the immune system, and it is now being increasingly recognized that the immune system could contribute to the neurobehavioral responses to stress. Studies have shown that the brain and its complex neurotransmitter networks could influence immune function, and there could be a possible link between anxiogenesis and immunomodulation during stress. Physiological and pharmacological data have highlighted this concept, and the present review gives an overview of the relationship between stress, anxiety, and immune responsiveness. © 2017 Elsevier Inc. All rights reserved.

  9. The Concordance of Parent and Child Immunization.

    PubMed

    Robison, Steve G; Osborn, Andrew W

    2017-05-01

    A substantial body of work has related survey-based parental vaccine hesitancy to noncompliant childhood immunization. However little attention has been paid to the connection between parents' own immunization behavior and the immunizations their children receive. Using the Oregon ALERT Immunization Information System, we identified adult caregiver-child pairs for children between 9 months and 17 years of age. The likelihood of adult-child concordance of influenza immunization per influenza season from 2010-2011 through 2014-2015 was assessed. The utility of adult immunization as a predictor was also assessed for other, noninfluenza recommended immunizations for children and adolescents. A total of 450 687 matched adult caregiver-child pairs were included in the study. The children of immunizing adults were 2.77 times more likely to also be immunized for seasonal influenza across all seasons (95% confidence interval, 2.74-2.79), with similar results applying within each season. Adult immunization status was also significantly associated with the likelihood of children and adolescents getting other noninfluenza immunizations, such as the human papillomavirus vaccine (HPV). When adults improved their own behavior from nonimmunizing to immunizing across influenza seasons, their children if not immunized in the previous season were 5.44 times (95% confidence interval, 5.35-5.53) more likely to become immunized for influenza. Children's likelihood of following immunization recommendations is associated with the immunization behavior of their parents. Encouraging parental immunization is a potential tool for increasing children's immunization rates. Copyright © 2017 by the American Academy of Pediatrics.

  10. Immune System as a Sensory System

    PubMed Central

    Dozmorov, Igor M.; Dresser, D.

    2010-01-01

    As suggested by the well-known gestalt concept the immune system can be regarded as an integrated complex system, the functioning of which cannot be fully characterized by the behavior of its constituent elements. Similar approaches to the immune system in particular and sensory systems in general allows one to discern similarities and differences in the process of distinguishing informative patterns in an otherwise random background, thus initiating an appropriate and adequate response. This may lead to a new interpretation of difficulties in the comprehension of some immunological phenomena. PMID:21686066

  11. Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders

    PubMed Central

    te Velde, Anje A.; Bezema, Tjitske; van Kampen, Antoine H. C.; Kraneveld, Aletta D.; 't Hart, Bert A.; van Middendorp, Henriët; Hack, Erik C.; van Montfrans, Joris M.; Belzer, Clara; Jans-Beken, Lilian; Pieters, Raymond H.; Knipping, Karen; Huber, Machteld; Boots, Annemieke M. H.; Garssen, Johan; Radstake, Tim R.; Evers, Andrea W. M.; Prakken, Berent J.; Joosten, Irma

    2016-01-01

    In order to combat chronic immune disorders (CIDs), it is an absolute necessity to understand the bigger picture, one that goes beyond insights at a one-disease, molecular, cellular, and static level. To unravel this bigger picture we advocate an integral, cross-disciplinary approach capable of embracing the complexity of the field. This paper discusses the current knowledge on common pathways in CIDs including general psychosocial and lifestyle factors associated with immune functioning. We demonstrate the lack of more in-depth psychosocial and lifestyle factors in current research cohorts and most importantly the need for an all-encompassing analysis of these factors. The second part of the paper discusses the challenges of understanding immune system dynamics and effectively integrating all key perspectives on immune functioning, including the patient’s perspective itself. This paper suggests the use of techniques from complex systems science in describing and simulating healthy or deviating behavior of the immune system in its biopsychosocial surroundings. The patient’s perspective data are suggested to be generated by using specific narrative techniques. We conclude that to gain more insight into the behavior of the whole system and to acquire new ways of combatting CIDs, we need to construct and apply new techniques in the field of computational and complexity science, to an even wider variety of dynamic data than used in today’s systems medicine. PMID:28018353

  12. Systems-Level Analysis of Innate Immunity

    PubMed Central

    Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan

    2014-01-01

    Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298

  13. Brief Report: Dysregulated Immune System in Children with Autism: Beneficial Effects of Intravenous Immune Globulin on Autistic Characteristics.

    ERIC Educational Resources Information Center

    Gupta, Sudhir; And Others

    1996-01-01

    Children (ages 3-12) with autism (n=25) were given intravenous immune globulin (IVIG) treatments at 4-week intervals for at least 6 months. Marked abnormality of immune parameters was observed in subjects, compared to age-matched controls. IVIG treatment resulted in improved eye contact, speech, behavior, echolalia, and other autistic features.…

  14. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581

  15. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1.

    PubMed

    Nakad, Rania; Snoek, L Basten; Yang, Wentao; Ellendt, Sunna; Schneider, Franziska; Mohr, Timm G; Rösingh, Lone; Masche, Anna C; Rosenstiel, Philip C; Dierking, Katja; Kammenga, Jan E; Schulenburg, Hinrich

    2016-04-11

    The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes combined with activation of Ebox transcription factors appears to enhance susceptibility to B. thuringiensis. Our findings highlight the role of a single gene, npr-1, in fine-tuning nematode immune defense, showing the ability of the invertebrate immune system to produce highly specialized and potentially opposing immune responses via single regulatory genes.

  16. Effects of Alcohol on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2013-01-01

    Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889

  17. Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health.

    PubMed

    Borba, Renata S; Klyczek, Karen K; Mogen, Kim L; Spivak, Marla

    2015-11-01

    Honey bees, as social insects, rely on collective behavioral defenses that produce a colony-level immune phenotype, or social immunity, which in turn impacts the immune response of individuals. One behavioral defense is the collection and deposition of antimicrobial plant resins, or propolis, in the nest. We tested the effect of a naturally constructed propolis envelope within standard beekeeping equipment on the pathogen and parasite load of large field colonies, and on immune system activity, virus and storage protein levels of individual bees over the course of a year. The main effect of the propolis envelope was a decreased and more uniform baseline expression of immune genes in bees during summer and autumn months each year, compared with the immune activity in bees with no propolis envelope in the colony. The most important function of the propolis envelope may be to modulate costly immune system activity. As no differences were found in levels of bacteria, pathogens and parasites between the treatment groups, the propolis envelope may act directly on the immune system, reducing the bees' need to activate the physiologically costly production of humoral immune responses. Colonies with a natural propolis envelope had increased colony strength and vitellogenin levels after surviving the winter in one of the two years of the study, despite the fact that the biological activity of the propolis diminished over the winter. A natural propolis envelope acts as an important antimicrobial layer enshrouding the colony, benefiting individual immunity and ultimately colony health. © 2015. Published by The Company of Biologists Ltd.

  18. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Stochastic dynamics for idiotypic immune networks

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2010-12-01

    In this work we introduce and analyze the stochastic dynamics obeyed by a model of an immune network recently introduced by the authors. We develop Fokker-Planck equations for the single lymphocyte behavior and coarse grained Langevin schemes for the averaged clone behavior. After showing agreement with real systems (as a short path Jerne cascade), we suggest, both with analytical and numerical arguments, explanations for the generation of (metastable) memory cells, improvement of the secondary response (both in the quality and quantity) and bell shaped modulation against infections as a natural behavior. The whole emerges from the model without being postulated a-priori as it often occurs in second generation immune networks: so the aim of the work is to present some out-of-equilibrium features of this model and to highlight mechanisms which can replace a-priori assumptions in view of further detailed analysis in theoretical systemic immunology.

  1. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  2. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin

    PubMed Central

    2012-01-01

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness. PMID:23336044

  3. Do entheogen-induced mystical experiences boost the immune system? Psychedelics, peak experiences, and wellness.

    PubMed

    Roberts, T B

    1999-01-01

    Daily events that boost the immune system (as indicated by levels of salivary immunoglobulin A), some instances of spontaneous remission, and mystical experiences seem to share a similar cluster of thoughts, feelings, moods, perceptions, and behaviors. Entheogens--psychedelic drugs used in a religious context--can also produce mystical experiences (peak experiences, states of unitive consciousness, intense primary religious experiences) with the same cluster of effects. When this happens, is it also possible that such entheogen-induced mystical experiences strengthen the immune system? Might spontaneous remissions occur more frequently under such conditions? This article advances the so called "Emxis hypothesis"--that entheogen-induced mystical experiences influence the immune system.

  4. Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction

    NASA Astrophysics Data System (ADS)

    Khajanchi, Subhas

    This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.

  5. Endogenous Circadian Regulation of Pro-inflammatory Cytokines and Chemokines in the Presence of Bacterial Lipopolysaccharide in Humans

    PubMed Central

    Rahman, Shadab A.; Castanon-Cervantes, Oscar; Scheer, Frank A.J.L.; Shea, Steven A.; Czeisler, Charles A.; Davidson, Alec J.; Lockley, Steven W.

    2015-01-01

    Various aspects of immune response exhibit 24-hour variations suggesting that infection susceptibility and treatment efficacy may vary by time of day. Whether these 24-hour variations are endogenous or evoked by changes in environmental or behavioral conditions is not known. We assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48 hours of baseline conditions with standard sleep-wake schedules and 40–50 hours of constant environmental and behavioral (constant routine; CR) conditions. Significant 24-hour rhythms were observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas significant 24-hour rhythms were observed in all four immune factors under CR conditions. The rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors and across conditions. In contrast, the acrophase time (time of the fitted peak) was different between immune factors, and included daytime and nighttime peaks and changes across behavioral conditions. These results suggest that the endogenous circadian system underpins the temporal organization of immune responses in humans with additional effects of external environmental and behavioral cycles. These findings have implications for understanding the adverse effects of recurrent circadian disruption and sleep curtailment on immune function. PMID:25452149

  6. A basic mathematical model of the immune response

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Zaenker, K. S.; an der Heiden, U.

    1995-03-01

    Interaction of the immune system with a target population of, e.g., bacteria, viruses, antigens, or tumor cells must be considered as a dynamic process. We describe this process by a system of two ordinary differential equations. Although the model is strongly idealized it demonstrates how the combination of a few proposed nonlinear interaction rules between the immune system and its targets are able to generate a considerable variety of different kinds of immune responses, many of which are observed both experimentally and clinically. In particular, solutions of the model equations correspond to states described by immunologists as ``virgin state,'' ``immune state'' and ``state of tolerance.'' The model successfully replicates the so-called primary and secondary response. Moreover, it predicts the existence of a threshold level for the amount of pathogen germs or of transplanted tumor cells below which the host is able to eliminate the infectious organism or to reject the tumor graft. We also find a long time coexistence of targets and immune competent cells including damped and undamped oscillations of both. Plausibly the model explains that if the number of transformed cells or pathogens exeeds definable values (poor antigenicity, high reproduction rate) the immune system fails to keep the disease under control. On the other hand, the model predicts apparently paradoxical situations including an increased chance of target survival despite enhanced immune activity or therapeutically achieved target reduction. A further obviously paradoxical behavior consists of a positive effect for the patient up to a complete cure by adding an additional target challenge where the benefit of the additional targets depends strongly on the time point and on their amount. Under periodically pulsed stimulation the model may show a chaotic time behavior of both target growth and immune response.

  7. Aggression, Social Stress, and the Immune System in Humans and Animal Models.

    PubMed

    Takahashi, Aki; Flanigan, Meghan E; McEwen, Bruce S; Russo, Scott J

    2018-01-01

    Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  8. Aggression, Social Stress, and the Immune System in Humans and Animal Models

    PubMed Central

    Takahashi, Aki; Flanigan, Meghan E.; McEwen, Bruce S.; Russo, Scott J.

    2018-01-01

    Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression. PMID:29623033

  9. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A Model of an Integrated Immune System Pathway in Homo sapiens and Its Interaction with Superantigen Producing Expression Regulatory Pathway in Staphylococcus aureus: Comparing Behavior of Pathogen Perturbed and Unperturbed Pathway

    PubMed Central

    Tomar, Namrata; De, Rajat K.

    2013-01-01

    Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior. PMID:24324645

  11. Regulation of inflammation and T cells by glycogen synthase kinase-3: Links to mood disorders

    PubMed Central

    Beurel, Eleonore

    2014-01-01

    Substantial evidence has implicated a role for the immune system in regulating the susceptibility to depression. Proinflammatory cytokines have been shown to be involved in promoting the induction of depressive behavior both in humans and mice, opening new avenues for therapeutic intervention. Because glycogen synthase kinase-3 (GSK3) was recently found to control the production of proinflammatory cytokines, and for many years GSK3 has been implicated in mood disorders, it has been proposed that the proinflammatory action of GSK3 may contribute to the promoting susceptibility to depressive behavior. Moreover, besides regulating cytokine production, GSK3 also promotes the differentiation of proinflammatory subtypes of Th cells, which are sufficient to induce depressive behavior in mice. Although the clear involvement of the immune system during depressive behavior still needs to be firmly demonstrated, there is growing evidence for the involvement of inflammation in the induction of depressive behavior. PMID:24557047

  12. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    PubMed

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life. Copyright © 2015 the authors 0270-6474/15/3510822-10$15.00/0.

  13. Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression.

    PubMed

    Ramirez, Karol; Fornaguera-Trías, Jaime; Sheridan, John F

    2017-01-01

    Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.

  14. Immune system gene dysregulation in autism and schizophrenia.

    PubMed

    Michel, Maximilian; Schmidt, Martin J; Mirnics, Karoly

    2012-10-01

    Gene*environment interactions play critical roles in the emergence of autism and schizophrenia pathophysiology. In both disorders, recent genetic association studies have provided evidence for disease-linked variation in immune system genes and postmortem gene expression studies have shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore, peripheral biomarker studies revealed that both innate and adaptive immune systems are dysregulated. In both disorders symptoms of the disease correlate with the immune system dysfunction; yet, in autism this process appears to be chronic and sustained, while in schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these immune changes actively contribute to disease symptoms. Modeling these changes in animals provided further evidence that prenatal maternal immune activation alters neurodevelopment and leads to behavioral changes that are relevant for autism and schizophrenia. The converging evidence strongly argues that neurodevelopmental immune insults and genetic background critically interact and result in increased risk for either autism or schizophrenia. Further research in these areas may improve prenatal health screening in genetically at-risk families and may also lead to new preventive and/or therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.

  15. Agent-based modeling of the immune system: NetLogo, a promising framework.

    PubMed

    Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

  16. Role of immune system in tumor progression and carcinogenesis.

    PubMed

    Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha

    2018-07-01

    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.

  17. Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis.

    PubMed

    Majidi-Zolbanin, J; Doosti, M-H; Kosari-Nasab, M; Salari, A-A

    2015-05-21

    Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. We here investigated the effects of maternal immune activation with Poly I:C during mid-gestation on the progression of clinical symptoms of experimental autoimmune encephalomyelitis (EAE; a mouse model of MS), and then anxiety- and depressive-like behaviors in non-EAE and EAE-induced offspring were evaluated. Stress-induced corticosterone and tumor necrosis factor-alpha (TNF-α) levels in EAE-induced offspring were also measured. Maternal immune activation increased anxiety and depression in male offspring, but not in females. This immune challenge also resulted in an earlier onset of the EAE clinical signs in male offspring and enhanced the severity of the disease in both male and female offspring. Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling.

    PubMed

    Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A

    2008-12-01

    The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.

  19. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.

    PubMed

    Butler, Mark J; Behringer, Donald C; Dolan, Thomas W; Moss, Jessica; Shields, Jeffrey D

    2015-01-01

    Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.

  20. Evolutionary Genomics of Defense Systems in Archaea and Bacteria*

    PubMed Central

    Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.

    2018-01-01

    Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death. PMID:28657885

  1. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring.

    PubMed

    Bauman, Melissa D; Iosif, Ana-Maria; Smith, Stephen E P; Bregere, Catherine; Amaral, David G; Patterson, Paul H

    2014-02-15

    Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring. Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical populations and rodent models of maternal immune activation (MIA). A modified form of the viral mimic, synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-L-lysine) was delivered to two separate groups of pregnant rhesus monkeys to induce MIA: 1) late first trimester MIA (n = 6), and 2) late second trimester MIA (n = 7). Control animals (n = 11) received saline injections at the same first or second trimester time points or were untreated. Sickness behavior, temperature, and cytokine profiles of the pregnant monkeys confirmed a strong inflammatory response to MIA. Behavioral development of the offspring was studied for 24 months. Following weaning at 6 months of age, MIA offspring exhibited abnormal responses to separation from their mothers. As the animals matured, MIA offspring displayed increased repetitive behaviors and decreased affiliative vocalizations. When evaluated with unfamiliar conspecifics, first trimester MIA offspring deviated from species-typical macaque social behavior by inappropriately approaching and remaining in immediate proximity of an unfamiliar animal. In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism and schizophrenia. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Stability and change: Stress responses and the shaping of behavioral phenotypes over the life span.

    PubMed

    Hennessy, Michael B; Kaiser, Sylvia; Tiedtke, Tobias; Sachser, Norbert

    2015-01-01

    In mammals, maternal signals conveyed via influences on hypothalamic-pituitary-adrenal (HPA) activity may shape behavior of the young to be better adapted for prevailing environmental conditions. However, the mother's influence extends beyond classic stress response systems. In guinea pigs, several hours (h) of separation from the mother activates not only the HPA axis, but also the innate immune system, which effects immediate behavioral change, as well as modifies behavioral responsiveness in the future. Moreover, the presence of the mother potently suppresses the behavioral consequences of this innate immune activation. These findings raise the possibility that long-term adaptive behavioral change can be mediated by the mother's influence on immune-related activity of her pups. Furthermore, the impact of social partners on physiological stress responses and their behavioral outcomes are not limited to the infantile period. A particularly crucial period for social development in male guinea pigs is that surrounding the attainment of sexual maturation. At this time, social interactions with adults can dramatically affect circulating cortisol concentrations and social behavior in ways that appear to prepare the male to best cope in its likely future social environment. Despite such multiple social influences on the behavior of guinea pigs at different ages, inter-individual differences in the magnitude of the cortisol response remain surprisingly stable over most of the life span. Together, it appears that throughout the life span, physiological stress responses may be regulated by social stimuli. These influences are hypothesized to adjust behavior for predicted environmental conditions. In addition, stable individual differences might provide a means of facilitating adaptation to less predictable conditions.

  3. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila

    PubMed Central

    Neyen, Claudine; Lemaitre, Bruno; Marion-Poll, Frédéric

    2017-01-01

    Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC. PMID:29121087

  4. An investigation into the effects of antenatal stressors on the postpartum neuroimmune profile and depressive-like behaviors

    PubMed Central

    Posillico, Caitlin K.; Schwarz, Jaclyn M.

    2015-01-01

    Postpartum depression is a specific type of depression that affects approximately 10-15% of mothers (Wisner et al., 2013). While many have attributed the etiology of postpartum depression to the dramatic change in hormone levels that occurs immediately postpartum, the exact causes are not well-understood. It is well-known; however, that pregnancy induces a number of dramatic changes in the peripheral immune system that foster the development of the growing fetus. It is also well-known that changes in immune function, specifically within the brain, have been linked to several neuropsychiatric disorders including depression. Thus, we sought to determine whether pregnancy induces significant neuroimmune changes postpartum and whether stress or immune activation during pregnancy induce a unique neuroimmune profile that may be associated with depressive-like behaviors postpartum. We used late-gestation sub-chronic stress and late-gestation acute immune activation to examine the postpartum expression of depressive-like behaviors, microglial activation markers, and inflammatory cytokines within the medial prefrontal cortex (mPFC) and the hippocampus (HP). The expression of many immune molecules was significantly altered in the brain postpartum, and postpartum females also showed significant anhedonia, both independently of stress. Following late-gestation immune activation, we found a unique set of changes in neuroimmune gene expression immediately postpartum. Thus, our data indicate that even in the absence of additional stressors, postpartum females exhibit significant changes in the expression of cytokines within the brain that are associated with depressive-like behavior. Additionally, different forms of antenatal stress produce varying profiles of postpartum neuroimmune gene expression and associated depressive-like behaviors. PMID:26589802

  5. Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome

    PubMed Central

    Dinan, Timothy G; Cryan, John F

    2017-01-01

    There is now a large volume of evidence to support the view that the immune system is a key communication pathway between the gut and brain, which plays an important role in stress-related psychopathologies and thus provides a potentially fruitful target for psychotropic intervention. The gut microbiota is a complex ecosystem with a diverse range of organisms and a sophisticated genomic structure. Bacteria within the gut are estimated to weigh in excess of 1 kg in the adult human and the microbes within not only produce antimicrobial peptides, short chain fatty acids, and vitamins, but also most of the common neurotransmitters found in the human brain. That the microbial content of the gut plays a key role in immune development is now beyond doubt. Early disruption of the host-microbe interplay can have lifelong consequences, not just in terms of intestinal function but in distal organs including the brain. It is clear that the immune system and nervous system are in continuous communication in order to maintain a state of homeostasis. Significant gaps in knowledge remain about the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. However, studies using germ-free animals, infective models, prebiotics, probiotics, and antibiotics have increased our understanding of the interplay. Early life stress can have a lifelong impact on the microbial content of the intestine and permanently alter immune functioning. That early life stress can also impact adult psychopathology has long been appreciated in psychiatry. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, immune, and central nervous systems in a network of communication that impacts behavior patterns and psychopathology, to eventually translate these findings to the human situation both in health and disease. Even at this juncture, there is evidence to pinpoint key sites of communication where gut microbial interventions either with drugs or diet or perhaps fecal microbiota transplantation may positively impact mental health. PMID:27319972

  6. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  7. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-05-13

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge. Copyright © 2017. Published by Elsevier Inc.

  8. A minimal model for multiple epidemics and immunity spreading.

    PubMed

    Sneppen, Kim; Trusina, Ala; Jensen, Mogens H; Bornholdt, Stefan

    2010-10-18

    Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases.

  9. Genetic association of impulsivity in young adults: a multivariate study

    PubMed Central

    Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D

    2014-01-01

    Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255

  10. Marijuana: A Review of Medical Research with Implications for Adolescents.

    ERIC Educational Resources Information Center

    Margolis, Robert; Popkin, Nancy

    1980-01-01

    Recent evidence indicates that marijuana is more harmful than had previously been suspected. A review of research in the following areas is presented: tolerance and persistence, reproductive system, respiratory system, immune system, central nervous system, genetic and chromosomal effects, and behavioral effects. (Author)

  11. Behavioral conditioning of immunosuppression is possible in humans.

    PubMed

    Goebel, Marion U; Trebst, Almuth E; Steiner, Jan; Xie, Yu F; Exton, Michael S; Frede, Stilla; Canbay, Ali E; Michel, Martin C; Heemann, Uwe; Schedlowski, Manfred

    2002-12-01

    Behavioral conditioned immunosuppression has been described in rodents as the most impressive demonstration of brain-to-immune system interaction. To analyze whether behavioral conditioned immunosuppression is possible in humans, healthy subjects in this double-blind, placebo-controlled study were conditioned in four sessions over 3 consecutive days, receiving the immunosuppressive drug cyclosporin A as an unconditioned stimulus paired with a distinctively flavored drink (conditioned stimulus) each 12 h. In the next week, re-exposure to the conditioned stimulus (drink), but now paired with placebo capsules, induced a suppression of immune functions as analyzed by the IL-2 and IFN-gamma mRNA expression, intracellular production, and in vitro release of IL-2 and IFN-gamma, as well as lymphocyte proliferation. These data demonstrate for the first time that immunosuppression can be behaviorally conditioned in humans.

  12. Epidemics with pathogen mutation on small-world networks

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Tan, Zhi-Jie; Zou, Xian-Wu; Jin, Zhun-Zhi

    2006-05-01

    We study the dynamical behavior of the epidemiological model with pathogen mutation on small-world networks, and discuss the influence of the immunity duration τR, the cross-immunity threshold hthr, and system size N on epidemic dynamics. A decaying oscillation occurs because of the interplay between the immune response and the pathogen mutation. These results have implications for the interpretation of longitudinal epidemiological data on strain abundance, and they will be helpful to assess the threat of highly pathogenic and mutative viruses, such as avian influenza.

  13. Timing of Maternal Immunization Affects Immunological and Behavioral Outcomes of Adult Offspring in Siberian Hamsters (Phodopus sungorus)

    PubMed Central

    French, Susannah S.; Chester, Emily M.; Demas, Gregory E.

    2016-01-01

    Maternal influences are an important contributing factor to offspring survival, development, and behavior. Common environmental pathogens can induce maternal immune responses and affect subsequent development of offspring. There are likely sensitive periods during pregnancy when animals are particularly vulnerable to environmental disruption. Here we characterize the effects of maternal immunization across pregnancy and postpartum on offspring physiology and behavior in Siberian hamsters (Phodopus sungorus). Hamsters were injected with the antigen keyhole limpet hemocyanin (KLH) 1) prior to pairing with a male (pre-mating), 2) at separation (post-mating), 3) at mid-pregnancy, or 4) after birth (lactation). Maternal food intake, body mass, and immunity were monitored throughout gestation, and litters were measured weekly for growth until adulthood when social behavior, hormone concentrations, and immune responses were determined. We found that immunizations altered maternal immunity throughout pregnancy and lactation. The effects of maternal treatment differed between male and female offspring. Aggressive behavior was enhanced in offspring of both sexes born to mothers treated post-mating and thus early in pregnancy relative to other stages. In contrast, maternal treatment and maternal stage differentially affected innate immunity in males and females. Offspring cortisol, however, was unaffected by maternal treatment. Collectively, these data demonstrate that maternal immunization affects offspring physiology and behavior in a time-dependent and sex-specific manner. More broadly, these findings contribute to our understanding of the effects of maternal immune activation, whether it be from environmental exposure or immunization, on immunological and behavioral responses of offspring. PMID:27320639

  14. Miming the cancer-immune system competition by kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Lemarchand, Annie

    2016-10-01

    In order to mimic the interactions between cancer and the immune system at cell scale, we propose a minimal model of cell interactions that is similar to a chemical mechanism including autocatalytic steps. The cells are supposed to bear a quantity called activity that may increase during the interactions. The fluctuations of cell activity are controlled by a so-called thermostat. We develop a kinetic Monte Carlo algorithm to simulate the cell interactions and thermalization of cell activity. The model is able to reproduce the well-known behavior of tumors treated by immunotherapy: the first apparent elimination of the tumor by the immune system is followed by a long equilibrium period and the final escape of cancer from immunosurveillance.

  15. A global "imaging'' view on systems approaches in immunology.

    PubMed

    Ludewig, Burkhard; Stein, Jens V; Sharpe, James; Cervantes-Barragan, Luisa; Thiel, Volker; Bocharov, Gennady

    2012-12-01

    The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of HIV-1 on Cognition in Humanized NSG Mice

    NASA Astrophysics Data System (ADS)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  17. AFRRI (Armed Forces Radiobiology Research Institute) Annual Research Report, 1 October 1984 through 30 September 1985.

    DTIC Science & Technology

    1985-09-30

    locomotor performance. To evaluate the effects of radiation on social behaviors. To determine how ionizing radiation alters strength and duration of...on social behaviors and the behavioral pharmacology of social behaviors. Study involvement of CNS autostimulation of the immune system of irradiated...marrow cultured in medium not supplemented with the extract. In addition, marrow cultured in media supplemented with various collagen fractions did

  18. Addiction, Adolescence, and Innate Immune Gene Induction

    PubMed Central

    Crews, Fulton T.; Vetreno, Ryan Peter

    2011-01-01

    Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837

  19. The Immune Phenotype of Three Drosophila Leukemia Models.

    PubMed

    Arefin, Badrul; Kunc, Martin; Krautz, Robert; Theopold, Ulrich

    2017-07-05

    Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene ( Ras V12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia. Copyright © 2017 Arefin et al.

  20. The role of immune dysfunction in the pathophysiology of autism

    PubMed Central

    Onore, Charity; Careaga, Milo; Ashwood, Paul

    2012-01-01

    Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670

  1. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive.

    PubMed

    Eberhardt, Martin; Lai, Xin; Tomar, Namrata; Gupta, Shailendra; Schmeck, Bernd; Steinkasserer, Alexander; Schuler, Gerold; Vera, Julio

    2016-01-01

    The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.

  3. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure.

    PubMed

    Raineki, Charlis; Bodnar, Tamara S; Holman, Parker J; Baglot, Samantha L; Lan, Ni; Weinberg, Joanne

    2017-11-01

    The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Behavioral immune system and ingroup derogation: the effects of infectious diseases on ingroup derogation attitudes.

    PubMed

    Wu, Qi; Tan, Chuan; Wang, Bo; Zhou, Ping

    2015-01-01

    From evolutionary reasoning, we derived a novel hypothesis that ingroup derogation is an evolved response of behavioral immune system which follows the smoke detector principle and the functional flexibility principle. This hypothesis was tested and supported across three experiments. In Experiment 1, participants' group membership was manipulated by using a minimal group paradigm. The results indicated that mere social categorization alone - a heuristic cue that implies the differentiation between "us" and "them" - was sufficient to elicit ingroup derogation among Chinese participants, and, such an intergroup bias was positively associated with the perceived vulnerability to diseases, which was also more consistently associated with ingroup attitudes. Experiment 2 extended and partially replicated Experiment 1 by showing that when there were cues of diseases in the immediate physical environment, Chinese participants exaggerated their attitudes of ingroup derogation. The results also showed that this effect was mainly driven by outgroup attraction. Experiment 3 changed the method of disease manipulation, and found that Chinese participants responded more strongly to disease cues originating from ingroup members and that they endorsed more ingroup derogation attitudes even when the ingroup and outgroup members were both displaying cues of diseases. Taken together, these results reveal the previously unexplored effects of infectious diseases on ingroup derogation attitudes, and suggest an interesting linkage between the evolved behavioral immune system and the ingroup derogation.

  5. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters

    PubMed Central

    Butler, Mark J.; Behringer, Donald C.; Dolan, Thomas W.; Moss, Jessica; Shields, Jeffrey D.

    2015-01-01

    Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of “behavioral immunity”; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system. PMID:26061629

  6. A methodological approach for using high-level Petri Nets to model the immune system response.

    PubMed

    Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; Pappalardo, Francesco

    2016-12-22

    Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the same technique and software.

  7. Brain-Immune Interactions as the Basis of Gulf War Illness: Gulf War Illness Consortium (GWIC)

    DTIC Science & Technology

    2014-10-01

    neuroinflammation as an end result of initial glial activation and subsequent priming of glial responses that cause a chronic activation loop of...infection, or physical trauma—that mobilizes CNS defense systems via activation of glia, the brain’s primary immune response cells, and release of...oligodendrocytes Microglial Activation (cytokine signaling) Behavioral Effects (fatigue, pain, cognitive problems) Astrocyte Activation (cytokine signaling

  8. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    PubMed

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. How simple autonomous decisions evolve into robust behaviours? A review from neurorobotics, cognitive, self-organized and artificial immune systems fields.

    PubMed

    Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro

    2014-10-01

    Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  11. Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish.

    PubMed

    Boltana, Sebastian; Aguilar, Andrea; Sanhueza, Nataly; Donoso, Andrea; Mercado, Luis; Imarai, Monica; Mackenzie, Simon

    2018-01-01

    Ectotherms choose the best thermal conditions to mount a successful immune response, a phenomenon known as behavioral fever. The cumulative evidence suggests that behavioral fever impacts positively upon lymphocyte proliferation, inflammatory cytokine expression, and other immune functions. In this study, we have explored how thermal choice during infection impacts upon underpinning molecular processes and how temperature increase is coupled to the immune response. Our results show that behavioral fever results in a widespread, plastic imprint on gene regulation, and lymphocyte proliferation. We further explored the possible contribution of histone modification and identified global associations between temperature and histone changes that suggest epigenetic remodeling as a result of behavioral fever. Together, these results highlight the critical importance of thermal choice in mobile ectotherms, particularly in response to an infection, and demonstrate the key role of epigenetic modification to orchestrate the thermocoupling of the immune response during behavioral fever.

  12. Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors

    PubMed Central

    Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A.; Rogers, Sally J.; Amaral, David; Ashwood, Paul

    2012-01-01

    The pathophysiology of Autism Spectrum Disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1−BDCA1+CD11c+ and Lin-1−BDCA3+CD123−) and plasmacytoid dendritic cells (Lin-1− BDCA2+CD123+ or Lin-1−BDCA4+ CD11c−) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p < 0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD. PMID:23063420

  13. Exosomes and nanotubes: control of immune cell communication

    PubMed Central

    McCoy-Simandle, Kessler; Hanna, Samer J.; Cox, Dianne

    2015-01-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468

  14. Association of Childhood Obesity and the Immune System: A Systematic Review of Reviews.

    PubMed

    Kelishadi, Roya; Roufarshbaf, Mohammad; Soheili, Sina; Payghambarzadeh, Farzaneh; Masjedi, Mohsen

    2017-08-01

    The growing prevalence of childhood obesity has become a serious health problem over the past decades. As the immune system is greatly affected by excess weight, in this review of reviews, we discuss the findings of review articles about the relationship between childhood/maternal obesity and children's immune system. We searched English-language articles in PubMed, Scopus, ISI Thomson Reuters, and Google Scholar databases. All relevant reviews, either systematic or narrative, were retrieved. Then their quality was assessed by using the Assessment of Multiple Systematic Reviews and International Narrative Systematic Assessment tools, respectively. In the final step, 26 reviews were included. Our review suggests that childhood obesity is associated with extensive changes in the serum levels of inflammatory and anti-inflammatory cytokines and proteins, as well as the number of immune cells and their behavior. Therefore, it might cause or exacerbate diseases such as asthma, allergy, atopic dermatitis (AD), and obstructive sleep apnea syndrome. Moreover, childhood obesity may reduce the immune system responsiveness to vaccines and microorganisms. Furthermore, studies suggest that maternal obesity increases the risk of asthma in offspring. Future studies are needed to determine different associations of childhood obesity with allergy, atophic dermatitis, and autoimmune diseases.

  15. Assessment of geometry in 2D immune systems using high accuracy laser-based bioprinting techniques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lauzurica, Sara; Márquez, Andrés.; Molpeceres, Carlos; Notario, Laura; Gómez-Fontela, Miguel; Lauzurica, Pilar

    2017-02-01

    The immune system is a very complex system that comprises a network of genetic and signaling pathways subtending a network of interacting cells. The location of the cells in a network, along with the gene products they interact with, rules the behavior of the immune system. Therefore, there is a great interest in understanding properly the role of a cell in such networks to increase our knowledge of the immune system response. In order to acquire a better understanding of these processes, cell printing with high spatial resolution emerges as one of the promising approaches to organize cells in two and three-dimensional patterns to enable the study the geometry influence in these interactions. In particular, laser assisted bio-printing techniques using sub-nanosecond laser sources have better characteristics for application in this field, mainly due to its higher spatial resolution, cell viability percentage and process automation. This work presents laser assisted bio-printing of antigen-presenting cells (APCs) in two-dimensional geometries, placing cellular components on a matrix previously generated on demand, permitting to test the molecular interactions between APCs and lymphocytes; as well as the generation of two-dimensional structures designed ad hoc in order to study the mechanisms of mobilization of immune system cells. The use of laser assisted bio-printing, along with APCs and lymphocytes emulate the structure of different niches of the immune system so that we can analyse functional requirement of these interaction.

  16. An immune-related gene expression atlas of the shrimp digestive system in response to two major pathogens brings insights into the involvement of hemocytes in gut immunity.

    PubMed

    Silveira, Amanda S; Matos, Gabriel M; Falchetti, Marcelo; Ribeiro, Fabio S; Bressan, Albert; Bachère, Evelyne; Perazzolo, Luciane M; Rosa, Rafael D

    2018-02-01

    Much of our current knowledge on shrimp immune system is restricted to the defense reactions mediated by the hemocytes and little is known about gut immunity. Here, we have investigated the transcriptional profile of immune-related genes in different organs of the digestive system of the shrimp Litopenaeus vannamei. First, the tissue distribution of 52 well-known immune-related genes has been assessed by semiquantitative analysis in the gastrointestinal tract (foregut, midgut and hindgut) and in the hepatopancreas and circulating hemocytes of shrimp stimulated or not with heat-killed bacteria. Then, the expression levels of 18 genes from key immune functional categories were quantified by fluorescence-based quantitative PCR in the midgut of animals experimentally infected with the Gram-negative Vibrio harveyi or the White spot syndrome virus (WSSV). Whereas the expression of some genes was induced at 48 h after the bacterial infection, any of the analyzed genes showed to be modulated in response to the virus. Whole-mount immunofluorescence assays confirmed the presence of infiltrating hemocytes in the intestines, indicating that the expression of some immune-related genes in gut is probably due to the migratory behavior of these circulating cells. This evidence suggests the participation of hemocytes in the delivery of antimicrobial molecules into different portions of the digestive system. Taken all together, our results revealed that gut is an important immune organ in L. vannamei with intimate association with hemocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Kinetic characteristics of euflammation: the induction of controlled inflammation without overt sickness behavior.

    PubMed

    Tarr, Andrew J; Liu, Xiaoyu; Reed, Nathaniel S; Quan, Ning

    2014-11-01

    We found recently that controlled progressive challenge with subthreshold levels of E. coli can confer progressively stronger resistance to future reinfection-induced sickness behavior to the host. We have termed this type of inflammation "euflammation". In this study, we further characterized the kinetic changes in the behavior, immunological, and neuroendocrine aspects of euflammation. Results show euflammatory animals only display transient and subtle sickness behaviors of anorexia, adipsia, and anhedonia upon a later infectious challenge which would have caused much more severe and longer lasting sickness behavior if given without prior euflammatory challenges. Similarly, infectious challenge-induced corticosterone secretion was greatly ameliorated in euflammatory animals. At the site of E.coli priming injections, which we termed euflammation induction locus (EIL), innate immune cells displayed a partial endotoxin tolerant phenotype with reduced expression of innate activation markers and muted inflammatory cytokine expression upon ex vivo LPS stimulation, whereas innate immune cells outside EIL displayed largely opposite characteristics. Bacterial clearance function, however, was enhanced both inside and outside EIL. Finally, sickness induction by an infectious challenge placed outside the EIL was also abrogated. These results suggest euflammation could be used as an efficient method to "train" the innate immune system to resist the consequences of future infectious/inflammatory challenges. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice

    PubMed Central

    Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.

    2014-01-01

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473

  19. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.

    PubMed

    Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G

    2014-10-15

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.

  20. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    PubMed

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.

    PubMed

    Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming

    2018-06-28

    The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.

  2. Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation.

    PubMed

    Amini-Khoei, Hossein; Mohammadi-Asl, Ali; Amiri, Shayan; Hosseini, Mir-Jamal; Momeny, Majid; Hassanipour, Mahsa; Rastegar, Mojgan; Haj-Mirzaian, Arya; Mirzaian, Arvin Haj-; Sanjarimoghaddam, Hossein; Mehr, Shahram Ejtemaei; Dehpour, Ahmad Reza

    2017-06-02

    Mother-infant contact has a critical role on brain development and behavior. Experiencing early-life adversities (such as maternal separation stress or MS in rodents) results in adaptations of neurotransmission systems, which may subsequently increase the risk of depression symptoms later in life. In this study, we show that Oxytocin (OT) exerted antioxidant and anti-inflammatory properties. Previous studies indicate that neuroinflammation and mitochondrial dysfunction are associated with the pathophysiology of depression. To investigate the antidepressant-like effects of OT, we applied MS paradigm (as a valid animal model of depression) to male mice at postnatal day (PND) 2 to PND 14 (3h daily, 9AM to 12AM) and investigated the depressive-like behaviors of these animals at PND 60 in different groups. Animals in this work were divided into 4 experimental groups: 1) saline-treated, 2) OT-treated, 3) atosiban (OT antagonist)-treated and, 4) OT+ atosiban-treated mice. We used forced swimming test (FST), splash test, sucrose preference test (SPT) and open field test (OFT) for behavioral assessment. Additionally, we used another set of animals to investigate the effects of MS and different treatments on mitochondrial function and the expression of the relevant genes for neuroinflammation. Our results showed that MS provoked depressive- like behaviors in the FST, SPT and splash test. In addition, our molecular findings revealed that MS is capable of inducing abnormal mitochondrial function and immune-inflammatory response in the hippocampus. Further, we observed that treating stressed animals with OT (intracerebroventricular, i.c.v. injection) attenuated the MS-induced depressive-like behaviors through improving mitochondrial function and decreasing the hippocampal expression of immune-inflammatory genes. In conclusion, we showed that MS-induced depressive-like behaviors in adult male mice are associated with abnormal mitochondrial function and immune-inflammatory responses in the hippocampus, and activation of OTergic system has protective effects against negative effects of MS on brain and behavior of animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Efforts to monitor Global progress on individual and community demand for immunization: Development of definitions and indicators for the Global Vaccine Action Plan Strategic Objective 2.

    PubMed

    Hickler, Benjamin; MacDonald, Noni E; Senouci, Kamel; Schuh, Holly B

    2017-06-16

    The Second Strategic Objective of the Global Vaccine Action Plan, "individuals and communities understand the value of vaccines and demand immunization as both their right and responsibility", differs from the other five in that it does not focus on supply-side aspects of immunization programs but rather on public demand for vaccines and immunization services. This commentary summarizes the work (literature review, consultations with experts, and with potential users) and findings of the UNICEF/World Health Organization Strategic Objective 2 informal Working Group on Vaccine Demand, which developed a definition for demand and indicators related to Strategic Objective 2. Demand for vaccines and vaccination is a complex concept that is not external to supply systems but rather encompasses the interaction between human behaviors and system structure and dynamics. Copyright © 2017. Published by Elsevier Ltd.

  4. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress.

    PubMed

    Hodes, Georgia E; Pfau, Madeline L; Leboeuf, Marylene; Golden, Sam A; Christoffel, Daniel J; Bregman, Dana; Rebusi, Nicole; Heshmati, Mitra; Aleyasin, Hossein; Warren, Brandon L; Lebonté, Benoit; Horn, Sarah; Lapidus, Kyle A; Stelzhammer, Viktoria; Wong, Erik H F; Bahn, Sabine; Krishnan, Vaishnav; Bolaños-Guzman, Carlos A; Murrough, James W; Merad, Miriam; Russo, Scott J

    2014-11-11

    Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.

  5. Interaction of entomopathogenic fungi with the host immune system.

    PubMed

    Qu, Shuang; Wang, Sibao

    2018-06-01

    Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Relations among Functional Systems in Behavior Analysis

    PubMed Central

    Thompson, Travis

    2007-01-01

    This paper proposes that an organism's integrated repertoire of operant behavior has the status of a biological system, similar to other biological systems, like the nervous, cardiovascular, or immune systems. Evidence from a number of sources indicates that the distinctions between biological and behavioral events is often misleading, engendering counterproductive explanatory controversy. A good deal of what is viewed as biological (often thought to be inaccessible or hypothetical) can become publicly measurable variables using currently available and developing technologies. Moreover, such endogenous variables can serve as establishing operations, discriminative stimuli, conjoint mediating events, and maintaining consequences within a functional analysis of behavior and need not lead to reductionistic explanation. I suggest that explanatory misunderstandings often arise from conflating different levels of analysis and that behavior analysis can extend its reach by identifying variables operating within a functional analysis that also serve functions in other biological systems. PMID:17575907

  7. Do infant behaviors following immunization predict attachment? An exploratory study.

    PubMed

    Horton, Rachel; Pillai Riddell, Rebecca; Moran, Greg; Lisi, Diana

    2016-01-01

    The relationship between infant behaviors during routine immunization, pre- and post-needle, and infant attachment was explored. A total of 130 parent-infant dyads were recruited from a larger longitudinal study and videotaped during routine immunization at 12 months and the Strange Situation Procedure (SSP) at 14 months. Six infant behaviors were coded for 1-minute pre-needle and 3-minutes post-needle. Attachment was operationalized according to the secure/avoidant/resistant/disorganized categories. As expected, none of the pre-needle behaviors predicted attachment. Proximity-seeking post-needle significantly discriminated attachment categorizations. Secure infants were more likely to seek proximity to caregivers post-needle in comparison with avoidant and disorganized infants. Proximity-seeking following immunization was positively correlated with proximity-seeking during the SSP and negatively correlated with avoidance and disorganization during the SSP. Infant proximity-seeking during immunization is associated with attachment security and parallels behaviors observed during the SSP. More research is needed to identify behavioral markers of disorganization.

  8. Factors and misperceptions of routine childhood immunization service uptake in Ethiopia: findings from a nationwide qualitative study

    PubMed Central

    Tadesse, Tefera; Getachew, Kinde; Assefa, Tersit; Ababu, Yohannes; Simireta, Tesfaye; Birhanu, Zewdie; Hailemichael, Yohannes

    2017-01-01

    Introduction While the routine childhood immunization program might be affected by several factors, its identification using qualitative evidence of caretakers is generally minimal. This article explores the various factors and misperceptions of routine childhood immunization service uptake in Ethiopia and provides possible recommendations to mitigate them. Methods In this study, we used a qualitative multiple case study design collecting primary data from 63 focus group discussions (FGDs) conducted with a purposefully selected sample of children's caretakers (n = 630). Results According to the results of this study, the use of routine childhood immunization is dependent on four major factors: caretakers' behavior, family characteristics, information and communication and immunization service system. In addition, the participants had some misperceptions about routine childhood immunization. For example, immunization should be taken when the child gets sick and a single dose vaccine is enough for a child. These factors and misperceptions are complex and sometimes context-specific and vary between categories of caretakers. Conclusion Our interpretations suggest that no single factor affects immunization service uptake alone in a unique way. Rather, it is the synergy among the factors that has a collective influence on the childhood immunization system. Therefore, intervention efforts should target these multiple factors simultaneously. Importantly, this study recommends improving the quality of existing childhood immunization services and building awareness among caretakers as crucial components. PMID:29675124

  9. Toll-like receptor signaling and stages of addiction.

    PubMed

    Crews, Fulton T; Walter, T Jordan; Coleman, Leon G; Vetreno, Ryan P

    2017-05-01

    Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.

  10. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation.

    PubMed

    André, Caroline; Dinel, Anne-Laure; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2014-10-01

    Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated conditions and enhances activation of neurobiological mechanisms underlying depression after immune stimulation. They suggest therefore that obesity, and possibly obesity-associated inflammatory priming, may represent a vulnerability state to immune-mediated depressive symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera)

    PubMed Central

    2012-01-01

    Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens. PMID:23072398

  12. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera).

    PubMed

    Richard, Freddie-Jeanne; Holt, Holly L; Grozinger, Christina M

    2012-10-16

    Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens.

  13. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    PubMed

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  14. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  15. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System.

    PubMed

    Montesinos, Jorge; Alfonso-Loeches, Silvia; Guerri, Consuelo

    2016-11-01

    The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated. Copyright © 2016 by the Research Society on Alcoholism.

  16. The Role of the Immune System in Autism Spectrum Disorder

    PubMed Central

    Meltzer, Amory; Van de Water, Judy

    2017-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment. PMID:27534269

  17. Malathion.

    ERIC Educational Resources Information Center

    Brenner, Loretta

    1992-01-01

    Discusses research findings about malathion, a widely used insecticide, concerning potential for human exposure; how malathion works and is used; toxicity; carcinogenicity; mutagenicity; associated birth defects; reproductive effects; effects on vision, diet, behavior, and immune systems; contaminants and analogues, synergists, residues, inert…

  18. Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C)

    PubMed Central

    Wu, Wei-Li

    2016-01-01

    Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia. PMID:27078638

  19. Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C).

    PubMed

    Chow, Ke-Huan; Yan, Zihao; Wu, Wei-Li

    2016-03-25

    Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia.

  20. Effect of Pain Management on Immunization Efficacy in Mice

    PubMed Central

    Kolstad, April M; Rodriguiz, Ramona M; Kim, Caroline J; Hale, Laura P

    2012-01-01

    Immunization with complete Freund adjuvant (CFA) or incomplete Freund adjuvant (IFA) is commonly viewed as painful, yet rodents may not receive analgesics due to concerns that these drugs affect the desired immune responses. Here we tested the hypothesis that pain associated with immunization with CFA or IFA in mice can be relieved without compromising the effectiveness of the immune response. After subcutaneous immunization in the leg with antigen in CFA or IFA, mice were assessed for signs of pain by using behavioral tests, including unrestricted locomotion in an open field, forced running on an automated treadmill, and voluntary wheel running. Effects of the analgesics acetaminophen, meloxicam, and buprenorphine on behavioral and antibody responses were assessed after primary and secondary immunization with the model antigen ovalbumin and after repeated immunization with a limiting dose of recombinant protective antigen from Bacillus anthracis. Open field activity and the distance traveled during forced gait analysis and voluntary wheel running both decreased after immunization. Treatment with each of the analgesics normalized some but not all of these behaviors but did not decrease the mean or maximal antibody titer after primary or repeated immunization with a moderate dose of ovalbumin or after repeated immunization with a limiting dose of protective antigen. In summary, after immunization with CFA or IFA, mice showed behavioral responses suggestive of pain. Acetaminophen, meloxicam, and buprenorphine attenuated these effects without decreasing antibody responses. Therefore, the use of these analgesics for managing rodent pain associated with CFA- or IFA-containing vaccines can be encouraged. PMID:23043810

  1. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  2. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms

    PubMed Central

    Poon, Kinning; Leibowitz, Sarah F.

    2016-01-01

    Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes. PMID:27148536

  3. Psychoneuroimmunology-developments in stress research.

    PubMed

    Straub, Rainer H; Cutolo, Maurizio

    2018-03-01

    Links between the central nervous stress system and peripheral immune cells in lymphoid organs have been detailed through 50 years of intensive research. The brain can interfere with the immune system, where chronic psychological stress inhibits many functions of the immune system. On the other hand, chronic peripheral inflammation-whether mild (during aging and psychological stress) or severe (chronic inflammatory diseases)-clearly interferes with brain function, leading to disease sequelae like fatigue but also to overt psychiatric illness. In recent years, it has been observed that psychological stress can be disease permissive, as in chronic inflammatory diseases, cancer, cardiovascular diseases, acute and chronic viral infections, sepsis, asthma, and others. We recognized that stress reactivity is programmed for a lifetime during a critical period between fetal life and early childhood, which then influences stress behavior and stress responses in adulthood. First phase II clinical studies, e.g., on cognitive behavioral therapy and mind-body therapies (e. g., mindfulness-based stress reduction), are available that show some benefits in stressful human diseases such as breast cancer and others. The field of psychoneuroimmunology has reached a firm ground and invites therapeutic approaches based on Good Clinical Practice phase III multicenter randomized controlled trials to influence stress responses and outcome in chronic illness.

  4. Sex, the aging immune system, and chronic disease.

    PubMed

    Gubbels Bupp, Melanie R

    2015-04-01

    The immune systems of men and women differ in significant ways, especially after puberty. In particular, females are generally more prone to autoimmunity, but experience lower rates of infections and chronic inflammatory disease. Sex hormones, genes encoded on the sex chromosomes, and gender-specific behaviors likely contribute to these differences. The aging process is associated with changes in the composition and function of the immune system and these changes may occur at an accelerated rate in men as compared to women. Moreover, after the age of menopause, the incidence of chronic inflammatory disease in women approaches or exceeds that observed in males. At the same time, the incidence of autoimmunity in post-menopausal women is decreased or equivalent to the rates observed in similarly-aged men. Additional studies addressing the influence of sex on the pathogenesis of chronic and autoimmune diseases in the aged are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Stability and oscillations in a CML model

    NASA Astrophysics Data System (ADS)

    Badralexi, Irina; Halanay, Andrei

    2017-01-01

    We capture the evolution in competition of healthy and leukemic cells in Chronic Myelogenous Leukemia (CML) taking into consideration the response of the immune system. Delay-differential equations in a Mackey-Glass approach are used. We start with the study of stability of the equilibrium points of the system. Conditions on parameters for the local stability are given. Oscillatory behaviors occur naturally in biological phenomena. Thus, we investigate the periodic behavior of solutions and we obtain conditions for periodic solutions to appear through a Hopf bifurcation.

  6. Emerging roles for the gut microbiome in autism spectrum disorder

    PubMed Central

    Vuong, Helen E.; Hsiao, Elaine Y.

    2016-01-01

    Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. While ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common co-morbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing upon signaling mechanisms for reciprocal interactions between the microbiota, immunity, gut function and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease. PMID:27773355

  7. Dynamical properties of a tumor growth system in the presence of immunization and colored cross-correlated noises

    NASA Astrophysics Data System (ADS)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2010-05-01

    We investigate the effects of the noise parameters and immunization strength β on the dynamical properties of a tumor growth system with both immunization and colored cross-correlated noises. The analytical expressions for the associated relaxation time TC and the normalized correlation function C(s) are derived by means of the projection operator method. The results indicate that: (i) TC as a function of the multiplicative noise intensity α shows resonance-like behavior, i.e. the curves of TC versus α exhibit a single-peak structure and its peak position changes with increasing correlation strength between noises λ, the autocorrelation time of multiplicative noise τ1, the autocorrelation time of additive noise τ2 and the cross-correlation time τ3. This behavior can be understood in terms of the noise-enhanced stability effect and the influence of the memory effects on it. (ii) The increasing λ, τ1, τ2 and the additive noise intensity D slow down the fluctuation decay of the tumor population, whereas the increasing τ3 and β speed it up. (iii) C(s) increases as λ, τ1, τ2 and β increase, while it decreases with τ3 increasing. Our study shows that the effects of some noise parameters on tumor growth can be modified due to the presence of the immunization effect.

  8. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  9. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  10. Searching for ancient balanced polymorphisms shared between Neanderthals and Modern Humans

    PubMed Central

    Viscardi, Lucas Henriques; Paixão-Côrtes, Vanessa Rodrigues; Comas, David; Salzano, Francisco Mauro; Rovaris, Diego; Bau, Claiton Dotto; Amorim, Carlos Eduardo G.; Bortolini, Maria Cátira

    2018-01-01

    Abstract Hominin evolution is characterized by adaptive solutions often rooted in behavioral and cognitive changes. If balancing selection had an important and long-lasting impact on the evolution of these traits, it can be hypothesized that genes associated with them should carry an excess of shared polymorphisms (trans- SNPs) across recent Homo species. In this study, we investigate the role of balancing selection in human evolution using available exomes from modern (Homo sapiens) and archaic humans (H. neanderthalensis and Denisovan) for an excess of trans-SNP in two gene sets: one associated with the immune system (IMMS) and another one with behavioral system (BEHS). We identified a significant excess of trans-SNPs in IMMS (N=547), of which six of these located within genes previously associated with schizophrenia. No excess of trans-SNPs was found in BEHS, but five genes in this system harbor potential signals for balancing selection and are associated with psychiatric or neurodevelopmental disorders. Our approach evidenced recent Homo trans-SNPs that have been previously implicated in psychiatric diseases such as schizophrenia, suggesting that a genetic repertoire common to the immune and behavioral systems could have been maintained by balancing selection starting before the split between archaic and modern humans. PMID:29658973

  11. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    PubMed

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience

    PubMed Central

    Ménard, Caroline; Pfau, Madeline L; Hodes, Georgia E; Russo, Scott J

    2017-01-01

    Diagnostic criteria for mood disorders including major depressive disorder (MDD) largely ignore biological factors in favor of behavioral symptoms. Compounding this paucity of psychiatric biomarkers is a need for therapeutics to adequately treat the 30–50% of MDD patients who are unresponsive to traditional antidepressant medications. Interestingly, MDD is highly prevalent in patients suffering from chronic inflammatory conditions, and MDD patients exhibit higher levels of circulating pro-inflammatory cytokines. Together, these clinical findings suggest a role for the immune system in vulnerability to stress-related psychiatric illness. A growing body of literature also implicates the immune system in stress resilience and coping. In this review, we discuss the mechanisms by which peripheral and central immune cells act on the brain to affect stress-related neurobiological and neuroendocrine responses. We specifically focus on the roles of pro-inflammatory cytokine signaling, peripheral monocyte infiltration, microglial activation, and hypothalamic-pituitary-adrenal axis hyperactivity in stress vulnerability. We also highlight recent evidence suggesting that adaptive immune responses and treatment with immune modulators (exogenous glucocorticoids, humanized antibodies against cytokines) may decrease depressive symptoms and thus represent an attractive alternative to the current antidepressant treatments. PMID:27291462

  13. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    PubMed

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression

    PubMed Central

    Neupane, Sudan Prasad

    2016-01-01

    Bidirectional communication links operate between the brain and the body. Afferent immune-to-brain signals are capable of inducing changes in mood and behavior. Chronic heavy alcohol drinking, typical of alcohol use disorder (AUD), is one such factor that provokes an immune response in the periphery that, by means of circulatory cytokines and other neuroimmune mediators, ultimately causes alterations in the brain function. Alcohol can also directly impact the immune functions of microglia, the resident immune cells of the central nervous system (CNS). Several lines of research have established the contribution of specific inflammatory mediators in the development and progression of depressive illness. Much of the available evidence in this field stems from cross-sectional data on the immune interactions between isolated AUD and major depression (MD). Given their heterogeneity as disease entities with overlapping symptoms and shared neuroimmune correlates, it is no surprise that systemic and CNS inflammation could be a critical determinant of the frequent comorbidity between AUD and MD. This review presents a summary and analysis of the extant literature on neuroimmune interface in the AUD–MD comorbidity. PMID:28082989

  15. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment

    PubMed Central

    Singhal, Gaurav; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods. PMID:24772064

  16. T cell deficiency leads to cognitive dysfunction: Implications for therapeutic vaccination for schizophrenia and other psychiatric conditions

    PubMed Central

    Kipnis, Jonathan; Cohen, Hagit; Cardon, Michal; Ziv, Yaniv; Schwartz, Michal

    2004-01-01

    The effects of the adaptive immune system on the cognitive performance and abnormal behaviors seen in mental disorders such as schizophrenia have never been documented. Here, we show that mice deprived of mature T cells manifested cognitive deficits and behavioral abnormalities, which were remediable by T cell restoration. T cell-based vaccination, using glatiramer acetate (copolymer-1, a weak agonist of numerous self-reactive T cells), can overcome the behavioral and cognitive abnormalities that accompany neurotransmitter imbalance induced by (+)dizocilpine maleate (MK-801) or amphetamine. The results, by suggesting that peripheral T cell deficit can lead to cognitive and behavioral impairment, highlight the importance of properly functioning adaptive immunity in the maintenance of mental activity and in coping with conditions leading to cognitive deficits. These findings point to critical factors likely to contribute to age- and AIDS-related dementias and might herald the development of a therapeutic vaccination for fighting off cognitive dysfunction and psychiatric conditions. PMID:15141078

  17. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring.

    PubMed

    Glass, Ruthy; Norton, Sara; Fox, Nicholas; Kusnecov, Alexander W

    2018-05-14

    Stimulation of the immune system during pregnancy, known as maternal immune activation (MIA), can cause long-lasting neurobiological and behavioral changes in the offspring. This phenomenon has been implicated in the etiology of developmental psychiatric disorders, such as autism and schizophrenia. Much of this evidence is predicated on animal models using bacterial agents such as LPS and/or viral mimics such as Poly I:C, both of which act through toll-like receptors. However, fewer studies have examined the role of direct activation of maternal T-cells during pregnancy using microbial agents. Bacterial superantigens, such as Staphylococcal Enterotoxin A and B (SEA; SEB), are microbial proteins that activate CD4 + T-cells and cause prominent T-cell proliferation and cytokine production. We injected pregnant and non-pregnant adult female C57BL/6 mice with 200 μg/Kg of SEA, SEB, or 0.9% saline, and measured splenic T-cell-derived cytokine concentrations (viz., IL-2, IFN-γ, IL-6, and IL-4) 2 h later; animals injected with SEA were also measured for splenic concentrations of TNF-α and IL-17A. Half of the injected pregnant animals were brought to term, and their offspring were tested on a series of behavioral tasks starting at six weeks of age (postnatal day 42 [P42]). These tasks included social interaction, the elevated plus maze (EPM), an open field and object recognition (OR) task, prepulse inhibition (PPI) of sensorimotor gating, and the Morris water maze (MWM). Results showed that SEA and SEB induced significant concentrations of all measured cytokines, and in particular IFN-γ, although cytokine responses were greater following SEA exposure. In addition, pregnancy induced an inhibitory effect on cytokine production. Behavioral results showed distinct phenotypes among offspring from SEA- or SEB-injected mothers, very likely due to differences in the magnitude of cytokines generated in response to each toxin. Offspring from SEA-injected mothers displayed modest decreases in social behavior, but increased anxiety, locomotion, interest in a novel object, and short-term spatial memory, while offspring of SEB-injected mothers only exhibited increased anxiety and locomotion. There were no deficits in PPI, which was actually pronounced in SEA and SEB offspring. Overall, the novel use of SEA and SEB as prenatal immune challenges elicited distinct behavioral profiles in the offspring that both mirrors and diverges from previous models of maternal immune activation in important ways. We conclude that superantigen-induced T-cell-mediated maternal immune activation is a valid and valuable model for studying and expanding our understanding of the effects of prenatal immune challenge on neurodevelopmental and behavioral alterations in offspring. Published by Elsevier Inc.

  18. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α1

    PubMed Central

    Duhart, José M.; Leone, María Juliana; Paladino, Natalia; Evans, Jennifer A.; Castanon-Cervantes, Oscar; Davidson, Alec J.; Golombek, Diego A.

    2013-01-01

    The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei of the hypothalamus (SCN), responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the central nervous system and there is growing evidence that points towards a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2luc knock in mice altered both the phase and amplitude of PER2 expression rhythms, in a phase dependent manner. Furthermore, conditioned media from SCN astrocytes cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, that was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNF-Receptor-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation. PMID:24062487

  19. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system.

    PubMed

    Godbout, Jonathan P; Moreau, Maïté; Lestage, Jacques; Chen, Jing; Sparkman, Nathan L; O'Connor, Jason; Castanon, Nathalie; Kelley, Keith W; Dantzer, Robert; Johnson, Rodney W

    2008-09-01

    Exposure to peripheral infections may be permissive to cognitive and behavioral complications in the elderly. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness behavior in aged BALB/c mice. Because LPS also causes depressive behavior, the purpose of this study was to determine whether aging is associated with an exacerbated depressive-like response. We confirmed that LPS (0.33 mg/kg intraperitoneal) induced a protracted sickness response in aged mice with reductions in locomotor and feeding activities 24 and 48 h postinjection, when young adults had fully recovered. When submitted to the forced swim test 24 h post-LPS, both young adult and aged mice exhibited an increased duration of immobility. However, when submitted to either the forced swim test or the tail suspension test 72 h post-LPS, an increased duration of immobility was evident only in aged mice. This prolonged depressive-like behavior in aged LPS-treated mice was associated with a more pronounced induction of peripheral and brain indoleamine 2,3-dioxygenase and a markedly higher turnover rate of brain serotonin (as measured by the ratio of 5-hydroxy-indoleacetic acid over 5-hydroxy-tryptamine) compared to young adult mice at 24 post-LPS injection. These results provide the first evidence that age-associated reactivity of the brain cytokine system could play a pathophysiological role in the increased prevalence of depression observed in the elderly.

  20. Twenty Years of Research on Cytokine-Induced Sickness Behavior*

    PubMed Central

    Dantzer, Robert; Kelley, Keith W.

    2007-01-01

    Cytokine-induced sickness behavior was recognized within a few years of the cloning and expression of interferon-α, IL-1 and IL-2, which occurred around the time that the first issue of Brain, Behavior, and Immunity was published in 1987. Phase I clinical trials established that injection of recombinant cytokines into cancer patients led to a variety of psychological disturbances. It was subsequently shown that physiological concentrations of proinflammatory cytokines that occur after infection act in the brain to induce common symptoms of sickness, such as loss of appetite, sleepiness, withdrawal from normal social activities, fever, aching joints and fatigue. This syndrome was defined as sickness behavior and is now recognized to be part of a motivational system that reorganizes the organism's priorities to facilitate recovery from the infection. Cytokines convey to the brain that an infection has occurred in the periphery, and this action of cytokines can occur via the traditional endocrine route via the blood or by direct neural transmission via the afferent vagus nerve. The finding that sickness behavior occurs in all mammals and birds indicates that communication between the immune system and brain has been evolutionarily conserved and forms an important physiological adaptive response that favors survival of the organism during infections. The fact that cytokines act in the brain to induce physiological adaptations that promote survival has led to the hypothesis that inappropriate, prolonged activation of the innate immune system may be involved in a number of pathological disturbances in the brain, ranging from Alzheimers' disease to stroke. Conversely, the newly-defined role of cytokines in a wide variety of systemic co-morbid conditions, ranging from chronic heart failure to obesity, may begin to explain changes in the mental state of these subjects. Indeed, the newest findings of cytokine actions in the brain offer some of the first clues about the pathophysiology of certain mental health disorders, including depression. The time is ripe to begin to move these fundamental discoveries in mice to man, and some of the pharmacological tools are already available to antagonize the detrimental actions of cytokines. PMID:17088043

  1. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  2. Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs.

    PubMed

    Warburton, Elizabeth M; Kam, Michael; Bar-Shira, Enav; Friedman, Aharon; Khokhlova, Irina S; Koren, Lee; Asfur, Mustafa; Geffen, Eli; Kiefer, Daniel; Krasnov, Boris R; Degen, A Allan

    2016-09-01

    Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.

  3. The effects of central pro-and anti-inflammatory immune challenges on depressive-like behavior induced by chronic forced swim stress in rats.

    PubMed

    Pan, Yuqin; Lin, Wenjuan; Wang, Weiwen; Qi, Xiaoli; Wang, Donglin; Tang, Mingming

    2013-06-15

    Although increasing evidence demonstrates that both chronic stressors and inflammatory immune activation contribute to pathophysiology and behavioral alterations associated with major depression, little is known about the interaction effect of central inflammatory immune activation and stress on depressive-like behavior. Our previous work has shown that 14-day chronic forced swim stress induces significant depressive-like behavior. The present investigation assessed whether pro-inflammatory cytokine and anti-inflammatory cytokine challenges have differential interaction effect on depressive-like behavior induced by chronic forced swim stress in rats. The pro-inflammatory and anti-inflammatory immune challenges were achieved respectively by central administration of lipopolysaccharide (LPS), a pro-inflammatory cytokine inducer, and interleukin-10 (IL-10), an anti-inflammatory cytokine. It was found that either central LPS treatment alone or chronic forced swim stress alone significantly induced depressive-like behavior, including reduced body weight gain, reduced saccharin preference and reduced locomotor activity. However, there was no significant synergistic or additive effect of central LPS treatment and stress on depressive-like behavior. LPS treatment did not exacerbate the depressive-like behavior induced by forced swim stress. Nevertheless, IL-10 reversed depressive-like behavior induced by forced swim stress, a finding indicating that IL-10 has antidepressant effect on behavioral depression induced by stress. The present findings provide new insight into the complexity of the immunity-inflammation hypothesis of depression. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Intravital imaging of multicolor-labeled tumor immune microenvironment through skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2015-03-01

    Tumor immune microenvironment became very important for the tumor immunotherapy. There were several kinds of immune cells in tumor stromal, and they played very different roles in tumor growth. In order to observe the behaviors of multiple immune cells in tumor microenvironment and the interaction between immune cells and tumor cells at the same time, we generated a multicolor-labeled tumor immune microenvironment model. The tumor cells and immune cells were labeled by different fluorescent proteins. By using of skin-fold window chamber implanted into mice and intravital imaging technology, we could dynamically observe the different immune cells in tumor microenvironment. After data analysis from the video, we could know the behavior of TILs, DCs and Tregs in tumor immune microenvironment; furthermore, we could know these immune cells play different roles in the tumor microenvironment.

  5. The scent of disease: human body odor contains an early chemosensory cue of sickness.

    PubMed

    Olsson, Mats J; Lundström, Johan N; Kimball, Bruce A; Gordon, Amy R; Karshikoff, Bianka; Hosseini, Nishteman; Sorjonen, Kimmo; Olgart Höglund, Caroline; Solares, Carmen; Soop, Anne; Axelsson, John; Lekander, Mats

    2014-03-01

    Observational studies have suggested that with time, some diseases result in a characteristic odor emanating from different sources on the body of a sick individual. Evolutionarily, however, it would be more advantageous if the innate immune response were detectable by healthy individuals as a first line of defense against infection by various pathogens, to optimize avoidance of contagion. We activated the innate immune system in healthy individuals by injecting them with endotoxin (lipopolysaccharide). Within just a few hours, endotoxin-exposed individuals had a more aversive body odor relative to when they were exposed to a placebo. Moreover, this effect was statistically mediated by the individuals' level of immune activation. This chemosensory detection of the early innate immune response in humans represents the first experimental evidence that disease smells and supports the notion of a "behavioral immune response" that protects healthy individuals from sick ones by altering patterns of interpersonal contact.

  6. Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? What Really Constitutes the Study of "Systems Biology" and How Might Such an Approach Facilitate Vaccine Design.

    PubMed

    Germain, Ronald N

    2017-10-16

    A dichotomy exists in the field of vaccinology about the promise versus the hype associated with application of "systems biology" approaches to rational vaccine design. Some feel it is the only way to efficiently uncover currently unknown parameters controlling desired immune responses or discover what elements actually mediate these responses. Others feel that traditional experimental, often reductionist, methods for incrementally unraveling complex biology provide a more solid way forward, and that "systems" approaches are costly ways to collect data without gaining true insight. Here I argue that both views are inaccurate. This is largely because of confusion about what can be gained from classical experimentation versus statistical analysis of large data sets (bioinformatics) versus methods that quantitatively explain emergent properties of complex assemblies of biological components, with the latter reflecting what was previously called "physiology." Reductionist studies will remain essential for generating detailed insight into the functional attributes of specific elements of biological systems, but such analyses lack the power to provide a quantitative and predictive understanding of global system behavior. But by employing (1) large-scale screening methods for discovery of unknown components and connections in the immune system ( omics ), (2) statistical analysis of large data sets ( bioinformatics ), and (3) the capacity of quantitative computational methods to translate these individual components and connections into models of emergent behavior ( systems biology ), we will be able to better understand how the overall immune system functions and to determine with greater precision how to manipulate it to produce desired protective responses. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Alcohol, aging, and innate immunity.

    PubMed

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  8. Immune Response to a Variable Pathogen: A Stochastic Model with Two Interlocked Darwinian Entities

    PubMed Central

    Kuhn, Christoph

    2012-01-01

    This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction. PMID:23424603

  9. Immune response to a variable pathogen: a stochastic model with two interlocked Darwinian entities.

    PubMed

    Kuhn, Christoph

    2012-01-01

    This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction.

  10. Social Patterning of Cumulative Biological Risk by Education and Income Among African Americans

    PubMed Central

    Diez Roux, Ana V.; Gebreab, Samson Y.; Wyatt, Sharon B.; Dubbert, Patricia M.; Sarpong, Daniel F.; Sims, Mario; Taylor, Herman A.

    2012-01-01

    Objectives. We examined the social patterning of cumulative dysregulation of multiple systems, or allostatic load, among African Americans adults. Methods. We examined the cross-sectional associations of socioeconomic status (SES) with summary indices of allostatic load and neuroendocrine, metabolic, autonomic, and immune function components in 4048 Jackson Heart Study participants. Results. Lower education and income were associated with higher allostatic load scores in African American adults. Patterns were most consistent for the metabolic and immune dimensions, less consistent for the autonomic dimension, and absent for the neuroendocrine dimension among African American women. Associations of SES with the global allostatic load score and the metabolic and immune domains persisted after adjustment for behavioral factors and were stronger for income than for education. There was some evidence that the neuroendocrine dimension was inversely associated with SES after behavioral adjustment in men, but the immune and autonomic components did not show clear dose–response trends, and we observed no associations for the metabolic component. Conclusions. Findings support our hypothesis that allostatic load is socially patterned in African American women, but this pattern is less consistent in African American men. PMID:22594727

  11. NLRP3 inflammasome activation mediates fatigue-like behaviors in mice via neuroinflammation.

    PubMed

    Zhang, Ziteng; Ma, Xiujuan; Xia, Zhenna; Chen, Jikuai; Liu, Yangang; Chen, Yongchun; Zhu, Jiangbo; Li, Jinfeng; Yu, Huaiyu; Zong, Ying; Lu, Guocai

    2017-09-01

    Numerous experimental and clinical studies have suggested that the interaction between the immune system and the brain plays an important role in the pathophysiology of chronic fatigue syndrome (CFS). The NLRP3 inflammasome is an important part of the innate immune system. This complex regulates proinflammatory cytokine interleukin-1β (IL-1β) maturation, which triggers different kinds of immune-inflammatory reactions. We employed repeated forced swims to establish a model of CFS in mice. NLRP3 knockout (KO) mice were also used to explore NLRP3 inflammasome activation in the mechanisms of CFS, using the same treatment. After completing repeated swim tests, the mice displayed fatigue-like behaviors, including locomotor activity and reduced fall-off time on the rota-rod test, which was accompanied by significantly higher mature IL-1β level in the prefrontal cortex (PFC) and malondialdehyde (MDA) level in serum. We also found increased NLRP3 protein expression, NLRP3 inflammasome formation and increased mature IL-1β production in the PFC, relative to untreated mice. The NLRP3 KO mice displayed significantly moderated fatigue behaviors along with decreased PFC and serum IL-1β levels under the same treatment. These findings demonstrated the involvement of NLRP3 inflammasome activation in the mechanism of swimming-induced fatigue. Future therapies targeting the NLRP3/IL-1β pathway may have significant potential for fatigue prevention and treatment. Copyright © 2017. Published by Elsevier Ltd.

  12. Feeding the beast: can microglia in the senescent brain be regulated by diet?

    PubMed

    Johnson, Rodney W

    2015-01-01

    Microglial cells, resident macrophages in the central nervous system (CNS), are relatively quiescent but can respond to signals from the peripheral immune system and induce neuroinflammation. In aging, microglia tend to transition to the M1 pro-inflammatory state and become hypersensitive to messages emerging from immune-to-brain signaling pathways. Thus, whereas in younger individuals where microglia respond to signals from the peripheral immune system and induce a well-controlled neuroinflammatory response that is adaptive (e.g., when well controlled, fever and sickness behavior facilitate recovery from infection), in older individuals with an infection, microglia overreact and produce excessive levels of inflammatory cytokines causing behavioral pathology including cognitive dysfunction. Importantly, recent studies indicate a number of naturally occurring bioactive compounds present in certain foods have anti-inflammatory properties and are capable of mitigating brain microglial cells. These include, e.g., flavonoid and non-flavonoid compounds in fruits and vegetables, and n-3 polyunsaturated fatty acids (PUFA) in oily fish. Thus, dietary bioactives have potential to restore the population of microglial cells in the senescent brain to a more quiescent state. The pragmatic concept to constrain microglia through dietary intervention is significant because neuroinflammation and cognitive deficits are co-morbid factors in many chronic inflammatory diseases. Controlling microglial cell reactivity has important consequences for preserving adult neurogenesis, neuronal structure and function, and cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Induction of innate immune genes in brain create the neurobiology of addiction.

    PubMed

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction

    PubMed Central

    Crews, FT; Zou, Jian; Qin, Liya

    2013-01-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143

  15. Host response mechanisms in periodontal diseases

    PubMed Central

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors. PMID:26221929

  16. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory.

    PubMed

    Hung, Yun-Fen; Chen, Chiung-Ya; Li, Wan-Chen; Wang, Ting-Fang; Hsueh, Yi-Ping

    2018-06-07

    The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Autoimmune Manifestations in the 3xTg-AD Model of Alzheimer's Disease

    PubMed Central

    Marchese, Monica; Cowan, David; Head, Elizabeth; Ma, Donglai; Karimi, Khalil; Ashthorpe, Vanessa; Kapadia, Minesh; Zhao, Hui; Davis, Paulina; Sakic, Boris

    2015-01-01

    Background Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. Objective The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. Methods A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. Results Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory disease, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired “cognitive” flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. Conclusion The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD. PMID:24150111

  18. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Zhao, Yunli; Fang, Jianpeng; Wang, Dayong

    2014-05-01

    Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00699b

  19. Microbial endocrinology: the interplay between the microbiota and the endocrine system.

    PubMed

    Neuman, Hadar; Debelius, Justine W; Knight, Rob; Koren, Omry

    2015-07-01

    The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Secure VM for Monitoring Industrial Process Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less

  1. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    PubMed

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Gender-Dependent Effects of Maternal Immune Activation on the Behavior of Mouse Offspring

    PubMed Central

    Xuan, Ingrid C. Y.; Hampson, David R.

    2014-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the “maternal immune activation” model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS) to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC) to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior. PMID:25111339

  3. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Ping; Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Rd., Shanghai 200241; Ruan, Shigui, E-mail: ruan@math.miami.edu

    2014-06-15

    In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical valuesmore » and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations.« less

  4. Protein bio-corona: critical issue in immune nanotoxicology.

    PubMed

    Neagu, Monica; Piperigkou, Zoi; Karamanou, Konstantina; Engin, Ayse Basak; Docea, Anca Oana; Constantin, Carolina; Negrei, Carolina; Nikitovic, Dragana; Tsatsakis, Aristidis

    2017-03-01

    With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.

  5. Impact of Pharmacist Immunization Authority on Seasonal Influenza Immunization Rates Across States.

    PubMed

    Drozd, Edward M; Miller, Laura; Johnsrud, Michael

    2017-08-01

    The goal of this study was to investigate the impact on immunization rates of policy changes that allowed pharmacists to administer influenza immunizations across the United States. Influenza immunization rates across states were compared before and after policy changes permitting pharmacists to administer influenza immunizations. The study used Behavioral Risk Factor Surveillance System (BRFSS) survey data on influenza immunization rates between 2003 and 2013. Logistic regression models were constructed and incorporated adjustments for the complex sample design of the BRFSS to predict the likelihood of a person receiving an influenza immunization based on various patient health, demographic, and access to care factors. Overall, as states moved to allow pharmacists to administer influenza immunizations, the odds that an adult resident received an influenza immunization rose, with the effect increasing over time. The average percentage of people receiving influenza immunizations in states was 35.1%, rising from 32.2% in 2003 to 40.3% in 2013. The policy changes were associated with a long-term increase of 2.2% to 7.6% in the number of adults aged 25 to 59 years receiving an influenza immunization (largest for those aged 35-39 years) and no significant change for those younger or older. These findings suggest that pharmacies and other nontraditional settings may offer accessible venues for patients when implementing other public health initiatives. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Perinatal inflammation and adult psychopathology: From preclinical models to humans.

    PubMed

    Depino, Amaicha Mara

    2018-05-01

    Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impact of an Immunization Education Program on Middle School Adolescents

    ERIC Educational Resources Information Center

    Glik, Deborah; Macpherson, Fiona; Todd, Wendy; Stone, Kathleen; Ang, Alfonso; Jones, Marcy Connell

    2004-01-01

    Objectives : To raise middle school student awareness, attitudes, and proactive behaviors about immunization, and to increase immunization rates among middle school students through implementation of a comprehensive integrated immunization promotion curriculum ( Immunization Plus! ) Methods: Evaluation used a quasi-experimental non-equivalent…

  8. Assessing providers' vaccination behaviors during routine immunization in India.

    PubMed

    Cohen, Megan A; Gargano, Lisa M; Thacker, Naveen; Choudhury, Panna; Weiss, Paul S; Arora, Manisha; Orenstein, Walter A; Omer, Saad B; Hughes, James M

    2015-08-01

    Progress has been made toward improving routine immunization coverage in India, but universal coverage has not been achieved. Little is known about how providers' vaccination behaviors affect coverage rates. The purpose of this study was to identify provider behaviors that served as barriers to vaccination that could lead to missed opportunities to vaccinate. We conducted a study of health-care providers' vaccination behaviors during clinic visits for children <3 years of age. Information on provider behaviors was collected through parent report and direct observation. Compared with illness visits, parents were eight times more likely to report vaccination status was verified (p < 0.001) and three times more likely to report receiving counseling on immunization (p = 0.022) during vaccination visits. Training of all vaccination practitioners should focus on behaviors such as the necessity of verifying vaccination status regardless of visit type, stressing the importance of counseling parents on immunization and emphasizing what is a valid contraindication to vaccination. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Music Therapy as Procedural Support for Young Children Undergoing Immunizations: A Randomized Controlled Study.

    PubMed

    Yinger, Olivia Swedberg

    2016-01-01

    Children undergoing routine immunizations frequently experience severe distress, which may be improved through music therapy as procedural support. The purpose of this study was to examine effects of live, cognitive-behavioral music therapy during immunizations on (a) the behaviors of children, their parents, and their nurses; and (b) parental perceptions. Participants were children between the ages of 4 and 6 years (N = 58) who underwent immunizations, their parents (N = 62), and the nurses who administered the procedure (N = 19). Parent/child dyads were randomly assigned to receive music therapy (n = 29) or standard care (n = 29) during their immunization. Afterward, each parent rated their child's level of pain and the distress their child experienced compared to previous medical experiences. All procedures were videotaped and later viewed by trained observers, who classified child, parent, and nurse behaviors using the categories of the Child-Adult Medical Procedure Interaction Scale-Revised (CAMPIS-R). Significant differences between the music therapy and control groups were found in rates of child coping and distress behaviors and parent distress-promoting behaviors. Parents of children who received music therapy reported that their child's level of distress was less than during previous medical experiences, whereas parents of children in the control group reported that their child's level of distress was greater. No significant differences between groups were found in parents' ratings of children's pain or in rates of nurse behavior. Live, cognitive-behavioral music therapy has potential benefits for young children and their parents during immunizations. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish.

    PubMed

    Williams, Julie A; Sathyanarayanan, Sriram; Hendricks, Joan C; Sehgal, Amita

    2007-04-01

    The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.

  11. Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish

    PubMed Central

    Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita

    2010-01-01

    Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783

  12. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    PubMed

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  13. Emerging literature in the Microbiota-Brain Axis and Perinatal Mood and Anxiety Disorders.

    PubMed

    Rackers, Hannah S; Thomas, Stephanie; Williamson, Kelsey; Posey, Rachael; Kimmel, Mary C

    2018-05-17

    Perinatal Mood and Anxiety Disorders (PMAD) are common and can cause significant morbidity and mortality for mother and child. A healthy perinatal period requires significant adaptations; however, systems can become imbalanced resulting in depressive and anxiety symptoms. The interface between the microbiome, the immune system, and the stress system may be a model for understanding mechanisms underlying PMAD. Emerging literature from general populations regarding immune, hormone, and HPA axis changes in relation to the microbiome combined with literature on immune, gonadotropin, and stress systems in the perinatal period provides a background. We systematically investigated literature in the developing field of the microbiome in relation to PMAD. Our inclusion criteria were 1) reporting measure of maternal mood, stress, or anxious or depressed behavior; 2) in the perinatal period, defined as pregnancy through one year postpartum; and 3) reporting measure of maternal microbiome including manipulations of the microbiome through prebiotics, probiotics, or interventions with microbial byproducts. The review identified research studying associations between stress and maternal microbiome; dietary impacts on microbial composition, mood, and stress; and the relationship between the microbiome and the immune system through immunoregulatory mechanisms. Important themes identified include: the importance of studying the maternal microbiome and measures of stress, anxiety, and depression and that multi-hit models will be needed as research strives to determine the effects of multiple mechanisms working in concert. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Adult vaccination: Now is the time to realize an unfulfilled potential

    PubMed Central

    Tan, Litjen

    2015-01-01

    Each year, vaccine-preventable diseases kill thousands of adults, both in the United States and across the planet, causing a significant human toll and severe economic burden on the world's healthcare systems. In the United States, while immunization is recognized as one of the most effective primary prevention services that improves health and well-being, adult immunization rates remain low and large gaps exist between national adult immunization goals and actual adult immunization rates. Closing these gaps requires a commitment by national leaders to a multifaceted national strategy to: (1) establish the value of adult vaccines in the eyes of the public, payers, policy makers, and health care professionals; (2) improve access to recommended adult vaccinations by improving the adult vaccine infrastructure in the United States and developing public-private partnerships to facilitate effective immunization behaviors; and (3) ensure fair and appropriate payment for adult immunization. Many of the situations that result in low adult immunizations rates in the United States also exist in many other countries around the world. Successful strategies to improve adult immunization coverage rates will result in reductions in morbidity, mortality, and healthcare costs. All medical and public health stakeholders must now collaborate to realize the significant health benefits that come with a strong adult immunization program. PMID:26091249

  15. The Bidirectional Relationship between Sleep and Immunity against Infections

    PubMed Central

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  16. The Bidirectional Relationship between Sleep and Immunity against Infections.

    PubMed

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  17. Stress conditioning in mice: alterations in immunity and tumor growth.

    PubMed

    Benaroya-Milshtein, Noa; Hollander, Nurit; Apter, Alan; Yaniv, Isaac; Pick, Chaim G

    2011-05-01

    The neuroendocrine and autonomic nervous systems are known regulators of brain-immune interaction. However, the functional significance of this interaction under stress is not fully understood. We investigated the effect of a stress paradigm by applying electric foot shock followed by three reminders, on behavior, immune parameters, and lymphoma tumor growth. Male C3H mice were divided into two groups: Group 1-exposed to electric foot shock followed by three reminders, and Group 2-untreated (controls). Sets of mice underwent the elevated plus maze, staircase, and hot plate tests. After foot shock, natural killer (NK) cell activity, and lymphocyte proliferation were measured. In addition, sets of mice were either vaccinated twice with B-cell lymphoma 38C-13 immunoglobulin for determination of anti-idiotype (Id) antibodies in sera, or inoculated with tumor cells and monitored for tumor development and survival time. Mice exposed to electric foot shock followed by the three reminders had higher NK cell activity, levels of anti-Id antibodies, and a higher proliferation rate of splenocytes in response to mitogens, than the control mice. The exposed mice also showed attenuated tumor growth. Thus, the stress paradigm inhibited tumor development and lead to some immune changes that were not accompanied by behavioral changes.

  18. Endocrine, immune, and behavioral effects of aldicarb (carbamate), atrazine (triazine) and nitrate (fertilizer) mixtures at groundwater concentrations.

    PubMed

    Porter, W P; Jaeger, J W; Carlson, I H

    1999-01-01

    This paper describes the results of 5 years of research on interactive effects of mixtures of aldicarb, atrazine, and nitrate on endocrine, immune, and nervous system function. The concentrations of chemicals used were the same order of magnitude as current maximum contaminant levels (MCLs) for all three compounds. Such levels occur in groundwater across the United States. Dosing was through voluntary consumption of drinking water. We used fractional and full factorial designs with center replicates to determine multifactor effects. We used chronic doses in experiments that varied in duration from 22 to 103 days. We tested for changes in thyroid hormone levels, ability to make antibodies to foreign proteins, and aggression in wild deer mice, Peromyscus maniculatus, and white outbred Swiss Webster mice, Mus musculus, ND4 strain. Endocrine, immune, and behavior changes occurred due to doses of mixtures, but rarely due to single compounds at the same concentrations. Immune assay data suggest the possibility of seasonal effects at low doses. We present a multiple-level model to help interpret the data in the context of human health and biological conservation concerns. We discuss six testing deficiencies of currently registered pesticides, and suggest areas of human health concerns if present trends in pesticide use continue.

  19. Role of the endocannabinoid system in the neuroendocrine responses to inflammation.

    PubMed

    De Laurentiis, Andrea; Araujo, Hugo A; Rettori, Valeria

    2014-01-01

    A few years ago the endocannabinoid system has been recognized as a major neuromodulatory system whose main functions are to exert and maintain the body homeostasis. Several different endocannabinoids are synthesized in a broad class of cell types, including those in the brain and the immune system; they bind to cannabinoid G-protein-coupled receptors, having profound effects on a variety of behavioral, neuroendocrine and autonomic functions. The coordinated neural, immune, behavioral and endocrine responses to inflammation are orchestrated to provide an important defense against infections and help homeostasis restoration in the body. These responses are executed and controlled mainly by the hypothalamic-pituitary adrenal axis. Also, the hypothalamic-neurohypophyseal system is essential for survival and plays a role recovering the homeostasis under a variety of stress conditions, including inflammation and infection. Since the endocannabinoid system components are present at sites involved in the hypothalamic-pituitary axis regulation, several studies were performed in order to investigate the endocannabinoid-mediated neurotransmitters and hormones secretion under physiological and pathological conditions. In the present review we focused on the endocannabinoids actions on the neuroendocrine response to inflammation and infection. We provide a detailed overview of the current understanding of the role of the endocannabinoid system in the recovering of homeostasis as well as potential pharmacological therapies based on the manipulation of endocannabinoid system components that could provide novel treatments for a wide range of disorders.

  20. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  1. Characterization of sleep-pattern and neuro-immune-endocrine markers at 24 hour post-injection of a single low dose of lipopolysaccharide in male Wistar rats.

    PubMed

    Nachón-García, Francisco; Hurtado-Alvarado, Gabriela; Acosta-Hernández, Mario E; Peña-Escudero, Carolina; Priego-Fernández, Sergio; Alvarez-Herrera, Samantha; Becerril-Villanueva, Enrique; Pérez-Sánchez, Gilberto; Pavón, Lenin; García-García, Fabio

    2018-07-15

    The long-term effect of immune system activation by a low dose of lipopolysaccharide on neuro-immune-endocrine regulation is unclear. Sleep, neurotransmitter concentrations, TNF-α, and corticosterone levels were evaluated in male Wistar rats implanted with conventional sleep recordings. In this work, we found that REM sleep was reduced in the first 4 h post-injection, without affecting the total sleep time, while adrenaline concentration was reduced in the hippocampus at 24 h post-injection of LPS. Our results demonstrated that, although the acute immune response was not evident 24 h after the injection of LPS, it was able to promote the reduction of AD in the hippocampus, which may explain in part the depressive behavior reported in rodents following LPS administration. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Adoptive T-cell therapy for cancer: The era of engineered T cells.

    PubMed

    Bonini, Chiara; Mondino, Anna

    2015-09-01

    Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A cleanroom sleeping environment's impact on markers of oxidative stress, immune dysregulation, and behavior in children with autism spectrum disorders.

    PubMed

    Faber, Scott; Zinn, Gregory M; Boggess, Andrew; Fahrenholz, Timothy; Kern, John C; Kingston, H M Skip

    2015-03-19

    An emerging paradigm suggests children with autism display a unique pattern of environmental, genetic, and epigenetic triggers that make them susceptible to developing dysfunctional heavy metal and chemical detoxification systems. These abnormalities could be caused by alterations in the methylation, sulfation, and metalloprotein pathways. This study sought to evaluate the physiological and behavioral effects of children with autism sleeping in an International Organization for Standardization Class 5 cleanroom. Ten children with autism, ages 3-12, slept in a cleanroom for two weeks to evaluate changes in toxin levels, oxidative stress, immune dysregulation, and behavior. Before and after the children slept in the cleanroom, samples of blood and hair and rating scale scores were obtained to assess these changes. Five children significantly lowered their concentration of oxidized glutathione, a biomarker of oxidative stress. The younger cohort, age 5 and under, showed significantly greater mean decreases in two markers of immune dysregulation, CD3% and CD4%, than the older cohort. Changes in serum magnesium, influencing neuronal regulation, correlated negatively while changes in serum iron, affecting oxygenation of tissues, correlated positively with age. Changes in serum benzene and PCB 28 concentrations showed significant negative correlations with age. The younger children demonstrated significant improvements on behavioral rating scales compared to the older children. In a younger pair of identical twins, one twin showed significantly greater improvements in 4 out of 5 markers of oxidative stress, which corresponded with better overall behavioral rating scale scores than the other twin. Younger children who slept in the cleanroom altered elemental levels, decreased immune dysregulation, and improved behavioral rating scales, suggesting that their detoxification metabolism was briefly enhanced. The older children displayed a worsening in behavioral rating scale performance, which may have been caused by the mobilization of toxins from their tissues. The interpretation of this exploratory study is limited by lack of a control group and small sample size. The changes in physiology and behavior noted suggest that performance of larger, prospective controlled studies of exposure to nighttime or 24 hour cleanroom conditions for longer time periods may be useful for understanding detoxification in children with autism. Clinical Trial Registration Number NCT02195401 (Obtained July 18, 2014).

  4. Is performance of influenza vaccination in the elderly related to treating physician's self immunization and other physician characteristics?

    PubMed

    Abramson, Zvi Howard; Levi, Orit

    2008-11-01

    Studies have demonstrated associations between physicians' characteristics, specifically personal health behavior, and their reported prevention counseling behavior. This study, performed in 2007, examines associations between patients getting immunized against influenza and characteristics of their primary care physicians, including whether they themselves were immunized. Computerized data were extracted on 29,447 patients aged 65 years and over registered in the largest health maintenance organization (HMO) in the Jerusalem area and on their primary care physicians. Further physician data were collected from a questionnaire distributed to a large sample of physicians. Logistic regression was performed with patient immunization as the dependent variable. Patients were more likely to get vaccinated if their physician was vaccinated and if the physician was female or a specialist or had studied in West Europe or America. Patients of physicians who reported exercising regularly and of physicians who knew that the vaccine can't cause influenza were also more likely to get immunized. These associations of physician factors with patient immunization, though statistically significant, were weaker than those previously reported with physician influenza vaccination counseling. Physician's beliefs and medical education and personal health behavior are of importance in determining patient vaccination. An increase in population immunization rates may possibly be achieved by programs directed at enhancing physician knowledge and self immunization.

  5. Exercise and the Regulation of Immune Functions.

    PubMed

    Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel

    2015-01-01

    Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.

  6. A Neuroprotective Effect of the Glutamate Receptor Antagonist MK801 on Long-Term Cognitive and Behavioral Outcomes Secondary to Experimental Cerebral Malaria.

    PubMed

    de Miranda, Aline Silva; Brant, Fátima; Vieira, Luciene Bruno; Rocha, Natália Pessoa; Vieira, Érica Leandro Marciano; Rezende, Gustavo Henrique Souza; de Oliveira Pimentel, Pollyana Maria; Moraes, Marcio F D; Ribeiro, Fabíola Mara; Ransohoff, Richard M; Teixeira, Mauro Martins; Machado, Fabiana Simão; Rachid, Milene Alvarenga; Teixeira, Antônio Lúcio

    2017-11-01

    Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum infection, which can result in long-term cognitive and behavioral deficits despite successful anti-malarial therapy. Due to the substantial social and economic burden of CM, the development of adjuvant therapies is a scientific goal of highest priority. Apart from vascular and immune responses, changes in glutamate system have been reported in CM pathogenesis suggesting a potential therapeutic target. Based on that, we hypothesized that interventions in the glutamatergic system induced by blockage of N-methyl-D-aspartate (NMDA) receptors could attenuate experimental CM long-term cognitive and behavioral outcomes. Before the development of evident CM signs, susceptible mice infected with Plasmodium berghei ANKA (PbA) strain were initiated on treatment with dizocilpine maleate (MK801, 0.5 mg/kg), a noncompetitive NMDA receptor antagonist. On day 5 post-infection, mice were treated orally with a 10-day course chloroquine (CQ, 30 mg/kg). Control mice also received saline, CQ or MK801 + CQ therapy. After 10 days of cessation of CQ treatment, magnetic resonance images (MRI), behavioral and immunological assays were performed. Indeed, MK801 combined with CQ prevented long-term memory impairment and depressive-like behavior following successful PbA infection resolution. In addition, MK801 also modulated the immune system by promoting a balance of TH1/TH2 response and upregulating neurotrophic factors levels in the frontal cortex and hippocampus. Moreover, hippocampus abnormalities observed by MRI were partially prevented by MK801 treatment. Our results indicate that NMDA receptor antagonists can be neuroprotective in CM and could be a valuable adjuvant strategy for the management of the long-term impairment observed in CM.

  7. Brain mast cells link the immune system to anxiety-like behavior

    PubMed Central

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  8. Brain mast cells link the immune system to anxiety-like behavior.

    PubMed

    Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae

    2008-11-18

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.

  9. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain.

    PubMed

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-11-01

    Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz's media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells.

  10. Food supplementation and testosterone interact to influence reproductive behavior and immune function in Sceloporus graciosus.

    PubMed

    Ruiz, Mayté; French, Susannah S; Demas, Gregory E; Martins, Emília P

    2010-02-01

    The energetic resources in an organism's environment are essential for executing a wide range of life-history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases, and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Food supplementation and testosterone interact to influence reproductive behavior and immune function in Sceloporous graciosus

    PubMed Central

    Ruiz, Mayté; French, Susannah S.; Demas, Gregory E.; Martins, Emília P.

    2009-01-01

    The energetic resources in an organism’s environment are essential for executing a wide range of life history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases; and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to E. coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. PMID:19800885

  12. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  13. Organizational culture influences health care workers' influenza immunization behavior.

    PubMed

    Isaacson, Nicole; Roemheld-Hamm, Beatrix; Crosson, Jesse C; Dicicco-Bloom, Barbara; Winston, Carla A

    2009-03-01

    Low rates of influenza immunization among health care workers (HCWs) pose a potential health risk to patients in primary care practices. Despite previous educational efforts and programs to reduce financial barriers, HCW influenza immunization rates remain low. Variation in practice-level organizational culture may affect immunization rates. To explore this relationship, we examined organizational cultures and HCWs' influenza immunization behaviors in three family medicine practices. We used a multi-method comparative case study. A field researcher used participant observation, in-depth interviews, and key informant interviews to collect data in each practice in November-December 2003. A diverse team used grounded theory to analyze text data. Organizational culture varied among practices and differing HCW immunization rates were observed. The most structured and business-like practice achieved immunization of all HCWs, while the other two practices exhibited greater variation in HCW immunization rates. Physicians in the practices characterized as chaotic/disorganized or divided were immunized at higher rates than other members of the practices. In these practices, organizational culture was associated with varying rates of influenza immunization for HCWs, especially among nonphysicians. Addressing elements of organizational culture such as beliefs regarding influenza immunization and office policies may facilitate the immunization of all staff members.

  14. Domestication drive the changes of immune and digestive system of Eurasian perch (Perca fluviatilis).

    PubMed

    Chen, Xiaowen; Wang, Jun; Qian, Long; Gaughan, Sarah; Xiang, Wei; Ai, Tao; Fan, Zhenming; Wang, Chenghui

    2017-01-01

    Domestication has altered a variety of traits within the Eurasian perch (Perca fluviatilis), including phenotypic, physiological and behavioral traits of Eurasian perch (Perca fluviatilis). Little is known, however, about the genetic changes between domesticated and wild Eurasian perch. In this study, we assembled a high-quality de novo reference transcriptome and identified differentially expressed genes between wild and domesticated Eurasian perch. A total of 113,709 transcripts were assembled, and 58,380 transcripts were annotated. Transcriptomic comparison revealed 630 differentially expressed genes between domesticated and wild Eurasian perch. Within domesticated Eurasian perch there were 412 genes that were up-regulated including MHCI, MHCII, chia, ighm within immune system development. There were 218 genes including try1, ctrl, ctrb, cela3b, cpa1 and cpb1, which were down-regulated that were associated with digestive processes. Our results indicated domestication drives the changes of immune and digestive system of Eurasian perch. Our study not only provide valuable genetic resources for further studies in Eurasian perch, but also provide novel insights into the genetic basis of physiological changes in Eurasian perch during domestication process.

  15. Domestication drive the changes of immune and digestive system of Eurasian perch (Perca fluviatilis)

    PubMed Central

    Chen, Xiaowen; Wang, Jun; Qian, Long; Gaughan, Sarah; Xiang, Wei; Ai, Tao; Fan, Zhenming; Wang, Chenghui

    2017-01-01

    Domestication has altered a variety of traits within the Eurasian perch (Perca fluviatilis), including phenotypic, physiological and behavioral traits of Eurasian perch (Perca fluviatilis). Little is known, however, about the genetic changes between domesticated and wild Eurasian perch. In this study, we assembled a high-quality de novo reference transcriptome and identified differentially expressed genes between wild and domesticated Eurasian perch. A total of 113,709 transcripts were assembled, and 58,380 transcripts were annotated. Transcriptomic comparison revealed 630 differentially expressed genes between domesticated and wild Eurasian perch. Within domesticated Eurasian perch there were 412 genes that were up-regulated including MHCI, MHCII, chia, ighm within immune system development. There were 218 genes including try1, ctrl, ctrb, cela3b, cpa1 and cpb1, which were down-regulated that were associated with digestive processes. Our results indicated domestication drives the changes of immune and digestive system of Eurasian perch. Our study not only provide valuable genetic resources for further studies in Eurasian perch, but also provide novel insights into the genetic basis of physiological changes in Eurasian perch during domestication process. PMID:28257494

  16. A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity

    NASA Astrophysics Data System (ADS)

    Fan, Kuangang; Zhang, Yan; Gao, Shujing; Wei, Xiang

    2017-09-01

    A class of SIR epidemic model with generalized nonlinear incidence rate is presented in this paper. Temporary immunity and stochastic perturbation are also considered. The existence and uniqueness of the global positive solution is achieved. Sufficient conditions guaranteeing the extinction and persistence of the epidemic disease are established. Moreover, the threshold behavior is discussed, and the threshold value R0 is obtained. We show that if R0 < 1, the disease eventually becomes extinct with probability one, whereas if R0 > 1, then the system remains permanent in the mean.

  17. Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies.

    PubMed

    Rockenstein, Edward; Ostroff, Gary; Dikengil, Fusun; Rus, Florentina; Mante, Michael; Florio, Jazmin; Adame, Anthony; Trinh, Ivy; Kim, Changyoun; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A

    2018-01-24

    Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies. SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy. Copyright © 2018 the authors 0270-6474/18/381000-15$15.00/0.

  18. The role of neuroimmune signaling in alcoholism.

    PubMed

    Crews, Fulton T; Lawrimore, Colleen J; Walter, T Jordan; Coleman, Leon G

    2017-08-01

    Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism". Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Peripheral and Central Effects of Repeated Social Defeat Stress: Monocyte Trafficking, Microglial Activation, and Anxiety

    PubMed Central

    Reader, Brenda F.; Jarrett, Brant L.; McKim, Daniel B.; Wohleb, Eric S.; Godbout, Jonathan P.; Sheridan, John F.

    2015-01-01

    The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. PMID:25596319

  20. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568

  1. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  2. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  3. Digital epidemiology reveals global childhood disease seasonality and the effects of immunization

    PubMed Central

    2016-01-01

    Public health surveillance systems are important for tracking disease dynamics. In recent years, social and real-time digital data sources have provided new means of studying disease transmission. Such affordable and accessible data have the potential to offer new insights into disease epidemiology at national and international scales. We used the extensive information repository Google Trends to examine the digital epidemiology of a common childhood disease, chicken pox, caused by varicella zoster virus (VZV), over an 11-y period. We (i) report robust seasonal information-seeking behavior for chicken pox using Google data from 36 countries, (ii) validate Google data using clinical chicken pox cases, (iii) demonstrate that Google data can be used to identify recurrent seasonal outbreaks and forecast their magnitude and seasonal timing, and (iv) reveal that VZV immunization significantly dampened seasonal cycles in information-seeking behavior. Our findings provide strong evidence that VZV transmission is seasonal and that seasonal peaks show remarkable latitudinal variation. We attribute the dampened seasonal cycles in chicken pox information-seeking behavior to VZV vaccine-induced reduction of seasonal transmission. These data and the methodological approaches provide a way to track the global burden of childhood disease and illustrate population-level effects of immunization. The global latitudinal patterns in outbreak seasonality could direct future studies of environmental and physiological drivers of disease transmission. PMID:27247405

  4. Digital epidemiology reveals global childhood disease seasonality and the effects of immunization.

    PubMed

    Bakker, Kevin M; Martinez-Bakker, Micaela Elvira; Helm, Barbara; Stevenson, Tyler J

    2016-06-14

    Public health surveillance systems are important for tracking disease dynamics. In recent years, social and real-time digital data sources have provided new means of studying disease transmission. Such affordable and accessible data have the potential to offer new insights into disease epidemiology at national and international scales. We used the extensive information repository Google Trends to examine the digital epidemiology of a common childhood disease, chicken pox, caused by varicella zoster virus (VZV), over an 11-y period. We (i) report robust seasonal information-seeking behavior for chicken pox using Google data from 36 countries, (ii) validate Google data using clinical chicken pox cases, (iii) demonstrate that Google data can be used to identify recurrent seasonal outbreaks and forecast their magnitude and seasonal timing, and (iv) reveal that VZV immunization significantly dampened seasonal cycles in information-seeking behavior. Our findings provide strong evidence that VZV transmission is seasonal and that seasonal peaks show remarkable latitudinal variation. We attribute the dampened seasonal cycles in chicken pox information-seeking behavior to VZV vaccine-induced reduction of seasonal transmission. These data and the methodological approaches provide a way to track the global burden of childhood disease and illustrate population-level effects of immunization. The global latitudinal patterns in outbreak seasonality could direct future studies of environmental and physiological drivers of disease transmission.

  5. A depauperate immune repertoire precedes evolution of sociality in bees.

    PubMed

    Barribeau, Seth M; Sadd, Ben M; du Plessis, Louis; Brown, Mark J F; Buechel, Severine D; Cappelle, Kaat; Carolan, James C; Christiaens, Olivier; Colgan, Thomas J; Erler, Silvio; Evans, Jay; Helbing, Sophie; Karaus, Elke; Lattorff, H Michael G; Marxer, Monika; Meeus, Ivan; Näpflin, Kathrin; Niu, Jinzhi; Schmid-Hempel, Regula; Smagghe, Guy; Waterhouse, Robert M; Yu, Na; Zdobnov, Evgeny M; Schmid-Hempel, Paul

    2015-04-24

    Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman's principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.

  6. Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice.

    PubMed

    Mayerhofer, Raphaela; Fröhlich, Esther E; Reichmann, Florian; Farzi, Aitak; Kogelnik, Nora; Fröhlich, Eleonore; Sattler, Wolfgang; Holzer, Peter

    2017-02-01

    Microbial metabolites are known to affect immune system, brain, and behavior via activation of pattern recognition receptors such as Toll-like receptor 4 (TLR4). Unlike the effect of the TLR4 agonist lipopolysaccharide (LPS), the role of other TLR agonists in immune-brain communication is insufficiently understood. We therefore hypothesized that the TLR2 agonist lipoteichoic acid (LTA) causes immune activation in the periphery and brain, stimulates the hypothalamic-pituitary-adrenal (HPA) axis and has an adverse effect on blood-brain barrier (BBB) and emotional behavior. Since LTA preparations may be contaminated by LPS, an extract of LTA (LTA extract ), purified LTA (LTA pure ), and pure LPS (LPS ultrapure ) were compared with each other in their effects on molecular and behavioral parameters 3h after intraperitoneal (i.p.) injection to male C57BL/6N mice. The LTA extract (20mg/kg) induced anxiety-related behavior in the open field test, enhanced the circulating levels of particular cytokines and the cerebral expression of cytokine mRNA, and blunted the cerebral expression of tight junction protein mRNA. A dose of LPS ultrapure matching the amount of endotoxin/LPS contaminating the LTA extract reproduced several of the molecular and behavioral effects of LTA extract . LTA pure (20mg/kg) increased plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 and interferon-γ, and enhanced the transcription of TNF-α, interleukin-1β and other cytokines in the amygdala and prefrontal cortex. These neuroinflammatory effects of LTA pure were associated with transcriptional down-regulation of tight junction-associated proteins (claudin 5, occludin) in the brain. LTA pure also enhanced circulating corticosterone, but failed to alter locomotor and anxiety-related behavior in the open field test. These data disclose that TLR2 agonism by LTA causes peripheral immune activation and initiates neuroinflammatory processes in the brain that are associated with down-regulation of BBB components and activation of the HPA axis, although emotional behavior (anxiety) is not affected. The results obtained with an LTA preparation contaminated with LPS hint at a facilitatory interaction between TLR2 and TLR4, the adverse impact of which on long-term neuroinflammation, disruption of the BBB and mental health warrants further analysis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Treating an HIV/AIDS Patient's PTSD and Medication Nonadherence with Cognitive-Behavioral Therapy: A Principle-Based Approach

    ERIC Educational Resources Information Center

    Chernoff, Robert A.

    2007-01-01

    HIV/AIDS patients with medication adherence problems are vulnerable to developing drug resistance, immune system degradation, and opportunistic infections. Poor adherence to antiretroviral medication regimens can be aggravated by psychiatric problems, including depression and posttraumatic stress disorder. This article presents the case study of a…

  8. Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor.

    PubMed

    Keita, Seydou; Masuzzo, Ambra; Royet, Julien; Kurz, C Leopold

    2017-05-01

    When exposed to microorganisms, animals use several protective strategies. On one hand, as elegantly exemplified in Drosophila melanogaster, the innate immune system recognizes microbial compounds and triggers an antimicrobial response. On the other hand, behaviors preventing an extensive contact with the microbes and thus reducing the risk of infection have been described. However, these reactions ranging from microbes aversion to intestinal transit increase or food intake decrease have been rarely defined at the molecular level. In this study, we set up an experimental system that allowed us to rapidly identify and quantify food intake decreases in Drosophila larvae exposed to media contaminated with bacteria. Specifically, we report a robust dose-dependent food intake decrease following exposure to the bacteria Erwinia carotovora carotovora strain Ecc15. We demonstrate that this response does not require Imd innate immune pathway, but rather the olfactory neuronal circuitry, the Trpa1 receptor and the evf virulence factor. Finally, we show that Ecc15 induce the same behavior in the invasive pest insect Drosophila suzukii. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Decrease the Development of Severe Experimental Autoimmune Uveitis in B10.RIII Mice.

    PubMed

    Qin, Yu; Chan, Ann M; Chang, Yu-Ling; Matynia, Anna; Kouris, Nicholas A; Kimbrel, Erin A; Ashki, Negin; Parikh, Sachin; Gorin, Michael B; Lanza, Robert; Levinson, Ralph D; Gordon, Lynn K

    2017-09-15

    We investigated the effect of exogenously administered human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) in experimental autoimmune uveitis (EAU) in B10.RIII mice, a murine model of severe uveitis. B10.RIII mice were immunized with an uveitogenic peptide, and intraperitoneal injections of 5 million hESC-MSCs per animal were given on the same day. Behavioral light sensitivity assays, histological evaluation, cytokine production, and regulatory T cells were analyzed at the peak of the disease. Histological and behavioral evidence demonstrated that early systemic treatment with hESC-MSCs decreases the development of severe EAU in B10.RIII mice. hESC-MSCs suppress Th17 and upregulate Th1 and Th2 responses as well as IL-2 and GM-CSF in splenocytes from hESC-MSC-treated mice. MSCs that originate from hESC decrease the development of severe EAU in B10.RIII mice, likely through systemic immune modulation. Further investigation is needed to determine any potential effect on active EAU.

  10. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress☆

    PubMed Central

    Hanke, M.L.; Powell, N.D.; Stiner, L.M.; Bailey, M.T.; Sheridan, J.F.

    2012-01-01

    During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic–pituitary–adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b+ splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18 h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b+ cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation. PMID:22841997

  11. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.

    PubMed

    Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne

    2017-02-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Caregiver Soothing Behaviors After Immunization and Infant Attachment: A Longitudinal Analysis.

    PubMed

    Hillgrove-Stuart, Jessica; Pillai Riddell, Rebecca; Flora, David B; Greenberg, Saul; Garfield, Hartley

    2015-01-01

    There were 2 primary objectives to the current study: (1) to relate caregiver behavior trajectories across immunization appointments over the first year of life to subsequent infant attachment and (2) to relate caregiver behavior trajectories within each immunization appointment over the first year of life to subsequent infant attachment. A subsample of 130 caregivers and their infants were recruited from a sample of 760 caregivers who were part of an ongoing longitudinal cohort that videotaped infants' 2-, 4-, 6-, and 12-month immunization appointments. This subsample of caregivers and their infants (n = 130) were invited to participate in an assessment of attachment when infants were between 12 and 18 months of age at the local children's hospital. Caregiver proximal soothing behaviors were the only caregiver behaviors postimmunization that were related to subsequent infant attachment. Higher frequencies of caregiver proximal soothing at 12 months were related to infants' organized attachment, whereas steeper decreases in proximal soothing across the first year were associated with disorganized infant attachment. In addition, when caregivers engaged in proximal soothing for longer after their 12 month olds' immunizations, these infants were more likely to be secure or organized in their attachment. These results provide empirical support for the ecological validity of studying infant attachment in a pediatric pain context. The pediatric "well-baby" visit may provide a potential opportunity to feasibly integrate brief infant mental health screening and intervention.

  13. Using an agent-based model to analyze the dynamic communication network of the immune response

    PubMed Central

    2011-01-01

    Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies. PMID:21247471

  14. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    PubMed

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Metabolic consequences of stress during childhood and adolescence.

    PubMed

    Pervanidou, Panagiota; Chrousos, George P

    2012-05-01

    Stress, that is, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, mainly comprised by the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system normally functions in a circadian manner and interacts with other systems to regulate a variety of behavioral, endocrine, metabolic, immune, and cardiovascular functions. However, the experience of acute intense physical or emotional stress, as well as of chronic stress, may lead to the development of or may exacerbate several psychologic and somatic conditions, including anxiety disorders, depression, obesity, and the metabolic syndrome. In chronically stressed individuals, both behavioral and neuroendocrine mechanisms promote obesity and metabolic abnormalities: unhealthy lifestyles in conjunction with dysregulation of the stress system and increased secretion of cortisol, catecholamines, and interleukin-6, with concurrently elevated insulin concentrations, lead to development of central obesity, insulin resistance, and the metabolic syndrome. Fetal life, childhood, and adolescence are particularly vulnerable periods of life to the effects of intense acute or chronic stress. Similarly, these life stages are crucial for the later development of behavioral, metabolic, and immune abnormalities. Developing brain structures and functions related to stress regulation, such as the amygdala, the hippocampus, and the mesocorticolimbic system, are more vulnerable to the effects of stress compared with mature structures in adults. Moreover, chronic alterations in cortisol secretion in children may affect the timing of puberty, final stature, and body composition, as well as cause early-onset obesity, metabolic syndrome, and type 2 diabetes mellitus. The understanding of stress mechanisms leading to metabolic abnormalities in early life may lead to more effective prevention and intervention strategies of obesity-related health problems. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Secretory IgA reactivity to social threat in youth: Relations with HPA, ANS, and behavior.

    PubMed

    Laurent, Heidemarie K; Stroud, Laura R; Brush, Bridget; D'Angelo, Christina; Granger, Douglas A

    2015-09-01

    Although the role of immune marker secretory immunoglobulin A (SIgA) in stress-related health outcomes is gaining recognition, SIgA responsiveness to acute stress has rarely been assessed in adults, and not at all in children. This study was designed to clarify developmental origins of differential immune function-related health risks by investigating youth SIgA responses to psychosocial stressors, including both normative responses and variability related to behavioral problems. Children and adolescents from a larger study (n=82) gave 6 saliva samples during a laboratory session in which they were exposed to a series of performance or interpersonal stressors. Samples were assayed for SIgA, as well as cortisol (representing hypothalamic-pituitary-adrenal axis activity) and alpha-amylase (sAA; representing autonomic nervous system activity). Behavioral problems were assessed with parent-report measures of youth internalizing and externalizing. Youth SIgA trajectories followed a normative pattern of reactivity and recovery around the stressors; however, these responses were blunted in youth with higher externalizing scores. SIgA showed differential associations with cortisol and sAA, and with positive and negative affect; whereas overall levels of SIgA related to cortisol output and positive affect, changes in SIgA over time synchronized with changes in sAA and negative affect. In contrast to SIgA, neither cortisol nor sAA related significantly to behavioral problems. Implications for the role of SIgA during psychosocial stress in the development of immune function-related health risks are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Immune endophenotypes in children with Autism Spectrum Disorder

    PubMed Central

    Careaga, Milo; Rogers, Sally; Hansen, Robin L.; Amaral, David G.; de Water, Judy Van; Ashwood, Paul

    2015-01-01

    Background Autism Spectrum Disorder (ASD) is characterized by social communication deficits and restricted, repetitive patterns of behavior. Varied immunological findings have been reported in children with ASD. To address the question of heterogeneity in immune responses, we sought to examine the diversity of immune profiles within a representative cohort of boys with ASD. Methods Peripheral blood mononuclear cells (PBMC) from male children with ASD (n=50) and from typically developing (TD) age-matched male controls (n=16) were stimulated with either lipopolysaccharide (LPS) or phytohaemagglutinin (PHA). Cytokine production was assessed after stimulation. The ASD study population was clustered into subgroups based on immune responses and assessed for behavioral outcomes. Results Children with ASD who had a pro-inflammatory profile based on LPS stimulation were more developmentally impaired as assessed by the Mullen's Scale of Early Learning (MSEL). They also had greater impairments in social affect as measured by the Autism Diagnostic Observation Schedule (ADOS). These children also displayed more frequent sleep disturbances and episodes of aggression. Similarly, children with ASD and a more activated T cell cytokine profile after PHA stimulation were more developmentally impaired as measured by the MSEL. Conclusions Children with ASD may be phenotypically characterized based upon their immune profile. Those showing either a pro-inflammatory response or increased T cell activation/skewing display a more impaired behavioral profile than children with non-inflamed or non-T cell activated immune profiles. These data suggest that there may be several possible immune subphenotypes within the ASD population that correlate with more severe behavioral impairments. PMID:26493496

  18. Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition

    PubMed Central

    Kurz, C Leopold; Charroux, Bernard; Chaduli, Delphine; Viallat-Lieutaud, Annelise; Royet, Julien

    2017-01-01

    As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviors that lower the impact of the infection. The molecular mechanisms by which microbes impact host behavior are not well understood. We demonstrate that bacterial infection of Drosophila females reduces oviposition and that peptidoglycan, the component that activates Drosophila antibacterial response, is also the elicitor of this behavioral change. We show that peptidoglycan regulates egg-laying rate by activating NF-κB signaling pathway in octopaminergic neurons and that, a dedicated peptidoglycan degrading enzyme acts in these neurons to buffer this behavioral response. This study shows that a unique ligand and signaling cascade are used in immune cells to mount an immune response and in neurons to control fly behavior following infection. This may represent a case of behavioral immunity. DOI: http://dx.doi.org/10.7554/eLife.21937.001 PMID:28264763

  19. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive

    PubMed Central

    Poggi, Alessandro; Varesano, Serena; Zocchi, Maria Raffaella

    2018-01-01

    Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial–mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC. PMID:29515580

  20. High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis and Inflammation.

    PubMed

    Dutheil, Sophie; Ota, Kristie T; Wohleb, Eric S; Rasmussen, Kurt; Duman, Ronald S

    2016-06-01

    Depression and type 2 diabetes (T2D) are highly comorbid disorders that carry a large public health burden. However, there is a clear lack of knowledge of the neural pathological pathways underlying these illnesses. The present study aims to elucidate the molecular mechanisms by which a diet rich in fat can cause multiple complications in the brain, thereby affecting intracellular signaling and gene expression that underlie anxiety and depressive behaviors. The results show that a high-fat diet (HFD; ~16 weeks) causes anxiety and anhedonic behaviors. Importantly, the results also show that 4 months of HFD causes disruption of intracellular cascades involved in synaptic plasticity and insulin signaling/glucose homeostasis (ie, Akt, extracellular signal-regulated kinase (ERK), P70S6K), as well as increased corticosterone levels and activation of the innate immune system, including elevation of inflammatory cytokines (ie, IL-6, IL-1β, TNFα). Interestingly, the rapid acting antidepressant ketamine reverses the behavioral deficits caused by HFD and activates ERK and P70S6 kinase signaling in the prefrontal cortex. In addition, we found that pharmacological blockade of the innate immune inflammasome system by repeated administration of an inhibitor of the purinergic P2X7 receptor blocks the anxiety caused by HFD. Together these studies further elucidate the signaling pathways that underlie chronic HFD exposure on anxiety and depressive behaviors, and identify novel therapeutic targets for patients with metabolic disorder or T2D who suffer from anxiety and depression.

  1. High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis and Inflammation

    PubMed Central

    Dutheil, Sophie; Ota, Kristie T; Wohleb, Eric S; Rasmussen, Kurt; Duman, Ronald S

    2016-01-01

    Depression and type 2 diabetes (T2D) are highly comorbid disorders that carry a large public health burden. However, there is a clear lack of knowledge of the neural pathological pathways underlying these illnesses. The present study aims to elucidate the molecular mechanisms by which a diet rich in fat can cause multiple complications in the brain, thereby affecting intracellular signaling and gene expression that underlie anxiety and depressive behaviors. The results show that a high-fat diet (HFD; ~16 weeks) causes anxiety and anhedonic behaviors. Importantly, the results also show that 4 months of HFD causes disruption of intracellular cascades involved in synaptic plasticity and insulin signaling/glucose homeostasis (ie, Akt, extracellular signal-regulated kinase (ERK), P70S6K), as well as increased corticosterone levels and activation of the innate immune system, including elevation of inflammatory cytokines (ie, IL-6, IL-1β, TNFα). Interestingly, the rapid acting antidepressant ketamine reverses the behavioral deficits caused by HFD and activates ERK and P70S6 kinase signaling in the prefrontal cortex. In addition, we found that pharmacological blockade of the innate immune inflammasome system by repeated administration of an inhibitor of the purinergic P2X7 receptor blocks the anxiety caused by HFD. Together these studies further elucidate the signaling pathways that underlie chronic HFD exposure on anxiety and depressive behaviors, and identify novel therapeutic targets for patients with metabolic disorder or T2D who suffer from anxiety and depression. PMID:26658303

  2. Genetic Dissection of Anopheles gambiae Gut Epithelial Responses to Serratia marcescens

    PubMed Central

    Stathopoulos, Stavros; Neafsey, Daniel E.; Lawniczak, Mara K. N.; Muskavitch, Marc A. T.; Christophides, George K.

    2014-01-01

    Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component. PMID:24603764

  3. Prenatal immune activation in mice blocks the effects of environmental enrichment on exploratory behavior and microglia density.

    PubMed

    Buschert, Jens; Sakalem, Marna E; Saffari, Roja; Hohoff, Christa; Rothermundt, Matthias; Arolt, Volker; Zhang, Weiqi; Ambrée, Oliver

    2016-06-03

    Adverse environmental factors including prenatal maternal infection are capable of inducing long-lasting behavioral and neural alterations which can enhance the risk to develop schizophrenia. It is so far not clear whether supportive postnatal environments are able to modify such prenatally-induced alterations. In rodent models, environmental enrichment influences behavior and cognition, for instance by affecting endocrinologic, immunologic, and neuroplastic parameters. The current study was designed to elucidate the influence of postnatal environmental enrichment on schizophrenia-like behavioral alterations induced by prenatal polyI:C immune stimulation at gestational day 9 in mice. Adult offspring were tested for amphetamine-induced locomotion, social interaction, and problem-solving behavior as well as expression of dopamine D1 and D2 receptors and associated molecules, microglia density and adult neurogenesis. Prenatal polyI:C treatment resulted in increased dopamine sensitivity and dopamine D2 receptor expression in adult offspring which was not reversed by environmental enrichment. Prenatal immune activation prevented the effects of environmental enrichment which increased exploratory behavior and microglia density in NaCl treated mice. Problem-solving behavior as well as the number of immature neurons was affected by neither prenatal immune stimulation nor postnatal environmental enrichment. The behavioral and neural alterations that persist into adulthood could not generally be modified by environmental enrichment. This might be due to early neurodevelopmental disturbances which could not be rescued or compensated for at a later developmental stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Serum and cerebrospinal fluid immune mediators in children with autistic disorder: a longitudinal study.

    PubMed

    Pardo, Carlos A; Farmer, Cristan A; Thurm, Audrey; Shebl, Fatma M; Ilieva, Jorjetta; Kalra, Simran; Swedo, Susan

    2017-01-01

    The causes of autism likely involve genetic and environmental factors that influence neurobiological changes and the neurological and behavioral features of the disorder. Immune factors and inflammation are hypothesized pathogenic influences, but have not been examined longitudinally. In a cohort of 104 participants with autism, we performed an assessment of immune mediators such as cytokines, chemokines, or growth factors in serum and cerebrospinal fluid ( n  = 67) to determine potential influences of such mediators in autism. As compared with 54 typically developing controls, we found no evidence of differences in the blood profile of immune mediators supportive of active systemic inflammation mechanisms in participants with autism. Some modulators of immune function (e.g., EGF and soluble CD40 ligand) were increased in the autism group; however, no evidence of group differences in traditional markers of active inflammation (e.g., IL-6, TNFα, IL-1β) were observed in the serum. Further, within-subject stability (measured by estimated intraclass correlations) of most analytes was low, indicating that a single measurement is not a reliable prospective indicator of concentration for most analytes. Additionally, in participants with autism, there was little correspondence between the blood and CSF profiles of cytokines, chemokines, and growth factors, suggesting that peripheral markers may not optimally reflect the immune status of the central nervous system. Although the relatively high fraction of intrathecal production of selected chemokines involved in monocyte/microglia function may suggest a possible relationship with the homeostatic role of microglia, control data are needed for further interpretation of its relevance in autism. These longitudinal observations fail to provide support for the hypothesized role of disturbances in the expression of circulating cytokines and chemokines as an indicator of systemic inflammation in autism. ClinicalTrials.gov, NCT00298246.

  5. Beneficial influences of systemic cooperation and sociological behavior on longevity.

    PubMed

    Mountz, John D; Zant, Gary Van; Allison, David B; Zhang, Huang-Ge; Hsu, Hui-Chen

    2002-04-30

    During his long research career in the field of aging, Dr Bernard Strehler developed a series of theories concerning the identity of genes that can promote longevity and their role in natural selection. As a tribute to Dr Strehler, we have taken this opportunity to summarize a selection of these theories and to illustrate how these insights have influenced our search for longevity genes within the immune system. The identification of longevity genes has proven difficult. We believe that, at least in part, this reflects the emphasis on the concept of survival of the 'physically' fittest. We have used the immune system as a model to demonstrate that, over and above the self-evident advantage of those genes that contribute the attributes commonly associated with survival of the 'physically' fittest, those genes that lead to a predisposition to cooperate also confer a competitive survival advantage. As the acquisition of cooperativity in a society is linked to support mechanisms provided by older individuals, the search for longevity genes should not be limited to those genes that are associated with extended expression of a youthful phenotype. Rather these studies should be expanded to include identification of those genes that regulate physiologic parameters that affect individual longevity, even if they do not correspond with the traditional view of reproductive competitiveness. At the societal level, longevity genes may encode attributes that regulate sociologic or psychological parameters that may contribute to a tendency to non-aggressive or cooperative behavior that leads to achievement of common goals necessary for the survival of the species. This view of the selection for longevity impacts the analysis of longevity genes and aging at the organismal level. Dr Strehler viewed organismal aging as an integrated functional state, in which he conceived the outcome as reflecting the net balance of functional decrementers and evolved compensatory features. We propose that, in more evolved species, the longevity genes will be those genes, or sets of genes, that counterbalance of age-related functional decrementers with the age-related manifestation of evolved compensatory features. Thus, as illustrated here through analysis of the immune system, the longevity genes may well be those genes that promote overall systemic cooperation and compensation within the immune system and associated systems, rather than the genes that prevent age-related alterations in only one or a limited number of pathways.

  6. [Behavior of Orf virus in permissive and nonpermissive systems].

    PubMed

    Büttner, M; Czerny, C P; Schumm, M

    1995-04-01

    Dogs were immunized i.m. with attenuated poxvirus vaccines (vaccinia virus, Orf-virus) and a bovine herpesvirus-1 (BHV-1) vaccine. After intradermal (i.d.) application of the vaccine viruses a specific delayed type hypersensitivity (DTH) reaction of the skin occurred only with vaccinia virus. The i.d. application of Orf-virus caused a short-term, non-specific inflammatory reaction of the skin, even in dogs not immunized with Orf-virus. Out of 30 sera from Orf-virus immunized beagles (n = 4) only eight were found reactive to Orf-virus in a competition ELISA. Three sera from dogs not Orf-virus immunized but skin-tested with the virus contained low antibody titers. Using indirect immunofluorescence (IIF) in flow cytometry, the existence of Orf-virus antigens was examined on the surface and in the cytoplasm of permissive (BFK and Vero)- and questionable permissive MDCK cells. The canine kidney MDCK cell line was found to be non-permissive for Orf-virus replication; the occurrence of an Orf-(ecthyma contagiosum) like disease in dogs is unlikely.

  7. Legacy of Polio—Use of India’s Social Mobilization Network for Strengthening of the Universal Immunization Program in India

    PubMed Central

    Deutsch, Nicole; Singh, Vivek; Curtis, Rod; Siddique, Anisur Rahman

    2017-01-01

    Abstract The Social Mobilization Network (SMNet) has been lauded as one of the most successsful community engagement strategies in public health for its role in polio elimination in India. The UNICEF-managed SMNet was created as a strategy to eradicate polio by engaging >7000 frontline social mobilizers to advocate for vaccination in some of the most underserved, marginalized, and at-risk communities in India. This network focused initially on generating demand for polio vaccination but later expanded its messaging to promote routine immunization and other health and sanitation interventions related to maternal and children’s health. As an impact of the network’s interventions, in collaboration with other eradication efforts, these high-risk pockets witnessed an increase in full routine immunization coverage. The experience of the SMNet offers lessons for health-system strengthening for social mobilization and promoting positive health behaviors for other priority health programs like the Universal Immunization Program. PMID:28838190

  8. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad.

    PubMed

    Bekhbat, Mandakh; Rowson, Sydney A; Neigh, Gretchen N

    2017-07-01

    Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test

    PubMed Central

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; DeMarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression. PMID:23950656

  10. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test.

    PubMed

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; Demarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression.

  11. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.

    PubMed

    Heussler, Gary E; Cady, Kyle C; Koeppen, Katja; Bhuju, Sabin; Stanton, Bruce A; O'Toole, George A

    2015-05-12

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas) system is an adaptive immune system present in many archaea and bacteria. CRISPR/Cas systems are incredibly diverse, and there is increasing evidence of CRISPR/Cas systems playing a role in cellular functions distinct from phage immunity. Previously, our laboratory reported one such alternate function in which the type 1-F CRISPR/Cas system of the opportunistic pathogen Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aeruginosa PA14) inhibits both biofilm formation and swarming motility when the bacterium is lysogenized by the bacteriophage DMS3. In this study, we demonstrated that the presence of just the DMS3 protospacer and the protospacer-adjacent motif (PAM) on the P. aeruginosa genome is necessary and sufficient for this CRISPR-dependent loss of these group behaviors, with no requirement of additional DMS3 sequences. We also demonstrated that the interaction of the CRISPR system with the DMS3 protospacer induces expression of SOS-regulated phage-related genes, including the well-characterized pyocin operon, through the activity of the nuclease Cas3 and subsequent RecA activation. Furthermore, our data suggest that expression of the phage-related genes results in bacterial cell death on a surface due to the inability of the CRISPR-engaged strain to downregulate phage-related gene expression, while these phage-related genes have minimal impact on growth and viability under planktonic conditions. Deletion of the phage-related genes restores biofilm formation and swarming motility while still maintaining a functional CRISPR/Cas system, demonstrating that the loss of these group behaviors is an indirect effect of CRISPR self-targeting. The various CRISPR/Cas systems found in both archaea and bacteria are incredibly diverse, and advances in understanding the complex mechanisms of these varied systems has not only increased our knowledge of host-virus interplay but has also led to a major advancement in genetic engineering. Recently, increasing evidence suggested that bacteria can co-opt the CRISPR system for functions besides adaptive immunity to phage infection. This study examined one such alternative function, and this report describes the mechanism of type 1-F CRISPR-dependent loss of the biofilm and swarming in the medically relevant opportunistic pathogen Pseudomonas aeruginosa. Since both biofilm formation and swarming motility are important in the virulence of P. aeruginosa, a full understanding of how the CRISPR system can regulate such group behaviors is fundamental to developing new therapeutics. Copyright © 2015 Heussler et al.

  12. Using a Bayesian network to clarify areas requiring research in a host-pathogen system.

    PubMed

    Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L

    2017-12-01

    Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for reviewing existing literature, identifying links poorly supported by evidence, and understanding complexities in emerging infectious-disease systems. © 2017 Society for Conservation Biology.

  13. Comparison of mathematical models of fibrosis. Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by M. Ben Amar and C. Bianca

    NASA Astrophysics Data System (ADS)

    Kachapova, Farida

    2016-07-01

    Mathematical and computational models in biology and medicine help to improve diagnostics and medical treatments. Modeling of pathological fibrosis is reviewed by M. Ben Amar and C. Bianca in [4]. Pathological fibrosis is the process when excessive fibrous tissue is deposited on an organ or tissue during a wound healing and can obliterate their normal function. In [4] the phenomena of fibrosis are briefly explained including the causes, mechanism and management; research models of pathological fibrosis are described, compared and critically analyzed. Different models are suitable at different levels: molecular, cellular and tissue. The main goal of mathematical modeling of fibrosis is to predict long term behavior of the system depending on bifurcation parameters; there are two main trends: inhibition of fibrosis due to an active immune system and swelling of fibrosis because of a weak immune system.

  14. Influence of Photoperiod on Hormones, Behavior, and Immune Function

    PubMed Central

    Walton, James C.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally- appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival. PMID:21156187

  15. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  16. Interleukin-1 Receptor Activation by Systemic Lipopolysaccharide Induces Behavioral Despair Linked to MAPK Regulation of CNS Serotonin Transporters

    PubMed Central

    Zhu, Chong-Bin; Lindler, Kathryn M; Owens, Anthony W; Daws, Lynette C; Blakely, Randy D; Hewlett, William A

    2010-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) has long been implicated in regulation of mood. Medications that block the neuronal 5-HT transporter (SERT) are used as major pharmacological treatment for mood disorders. Conversely, stimuli that enhance SERT activity might be predicted to diminish synaptic 5-HT availability and increase the risk for 5-HT-related CNS disorders. We have shown that the inflammatory cytokines enhance brain SERT activity in cultured serotonergic cells and nerve terminal preparations in vitro. In this study, we establish that intraperitoneal injection of the cytokine-inducer lipopolysaccharide (LPS) stimulates brain SERT activity, acting at doses below those required to induce overt motor suppression. SERT stimulation by LPS is paralleled by increased immobility in both the tail suspension test (TST) and the forced swim test (FST); antidepressant-sensitive alterations are thought to model aspects of behavioral despair. Both the stimulation of SERT activity and induced immobility are absent when LPS is administered to interleukin-1 receptor (IL-1R)-deficient mice and in the presence of SB203580, an inhibitor of IL-1R-stimulated p38 MAPK. Moreover, the ability of LPS to enhance immobility in TST is lost in SERT knockout mice. These findings reveal an ability of peripheral inflammatory stimuli to enhance brain SERT activity through IL-1R and p38 MAPK pathways in vivo and identify a requirement for SERT expression in immune-system-modulated despair behaviors. Our studies identify IL-1R- and p38 MAPK-dependent regulation of SERT as one of the mechanisms by which environmentally driven immune system activation can trigger despair-like behavior in an animal model, encouraging future analysis of the pathway for risk factors in neuropsychiatric disorders. PMID:20827273

  17. Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection

    NASA Technical Reports Server (NTRS)

    Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje

    2005-01-01

    This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.

  18. Contribution of Global Polio Eradication Initiative–Funded Personnel to the Strengthening of Routine Immunization Programs in the 10 Focus Countries of the Polio Eradication and Endgame Strategic Plan

    PubMed Central

    Swift, Rachel D.; Anaokar, Sameer; Hegg, Lea Anne; Eggers, Rudolf; Cochi, Stephen L.

    2017-01-01

    Abstract Background. The Polio Eradication and Endgame Strategic Plan (PEESP) established a target that at least 50% of the time of personnel receiving funding from the Global Polio Eradication Initiative (GPEI) for polio eradication activities (hereafter, “GPEI-funded personnel”) should be dedicated to the strengthening of immunization systems. This article describes the self-reported profile of how GPEI-funded personnel allocate their time toward immunization goals and activities beyond those associated with polio, the training they have received to conduct tasks to strengthen routine immunization systems, and the type of tasks they have conducted. Methods. A survey of approximately 1000 field managers of frontline GPEI-funded personnel was conducted by Boston Consulting Group in the 10 focus countries of the PEESP during 2 phases, in 2013 and 2014, to determine time allocation among frontline staff. Country-specific reports on the training of GPEI-funded personnel were reviewed, and an analysis of the types of tasks that were reported was conducted. Results. A total of 467 managers responded to the survey. Forty-seven percent of the time (range, 23%–61%) of GPEI-funded personnel was dedicated to tasks related to strengthening immunization programs, other than polio eradication. Less time was spent on polio-associated activities in countries that had already interrupted wild poliovirus (WPV) transmission, compared with findings for WPV-endemic countries. All countries conducted periodic trainings of the GPEI-funded personnel. The types of non–polio-related tasks performed by GPEI-funded personnel varied among countries and included surveillance, microplanning, newborn registration and defaulter tracing, monitoring of routine immunization activities, and support of district immunization task teams, as well as promotion of health behaviors, such as clean-water use and good hygiene and sanitation practices. Conclusion. In all countries, GPEI-funded personnel perform critical tasks in the strengthening of routine immunization programs and the control of measles and rubella. In certain countries with very weak immunization systems, GPEI-funded personnel provide critical support for the immunization programs, and sudden discontinuation of their employment would potentially disrupt the immunization programs in their countries and create a setback in capacity and effectiveness that would put children at higher risk for vaccine-preventable diseases. PMID:28838165

  19. Contribution of Global Polio Eradication Initiative-Funded Personnel to the Strengthening of Routine Immunization Programs in the 10 Focus Countries of the Polio Eradication and Endgame Strategic Plan.

    PubMed

    van den Ent, Maya M V X; Swift, Rachel D; Anaokar, Sameer; Hegg, Lea Anne; Eggers, Rudolf; Cochi, Stephen L

    2017-07-01

    The Polio Eradication and Endgame Strategic Plan (PEESP) established a target that at least 50% of the time of personnel receiving funding from the Global Polio Eradication Initiative (GPEI) for polio eradication activities (hereafter, "GPEI-funded personnel") should be dedicated to the strengthening of immunization systems. This article describes the self-reported profile of how GPEI-funded personnel allocate their time toward immunization goals and activities beyond those associated with polio, the training they have received to conduct tasks to strengthen routine immunization systems, and the type of tasks they have conducted. A survey of approximately 1000 field managers of frontline GPEI-funded personnel was conducted by Boston Consulting Group in the 10 focus countries of the PEESP during 2 phases, in 2013 and 2014, to determine time allocation among frontline staff. Country-specific reports on the training of GPEI-funded personnel were reviewed, and an analysis of the types of tasks that were reported was conducted. A total of 467 managers responded to the survey. Forty-seven percent of the time (range, 23%-61%) of GPEI-funded personnel was dedicated to tasks related to strengthening immunization programs, other than polio eradication. Less time was spent on polio-associated activities in countries that had already interrupted wild poliovirus (WPV) transmission, compared with findings for WPV-endemic countries. All countries conducted periodic trainings of the GPEI-funded personnel. The types of non-polio-related tasks performed by GPEI-funded personnel varied among countries and included surveillance, microplanning, newborn registration and defaulter tracing, monitoring of routine immunization activities, and support of district immunization task teams, as well as promotion of health behaviors, such as clean-water use and good hygiene and sanitation practices. In all countries, GPEI-funded personnel perform critical tasks in the strengthening of routine immunization programs and the control of measles and rubella. In certain countries with very weak immunization systems, GPEI-funded personnel provide critical support for the immunization programs, and sudden discontinuation of their employment would potentially disrupt the immunization programs in their countries and create a setback in capacity and effectiveness that would put children at higher risk for vaccine-preventable diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Costs of mounting an immune response during pregnancy in a lizard.

    PubMed

    Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald

    2013-01-01

    Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.

  1. Association of IL-12p70 and IL-6:IL-10 ratio with autism-related behaviors in 22q11.2 deletion syndrome: a preliminary report.

    PubMed

    Ross, Heather E; Guo, Ying; Coleman, Karlene; Ousley, Opal; Miller, Andrew H

    2013-07-01

    22q11.2 deletion syndrome (22q11DS) is a genetic disorder that conveys a significant risk for the development of social behavior disorders, including autism and schizophrenia. Also known as DiGeorge syndrome, 22q11DS is the second most common genetic disorder and is characterized by an elevated risk for immune dysfunction, up to 77% of individuals have an identifiable immune deficiency. We hypothesize that this immune dysfunction could contribute to the elevated risk of impaired social behavior seen in 22q11DS. The current study begins to elucidate these immune deficits and link them with the behavioral alterations associated with the disorder. Serum concentrations of a series of cytokines were examined, using a multiplex immunoassay, in sixteen individuals with 22q11DS and screened for autism-related behavior using the Autism Diagnostic Interview-Revised (ADI-R). This preliminary study examined correlations between specific immune proteins and each of the ADI-R algorithm scores (social, communication, and repetitive behavior). The inflammatory cytokine IL-1β, as well as the ratio between the inflammatory cytokine IL-6 and the anti-inflammatory cytokine IL-10, were correlated with social scores (r=0.851, p=0.004; r=0.580, p=0.018). In addition, the inflammatory cytokines interferon gamma and IL-12p70 were correlated with repetitive behaviors (r=0.795, p=0.033; r=0.774, p=0.002). Interestingly, IL-12 has been reported to be increased in autistic children. These data show a positive association between severity of autism-related behaviors and level of serum concentrations of inflammatory cytokines in individuals with 22q11DS, providing a basis for further inquiry. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Chemokinetic accumulation of human neutrophils on immune complex-coated substrata: analysis at a boundary

    PubMed Central

    1984-01-01

    The locomotory behavior of human blood neutrophil leukocytes was studied at a boundary between two surfaces with different chemokinetic properties. This was achieved by time-lapse cinematography of neutrophils moving on coverslips coated with BSA, then part-coated with immune complexes by adding anti-BSA IgG with a straight-line boundary between the BSA and the immune complexes. Cell locomotion was filmed in microscopic fields bisected by the boundary, and kinetic behavior was assessed by comparing speed (orthokinesis), turning behavior (klinokinesis), and the rate of diffusion of the cells on each side of the boundary, using a recently described mathematical analysis of kinesis. In the absence of serum or complement, the proportion of motile cells and their speed and rate of diffusion were greater on BSA than on antiBSA, but there was no consistent difference in turning behavior between cells on the two surfaces. The immune complexes were therefore negatively chemokinetic in comparison with BSA, and this resulted from a negative orthokinesis with little or no contribution from klinokinesis. As would be predicted theoretically, this resulted in gradual accumulation of cells on the immune complexes even in the absence of a chemotactic factor. In further studies, a parallel plate flow chamber was used to show that, under conditions of flow, neutrophils accumulated much more rapidly on a surface coated with BSA- anti-BSA than on BSA alone. Moreover, neutrophils on immune complex- coated surfaces lost their ability to form rosettes with IgG-coated erythrocytes. This suggests that neutrophils on immune complex-coated surfaces redistribute their Fc receptors (RFc gamma) to the under surface, and that the lowered speed of locomotion is due to tethering of neutrophils by substratum-bound IgG-Fc. PMID:6490719

  3. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577

  4. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation.

    PubMed

    Hsueh, P-T; Lin, H-H; Wang, H-H; Liu, C-L; Ni, W-F; Liu, J-K; Chang, H-H; Sun, D-S; Chen, Y-S; Chen, Y-L

    2018-04-15

    The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Social barriers to pathogen transmission in wild animal populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.

    Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviorsmore » may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.« less

  6. Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms.

    PubMed

    Engler, H; Brendt, P; Wischermann, J; Wegner, A; Röhling, R; Schoemberg, T; Meyer, U; Gold, R; Peters, J; Benson, S; Schedlowski, M

    2017-10-01

    Systemic inflammation is accompanied by profound behavioral and mood changes that resemble symptoms of depression. Findings in animals suggest that pro-inflammatory cytokines released by activated immune cells in the periphery evoke these behavioral symptoms by driving inflammatory changes in the brain. However, experimental data in humans are lacking. Here we demonstrate in healthy male volunteers (10 endotoxin treated, 8 placebo treated) that intravenous administration of low-dose endotoxin (0.8 ng/kg body weight), a prototypical pathogen-associated molecular pattern that activates the innate immune system, not only induces a significant increase in peripheral blood cytokine concentrations (that is, tumor necrosis factor-α, interleukin (IL)-6, IL-10) but also results, with some latency, in a robust and selective increase of IL-6 in the cerebrospinal fluid (CSF). Moreover, we found a strong association between the endotoxin-induced increase of IL-6 in the CSF and the severity of mood impairment, with larger increases in CSF IL-6 concentration followed by a greater deterioration in mood. Taken together, these findings suggest that the appearance of depressive symptoms in inflammatory conditions might be primarily linked to an increase in central IL-6 concentration, identifying IL-6 as a potential therapeutic target in mood disorders.

  7. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential.

    PubMed

    Borre, Yuliya E; Moloney, Rachel D; Clarke, Gerard; Dinan, Timothy G; Cryan, John F

    2014-01-01

    There is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis. Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that enteric microbiota plays a role in early programming and later response to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communication between gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging, suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.

  8. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety.

    PubMed

    Reader, B F; Jarrett, B L; McKim, D B; Wohleb, E S; Godbout, J P; Sheridan, J F

    2015-03-19

    The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  10. The Role of Health Systems and Policy in Producing Behavior and Social Change to Enhance Child Survival and Development in Low- and Middle-Income Countries: An Examination of the Evidence

    PubMed Central

    Vélez, Luis F.; Sanitato, Mary; Barry, Donna; Alilio, Martin; Apfel, Franklin; Coe, Gloria; Garcia, Amparo; Kaufman, Michelle; Klein, Jonathan; Kutlesic, Vesna; Meadowcroft, Lisa; Nilsen, Wendy; O'Sullivan, Gael; Peterson, Stefan; Raiten, Daniel; Vorkoper, Susan

    2014-01-01

    Evidence-based behavior change interventions addressing health systems must be identified and disseminated to improve child health outcomes. Studies of the efficacy of such interventions were identified from systematic searches of the published literature. Two hundred twenty-nine of the initially identified references were judged to be relevant and were further reviewed for the quality and strength of the evidence. Studies were eligible if an intervention addressed policy or health systems interventions, measured relevant behavioral or health outcomes (e.g., nutrition, childhood immunization, malaria prevention and treatment), used at least a moderate quality research design, and were implemented in low- or middle-income countries. Policy or systems interventions able to produce behavior change reviewed included media (e.g., mass media, social media), community mobilization, educational programs (for caregivers, communities, or providers), social marketing, opinion leadership, economic incentives (for both caregiver and provider), health systems strengthening/policy/legislation, and others. Recommendations for policy, practice, and research are given based on fairly strong data across the areas of health service delivery, health workforce, health financing, governance and leadership, and research. PMID:25207449

  11. Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome.

    PubMed

    Dinel, Anne-Laure; André, Caroline; Aubert, Agnès; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2014-02-01

    Although peripheral low-grade inflammation has been associated with a high incidence of mood symptoms in patients with metabolic syndrome (MetS), much less is known about the potential involvement of brain activation of cytokines in that context. Recently we showed in a mouse model of MetS, namely the db/db mice, an enhanced hippocampal inflammation associated with increased anxiety-like behavior (Dinel et al., 2011). However, depressive-like behavior was not affected in db/db mice. Based on the strong association between depressive-like behavior and cytokine-induced brain activation of indoleamine 2,3-dioxygenase (IDO), the enzyme that metabolizes tryptophan along the kynurenine pathway, these results may suggest an impairment of brain IDO activation in db/db mice. To test this hypothesis, we measured the ability of db/db mice and their healthy db/+ littermates to enhance brain IDO activity and depressive-like behavior after a systemic immune challenge with lipopolysaccharide (LPS). Here we show that LPS (5 μg/mouse) significantly increased depressive-like behavior (increased immobility time in a forced-swim test, FST) 24h after treatment in db/+ mice, but not in db/db mice. Interestingly, db/db mice also displayed after LPS treatment blunted increase of brain kynurenine/tryptophan ratio compared to their db/+ counterparts, despite enhanced induction of hippocampal cytokine expression (interleukin-1β, tumor necrosis factor-α). Moreover, this was associated with an impaired effect of LPS on hippocampal expression of the brain-derived neurotrophic factor (BDNF) that contributes to mood regulation, including under inflammatory conditions. Collectively, these data indicate that the rise in brain tryptophan catabolism and depressive-like behavior induced by innate immune system activation is impaired in db/db mice. These findings could have relevance in improving the management and treatment of inflammation-related complications in MetS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain

    PubMed Central

    Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.

    2012-01-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for long periods in animals that survive. PMID:23146654

  13. Improving Immunization Rates Through Community-Based Participatory Research: Community Health Improvement for Milwaukee's Children Program.

    PubMed

    Willis, Earnestine; Sabnis, Svapna; Hamilton, Chelsea; Xiong, Fue; Coleman, Keli; Dellinger, Matt; Watts, Michelle; Cox, Richard; Harrell, Janice; Smith, Dorothy; Nugent, Melodee; Simpson, Pippa

    2016-01-01

    Nationally, immunization coverage for the DTaP/3HPV/1MMR/3HepB/3Hib/1VZV antigen series in children ages 19-35 months are near or above the Healthy People 2020 target (80%). However, children in lower socioeconomic families experience lower coverage rates. Using a community-based participatory research (CBPR) approach, Community Health Improvement for Milwaukee Children (CHIMC) intervened to reduce disparities in childhood immunizations. The CHIMC adopted a self-assessment to examine the effectiveness of adhering to CBPR principles. Using behavior change models, CHIMC implemented education, social marketing campaign, and theory of planned behavior interventions. Community residents and organizational representatives vetted all processes, messages, and data collection tools. Adherence to the principles of CBPR was consistently positive over the 8-year period. CHIMC enrolled 565 parents/caregivers with 1,533 children into educational and planned behavior change (PBC) interventions, and enrolled another 406 surveyed for the social marketing campaign. Retention rate was high (80%) with participants being predominately Black females (90%) and the unemployed (64%); children's median age was 6.2 years. Increased knowledge about immunizations was consistently observed among parents/caregivers. Social marketing data revealed high recognition (85%) of the community-developed message ("Take Control: Protect Your Child with Immunizations"). Barriers and facilitators to immunize children revealed protective factors positively correlated with up-to-date (UTD) status (p<0.007). Ultimately, children between the ages of 19 and 35 months whose parents/caregivers completed education sessions and benefitted from a community-wide social marketing message increased their immunization status from 45% baseline to 82% over 4 years. Using multilayered interventions, CHIMC contributed to the elimination of immunization disparities in children. A culturally tailored CBPR approach is effective to eliminate immunization disparities.

  14. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less

  15. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less

  16. Cryptic impacts of temperature variability on amphibian immune function.

    PubMed

    Terrell, Kimberly A; Quintero, Richard P; Murray, Suzan; Kleopfer, John D; Murphy, James B; Evans, Matthew J; Nissen, Bradley D; Gratwicke, Brian

    2013-11-15

    Ectothermic species living in temperate regions can experience rapid and potentially stressful changes in body temperature driven by abrupt weather changes. Yet, among amphibians, the physiological impacts of short-term temperature variation are largely unknown. Using an ex situ population of Cryptobranchus alleganiensis, an aquatic North American salamander, we tested the hypothesis that naturally occurring periods of temperature variation negatively impact amphibian health, either through direct effects on immune function or by increasing physiological stress. We exposed captive salamanders to repeated cycles of temperature fluctuations recorded in the population's natal stream and evaluated behavioral and physiological responses, including plasma complement activity (i.e. bacteria killing) against Pseudomonas aeruginosa, Escherichia coli and Aeromonas hydrophila. The best-fit model (ΔAICc=0, wi=0.9992) revealed 70% greater P. aeruginosa killing after exposure to variable temperatures and no evidence of thermal acclimation. The same model predicted 50% increased E. coli killing, but had weaker support (ΔAICc=1.8, wi=0.2882). In contrast, plasma defenses were ineffective against A. hydrophila, and other health indicators (leukocyte ratios, growth rates and behavioral patterns) were maintained at baseline values. Our data suggest that amphibians can tolerate, and even benefit from, natural patterns of rapid warming/cooling. Specifically, temperature variation can elicit increased activity of the innate immune system. This immune response may be adaptive in an unpredictable environment, and is undetectable by conventional health indicators (and hence considered cryptic). Our findings highlight the need to consider naturalistic patterns of temperature variation when predicting species' susceptibility to climate change.

  17. Soluble Interleukin 2 Receptor Levels, Temperament and Character in Formerly Depressed Suicide Attempters Compared with Normal Controls

    ERIC Educational Resources Information Center

    Rothenhausler, Hans-Bernd; Stepan, Alexandra; Kapfhammer, Hans-Peter

    2006-01-01

    An imbalance of the immune system and mixed personality profiles in suicide attempters have been reported. As suicidal behavior is common in patients with psychiatric disorders within the spectrum of depressive features, in this study we measured soluble interleukin-2 receptor concentrations in plasma (sIL-2R) and investigated temperament and…

  18. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette's Syndrome in Preclinical Studies

    PubMed Central

    Spinello, Chiara; Laviola, Giovanni; Macrì, Simone

    2016-01-01

    Accumulating evidence suggests that Tourette's Syndrome (TS) – a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances – can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes isomorphic to tics and scarce knowledge about the immunological phenomena favoring the transition from natural adaptive immunity to pathological outcomes. PMID:27445678

  19. Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches

    USDA-ARS?s Scientific Manuscript database

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...

  20. Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches.

    USDA-ARS?s Scientific Manuscript database

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...

  1. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    PubMed

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Propolis Counteracts Some Threats to Honey Bee Health

    PubMed Central

    Simone-Finstrom, Michael; Borba, Renata S.; Wilson, Michael; Spivak, Marla

    2017-01-01

    Honey bees (Apis mellifera) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees’ natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis. We also review the limited research on the effects of propolis against other pathogens, parasites and pests (Nosema, viruses, Varroa destructor, and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency. PMID:28468244

  3. Evaluation of a campaign to improve immunization in a rural headstart program.

    PubMed

    Mayer, J P; Housemann, R; Piepenbrok, B

    1999-02-01

    This study evaluated an intervention to improve immunization rates in a high poverty, medically underserved rural area employing a pretest-posttest design. The intervention expanded immunization availability, established walk-in appointment policies, and introduced intensified parent education. Formative evaluation indicated specific messages with high salience to parents. As a result, the susceptibility and severity of childhood infectious disease, the outcome efficacy of vaccines, and methods to reduce barriers to immunization were emphasized in communications with parents. Data on DTP1-4, OPV1-3, and MMR were obtained from preschools, local health departments and private medical practices before (n = 567) and after the intervention (n = 331). Following adjustment for birth order and demographics, at post-intervention a significantly greater proportion of children received 6 of 8 vaccines on time. Effect sizes were large. For example, post MMR rates were at least 2X greater than pre rates. Time-series analysis of trend data on local newspaper coverage of child health topics suggested history was not a major threat to the internal validity of this pre-post only design. The findings indicate that comprehensive intervention, targeting improvements in the availability of pediatric care, health system policies and parent behavior, can improve immunization.

  4. Activating KIR molecules and their cognate ligands prevail in children with a diagnosis of ASD and in their mothers.

    PubMed

    Guerini, Franca R; Bolognesi, Elisabetta; Chiappedi, Matteo; Manca, Salvatorica; Ghezzo, Alessandro; Agliardi, Cristina; Zanette, Michela; Littera, Roberto; Carcassi, Carlo; Sotgiu, Stefano; Clerici, Mario

    2014-02-01

    The activity of natural killer (NK) cells is modulated by the interaction between killer-cell immune globulin-like receptor (KIR) proteins and their cognate HLA ligands; activated NK cells produce inflammatory cytokines and mediate innate immune responses. Activating KIR/HLA complexes (aKIR/HLA) were recently suggested to prevail in children with autism spectrum disorders (ASD), a neurodevelopmental syndrome characterized by brain and behavioral abnormalities and associated with a degree of inflammation. We verified whether such findings could be confirmed by analyzing two sample cohorts of Sardinian and continental Italian ASD children and their mothers. Results showed that aKIR/HLA are increased whereas inhibitory KIR/HLA complexes are reduced in ASD children; notably this skewing was even more significant in their mothers. KIR and HLA molecules are expressed by placental cells and by the trophoblast and their interactions result in immune activation and influence fetal, as well as central nervous system development and plasticity. Data herein suggest that in utero KIR/HLA immune interactions favor immune activation in ASD; this may play a role in the pathogenesis of the disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Propolis Counteracts Some Threats to Honey Bee Health.

    PubMed

    Simone-Finstrom, Michael; Borba, Renata S; Wilson, Michael; Spivak, Marla

    2017-04-29

    Honey bees ( Apis mellifera ) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees' natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis . We also review the limited research on the effects of propolis against other pathogens, parasites and pests ( Nosema , viruses, Varroa destructor , and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency.

  6. Systems Vaccinology: Enabling rational vaccine design with systems biological approaches

    PubMed Central

    Hagan, Thomas; Nakaya, Helder I.; Subramaniam, Shankar; Pulendran, Bali

    2015-01-01

    Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines. PMID:25858860

  7. Neuroimmune Basis of Methamphetamine Toxicity

    PubMed Central

    Loftis, Jennifer M.; Janowsky, Aaron

    2015-01-01

    Although it is not known which antigen-specific immune responses (or if antigen-specific immune responses) are relevant or required for methamphetamine's neurotoxic effects, it is apparent that methamphetamine exposure is associated with significant effects on adaptive and innate immunity. Alterations in lymphocyte activity and number, changes in cytokine signaling, impairments in phagocytic functions, and glial activation and gliosis have all been reported. These drug-induced changes in immune response, particularly within the CNS, are now thought to play a critical role in the addiction process for methamphetamine dependence as well as for other substance use disorders. In Section 2, methamphetamine's effects on glial cell (e.g., microglia and astrocytes) activity and inflammatory signaling cascades are summarized, including how alterations in immune cell function can induce the neurotoxic and addictive effects of methamphetamine. Section 2 also describes neurotransmitter involvement in the modulation of methamphetamine's inflammatory effects. Section 3 discusses the very recent use of pharmacological and genetic animal models which have helped elucidate the behavioral effects of methamphetamine's neurotoxic effects and the role of the immune system. Section 4 is focused on the effects of methamphetamine on blood–brain barrier integrity and associated immune consequences. Clinical considerations such as the combined effects of methamphetamine and HIV and/or HCV on brain structure and function are included in Section 4. Finally, in Section 5, immune-based treatment strategies are reviewed, with a focus on vaccine development, neuroimmune therapies, and other anti-inflammatory approaches. PMID:25175865

  8. Anthropogenic food provisioning and immune phenotype: Association among supplemental food, body condition, and immunological parameters in urban environments.

    PubMed

    Hwang, Jusun; Kim, Yongbaek; Lee, Sang-Won; Kim, Na-Yon; Chun, Myung-Sun; Lee, Hang; Gottdenker, Nicole

    2018-03-01

    Direct or indirect supplemental feeding of free-ranging animals occurs worldwide, resulting in significant impacts on population density or altered demographic processes. Another potential impact of increased energy intake from supplemental feeding is altered immunocompetence. As immune system maintenance is energetically costly, there may be trade-offs between immune responses and other energy-demanding physiological processes in individual animals. Although increased availability of food sources through supplemental feeding is expected to increase the overall immunocompetence of animals, empirical data verifying the association between supplemental feeding and different immune parameters are lacking. Understanding the potential influence of supplemental feeding on immune phenotypes is critical, as it may also impact host-pathogen dynamics in free-ranging animals. Using urban stray cats as a study model, we tested for associations between the intensity of supplemental feeding due to cat caretaker activity (CCA); body condition; and immune phenotype (bacterial killing assay (BKA), immunoglobulin G (IgG) concentration, and leukocyte counts). Significantly higher bacterial killing ability was observed in cats from high CCA districts, whereas higher IgG concentration and eosinophil counts were observed in cats from low CCA districts. Other leukocyte counts and body condition indices showed no significant association with CCA. We observed varying patterns of different immune components in relation to supplemental feeding. Out data suggest that supplemental feeding influences immune phenotype, not only by means of energy provisioning, but also by potentially reducing exposure rates to parasite infections through stray cat behavioral changes.

  9. Role for antibodies in altering behavior and movement.

    PubMed

    Libbey, Jane E; Fujinami, Robert S

    2010-08-01

    At the past meeting of INSAR, the role of autoimmunity was discussed in an educational session. This article summarizes this discussion. In immune-mediated diseases, antibodies can contribute to the pathogenesis of the disease and are sometimes the force that drives the disease process. This concept has not been established for autism. In autoimmune diseases, such as systemic lupus erythematosus (SLE), antibodies are found to react with double-stranded DNA. These antibodies also cross-react with N-methyl-D aspartate receptors. Many SLE patients suffer neurologic syndromes of the central nervous system (CNS). Similarly individuals infected with Group A streptococcus (GAS) have antibodies against the GAS carbohydrate, which cross-react with tubulin and lysoganglioside GM1 on neurons. During the acute stage of infection, GAS-infected patients develop Syndenham chorea where the disease process is driven in part by these cross-reactive antibodies. As the antibody levels decrease, the clinical features of Syndenham chorea resolve. In these two immune-mediated diseases, antibodies clearly play a role in the pathogenesis of the diseases. There are reports that mothers of individuals with autism have antibodies that react with brain proteins and when these antibodies are passively transferred to pregnant non-human primates or rodents the offspring has behavioral and nervous system changes. It is still not clear whether the antibodies found in mothers of individuals with autism actually play a role in the disease. More studies need to be performed to identify the proteins recognized by the antibodies and to determine how these could affect development, behavior and changes within the CNS.

  10. Immune–neural connections: how the immune system’s response to infectious agents influences behavior

    PubMed Central

    McCusker, Robert H.; Kelley, Keith W.

    2013-01-01

    Summary Humans and animals use the classical five senses of sight, sound, touch, smell and taste to monitor their environment. The very survival of feral animals depends on these sensory perception systems, which is a central theme in scholarly research on comparative aspects of anatomy and physiology. But how do all of us sense and respond to an infection? We cannot see, hear, feel, smell or taste bacterial and viral pathogens, but humans and animals alike are fully aware of symptoms of sickness that are caused by these microbes. Pain, fatigue, altered sleep pattern, anorexia and fever are common symptoms in both sick animals and humans. Many of these physiological changes represent adaptive responses that are considered to promote animal survival, and this constellation of events results in sickness behavior. Infectious agents display a variety of pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs). These PRR are expressed on both the surface [e.g. Toll-like receptor (TLR)-4] and in the cytoplasm [e.g. nucleotide-binding oligomerization domain (Nod)-like receptors] of cells of the innate immune system, primarily macrophages and dendritic cells. These cells initiate and propagate an inflammatory response by stimulating the synthesis and release of a variety of cytokines. Once an infection has occurred in the periphery, both cytokines and bacterial toxins deliver this information to the brain using both humoral and neuronal routes of communication. For example, binding of PRR can lead to activation of the afferent vagus nerve, which communicates neuronal signals via the lower brain stem (nucleus tractus solitarius) to higher brain centers such as the hypothalamus and amygdala. Blood-borne cytokines initiate a cytokine response from vascular endothelial cells that form the blood–brain barrier (BBB). Cytokines can also reach the brain directly by leakage through the BBB via circumventricular organs or by being synthesized within the brain, thus forming a mirror image of the cytokine milieu in the periphery. Although all cells within the brain are capable of initiating cytokine secretion, microglia have an early response to incoming neuronal and humoral stimuli. Inhibition of proinflammatory cytokines that are induced following bacterial infection blocks the appearance of sickness behaviors. Collectively, these data are consistent with the notion that the immune system communicates with the brain to regulate behavior in a way that is consistent with animal survival. PMID:23225871

  11. Technical Advance: Live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung

    PubMed Central

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-01-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587

  12. Therapeutic Implications of Brain–Immune Interactions: Treatment in Translation

    PubMed Central

    Miller, Andrew H; Haroon, Ebrahim; Felger, Jennifer C

    2017-01-01

    A wealth of data has been amassed that details a complex, yet accessible, series of pathways by which the immune system, notably inflammation, can influence the brain and behavior. These data have opened the window to a diverse array of novel targets whose potential efficacy is tied to specific neurotransmitters and neurocircuits as well as specific behaviors. What is clear is that the impact of inflammation on the brain cuts across psychiatric disorders and engages dopaminergic and glutamatergic pathways that regulate motivation and motor activity as well as the sensitivity to threat. Given the ability to identify patient populations with increased inflammation, the precision of interventions can be further tuned, in conjunction with the ability to establish target engagement in the brain through the use of multiple neuroimaging strategies. After a brief overview of the mechanisms by which inflammation affects the brain and behavior, this review examines the extant literature on the efficacy of anti-inflammatory treatments, while forging guidelines for future intelligent clinical trial design. An examination of the most promising therapeutic strategies is also provided, along with some of the most exciting clinical trials that are currently being planned or underway. PMID:27555382

  13. Parental vaccine concerns, information source, and choice of alternative immunization schedules.

    PubMed

    Wheeler, Marissa; Buttenheim, Alison M

    2013-08-01

    Alternative immunization schedules increase the time a child is unvaccinated and require greater resources from providers. Understanding what drives interest in alternative immunization schedules can potentially inform the design of effective, targeted messages that help to reduce time spent counseling and decrease requests for alternative immunization schedules. This study used the Theory of Planned Behavior to explore associations between sources of vaccine information, parental vaccine concerns, peer norms for vaccine behavior and intentions to follow an alternative immunization schedule. We performed logistic regression using medical record data from a private pediatric practice in a large northeastern city. Routine data were recorded in the EMR by the pediatrician during an initial vaccine counseling conversation with the parent(s). Parents who received vaccine information from doctors were less likely to have immunization concerns while parents who got vaccine information from friends and family or from books were more likely to report specific vaccine concerns. Our multivariate analysis shows that number of reported vaccine concerns and concerns about the utility or necessity of vaccines are strongly associated with alternative immunization intentions. We also find a direct relationship between sources of information about vaccines and alternative immunization intentions. Our results suggest that vaccine concerns and non-physician information sources play an important role in alternative immunization intentions while communication from physicians may play an important role in addressing vaccine concerns and promoting adherence to the ACIP immunization schedule.

  14. The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors.

    PubMed

    Chang, Chun-Jung; Tai, Kuo-Feng; Roffler, Steve; Hwang, Lih-Hwa

    2004-11-15

    Tumor cells engineered to secrete cytokines, referred to as tumor cell vaccines, can often generate systemic antitumor immunity and, in many cases, cause tumor regression. We compared the efficacy of s.c. immunization or intrahepatic immunization of GM-CSF-expressing tumor cell vaccines on the growth of s.c. or orthotopic liver tumors. A chemically transformed hepatic epithelial cell line, GP7TB, derived from Fischer 344 rats, was used to generate tumor models and tumor cell vaccines. Our results demonstrated that two s.c. injections of an irradiated tumor cell vaccine significantly controlled the growth of s.c. tumors, but was completely ineffective against orthotopic liver tumors. Effector cell infiltration in liver tumors was markedly reduced compared with s.c. tumors. Enhanced apoptosis of some effector cells was observed in the liver tumors compared with the s.c. tumors. Furthermore, the T cells induced by s.c. immunization preferentially migrated to s.c. tumor sites, as demonstrated by adoptive transfer experiments. In contrast, intrahepatic immunization, using parental tumor cells admixed with adenoviruses carrying the GM-CSF gene, yielded significantly better therapeutic effects on the liver tumors than on the s.c. tumors. Adoptive transfer experiments further confirmed that the T cells induced by liver immunization preferentially migrated to the liver tumor sites. Our results demonstrate that distinct T cell populations are induced by different immunization routes. Thus, the homing behavior of T cells depends on the route of immunization and is an important factor determining the efficacy of immunotherapy for regional tumors.

  15. Immunization Attitudes and Beliefs Among Parents: Beyond a Dichotomous Perspective

    ERIC Educational Resources Information Center

    Gust, Deborah; Brown, Cedric; Sheedy, Kristine; Hibbs, Beth; Weaver, Donna; Nowak, Glen

    2005-01-01

    Objective: To better understand differences among parents in their attitudes, beliefs, and behaviors regarding childhood immunizations and health-related issues. Methods: Forty-four survey variables assessing attitudes and beliefs about immunizations and health were analyzed. The K-means clusters technique was used to identify homogeneous groups…

  16. Developmental exposure to trichloroethylene promotes CD4{sup +} T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J.; Doss, Jason C.; Hennings, Leah J.

    2008-09-15

    The non adult immune system is particularly sensitive to perinatal and early life exposures to environmental toxicants. The common environmental toxicant, trichloroethylene (TCE), was shown to increase CD4+ T cell production of the proinflammatory cytokine IFN-{gamma} following a period of prenatal and lifetime exposure in autoimmune-prone MRL+/+ mice. In the current study, MRL+/+ mice were used to further examine the impact of TCE on the immune system in the thymus and periphery. Since there is considerable cross-talk between the immune system and the brain during development, the potential relationship between TCE and neurobehavioral endpoints were also examined. MRL+/+ mice weremore » exposed to 0.1 mg/ml TCE ({approx} 31 mg/kg/day) via maternal drinking water or direct exposure via the drinking water from gestation day 1 until postnatal day (PD) 42. TCE exposure did not impact gross motor skills but instead significantly altered social behaviors and promoted aggression associated with indicators of oxidative stress in brain tissues in male mice. The immunoregulatory effects of TCE involved a redox-associated promotion of T cell differentiation in the thymus that preceded the production of proinflammatory cytokines, IL-2, TNF-{alpha}, and IFN-{gamma} by mature CD4+ T cells. The results demonstrated that developmental and early life TCE exposure modulated immune function and may have important implications for neurodevelopmental disorders.« less

  17. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders.

    PubMed

    Bilbo, Staci D; Block, Carina L; Bolton, Jessica L; Hanamsagar, Richa; Tran, Phuong K

    2018-01-01

    Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum.

    PubMed

    Yin, Chuanlin; Li, Meizhen; Hu, Jian; Lang, Kun; Chen, Qiming; Liu, Jinding; Guo, Dianhao; He, Kang; Dong, Yipei; Luo, Jiapeng; Song, Zhenkun; Walters, James R; Zhang, Wenqing; Li, Fei; Chen, Xuexin

    2018-05-30

    Parasitoid wasps are well-known natural enemies of major agricultural pests and arthropod borne diseases. The parasitoid wasp Macrocentrus cingulum (Hymenoptera: Braconidae) has been widely used to control the notorious insect pests Ostrinia furnacalis (Asian Corn Borer) and O. nubilalis (European corn borer). One striking phenomenon exhibited by M. cingulum is polyembryony, the formation of multiple genetically identical offspring from a single zygote. Moreover, M. cingulum employs a passive parasitic strategy by preventing the host's immune system from recognizing the embryo as a foreign body. Thus, the embryos evade the host's immune system and are not encapsulated by host hemocytes. Unfortunately, the mechanism of both polyembryony and immune evasion remains largely unknown. We report the genome of the parasitoid wasp M. cingulum. Comparative genomics analysis of M. cingulum and other 11 insects were conducted, finding some gene families with apparent expansion or contraction which might be linked to the parasitic behaviors or polyembryony of M. cingulum. Moreover, we present the evidence that the microRNA miR-14b regulates the polyembryonic development of M. cingulum by targeting the c-Myc Promoter-binding Protein 1 (MBP-1), histone-lysine N-methyltransferase 2E (KMT2E) and segmentation protein Runt. In addition, Hemomucin, an O-glycosylated transmembrane protein, protects the endoparasitoid wasp larvae from being encapsulated by host hemocytes. Motif and domain analysis showed that only the hemomucin in two endoparasitoids, M. cingulum and Venturia canescens, possessing the ability of passive immune evasion has intact mucin domain and similar O-glycosylation patterns, indicating that the hemomucin is a key factor modulating the immune evasion. The microRNA miR-14b participates in the regulation of polyembryonic development, and the O-glycosylation of the mucin domain in the hemomucin confers the passive immune evasion in this wasp. These key findings provide new insights into the polyembryony and immune evasion.

  19. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress.

    PubMed

    Hanke, M L; Powell, N D; Stiner, L M; Bailey, M T; Sheridan, J F

    2012-10-01

    During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic-pituitary-adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b(+) splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b(+) cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Fecal sacs attract insects to the nest and provoke an activation of the immune system of nestlings.

    PubMed

    Ibáñez-Álamo, Juan Diego; Ruiz-Raya, Francisco; Rodríguez, Laura; Soler, Manuel

    2016-01-01

    Nest sanitation is a widespread but rarely studied behavior in birds. The most common form of nest sanitation behavior, the removal of nestling feces, has focused the discussion about which selective pressures determine this behavior. The parasitism hypothesis, which states that nestling fecal sacs attract parasites that negatively affect breeding birds, was proposed 40 years ago and is frequently cited as a demonstrated fact. But, to our knowledge, there is no previous experimental test of this hypothesis. We carried out three different experiments to investigate the parasitism hypothesis. First, we used commercial McPhail traps to test for the potential attraction effect of nestling feces alone on flying insects. We found that traps with fecal sacs attracted significantly more flies (Order Diptera), but not ectoparasites, than the two control situations. Second, we used artificial blackbird (Turdus merula) nests to investigate the combined attraction effect of feces and nest materials on arthropods (not only flying insects). Flies, again, were the only group of arthropods significantly attracted by fecal sacs. We did not detect an effect on ectoparasites. Third, we used active blackbird nests to investigate the potential effect of nestling feces in ecto- and endoparasite loads in real nestlings. The presence of fecal sacs near blackbird nestlings did not increase the number of louse flies or chewing lice, and unexpectedly reduced the number of nests infested with mites. The endoparasite prevalence was also not affected. In contrast, feces provoked an activation of the immune system as the H/L ratio of nestlings living near excrements was significantly higher than those kept under the two control treatments. Surprisingly, our findings do not support the parasitism hypothesis, which suggests that parasites are not the main reason for fecal sac removal. In contrast, the attraction of flies to nestling feces, the elevation of the immune response of chicks, and the recently described antimicrobial function of the mucous covering of fecal sacs suggest that microorganisms could be responsible of this important form of parental care behavior (microbial hypothesis).

  1. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  2. Aloysia triphylla in the zebrafish food: effects on physiology, behavior, and growth performance.

    PubMed

    Zago, Daniane C; Santos, Alessandro C; Lanes, Carlos F C; Almeida, Daniela V; Koakoski, Gessi; de Abreu, Murilo S; Zeppenfeld, Carla C; Heinzmann, Berta M; Marins, Luis F; Baldisserotto, Bernardo; Barcellos, Leonardo J G; Cunha, Mauro A

    2018-04-01

    Dietary supplements are commonly used by animals and humans and play key roles in diverse systems, such as the immune and reproductive systems, and in metabolism. Essential oils (EOs), which are natural substances, have potential for use in food supplementation; however, their effects on organisms remain to be elucidated. Here, we examine the effects of dietary Aloysia triphylla EO supplementation on zebrafish behavior, metabolism, stress response, and growth performance. We show that fish fed diets containing A. triphylla EO presented an anxiolytic response, with reduced exploratory activity and oxygen consumption; no changes were observed in neuroendocrine stress axis functioning and growth was not impaired. Taken together, these results suggest that the A. triphylla EO supplementation is a strong candidate for use in feed, since it ensures fish welfare (anxiolytic behavior) with decreased oxygen consumption. This makes it suitable for use in high-density production systems without causing damage to the neuroendocrine stress axis and without growth performance being impaired.

  3. Anxiogenic effects of brief swim stress are sensitive to stress history.

    PubMed

    Christianson, John P; Drugan, Robert C; Flyer, Johanna G; Watkins, Linda R; Maier, Steven F

    2013-07-01

    Stressors that are controllable not only protect an individual from the acute consequences of the stressor, but also the consequences of stressors that occur later. This phenomenon, termed "behavioral immunization", is studied in the rat by first administering tailshocks each of which can be terminated (escapable tailshock) by an instrumental wheel-turn response prior to exposure to a second stressor. Previous research has shown that exposure to escapable tailshock blocks the neurochemical and behavioral consequences of later inescapable tailshock or social defeat stress. Here we explored the generality of behavioral immunization by examining the impact of prior escapable tailshock on the behavioral consequences of cold swim stress. Exposure to a 5min cold-water (19°C) swim caused an anxiety-like reduction in social interaction that was dependent upon 5-HT2C receptor activation. Rats with prior exposure to escapable tailshock did not develop the swim-induced anxiety. Plasticity in the medial prefrontal cortex, a hypothetical neural mechanism underlying behavioral immunization, is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A Mathematical Tumor Model with Immune Resistance and Drug Therapy: An Optimal Control Approach

    DOE PAGES

    De Pillis, L. G.; Radunskaya, A.

    2001-01-01

    We present a competition model of cancer tumor growth that includes both the immune system response and drug therapy. This is a four-population model that includes tumor cells, host cells, immune cells, and drug interaction. We analyze the stability of the drug-free equilibria with respect to the immune response in order to look for target basins of attraction. One of our goals was to simulate qualitatively the asynchronous tumor-drug interaction known as “Jeffs phenomenon.” The model we develop is successful in generating this asynchronous response behavior. Our other goal was to identify treatment protocols that could improve standard pulsed chemotherapymore » regimens. Using optimal control theory with constraints and numerical simulations, we obtain new therapy protocols that we then compare with traditional pulsed periodic treatment. The optimal control generated therapies produce larger oscillations in the tumor population over time. However, by the end of the treatment period, total tumor size is smaller than that achieved through traditional pulsed therapy, and the normal cell population suffers nearly no oscillations.« less

  5. A Mathematical Tumor Model with Immune Resistance and Drug Therapy: An Optimal Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pillis, L. G.; Radunskaya, A.

    We present a competition model of cancer tumor growth that includes both the immune system response and drug therapy. This is a four-population model that includes tumor cells, host cells, immune cells, and drug interaction. We analyze the stability of the drug-free equilibria with respect to the immune response in order to look for target basins of attraction. One of our goals was to simulate qualitatively the asynchronous tumor-drug interaction known as “Jeffs phenomenon.” The model we develop is successful in generating this asynchronous response behavior. Our other goal was to identify treatment protocols that could improve standard pulsed chemotherapymore » regimens. Using optimal control theory with constraints and numerical simulations, we obtain new therapy protocols that we then compare with traditional pulsed periodic treatment. The optimal control generated therapies produce larger oscillations in the tumor population over time. However, by the end of the treatment period, total tumor size is smaller than that achieved through traditional pulsed therapy, and the normal cell population suffers nearly no oscillations.« less

  6. Cutaneous immunology: basics and new concepts.

    PubMed

    Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran

    2016-01-01

    As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.

  7. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells.

    PubMed

    Mattei, Fabrizio; Schiavoni, Giovanna; De Ninno, Adele; Lucarini, Valeria; Sestili, Paola; Sistigu, Antonella; Fragale, Alessandra; Sanchez, Massimo; Spada, Massimo; Gerardino, Annamaria; Belardelli, Filippo; Businaro, Luca; Gabriele, Lucia

    2014-10-01

    A full elucidation of events occurring inside the cancer microenvironment is fundamental for the optimization of more effective therapies. In the present study, the cross-talk between cancer and immune cells was examined by employing mice deficient (KO) in interferon regulatory factor (IRF)-8, a transcription factor essential for induction of competent immune responses. The in vivo results showed that IRF-8 KO mice were highly permissive to B16.F10 melanoma growth and metastasis due to failure of their immune cells to exert proper immunosurveillance. These events were found to be dependent on soluble factors released by cells of the immune system capable of shaping the malignant phenotype of melanoma cells. An on-chip model was then generated to further explore the reciprocal interactions between the B16.F10 and immune cells. B16.F10 and immune cells were co-cultured in a microfluidic device composed of three culturing chambers suitably inter-connected by an array of microchannels; mutual interactions were then followed using time-lapse microscopy. It was observed that WT immune cells migrated through the microchannels towards the B16.F10 cells, establishing tight interactions that in turn limited tumor spread. In contrast, IRF-8 KO immune cells poorly interacted with the melanoma cells, resulting in a more invasive behavior of the B16.F10 cells. These results suggest that IRF-8 expression plays a key role in the cross-talk between melanoma and immune cells, and under-score the value of cell-on-chip approaches as useful in vitro tools to reconstruct complex in vivo microenvironments on a microscale level to explore cell interactions such as those occurring within a cancer immunoenvironment.

  8. The immunocompromised district in dermatology: A unifying pathogenic view of the regional immune dysregulation.

    PubMed

    Ruocco, Vincenzo; Ruocco, Eleonora; Piccolo, Vincenzo; Brunetti, Giampiero; Guerrera, Luigi Pio; Wolf, Ronni

    2014-01-01

    Besides the systemic immune deficiency, a sectorial default in immune control may occur in immunocompetent subjects. This regional immune defect can appear and remain confined to differently damaged skin areas, lately labeled immunocompromised districts (ICDs). An ICD is a skin area more vulnerable than the rest of the body for genetic or acquired reasons. Its vulnerability mainly consists in a local dysregulation of the immune control, which often facilitates (but sometimes hinders) the local onset of immunity-related eruptions or skin disorders. The factors responsible for localized immune dysregulation are multifarious, being represented by chronic lymphatic stasis, herpetic infections, ionizing or ultraviolet (UV) radiations, burns, all sorts of trauma (especially amputation), tattooing, intradermal vaccinations, and others of disparate nature (eg, paralytic stroke, poliomyelitis). Whatever the cause, in time an ICD may become a vulnerable site, prone to developing opportunistic infections, tumors, or dysimmune reactions (often of granulomatous type), strictly confined to the district itself; however, the opposite may also occur with systemic immune disorders or malignancies that selectively spare the district. In any case, the immunologic behavior of an ICD is different from that of the rest of the body. The pathomechanisms involved in this sectorial immune destabilization may reside in locally hampered lymph drainage that hinders the normal trafficking of immunocompetent cells (eg, chronic lymphedema, posttraumatic lymph stasis) or in a damage to sensory nerve fibers that release immunity-related peptides (eg, herpetic infections, carpal tunnel syndrome), or in both conditions (eg, amputation stump, radiation dermatitis). The ICD is a conceptual entity with no definite shape or dimension. It may take an extremely variable form and extent depending on the causative agent, ranging from a minimal area (eg, intradermal vaccination) or a small area (eg, herpes simplex infection), through a wide area (eg, radiotherapy), a bandlike segment (eg, skin mosaicism, herpes zoster infection), or an acral area (eg, carpal tunnel syndrome), up to a whole limb (eg, Stewart-Treves syndrome) or even an entire half body (eg, brain stroke). Varied newly coined terminology can be used to indicate the specific cause each time that it is responsible for a regional immune dysregulation. The advantage of the umbrella term ICD is that it encompasses all the possible causes involved in a local immune destabilization. An ICD may have a congenital or a postnatal origin, and interesting similarities between the two forms exist. An ICD may also take place in patients with a preexisting systemic immune deficiency, thus creating a more vulnerable site in an already vulnerable patient. Identifying a cutaneous ICD in a given patient is an important standpoint for both diagnostic and prevention purposes. This can be proven by the educative clinical examples that are reported here. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens

    PubMed Central

    2012-01-01

    In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against FT. PMID:22620989

  10. Application of mobile technology for improving expanded program on immunization among highland minority and stateless populations in northern Thailand border.

    PubMed

    Kaewkungwal, Jaranit; Apidechkul, Tawatchai; Jandee, Kasemsak; Khamsiriwatchara, Amnat; Lawpoolsri, Saranath; Sawang, Surasak; Sangvichean, Aumnuyphan; Wansatid, Peerawat; Krongrungroj, Sarinya

    2015-01-14

    Studies of undervaccinated children of minority/stateless populations have highlighted significant barriers at individual, community, and state levels. These include geography-related difficulties, poverty, and social norms/beliefs. The objective of this study was to assess project outcomes regarding immunization coverage, as well as maternal attitudes and practices toward immunization. The "StatelessVac" project was conducted in Thailand-Myanmar-Laos border areas using cell phone-based mechanisms to increase immunization coverage by incorporating phone-to-phone information sharing for both identification and prevention. With limitation of the study among vulnerable populations in low-resource settings, the pre/post assessments without comparison group were conducted. Immunization coverage was collected from routine monthly reports while behavior-change outcomes were from repeat surveys. This study revealed potential benefits of the initiative for case identification; immunization coverage showed an improved trend. Prevention strategies were successfully integrated into the routine health care workflows of immunization activities at point-of-care. A behavior-change-communication package contributes significantly in raising both concern and awareness in relation to child care. The mobile technology has proven to be an effective mechanism in improving a children's immunization program among these hard-to-reach populations. Part of the intervention has now been revised for use at health centers across the country.

  11. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X Syndrome

    PubMed Central

    Yuskaitis, Christopher J.; Beurel, Eleonore; Jope, Richard S.

    2010-01-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function, thus Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine-phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine-phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine-phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice. PMID:20600866

  12. (Neuro)transmitter systems in circulating immune cells: a target of immunopharmacological interventions?

    PubMed

    Tayebati, Seyed Khosrow; Amenta, Francesco

    2008-01-01

    Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.

  13. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    PubMed

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  14. Tiling solutions for optimal biological sensing

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.

    2015-10-01

    Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.

  15. The Immune System: Basis of so much Health and Disease: 2. Innate Immunity.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-03-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covering innate immunity. Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  16. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-04-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  17. Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-01

    There is converging evidence that prenatal maternal infection can increase the risk of occurrence of neuropsychiatric disorders like schizophrenia, autism, anxiety and depression in later life. Experimental studies have shown conflicting effects of prenatal maternal immune activation on anxiety-like behavior and hypothalamic-pituitary-adrenal (HPA) axis development in offspring. We investigated the effects of maternal immune activation during pregnancy on anxiety- and depression-like behaviors in pregnant mice and their offspring to determine whether these effects are dependent on strain. NMRI and C57BL/6 pregnant mice were treated with either saline or lipopolysaccharide on gestational day 17 and then interleukin (IL)-6 and corticosterone (COR) levels; anxiety or depression in the pregnant mice and their offspring were evaluated. The results indicate that maternal inflammation increased the levels of COR and anxiety-like behavior in NMRI pregnant mice, but not in C57BL/6 dams. Our data also demonstrate that maternal inflammation elevated the levels of anxiety-and depression-like behaviors in NMRI offspring on the elevated plus-maze, elevated zero-maze, tail suspension test and forced swimming test respectively, but not in the open field and light-dark box. In addition, we did not find any significant change in anxiety- and depression-like behaviors of adult C57BL/6 offspring. Our findings suggest that prenatal maternal immune activation can alter the HPA axis activity, anxiety- and depression-like behaviors in a strain- and task-dependent manner in offspring and further comprehensive studies are needed to prove the causal relationship between the findings found here and to validate their relevance to neuropsychiatric disorders in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat

    PubMed Central

    McKim, Daniel B.; Niraula, Anzela; Tarr, Andrew J.; Wohleb, Eric S.

    2016-01-01

    Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. SIGNIFICANCE STATEMENT Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood disorders that impair everyday functioning and overall quality of life. The brain, previously thought of as an immune-privileged organ, is now known to communicate extensively with the peripheral immune system. This brain–body communication plays a significant role in various stress-induced inflammatory conditions, also characterized by psychological impairments. Findings from this study implicate neuroimmune activation rather than impaired neurogenesis in stress-induced cognitive deficits. This idea opens up possibilities for novel immune interventions in the treatment of cognitive and mood disturbances, while also adding to the complexity surrounding the functional implications of adult neurogenesis. PMID:26937001

  19. Live Music Therapy as an Active Focus of Attention for Pain and Behavioral Symptoms of Distress During Pediatric Immunization.

    PubMed

    Sundar, Sumathy; Ramesh, Bhuvaneswari; Dixit, Priyanka B; Venkatesh, Soma; Das, Prarthana; Gunasekaran, Dhandapany

    2016-07-01

    A total of 100 children coming for routine immunization to pediatric outpatient department were included and were divided into experiment (n = 50) and control (n = 50) groups. Experiment group received live music therapy during immunization procedure. Control group received no intervention. The Modified Behavior Pain Scale (MBPS), 10-point pain levels, and 10-point distress levels were documented by parents. Duration of crying was recorded by investigators. Pre- and postimmunization blood pressures and heart rates of parents holding the children were also measured and recorded by investigators. Independent and paired t tests were used for analysis. All 3 domains of the Modified Behavior Pain Scale and duration of crying showed significant improvement (P < .05) in the experiment group. Pain and distress levels also showed statistically nonsignificant improvement in experiment group. Blood pressure and heart rate of parents showed no difference. Music therapy could be helpful to children, parents, and health care providers by reducing discomfort of the child during pediatric immunization. © The Author(s) 2015.

  20. Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster).

    PubMed

    Scotti, Melissa-Ann L; Carlton, Elizabeth D; Demas, Gregory E; Grippo, Angela J

    2015-04-01

    Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Molecular Mechanisms of RNA-Targeting by Cas13-containing Type VI CRISPR-Cas Systems.

    PubMed

    O'Connell, Mitchell

    2018-06-22

    Prokaryotic adaptive immune systems use CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, include a single protein known as Cas13 (formerly C2c2), that when assembled with a crRNA forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) domains, is required for degradation of target RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR-Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications. Copyright © 2018. Published by Elsevier Ltd.

  2. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  3. No apparent cost of evolved immune response in Drosophila melanogaster.

    PubMed

    Gupta, Vanika; Venkatesan, Saudamini; Chatterjee, Martik; Syed, Zeeshan A; Nivsarkar, Vaishnavi; Prasad, Nagaraj G

    2016-04-01

    Maintenance and deployment of the immune system are costly and are hence predicted to trade-off with other resource-demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes-I (Infection with Pseudomonas entomophila), S (Sham-infection with MgSO4 ), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade-offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade-offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life-history trade-offs might play little role in maintaining variation in immunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Development and analysis of a novel cytokine biosensor concept for astronaut immune system monitoring

    NASA Astrophysics Data System (ADS)

    Aponte, Vanessa M.

    The dynamics of how astronauts' immune systems respond to space flight have been studied extensively, but the complex process has not to date been thoroughly characterized, nor have the underlying principles of what causes the immune system to change in microgravity been fully determined. To obtain statistically significant results regarding overall immunological effects in space, collecting in vivo data during flight is desirable, but no sensor is currently capable of performing such function in this environment. The aims of this research were to establish appropriate markers for in-flight monitoring of the immune system and develop a novel approach for a benchtop sensor to measure them. Quartz Crystal Microbalances (QCMs) were used as platforms to study a surface biochemistry process selective towards cytokines, which are used as stress-related immune markers in space and ground medicine. Pilot studies elucidated that a thiolated streptavidin-biotinylated antibody surface assembly did not form the protein monolayer necessary for stable cytokine sensing. Improved experiments incorporated self-assembled monolayers (SAMs) by using di-thiol tethers at the base of a dual antibody sandwich and fluorophore assembly. The goals of the improved experiments were to achieve a stable monolayer of covalently bound tethers, to enhance sensitivity by the addition of a second monoclonal antibody, and to have a fluorescence tether attached to the last antibody layer as a way to corroborate the amount of proteins attached to the surface by using confocal fluorescence microscopy (CFM). Atomic Force Microscopy (AFM) results confirmed the formation of an even protein monolayer at the surface of the QCM, while CFM corroborated that the entire sandwich assembly had been achieved. Frequency changes increased directly proportional to concentration of cytokines, adhering to non-linear behavior explained by viscoelastic fluid models. Results point to the promising use of this surface chemistry within an optical platform such as Surface Plasmon Resonance (SPR), rather than a piezoelectric device. Consideration is given to the potential application of this concept to MEMS/NEMS devices.

  5. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic-pituitary-adrenal axis function.

    PubMed

    Haj-Mirzaian, A; Amiri, S; Kordjazy, N; Momeny, M; Razmi, A; Rahimi-Balaei, M; Amini-Khoei, H; Haj-Mirzaian, A; Marzban, H; Mehr, S E; Ghaffari, S H; Dehpour, A R

    2016-02-19

    The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. Results showed that experiencing 4-weeks of juvenile SIS provoked depressive and anxiety-like behaviors that were associated with hyper responsiveness of HPA axis, upregulation of interleukin-1β, and nitric oxide (NO) overproduction in the pre-frontal cortex and hippocampus. Administration of lithium (10 mg/kg) significantly attenuated the depressant and anxiogenic effects of SIS in behavioral tests. Lithium also restored the negative effects of SIS on cortical and hippocampal interleukin-1β and NO as well as HPA axis deregulation. Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging.

    PubMed

    Giovanoli, Sandra; Notter, Tina; Richetto, Juliet; Labouesse, Marie A; Vuillermot, Stéphanie; Riva, Marco A; Meyer, Urs

    2015-11-25

    Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may also induce pathological brain aging via sustained effects on systemic and central inflammation. Here, we tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pregnancy. Pregnant C57BL6/J mice on gestation day 17 were treated with the viral mimetic polyriboinosinic-polyribocytidilic acid (poly(I:C)) or control vehicle solution. The resulting offspring were first tested using cognitive and behavioral paradigms known to be sensitive to hippocampal damage, after which they were assigned to quantitative analyses of inflammatory cytokines, microglia density and morphology, astrocyte density, presynaptic markers, and neurotrophin expression in the hippocampus throughout aging (1, 5, and 22 months of age). Maternal poly(I:C) treatment led to a robust increase in inflammatory cytokine levels in late gestation but did not cause persistent systemic or hippocampal inflammation in the offspring. The late prenatal manipulation also failed to cause long-term changes in microglia density, morphology, or activation, and did not induce signs of astrogliosis in pubescent, adult, or aged offspring. Despite the lack of persistent inflammatory or glial anomalies, offspring of poly(I:C)-exposed mothers showed marked and partly age-dependent deficits in hippocampus-regulated cognitive functions as well as impaired hippocampal synaptophysin and brain-derived neurotrophic factor (BDNF) expression. Late prenatal exposure to viral-like immune activation in mice causes hippocampus-related cognitive and synaptic deficits in the absence of chronic inflammation across aging. These findings do not support the hypothesis that this form of prenatal immune activation may induce pathological brain aging via sustained effects on systemic and central inflammation. We further conclude that poly(I:C)-based prenatal immune activation models are reliable in their effectiveness to induce (hippocampal) neuropathology across aging, but they appear unsuited for studying the role of chronic systemic or central inflammation in brain aging.

  7. More than Fever: Thermoregulatory Responses to Immunological Stimulation and Consequences of Thermoregulatory Strategy on Innate Immunity in Gopher Tortoises (Gopherus polyphemus).

    PubMed

    Goessling, Jeffrey M; Guyer, Craig; Mendonça, Mary T

    Organisms possess a range of thermoregulatory strategies that may vary in response to sickness, thereby driving important life-history consequences. Because the immune system is vital to maintaining organism function, understanding the suite of immune responses to infection indicates basic costs and benefits of physiological strategies. Here, we assessed consequences of thermoregulation and seasonality on immune function in both immunologically stimulated and nonstimulated gopher tortoises (Gopherus polyphemus). An ectothermic vertebrate was used as an experimental model because the effects of thermoregulation on immunity remain understudied and are of increasing importance in light of anthropogenic alterations to thermal environments. We found that G. polyphemus increased body temperature (T b ) at 1 h after injection with lipopolysaccharide (LPS) when compared with saline controls (P = 0.04), consistent with behavioral fever. LPS increased plasma bactericidal ability (BA; P = 0.006), reduced plasma iron concentration (P = 0.041), and increased heterophil∶lymphocyte ratios (P < 0.001). In nonstimulated animals, thermoregulatory strategy had a strong effect on innate immunity, which demonstrated that individuals have the ability to facultatively adjust immune function when infection burden is low; this relationship was not present in LPS-injected animals, which suggested that animals stimulated with LPS maximize bactericidal ability independently of temperature. Seasonal acclimation state did not influence responses to LPS, although baseline plasma iron was significantly lower in animals acclimated to winter. These results support that a trade-off exists between immunity and other conflicting physiological interests. Moreover, these results clearly demonstrate the ability of individuals to modulate immune function as a direct result of thermoregulatory decisions.

  8. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro

    2014-07-01

    Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm-1) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm-1 Z-DNA, 1090-1150 cm-1 symmetric stretching of Psbnd Osbnd C, 1200-1260 cm-1 asymmetric PO2 and 1570-1510 cm-1 methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.

  9. Why is neuroimmunopharmacology crucial for the future of addiction research?

    PubMed

    Hutchinson, Mark R; Watkins, Linda R

    2014-01-01

    A major development in drug addiction research in recent years has been the discovery that immune signaling within the central nervous system contributes significantly to mesolimbic dopamine reward signaling induced by drugs of abuse, and hence is involved in the presentation of reward behaviors. Additionally, in the case of opioids, these hypotheses have advanced through to the discovery of the novel site of opioid action at the innate immune pattern recognition receptor Toll-like receptor 4 as the necessary triggering event that engages this reward facilitating central immune signaling. Thus, the hypothesis of major proinflammatory contributions to drug abuse was born. This review will examine these key discoveries, but also address several key lingering questions of how central immune signaling is able to contribute in this fashion to the pharmacodynamics of drugs of abuse. It is hoped that by combining the collective wisdom of neuroscience, immunology and pharmacology, into Neuroimmunopharmacology, we may more fully understanding the neuronal and immune complexities of how drugs of abuse, such as opioids, create their rewarding and addiction states. Such discoveries will point us in the direction such that one day soon we might successfully intervene to successfully treat drug addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A novel method for modeling facial allodynia associated with migraine in awake and freely moving rats

    PubMed Central

    Wieseler, Julie; Ellis, Amanda; Sprunger, David; Brown, Kim; McFadden, Andrew; Mahoney, John; Rezvani, Niloofar; Maier, Steven F.; Watkins, Linda R.

    2009-01-01

    Migraine is a neurovascular disorder that induces debilitating headaches associated with multiple symptoms including facial allodynia, characterized by heightened responsivity to normally innocuous mechanical stimuli. It is now well accepted that immune activation and immune-derived inflammatory mediators enhance pain responsivity, including in the trigeminal system. Nociceptive (“pain” responsive) trigeminal nerves densely innervate the cranial meninges. We have recently proposed that the meninges may serve as a previously unidentified, key interface between the peripheral immune system and the CNS with potential implications for understanding underlying migraine mechanisms. Our focus here is the development of a model for facial allodynia associated with migraine. We developed a model wherein an indwelling catheter is placed between the skull and dura, allowing immunogenic stimuli to be administered over the dura in awake and freely moving rats. Since the catheter does not contact the brain itself, any proinflammatory cytokines induced following manipulation derive from resident or recruited meningeal immune cells. While surgery alone does not alter immune activation markers, TNF or IL6 mRNA and/or protein, it does decrease gene expression and increase protein expression of IL-1 at 4 days after surgery. Using this model we show the induction of facial allodynia in response to supradural administration of either the HIV glycoprotein gp120 or inflammatory soup (bradykinin, histamine, serotonin, and prostaglandin E2), and the induction of hindpaw allodynia in our model after inflammatory soup. This model allows time and dose dependent assessment of the relationship between changes in meningeal inflammation and corresponding exaggerated pain behaviors. PMID:19837113

  11. Effect of Smoking on Peripheral Blood Lymphocyte Subsets of Patients With Chronic Renal Failure.

    PubMed

    Düvenci Birben, Özlem; Akçay, Şule; Sezer, Siren; Şirvan, Şale; Haberal, Mehmet

    2016-11-01

    Smoking is known to suppress the immune system. It is also known that chronic renal failure affects the immune system. However, the number of studies investigating the effects of chronic renal failure and smoking together is limited. In our study, we examined whether smoking affects the diminished response of the immune system in patients with chronic renal failure. We compared peripheral blood lymphocyte subsets in smoking and nonsmoking patients with chronic renal failure. We also used the Fagerström Test for Nicotine Dependence to evaluate its correlation with the lymphocyte subset count in patients who are current smokers. Our study included 126 patients with chronic renal failure. According to their smoking habits, patients were divided into 2 groups: smokers and nonsmokers. The average age of patients who were smokers was 53.2 ± 1.5 years, with average age of nonsmokers being 59.2 ± 2.2 years. The average duration of smoking in smokers was 30.7 ± 2.7 packyears. We found that the percentage of cluster of differentiation 16-56 cells (natural killer cells) and lymphocyte percentage were significantly lower among smokers in our study (P < .05). We compared the lymphocyte subset panel to pack-years and found that the rate of cluster of differentiation 16-56 cells decreased as smoking duration increased. Our study revealed that smoking suppresses the immune system, as measured by lymphocyte subsets, in patients with chronic renal failure, similar to that shown in healthy smokers. According to our findings, patients with chronic renal failure, where infection is the primary reason for mortality and morbidity, must be questioned for smoking and referred to smoking cessation clinics. Because of its immunosuppressive effects, smoking behaviors must be solved preoperatively in transplant candidates.

  12. Stress and obesity/metabolic syndrome in childhood and adolescence.

    PubMed

    Pervanidou, Panagiota; Chrousos, George P

    2011-09-01

    Chronic distress contributes to the development of obesity and comorbid states. Stress is the disturbance of the complex dynamic equilibrium that all organisms must maintain, and is associated with activation of the Stress system comprising of the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system functions in a baseline circadian fashion and interacts with other systems of the organism to regulate a variety of behavioral, endocrine, metabolic, immune and cardiovascular functions. The experience of perceived or real uncontrollable intense and/or chronic stress (distress) may lead to several psychopathologic conditions, including anxiety, depressive and psychosomatic disorders, substance abuse, obesity and the metabolic syndrome, and osteoporosis, as well as impaired reproductive and immune functions. Developing children and adolescents are particularly vulnerable to the effects of chronic stress. Both behavioral and biological pathways are involved in the connection between chronic stress and obesity in adults and children. Emotional "comfort" eating, lack of sleep, impulsive behaviours and selection of specific foods often characterize stressed individuals. In addition to specific behaviours, dysregulation of the stress system through increased secretion of cortisol and catecholamines, especially in the evening hours, and in concert with concurrently elevated insulin concentrations, leads to development of central obesity, insulin resistance and the metabolic syndrome. In children, chronic alterations in cortisol secretion may have additional effects on cognitive and emotional development, timing of puberty and final stature. Obese children and adolescents are frequently entangled in a vicious cycle between distress, impairing self-image and distorted self-image, maintaining and worsening distress.

  13. The twilight of immunity: emerging concepts in aging of the immune system.

    PubMed

    Nikolich-Žugich, Janko

    2018-01-01

    Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.

  14. Kinetics of Social Contagion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János

    2015-11-01

    Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters.

  15. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  16. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes

    PubMed Central

    Heussler, Gary E.; Cady, Kyle C.; Koeppen, Katja; Bhuju, Sabin; Stanton, Bruce A.

    2015-01-01

    ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas) system is an adaptive immune system present in many archaea and bacteria. CRISPR/Cas systems are incredibly diverse, and there is increasing evidence of CRISPR/Cas systems playing a role in cellular functions distinct from phage immunity. Previously, our laboratory reported one such alternate function in which the type 1-F CRISPR/Cas system of the opportunistic pathogen Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aeruginosa PA14) inhibits both biofilm formation and swarming motility when the bacterium is lysogenized by the bacteriophage DMS3. In this study, we demonstrated that the presence of just the DMS3 protospacer and the protospacer-adjacent motif (PAM) on the P. aeruginosa genome is necessary and sufficient for this CRISPR-dependent loss of these group behaviors, with no requirement of additional DMS3 sequences. We also demonstrated that the interaction of the CRISPR system with the DMS3 protospacer induces expression of SOS-regulated phage-related genes, including the well-characterized pyocin operon, through the activity of the nuclease Cas3 and subsequent RecA activation. Furthermore, our data suggest that expression of the phage-related genes results in bacterial cell death on a surface due to the inability of the CRISPR-engaged strain to downregulate phage-related gene expression, while these phage-related genes have minimal impact on growth and viability under planktonic conditions. Deletion of the phage-related genes restores biofilm formation and swarming motility while still maintaining a functional CRISPR/Cas system, demonstrating that the loss of these group behaviors is an indirect effect of CRISPR self-targeting. PMID:25968642

  17. A Service Oriented Architecture Approach to Achieve Interoperability between Immunization Information Systems in Iran

    PubMed Central

    Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E.

    2014-01-01

    Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information. PMID:25954452

  18. A Service Oriented Architecture Approach to Achieve Interoperability between Immunization Information Systems in Iran.

    PubMed

    Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E

    2014-01-01

    Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information.

  19. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation

    PubMed Central

    Budischak, Sarah A.; Hansen, Christina B.; Caudron, Quentin; Garnier, Romain; Kartzinel, Tyler R.; Pelczer, István; Cressler, Clayton E.; van Leeuwen, Anieke; Graham, Andrea L.

    2018-01-01

    Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs. PMID:29358937

  1. The Immune System: Basis of so much Health and Disease: 4. Immunocytes.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-05-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covers cells of the immune system (immunocytes). Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  2. Approaches Mediating Oxytocin Regulation of the Immune System.

    PubMed

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  3. Systems Biology Analysis of Heterocellular Signaling.

    PubMed

    Tape, Christopher J

    2016-08-01

    Tissues comprise multiple heterotypic cell types (e.g., epithelial, mesenchymal, and immune cells). Communication between heterotypic cell types is essential for biological cohesion and is frequently dysregulated in disease. Despite the importance of heterocellular communication, most systems biology techniques do not report cell-specific signaling data from mixtures of cells. As a result, our existing perspective of cellular behavior under-represents the influence of heterocellular signaling. Recent technical advances now permit the resolution of systems-level cell-specific signaling data. This review discusses how new physical, spatial, and isotopic resolving methods are facilitating unique systems biology studies of heterocellular communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal immune activation in mice.

    PubMed

    Weiser, Michael J; Mucha, Brittany; Denheyer, Heather; Atkinson, Devon; Schanz, Norman; Vassiliou, Evros; Benno, Robert H

    2016-03-01

    The prevalence of autism spectrum disorders over the last several decades has risen at an alarming rate. Factors such as broadened clinical definitions and increased parental age only partially account for this precipitous increase, suggesting that recent changes in environmental factors may also be responsible. One such factor could be the dramatic decrease in consumption of anti-inflammatory dietary omega-3 (n-3) polyunsaturated fatty acids (PUFAs) relative to the amount of pro-inflammatory omega-6 (n-6) PUFAs and saturated fats in the Western diet. Docosahexaenoic acid (DHA) is the principle n-3 PUFA found in neural tissue and is important for optimal brain development, especially during late gestation when DHA rapidly and preferentially accumulates in the brain. In this study, we tested whether supplementation of a low n-3 PUFA diet with DHA throughout development could improve measures related to autism in a mouse model of maternal immune activation. We found that dietary DHA protected offspring from the deleterious effects of gestational exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid on behavioral measures of autism and subsequent adulthood immune system reactivity. These data suggest that elevated dietary levels of DHA, especially during pregnancy and nursing, may help protect normal neurodevelopment from the potentially adverse consequences of environmental insults like maternal infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Technical advance: live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung.

    PubMed

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-09-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.

  6. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood.

    PubMed

    Schaafsma, Wandert; Basterra, Laura Bozal; Jacobs, Sabrina; Brouwer, Nieske; Meerlo, Peter; Schaafsma, Anne; Boddeke, Erik W G M; Eggen, Bart J L

    2017-10-01

    Maternal inflammation during pregnancy can have detrimental effects on embryonic development that persist during adulthood. However, the underlying mechanisms and insights in the responsible cell types are still largely unknown. Here we report the effect of maternal inflammation on fetal microglia, the innate immune cells of the central nervous system (CNS). In mice, a challenge with LPS during late gestation stages (days 15-16-17) induced a pro-inflammatory response in fetal microglia. Adult whole brain microglia of mice that were exposed to LPS during embryonic development displayed a persistent reduction in pro-inflammatory activation in response to a re-challenge with LPS. In contrast, hippocampal microglia of these mice displayed an increased inflammatory response to an LPS re-challenge. In addition, a reduced expression of brain-derived neurotrophic factor (BDNF) was observed in hippocampal microglia of LPS-offspring. Microglia-derived BDNF has been shown to be important for learning and memory processes. In line with these observations, behavioral- and learning tasks with mice that were exposed to maternal inflammation revealed reduced home cage activity, reduced anxiety and reduced learning performance in a T-maze. These data show that exposure to maternal inflammation during late gestation results in long term changes in microglia responsiveness during adulthood, which is different in nature in hippocampus compared to total brain microglia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.

    PubMed

    Dantzer, Robert

    2018-01-01

    Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.

  8. Application of Mobile Technology for Improving Expanded Program on Immunization Among Highland Minority and Stateless Populations in Northern Thailand Border

    PubMed Central

    Apidechkul, Tawatchai; Jandee, Kasemsak; Khamsiriwatchara, Amnat; Lawpoolsri, Saranath; Sawang, Surasak; Sangvichean, Aumnuyphan; Wansatid, Peerawat; Krongrungroj, Sarinya

    2015-01-01

    Background Studies of undervaccinated children of minority/stateless populations have highlighted significant barriers at individual, community, and state levels. These include geography-related difficulties, poverty, and social norms/beliefs. Objective The objective of this study was to assess project outcomes regarding immunization coverage, as well as maternal attitudes and practices toward immunization. Methods The “StatelessVac” project was conducted in Thailand-Myanmar-Laos border areas using cell phone-based mechanisms to increase immunization coverage by incorporating phone-to-phone information sharing for both identification and prevention. With limitation of the study among vulnerable populations in low-resource settings, the pre/post assessments without comparison group were conducted. Immunization coverage was collected from routine monthly reports while behavior-change outcomes were from repeat surveys. Results This study revealed potential benefits of the initiative for case identification; immunization coverage showed an improved trend. Prevention strategies were successfully integrated into the routine health care workflows of immunization activities at point-of-care. A behavior-change-communication package contributes significantly in raising both concern and awareness in relation to child care. Conclusions The mobile technology has proven to be an effective mechanism in improving a children’s immunization program among these hard-to-reach populations. Part of the intervention has now been revised for use at health centers across the country. PMID:25589367

  9. Sleep onset insomnia, daytime sleepiness and sleep duration in relationship to Toxoplasma gondii IgG seropositivity and serointensity

    PubMed Central

    Ahmad, Zaki; Moustafa, Yara W.; Stiller, John W.; Pavlovich, Mary A.; Raheja, Uttam K.; Gragnoli, Claudia; Snitker, Soren; Nazem, Sarra; Dagdag, Aline; Fang, Beverly; Fuchs, Dietmar; Lowry, Christopher A.; Postolache, Teodor T.

    2018-01-01

    Toxoplasma gondii (T. gondii) infects central nervous tissue and is kept in relative dormancy by a healthy immune system. Sleep disturbances have been found to precipitate mental illness, suicidal behavior and car accidents, which have been previously linked to T. gondii as well. We speculated that if sleep disruption, particularly insomnia, would mediate, at least partly, the link between T. gondii infection and related behavioral dysregulation, then we would be able to identify significant associations between sleep disruption and T. gondii. The mechanisms for such an association may involve dopamine (DA) production by T. gondii, or collateral effects of immune activation necessary to keep T. gondii in check. Sleep questionnaires from 2031 Old Order Amish were analyzed in relationship to T. gondii-IgG antibodies measured by enzyme-linked immunosorbent assay (ELISA). Toxoplasma gondii seropositivity and serointensity were not associated with any of the sleep latency variables or Epworth Sleepiness Scale (ESS). A secondary analysis identified, after adjustment for age group, a statistical trend toward shorter sleep duration in seropositive men (p = 0.07). In conclusion, it is unlikely that sleep disruption mediates links between T. gondii and mental illness or behavioral dysregulation. Trending gender differences in associations between T. gondii and shorter sleep need further investigation. PMID:29657364

  10. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  11. Systems vaccinology: Probing humanity’s diverse immune systems with vaccines

    PubMed Central

    Pulendran, Bali

    2014-01-01

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102

  12. Systems vaccinology: probing humanity's diverse immune systems with vaccines.

    PubMed

    Pulendran, Bali

    2014-08-26

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.

  13. Simple model of epidemics with pathogen mutation.

    PubMed

    Girvan, Michelle; Callaway, Duncan S; Newman, M E J; Strogatz, Steven H

    2002-03-01

    We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals; (2) endemic infection; (3) periodic epidemic outbreaks; and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.

  14. A continuous cell line, SYSU-OfHe-C, from hemocytes of Ostrinia furnacalis possesses immune ability depending on the presence of larval plasma.

    PubMed

    Hu, Jian; Feng, Xiangping; Yang, Zhongguo; Chen, Zhuoxin; Zhang, Wenqing

    2014-07-01

    A continuous cell line, SYSU-OfHe-C, from larval hemocytes of corn borer, Ostrinia furnacalis was established. With increasing passages, the cells grew increasingly faster, and approximately 45% of the cells were in division at passage 55. The culture was mainly composed of two types of cells, granulocytes and plasmatocytes, which showed different division and proliferation behaviors, but possessed similar phagocytic ability. Its spreading ability was significantly weaker than that of hemocytes from naïve larva; however, it could be promoted by larval plasma. Furthermore, its encapsulation ability was also promoted by larval plasma to form multilayer capsules on Sephadex A-25 beads. Finally, the expression of several immune-related genes was verified after provocation by microbes or Sephadex beads. These results indicated that the cell line possessed immune ability depending on the presence of plasma of naïve larvae and are beneficial to studies of insect cellular systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fetal alcohol exposure increases susceptibility to carcinogenesis and promotes tumor progression in prostate gland.

    PubMed

    Sarkar, Dipak K

    2015-01-01

    The idea that exposure to adverse environmental conditions and lifestyle choices during pregnancy can result in fetal programming that underlies disease susceptibility in adulthood is now widely accepted. Fetal alcohol exposed offspring displays many behavioral and physiological abnormalities including neuroendocrine-immune functions, which often carry over into their adult life. Since the neuroendocrine-immune system plays an important role in controlling tumor surveillance, fetal alcohol exposed offspring can be vulnerable to develop cancer. Animal studies have recently showed increased cancer growth and progression in various tissues of fetal alcohol exposed offspring. I will detail in this chapter the recent evidence for increased prostate carcinogenesis in fetal alcohol exposed rats. I will also provide evidence for a role of excessive estrogenization during prostatic development in the increased incidence of prostatic carcinoma in these animals. Furthermore, I will discuss the additional possibility of the involvement of impaired stress regulation and resulting immune incompetence in the increased prostatic neoplasia in the fetal alcohol exposed offspring.

  16. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  17. Taste-immunosuppression engram: reinforcement and extinction.

    PubMed

    Niemi, Maj-Britt; Härting, Margarete; Kou, Wei; Del Rey, Adriana; Besedovsky, Hugo O; Schedlowski, Manfred; Pacheco-López, Gustavo

    2007-08-01

    Several Pavlovian conditioning paradigms have documented the brain's abilities to sense immune-derived signals or immune status, associate them with concurrently relevant extereoceptive stimuli, and reinstate such immune responses on demand. Specifically, the naturalistic relation of food ingestion with its possible immune consequences facilitates taste-immune associations. Here we demonstrate that the saccharin taste can be associated with the immunosuppressive agent cyclosporine A, and that such taste-immune associative learning is subject to reinforcement. Furthermore, once consolidated, this saccharin-immunosuppression engram is resistant to extinction when avoidance behavior is assessed. More importantly, the more this engram is activated, either at association or extinction phases, the more pronounced is the conditioned immunosuppression.

  18. Puberty and Adolescence as a Time of Vulnerability to Stressors that Alter Neurobehavioral Processes

    PubMed Central

    Holder, Mary K.; Blaustein, Jeffrey D.

    2013-01-01

    Puberty and adolescence are major life transitions during which an individual’s physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain’s response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood. PMID:24184692

  19. Neonatal immune activation by lipopolysaccharide causes inadequate emotional responses to novel situations but no changes in anxiety or cognitive behavior in Wistar rats.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Maleninska, Kristyna; Brozka, Hana; Tejkalova, Hana; Horacek, Jiri; Stuchlik, Ales; Vales, Karel

    2018-05-02

    Infection during the prenatal or neonatal stages of life is considered one of the major risk factors for the development of mental diseases such as schizophrenia or autism. However, the impacts of such an immune challenge on adult behavior are still not clear. In our study, we used a model of early postnatal immune activation by the application of bacterial endotoxin lipopolysaccharide (LPS) to rat pups at a dose of 2 mg/kg from postnatal day (PD) 5 to PD 9. In adulthood, the rats were tested in a battery of tasks probing various aspects of behavior: spontaneous activity (open field test), social behavior (social interactions and female bedding exploration), anxiety (elevated plus maze), cognition (active place avoidance in Carousel) and emotional response (ultrasonic vocalization recording). Moreover, we tested sensitivity to acute challenge with MK-801, a psychotomimetic drug. Our results show that the application of LPS led to increased self-grooming in the female bedding exploration test and inadequate emotional reactions in Carousel maze displayed by ultrasonic vocalizations. However, it did not have serious consequences on exploration, locomotion, social behavior or cognition. Furthermore, exposition to MK-801 did not trigger social or cognitive deficits in the LPS-treated rats. We conclude that the emotional domain is the most sensitive to the changes induced by neonatal immune activation in rats, including a disrupted response to novel and stressful situations in early adulthood (similar to that observed in human patients suffering from schizophrenia or autism), while other aspects of tested behavior remain unaffected. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Role of the Immune System Beyond the Fight Against Infection.

    PubMed

    Sattler, Susanne

    2017-01-01

    The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.

  1. Proinflammatory cytokines, sickness behavior, and Alzheimer disease.

    PubMed

    Holmes, C; Cunningham, C; Zotova, E; Culliford, D; Perry, V H

    2011-07-19

    In Alzheimer disease (AD), systemic inflammation is known to give rise to a delirium. However, systemic inflammation also gives rise to other centrally mediated symptoms in the absence of a delirium, a concept known as sickness behavior. Systemic inflammation is characterized by the systemic production of the proinflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) that mediate immune to brain communication and the development of sickness behavior. To determine if raised serum TNFα or IL-6 are associated with the presence of sickness behavior symptoms, independent of the development of delirium, in a prospective cohort study of subjects with AD. A total of 300 subjects with mild to severe AD were cognitively assessed at baseline and a blood sample taken for inflammatory markers. Cognitive assessments, including assessments to detect the development of a delirium, and blood samples were repeated at 2, 4, and 6 months. The development of neuropsychiatric symptoms in the subject with AD over the 6-month follow-up period was assessed independently by carer interview at 2, 4, and 6 months. Raised serum TNFα and IL-6, but not CRP, were associated with an approximately 2-fold increased frequency of neuropsychiatric symptoms characteristic of sickness behavior. These relationships are independent of the development of delirium. Increased serum proinflammatory cytokines are associated with the presence of symptoms characteristic of sickness behavior, which are common neuropsychiatric features found in AD. This association was independent of the presence of delirium.

  2. Proinflammatory cytokines, sickness behavior, and Alzheimer disease

    PubMed Central

    Cunningham, C.; Zotova, E.; Culliford, D.; Perry, V.H.

    2011-01-01

    Background: In Alzheimer disease (AD), systemic inflammation is known to give rise to a delirium. However, systemic inflammation also gives rise to other centrally mediated symptoms in the absence of a delirium, a concept known as sickness behavior. Systemic inflammation is characterized by the systemic production of the proinflammatory cytokines tumor necrosis factor–α (TNFα) and interleukin-6 (IL-6) that mediate immune to brain communication and the development of sickness behavior. Objective: To determine if raised serum TNFα or IL-6 are associated with the presence of sickness behavior symptoms, independent of the development of delirium, in a prospective cohort study of subjects with AD. Methods: A total of 300 subjects with mild to severe AD were cognitively assessed at baseline and a blood sample taken for inflammatory markers. Cognitive assessments, including assessments to detect the development of a delirium, and blood samples were repeated at 2, 4, and 6 months. The development of neuropsychiatric symptoms in the subject with AD over the 6-month follow-up period was assessed independently by carer interview at 2, 4, and 6 months. Results: Raised serum TNFα and IL-6, but not CRP, were associated with an approximately 2-fold increased frequency of neuropsychiatric symptoms characteristic of sickness behavior. These relationships are independent of the development of delirium. Conclusions: Increased serum proinflammatory cytokines are associated with the presence of symptoms characteristic of sickness behavior, which are common neuropsychiatric features found in AD. This association was independent of the presence of delirium. PMID:21753171

  3. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    PubMed

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G

    2013-01-01

    Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  4. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    PubMed

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  5. Evaluation of a Brief Parent Intervention Teaching Coping-Promoting Behavior for the Infant Immunization Context: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Bustos, Theona; Jaaniste, Tiina; Salmon, Karen; Champion, G. David

    2008-01-01

    This study was designed to investigate whether a brief intervention encouraging parental coping-promoting talk within the treatment room would have beneficial effects on infant pain responses to an immunization injection. Infant-parent dyads were recruited from a 6-month immunization clinic and randomized to an intervention group (n = 25) or…

  6. Using mHealth to Improve Usage of Antenatal Care, Postnatal Care, and Immunization: A Systematic Review of the Literature.

    PubMed

    Watterson, Jessica L; Walsh, Julia; Madeka, Isheeta

    2015-01-01

    Mobile health (mHealth) technologies have been implemented in many low- and middle-income countries to address challenges in maternal and child health. Many of these technologies attempt to influence patients', caretakers', or health workers' behavior. The purpose of this study was to conduct a systematic review of the literature to determine what evidence exists for the effectiveness of mHealth tools to increase the coverage and use of antenatal care (ANC), postnatal care (PNC), and childhood immunizations through behavior change in low- and middle-income countries. The full text of 53 articles was reviewed and 10 articles were identified that met all inclusion criteria. The majority of studies used text or voice message reminders to influence patient behavior change (80%, n = 8) and most were conducted in African countries (80%, n = 8). All studies showed at least some evidence of effectiveness at changing behavior to improve antenatal care attendance, postnatal care attendance, or childhood immunization rates. However, many of the studies were observational and further rigorous evaluation of mHealth programs is needed in a broader variety of settings.

  7. A Design Method for Topologically Insulating Metamaterials

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara

    Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.

  8. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice

    PubMed Central

    Reber, Stefan O.; Siebler, Philip H.; Donner, Nina C.; Morton, James T.; Smith, David G.; Kopelman, Jared M.; Lowe, Kenneth R.; Wheeler, Kristen J.; Fox, James H.; Hassell, James E.; Greenwood, Benjamin N.; Jansch, Charline; Lechner, Anja; Schmidt, Dominic; Uschold-Schmidt, Nicole; Füchsl, Andrea M.; Langgartner, Dominik; Walker, Frederick R.; Hale, Matthew W.; Lopez Perez, Gerardo; Van Treuren, Will; González, Antonio; Halweg-Edwards, Andrea L.; Fleshner, Monika; Raison, Charles L.; Rook, Graham A.; Peddada, Shyamal D.; Knight, Rob

    2016-01-01

    The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1–2 wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies. PMID:27185913

  9. Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: Role of mitochondria and innate immunity in developmental toxicity.

    PubMed

    Amiri, Shayan; Yousefi-Ahmadipour, Aliakbar; Hosseini, Mir-Jamal; Haj-Mirzaian, Arya; Momeny, Majid; Hosseini-Chegeni, Heshmat; Mokhtari, Tahmineh; Kharrazi, Sharmin; Hassanzadeh, Gholamreza; Amini, Seyed Mohammad; Jafarinejad, Somayeh; Ghazi-Khansari, Mahmoud

    2018-05-01

    Silver nanoparticles (Ag-NPs) are currently used in a wide range of consumer products. Considering the small size of Ag-NPs, they are able to pass through variety of biological barriers and exert their effects. In this regard, the unique physicochemical properties of Ag-NPs along with its high application in the industry have raised concerns about their negative effects on human health. Therefore, it investigated whether prenatal exposure to low doses of Ag-NPs is able to induce any abnormality in the cognitive and behavioral performance of adult offspring. We gavaged pregnant NMRI mice with, 1) Deionized water as vehicle, 2) Ag-NPs 10 nm (0.26 mg/kg/day), 3) Ag-NPs 30 nm (0.26 mg/kg/day), and 4) AgNO 3 (0.26 mg/kg/day) from gestational day (GD) 0 until delivery day. At the postnatal day (PD) 1, our results showed that high concentration of silver is present in the brain of pups. Further, we observed mitochondrial dysfunction and upregulation of the genes relevant to innate immune system in the brain. At PD 60, results revealed that prenatal exposure to Ag-NPs provoked severe cognitive and behavioral abnormalities in male offspring. In addition, we found that prenatal exposure to Ag-NPs was associated with abnormal mitochondrial function and significant up-regulation of the genes relevant to innate immunity in the brain. Although the Ag-NPs have been considered as safe compounds at low doses, our results indicate that prenatal exposure to low doses of Ag-NPs is able to induce behavioral and cognitive abnormalities in adulthood. Also, we found that these effects are at least partly associated with hippocampal mitochondrial dysfunction and the activation of sterile inflammation during early stages of life. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Improving Immunization Rates Through Community-Based Participatory Research: Community Health Improvement for Milwaukee’s Children Program

    PubMed Central

    Willis, Earnestine; Sabnis, Svapna; Hamilton, Chelsea; Xiong, Fue; Coleman, Keli; Dellinger, Matt; Watts, Michelle; Cox, Richard; Harrell, Janice; Smith, Dorothy; Nugent, Melodee; Simpson, Pippa

    2016-01-01

    Background Nationally, immunization coverage for the DTaP/3HPV/1MMR/3HepB/3Hib/1VZV antigen series in children ages 19–35 months are near or above the Healthy People 2020 target (80%). However, children in lower socioeconomic families experience lower coverage rates. Objective Using a community-based participatory research (CBPR) approach, Community Health Improvement for Milwaukee Children (CHIMC) intervened to reduce disparities in childhood immunizations. Methods The CHIMC adopted a self-assessment to examine the effectiveness of adhering to CBPR principles. Using behavior change models, CHIMC implemented education, social marketing campaign, and theory of planned behavior interventions. Community residents and organizational representatives vetted all processes, messages, and data collection tools. Results Adherence to the principles of CBPR was consistently positive over the 8-year period. CHIMC enrolled 565 parents/caregivers with 1,533 children into educational and planned behavior change (PBC) interventions, and enrolled another 406 surveyed for the social marketing campaign. Retention rate was high (80%) with participants being predominately Black females (90%) and the unemployed (64%); children’s median age was 6.2 years. Increased knowledge about immunizations was consistently observed among parents/caregivers. Social marketing data revealed high recognition (85%) of the community-developed message (“Take Control: Protect Your Child with Immunizations”). Barriers and facilitators to immunize children revealed protective factors positively correlated with up-to-date (UTD) status (p < 0.007). Ultimately, children between the ages of 19 and 35 months whose parents/caregivers completed education sessions and benefitted from a community-wide social marketing message increased their immunization status from 45% baseline to 82% over 4 years. Conclusions Using multilayered interventions, CHIMC contributed to the elimination of immunization disparities in children. A culturally tailored CBPR approach is effective to eliminate immunization disparities. PMID:27018351

  11. In Search of Cellular Immunophenotypes in the Blood of Children with Autism

    PubMed Central

    Ashwood, Paul; Corbett, Blythe A.; Kantor, Aaron; Schulman, Howard; Van de Water, Judy; Amaral, David G.

    2011-01-01

    Background Autism is a neurodevelopmental disorder characterized by impairments in social behavior, communication difficulties and the occurrence of repetitive or stereotyped behaviors. There has been substantial evidence for dysregulation of the immune system in autism. Methods We evaluated differences in the number and phenotype of circulating blood cells in young children with autism (n = 70) compared with age-matched controls (n = 35). Children with a confirmed diagnosis of autism (4–6 years of age) were further subdivided into low (IQ<68, n = 35) or high functioning (IQ≥68, n = 35) groups. Age- and gender-matched typically developing children constituted the control group. Six hundred and forty four primary and secondary variables, including cell counts and the abundance of cell surface antigens, were assessed using microvolume laser scanning cytometry. Results There were multiple differences in immune cell populations between the autism and control groups. The absolute number of B cells per volume of blood was over 20% higher for children with autism and the absolute number of NK cells was about 40% higher. Neither of these variables showed significant difference between the low and high functioning autism groups. While the absolute number of T cells was not different across groups, a number of cellular activation markers, including HLA-DR and CD26 on T cells, and CD38 on B cells, were significantly higher in the autism group compared to controls. Conclusions These results support previous findings that immune dysfunction may occur in some children with autism. Further evaluation of the nature of the dysfunction and how it may play a role in the etiology of autism or in facets of autism neuropathology and/or behavior are needed. PMID:21573236

  12. Maternal Immune Activation Alters Nonspatial Information Processing in the Hippocampus of the Adult Offspring

    PubMed Central

    Ito, Hiroshi T.; Smith, Stephen E. P.; Hsiao, Elaine; Patterson, Paul H.

    2010-01-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. PMID:20227486

  13. Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy.

    PubMed

    Spencer, Brian; Valera, Elvira; Rockenstein, Edward; Overk, Cassia; Mante, Michael; Adame, Anthony; Zago, Wagner; Seubert, Peter; Barbour, Robin; Schenk, Dale; Games, Dora; Rissman, Robert A; Masliah, Eliezer

    2017-01-13

    Neurodegenerative disorders such as Parkinson's Disease (PD), PD dementia (PDD) and Dementia with Lewy bodies (DLB) are characterized by progressive accumulation of α-synuclein (α-syn) in neurons. Recent studies have proposed that neuron-to-neuron propagation of α-syn plays a role in the pathogenesis of these disorders. We have previously shown that antibodies against the C-terminus of α-syn reduce the intra-neuronal accumulation of α-syn and related deficits in transgenic models of synucleinopathy, probably by abrogating the axonal transport and accumulation of α-syn in in vivo models. Here, we assessed the effect of passive immunization against α-syn in a new mouse model of axonal transport and accumulation of α-syn. For these purpose, non-transgenic, α-syn knock-out and mThy1-α-syn tg (line 61) mice received unilateral intra-cerebral injections with a lentiviral (LV)-α-syn vector construct followed by systemic administration of the monoclonal antibody 1H7 (recognizes amino acids 91-99) or control IgG for 3 months. Cerebral α-syn accumulation and axonopathy was assessed by immunohistochemistry and effects on behavior were assessed by Morris water maze. Unilateral LV-α-syn injection resulted in axonal propagation of α-syn in the contra-lateral site with subsequent behavioral deficits and axonal degeneration. Passive immunization with 1H7 antibody reduced the axonal accumulation of α-syn in the contra-lateral side and ameliorated the behavioral deficits. Together this study supports the notion that immunotherapy might improve the deficits in models of synucleinopathy by reducing the axonal propagation and accumulation of α-syn. This represents a potential new mode of action through which α-syn immunization might work.

  14. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.

    PubMed

    Ito, Hiroshi T; Smith, Stephen E P; Hsiao, Elaine; Patterson, Paul H

    2010-08-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Review of the systems biology of the immune system using agent-based models.

    PubMed

    Shinde, Snehal B; Kurhekar, Manish P

    2018-06-01

    The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.

  16. Immune System Quiz

    MedlinePlus

    ... Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...

  17. Lifelong Impacts of Moderate Prenatal Alcohol Exposure on Neuroimmune Function

    PubMed Central

    Noor, Shahani; Milligan, Erin D.

    2018-01-01

    In utero alcohol exposure is emerging as a major risk factor for lifelong aberrant neuroimmune function. Fetal alcohol spectrum disorder encompasses a range of behavioral and physiological sequelae that may occur throughout life and includes cognitive developmental disabilities as well as disease susceptibility related to aberrant immune and neuroimmune actions. Emerging data from clinical studies and findings from animal models support that very low to moderate levels of fetal alcohol exposure may reprogram the developing central nervous system leading to altered neuroimmune and neuroglial signaling during adulthood. In this review, we will focus on the consequences of low to moderate prenatal alcohol exposure (PAE) on neuroimmune interactions during early life and at different stages of adulthood. Data discussed here will include recent studies suggesting that while abnormal immune function is generally minimal under basal conditions, following pathogenic stimuli or trauma, significant alterations in the neuroimmune axis occur. Evidence from published reports will be discussed with a focus on observations that PAE may bias later-life peripheral immune responses toward a proinflammatory phenotype. The propensity for proinflammatory responses to challenges in adulthood may ultimately shape neuron–glial-immune processes suspected to underlie various neuropathological outcomes including chronic pain and cognitive impairment.

  18. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens.

    PubMed

    Guo, Geyong; Zhou, Huaijuan; Wang, Qiaojie; Wang, Jiaxing; Tan, Jiaqi; Li, Jinhua; Jin, Ping; Shen, Hao

    2017-01-05

    Biomaterial-related bacterial infections cause patient suffering, mortality and extended periods of hospitalization, imposing a substantial burden on medical systems. In this context, understanding of nanomaterials-bacteria-cells interactions is of both fundamental and clinical significance. Herein, nano-MgF 2 films were deposited on titanium substrate via magnetron sputtering. Using this platform, the antibacterial behavior and mechanism of the nano-MgF 2 films were investigated in vitro and in vivo. It was found that, for S. aureus (CA-MRSA, USA300) and S. epidermidis (RP62A), the nano-MgF 2 films possessed excellent anti-biofilm activity, but poor anti-planktonic bacteria activity in vitro. Nevertheless, both the traditional SD rat osteomyelitis model and the novel stably luminescent mouse infection model demonstrated that nano-MgF 2 films exerted superior anti-infection effect in vivo, which cannot be completely explained by the antibacterial activity of the nanomaterial itself. Further, using polymorphonuclear leukocytes (PMNs), the critical immune cells of innate immunity, a complementary investigation of MgF 2 -bacteria-PMNs co-culturing revealed that the nano-MgF 2 films improved the antibacterial effect of PMNs through enhancing their phagocytosis and stability. To our knowledge, this is the first time of exploring the antimicrobial mechanism of nano-MgF 2 from the perspective of innate immunity both in vitro and in vivo. Based on the research results, a plausible mechanism is put forward for the predominant antibacterial effect of nano-MgF 2 in vivo, which may originate from the indirect immune enhancement effect of nano-MgF 2 films. In summary, this study of surface antibacterial design using MgF 2 nanolayer is a meaningful attempt, which can promote the host innate immune response to bacterial pathogens. This may give us a new understanding towards the antibacterial behavior and mechanism of nano-MgF 2 films and pave the way towards their clinical applications.

  19. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.

    PubMed

    Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G

    2017-01-01

    The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.

  20. Inflammatory T helper 17 cells promote depression-like behavior in mice.

    PubMed

    Beurel, Eléonore; Harrington, Laurie E; Jope, Richard S

    2013-04-01

    Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact central nervous system functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models, Th17 cells promote susceptibility to depression-like behaviors. Behavioral characteristics were measured in male mice administered Th17 cells, CD4(+) cells, or vehicle and in retinoid-related orphan receptor-γT (RORγT)(+/GFP) mice or male mice treated with RORγT inhibitor or anti-interleukin-17A antibodies. Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-interleukin-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Immune System Dysfunction in the Elderly.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  2. Experimental demonstration of a parasite-induced immune response in wild birds: Darwin's finches and introduced nest flies.

    PubMed

    Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H

    2013-08-01

    Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness. Host immune responses can protect against the negative fitness consequences of parasitism; however, the strength and effectiveness of these responses vary among hosts. Strong host immune responses are often assumed to correlate with greater host fitness. This study investigates the relationship between host immune response, parasite load, and host fitness using Darwin's finches and an invasive nest parasite. We found that while the immune response of mothers appeared defensive, it did not rescue current reproductive fitness.

  3. Phenoloxidase activity among developmental stages and pupal cell types of the ground beetle Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae).

    PubMed

    Giglio, Anita; Giulianini, Piero Giulio

    2013-04-01

    In ecological immunology is of great importance the study of the immune defense plasticity as response to a variable environment. In holometabolous insects the fitness of each developmental stage depends on the capacity to mount a response (i.e. physiological, behavioral) under environmental pressure. The immune response is a highly dynamic trait closely related to the ecology of organism and the variation in the expression of an immune system component may affect another fitness relevant trait of organism (i.e. growth, reproduction). The present research quantified immune function (total and differential number of hemocytes, phagocytosis in vivo and activity of phenoloxidase) in the pupal stage of Carabus (Chaetocarabus) lefebvrei. Moreover, the cellular and humoral immune function was compared across the larval, pupal and adult stages to evaluate the changes in immunocompetence across the developmental stages. Four types of circulating hemocytes were characterized via transmission electron microscopy in the pupal stage: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The artificial non-self-challenge treatments performed in vivo have shown that plasmatocytes and granulocytes are responsible for phagocytosis. The level of active phenoloxidase increases with the degree of pigmentation of the cuticle in each stage. In C. lefebvrei, there are different strategies in term of immune response to enhance the fitness of each life stage. The results have shown that the variation in speed and specificity of immune function across the developmental stages is correlated with differences in infection risk, life expectancy and biological function of the life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats

    PubMed Central

    Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.

    2014-01-01

    Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877

  5. Reciprocal Relationships Between the Immune and Central Nervous System

    DTIC Science & Technology

    1990-05-01

    grovth factor B2, corticoster ", oids, IFN-y, conditioned taste aversion, schedule-cont rolled I Ibehavior, prostaglandin ., cPA yr s P oq/c.1oý w 19...on conditioned taste ’- & aversion, but they both inhibit the reductions in social exploration and scheddle-controlled behavior of rats injected...secreted by the pituitary gland. These findings probably at least partially explain why elderly persons cannot develop adequate fevers and are at risk

  6. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Immune system and tumors].

    PubMed

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  8. Behavioral determinants of immunization service utilization in Ethiopia: a cross-sectional community-based survey.

    PubMed

    Ababu, Yohannes; Braka, Fiona; Teka, Aschalew; Getachew, Kinde; Tadesse, Tefera; Michael, Yohannes; Birhanu, Zewdie; Nsubuga, Peter; Assefa, Tersit; Gallagher, Kathleen

    2017-01-01

    According to the Ethiopian Health Sector Development Plan IV annual performance report (HSDP IV), Ethiopia targeted to reach 90% coverage with DPT-Hib-HepB 3 (Pentavalent3) vaccine and 86% coverage with measles vaccine in 2010- 2011. However, the actual performance fell-short of the intended targets due to several reasons. Therefore, a nationwide comprehensive study was conducted to examine the behavioral determinants of immunization practices in the Ethiopian context. The study employed the Modified Steps of Behavioral Change (SBC) Model as a theoretical lens. A cross-sectional study was conducted in May 2012 in all the nine regions and the two city administrations of Ethiopia. The study used a community-based quantitative survey design comprising of multistage cluster sampling to draw relevant data from a sample of 2,328 caretakers whose children were 12-23 months of age at the time of data collection. Overall, the multivariate analysis findings revealed that caretakers, who had high knowledge were 2.24 times more likely to vaccinate their children than participants had low knowledge (OR= 2.24, 95%CI: 1.68-2.98). Participants who had high approval were 2.45 times more likely to vaccinate their children than participants who had unfavorable approval (OR= 2.45, 95%CI: 1.67-3.59); and participants who had high intention were 6.49 times more likely to vaccinate their children with pentavalent3 vaccines than participants who had low intention(OR= 6.49, 95%CI: 4.83-8). Also, it was clear from the regression analysis that aspects of caretakers' demographic characteristics were significant predictors of their immunization practice for the sample group. We identified that caretakers' knowledge, approval, intention, parents' residence, and religious backgrounds were associated with immunization service utilization. To achieve sustainable behavioral change on immunization service utilization of the caretakers in Ethiopia, this study suggests investing in activities that enhance caretakers' knowledge, approval, intention, and practice components represented in the behavioral change model.

  9. Immunotherapy for the treatment of drug abuse.

    PubMed

    Kosten, Thomas; Owens, S Michael

    2005-10-01

    Antibody therapy (as either active or passive immunization) is designed primarily to prevent drugs of abuse from entering the central nervous system (CNS). Antidrug antibodies reduce rush, euphoria, and drug distribution to the brain at doses that exceed the apparent binding capacity of the antibody. This is accomplished through a pharmacokinetic antagonism, which reduces the amount of drug in the brain, the rate of clearance across the blood-brain barrier, and the volume of drug distribution. Because the antibodies remain primarily in the circulatory system, they have no apparent central nervous system side effects. Active immunization with drug-protein conjugate vaccines has been tested for cocaine, heroin, methamphetamine, and nicotine in animal, with 1 cocaine and 3 nicotine vaccines in Phase 2 human trials. Passive immunization with high affinity monoclonal antibodies has been tested for cocaine, methamphetamine, nicotine, and phencyclidine (PCP) in preclinical animal models. Antibodies have 2 immediate clinical applications in drug abuse treatment: to treat drug overdose and to reduce relapse to drug use in addicted patients. The specificity of the therapies, the lack of addiction liability, minimal side effects, and long-lasting protection against drug use offer major therapeutic benefit over conventional small molecule agonists and antagonists. Immunotherapies can also be combined with other antiaddiction medications and enhance behavioral therapies. Current immunotherapies already show efficacy, but improved antigen design and antibody engineering promise highly specific and rapidly developed treatments for both existing and future addictions.

  10. Development of Microbiota in Infants and its Role in Maturation of Gut Mucosa and Immune System.

    PubMed

    Ximenez, Cecilia; Torres, Javier

    2017-11-01

    Dysbiosis of the gut microbiota has been associated with increasing numbers of diseases, including obesity, diabetes, inflammatory bowel disease, asthma, allergy, cancer and even neurologic or behavioral disorders. The other side of the coin is that a healthy microbiota leads to a healthy human development, to a mature and well trained immune system and to an efficient metabolic machinery. What we have learned in adults is in the end the result of a good start, a programmed, healthy development of the microbiota that must occur in the early years of life, probably even starting during the fetal stage. This review aims to present and discuss reports that helps us understand what we have learned of the development of microbiota during the early times of life, from pregnancy to delivery to the early years after birth. The impact of the establishment of "healthy" bacterial communities on human surfaces in the maturation of epithelia, immune system and metabolism will also be discussed. The right process of maturation of the bacterial communities that establish a symbiosis with human surfaces depends on a number of environmental, genetic and temporal factors that need to be understand in order to have tools to monitor a healthy development and eventually intervene to correct undesired courses. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Does AIDS involve some collusion by the neuro-immune system because of positive learning of the disarmament strategy?

    PubMed

    Sandoz, Patrick

    2013-04-01

    Korzybski's general semantics recommends considering living beings as organisms-as-a-whole in their environment. Our cognitive abilities, specific to the human species, have thus to be taken into account. In this framework we establish a semantic similarity between particular stressful events of the 20th century and AIDS in which the immune-deficiency-caused is semiotically seen as a biological state of disarmament of the organism. It then appears that: These observations suggest that AIDS could benefit from some collusion by the neuro-immune system because of positive learning of the semiotic concept of disarmament, thus making the terrain favorable to the germ in response to intense stress. The disease would then result from a conditioning process based on semiotics and involve some confusion at the level of the unconscious cognitive system between disarmament toward outside the body and disarmament toward inside the body. This hypothesis is discussed within a multidisciplinary perspective considering the specificities of our modern lifestyles, the cybernetic ability of signs to control metabolism and behavior, and the recent advances of epigenetics and cognition sciences. This hypothesis may explain the multiple cross-species transmissions of the immunodeficiency virus into humans during the 20th century. Further research is suggested for evaluating this hypothesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction.

    PubMed

    Jacobsen, Jonathan Henry W; Watkins, Linda R; Hutchinson, Mark R

    2014-01-01

    Opioids have historically, and continue to be, an integral component of pain management. However, despite pharmacokinetic and dynamic optimization over the past 100 years, opioids continue to produce many undesirable side effects such as tolerance, reward, and dependence. As such, opioids are liable for addiction. Traditionally, opioid addiction was viewed as a solely neuronal process, and while substantial headway has been made into understanding the molecular and cellular mechanisms mediating this process, research has however, been relatively ambivalent to how the rest of the central nervous system (CNS) responds to opioids. Evidence over the past 20 years has clearly demonstrated the importance of the immunocompetent cells of the CNS (glia) in many aspects of opioid pharmacology. Particular focus has been placed on microglia and astrocytes, who in response to opioids, become activated and release inflammatory mediators. Importantly, the mechanism underlying immune activation is beginning to be elucidated. Evidence suggests an innate immune pattern-recognition receptor (toll-like receptor 4) as an integral component underlying opioid-induced glial activation. The subsequent proinflammatory response may be viewed akin to neurotransmission creating a process termed central immune signaling. Translationally, we are beginning to appreciate the importance of central immune signaling as it contributes to many behavioral actions of addiction including reward, withdrawal, and craving. As such, the aim of this chapter is to review and integrate the neuronal and central immune signaling perspective of addiction. © 2014 Elsevier Inc. All rights reserved.

  13. Toddlers' Adjustment to the Stress of Immunization in Function of Mothers' General and Specific Coping Tendencies

    ERIC Educational Resources Information Center

    Favez, N.; Reicherts, M.

    2008-01-01

    The aim of this research is to assess the relative influence of mothers' coping strategies in everyday life and mothers' specific coping acts on toddlers' adjustment behavior to pain and distress during a routine immunization. The population is 41 mothers with toddlers (23 girls, 18 boys; mean age, 22.7 months) undergoing a routine immunization in…

  14. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin

    PubMed Central

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D.; Dufour, Sylvie

    2016-01-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467

  15. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant

    PubMed Central

    Zhao, Ji-Hui; Zhang, Qi-Bo; Liu, Bao; Piao, Xiang-Hua; Yan, Yu-Lu; Hu, Xiao-Ge; Zhou, Kuan; Zhang, Yong-Tai; Feng, Nian-Ping

    2017-01-01

    Purpose To enhance the immunogenicity of the model subunit vaccine, ovalbumin (OVA) was combined with platycodin (PD), a saponin adjuvant. To reduce the toxicity of PD, OVA, and adjuvant were loaded together into liposomes before being incorporated into a dissolving microneedle array. Methods OVA- and PD-loaded liposomes (OVA-PD-Lipos) were prepared using the film dispersion method. Their uptake behavior, toxicity to mouse bone marrow dendritic cells (BMDCs), and hemolytic activity to rabbit red blood cells (RBCs) were evaluated. The OVA-PD-Lipos were incorporated into a dissolving microneedle array. The chemical stability of OVA and the physical stability of OVA-PD-Lipos in microneedle arrays were investigated. The immune response of Institute of Cancer Research mice and potential skin irritation reaction of rabbits to OVA-PD-Lipos-MNs were evaluated. Results The uptake of OVA by mouse BMDCs was greatly enhanced when OVA was prepared as OVA-PD-Lipos, and in this form, the toxicity of PD was dramatically reduced. OVA was chemically stable as OVA-PD-Lipos, when OVA-PD-Lipos was incorporated into a dissolving microneedle array. Institute of Cancer Research mice treated with OVA-PD-Lipos-MNs showed a significantly enhanced immune response. PD combined with OVA elicited a balanced Th1 and Th2 humoral immune response in mice, with minimal irritation in rabbit skin. Conclusion The dissolving microneedle array-based system is a promising delivery vehicle for subunit vaccine and its adjuvant. PMID:28740383

  16. Activation of the Maternal Immune System Induces Endocrine Changes in the Placenta via IL-6

    PubMed Central

    Hsiao, Elaine Y.; Patterson, Paul H.

    2011-01-01

    Activation of the maternal immune system in rodent models sets in motion a cascade of molecular pathways that ultimately result in autism- and schizophrenia-related behaviors in offspring. The finding that interleukin-6 (IL-6) is a crucial mediator of these effects led us to examine the mechanism by which this cytokine influences fetal development in vivo. Here we focus on the placenta as the site of direct interaction between mother and fetus and as a principal modulator of fetal development. We find that maternal immune activation (MIA) with a viral mimic, synthetic double-stranded RNA (poly(I:C)), increases IL-6 mRNA as well as maternally-derived IL-6 protein in the placenta. Placentas from MIA mothers exhibit increases in CD69+ decidual macrophages, granulocytes and uterine NK cells, indicating elevated early immune activation. Maternally-derived IL-6 mediates activation of the JAK/STAT3 pathway specifically in the spongiotrophoblast layer of the placenta, which results in expression of acute phase genes. Importantly, this parallels an IL-6-dependent disruption of the growth hormone-insulin-like growth factor (GH-IGF) axis that is characterized by decreased GH, IGFI and IGFBP3 levels. In addition, we observe an IL-6-dependent induction in pro-lactin-like protein-K (PLP-K) expression as well as MIA-related alterations in other placental endocrine factors. Together, these IL-6-mediated effects of MIA on the placenta represent an indirect mechanism by which MIA can alter fetal development. PMID:21195166

  17. Exploring the Homeostatic and Sensory Roles of the Immune System.

    PubMed

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.

  18. Does Juvenile Detention Impact Health?

    PubMed

    Balogun, Titilola; Troisi, Catherine; Swartz, Michael D; Lloyd, Linda; Beyda, Rebecca

    2018-04-01

    Youth involved in the juvenile justice system represent a medically underserved population. Recidivist youth have poorer health outcomes compared to youth detained for the first time. This study determined differences in immunization history, substance use, mental health symptoms, and sexual behavior between recidivist youth and first-time detainees following improvements in intake screenings at a large, urban juvenile detention center in the Southeastern United States. Multivariable logistic regression analysis found that recidivist youth had significantly higher acellular pertussis immunization rates compared with first-time detainees (odds ratio [ OR] = 3.3; p = .02), and recidivist males were less likely to test positive for chlamydia ( OR = 0.6; p = .03) after controlling for age and Black race. There was no significant difference for most other outcomes between recidivist youth and first-time detainees after controlling for age.

  19. Immunization Information System and Informatics to Promote Immunizations: Perspective From Minnesota Immunization Information Connection.

    PubMed

    Muscoplat, Miriam Halstead; Rajamani, Sripriya

    2017-01-01

    The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.

  20. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  1. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  2. Roles of microRNA in the immature immune system of neonates.

    PubMed

    Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou

    2018-06-13

    Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.

  3. Strengthening health system to improve immunization for migrants in China.

    PubMed

    Fang, Hai; Yang, Li; Zhang, Huyang; Li, Chenyang; Wen, Liankui; Sun, Li; Hanson, Kara; Meng, Qingyue

    2017-07-01

    Immunization is the most cost-effective method to prevent and control vaccine-preventable diseases. Migrant population in China has been rising rapidly, and their immunization status is poor. China has tried various strategies to strengthen its health system, which has significantly improved immunization for migrants. This study applied a qualitative retrospective review method aiming to collect, analyze and synthesize health system strengthening experiences and practices about improving immunizations for migrants in China. A conceptual framework of Theory of Change was used to extract the searched literatures. 11 searched literatures and 4 national laws and policies related to immunizations for migrant children were carefully studied. China mainly employed 3 health system strengthening strategies to significantly improve immunization for migrant population: stop charging immunization fees or immunization insurance, manage immunization certificates well, and pay extra attentions on immunization for special children including migrant children. These health system strengthening strategies were very effective, and searched literatures show that up-to-date and age-appropriate immunization rates were significantly improved for migrant children. Economic development led to higher migrant population in China, but immunization for migrants, particularly migrant children, were poor. Fortunately various health system strengthening strategies were employed to improve immunization for migrants in China and they were rather successful. The experiences and lessons of immunization for migrant population in China might be helpful for other developing countries with a large number of migrant population.

  4. Immune reactivity to food coloring.

    PubMed

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Artificial food dyes are made from petroleum and have been approved by the US Food and Drug Administration (FDA) for the enhancement of the color of processed foods. They are widely used in the food and pharmaceutical industries to increase the appeal and acceptability of their products. Synthetic food colorants can achieve hues not possible for natural colorants and are cheaper, more easily available, and last longer. However, since the use of artificial food coloring has become widespread, many allergic and other immune reactive disorders have increasingly been reported. During the past 50 y, the amount of synthetic dye used in foods has increased by 500%. Simultaneously, an alarming rise has occurred in behavioral problems in children, such as aggression, attention deficit disorder (ADD), and attention-deficit/hyperactivity disorder (ADHD). The ingestion of food delivers the greatest foreign antigenic load that challenges the immune system. Artificial colors can also be absorbed via the skin through cosmetic and pharmaceutical products. The molecules of synthetic colorants are small, and the immune system finds it difficult to defend the body against them. They can also bond to food or body proteins and, thus, are able to act in stealth mode to circumvent and disrupt the immune system. The consumption of synthetic food colors, and their ability to bind with body proteins, can have significant immunological consequences. This consumption can activate the inflammatory cascade, can result in the induction of intestinal permeability to large antigenic molecules, and could lead to cross-reactivities, autoimmunities, and even neurobehavioral disorders. The Centers for Disease Control (CDC) recently found a 41% increase in diagnoses of ADHD in boys of high-school age during the past decade. More shocking is the legal amount of artificial colorants allowed by the FDA in the foods, drugs, and cosmetics that we consume and use every day. The consuming public is largely unaware of the perilous truth behind the deceptive allure of artificial color.

  5. Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy.

    PubMed

    Schättler, Heinz; Ledzewicz, Urszula; Amini, Behrooz

    2016-04-01

    A minimally parameterized mathematical model for low-dose metronomic chemotherapy is formulated that takes into account angiogenic signaling between the tumor and its vasculature and tumor inhibiting effects of tumor-immune system interactions. The dynamical equations combine a model for tumor development under angiogenic signaling formulated by Hahnfeldt et al. with a model for tumor-immune system interactions by Stepanova. The dynamical properties of the model are analyzed. Depending on the parameter values, the system encompasses a variety of medically realistic scenarios that range from cases when (i) low-dose metronomic chemotherapy is able to eradicate the tumor (all trajectories converge to a tumor-free equilibrium point) to situations when (ii) tumor dormancy is induced (a unique, globally asymptotically stable benign equilibrium point exists) to (iii) multi-stable situations that have both persistent benign and malignant behaviors separated by the stable manifold of an unstable equilibrium point and finally to (iv) situations when tumor growth cannot be overcome by low-dose metronomic chemotherapy. The model forms a basis for a more general study of chemotherapy when the main components of a tumor's microenvironment are taken into account.

  6. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    PubMed Central

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course. PMID:28066446

  7. Immune System Toxicity and Immunotoxicity Hazard Identification

    EPA Science Inventory

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  8. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae.

    PubMed

    Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin

    2016-02-01

    The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Evaluation of a social marketing campaign to increase awareness of immunizations for urban low-income children.

    PubMed

    Ngui, Emmanuel M; Hamilton, Chelsea; Nugent, Melodee; Simpson, Pippa; Willis, Earnestine

    2015-02-01

    To assess community awareness of childhood immunizations and intent to immunize children after a social marketing immunization campaign. We used 2 interviewer-assisted street-intercept surveys to evaluate awareness of childhood immunizations and intent to immunize low-income children. The "Take Control! Immunize" social marketing campaign was developed using a community-based participatory research approach and used billboards, flyers, and various "walking billboard" (eg, backpacks, pens) to deliver immunization messages in the community settings. Over 85% of community members recalled the "Take Control! Immunize" message. Almost half of those who saw the immunization message indicated that the message motivated them to act, including getting their children immunized or calling their physician to inquire about their children's immunizations status. All respondents indicated that immunizations were important for children and that they were likely or very likely to immunize their children. Respondents who reported that "Take Control!" messages motivated them to act in the first intercept survey were significantly more likely than those in the second intercept to report being likely or very likely to immunize their children. Culturally appropriate social marketing immunization messages in targeted urban settings can increase parental awareness and behavioral intention to immunize children.

  10. Conceptual Spaces of the Immune System.

    PubMed

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  11. Xenobiotics: Chapter 15

    USGS Publications Warehouse

    Bridges, Christine M.; Semlitsch, Raymond D.; Lannoo, Michael

    2005-01-01

    While a number of compounds have been reported as toxic to amphibians, until recently, there have been conspicuously few ecotoxicological studies concerning amphibians. Studies are now focusing on the effects of xenobiotics on amphibians, an interest likely stimulated by widespread reports of amphibian declines. It has been speculated that chemical contamination may be partially to blame for some documented amphibian declines, by disrupting growth, reproduction, and behavior. However, evidence that xenobiotics are directly to blame for population declines is sparse because environmental concentrations are typically not great enough to generate direct mortality. Although the effects of environmental contaminants on the amphibian immune system are currently unknown, it is possible that exposure to stressors such as organic pollutants (which enter ecosystems in the form of pesticides) may depress immune system function, thus allowing greater susceptibility to fungal infections. This chapter discusses toxicity testing for xenobiotics and presents the results of a study that has focused on the subtle effects of sublethal concentrations of the chemical carbaryl on tadpoles.

  12. A Biobehavioral Model of Cancer Stress and Disease Course

    PubMed Central

    Andersen, Barbara L.; Kiecolt-Glaser, Janice K.; Glaser, Ronald

    2009-01-01

    Approximately 1 million Americans are diagnosed with cancer each year and must cope with the disease and treatments. Many studies have documented the deteriorations in quality of life that occur. These data suggest that the adjustment process is burdensome and lengthy. There is ample evidence showing that adults experiencing other long-term stressors experience not only high rates of adjustment difficulties (e.g., syndromal depression) but important biologic effects, such as persistent downregulation of elements of the immune system, and adverse health outcomes, such as higher rates of respiratory tract infections. Thus, deteriorations in quality of life with cancer are underscored if they have implications for biological processes, such as the immune system, relating to disease progression and spread. Considering these and other data, a biobehavioral model of adjustment to the stresses of cancer is offered, and mechanisms by which psychological and behavioral responses may influence biological processes and, perhaps, health outcomes are proposed. Finally, strategies for testing the model via experiments testing psychological interventions are offered. PMID:8024167

  13. Culture and the Immune System: Cultural Consonance in Social Support and C-reactive Protein in Urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2016-06-01

    In this article, we examine the distribution of a marker of immune system stimulation-C-reactive protein-in urban Brazil. Social relationships are associated with immunostimulation, and we argue that cultural dimensions of social support, assessed by cultural consonance, are important in this process. Cultural consonance is the degree to which individuals, in their own beliefs and behaviors, approximate shared cultural models. A measure of cultural consonance in social support, based on a cultural consensus analysis regarding sources and patterns of social support in Brazil, was developed. In a survey of 258 persons, the association of cultural consonance in social support and C-reactive protein was examined, controlling for age, sex, body mass index, low-density lipoprotein cholesterol, depressive symptoms, and a social network index. Lower cultural consonance in social support was associated with higher C-reactive protein. Implications of these results for future research are discussed. © 2016 by the American Anthropological Association.

  14. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    PubMed

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or Liposomal Bupivacaine did not develop mechanical allodynia following exposure to stress, but did develop social avoidance behavior. Neither drug affected stress-induced activation of monocytes in the bone marrow, blood, or brain. Neuroinflammatory responses developed in all treatment groups, as evidenced by elevated IL-1β mRNA levels in the brain and spinal cord after RSD. In this study, psychosocial stress was associated with increased pain sensitivity in mice. Development of mechanical allodynia with RSD was blocked by regional analgesia with local anesthetics, Ropivacaine or Liposomal Bupivacaine. Despite blocking mechanical allodynia, these anesthetic interventions did not prevent neuroimmune activation or social avoidance associated with RSD. These data suggest that stress-induced neuroinflammatory changes are not associated with increased sensitivity to pain following RSD. Thus, blocking peripheral nociception was effective in inhibiting enhanced pain signaling without altering stress-induced immune or behavioral responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat.

    PubMed

    McKim, Daniel B; Niraula, Anzela; Tarr, Andrew J; Wohleb, Eric S; Sheridan, John F; Godbout, Jonathan P

    2016-03-02

    Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood disorders that impair everyday functioning and overall quality of life. The brain, previously thought of as an immune-privileged organ, is now known to communicate extensively with the peripheral immune system. This brain-body communication plays a significant role in various stress-induced inflammatory conditions, also characterized by psychological impairments. Findings from this study implicate neuroimmune activation rather than impaired neurogenesis in stress-induced cognitive deficits. This idea opens up possibilities for novel immune interventions in the treatment of cognitive and mood disturbances, while also adding to the complexity surrounding the functional implications of adult neurogenesis. Copyright © 2016 the authors 0270-6474/16/362590-15$15.00/0.

  16. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  17. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P-diphtheria toxoid conjugate.

    PubMed

    Schellenberger, Mario T; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Schroeder, Henri; Muller, Claude P

    2013-09-01

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P-diphtheria toxoid (B[a]P-DT) conjugate vaccine were sub-acutely exposed to 2mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P-DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Depression as sickness behavior? A test of the host defense hypothesis in a high pathogen population.

    PubMed

    Stieglitz, Jonathan; Trumble, Benjamin C; Thompson, Melissa Emery; Blackwell, Aaron D; Kaplan, Hillard; Gurven, Michael

    2015-10-01

    Sadness is an emotion universally recognized across cultures, suggesting it plays an important functional role in regulating human behavior. Numerous adaptive explanations of persistent sadness interfering with daily functioning (hereafter "depression") have been proposed, but most do not explain frequent bidirectional associations between depression and greater immune activation. Here we test several predictions of the host defense hypothesis, which posits that depression is part of a broader coordinated evolved response to infection or tissue injury (i.e. "sickness behavior") that promotes energy conservation and reallocation to facilitate immune activation. In a high pathogen population of lean and relatively egalitarian Bolivian forager-horticulturalists, we test whether depression and its symptoms are associated with greater baseline concentration of immune biomarkers reliably associated with depression in Western populations (i.e. tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], interleukin-6 [IL-6], and C-reactive protein [CRP]). We also test whether greater pro-inflammatory cytokine responses to ex vivo antigen stimulation are associated with depression and its symptoms, which is expected if depression facilitates immune activation. These predictions are largely supported in a sample of older adult Tsimane (mean±SD age=53.2±11.0, range=34-85, n=649) after adjusting for potential confounders. Emotional, cognitive and somatic symptoms of depression are each associated with greater immune activation, both at baseline and in response to ex vivo stimulation. The association between depression and greater immune activation is therefore not unique to Western populations. While our findings are not predicted by other adaptive hypotheses of depression, they are not incompatible with those hypotheses and future research is necessary to isolate and test competing predictions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberger, Mario T.; Grova, Nathalie; Farinelle, Sophie

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P–diphtheria toxoid (B[a]P–DT) conjugate vaccine were sub-acutely exposed to 2 mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured inmore » 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P–DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. - Highlights: • B[a]P-antibodies attenuated B[a]P induced NMDA expression in several brain regions. • B[a]P had measurable consequences on anxiety, short term learning and memory. • B[a]P immunization attenuated the pharmacological and neurotoxic effects of B[a]P. • Vaccination may also provide some protection against chemical carcinogenesis.« less

  20. A contextual approach to research on AIDS prevention

    PubMed Central

    Wulfert, Edelgard; Biglan, Anthony

    1994-01-01

    The acquired immune deficiency syndrome (AIDS) is a disease that is transmitted almost entirely through behavioral factors. In the absence of a cure or vaccine, the modification of AIDS-risk behavior presents a unique challenge to behavioral scientists and should be taken as a clear imperative by behavior analysts. This paper discusses the currently dominant social-cognitive theories (the health belief model, the theory of reasoned action, and self-efficacy theory) that have been widely used to predict and understand AIDS-risk behavior. Although these theories have generated a voluminous literature on the cognitive, attitudinal, and demographic correlates of AIDS-risk behavior, they have not resulted in specific intervention strategies to influence risky behavior, most likely because they fail to specify manipulable variables. As an alternative to social-cognitive theories, this paper evaluates the usefulness of a behavior-analytic approach to stem the spread of HIV infection. It examines some of the philosophical differences underlying cognitive and behavioral approaches that are embedded in mechanistic versus functional contextualistic principles. It explores the theoretical and practical implications of adopting either predicting and explaining behavior or predicting and influencing behavior as the goals of science. To illustrate the value of adopting the goal of prediction and influence, behavior-analytic research on the social context of risky sexual behavior in adolescents is described. The paper argues that in order to alter the future course of the AIDS epidemic, the behavioral sciences must move beyond describing cognitive and attitudinal correlates of risky behavior and focus on the social context of the behavior of individuals. In addition, population-wide changes in AIDS-risk behavior can be accomplished only if research focuses on how to influence larger social systems, including the media, school systems, and community organizations. PMID:22478197

  1. Addiction: A dysregulation of satiety and inflammatory processes.

    PubMed

    Harricharan, Rivona; Abboussi, Oualid; Daniels, William M U

    2017-01-01

    Over the years, drug addiction has proven to be a perplexing conundrum for scientists. In attempts to decipher the components of the puzzle, multiple theories of addiction have been proposed. While these theories have assisted in providing essential fundamental information, current research recommends that a new theory needs to be presented taking into consideration the results of recent developments in the fields of neuroimmunology, genetics, and neuropsychiatry. After extensively examining the published literature, we propose in this review that neuroinflammation and hypothalamic functioning strongly underpin addictive behavior. To substantiate this notion, we typed the search-string "cocaine addiction, hypothalamus, and inflammation" into PubMed and Google Scholar. 50 and 1280 results were obtained in PubMed and Google Scholar, respectively. All article abstracts were perused for relevance to this review and 177 articles were used. Recent studies have purported that both acute and chronic psychostimulant use can activate specific components of the innate immune system. Findings such as these provide the scientific evidence supporting a hypothesis that includes a role for the innate immune system and inflammation in addictive behavior. However, the pathophysiological mechanisms by which they mediate the development of addiction have not been clearly delineated. The following review particularly focuses on the lateral hypothalamus and its functioning in satiety, and how inflammatory processes in the brain may contribute to addiction. © 2017 Elsevier B.V. All rights reserved.

  2. Eigen model with general fitness functions and degradation rates

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun; Saakian, David B.

    2006-03-01

    We present an exact solution of Eigen's quasispecies model with a general degradation rate and fitness functions, including a square root decrease of fitness with increasing Hamming distance from the wild type. The found behavior of the model with a degradation rate is analogous to a viral quasi-species under attack by the immune system of the host. Our exact solutions also revise the known results of neutral networks in quasispecies theory. To explain the existence of mutants with large Hamming distances from the wild type, we propose three different modifications of the Eigen model: mutation landscape, multiple adjacent mutations, and frequency-dependent fitness in which the steady state solution shows a multi-center behavior.

  3. Testicular defense systems: immune privilege and innate immunity

    PubMed Central

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  4. Sexual Attitudes and Behaviours: A Review of the Literature. Bibliography Series.

    ERIC Educational Resources Information Center

    Rollins, Bruce, Comp.

    This bibliography and review of the literature on sexual behaviors and attitudes toward sexual behavior was developed to contribute to an understanding of changes in attitudes toward sexual behaviors and in community patterns of sexual behaviors, and to assist in the development of Acquired Immune Deficiency Syndrome (AIDS) education programs. It…

  5. Using mHealth to Improve Usage of Antenatal Care, Postnatal Care, and Immunization: A Systematic Review of the Literature

    PubMed Central

    Watterson, Jessica L.; Walsh, Julia; Madeka, Isheeta

    2015-01-01

    Mobile health (mHealth) technologies have been implemented in many low- and middle-income countries to address challenges in maternal and child health. Many of these technologies attempt to influence patients', caretakers', or health workers' behavior. The purpose of this study was to conduct a systematic review of the literature to determine what evidence exists for the effectiveness of mHealth tools to increase the coverage and use of antenatal care (ANC), postnatal care (PNC), and childhood immunizations through behavior change in low- and middle-income countries. The full text of 53 articles was reviewed and 10 articles were identified that met all inclusion criteria. The majority of studies used text or voice message reminders to influence patient behavior change (80%, n = 8) and most were conducted in African countries (80%, n = 8). All studies showed at least some evidence of effectiveness at changing behavior to improve antenatal care attendance, postnatal care attendance, or childhood immunization rates. However, many of the studies were observational and further rigorous evaluation of mHealth programs is needed in a broader variety of settings. PMID:26380263

  6. Natural evolution, disease, and localization in the immune system

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2004-03-01

    Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101

  7. Role of the immune system in regeneration and its dynamic interplay with adult stem cells.

    PubMed

    Abnave, Prasad; Ghigo, Eric

    2018-04-09

    The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia.

    PubMed

    Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile

    2016-06-01

    To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.

  9. From birth to ‘immuno-health’, allergies and enterocolitis

    PubMed Central

    Houghteling, Pearl D.; Walker, W. Allan

    2015-01-01

    Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970

  10. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  11. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease.

    PubMed

    Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale

    2011-04-29

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.

  12. Maternal presence, childrearing practices, and children's response to an injection.

    PubMed

    Broome, M E; Endsley, R C

    1989-08-01

    The purpose of the study was to investigate the effects of maternal presence or absence and childrearing practices on young children's response to an injection. One hundred thirty-eight mothers and their children, who were attending health screening clinic, were assigned to one of four groups in which mothers were either present or absent during an interview and an immunization. Mothers were asked to fill out a questionnaire about their childrearing practices. Child behavior was observed during both the interview and the immunization. Results indicated that while maternal presence was associated with the children behaving more distressed during the interview, maternal presence had no effect on child behavior during the immunization. Children whose mothers reported high levels of both control and warmth in their relationship (authoritative parents) were found to be significantly less distressed during the immunization than children of either the low-control, high-warmth (permissive), high-control, low-warmth (authoritarian) or low-control, low-warmth (nonresponsive) parent groups.

  13. Microbiota regulate the development and function of the immune cells.

    PubMed

    Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei

    2018-03-04

    Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.

  14. The role of the immune system in Alzheimer disease: Etiology and treatment.

    PubMed

    Jevtic, Stefan; Sengar, Ameet S; Salter, Michael W; McLaurin, JoAnne

    2017-11-01

    The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets. Copyright © 2017. Published by Elsevier B.V.

  15. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.

    PubMed

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.

  16. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    PubMed

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  17. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    PubMed

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  18. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond.

    PubMed

    Belda, Xavier; Fuentes, Silvia; Daviu, Nuria; Nadal, Roser; Armario, Antonio

    2015-01-01

    Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.

  19. The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng

    2016-02-01

    As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modeling the intracellular pathogen-immune interaction with cure rate

    NASA Astrophysics Data System (ADS)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by numerical simulations.

  1. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue?

    PubMed

    Gaykema, Ronald P A; Goehler, Lisa E

    2011-03-01

    Immune challenges can lead to marked behavioral changes, including fatigue, reduced social interest, anorexia, and somnolence, but the precise neuronal mechanisms that underlie sickness behavior remain elusive. Part of the neurocircuitry influencing behavior associated with illness likely includes viscerosensory nuclei located in the caudal brainstem, based on findings that inactivation of the dorsal vagal complex (DVC) can prevent social withdrawal. These brainstem nuclei contribute multiple neuronal projections that target different components of autonomic and stress-related neurocircuitry. In particular, catecholaminergic neurons in the ventrolateral medulla (VLM) and DVC target the hypothalamus and drive neuroendocrine responses to immune challenge, but their particular role in sickness behavior is not known. To test whether this catecholamine pathway also mediates sickness behavior, we compared effects of DVC inactivation with targeted lesion of the catecholamine pathway on exploratory behavior, which provides an index of motivation and fatigue, and associated patterns of brain activation assessed by immunohistochemical detection of c-Fos protein. LPS treatment dramatically reduced exploratory behavior, and produced a pattern of increased c-Fos expression in brain regions associated with stress and autonomic adjustments paraventricular hypothalamus (PVN), bed nucleus of the stria terminalis (BST), central amygdala (CEA), whereas activation was reduced in regions involved in exploratory behavior (hippocampus, dorsal striatum, ventral tuberomammillary nucleus, and ventral tegmental area). Both DVC inactivation and catecholamine lesion prevented reductions in exploratory behavior and completely blocked the inhibitory LPS effects on c-Fos expression in the behavior-associated regions. In contrast, LPS-induced activation in the CEA and BST was inhibited by DVC inactivation but not by catecholamine lesion. The findings support the idea that parallel pathways from immune-sensory caudal brainstem sources target distinct populations of forebrain neurons that likely mediate different aspects of sickness. The caudal medullary catecholaminergic projections to the hypothalamus may significantly contribute to brain mechanisms that induce behavioral "fatigue" in the context of physiological stressors. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue?

    PubMed Central

    Gaykema, Ronald P.A.; Goehler, Lisa E.

    2010-01-01

    Immune challenges can lead to marked behavioral changes, including fatigue, reduced social interest, anorexia, and somnolence, but the precise neuronal mechanisms that underlie sickness behavior remain elusive. Part of the neurocircuitry influencing behavior associated with illness likely includes viscerosensory nuclei located in the caudal brainstem, based on findings that inactivation of the dorsal vagal complex (DVC) can prevent social withdrawal. These brainstem nuclei contribute multiple neuronal projections that target different components of autonomic and stress-related neurocircuitry. In particular, catecholaminergic neurons in the ventrolateral medulla (VLM) and DVC target the hypothalamus and drive neuroendocrine responses to immune challenge, but their particular role in sickness behavior is not known. To test whether this catecholamine pathway also mediates sickness behavior, we compared effects of DVC inactivation with targeted lesion of the catecholamine pathway on exploratory behavior, which provides an index of motivation and fatigue, and associated patterns of brain activation assessed by immunohistochemical detection of c-Fos protein. LPS treatment dramatically reduced exploratory behavior, and produced a pattern of increased c-Fos expression in brain regions associated with stress and autonomic adjustments paraventricular hypothalamus (PVN), bed nucleus of the stria terminalis (BST), central amygdala (CEA), whereas activation was reduced in regions involved in exploratory behavior (hippocampus, dorsal striatum, ventral tuberomammillary nucleus, and ventral tegmental area). Both DVC inactivation and catecholamine lesion prevented reductions in exploratory behavior and completely blocked the inhibitory LPS effects on c-Fos expression in the behavior-associated regions. In contrast, LPS-induced activation in the CEA and BST was inhibited by DVC inactivation but not by catecholamine lesion. The findings support the idea that parallel pathways from immune-sensory caudal brainstem sources target distinct populations of forebrain neurons that likely mediate different aspects of sickness. The caudal medullary catecholaminergic projections to the hypothalamus may significantly contribute to brain mechanisms that induce behavioral “fatigue” in the context of physiological stressors. PMID:21075199

  3. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat.

    PubMed

    Luo, Jia; Wang, Tao; Liang, Shan; Hu, Xu; Li, Wei; Jin, Feng

    2014-03-01

    Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (10(9) CFU mL(-1)) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.

  4. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.

    PubMed

    Meyer, Urs; Nyffeler, Myriel; Yee, Benjamin K; Knuesel, Irene; Feldon, Joram

    2008-05-01

    Maternal infection during pregnancy increases the risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. This association appears to be critically dependent on the precise prenatal timing. However, the extent to which distinct adult psychopathological and neuropathological traits may be sensitive to the precise times of prenatal immune activation remains to be further characterized. Here, we evaluated in a mouse model of prenatal immune challenge by the viral mimic, polyriboinosinic-polyribocytidilic acid (PolyIC), whether prenatal immune activation in early/middle and late gestation may influence the susceptibility to some of the critical cognitive, pharmacological, and neuroanatomical dysfunctions implicated in schizophrenia and autism. We revealed that PolyIC-induced prenatal immune challenge on gestation day (GD) 9 but not GD17 significantly impaired sensorimotor gating and reduced prefrontal dopamine D1 receptors in adulthood, whereas prenatal immune activation specifically in late gestation impaired working memory, potentiated the locomotor reaction to the NMDA-receptor antagonist dizocilpine, and reduced hippocampal NMDA-receptor subunit 1 expression. On the other hand, potentiation of the locomotor reaction to the dopamine-receptor agonist amphetamine and reduction in Reelin- and Parvalbumin-expressing prefrontal neurons emerged independently of the precise times of prenatal immune challenge. Our findings thus highlight that prenatal immune challenge during early/middle and late fetal development in mice leads to distinct brain and behavioral pathological symptom clusters in adulthood. Further examination and evaluation of in utero immune challenge at different times of gestation may provide important new insight into the neuroimmunological and neuropathological mechanisms underlying the segregation of different symptom clusters in heterogeneous neuropsychiatric disorders such as schizophrenia and autism.

  5. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    PubMed

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Cancer immunotherapy. Importance of overcoming immune suppression].

    PubMed

    Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo

    2010-01-01

    Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.

  7. HIV-1 and hijacking of the host immune system: the current scenario.

    PubMed

    Imran, Muhammad; Manzoor, Sobia; Saalim, Muhammad; Resham, Saleha; Ashraf, Javed; Javed, Aneela; Waqar, Ahmed Bilal

    2016-10-01

    Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  8. Differential gene expression associated with honey bee grooming behavior in response to varroa mites

    USDA-ARS?s Scientific Manuscript database

    Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-relat...

  9. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  10. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  11. The role of the immune system in kidney disease.

    PubMed

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  12. Regulatory dendritic cells: there is more than just immune activation.

    PubMed

    Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.

  13. Regulatory dendritic cells: there is more than just immune activation

    PubMed Central

    Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies. PMID:22969767

  14. Impact of aging immune system on neurodegeneration and potential immunotherapies.

    PubMed

    Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong

    2017-10-01

    The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Robustness trade-offs and host–microbial symbiosis in the immune system

    PubMed Central

    Kitano, Hiroaki; Oda, Kanae

    2006-01-01

    The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567

  16. Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression.

    PubMed

    Gottlieb, Caroline Trebbien; Thomsen, Line Elnif; Ingmer, Hanne; Mygind, Per Holse; Kristensen, Hans-Henrik; Gram, Lone

    2008-11-26

    Host defense peptides (HDPs), or antimicrobial peptides (AMPs), are important components of the innate immune system that bacterial pathogens must overcome to establish an infection and HDPs have been suggested as novel antimicrobial therapeutics in treatment of infectious diseases. Hence it is important to determine the natural variation in susceptibility to HDPs to ensure a successful use in clinical treatment regimes. Strains of two human bacterial pathogens, Listeria monocytogenes and Staphylococcus aureus, were selected to cover a wide range of origin, sub-type, and phenotypic behavior. Strains within each species were equally sensitive to HDPs and oxidative stress representing important components of the innate immune defense system. Four non-human peptides (protamine, plectasin, novicidin, and novispirin G10) were similar in activity profile (MIC value spectrum) to the human beta-defensin 3 (HBD-3). All strains were inhibited by concentrations of hydrogen peroxide between 0.1% - 1.0%. Sub-selections of both species differed in expression of several virulence-related factors and in their ability to survive in human whole blood and kill the nematode virulence model Caenorhabditis elegans. For L. monocytogenes, proliferation in whole blood was paralleled by high invasion in Caco-2 cells and fast killing of C. elegans, however, no such pattern in phenotypic behavior was observed for S. aureus and none of the phenotypic differences were correlated to sensitivity to HDPs. Strains of L. monocytogenes and S. aureus were within each species equally sensitive to a range of HDPs despite variations in subtype, origin, and phenotypic behavior. Our results suggest that therapeutic use of HDPs will not be hampered by occurrence of naturally tolerant strains of the two species investigated in the present study.

  17. Invited essay: Cognitive influences on the psychological immune system.

    PubMed

    Rachman, S J

    2016-12-01

    The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Local and systemic tumor immune dynamics

    NASA Astrophysics Data System (ADS)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  19. Adolescent fluoxetine treatment decreases the effects of neonatal immune activation on anxiety-like behavior in mice.

    PubMed

    Majidi-Zolbanin, Jafar; Azarfarin, Maryam; Samadi, Hanieh; Enayati, Mohsen; Salari, Ali-Akbar

    2013-08-01

    Experimental studies have shown conflicting effects of neonatal infection on anxiety-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis activity in adult rats. We investigated for the first time whether neonatal exposure to lipopolysaccharide (LPS) is associated with increased levels of anxiety-like behaviors in mice. Moreover, there have been several studies showing that adolescent fluoxetine (FLX) treatment can influence HPA axis development and prevent occurrence of psychiatric disorders induced by common early-life insults. In the present study, we also investigated the effects of adolescent FLX exposure following neonatal immune activation on anxiety-like behavior in mice. Neonatal mice were treated to LPS (50μg/kg) or saline on postnatal days (PND) 3 and 5, then male and female mice of both neonatal intervention groups received oral administration of FLX (5 and 10mg/kg/day) or water via regular drinking bottles during the adolescent period (PNDs 35-65). The results showed that postnatal immune challenge increased anxiety-like behavior in the open field, elevated plus-maze and light-dark box in adult mice (PND 90). Furthermore, the adolescent FLX treatment inhibited the anxiety-like behavior induced by neonatal infection in both sexes. However, this study indicates the negative effects of the FLX on normal behavioral symptoms in male control mice. Taken together, the current data provide experimental evidence that neonatal infection increases anxiety levels in male and female mice in adulthood. Additionally, the findings of this study support the hypothesis that an early pharmacological intervention with FLX may be an effective treatment for reducing the behavioral abnormalities induced by common early-life insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    DTIC Science & Technology

    2016-06-01

    BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune

  1. Macrophages and depression - a misalliance or well-arranged marriage?

    PubMed

    Roman, Adam; Kreiner, Grzegorz; Nalepa, Irena

    2013-01-01

    Depression is a severe medical condition with multiple manifestations and diverse, largely unknown etiologies. The immune system, particularly macrophages, plays an important role in the pathology of the illness. Macrophages represent a heterogeneous population of immune cells that is dispersed throughout the body. The central nervous system is populated by several types of macrophages, including microglia, perivascular cells, meningeal and choroid plexus macrophages and pericytes. These cells occupy different brain compartments and have various functions. Under basal conditions, brain macrophages support the proper function of neural cells, organize and preserve the neuronal network and maintain homeostasis. As cells of the innate immune system, they recognize and react to any disturbances in homeostasis, eliminating pathogens or damaged cells, terminating inflammation and proceeding to initiate tissue reconstruction. Disturbances in these processes result in diverse pathologies. In particular, tissue stress or malfunction, both in the brain and in the periphery, produce sustained inflammatory states, which may cause depression. Excessive release of proinflammatory mediators is responsible for alterations of neurotransmitter systems and the occurrence of depressive symptoms. Almost all antidepressive drugs target monoamine or serotonin neurotransmission and also have anti-inflammatory or immunosuppressive properties. In addition, non-pharmacological treatments, such as electroconvulsive shock, can also exert anti-inflammatory effects. Recent studies have shown that antidepressive therapies can affect the functional properties of peripheral and brain macrophages and skew them toward the anti-inflammatory M2 phenotype. Because macrophages can affect outcome of inflammatory diseases, alleviate sickness behavior and improve cognitive function, it is possible that the effects of antidepressive treatments may be, at least in part, mediated by changes in macrophage activity.

  2. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment.

    PubMed

    Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe

    2015-02-01

    There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  4. Plant innate immunity: an updated insight into defense mechanism.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  5. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems.

    PubMed

    Al-Nedawi, Khalid; Mian, M Firoz; Hossain, Nazia; Karimi, Khalil; Mao, Yu-Kang; Forsythe, Paul; Min, Kevin K; Stanisz, Andrew M; Kunze, Wolfgang A; Bienenstock, John

    2015-02-01

    Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems. © FASEB.

  6. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    PubMed

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  7. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    PubMed

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  8. A multi-disciplinary curriculum for 11- to 13-year-olds: immunization, plus!

    PubMed

    Glik, D C; Stone, K M; McNeil, J D; Berkanovic, E; Jones, M C; Richardes, D A; Mirocha, J M

    1997-09-01

    A sixth grade curriculum entitled "Immunization, Plus!" Was developed to promote adolescent immunization. This targeted immunization curriculum utilized contemporary learning theory and innovative teaching approaches and styles to maximize acceptability among educators. Because instructional time in school was limited, a thematic curriculum was created to embed immunization and communicable disease content within mathematics, science/health, and language arts units. The curriculum, which reflected the theory of multiple intelligences among students, offered an array of different learning formats, including linguistic, logical-mathematical, spatial, and bodily-kinesthetic. The curriculum was made available free of charge to school districts in California, and its evaluation was planned to track distribution, utilization, and changes in students' knowledge, attitude, and behavior.

  9. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    PubMed

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.

  10. Behavioural conditioning of immune functions: how the central nervous system controls peripheral immune responses by evoking associative learning processes.

    PubMed

    Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred

    2008-01-01

    During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.

  11. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects.

    PubMed

    Adamo, Shelley A

    2017-02-01

    The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Vitamin E, immunity, and infection

    USDA-ARS?s Scientific Manuscript database

    A normally functioning immune system is critical for the body to fight and eliminate invading pathogens from the environment. On the other hand, the immune system also protects the body from internal risks such as neoplasia growing within and autoimmune responses that attack self. The immune system ...

  13. Chapter 2: Innate Immunity

    PubMed Central

    Turvey, Stuart E.; Broide, David H.

    2009-01-01

    Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920

  14. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    PubMed

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Behavioral determinants of immunization service utilization in Ethiopia: a cross-sectional community-based survey

    PubMed Central

    Ababu, Yohannes; Braka, Fiona; Teka, Aschalew; Getachew, Kinde; Tadesse, Tefera; Michael, Yohannes; Birhanu, Zewdie; Nsubuga, Peter; Assefa, Tersit; Gallagher, Kathleen

    2017-01-01

    Introduction According to the Ethiopian Health Sector Development Plan IV annual performance report (HSDP IV), Ethiopia targeted to reach 90% coverage with DPT-Hib-HepB 3 (Pentavalent3) vaccine and 86% coverage with measles vaccine in 2010- 2011. However, the actual performance fell-short of the intended targets due to several reasons. Therefore, a nationwide comprehensive study was conducted to examine the behavioral determinants of immunization practices in the Ethiopian context. The study employed the Modified Steps of Behavioral Change (SBC) Model as a theoretical lens. Methods A cross-sectional study was conducted in May 2012 in all the nine regions and the two city administrations of Ethiopia. The study used a community-based quantitative survey design comprising of multistage cluster sampling to draw relevant data from a sample of 2,328 caretakers whose children were 12-23 months of age at the time of data collection. Results Overall, the multivariate analysis findings revealed that caretakers, who had high knowledge were 2.24 times more likely to vaccinate their children than participants had low knowledge (OR= 2.24, 95%CI: 1.68-2.98). Participants who had high approval were 2.45 times more likely to vaccinate their children than participants who had unfavorable approval (OR= 2.45, 95%CI: 1.67-3.59); and participants who had high intention were 6.49 times more likely to vaccinate their children with pentavalent3 vaccines than participants who had low intention(OR= 6.49, 95%CI: 4.83-8). Also, it was clear from the regression analysis that aspects of caretakers' demographic characteristics were significant predictors of their immunization practice for the sample group. Conclusion We identified that caretakers' knowledge, approval, intention, parents' residence, and religious backgrounds were associated with immunization service utilization. To achieve sustainable behavioral change on immunization service utilization of the caretakers in Ethiopia, this study suggests investing in activities that enhance caretakers' knowledge, approval, intention, and practice components represented in the behavioral change model. PMID:28983390

  16. Undernutrition, the Acute Phase Response to Infection, and Its Effects on Micronutrient Status Indicators12

    PubMed Central

    Bresnahan, Kara A.; Tanumihardjo, Sherry A.

    2014-01-01

    Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host’s homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries. PMID:25398733

  17. Matrix metalloproteinase-3 is a possible mediator of neurodevelopmental impairment due to polyI:C-induced innate immune activation of astrocytes.

    PubMed

    Yamada, Shinnosuke; Nagai, Taku; Nakai, Tsuyoshi; Ibi, Daisuke; Nakajima, Akira; Yamada, Kiyofumi

    2014-05-01

    Increasing epidemiological evidence indicates that prenatal infection and childhood central nervous system infection with various viral pathogens enhance the risk for several neuropsychiatric disorders. Polyriboinosinic-polyribocytidilic acid (polyI:C) is known to induce strong innate immune responses that mimic immune activation by viral infections. Our previous findings suggested that activation of the innate immune system in astrocytes results in impairments of neurite outgrowth and spine formation, which lead to behavioral abnormalities in adulthood. To identify candidates of astrocyte-derived humoral factors that affect neuronal development, we analyzed astrocyte-conditioned medium (ACM) from murine astrocyte cultures treated with polyI:C (polyI:C-ACM) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Through a quantitative proteomic screen, we found that 13 protein spots were differentially expressed compared with ACM from vehicle-treated astrocytes (control-ACM), and characterized one of the candidates, matrix metalloproteinase-3 (Mmp3). PolyI:C treatment significantly increased the expression levels of Mmp3 mRNA and protein in astrocytes, but not microglia. PolyI:C-ACM was associated with significantly higher Mmp3 protein level and enzyme activity than control-ACM. The addition of recombinant Mmp3 into control-ACM impaired dendritic elongation of primary cultured hippocampal neurons, while the deleterious effect of polyI:C-ACM on neurite elongation was attenuated by knockdown of Mmp3 in astrocytes. These results suggest that Mmp3 is a possible mediator of polyI:C-ACM-induced neurodevelopmental impairment. Copyright © 2014. Published by Elsevier Inc.

  18. Innate immune system still works at diapause, a physiological state of dormancy in insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Akihiro; Miyado, Kenji, E-mail: kmiyado@nch.go.jp; Takezawa, Youki

    Highlights: {yields} Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. {yields} Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. {yields} Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. {yields} Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allowsmore » insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.« less

  19. Generic, scalable and decentralized fault detection for robot swarms.

    PubMed

    Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.

  20. Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu; Deem, Michael W.

    2006-11-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.

  1. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    PubMed

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-07-01

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is the first evidence for the emergence of long-term behavioral and brain abnormalities after lactational exposure to an inflammatory agent, supporting a causal link between early immune activation and disrupted neuropsychodevelopment. That such exposure produces schizophrenia- or depression-like phenotype depending on sex, resonates with notions that risk factors are transdiagnostic, and that sex is a susceptibility factor for neurodevelopmental psychopathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Psychosocial Factors and AIDS-Related Behavior of Homosexual Men: Measurement and Associations.

    ERIC Educational Resources Information Center

    Zapka, Jane G.; And Others

    1990-01-01

    Measurement and data-reduction procedures were conducted for psychosocial scales used in behavioral research on the acquired immune deficiency syndrome (AIDS). Associations of the scales for other personal and health services/information factors with one selected AIDS protective behavior among 281 asymptomatic homosexual/bisexual men were…

  3. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  4. Chimera states in multi-strain epidemic models with temporary immunity

    NASA Astrophysics Data System (ADS)

    Bauer, Larissa; Bassett, Jason; Hövel, Philipp; Kyrychko, Yuliya N.; Blyuss, Konstantin B.

    2017-11-01

    We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity. In the absence of cross-immunity between strains, dynamics of each individual strain exhibit emergence and annihilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a saddle-node bifurcation of limit cycles depending on the time delay associated with duration of temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically investigated by means of numerical simulations, and they suggest that cross-immunity is able to induce a diverse range of complex dynamical behaviors and synchronization patterns, including discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are observed for narrower cross-immunity kernels, which can have profound implications for understanding the dynamics of multi-strain diseases.

  5. Psychoneuroimmunology - psyche and autoimmunity.

    PubMed

    Ziemssen, Tjalf

    2012-01-01

    Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.

  6. The discontinuity theory of immunity

    PubMed Central

    Pradeu, Thomas; Vivier, Eric

    2017-01-01

    Some biological systems detect the rate of change in a stimulus rather than the stimulus itself only. We suggest that the immune system works in this way. According to the discontinuity theory of immunity, the immune system responds to sudden changes in antigenic stimulation and is rendered tolerant by slow or continuous stimulation. This basic principle, which is supported by recent data on immune checkpoints in viral infections, cancers, and allergies, can be seen as a unifying framework for diverse immune responses. PMID:28239677

  7. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  8. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    PubMed Central

    Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  9. Direct and Electronic Health Record Access to the Clinical Decision Support for Immunizations in the Minnesota Immunization Information System.

    PubMed

    Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead

    2016-01-01

    Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

  10. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. Interplay between cost and benefits triggers nontrivial vaccination uptake

    NASA Astrophysics Data System (ADS)

    Steinegger, Benjamin; Cardillo, Alessio; Rios, Paolo De Los; Gómez-Gardeñes, Jesús; Arenas, Alex

    2018-03-01

    The containment of epidemic spreading is a major challenge in science. Vaccination, whenever available, is the best way to prevent the spreading, because it eventually immunizes individuals. However, vaccines are not perfect, and total immunization is not guaranteed. Imperfect immunization has driven the emergence of antivaccine movements that totally alter the predictions about the epidemic incidence. Here, we propose a mathematically solvable mean-field vaccination model to mimic the spontaneous adoption of vaccines against influenzalike diseases and the expected epidemic incidence. The results are in agreement with extensive Monte Carlo simulations of the epidemics and vaccination coevolutionary processes. Interestingly, the results reveal a nonmonotonic behavior on the vaccination coverage that increases with the imperfection of the vaccine and after decreases. This apparent counterintuitive behavior is analyzed and understood from stability principles of the proposed mathematical model.

  12. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    PubMed

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior.

  13. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    PubMed Central

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior. PMID:29194444

  14. Evaluation of a Social Marketing Campaign to Increase Awareness of Immunizations for Urban Low-Income Children

    PubMed Central

    Ngui, Emmanuel M.; Hamilton, Chelsea; Nugent, Melodee; Simpson, Pippa; Willis, Earnestine

    2015-01-01

    Objective To assess community awareness of childhood immunizations and intent to immunize children after a social marketing immunization campaign. Methods We used 2 interviewer-assisted street-intercept surveys to evaluate awareness of childhood immunizations and intent to immunize low-income children. The “Take Control! Immunize” social marketing campaign was developed using a community-based participatory research approach and used billboards, flyers, and various “walking billboard” (eg, backpacks, pens) to deliver immunization messages in the community settings. Results Over 85% of community members recalled the “Take Control! Immunize” message. Almost half of those who saw the immunization message indicated that the message motivated them to act, including getting their children immunized or calling their physician to inquire about their children's immunizations status. All respondents indicated that immunizations were important for children and that they were likely or very likely to immunize their children. Respondents who reported that “Take Control!” messages motivated them to act in the first intercept survey were significantly more likely than those in the second intercept to report being likely or very likely to immunize their children. Conclusion Culturally appropriate social marketing immunization messages in targeted urban settings can increase parental awareness and behavioral intention to immunize children. PMID:25845130

  15. Immunotherapy: How the Immune System Fights Cancer

    Cancer.gov

    Immunotherapy uses the body’s immune system to fight cancer. This animation explains three types of immunotherapy used to treat cancer: nonspecific immune stimulation, T-cell transfer therapy, and immune checkpoint inhibitors.

  16. Anti-Gluten Immune Response following Toxoplasma gondii Infection in Mice

    PubMed Central

    Severance, Emily G.; Kannan, Geetha; Gressitt, Kristin L.; Xiao, Jianchun; Alaedini, Armin; Pletnikov, Mikhail V.; Yolken, Robert H.

    2012-01-01

    Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001). Activation of the complement system accompanied this immune response (p≤0.002–0.00001). Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009) indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders. PMID:23209841

  17. Anti-gluten immune response following Toxoplasma gondii infection in mice.

    PubMed

    Severance, Emily G; Kannan, Geetha; Gressitt, Kristin L; Xiao, Jianchun; Alaedini, Armin; Pletnikov, Mikhail V; Yolken, Robert H

    2012-01-01

    Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001). Activation of the complement system accompanied this immune response (p≤0.002-0.00001). Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009) indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders.

  18. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.

    PubMed

    Buchon, Nicolas; Silverman, Neal; Cherry, Sara

    2014-12-01

    Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.

  19. A randomized trial of maternal influenza immunization decision-making: A test of persuasive messaging models.

    PubMed

    Frew, Paula M; Kriss, Jennifer L; Chamberlain, Allison T; Malik, Fauzia; Chung, Yunmi; Cortés, Marielysse; Omer, Saad B

    2016-08-02

    We sought to examine the effectiveness of persuasive communication interventions on influenza vaccination uptake among black/African American pregnant women in Atlanta, Georgia. We recruited black/African American pregnant women ages 18 to 50 y from Atlanta, GA to participate in a prospective, randomized controlled trial of influenza immunization messaging conducted from January to April 2013. Eligible participants were randomized to 3 study arms. We conducted follow-up questionnaires on influenza immunization at 30-days post-partum with all groups. Chi-square and t tests evaluated group differences, and outcome intention-to-treat assessment utilized log-binomial regression models. Of the 106 enrolled, 95 women completed the study (90% retention), of which 31 were randomly assigned to affective messaging intervention ("Pregnant Pause" video), 30 to cognitive messaging intervention ("Vaccines for a Healthy Pregnancy" video), and 34 to a comparison condition (receipt of the Influenza Vaccine Information Statement). The three groups were balanced on baseline demographic characteristics and reported health behaviors. At baseline, most women (63%, n = 60) reported no receipt of seasonal influenza immunization during the previous 5 y. They expressed a low likelihood (2.1 ± 2.8 on 0-10 scale) of obtaining influenza immunization during their current pregnancy. At 30-days postpartum follow-up, influenza immunization was low among all participants (7-13%) demonstrating no effect after a single exposure to either affective messaging (RR = 1.10; 95% CI: 0.30-4.01) or cognitive messaging interventions (RR = 0.57; 95% CI: 0.11-2.88). Women cited various reasons for not obtaining maternal influenza immunizations. These included concern about vaccine harm (47%, n = 40), low perceived influenza infection risk (31%, n = 26), and a history of immunization nonreceipt (24%, n = 20). The findings reflect the limitations associated with a single exposure to varying maternal influenza immunization message approaches on vaccine behavior. For this population, repeated influenza immunization exposures may be warranted with alterations in message format, content, and relevance for coverage improvement.

  20. Generic, scalable and decentralized fault detection for robot swarms

    PubMed Central

    Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system’s capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation. PMID:28806756

  1. Gestational flu exposure induces changes in neurochemicals, affiliative hormones and brainstem inflammation, in addition to autism-like behaviors in mice.

    PubMed

    Miller, V M; Zhu, Y; Bucher, C; McGinnis, W; Ryan, L K; Siegel, A; Zalcman, S

    2013-10-01

    The prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear. We hypothesized that gestational viral exposure induces changes in affiliative hormones, brainstem autonomic nuclei and neurotransmitters which are associated with behavioral alterations in offspring. To address this hypothesis, we exposed pregnant mice to influenza A virus (H3N2) on gestational day 9 and determined behavioral, hormonal and brainstem changes in male and female offspring. We found that gestational flu exposure induced dose-dependent alterations in social and aggressive behaviors (p≤0.05) in male and female offspring and increases in locomotor behaviors particularly in male offspring (p≤0.05). We found that flu exposure was also associated with reductions in oxytocin and serotonin (p≤0.05) levels in male and female offspring and sex-specific changes in dopamine metabolism. In addition we found changes in catecholaminergic and microglia density in brainstem tissues of male flu exposed offspring only (p≤0.05). This study demonstrates that gestational viral exposure induces behavioral changes in mice, which are associated with alterations in affiliative hormones. In addition we found sex-specific changes in locomotor behavior, which may be associated with sex-specific alterations in dopamine metabolism and brainstem inflammation. Further investigations into maternal immune responses are necessary to unravel the molecular mechanisms which underpin abnormal hormonal, immune and behavioral responses in offspring after gestational viral exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Synthetic immunology: modulating the human immune system.

    PubMed

    Geering, Barbara; Fussenegger, Martin

    2015-02-01

    Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The deconvolution of complex spectra by artificial immune system

    NASA Astrophysics Data System (ADS)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  4. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    PubMed

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  5. Evolution of complement as an effector system in innate and adaptive immunity.

    PubMed

    Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina

    2003-01-01

    For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.

  6. Anti-Immune Strategies of Pathogenic Fungi

    PubMed Central

    Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220

  7. Effects of engineered nanoparticles on the innate immune system.

    PubMed

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Differential Gender Effects in the Relationship between Perceived Immune Functioning and Autistic Traits.

    PubMed

    Mackus, Marlou; Kruijff, Deborah de; Otten, Leila S; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C

    2017-04-12

    Altered immune functioning has been demonstrated in individuals with autism spectrum disorder (ASD). The current study explores the relationship between perceived immune functioning and experiencing ASD traits in healthy young adults. N = 410 students from Utrecht University completed a survey on immune functioning and autistic traits. In addition to a 1-item perceived immune functioning rating, the Immune Function Questionnaire (IFQ) was completed to assess perceived immune functioning. The Dutch translation of the Autism-Spectrum Quotient (AQ) was completed to examine variation in autistic traits, including the domains "social insights and behavior", "difficulties with change", "communication", "phantasy and imagination", and "detail orientation". The 1-item perceived immune functioning score did not significantly correlate with the total AQ score. However, a significant negative correlation was found between perceived immune functioning and the AQ subscale "difficulties with change" (r = -0.119, p = 0.019). In women, 1-item perceived immune functioning correlated significantly with the AQ subscales "difficulties with change" (r = -0.149, p = 0.029) and "communication" (r = -0.145, p = 0.032). In men, none of the AQ subscales significantly correlated with 1-item perceived immune functioning. In conclusion, a modest relationship between perceived immune functioning and several autistic traits was found.

  9. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    PubMed Central

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  10. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  11. Mind-body hypnotic imagery in the treatment of auto-immune disorders.

    PubMed

    Torem, Moshe S

    2007-10-01

    For many years Western Medicine has considered the immune system to be separate and independent from the central nervous system. However, significant scientific advances and research discoveries that occurred during the past 50 years have presented additional facts that the immune system does interact with the central nervous system with mutual influence. This article provides a systematic review of the literature on the connection between the brain and the immune system and its clinical implications. It then provides a rational foundation for the role of using hypnosis and imagery to therapeutically influence the immune system. Five case examples are provided with illustrated instructions for clinicians on how hypnosis and imagery may be utilized in the treatment of patients with auto-immune disorders. Suggestions for future research in this field are included.

  12. At the crossroads between tolerance and aggression: Revisiting the "layered immune system" hypothesis.

    PubMed

    Mold, Jeff E; McCune, Joseph M

    2011-04-01

    "We do not grow absolutely, chronologically. We grow sometimes in one dimension, and not in another; unevenly. We grow partially. We are relative. We are mature in one realm, childish in another. The past, present and future mingle and pull us backward, forward, or fix us in the present. We are made up of layers, cells, constellations."-Anaïs NinIt has long been recognized that the developing immune system exhibits certain peculiarities when compared to the adult immune system. Nonetheless, many still regard the fetal immune system as simply being an immature version of the adult immune system. Here we discuss historical evidence as well as recent findings, which suggest that the human immune system may develop in distinct layers with specific functions at different stages of development.

  13. Individual differences in maternal response to immune challenge predict offspring behavior: Contribution of environmental factors

    PubMed Central

    Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.

    2011-01-01

    Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612

  14. A human tissue-based functional assay platform to evaluate the immune function impact of small molecule inhibitors that target the immune system.

    PubMed

    St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A

    2017-01-01

    While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.

  15. Gap junction-mediated intercellular communication in the immune system.

    PubMed

    Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques

    2007-01-01

    Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.

  16. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605

  17. Interplay Between Innate Immunity and the Plant Microbiota.

    PubMed

    Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul

    2017-08-04

    The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.

  18. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC

    PubMed Central

    Falcao‐Pires, Ines; Balligand, Jean‐Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J.; Giacca, Mauro; Hamdani, Nazha; Hilfiker‐Kleiner, Denise; Hirsch, Emilio; Leite‐Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G.; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane

    2018-01-01

    Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. PMID:29333691

  19. Recent Advances in Aptamers Targeting Immune System.

    PubMed

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  20. EBV and systemic lupus erythematosus: a new perspective.

    PubMed

    Gross, Andrew J; Hochberg, Donna; Rand, William M; Thorley-Lawson, David A

    2005-06-01

    We have proposed that EBV uses mature B cell biology to access memory B cells as a site of persistent infection. A central feature of this model is that EBV adapts its gene expression profile to the state of the B cell it resides in and that the level of infection is stable over time. This led us to question whether changes in the behavior or regulation of mature B cells would alter the state of EBV persistence. To investigate this, we studied the impact of systemic lupus erythematosus (SLE), a disease characterized by immune dysfunction, on EBV infection. We show that patients with SLE have abnormally high frequencies of EBV-infected cells in their blood, and this is associated with the occurrence of SLE disease flares. Although patients with SLE have frequencies of infected cells comparable to those seen in immunosuppressed patients, in SLE the effect was independent of immunosuppressive therapy. Aberrant expression of viral lytic (BZLF1) and latency (latency membrane proteins 1 and 2a) genes was also detected in the blood of SLE patients. We conclude that the abnormal regulation of EBV infection in SLE patients reflects the sensitivity of the virus to perturbation of the immune system.

Top