The Importance of Human Milk for Immunity in Preterm Infants.
Lewis, Erin D; Richard, Caroline; Larsen, Bodil M; Field, Catherine J
2017-03-01
The immune system of preterm infants is immature, placing them at increased risk for serious immune-related complications. Human milk provides a variety of immune protective and immune maturation factors that are beneficial to the preterm infant's poorly developed immune system. The most studied immune components in human milk include antimicrobial proteins, maternal leukocytes, immunoglobulins, cytokines and chemokines, oligosaccharides, gangliosides, nucleotides, and long-chain polyunsaturated fatty acids. There is growing evidence that these components contribute to the lower incidence of immune-related conditions in the preterm infant. Therefore, provision of these components in human milk, donor milk, or formula may provide immunologic benefits. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish.
Fuentes-Appelgren, Pamela; Opazo, Rafael; Barros, Luis; Feijoó, Carmen G; Urzúa, Victoria; Romero, Jaime
2014-02-01
Some components of plant-based meals, such as saponins and vegetal proteins, have been proposed as inducers of intestinal inflammation in some fish. However, the molecular and cellular bases for this phenomenon have not been reported. In this work, zebrafish were used as a model to evaluate the effects of individual soybean meal components, such as saponins and soy proteins. Zebrafish larvae fed a fish meal feed containing soy components were assessed according to low and high inclusion levels. The granulocytes associated with the digestive tract and the induction of genes related to the immune system were quantitated as markers of the effects of the dietary components. A significant increase in the number of granulocytes was observed after feeding fish diets containing high saponin or soy protein contents. These dietary components also induced the expression of genes related to the innate immune system, including myeloid-specific peroxidase, as well as the complement protein and cytokines. These results reveal the influence of dietary components on the stimulation of the immune system. These observations could be significant to understanding the contributions of saponin and soy protein to the onset of enteritis in aqua-cultured fish, and this knowledge may aid in defining the role of the innate immune system in other inflammatory diseases involving dietary components in mammals.
Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development
Liongue, Clifford; O'Sullivan, Lynda A.; Trengove, Monique C.; Ward, Alister C.
2012-01-01
Background Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. Results Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. Conclusion Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity. PMID:22412924
Human adaptive immune system Rag2-/-gamma(c)-/- mice.
Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G
2005-06-01
Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.
Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus
NASA Astrophysics Data System (ADS)
Parejo, Deseada; Silva, Nadia
2009-10-01
The immune system of vertebrates consists of several components that partly interact and complement each other. Therefore, the assessment of the overall effectiveness of immune defence requires the simultaneous measurement of different immune components. In this study, we investigated intraspecific variability of innate [i.e. natural antibodies (NAb) and complement] and acquired (i.e. leucocyte profiles) immunity and its relationship with fitness correlates (i.e. blood parasite load and reproductive success in adults and body mass and survival until fledging in nestlings) in the Eurasian kestrel Falco tinnunculus. Immunity differed between nestlings and adults and also between adult males and females. Adult kestrels with higher levels of complement were less parasitised by Haemoproteus, and males with higher values of NAbs showed a higher reproductive success. In nestlings, the H/L ratio was negatively related to body mass. Survival until fledging was predicted by all measured immunological variables of nestlings as well as by their fathers' level of complement. This is the first time that innate immunity is linked to survival in a wild bird. Thus, intraspecific variation in different components of immunity predicts variation in fitness prospects in kestrels, which highlights the importance of measuring innate immune components together with components of the acquired immunity in studies assessing the effectiveness of the immune system in wild animals.
Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten
2016-10-01
The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.
ERIC Educational Resources Information Center
Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.
2008-01-01
The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…
Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto
2015-01-01
During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.
Abrakova, E L
1982-01-01
The effector component of immune system was studied in 39 cases of fibroadenomatosis by morphometric and histochemical methods. Signs of immunosuppression (decreased fraction of free cells of stroma and disturbances in their cooperation) were identified in cases of precancerous changes and cancer. A considerable difference in nucleic acid level in fibroadenomatosis and cancer was established. It is suggested that quantitative morphological study of the effector component of immune system may provide more diagnostic criteria for identification of prognostically unfavorable forms of fibroadenomatosis and cancer.
Innate immunity of fish (overview).
Magnadóttir, Bergljót
2006-02-01
The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.
Cutaneous immunology: basics and new concepts.
Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran
2016-01-01
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Innate Immune Activation in Obesity
Lumeng, Carey N.
2014-01-01
The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074
The deconvolution of complex spectra by artificial immune system
NASA Astrophysics Data System (ADS)
Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.
2017-11-01
An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.
[Cancer immunotherapy. Importance of overcoming immune suppression].
Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo
2010-01-01
Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.
Cheetahs have a stronger constitutive innate immunity than leopards
Heinrich, Sonja K.; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á.; Wachter, Bettina
2017-01-01
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science. PMID:28333126
Cheetahs have a stronger constitutive innate immunity than leopards.
Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina
2017-03-23
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.
Adamo, Shelley A
2017-02-01
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Diet Modifies the Neuroimmune System by Influencing Macrophage Activation
ERIC Educational Resources Information Center
Sherry, Christina Lynn
2009-01-01
It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…
The twilight of immunity: emerging concepts in aging of the immune system.
Nikolich-Žugich, Janko
2018-01-01
Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.
The role of the immune system in Alzheimer disease: Etiology and treatment.
Jevtic, Stefan; Sengar, Ameet S; Salter, Michael W; McLaurin, JoAnne
2017-11-01
The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets. Copyright © 2017. Published by Elsevier B.V.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927
Promoting tissue regeneration by modulating the immune system.
Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M
2017-04-15
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Innate Immunity and Resistance to Tolerogenesis in Allotransplantation
Benichou, Gilles; Tonsho, Makoto; Tocco, Georges; Nadazdin, Ognjenka; Madsen, Joren C.
2012-01-01
The development of immunosuppressive drugs to control adaptive immune responses has led to the success of transplantation as a therapy for end-stage organ failure. However, these agents are largely ineffective in suppressing components of the innate immune system. This distinction has gained in clinical significance as mounting evidence now indicates that innate immune responses play important roles in the acute and chronic rejection of whole organ allografts. For instance, whereas clinical interest in natural killer (NK) cells was once largely confined to the field of bone marrow transplantation, recent findings suggest that these cells can also participate in the acute rejection of cardiac allografts and prevent tolerance induction. Stimulation of Toll-like receptors (TLRs), another important component of innate immunity, by endogenous ligands released in response to ischemia/reperfusion is now known to cause an inflammatory milieu favorable to graft rejection and abrogation of tolerance. Emerging data suggest that activation of complement is linked to acute rejection and interferes with tolerance. In summary, the conventional wisdom that the innate immune system is of little importance in whole organ transplantation is no longer tenable. The addition of strategies that target TLRs, NK cells, complement, and other components of the innate immune system will be necessary to eventually achieve long-term tolerance to human allograft recipients. PMID:22566954
USDA-ARS?s Scientific Manuscript database
The immune system is a multifaceted arrangement of membranes (skin, epithelial, mucus), cells, and molecules whose function is to eradicate invading pathogens or cancer cells from a host. Working together, the various components of the immune system perform a balancing act of being lethal enough to...
Zhou, Wanli; Wang, Guohong; Wang, Chunmei; Ren, Fazheng; Hao, Yanling
2016-01-01
Upon exposure to exogenous pediocin-like bacteriocins, immunity proteins specifically bind to the target receptor of the mannose phosphotransferase system components (man-PTS IIC and IID), therefore preventing bacterial cell death. However, the specific recognition of immunity proteins and its associated target receptors remains poorly understood. In this study, we constructed hybrid receptors to identify the domains of IIC and/or IID recognized by the immunity protein PedB, which confers immunity to pediocin PA-1. Using Lactobacillus plantarum man-PTS EII mutant W903, the IICD components of four pediocin PA-1-sensitive strains (L. plantarum WQ0815, Leuconostoc mesenteroides 05-43, Lactobacillus salivarius REN and Lactobacillus acidophilus 05-172) were respectively co-expressed with the immunity protein PedB. Well-diffusions assays showed that only the complex formed by LpIICD from L. plantarum WQ0815 with pediocin PA-1 could be recognized by PedB. In addition, a two-step PCR approach was used to construct hybrid receptors by combining LpIIC or LpIID recognized by PedB with the other three heterologous IID or IIC compounds unrecognized by PedB, respectively. The results showed that all six hybrid receptors were recognized by pediocin PA-1. However, when IIC or IID of L. plantarum WQ0815 was replaced with any corresponding IIC or IID component from L. mesenteroides 05-43, L. salivarius REN and L. acidophilus 05-172, all the hybrid receptors could not be recognized by PedB. Taken altogether, we concluded that both IIC and IID components of the mannose phosphotransferase system play an important role in the specific recognition between the bacteriocin-receptor complex and the immunity protein PedB.
Innate immune memory in plants.
Reimer-Michalski, Eva-Maria; Conrath, Uwe
2016-08-01
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Terme, Magali; Tanchot, Corinne
2017-02-01
Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.
Pathogenesis of Systemic Sclerosis
Pattanaik, Debendra; Brown, Monica; Postlethwaite, Bradley C.; Postlethwaite, Arnold E.
2015-01-01
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc. PMID:26106387
Immunological network signatures of cancer progression and survival
2011-01-01
Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479
The PNEI holistic approach in coloproctology.
Pescatori, M; Podzemny, V; Pescatori, L C; Dore, M P; Bassotti, G
2015-05-01
The psycho-neuroendocrine-immune approach relies on the concept of considering diseases from a holistic point of view: the various components (psyche, nervous system, endocrine system, and immune system) control the diseased organ/apparatus and in turn are influenced by a feedback mechanism. In this article, we will consider the psycho-neuroendocrine-immune approach to coloproctological disorders, by providing clinical cases and discussing them in light of this approach.
Modeling Systems-Level Regulation of Host Immune Responses
Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka
2007-01-01
Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300
Immunopathology of inflammatory bowel disease
Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q
2014-01-01
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed. PMID:24415853
Immunopathology of inflammatory bowel disease.
Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q
2014-01-07
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed.
Sexual dimorphism in immune function changes during the annual cycle in house sparrows
NASA Astrophysics Data System (ADS)
Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis
2010-10-01
Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.
Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.
2015-01-01
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788
Heuts, Frank; Nagy, Noemi
2017-01-01
Recent developments in mouse models that harbor part of a human immune system have proved extremely valuable to study the in vivo immune response to human specific pathogens such as Epstein-Barr virus. Over the last decades, advances in immunodeficient mouse strains that can be used as recipients for human immune cells have greatly enhanced the use of these models. Here, we describe the generation of mice with reconstituted human immune system (HIS mice) using immunocompromised mice transplanted with human CD34 + hematopoietic stem cells. We will also describe how such mice, in which human immune cells are generated de novo, can be used to study EBV infection.
Plant-bacterial pathogen interactions mediated by type III effectors.
Feng, Feng; Zhou, Jian-Min
2012-08-01
Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Roles of microRNA in the immature immune system of neonates.
Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou
2018-06-13
Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.
Joshi, Neha; Duhan, Vikas; Lingwal, Neelam; Bhaskar, Sangeeta; Upadhyay, Pramod
2012-01-01
Hyperthermia enhanced transdermal (HET) immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C) to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT). We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.
Palm, Noah W.; Rosenstein, Rachel K.; Yu, Shuang; Schenten, Dominik; Florsheim, Esther; Medzhitov, Ruslan
2013-01-01
SUMMARY Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Interactions of cnidarian toxins with the immune system.
Suput, Dusan
2011-10-01
Cnidarians comprise four classes of toxic marine animals: Anthozoa, Cubozoa, Scyphozoa and Hydrozoa. They are the largest and probably the oldest phylum of toxic marine animals. Any contact with a cnidarian, especially the box jellyfish (Chironex fleckeri), can be fatal, but most cnidarians do not possess sufficiently strong venomous apparatus to penetrate the human skin, whereas others rarely come into contact with human beings. Only a small, almost negligible percentage of the vast wealth of cnidarian toxins has been studied in detail. Many polypeptide cnidarian toxins are immunogenic, and cross-reactivity between several jellyfish venoms has been reported. Cnidarians also possess components of innate immunity, and some of those components have been preserved in evolution. On the other hand, cnidarian toxins have already been used for the design of immunotoxins to treat cancer, whereas other cnidarian toxins can modulate the immune system in mammals, including man. This review will focus on a short overview of cnidarian toxins, on the innate immunity of cnidarians, and on the mode of action of cnidarian toxins which can modulate the immune system in mammals. Emphasis is palced on those toxins which block voltage activated potassium channels in the cells of the immune system.
Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K
2014-01-01
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
The origin and development of the immune system with a view to stem cell therapy.
Anastassova-Kristeva, Marlene
2003-04-01
Careful study of the phylogeny and ontogeny of the three components of the immune system reveals that the macrophage, lymphatic, and hematopoietic systems originate independently of each other. Chronologically, the most ancient is the macrophage system, which arises in the coelomic cavity as mesenchymal ameboid cells having the properties to recognize self from non-self and to ingest foreign particles. The lymphatic system later develops from the endoderm of pharyngeal pouches, where the thymic anlage differentiates. The lymphocytes that originate here seed all lymphatic organs and retain the ability to divide and thereby form multiple colonies (lymphatic nodules) in the respiratory and digestive tract; further diversification of lymphocytes follows after confrontation with antigens. The last component of the immune system to appear is the hematopoietic system, which originates from the splanchnic mesoderm of the yolk sac as hematogenic tissue, containing hemangioblasts. The hematogenic tissue remains attached to the outer wall of the vitelline vessels, which provides an efficient mechanism for introducing the hematogenic tissue into the embryo. In an appropriate microenvironment, the hemangioblasts give rise to sinusoidal endothelium and to hemocytoblasts - the bone marrow stem cells for erythrocytes, myeloid cells, and megakaryocytes. The facts and opinions presented in this article are not in agreement with the currently accepted dogma that a common "hematolymphatic stem cell" localized in the marrow generates all of the cellular components of blood and the immune system.
Kumaraswamy, Monika; Kousha, Armin; Nizet, Victor
2017-01-01
ABSTRACT This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. PMID:29242830
Immune mediators in the brain and peripheral tissues in autism spectrum disorder
Estes, Myka L.; McAllister, A. Kimberley
2017-01-01
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and animal models of this disorder. Recently, several molecular signalling pathways have been identified that link immune activation to ASD phenotypes, including pathways downstream of cytokines, hepatocyte growth factor receptor (MET), MHCI molecules, microglia and complement factors. These findings indicate that the immune system is a point of convergence for various ASD-related genetic and environmental risk factors. PMID:26189694
James McNeil; Diana Cox-Foster; James Slavicek; Kelli Hoover
2010-01-01
How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its...
The immunoregulatory role of type I and type II NKT cells in cancer and other diseases
Terabe, Masaki; Berzofsky, Jay A.
2014-01-01
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834
Towards a General Theory of Immunity?
Eberl, Gérard; Pradeu, Thomas
2018-04-01
Theories are indispensable to organize immunological data into coherent, explanatory, and predictive frameworks. We propose to combine different models to develop a unifying theory of immunity which situates immunology in the wider context of physiology. We believe that the immune system will be increasingly understood as a central component of a network of partner physiological systems that interconnect to maintain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Artificial immune system for effective properties optimization of magnetoelectric composites
NASA Astrophysics Data System (ADS)
Poteralski, Arkadiusz; Dziatkiewicz, Grzegorz
2018-01-01
The optimization problem of the effective properties for magnetoelectric composites is considered. The effective properties are determined by the semi-analytical Mori-Tanaka approach. The generalized Eshelby tensor components are calculated numerically by using the Gauss quadrature method for the integral representation of the inclusion problem. The linear magnetoelectric constitutive equation is used. The effect of orientation of the electromagnetic materials components is taken into account. The optimization problem of the design is formulated and the artificial immune system is applied to solve it.
Systems-Level Analysis of Innate Immunity
Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan
2014-01-01
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298
Overview of Basic Immunology for Clinical Investigators.
Stephen, Bettzy; Hajjar, Joud
2017-01-01
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells are found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the cross talk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Resolving misassembled cattle immune gene clusters with hierarchical, long read sequencing
USDA-ARS?s Scientific Manuscript database
Animal health is a critical component of productivity; however, current genomic selection genotyping tools have a paucity of genetic markers within key immune gene clusters (IGC) involved in the cattle innate and adaptive immune systems. With diseases such as Bovine Tuberculosis and Johne’s disease ...
Lessons from across the pond: what the US can learn from European immunization programs.
Freed, Gary L
2007-08-14
Childhood immunizations are the most effective clinical preventive services ever developed. Western European countries have a variety of governmental and non-governmental agencies involved in the development and operation of their immunization programs. Because of the range of programs in place across the European continent, various components of the US system parallel specific components of a variety of countries. Examining the experiences of other countries which have attempted to address issues now faced by the US can be valuable. However, such examinations are only of value if both the country and the policy itself to be examined are placed within the context of the US health care system and US policy constraints.
Incubation period and immune function: A comparative field study among coexisting birds
Palacios, M.G.; Martin, T.E.
2006-01-01
Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.
Salehen, Nur'ain; Stover, Cordula
2008-01-24
The complement system, a well-characterised arm of the innate immune system, significantly influences the adaptive immune response via direct cell-cell interaction and maintenance of lymphoid organ architecture. Development of vaccines is a major advance in modern health care. In this review, we highlight the importance of the marginal zone in response to both, polysaccharide and conjugated vaccines, and discuss the relevance of complement herein, based on findings obtained from animal models with specific deletions of certain complement components and from vaccination reports of complement-deficient individuals. We conclude that both, intactness of the complement system and maturity of expression of its components, are relatively more important to aid in the immune response to polysaccharide vaccine than to conjugated vaccines.
The Treatment of Cancer through Hypnosis.
ERIC Educational Resources Information Center
Goldberg, Bruce
1985-01-01
This report traces the immunological components of the cancer process and illustrates how vital a role is played by stress. The work of the Simontons is used to discuss the relationship between stress, the immune system and cancer. Hypnotic visualization techniques and their effects on the immune system are also reviewed. (Author)
Assessment of the innate immune response in the periparturient cow.
Trevisi, Erminio; Minuti, Andrea
2018-02-01
The transition period is the most critical phase in the life of high yielding dairy cows. Within a few weeks, cows are submitted to many challenges (physiological, nutritional, psychological, management) that require prompt and effective adaptive responses. The immune system is involved in this process, and many changes of the cow's immune system components have been observed around calving. Cows are considered to be immunosuppressed in late lactation, and available data suggest that the immune system is dysregulated around parturition. Significant attention has been focused on modification of cellular functions (e.g. the reduction of phagocytosis and diapedesis), but growing interest concerns the components of the innate immune system, which often exhibits increased responses such as susceptibility to inflammatory events and the related acute phase response (APR). Systemic inflammation plays a significant role in early lactation, affects many liver functions and has been associated with the impairment of cow performance (i.e. reduced feed intake, milk yield, fertility, welfare). The assessment of variations in immune-metabolic indices offers opportunities to predict the onset of the health troubles and to anticipate the proper therapies needed to guarantee health, good welfare and fertility in the following lactation. The frequency of diseases (metabolic and infectious) before calving is rare, but several clues suggest that various metabolic and immune variations can begin during the dry period. Interesting preliminary results encourage this perspective and possible candidates are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immune defects caused by mutations in the ubiquitin system.
Etzioni, Amos; Ciechanover, Aaron; Pikarsky, Eli
2017-03-01
The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Immunology and Immunotherapy of Head and Neck Cancer
Ferris, Robert L.
2015-01-01
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330
A Brief Journey through the Immune System
Yatim, Karim M.
2015-01-01
This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney. PMID:25845377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelson, A.S.; Weisbuch, G.
1997-10-01
The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less
Network representations of immune system complexity
Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar
2015-01-01
The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853
USDA-ARS?s Scientific Manuscript database
Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...
Drosophila as a model system to unravel the layers of innate immunity to infection
Kounatidis, Ilias; Ligoxygakis, Petros
2012-01-01
Summary Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions. PMID:22724070
Drosophila as a model system to unravel the layers of innate immunity to infection.
Kounatidis, Ilias; Ligoxygakis, Petros
2012-05-01
Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host-pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions.
Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.
Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe
2018-01-01
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
Collaborating with the enemy: function of macrophages in the development of neoplastic disease.
Eljaszewicz, Andrzej; Wiese, Małgorzata; Helmin-Basa, Anna; Jankowski, Michal; Gackowska, Lidia; Kubiszewska, Izabela; Kaszewski, Wojciech; Michalkiewicz, Jacek; Zegarski, Wojciech
2013-01-01
Due to the profile of released mediators (such as cytokines, chemokines, growth factors, etc.), neoplastic cells modulate the activity of immune system, directly affecting its components both locally and peripherally. This is reflected by the limited antineoplastic activity of the immune system (immunosuppressive effect), induction of tolerance to neoplastic antigens, and the promotion of processes associated with the proliferation of neoplastic tissue. Most of these responses are macrophages dependent, since these cells show proangiogenic properties, attenuate the adaptive response (anergization of naïve T lymphocytes, induction of Treg cell formation, polarization of immune response towards Th2, etc.), and support invasion and metastases formation. Tumor-associated macrophages (TAMs), a predominant component of leukocytic infiltrate, "cooperate" with the neoplastic tissue, leading to the intensified proliferation and the immune escape of the latter. This paper characterizes the function of macrophages in the development of neoplastic disease.
Endotoxin Neutralization as a Biomonitor for Inflammatory Bowel Disease
Champion, Keith; Chiu, Laura; Ferbas, John; Pepe, Michael
2013-01-01
Gram-negative bacterial endotoxin is a potent immunostimulant implicated in the development and/or progression of a variety of diseases. The mammalian immune system has both innate and adaptive immune responses to neutralize endotoxin. In this study, a system was developed to monitor bacterial exposure by measuring the extent and nature of endotoxin neutralization in plasma. In control patients, females had higher levels of endotoxin neutralization than males, mirroring clinical outcomes from bacterial infection and sepsis. In addition to the total amount of neutralization, we used inactivation techniques to elucidate the nature of this activity and develop a system to compare early and late immune responses. Using this method to monitor patients with inflammatory bowel disease, we found a more robust total response that relies more on long-term, adaptive components of the immune system and less on early, innate components. Our results indicate that endotoxin neutralization is a valuable method to discern inflammatory bowel disease patients from a control population. Additionally, the nature of neutralization may be valuable in monitoring disease severity and/or the role of medication. PMID:23826338
Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D
2017-05-17
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Evolution of complement as an effector system in innate and adaptive immunity.
Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina
2003-01-01
For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.
Approaches Mediating Oxytocin Regulation of the Immune System.
Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng
2016-01-01
The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.
Human breast milk immunology: a review.
Paramasivam, K; Michie, C; Opara, E; Jewell, A P
2006-01-01
Breast feeding has been shown to enhance the development of the immune system of the newborn as well as provide protection against enteric and respiratory infections. It has been suggested that implementation of breast feeding programs has the potential to save hundreds of thousands of lives worldwide. Human milk is a bodily fluid which, apart from being an excellent nutritional source for the growing infant, also contains a variety of immune components such as antibodies, growth factors, cytokines, antimicrobial compounds, and specific immune cells. These help to support the immature immune system of the newborn baby, and protect it against infectious risks during the postnatal period while its own immune system matures. This article reviews some of the factors in human breast milk that give it these important properties.
Immunology and Immunotherapy of Head and Neck Cancer.
Ferris, Robert L
2015-10-10
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. © 2015 by American Society of Clinical Oncology.
Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
ThomasJr., C. E.; Granstedt, E. M.; Biewer, Theodore M
2014-01-01
In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.
The Effect of Simulated Flash-Heat Pasteurization on Immune Components of Human Milk.
Daniels, Brodie; Schmidt, Stefan; King, Tracy; Israel-Ballard, Kiersten; Amundson Mansen, Kimberly; Coutsoudis, Anna
2017-02-22
A pasteurization temperature monitoring system has been designed using FoneAstra, a cellphone-based networked sensing system, to monitor simulated flash-heat (FH) pasteurization. This study compared the effect of the FoneAstra FH (F-FH) method with the Sterifeed Holder method currently used by human milk banks on human milk immune components (immunoglobulin A (IgA), lactoferrin activity, lysozyme activity, interleukin (IL)-8 and IL-10). Donor milk samples ( N = 50) were obtained from a human milk bank, and pasteurized. Concentrations of IgA, IL-8, IL-10, lysozyme activity and lactoferrin activity were compared to their controls using the Student's t -test. Both methods demonstrated no destruction of interleukins. While the Holder method retained all lysozyme activity, the F-FH method only retained 78.4% activity ( p < 0.0001), and both methods showed a decrease in lactoferrin activity (71.1% Holder vs. 38.6% F-FH; p < 0.0001) and a decrease in the retention of total IgA (78.9% Holder vs. 25.2% F-FH; p < 0.0001). Despite increased destruction of immune components compared to Holder pasteurization, the benefits of F-FH in terms of its low cost, feasibility, safety and retention of immune components make it a valuable resource in low-income countries for pasteurizing human milk, potentially saving infants' lives.
Fungal Strategies to Evade the Host Immune Recognition.
Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M
2017-09-23
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
HIV-1 and hijacking of the host immune system: the current scenario.
Imran, Muhammad; Manzoor, Sobia; Saalim, Muhammad; Resham, Saleha; Ashraf, Javed; Javed, Aneela; Waqar, Ahmed Bilal
2016-10-01
Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Auld, Stuart K. J. R; Edel, Kai H.; Little, Tom J.
2013-01-01
In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. PMID:23025616
Immune Ecosystem of Virus-Infected Host Tissues.
Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long
2018-05-06
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
The role of the immune system in kidney disease.
Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M
2018-05-01
The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.
Lambert, Nathaniel D; Ovsyannikova, Inna G; Pankratz, V Shane; Jacobson, Robert M; Poland, Gregory A
2012-08-01
Annual vaccination against seasonal influenza is recommended to decrease disease-related mortality and morbidity. However, one population that responds suboptimally to influenza vaccine is adults over the age of 65 years. The natural aging process is associated with a complex deterioration of multiple components of the host immune system. Research into this phenomenon, known as immunosenescence, has shown that aging alters both the innate and adaptive branches of the immune system. The intricate mechanisms involved in immune response to influenza vaccine, and how these responses are altered with age, have led us to adopt a more encompassing systems biology approach to understand exactly why the response to vaccination diminishes with age. Here, the authors review what changes occur with immunosenescence, and some immunogenetic factors that influence response, and outline the systems biology approach to understand the immune response to seasonal influenza vaccination in older adults.
A cascade reaction network mimicking the basic functional steps of adaptive immune response
NASA Astrophysics Data System (ADS)
Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong
2015-10-01
Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.
Antiviral Innate Immunity through the lens of Systems Biology
Tripathi, Shashank; García-Sastre, Adolfo
2015-01-01
Cellular innate immunity poses the first hurdle against invading viruses in their attempt to establish infection. This antiviral response is manifested with the detection of viral components by the host cell, followed by transduction of antiviral signals, transcription and translation of antiviral effectors and leads to the establishment of an antiviral state. These events occur in a rather branched and interconnected sequence than a linear path. Traditionally, these processes were studied in the context of a single virus and a host component. However, with the advent of rapid and affordable OMICS technologies it has become feasible to address such questions on a global scale. In the discipline of Systems Biology’, extensive omics datasets are assimilated using computational tools and mathematical models to acquire deeper understanding of complex biological processes. In this review we have catalogued and discussed the application of Systems Biology approaches in dissecting the antiviral innate immune responses. PMID:26657882
Statistical Physics of T-Cell Development and Pathogen Specificity
NASA Astrophysics Data System (ADS)
Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.
2013-04-01
In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.
Clark, G F; Dell, A; Morris, H R; Patankar, M S; Easton, R L
2001-01-01
We have previously suggested that the human fetus is protected during human development by a system of both soluble and cell surface associated glycoconjugates that utilize their carbohydrate sequences as functional groups to enable them to evoke tolerance. The proposed model has been referred to as the human fetoembryonic defense system hypothesis (hu-FEDS). In this paradigm, it has previously been proposed that similar oligosaccharides are used to mediate crucial recognition events required during both human sperm-egg binding and immune-inflammatory cell interactions. This vertical integration suggested to us that the sperm-egg binding itself is related to universal recognition events that occur between immune and inflammatory cells, except that in this case recognition of 'species' rather than recognition of 'self' is being manifested. In this paper, we have designated this component of hu-FEDS as the species recognition system (SRS). We propose that the SRS is an integral component of the hu-FEDS used to enable sperm-egg recognition and protection of the gametes from potential immune responses. Recent structural data indicates that the glycan sequences implicated in mediating murine gamete recognition are also expressed on CD45 in activated murine T lymphocytes and cytotoxic T lymphocytes. This overlap supports our contention that there is an overlap between the immune and gamete recognition systems. Therefore the hu-FEDS paradigm may be a subset of a larger model that also applies to other placental mammals. We therefore propose that the hu-FEDS model for protection should in the future be referred to as the eutherian fetoembryonic defense system hypothesis (eu-FEDS) to account for this extension. The possibility exists that the SRS component of eu-FEDS could predate eutherians and extend to all sexually reproducing organisms. Future investigation of the interactions between the immune and gamete recognition system will be required to determine the degree of overlap. Copyright 2001 S. Karger AG, Basel
Palmeira, Patricia; Carneiro-Sampaio, Magda
2016-09-01
In the critical phase of immunological immaturity of the newborn, particularly for the immune system of mucous membranes, infants receive large amounts of bioactive components through colostrum and breast milk. Colostrum is the most potent natural immune booster known to science. Breastfeeding protects infants against infections mainly via secretory IgA (SIgA) antibodies, but also via other various bioactive factors. It is striking that the defense factors of human milk function without causing inflammation; some components are even anti-inflammatory. Protection against infections has been well evidenced during lactation against, e.g., acute and prolonged diarrhea, respiratory tract infections, including otitis media, urinary tract infection, neonatal septicemia, and necrotizing enterocolitis. The milk's immunity content changes over time. In the early stages of lactation, IgA, anti-inflammatory factors and, more likely, immunologically active cells provide additional support for the immature immune system of the neonate. After this period, breast milk continues to adapt extraordinarily to the infant's ontogeny and needs regarding immune protection and nutrition. The need to encourage breastfeeding is therefore justifiable, at least during the first 6 months of life, when the infant's secretory IgA production is insignificant.
Complement Activation in Inflammatory Skin Diseases
Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey
2018-01-01
The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318
Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike
2016-01-01
Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649
Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity
Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.
2012-01-01
Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601
The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence Through Endotoxin Modification
2014-12-23
antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS... antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...12211 Research Triangle Park, NC 27709-2211 bacterial cell surface, host immune system, cationic antimicrobial peptides , lipid A, LPS REPORT
Antimicrobial Peptides and Complement in Neonatal Hypoxia-Ischemia Induced Brain Damage
Rocha-Ferreira, Eridan; Hristova, Mariya
2015-01-01
Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1–5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage. PMID:25729383
Understanding immunology: fun at an intersection of the physical, life, and clinical sciences
NASA Astrophysics Data System (ADS)
Chakraborty, Arup K.
2014-10-01
Understanding how the immune system works is a grand challenge in science with myriad direct implications for improving human health. The immune system protects us from infectious pathogens and cancer, and maintains a harmonious steady state with essential microbiota in our gut. Vaccination, the medical procedure that has saved more lives than any other, involves manipulating the immune system. Unfortunately, the immune system can also go awry to cause autoimmune diseases. Immune responses are the product of stochastic collective dynamic processes involving many interacting components. These processes span multiple scales of length and time. Thus, statistical mechanics has much to contribute to immunology, and the oeuvre of biological physics will be further enriched if the number of physical scientists interested in immunology continues to increase. I describe how I got interested in immunology and provide a glimpse of my experiences working on immunology using approaches from statistical mechanics and collaborating closely with immunologists.
Environmental Immunology: Lessons learned from exposure to a select panel of immunotoxicants
Kreitinger, Joanna M.; Beamer, Celine A.; Shepherd, David M.
2016-01-01
Exposure to environmental contaminants can produce profound effects on the immune system. Many different classes of xenobiotics can significantly suppress or enhance immune responsiveness depending on the levels (i.e. dose) and context (i.e. timing, route) of exposure. While defining the effects that toxicants can have on the immune system is a valuable component to improving public health, environmental immunology has greatly enhanced our understanding of how the immune system functions and explore new immunotherapies. This Brief Review focuses on three different examples of how immunotoxicology has benefitted the field of immunology, presenting information on (A) the aryl hydrocarbon receptor (AhR) signaling pathway, (B) the immunomodulatory effects of nanomaterials, and (C) the impact of xenobiotic exposure on the developing immune system. Collectively, contributions from immunotoxicology have significantly enhanced public health and spurred seminal advances in both basic and applied immunology. PMID:27044635
Chijioke, Obinna; Marcenaro, Emanuela; Moretta, Alessandro; Capaul, Riccarda; Münz, Christian
2015-09-01
Patients with X-linked lymphoproliferative (XLP) disease due to deficiency in the adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) are highly susceptible to one specific viral pathogen, the Epstein-Barr virus (EBV). This susceptibility might result from impaired CD8(+) T-cell and natural killer cell responses to EBV infection in these patients. We demonstrate that antibody blocking of the SAP-dependent 2B4 receptor is sufficient to induce XLP-like aggravation of EBV disease in mice with reconstituted human immune system components. CD8(+) T cells require 2B4 for EBV-specific immune control, because 2B4 blockade after CD8(+) T-cell depletion did not further aggravate symptoms of EBV infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Effect of Simulated Flash-Heat Pasteurization on Immune Components of Human Milk
Daniels, Brodie; Schmidt, Stefan; King, Tracy; Israel-Ballard, Kiersten; Amundson Mansen, Kimberly; Coutsoudis, Anna
2017-01-01
A pasteurization temperature monitoring system has been designed using FoneAstra, a cellphone-based networked sensing system, to monitor simulated flash-heat (FH) pasteurization. This study compared the effect of the FoneAstra FH (F-FH) method with the Sterifeed Holder method currently used by human milk banks on human milk immune components (immunoglobulin A (IgA), lactoferrin activity, lysozyme activity, interleukin (IL)-8 and IL-10). Donor milk samples (N = 50) were obtained from a human milk bank, and pasteurized. Concentrations of IgA, IL-8, IL-10, lysozyme activity and lactoferrin activity were compared to their controls using the Student’s t-test. Both methods demonstrated no destruction of interleukins. While the Holder method retained all lysozyme activity, the F-FH method only retained 78.4% activity (p < 0.0001), and both methods showed a decrease in lactoferrin activity (71.1% Holder vs. 38.6% F-FH; p < 0.0001) and a decrease in the retention of total IgA (78.9% Holder vs. 25.2% F-FH; p < 0.0001). Despite increased destruction of immune components compared to Holder pasteurization, the benefits of F-FH in terms of its low cost, feasibility, safety and retention of immune components make it a valuable resource in low-income countries for pasteurizing human milk, potentially saving infants’ lives. PMID:28241418
Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?.
Fausther-Bovendo, Hugues; Kobinger, Gary P
2014-01-01
Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.
Homeostatic Immunity and the Microbiota.
Belkaid, Yasmine; Harrison, Oliver J
2017-04-18
The microbiota plays a fundamental role in the induction, education, and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. Here we review the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. Published by Elsevier Inc.
Homeostatic immunity and the microbiota
Belkaid, Yasmine; Harrison, Oliver J.
2017-01-01
The microbiota plays a fundamental role in the induction, education and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. In this review, we will highlight the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. PMID:28423337
Auld, Stuart K J R; Edel, Kai H; Little, Tom J
2012-10-01
In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.
Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping
2017-02-01
In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.
Modulation of Human Immune Response by Fungal Biocontrol Agents
Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane
2017-01-01
Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107
Li, Jinyao; Li, Jinyu; Zhang, Fuchun
2015-08-02
Traditional Chinese herbal medicine (CHM) has a long-history for treatment of various human diseases including tumors, infection, autoimmune diseases in Asian countries, especially in China, Japan, Korea and India. CHM was traditionally used as water extracts and many Chinese herbs were considered to be good for health, which can regulate immune system to protect host from diseases. With the progress of technology, the components of CHM were identified and purified, which included polysaccharides, saponins, phenolic compounds, flavonoids and so on. Recently, accumulating evidence indicates that CHM and its components can regulate immune system through targeting dendritic cells (DCs). We hereby reviewed the immunoregulatory effects of CHM on the maturation, cytokine production and function of DCs. This should help to shed light on the potential mechanism of CHM to improve the usage and clinical efficacy of CHM. Literatures about the effects of CHM on DCs were searched in electronic databases such as Pubmed, Google Scholar and Scopus from 2000 to 2014. 'CHM', 'DC' or 'immune' were used as keywords for the searches. We only reviewed literatures published in English. Over 600 publications were found about 'CHM&immune' and around 120 literatures about 'CHM&DC' were selected and reviewed in this paper. All publications are backed by preclinical or clinical evidences both in vitro and in vivo. Some CHM and its components promote the maturation, pro-inflammatory cytokine production and function of DCs and as the adjuvant enhance immune responses against tumor and infection. In contrast, other CHM and its components suppress the activation status of DCs to induce regulatory T cells, inhibit allergic and inflammatory responses, ameliorate autoimmune diseases, and prolong the allograft survival. A large body of evidence shows that CHM and its components regulate the activation status of DCs through TLRs, NF-κB, MAPK signaling pathways. This review provides useful information for understanding the mechanism of CHM on the treatment of diseases, which facilitates to improve the efficacy of CHM. Based on the immunoregulatory effects of CHM on DCs, it indicated that some CHM and its components could be use to develop adjuvant to enhance antigen-specific immune responses or tolerogenic adjuvant to generate antigen-specific immune tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Disease resistance (R) genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLRs define the fastest evolving...
Phillips, Dennis R.
2017-01-01
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms. PMID:28199361
Phillips, Dennis R; Clark, Kevin D
2017-01-01
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.
Fighting cancers from within: augmenting tumor immunity with cytokine therapy.
Pellegrini, Marc; Mak, Tak W; Ohashi, Pamela S
2010-08-01
The human immune system has successfully evolved to fight many pathogens. Through vaccination, we can harness and improve immune responses to eradicate infections. Despite this success, we are only now beginning to understand the natural tumor immune surveillance mechanisms and why, in some instances, our immune system fails to abrogate the development and growth of tumors. Encouraging results with the latest immunotherapies have renewed enthusiasm in the field. A central component of these therapies is the contribution of cytokines. Here we review our expanding knowledge of cytokine-induced effects as well as preclinical and clinical data that indicate adjuvant cytokine therapies may hold much promise in improving anti-tumor immunity. Further studies on optimal synergistic combinations, timing, duration and additional adjuvant therapies are required to realize the full potential of cytokines as immunotherapeutic agents. 2010 Elsevier Ltd. All rights reserved.
Trombetta, Amelia Chiara; Meroni, Marianna; Cutolo, Maurizio
2017-01-01
From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs. © 2017 S. Karger AG, Basel.
Hammerschmidt, Katrin; Kurtz, Joachim
2005-01-01
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host–parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence. PMID:16271977
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo
2017-01-31
Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.
Jafri, Salema; Ormiston, Mark L
2017-12-01
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.
Cnidarian-microbe interactions and the origin of innate immunity in metazoans.
Bosch, Thomas C G
2013-01-01
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.
Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D
2016-02-01
During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The immune response against Candida spp. and Sporothrix schenckii.
Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M
2014-01-01
Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
New generation of oral mucosal vaccines targeting dendritic cells
Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour
2013-01-01
As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515
Single cell transcriptomics to explore the immune system in health and disease†
Regev, Aviv; Teichmann, Sarah A.
2017-01-01
The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043
The interplay between the gut microbiota and the immune system.
Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D
2014-01-01
The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.
NASA Astrophysics Data System (ADS)
Traylor-Knowles, N. G.
2016-02-01
Innate immunity plays a central role in maintaining homeostasis, and within the context of impending climate change scenarios, understanding how this system works is critical. However, the actual mechanisms involved in the evolution of the innate immune system are largely unknown. Cnidaria (including corals, sea anemones and jellyfish) are well suited for studying the fundamental functions of innate immunity because they share a common ancestor with bilaterians. This study will highlight the transcriptomic changes during a heat shock in the coral Acropora hyacinthus of American Samoa, examining the temporal changes, every half an hour for 5 hours. We hypothesize that genes involved in innate immunity, and extracellular matrix maintenance will be key components to the heat stress response. This presentation will highlight the novel role of the tumor necrosis factor receptor gene family as a responder to heat stress and present future directions for this developing field in coral reef research.
Contribution of advances in immunology to vaccine development.
Morrison, W I; Taylor, G; Gaddum, R M; Ellis, S A
1999-01-01
During the last 10 years, investigation of the bovine immune system has generated knowledge and reagents that can now be applied to study the mechanisms of immunity to disease and the identity of antigens recognized by protective immune responses. Such studies can indicate which antigens are likely to be effective in subunit vaccines and also highlight the type of antigen delivery system that will be required for a vaccine to induce a protective immune response. In the case of bovine RSV, studies of immune responses in the target host have demonstrated that both antibody and CTL responses play an important role in immunity. Both the F and G glycoproteins have been identified as targets of protective antibodies, and systems have been established that will allow the identification of the viral antigens recognized by CTL. Further studies of CD4+ T-cell responses to the virus are required to determine whether or not components of the response have the potential to enhance disease and, therefore, need to be avoided in vaccination strategies.
Human papillomavirus-driven immune deviation: challenge and novel opportunity for immunotherapy.
Smola, Sigrun; Trimble, Connie; Stern, Peter L
2017-06-01
It is now recognized that the immune system can be a key component of restraint and control during the neoplastic process. Human papillomavirus (HPV)-associated cancers of the anogenital tract and oropharynx represent a significant clinical problem but there is a clear opportunity for immune targeting of the viral oncogene expression that drives cancer development. However, high-risk HPV infection of the target epithelium and the expression of the E6/E7 oncogenes can lead to early compromise of the innate immune system (loss of antigen-presenting cells) facilitating viral persistence and increased risk of cancer. In these circumstances, a succession of interacting and self-reinforcing events mediated through modulation of different immune receptors, chemokine and cytokine responses (CCL20; CCL2; CCR2; IL-6; CCR7; IL-12) further promote the generation of an immune suppressive microenvironment [increased levels of Tregs, Th17, myeloid-derived suppressor cells (MDSCs) and PD-L1]. The overexpression of E6/E7 expression also compromises the ability to repair cellular DNA, leading to genomic instability, with the acquisition of genetic changes providing for the selection of advantaged cancer cells including additional strategies for immune escape. Therapeutic vaccines targeting the HPV oncogenes have shown some encouraging success in some recent early-phase clinical trials tested in patients with HPV-associated high-grade anogenital lesions. A significant hurdle to success in more advanced disease will be the local and systemic immune suppressive factors. Interventions targeting the different immunosuppressive components can provide opportunity to release existing or generate new and effective antitumour immunity. Treatments that alter the protumour inflammatory environment including toll-like receptor stimulation, inhibition of IL-6-related pathways, immune-checkpoint inhibition, direct modulation of MDSCs, Tregs and macrophages could all be useful in combination with therapeutic HPV vaccination. Future progress in delivering successful immunotherapy will depend on the configuration of treatment protocols in an insightful and timely combination.
Smith, Ryan C.; King, Jonas G.; Tao, Dingyin; Zeleznik, Oana A.; Brando, Clara; Thallinger, Gerhard G.; Dinglasan, Rhoel R.
2016-01-01
The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host. PMID:27624304
Jiang, Jingwei; Zhou, Zunchun; Dong, Ying; Zhao, Zelong; Sun, Hongjuan; Wang, Bai; Jiang, Bei; Chen, Zhong; Gao, Shan
2018-01-01
In order to preliminarily explore the joint involvement of different immune-related factors during the same immune process in Apostichopus japonicus, the transcriptional expression of Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT), c-type lysozyme (c-LYZ), i-type lysozyme (i-LYZ), cathepsin D, melanotransferrin (MTF), Toll, c-type lectin (c-LCT) and complement 3 (C3) during the development from fertilized eggs to juveniles and after challenging the juveniles with Vibrio splendidus, Pseudoalteromonas nigrifaciens, Shewanella baltica and Bacillus cereus, respectively, was measured using the method of quantitative real-time PCR (qRT-PCR), and then the correlations among different immune-related factors were analyzed. The results showed that the selected immune-related factors were expressed at all of the determined developmental stages and significantly up-regulated at doliolaria stage, suggesting the selected factors are indispensable immune components and the immune system might be broadly activated at doliolaria stage in A. japonicus. After challenged with four pathogenic bacteria, Cu/Zn-SOD, CAT, i-LYZ, cathepsin D, MTF, Toll, C3 were all significantly down-regulated at 4 h, indicating that some components of A. japonicus immune system might be inhibited at the beginning of pathogenic bacteria invasion. The immune-responsive analysis also showed that the significant regulation in Toll after challenged with four tested bacteria, that in MTF after challenged with S. baltica and that in C3 after challenged with P. nigrifaciens were all minus, suggesting Toll, MTF and C3 are probably the primary targets of pathogenic bacteria attack. Furthermore, the correlation analysis indicated that, all of the selected immune-related factors except cathepsin D might be in the same immune regulatory network during A. japonicus development, while all of the selected immune-related factors except c-LYZ might be in the same responsive regulatory network after challenged with four pathogenic bacteria. Altogether, A. japonicus immune system exhibited high complexity in regulation during organism development and after bacterial challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Opal, Steven M; Esmon, Charles T
2003-01-01
The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. The innate immune system is able to eradicate many microbial pathogens directly, or innate immunity may indirectly facilitate the removal of pathogens by activation of specific elements of the adaptive immune response (cell-mediated and humoral immunity by T cells and B cells). The coagulation system has traditionally been viewed as an entirely separate system that has arisen to prevent or limit loss of blood volume and blood components following mechanical injury to the circulatory system. It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review. PMID:12617738
Current understanding of HIV-1 and T-cell adaptive immunity: progress to date.
Mohan, Teena; Bhatnagar, Santwana; Gupta, Dablu L; Rao, D N
2014-08-01
The cellular immune response to human immunodeficiency virus (HIV) has different components originating from both the adaptive and innate immune systems. HIV cleverly utilizes the host machinery to survive by its intricate nature of interaction with the host immune system. HIV evades the host immune system at innate ad adaptive, allows the pathogen to replicate and transmit from one host to another. Researchers have shown that HIV has multipronged effects especially on the adaptive immunity, with CD4(+) cells being the worst effect T-cell populations. Various analyses have revealed that, the exposure to HIV results in clonal expansion and excessive activation of the immune system. Also, an abnormal process of differentiation has been observed suggestive of an alteration and blocks in the maturation of various T-cell subsets. Additionally, HIV has shown to accelerate immunosenescence and exhaustion of the overtly activated T-cells. Apart from causing phenotypic changes, HIV has adverse effects on the functional aspect of the immune system, with evidences implicating it in the loss of the capacity of T-cells to secrete various antiviral cytokines and chemokines. However, there continues to be many aspects of the immune- pathogenesis of HIV that are still unknown and thus required further research in order to convert the malaise of HIV into a manageable epidemic. Copyright © 2014 Elsevier Ltd. All rights reserved.
Policing of gut microbiota by the adaptive immune system.
Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit
2016-02-12
The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery.
T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.
Reuben, Alexandre; Godin-Ethier, Jessica; Santos, Manuela M; Lapointe, Réjean
2015-06-01
The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance. Copyright © 2015. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Schneider, Cindy K.; Melmed, Raun D.; Barstow, Leon E.; Enriquez, F. Javier; Ranger-Moore, James; Ostrem, James A.
2006-01-01
Immunoglobulin secretion onto mucosal surfaces is a major component of the mucosal immune system. We hypothesized that chronic gastrointestinal (GI) disturbances associated with autistic disorder (AD) may be due to an underlying deficiency in mucosal immunity, and that orally administered immunoglobulin would be effective in alleviating chronic GI…
Scientists are increasingly harnessing the power of the immune system to prevent cancer. Nutrition provides an opportunity for a generalized immune activation and reduction of cancer risk in certain populations. Research on several foods and bioactive food components as immunologic modulators is showing promising results. |
Influence of Melatonin on the Immune System of Fish: A Review
Esteban, M. Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José
2013-01-01
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates. PMID:23579958
Influence of melatonin on the immune system of fish: a review.
Esteban, M Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José
2013-04-11
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.
Primary intestinal lymphangiectasia in an elderly female patient
Huber, Xaver; Degen, Lukas; Muenst, Simone; Trendelenburg, Marten
2017-01-01
Abstract Protein loss via the gut can be caused by a number of gastrointestinal disorders, among which intestinal lymphangiectasia has been described to not only lead to a loss of proteins but also to a loss of lymphocytes, resembling secondary immunodeficiency. We are reporting on a 75-year-old female patient who came to our hospital because of a minor stroke. She had no history of serious infections. During the diagnostic work-up, we detected an apparent immunodeficiency syndrome associated with primary intestinal lymphangiectasia. Trying to characterize the alterations of the immune system, we not only found hypogammaglobulinemia and lymphopenia primarily affecting CD4+, and also CD8+ T cells, but also marked hypocomplementemia affecting levels of complement C4, C2, and C3. The loss of components of the immune system most likely was due to a chronic loss of immune cells and proteins via the intestinal lymphangiectasia, with levels of complement components following the pattern of protein electrophoresis. Thus, intestinal lymphangiectasia should not only be considered as a potential cause of secondary immune defects in an elderly patient, but can also be associated with additional hypocomplementemia. PMID:28767614
Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.
2014-01-01
ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435
Interaction of microbial agents with the immune system during infectious disease.
Frøland, S S
1984-01-01
Research during the last years has revealed a considerable complexity of the immune system. It is clear that immunological reactions depend on extensive and only partly clarified interactions between a number of different cell types (e.g. B lymphocytes, plasma cells, T cell subpopulations, cytotoxic K and NK cells, monocytic cells, neutrophilic and eosinophilic granulocytes) and their molecular products (e.g. immunoglobulins, lymphokines and interleukins). These components further interact with the complement system, as well as with immunologically nonspecific components like acute phase proteins (e.g. C-reactive protein) and with other pathophysiological phenomena occurring during infections, e.g. the fever response. The application of these observations from basic and experimental immunology to the investigation of antimicrobial immune reactions is still only in its beginning, but has already resulted in new concepts of clinical value for the understanding of infectious diseases. The present paper briefly describes certain aspects of the immune response to infections with various microbial agents, with particular emphasis on reactions of clinical importance. In addition to B and T cell reactions, possible antimicrobial functions of K cells and NK cells are discussed, and the possible importance in infectious disease of various T cell subpopulations, particularly T suppressor cells, is discussed. Lastly, various escape mechanisms are mentioned whereby certain microbial agents may evade elimination by the immune response of the host.
Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor
Johnston, Paul R; Makarova, Olga; Rolff, Jens
2014-01-01
The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927
Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.
Johnston, Paul R; Makarova, Olga; Rolff, Jens
2013-12-06
The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.
The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.
Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng
2016-02-01
As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora
Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.
2012-01-01
Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals. PMID:22792163
Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.
Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L
2012-01-01
Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals.
Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine.
Hartl, Dominik; Tirouvanziam, Rabindra; Laval, Julie; Greene, Catherine M; Habiel, David; Sharma, Lokesh; Yildirim, Ali Önder; Dela Cruz, Charles S; Hogaboam, Cory M
2018-02-13
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract. © 2018 S. Karger AG, Basel.
A cognitive computational model inspired by the immune system response.
Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim
2014-01-01
The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.
A Cognitive Computational Model Inspired by the Immune System Response
Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim
2014-01-01
The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131
Phylogenetic aspects of the complement system.
Zarkadis, I K; Mastellos, D; Lambris, J D
2001-01-01
During evolution two general systems of immunity have emerged: innate or, natural immunity and adaptive (acquired), or specific immunity. The innate system is phylogenetically older and is found in some form in all multicellular organisms, whereas the adaptive system appeared about 450 million years ago and is found in all vertebrates except jawless fish. The complement system in higher vertebrates plays an important role as an effector of both the innate and the acquired immune response, and also participates in various immunoregulatory processes. In lower vertebrates complement is activated by the alternative and lectin pathways and is primarily involved in the opsonization of foreign material. The Agnatha (the most primitive vertebrate species) possess the alternative and lectin pathways while cartilaginous fish are the first species in which the classical pathway appears following the emergence of immunoglobulins. The rest of the poikilothermic species, ranging from teleosts to reptilians, appear to contain a well-developed complement system resembling that of the homeothermic vertebrates. It seems that most of the complement components have appeared after the duplication of primordial genes encoding C3/C4/C5, fB/C2, C1s/C1r/MASP-1/MASP-2, and C6/C7/C8/C9 molecules, in a process that led to the formation of distinct activation pathways. However, unlike homeotherms, several species of poikilotherms (e.g. trout) have recently been shown to possess multiple forms of complement components (C3, factor B) that are structurally and functionally more diverse than those of higher vertebrates. We hypothesize that this remarkable diversity has allowed these animals to expand their innate capacity for immune recognition and response. Recent studies have also indicated the possible presence of complement receptors in protochordates and lower vertebrates. In conclusion, there is considerable evidence suggesting that the complement system is present in the entire lineage of deuterostomes, and regulatory complement components have been identified in all species beyond the protochordates, indicating that the mechanisms of complement activation and regulation have developed in parallel.
Aging and Immune Function: Molecular Mechanisms to Interventions
Ponnappan, Subramaniam
2011-01-01
Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785
Innate immunity is not related to the sex of adult Tree Swallows during the nestling period
Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell
2011-01-01
Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.
Protein trafficking during plant innate immunity.
Wang, Wen-Ming; Liu, Peng-Qiang; Xu, Yong-Ju; Xiao, Shunyuan
2016-04-01
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged. © 2015 Institute of Botany, Chinese Academy of Sciences.
Current Features of Secondary (Acquired) Types of Immune Deficiency.
Kovalchuk, Leonid V.; Pinegin, Boris V.
1999-12-01
Secondary (acquired) types of immune deficiencies (SID) take a leading place in practice of modern clinical immunology. The causes for SID development are extremely variable. Special attention is concerned with accumulating facts about target action of microorganisms, and first of all viruses, on certain processes in immune system. Damageable action of HIV-1 on cell elements expressing CD4 molecules is known in most precise manner. It is noteworthy that the search of real molecular defects, induced by microorganisms in immune system is required. It is not to be ruled out that the increased level of apoptosis of immune system cells is one of the causes of SID. The basis of it is disbalance between positive and negative activation processes of immunocompetent cells. Multiple factors may serve as apoptogens, including drugs (glucocorticoids etc.), xenobiotics, physical factors (radiation) and many others. In practice of clinical laboratories a certain spectrum of immunological investigations is recommended that allows to diagnose the degree of immunopathology. At present, in clinical practice these methods are focused around flow cytometry (immunophenotyping), immunodiffusion and immunoenzyme tests (determination of immunoglobulins, cytokines, other soluble components of immune system), tests of estimation of immunocompetent cell activation, proliferation and differentiation. As a prospective, some methods, based on identification of molecular defects in cells and soluble factors of immune system, may be taken into consideration.
The Role of Cytokines and Chemokines in Filovirus Infection.
Bixler, Sandra L; Goff, Arthur J
2015-10-23
Ebola- and marburgviruses are highly pathogenic filoviruses and causative agents of viral hemorrhagic fever. Filovirus disease is characterized by a dysregulated immune response, severe organ damage, and coagulation abnormalities. This includes modulation of cytokines, signaling mediators that regulate various components of the immune system as well as other biological processes. Here we examine the role of cytokines in filovirus infection, with an emphasis on understanding how these molecules affect development of the antiviral immune response and influence pathology. These proteins may present targets for immune modulation by therapeutic agents and vaccines in an effort to boost the natural immune response to infection and/or reduce immunopathology.
Advances in mechanisms of systemic lupus erythematosus.
Dema, Barbara; Charles, Nicolas
2014-05-01
Systemic lupus erythematosus (SLE) is a complex autoimmune disease associated with hormonal, environmental, and genetic factors and linked to the tolerance breakdown of B and T cells to self-antigens. SLE is characterized by the presence in patient serum of autoantibodies raised against nuclear components. Association of these antibodies to self-antigens, complement factors, DNA, and particular proteins will form circulating immune complexes (CIC) which can deposit in several organs, causing tissue damage and clinical manifestations. Historically, SLE is considered as an adaptive immune system disorder. Over the past decade, advances in the understanding of SLE pathogenesis placed the innate immune system as a key player in perpetuating and amplifying this systemic disease. In this review, we summarize some recent key advances in understanding the SLE immune-pathogenesis with a particular focus on newly discovered key factors from the innate immune system and how they influence the pathogenic adaptive immune system: neutrophils and neutrophil extracellular traps (NETs), plasmacytoid dendritic cells (pDCs) and type I interferons, basophils and autoreactive IgE, monocytes/macrophages and the inflammasome. Recent advances on B and T cell involvement in the SLE pathogenesis mechanisms are also discussed. Although the disease is clinically, genetically, and immunologically heterogeneous between affected individuals, the latest discoveries are offering new promising therapeutic strategies.
The Role of Probiotics and Prebiotics in Inducing Gut Immunity
Vieira, Angélica T.; Teixeira, Mauro M.; Martins, Flaviano S.
2013-01-01
The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446
New generation of oral mucosal vaccines targeting dendritic cells.
Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour
2013-12-01
As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peptidoglycan recognition proteins in Drosophila immunity.
Kurata, Shoichiro
2014-01-01
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of vitamin E on the immune system of ewes during late pregnancy and lactation
USDA-ARS?s Scientific Manuscript database
The present experiment was designed to determine the effects of a regimen of repeated, intramuscular (i.m.) injections of vitamin E (VE) on innate and humoral components of the immune response of pregnant and lactating ewes. Pregnant ewes were randomly assigned to two treatments consisting of i.m. i...
Emerging Concepts of Adaptive Immunity in Leprosy
Sadhu, Soumi; Mitra, Dipendra Kumar
2018-01-01
Leprosy is a chronic intracellular infection caused by the acid-fast bacillus, Mycobacterium leprae. The disease chiefly affects the skin, peripheral nerves, mucosa of the upper respiratory tract, and the eyes. The damage to peripheral nerves results in sensory and motor impairment with characteristic deformities and disability. Presently, the disease remains concentrated in resource-poor countries in tropical and warm temperate regions with the largest number of cases reported from India. Even though innate immunity influences the clinical manifestation of the disease, it is the components of adaptive immune system which seem to tightly correlate with the characteristic spectrum of leprosy. M. leprae-specific T cell anergy with bacillary dissemination is the defining feature of lepromatous leprosy (LL) patients in contrast to tuberculoid leprosy (TT) patients, which is characterized by strong Th1-type cell response with localized lesions. Generation of Th1/Th2-like effector cells, however, cannot wholly explain the polarized state of immunity in leprosy. A comprehensive understanding of the role of various regulatory T cells, such as Treg and natural killer T cells, in deciding the polarized state of T cell immunity is crucial. Interaction of these T cell subsets with effector T cells like Th1 (IFN-γ dominant), Th2 (interluekin-4 dominant), and Th17 (IL-17+) cells through various regulatory cytokines and molecules (programmed death-1/programmed death ligand-1) may constitute key events in dictating the state of immune polarization, thus controlling the clinical manifestation. Studying these important components of the adaptive immune system in leprosy patients is essential for better understanding of immune function, correlate(s) the immunity and mechanism(s) of its containment. PMID:29686668
Cytomegalovirus infection enhances the immune response to influenza.
Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai S; Angel, Cesar J L; Onengut-Gumuscu, Suna; Kidd, Brian A; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M
2015-04-01
Cytomegalovirus (CMV) is a β-herpesvirus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli, and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV status. In contrast, CMV-seropositive young adults exhibited enhanced antibody responses to influenza vaccination, increased CD8(+) T cell sensitivity, and elevated levels of circulating interferon-γ compared to seronegative individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the ubiquity of CMV infection in humans and many other species. Copyright © 2015, American Association for the Advancement of Science.
Nieman, David C; Bishop, Nicolette C
2006-07-01
Although epidemiological data indicate that athletes are at increased risk of upper respiratory tract infection during periods of heavy training and the 1 - 2 week period following endurance race events, there is very limited information on the responses to football training and match-play. For several hours after heavy exertion, components of both the innate (e.g. natural killer cell activity and neutrophil oxidative burst activity) and adaptive (e.g. T and B cell function) immune system exhibit suppressed function. Although such responses to football training and competition do not appear to be as pronounced, variations in immune cell numbers and function are reported in professional footballers over the course of a season. Attempts have been made through nutritional means (e.g. glutamine, vitamins C and E, and carbohydrate supplementation) to attenuate immune changes following intensive exercise and thus lower the risk of upper respiratory tract infection. Carbohydrate supplementation during heavy exercise has emerged as a partial countermeasure and attenuates increases in blood neutrophil counts, stress hormones, and inflammatory cytokines, but has little effect on decrements in salivary IgA output or natural killer cell function. Animal research indicates that other nutritional components such as beta-glucan, quercetin, and curcumin warrant human investigations to determine if they are effective countermeasures to exercise-induced immune dysfunction.
Erchick, Daniel J.; George, Asha S.; Umeh, Chukwunonso; Wonodi, Chizoba
2017-01-01
Background: Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. Methods: A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Results: Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Conclusion: Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. PMID:28812836
Overview on experimental models of interactions between nanoparticles and the immune system.
Najafi-Hajivar, Saeedeh; Zakeri-Milani, Parvin; Mohammadi, Hamed; Niazi, Mehri; Soleymani-Goloujeh, Mehdi; Baradaran, Behzad; Valizadeh, Hadi
2016-10-01
Nanotechnology increasingly plays a significant role in modern medicine development. The clear benefits of using nanomaterials in various biomedical applications are often challenged by concerns about the lack of adequate data regarding their toxicity. Two decades of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and biosystem are remarkably complex. This complexity derives from NPs' ability to bind and interact with biological cells and change their surface characteristics. One area of interest involves the interactions between NPs and the immune component. Immune system's function in the maintenance of tissue homeostasis is to protect the host from unfamiliar agents. This is done through effective surveillance and elimination of foreign substances and abnormal self cells from the body. Research shows that nanomaterials can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface properties. NP size, shape, composition, protein binding and administration routes seem to be the main factors that contribute to the interactions of NPs with the immune system. In the present article, we focus on the relationship between effective physiochemical properties of NPs and their immunogenic effects. In addition, we review more details about immunological responses of different types of NPs. Understanding the interactions of nanomaterials with the immune system is essential for the engineering of new NP-based systems for medical applications. Copyright © 2016. Published by Elsevier Masson SAS.
Finkina, Ekaterina I; Melnikova, Daria N; Bogdanov, Ivan V; Ovchinnikova, Tatiana V
2017-01-01
Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Oral innate immunity in HIV infection in HAART era
Nittayananta, Wipawee; Tao, Renchuan; Jiang, Lanlan; Peng, Yuanyuan; Huang, Yuxiao
2015-01-01
Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces provide not only a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection contributed to a global reduction of HIV-associated oral lesions. However, prolonged treatment by HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: 1) What are the roles of oral innate immunity in health and disease?, 2) What are the effects of HIV infection on oral innate immunity?, 3) What are the roles of oral innate immunity against other co-infections?, 4) What are the effects of HAART on oral innate immunity?, and 5) Is oral innate immunity enhanced by HAART? PMID:25639844
Preventing Food Allergies by Tricking Dendritic Cells
USDA-ARS?s Scientific Manuscript database
Food allergies are adverse responses to components (usually proteins) within the foods we eat, which result in a self-damaging response from our immune system. A myriad of cellular and molecular components are involved in the decision to tolerate or respond to foreign molecules that pass through the...
NASA Astrophysics Data System (ADS)
Qie, Yaqing; Yuan, Hengfeng; von Roemeling, Christina A.; Chen, Yuanxin; Liu, Xiujie; Shih, Kevin D.; Knight, Joshua A.; Tun, Han W.; Wharen, Robert E.; Jiang, Wen; Kim, Betty Y. S.
2016-05-01
Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.
Roth, Joachim
2006-09-01
The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.
Hristova, M H; Stoyanova, V S
2017-12-01
Many complement structures and a number of additional factors, i.e. autoantibodies, receptors, hormones and cytokines, are implicated in the complex pathogenesis of systemic lupus erythematosus. Genetic defects in the complement as well as functional deficiency due to antibodies against its components lead to different pathological conditions, usually clinically presented. Among them hypocomplementemic urticarial vasculitis, different types of glomerulonephritis as dense deposit disease, IgA nephropathy, atypical haemolytic uremic syndrome and lupus nephritis are very common. These antibodies cause conformational changes leading to pathological activation or inhibition of complement with organ damage and/or limited capacity of the immune system to clear immune complexes and apoptotic debris. Finally, we summarize the role of complement antibodies in the pathogenesis of systemic lupus erythematosus and discuss the mechanism of some related clinical conditions such as infections, thyroiditis, thrombosis, acquired von Willebrand disease, etc.
Commensal-innate immune miscommunication in IBD pathogenesis.
Cario, Elke
2012-01-01
Commensal microbiota plays a key role in the health and disease of the host. The innate immune system comprises an essential functional component of the intestinal mucosal barrier, maintaining hyporesponsiveness to omnipresent harmless commensals in the lumen, but rapidly recognizing and combating invading bacteria through diverse antimicrobial mechanisms. Interactions between commensals and innate immune cells are constant, multidimensional and entirely context-dependent. Environment, genetics and host defense differentially modulate commensal-innate immune effects and functions in the intestinal mucosa. In IBD, dysbiosis, mucus layer disruption, impairment in bacterial clearance, intestinal epithelial cell barrier dysfunction and/or immune cell deregulation may lead to commensal-innate immune miscommunication, which critically drives mucosal inflammation and associated cancer. Copyright © 2012 S. Karger AG, Basel.
Immune Dysregulation and Chronic Stress Among Older Adults: A Review
Gouin, Jean-Philippe; Hantsoo, Liisa; Kiecolt-Glaser, Janice K.
2009-01-01
Aging is associated with a natural dysregulation in immune functioning which may be amplified when it occurs in the context of chronic stress. Family dementia caregiving provides an excellent model to study the impact of chronic stress on immune functioning among older individuals. Empirical data suggest that the stress of caregiving dysregulate multiple components of innate and adaptive immunity. Elderly caregivers have poorer responses to vaccines, impaired control of latent viruses, exaggerated production of inflammatory mediators, and accelerated cellular aging, compared to noncaregiving older adults. The chronic stress-induced immune dysregulation observed among older caregivers appear to be of sufficient magnitude to impact health. Furthermore, evidence suggests that chronic stress lead to premature aging of the immune system. PMID:19047802
Louveau, Antoine; Mesquita, Sandro Da; Kipnis, Jonathan
2016-01-01
Summary Lymphatic vasculature drains interstitial fluids, which contain the tissue’s waste products and ensures immune surveillance of the tissues, allowing immune-cell recirculation. Until recently the central nervous system (CNS) was considered to be devoid of a conventional lymphatic vasculature. The recent discovery in the meninges of a lymphatic network that drains the CNS calls into question classic models for the drainage of macromolecules and immune cells from the CNS. In the context of neurological disorders, the presence of a lymphatic system draining the CNS potentially offers a new player and a new avenue for therapy. In this review, we will attempt to integrate the known primary functions of the tissue lymphatic vasculature that exists in peripheral organs with the proposed function of meningeal lymphatic vessels in neurological disorders, specifically multiple sclerosis and Alzheimer’s disease. We propose that these (and potentially other) neurological afflictions can be viewed as diseases with neuro-lympho-vascular component and should be therapeutically targeted as such. PMID:27608759
Scholtissek, B; Ferring-Schmitt, S; Maier, J; Wenzel, J
2017-08-01
Dermatomyositis (DM) is an autoimmune disorder associated with a dysregulation of immune homeostasis of both the innate and adaptive immune system. Earlier data suggested that these two arms of the immune system interconnect in DM. In the current study, we analysed the association of autoantigen expression [adaptive system components: Mi2, transcriptional intermediary factor (TIF)1γ, small ubiquitin-like modifier 1 activating enzyme subunit (SAE)1, melanoma differentiation-associated protein (MDA)5] with markers of cellular stress (innate system components: MxA, p53) in skin and muscle (immunohistology and gene expression data, respectively). We found that distinctive self-antigens of DM were elevated in both skin and muscle tissue. In particular, TIF1γ expression was seen in autoimmune diseases including DM, but not in other inflammatory skin disorders. This upregulation was closely associated with p53 expression and type I interferon-regulated inflammation, suggesting that upregulation of autoantigens in the skin and muscle of patients with DM might be driven by cellular stress. Better understanding of these mechanisms could pave the way for new therapeutic concepts focusing on stress reduction. © 2017 British Association of Dermatologists.
Macedo, Ana Catarina Lunz; Isaac, Lourdes
2016-01-01
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740
NASA Technical Reports Server (NTRS)
Shearer, William T.; Lugg, Desmond J.; Ochs, H. D.; Pierson, Duane L.; Reuben, James M.; Rosenblatt, Howard M.; Sams, Clarence; Smith, C. Wayne; Smith, E. Obrian; Smolen, James E.
1999-01-01
The potential threat of immunosuppression and abnormal inflammatory responses in long-term space travel, leading to unusual predilection for opportunistic infections, malignancy, and death, is of ma or concern to the National Aeronautics and Space Administration (NASA) Program. This application has been devised to seek answers to questions of altered immunity in space travel raised by previous investigations spanning 30-plus years. We propose to do this with the help of knowledge gained by the discovery of the molecular basis of many primary and secondary immunodeficiency diseases and by application of molecular and genetic technology not previously available. Two areas of immunity that previously received little attention in space travel research will be emphasized: specific antibody responses and non-specific inflammation and adhesion. Both of these areas of research will not only add to the growing body of information on the potential effects of space travel on the immune system, but be able to delineate any functional alterations in systems important for antigen presentation, specific immune memory, and cell:cell and cell:endothelium interactions. By more precisely defining molecular dysfunction of components of the immune system, it is hoped that targeted methods of prevention of immune damage in space could be devised.
Germain, Ronald N
2017-10-16
A dichotomy exists in the field of vaccinology about the promise versus the hype associated with application of "systems biology" approaches to rational vaccine design. Some feel it is the only way to efficiently uncover currently unknown parameters controlling desired immune responses or discover what elements actually mediate these responses. Others feel that traditional experimental, often reductionist, methods for incrementally unraveling complex biology provide a more solid way forward, and that "systems" approaches are costly ways to collect data without gaining true insight. Here I argue that both views are inaccurate. This is largely because of confusion about what can be gained from classical experimentation versus statistical analysis of large data sets (bioinformatics) versus methods that quantitatively explain emergent properties of complex assemblies of biological components, with the latter reflecting what was previously called "physiology." Reductionist studies will remain essential for generating detailed insight into the functional attributes of specific elements of biological systems, but such analyses lack the power to provide a quantitative and predictive understanding of global system behavior. But by employing (1) large-scale screening methods for discovery of unknown components and connections in the immune system ( omics ), (2) statistical analysis of large data sets ( bioinformatics ), and (3) the capacity of quantitative computational methods to translate these individual components and connections into models of emergent behavior ( systems biology ), we will be able to better understand how the overall immune system functions and to determine with greater precision how to manipulate it to produce desired protective responses. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Graphene and the immune system: Challenges and potentiality.
Orecchioni, Marco; Ménard-Moyon, Cécilia; Delogu, Lucia Gemma; Bianco, Alberto
2016-10-01
In the growing area of nanomedicine, graphene-based materials (GBMs) are some of the most recent explored nanomaterials. For the majority of GBM applications in nanomedicine, the immune system plays a fundamental role. It is necessary to well understand the complexity of the interactions between GBMs, the immune cells, and the immune components and how they could be of advantage for novel effective diagnostic and therapeutic approaches. In this review, we aimed at painting the current picture of GBMs in the background of the immune system. The picture we have drawn looks like a cubist image, a sort of Picasso-like portrait looking at the topic from all perspectives: the challenges (due to the potential toxicity) and the potentiality like the conjugation of GBMs to biomolecules to develop advanced nanomedicine tools. In this context, we have described and discussed i) the impact of graphene on immune cells, ii) graphene as immunobiosensor, and iii) antibodies conjugated to graphene for tumor targeting. Thanks to the huge advances on graphene research, it seems realistic to hypothesize in the near future that some graphene immunoconjugates, endowed of defined immune properties, can go through preclinical test and be successfully used in nanomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Innate Immune Cells in Liver Inflammation
Liaskou, Evaggelia; Wilson, Daisy V.; Oo, Ye H.
2012-01-01
Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair. PMID:22933833
Glycomaterials for probing host–pathogen interactions and the immune response
Huang, Mia L; Fisher, Christopher J
2016-01-01
The initial engagement of host cells by pathogens is often mediated by glycan structures presented on the cell surface. Various components of the glycocalyx can be targeted by pathogens for adhesion to facilitate infection. Glycans also play integral roles in the modulation of the host immune response to infection. Therefore, understanding the parameters that define glycan interactions with both pathogens and the various components of the host immune system can aid in the development of strategies to prevent, interrupt, or manage infection. Glycomaterials provide a unique and powerful tool with which to interrogate the compositional and functional complexity of the glycocalyx. The objective of this review is to highlight some key contributions from this area of research in deciphering the mechanisms of pathogenesis and the associated host response. PMID:27190259
Nikolich-Žugich, J; Davies, J S
2017-03-01
Ageing of the innate and adaptive immune system, collectively termed immune senescence, is a complex process. One method to understand the components of ageing involves dissociating the effects of ageing on the cells of the immune system, on the microenvironment in lymphoid organs and tissues where immune cells reside and on the circulating factors that interact with both immune cells and their microenvironment. Heterochronic parabiosis, a surgical union of two organisms of disparate ages, is ideal for this type of study, as it has the power to dissociate the age of the cell and the age of the microenvironment into which the cell resides or is migrating. So far, however, it has been used sparingly to study immune ageing. Here we review the limited literature on homeostatic innate immune cell trafficking in ageing in the absence of chronic inflammation. We also review our own recent data on trafficking of innate immune subsets between primary and secondary lymphoid organs in heterochronic parabiosis. We found no systemic bias in retention or acceptance of neutrophils, macrophages, dendritic cells or natural killer cells with ageing in primary and secondary lymphoid organs. We conclude that these four innate immune cell types migrate to and populate lymphoid organs (peripheral lymph nodes, spleen and bone marrow), regardless of their own age and of the age of lymphoid organs. © 2017 British Society for Immunology.
The management of systemic lupus erythematosus: Facts and controversies.
Elbirt, Daniel; Sthoeger, Dalia; Asher, Ilan; Sthoeger, Zev Moshe
2010-01-01
Systemic lupus erythematosus is a multisystem disease of unknown etiology in which dysregulation of the innate and adaptive immune systems has a major effect in the pathogenesis of the disease. The treatment should be tailored for each patient according to how the disease manifests itself. Although there is no cure for systemic lupus erythematosus, the current treatment, using anti-inflammatory, antimalarial, and immunosuppressive agents, is fairly effective, but serious adverse events are possible. New biologic agents that target various components of the immune system recently have been developed for the treatment of patients with systemic lupus erythematosus. Copyright 2010 Elsevier Inc. All rights reserved.
γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.
Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han
2017-09-01
The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.
Huber, Xaver; Degen, Lukas; Muenst, Simone; Trendelenburg, Marten
2017-08-01
Protein loss via the gut can be caused by a number of gastrointestinal disorders, among which intestinal lymphangiectasia has been described to not only lead to a loss of proteins but also to a loss of lymphocytes, resembling secondary immunodeficiency. We are reporting on a 75-year-old female patient who came to our hospital because of a minor stroke. She had no history of serious infections. During the diagnostic work-up, we detected an apparent immunodeficiency syndrome associated with primary intestinal lymphangiectasia. Trying to characterize the alterations of the immune system, we not only found hypogammaglobulinemia and lymphopenia primarily affecting CD4+, and also CD8+ T cells, but also marked hypocomplementemia affecting levels of complement C4, C2, and C3. The loss of components of the immune system most likely was due to a chronic loss of immune cells and proteins via the intestinal lymphangiectasia, with levels of complement components following the pattern of protein electrophoresis. Thus, intestinal lymphangiectasia should not only be considered as a potential cause of secondary immune defects in an elderly patient, but can also be associated with additional hypocomplementemia.
Elevational variation in body-temperature response to immune challenge in a lizard
Reguera, Senda; Moreno-Rueda, Gregorio
2016-01-01
Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981
Elevational variation in body-temperature response to immune challenge in a lizard.
Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio
2016-01-01
Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.
Activation of the RLR/MAVS Signaling Pathway by the L Protein of Mopeia Virus
Zhang, Lei-Ke; Xin, Qi-Lin; Zhu, Sheng-Lin; Wan, Wei-Wei; Wang, Wei
2016-01-01
ABSTRACT The family Arenaviridae includes several important human pathogens that can cause severe hemorrhagic fever and greatly threaten public health. As a major component of the innate immune system, the RLR/MAVS signaling pathway is involved in recognizing viral components and initiating antiviral activity. It has been reported that arenavirus infection can suppress the innate immune response, and NP and Z proteins of pathogenic arenaviruses can disrupt RLR/MAVS signaling, thus inhibiting production of type I interferon (IFN-I). However, recent studies have shown elevated IFN-I levels in certain arenavirus-infected cells. The mechanism by which arenavirus infection induces IFN-I responses remains unclear. In this study, we determined that the L polymerase (Lp) of Mopeia virus (MOPV), an Old World (OW) arenavirus, can activate the RLR/MAVS pathway and thus induce the production of IFN-I. This activation is associated with the RNA-dependent RNA polymerase activity of Lp. This study provides a foundation for further studies of interactions between arenaviruses and the innate immune system and for the elucidation of arenavirus pathogenesis. IMPORTANCE Distinct innate immune responses are observed when hosts are infected with different arenaviruses. It has been widely accepted that NP and certain Z proteins of arenaviruses inhibit the RLR/MAVS signaling pathway. The viral components responsible for the activation of the RLR/MAVS signaling pathway remain to be determined. In the current study, we demonstrate for the first time that the Lp of MOPV, an OW arenavirus, can activate the RLR/MAVS signaling pathway and thus induce the production of IFN-I. Based on our results, we proposed that dynamic interactions exist among Lp-produced RNA, NP, and the RLR/MAVS signaling pathway, and the outcome of these interactions may determine the final IFN-I response pattern: elevated or reduced. Our study provides a possible explanation for how IFN-I can become activated during arenavirus infection and may help us gain insights into the interactions that form between different arenavirus components and the innate immune system. PMID:27605671
Immunoadolescence: Neuroimmune development and adolescent behavior
Brenhouse, Heather C.; Schwarz, Jaclyn M.
2016-01-01
The brain is increasingly appreciated to be a constantly rewired organ that yields age-specific behaviors and responses to the environment. Adolescence in particular is a unique period characterized by continued brain maturation, superimposed with transient needs of the organism to traverse a leap from parental dependence to independence. Here we describe how these needs require immune maturation, as well as brain maturation. Our immune system, which protects us from pathogens and regulates inflammation, is in constant communication with our nervous system. Together, neuro-immune signaling regulates our behavioral responses to the environment, making this interaction a likely substrate for adolescent development. We review here the identified as well as understudied components of neuro-immune interactions during adolescence. Synaptic pruning, neurite outgrowth, and neurotransmitter release during adolescence all regulate—and are regulated by—immune signals, which occur via blood-brain barrier dynamics and glial activity. We discuss these processes, as well as how immune signaling during this transitional period of development confers differential effects on behavior and vulnerability to mental illness. PMID:27260127
The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy
Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J
2017-01-01
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. PMID:28193698
The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.
Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J; Gallego-Ortega, David
2017-04-01
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. © 2017 The authors.
The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus.
Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong
2011-02-15
Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.
Vogt, R F
1991-01-01
The immune system is likely to be involved in some of the health effects caused by certain indoor air exposures, and immune biomarkers can help determine which exposures and health effects have important immune components. However, the lack of standardized laboratory tests for most human immune markers and the many confounding variables that can influence them makes interpretation of results for exposure and disease end points uncertain. This paper presents an overview of the immune system and the considerations involved in using tests for immune markers in clinical epidemiology studies, particularly those concerned with indoor air exposures. Careful study design, well-characterized laboratory methods, and rigorous documentation of exposure status are required to determine the predictive value of such tests. Clinical tests currently available for some immune markers could help identify and characterize both irritative and hypersensitivity reactions to indoor air pollutants. Newer tests developed in research settings might provide more incisive indicators of immune status that could help identify exposure, susceptibility, or preclinical disease states, but their methodologies must be refined and tested in multicenter studies before they can be used reliably in public health applications. PMID:1821385
Social Patterning of Cumulative Biological Risk by Education and Income Among African Americans
Diez Roux, Ana V.; Gebreab, Samson Y.; Wyatt, Sharon B.; Dubbert, Patricia M.; Sarpong, Daniel F.; Sims, Mario; Taylor, Herman A.
2012-01-01
Objectives. We examined the social patterning of cumulative dysregulation of multiple systems, or allostatic load, among African Americans adults. Methods. We examined the cross-sectional associations of socioeconomic status (SES) with summary indices of allostatic load and neuroendocrine, metabolic, autonomic, and immune function components in 4048 Jackson Heart Study participants. Results. Lower education and income were associated with higher allostatic load scores in African American adults. Patterns were most consistent for the metabolic and immune dimensions, less consistent for the autonomic dimension, and absent for the neuroendocrine dimension among African American women. Associations of SES with the global allostatic load score and the metabolic and immune domains persisted after adjustment for behavioral factors and were stronger for income than for education. There was some evidence that the neuroendocrine dimension was inversely associated with SES after behavioral adjustment in men, but the immune and autonomic components did not show clear dose–response trends, and we observed no associations for the metabolic component. Conclusions. Findings support our hypothesis that allostatic load is socially patterned in African American women, but this pattern is less consistent in African American men. PMID:22594727
Hickey, DK; Patel, MV; Fahey, JV; Wira, CR
2011-01-01
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708
Possible role of laser phototherapy in laser immunotherapy
NASA Astrophysics Data System (ADS)
Hode, Tomas; Hode, Lars
2009-02-01
Laser immunotherapy is a promising cancer treatment method that induces antitumor immunity and appears to be effective both locally and systemically. In this context, an important factor is the overall state of the immune system, both locally and systemically. The success of any immunotherapy treatment depends on the balance between the local immunosuppressive forces induced by the tumor and the immune response of the host organism. Factors that influence this balance include heat-shock proteins (for example HSP70), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α), interleukins, and more. Laser phototherapy, which is based on non-thermal photobiological processes, has been shown to modulate the body's own immune response, both locally and systemically, with a strong influence on for example cytokine production and heat-shock protein synthesis. Laser phototherapy may therefore be an important component in the overall efficacy of laser immunotherapy, and may tip the balance between the immunosuppressive and immunostimulatory forces in favor of immunostimulation.
SAP: structure, function, and its roles in immune-related diseases.
Xi, Dan; Luo, TianTian; Xiong, Haowei; Liu, Jichen; Lu, Hao; Li, Menghao; Hou, Yuqing; Guo, Zhigang
2015-01-01
Serum amyloid P component (SAP), also known as pentraxin-2, is a member of the pentraxin protein family with an established relationship to the immune response. In the last century, SAP has been used as a diagnostic marker in amyloidosis diagnosis and patient follow-up. SAP has been thought to have potential for treating and curing amyloidosis and fibrosis diseases. More recently, it has been shown that SAP may serve as both a diagnostic marker and a therapeutic target for many immune-related diseases, such as cardiovascular, pulmonary, nephritic, neurological and autoimmune diseases. In the cardiovascular system, SAP has been defined as the culprit in amyloidosis in the heart. SAP may also exert a protective role during the early stage of atherosclerosis and myocardial fibrosis. In noncardiovascular system diseases, SAP is being developed for the treatment of pulmonary fibrosis. In this review, we summarize SAP history, structure, and its roles in immune-related diseases in different systems with emphasis on the cardiovascular system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Hai; Shuai, J. W.
2010-04-01
A stochastic spatial model based on the Monte Carlo approach is developed to study the dynamics of human immunodeficiency virus (HIV) infection. We aim to propose a more detailed and realistic simulation frame by incorporating many important features of HIV dynamics, which include infections, replications and mutations of viruses, antigen recognitions, activations and proliferations of lymphocytes, and diffusions, encounters and interactions of virions and lymphocytes. Our model successfully reproduces the three-phase pattern observed in HIV infection, and the simulation results for the time distribution from infection to AIDS onset are also in good agreement with the clinical data. The interactions of viruses and the immune system in all the three phases are investigated. We assess the relative importance of various immune system components in the acute phase. The dynamics of how the two important factors, namely the viral diversity and the asymmetric battle between HIV and the immune system, result in AIDS are investigated in detail with the model.
HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation
Heron, Samantha E.; Elahi, Shokrollah
2017-01-01
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to “inflammaging” that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies. PMID:28326084
HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation.
Heron, Samantha E; Elahi, Shokrollah
2017-01-01
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to "inflammaging" that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Lowry, C.A.; Hollis, J.H.; de Vries, A.; Pan, B.; Brunet, L.R.; Hunt, J.R.F.; Paton, J.F.R.; van Kampen, E.; Knight, D.M.; Evans, A.K.; Rook, G.A.W.; Lightman, S.L.
2007-01-01
Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes. PMID:17367941
Oral innate immunity in HIV infection in HAART era.
Nittayananta, Wipawee; Tao, Renchuan; Jiang, Lanlan; Peng, Yuanyuan; Huang, Yuxiao
2016-01-01
Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces not only provide a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection, contributed to a global reduction of HIV-associated oral lesions. However, prolonged use of HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: (i) What are the roles of oral innate immunity in health and disease?, (ii) What are the effects of HIV infection on oral innate immunity?, (iii) What are the roles of oral innate immunity against other co-infections?, (iv) What are the effects of HAART on oral innate immunity?, and (v) Is oral innate immunity enhanced by HAART? © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Innate immune response development in nestling tree swallows
Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.
2011-01-01
We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.
Allergic reactions to measles-mumps-rubella vaccination.
Patja, A; Mäkinen-Kiljunen, S; Davidkin, I; Paunio, M; Peltola, H
2001-02-01
Immunization of egg-allergic children against measles, mumps, and rubella (MMR) is often deferred or even denied, although the safety of this vaccination has been clearly shown. Moreover, the majority of severe allergic reactions have occurred in egg-tolerant vaccinees. Other allergenic vaccine components have been sought, and gelatin has been suggested as one cause of allergic adverse events. The aim of this study was to further characterize the actual allergenic vaccine components. Serum samples from 36 recipients of MMR vaccine with anaphylaxis, urticaria with or without angioedema, asthmatic symptoms, or Henoch-Schönlein purpura were analyzed by CAP System radioallergosorbent test (RAST) and immunospot methods to detect the allergenic vaccine component. To evaluate the correspondence between the findings in the CAP System RAST or the immunospot and clinical symptoms, histories of allergies and present hypersensitivity symptoms were assessed. Of the 36 participants, 10 were demonstrated to be allergic to gelatin. Seven of them had persistent allergic symptoms, possibly attributable to foods containing gelatin or cross-reactive allergens. The results of the immunospot suggested concomitant allergy to gelatin and egg, chicken, and feathers, as well as cow's milk, or they reflected allergen cross-reactivity. Although severe allergic adverse events attributable to MMR vaccination are extremely rare, all serious allergic reactions should be further assessed to detect the likely causative vaccine component, including gelatin. The current recommendation for immunization of egg-allergic persons according to standard MMR vaccination schedules is reinforced. measles, mumps, and rubella vaccine, immunization, adverse effects, allergic reactions, gelatin allergy, CAP System, radioallergosorbent test, immunospot, immunoglobulin E.
Aalaei-Andabili, Seyed Hossein; Rezaei, Nima
2016-01-01
Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.
Hypo-gravity and immune system effects
NASA Technical Reports Server (NTRS)
Carter, Paul D.; Barnes, Frank
1990-01-01
Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.
Schwanz, Lisa; Warner, Daniel A; McGaugh, Suzanne; Di Terlizzi, Roberta; Bronikowski, Anne
2011-01-01
Energy allocation among somatic maintenance, reproduction and growth varies not only among species, but among individuals according to states such as age, sex and season. Little research has been conducted on the somatic (physiological) maintenance of long-lived organisms, particularly ectotherms such as reptiles. In this study, we examined sex differences and age- and season-related variation in immune function and DNA repair efficiency in a long-lived reptile, the painted turtle (Chrysemys picta). Immune components tended to be depressed during hibernation, in winter, compared with autumn or spring. Increased heterophil count during hibernation provided the only support for winter immunoenhancement. In juvenile and adult turtles, we found little evidence for senescence in physiological maintenance, consistent with predictions for long-lived organisms. Among immune components, swelling in response to phytohemagglutinin (PHA) and control injection increased with age, whereas basophil count decreased with age. Hatchling turtles had reduced basophil counts and natural antibodies, indicative of an immature immune system, but demonstrated higher DNA repair efficiency than older turtles. Reproductively mature turtles had reduced lymphocytes compared with juvenile turtles in the spring, presumably driven by a trade-off between maintenance and reproduction. Sex had little influence on physiological maintenance. These results suggest that components of physiological maintenance are modulated differentially according to individual state and highlight the need for more research on the multiple components of physiological maintenance in animals of variable states.
Ertl, Nicole G.; O’Connor, Wayne A.; Papanicolaou, Alexie; Wiegand, Aaron N.
2016-01-01
Background Oysters have important ecological functions in their natural environment, acting as global carbon sinks and improving water quality by removing excess nutrients from the water column. During their life-time oysters are exposed to a variety of pathogens that can cause severe mortality in a range of oyster species. Environmental stressors encountered in their habitat can increase the susceptibility of oysters to these pathogens and in general have been shown to impact on oyster immunity, making immune parameters expressed in these marine animals an important research topic. Results Paired-end Illumina high throughput sequencing of six S. glomerata tissues exposed to different environmental stressors resulted in a total of 484,121,702 paired-end reads. When reads and assembled transcripts were compared to the C. gigas genome, an overall low level of similarity at the nucleotide level, but a relatively high similarity at the protein level was observed. Examination of the tissue expression pattern showed that some transcripts coding for cathepsins, heat shock proteins and antioxidant proteins were exclusively expressed in the haemolymph of S. glomerata, suggesting a role in innate immunity. Furthermore, analysis of the S. glomerata ORFs showed a wide range of genes potentially involved in innate immunity, from pattern recognition receptors, components of the Toll-like signalling and apoptosis pathways to a complex antioxidant defence mechanism. Conclusions This is the first large scale RNA-Seq study carried out in S. glomerata, showing the complex network of innate immune components that exist in this species. The results confirmed that many of the innate immune system components observed in mammals are also conserved in oysters; however, some, such as the TLR adaptors MAL, TRIF and TRAM are either missing or have been modified significantly. The components identified in this study could help explain the oysters’ natural resilience against pathogenic microorganisms encountered in their natural environment. PMID:27258386
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Ansari, M Azim; Pedergnana, Vincent; L C Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C A
2017-05-01
Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control.
The shaping of modern human immune systems by multiregional admixture with archaic humans.
Abi-Rached, Laurent; Jobin, Matthew J; Kulkarni, Subhash; McWhinnie, Alasdair; Dalva, Klara; Gragert, Loren; Babrzadeh, Farbod; Gharizadeh, Baback; Luo, Ma; Plummer, Francis A; Kimani, Joshua; Carrington, Mary; Middleton, Derek; Rajalingam, Raja; Beksac, Meral; Marsh, Steven G E; Maiers, Martin; Guethlein, Lisbeth A; Tavoularis, Sofia; Little, Ann-Margaret; Green, Richard E; Norman, Paul J; Parham, Peter
2011-10-07
Whole genome comparisons identified introgression from archaic to modern humans. Our analysis of highly polymorphic human leukocyte antigen (HLA) class I, vital immune system components subject to strong balancing selection, shows how modern humans acquired the HLA-B*73 allele in west Asia through admixture with archaic humans called Denisovans, a likely sister group to the Neandertals. Virtual genotyping of Denisovan and Neandertal genomes identified archaic HLA haplotypes carrying functionally distinctive alleles that have introgressed into modern Eurasian and Oceanian populations. These alleles, of which several encode unique or strong ligands for natural killer cell receptors, now represent more than half the HLA alleles of modern Eurasians and also appear to have been later introduced into Africans. Thus, adaptive introgression of archaic alleles has significantly shaped modern human immune systems.
The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans
Abi-Rached, Laurent; Jobin, Matthew J; Kulkarni, Subhash; McWhinnie, Alasdair; Dalva, Klara; Gragert, Loren; Babrzadeh, Farbod; Gharizadeh, Baback; Luo, Ma; Plummer, Francis A; Kimani, Joshua; Carrington, Mary; Middleton, Derek; Rajalingam, Raja; Beksac, Meral; Marsh, Steven GE; Maiers, Martin; Guethlein, Lisbeth A; Tavoularis, Sofia; Little, Ann-Margaret; Green, Richard E; Norman, Paul J; Parham, Peter
2013-01-01
Whole genome comparisons identified introgression from archaic to modern humans. Our analysis of highly polymorphic HLA class I, vital immune system components subject to strong balancing selection, shows how modern humans acquired the HLA-B*73 allele in west Asia through admixture with archaic humans called Denisovans, a likely sister group to the Neandertals. Virtual genotyping of Denisovan and Neandertal genomes identified archaic HLA haplotypes carrying functionally distinctive alleles that have introgressed into modern Eurasian and Oceanian populations. These alleles, of which several encode unique or strong ligands for natural killer cell receptors, now represent more than half the HLA alleles of modern Eurasians and also appear to have been later introduced into Africans. Thus, adaptive introgression of archaic alleles has significantly shaped modern human immune systems. PMID:21868630
The immune system: a target for functional foods?
Calder, Philip C; Kew, Samantha
2002-11-01
The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies in one or more of these nutrients. Animal and human studies have demonstrated that adding the deficient nutrient back to the diet can restore immune function and resistance to infection. Among the nutrients studied most in this regard are vitamin E and Zn. Increasing intakes of some nutrients above habitual and recommended levels can enhance some aspects of immune function. However, excess amounts of some nutrients also impair immune function. There is increasing evidence that probiotic bacteria improve host immune function. The effect of enhancing immune function on host resistance to infection in healthy individuals is not clear.
SUMO-Enriched Proteome for Drosophila Innate Immune Response
Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.
2015-01-01
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570
SUMO-Enriched Proteome for Drosophila Innate Immune Response.
Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S
2015-08-18
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. Copyright © 2015 Handu et al.
Erchick, Daniel J; George, Asha S; Umeh, Chukwunonso; Wonodi, Chizoba
2016-12-10
Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Integration of Immunity with Physical and Cognitive Function in Definitions of Successful Aging
Griffin, Patricia; Michel, Joshua J.; Huysman, Kristy; Logar, Alison J.; Vallejo, Abbe N.
2012-01-01
Studies comparing chronologically “young” versus “old” humans document age-related decline of classical immunological functions. However, older adults aged ≥65 years have very heterogeneous health phenotypes. A significant number of them are functionally independent and are surviving well into their 8th–11th decade life, observations indicating that aging or old age is not synonymous with immune incompetence. While there are dramatic age-related changes in the immune system, not all of these changes may be considered detrimental. Here, we review evidences for novel immunologic processes that become elaborated with advancing age that complement preserved classical immune functions and promote immune homeostasis later in life. We propose that elaboration such of late life immunologic properties is indicative of beneficial immune remodeling that is an integral component of successful aging, an emerging physiologic construct associated with similar age-related physiologic adaptations underlying maintenance of physical and cognitive function. We suggest that a systems approach integrating immune, physical, and cognitive functions, rather than a strict immunodeficiency-minded approach, will be key towards innovations in clinical interventions to better promote protective immunity and functional independence among the elderly. PMID:22500270
The role of extracellular vesicles when innate meets adaptive.
Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M
2018-04-03
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Hartmann, G
2017-01-01
Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to advance medicine. © 2017 Elsevier Inc. All rights reserved.
Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu
2014-01-01
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268
The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?
Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter
2016-01-01
Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331
Laughton, Alice M; O'Connor, Cian O; Knell, Robert J
2017-11-01
Environmental temperature has important effects on the physiology and life history of ectothermic animals, including investment in the immune system and the infectious capacity of pathogens. Numerous studies have examined individual components of these complex systems, but little is known about how they integrate when animals are exposed to different temperatures. Here, we use the Indian meal moth ( Plodia interpunctella ) to understand how immune investment and disease resistance react and potentially trade-off with other life-history traits. We recorded life-history (development time, survival, fecundity, and body size) and immunity (hemocyte counts, phenoloxidase activity) measures and tested resistance to bacterial ( E. coli ) and viral ( Plodia interpunctella granulosis virus) infection at five temperatures (20-30°C). While development time, lifespan, and size decreased with temperature as expected, moths exhibited different reproductive strategies in response to small changes in temperature. At cooler temperatures, oviposition rates were low but tended to increase toward the end of life, whereas warmer temperatures promoted initially high oviposition rates that rapidly declined after the first few days of adult life. Although warmer temperatures were associated with strong investment in early reproduction, there was no evidence of an associated trade-off with immune investment. Phenoloxidase activity increased most at cooler temperatures before plateauing, while hemocyte counts increased linearly with temperature. Resistance to bacterial challenge displayed a complex pattern, whereas survival after a viral challenge increased with rearing temperature. These results demonstrate that different immune system components and different pathogens can respond in distinct ways to changes in temperature. Overall, these data highlight the scope for significant changes in immunity, disease resistance, and host-parasite population dynamics to arise from small, biologically relevant changes to environmental temperature. In light of global warming, understanding these complex interactions is vital for predicting the potential impact of insect disease vectors and crop pests on public health and food security.
[Relationships between venomous function and innate immune function].
Goyffon, Max; Saul, Frederick; Faure, Grazyna
2015-01-01
Venomous function is investigated in relation to innate immune function in two cases selected from scorpion venom and serpent venom. In the first case, structural analysis of scorpion toxins and defensins reveals a close interrelation between both functions (toxic and innate immune system function). In the second case, structural and functional studies of natural inhibitors of toxic snake venom phospholipases A2 reveal homology with components of the innate immune system, leading to a similar conclusion. Although there is a clear functional distinction between neurotoxins, which act by targeting membrane ion channels, and the circulating defensins which protect the organism from pathogens, the scorpion short toxins and defensins share a common protein folding scaffold with a conserved cysteine-stabilized alpha-beta motif of three disulfide bridges linking a short alpha helix and an antiparallel beta sheet. Genomic analysis suggests that these proteins share a common ancestor (long venom toxins were separated from an early gene family which gave rise to separate short toxin and defensin families). Furthermore, a scorpion toxin has been experimentally synthetized from an insect defensin, and an antibacterial scorpion peptide, androctonin (whose structure is similar to that of a cone snail venom toxin), was shown to have a similar high affinity for the postsynaptic acetylcholine receptor of Torpedo sp. Natural inhibitors of phospholipase A2 found in the blood of snakes are associated with the resistance of venomous snakes to their own highly neurotoxic venom proteins. Three classes of phospholipases A2 inhibitors (PLI-α, PLI-β, PLI-γ) have been identified. These inhibitors display diverse structural motifs related to innate immune proteins including carbohydrate recognition domains (CRD), leucine rich repeat domains (found in Toll-like receptors) and three finger domains, which clearly differentiate them from components of the adaptive immune system. Thus, in structure, function and phylogeny, venomous function in both vertebrates and invertebrates are clearly interrelated with innate immune function. © Société de Biologie, 2016.
In-Vitro Induced Immunosuppression in a Rotary Cell Culture System
NASA Technical Reports Server (NTRS)
Grimm, Elizabeth A.
1998-01-01
The function of the innate immune system is to provide a first-line of defense against infectious organisms, via control of bacterial and viral growth using antigen nonspecific means. These nonspecific immune effectors include macrophages and Natural Killing (NK) cells, and certain cytokines elicited in response to "super antigens" on the infectious agents. This innate system usually keeps most infectious agents from rapidly growing while the adaptive immune system is generating a specific response complete with immunologic memory. Compelling evidence suggests that space flight results in various immunosuppressive effects, including reduced innate and adaptive immune responses. We were particularly concerned with reduced NK activity at landing, and have asked whether the microgravity component of space flight could be responsible for the previously observed NK defect. We have conclusively demonstrated that simulated microgravity as provided by the Synthecon bioreactors does not inhibit the NK function nor the IL-2 activation of lymphokine-activated killing (LAK). Interleukin-2 is the key cytokine responsible for activation of NK cells to express LAK, as well as to support differentiation of lymphocytes during adaptive immune responses. Therefore, we have disproved our original hypothesis based on poor NK in many of the astronauts upon landing.
NASA Astrophysics Data System (ADS)
Lauzurica, Sara; Márquez, Andrés.; Molpeceres, Carlos; Notario, Laura; Gómez-Fontela, Miguel; Lauzurica, Pilar
2017-02-01
The immune system is a very complex system that comprises a network of genetic and signaling pathways subtending a network of interacting cells. The location of the cells in a network, along with the gene products they interact with, rules the behavior of the immune system. Therefore, there is a great interest in understanding properly the role of a cell in such networks to increase our knowledge of the immune system response. In order to acquire a better understanding of these processes, cell printing with high spatial resolution emerges as one of the promising approaches to organize cells in two and three-dimensional patterns to enable the study the geometry influence in these interactions. In particular, laser assisted bio-printing techniques using sub-nanosecond laser sources have better characteristics for application in this field, mainly due to its higher spatial resolution, cell viability percentage and process automation. This work presents laser assisted bio-printing of antigen-presenting cells (APCs) in two-dimensional geometries, placing cellular components on a matrix previously generated on demand, permitting to test the molecular interactions between APCs and lymphocytes; as well as the generation of two-dimensional structures designed ad hoc in order to study the mechanisms of mobilization of immune system cells. The use of laser assisted bio-printing, along with APCs and lymphocytes emulate the structure of different niches of the immune system so that we can analyse functional requirement of these interaction.
Immunity: plants as effective mediators.
Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul
2014-01-01
In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.
The lymphocytic cholinergic system and its contribution to the regulation of immune activity.
Kawashima, Koichiro; Fujii, Takeshi
2003-12-26
Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.
Meitern, Richard; Sild, Elin; Lind, Mari-Ann; Männiste, Marju; Sepp, Tuul; Karu, Ulvi; Hõrak, Peeter
2013-01-01
Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris). Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator) in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection – erythrocyte glutathione, and plasma oxygen radical absorbance (OXY). These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters. PMID:23805316
Li, Shengjie; Li, Yao; Shen, Li; Jin, Ping; Chen, Liming; Ma, Fei
2017-02-01
Drosophila melanogaster is widely used as a model system to study innate immunity and signaling pathways related to innate immunity, including the Toll signaling pathway. Although this pathway is well studied, the precise mechanisms of posttranscriptional regulation of key components of the Toll signaling pathway by microRNAs (miRNAs) remain obscure. In this study, we used an in silico strategy in combination with the Gal80 ts -Gal4 driver system to identify microRNA-958 (miR-958) as a candidate Toll pathway regulating miRNA in Drosophila We report that overexpression of miR-958 significantly reduces the expression of Drosomycin, a key antimicrobial peptide involved in Toll signaling and the innate immune response. We further demonstrate in vitro and in vivo that miR-958 targets the Toll and Dif genes, key components of the Toll signaling pathway, to negatively regulate Drosomycin expression. In addition, a miR-958 sponge rescued the expression of Toll and Dif, resulting in increased expression of Drosomycin. These results, not only revealed a novel function and modulation pattern of miR-958, but also provided a new insight into the underlying molecular mechanisms of Toll signaling in regulation of innate immunity. Copyright © 2017 the American Physiological Society.
Effect of the PiAstra Benchtop Flash-Heating Pasteurizer on Immune Factors of Donor Human Milk.
Daniels, Brodie; Reimers, Penny; King, Tracy; Schmidt, Stefan; Coutsoudis, Anna
2018-05-01
PiAstra is a simulated flash-heat (FH) pasteurization temperature monitoring system designed using Raspberry Pi technology for the pasteurization of human milk. This study analyzed the effect of the PiAstra FH method on human milk immune components (immunoglobulin A [IgA] and lactoferrin activity). Donor milk samples (N = 45) were obtained from a human milk bank, and pasteurized. Concentrations of IgA and lactoferrin activity were compared to their unpasteurized controls using the Student's t test. The PiAstra FH method retained 34.2% of IgA (p < 0.0001) and 40.4% of lactoferrin activity (p < 0.0001) when compared to unpasteurized controls. The retention of IgA by the PiAstra is similar to previous FH studies, while retention of lactoferrin activity was higher than previous FH studies. The high-technology, low-cost PiAstra system, which is able to retain vital immune components of human milk, provides safe donor milk for low-resourced settings. This enables the use of pasteurized donor milk when human milk is not available, potentially saving vulnerable infant lives.
Early-Life Food Nutrition, Microbiota Maturation and Immune Development Shape Life-Long Health.
Zhou, Xiaoli; Du, Lina; Shi, Ronghua; Chen, Zhidong; Zhou, Yiming; Li, Zongjie
2018-06-06
The current knowledge about early-life nutrition and environmental factors that affect the interaction between the symbiotic microbiota and the host immune system has demonstrated novel regulatory target for treating allergic diseases, autoimmune disorders and metabolic syndrome. Various kinds of food nutrients (such as dietary fiber, starch, polyphenols and proteins) can provide energy resources for both intestinal microbiota and the host. The indigestible food components are fermented by the indigenous gut microbiota to produce diverse metabolites, including short-chain fatty acids, bile acids and trimethylamine-N-oxide, which can regulate the host metabolized physiology, immunity homeostasis and health state. Therefore it is commonly believed early-life perturbation of the microbial community structure and the dietary nutrition interference on the child mucosal immunity contribute to the whole life susceptibility to chronic diseases. In all, the combined interrelationship between food ingredients nutrition, intestinal microbiota configurations and host system immunity provides new therapeutic targets to treat various kinds of pathogenic inflammations and chronic diseases.
Smallpox subunit vaccine produced in planta confers protection in mice
Golovkin, Maxim; Spitsin, Sergei; Andrianov, Vyacheslav; Smirnov, Yuriy; Xiao, Yuhong; Pogrebnyak, Natalia; Markley, Karen; Brodzik, Robert; Gleba, Yuri; Isaacs, Stuart N.; Koprowski, Hilary
2007-01-01
We report here the in planta production of the recombinant vaccinia virus B5 antigenic domain (pB5), an attractive component of a subunit vaccine against smallpox. The antigenic domain was expressed by using efficient transient and constitutive plant expression systems and tested by various immunization routes in two animal models. Whereas oral administration in mice or the minipig with collard-derived insoluble pB5 did not generate an anti-B5 immune response, intranasal administration of soluble pB5 led to a rise of B5-specific immunoglobulins, and parenteral immunization led to a strong anti-B5 immune response in both mice and the minipig. Mice immunized i.m. with pB5 generated an antibody response that reduced virus spread in vitro and conferred protection from challenge with a lethal dose of vaccinia virus. These results indicate the feasibility of producing safe and inexpensive subunit vaccines by using plant production systems. PMID:17428917
Tick-borne encephalitis virus and the immune response of the mammalian host.
Dörrbecker, Bastian; Dobler, Gerhard; Spiegel, Martin; Hufert, Frank T
2010-07-01
Tick-borne encephalitis (TBE) is caused by Tick-borne encephalitis virus (TBEV), one of the most prevalent arboviruses in Europe and in many parts of Asia. Transmission of TBEV to humans usually occurs by bite of an infected tick or rarely by ingestion of unpasteurized milk products of infected livestock. TBEV infection induces an innate and adaptive immune response, nevertheless it is able to replicate in several cell types of the immune system at the same time which probably contributes to the spread of the virus in the human host. Furthermore, TBEV can enter the central nervous system (CNS) by yet not well understood mechanisms via the blood brain barrier (BBB) or the olfactory neurons which leads to serious neurological disorders like meningitis, encephalitis or even meningoencephalitis. In this article we review the known facts and possible hypotheses of interaction of TBEV with components of the mammalian immune system and their implications for TBEV-mediated pathogenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Perinatal stress and early life programming of lung structure and function
Wright, Rosalind J.
2010-01-01
Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145
Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity
Metzger, Rebecca N.; Krug, Anne B.; Eisenächer, Katharina
2018-01-01
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis. PMID:29570694
Abdel-Aal, Abu-Baker M; Zaman, Mehfuz; Fujita, Yoshio; Batzloff, Michael R; Good, Michael F; Toth, Istvan
2010-11-25
Immunological assessment of group A streptococcal (GAS) branched lipopeptides demonstrated the impact of spatial arrangement of vaccine components on both the quality and quantity of their immune responses. Each lipopeptide was composed of three components: a GAS B-cell epitope (J14), a universal CD4(+) T-cell helper epitope (P25), and an immunostimulant lipid moiety that differs only in its spatial arrangement. The best systemic immune responses were demonstrated by a lipopeptide featuring the lipid moiety at the lipopeptide C-terminus. However, this candidate did not achieve protection against bacterial challenge. The best protection (100%) was shown by a lipopeptide featuring a C-terminal J14, conjugated through a lysine residue to P25 at the N-terminus, and a lipid moiety on the lysine side chain. The former candidate features α-helical conformation required to produce protective J14-specific antibodies. Our results highlight the importance of epitope orientation and lipid position in the design of three-component synthetic vaccines.
Immunity to fish rhabdoviruses
Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.
2012-01-01
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Immunity to fish rhabdoviruses.
Purcell, Maureen K; Laing, Kerry J; Winton, James R
2012-01-01
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Complement factor H in host defense and immune evasion.
Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J
2017-05-01
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Ronveaux, O.; Rickert, D.; Hadler, S.; Groom, H.; Lloyd, J.; Bchir, A.; Birmingham, M.
2005-01-01
OBJECTIVE: To evaluate the consistency and quality of immunization monitoring systems in 27 countries during 2002-03 using standardized data quality audits (DQAs) that had been launched within the framework of the Global Alliance for Vaccines and Immunization. METHODS: The consistency of reporting systems was estimated by determining the proportion of third doses of diphtheria-tetanuspertussis (DTP-3) vaccine reported as being administered that could be verified by written documentation at health facilities and districts. The quality of monitoring systems was measured using quality indices for different components of the monitoring systems. These indices were applied to each level of the health service (health unit, district and national). FINDINGS: The proportion of verified DTP-3 doses was lower than 85% in 16 countries. Difficulties in verifying the doses administered often arose at the peripheral level of the health service, usually as the result of discrepancies in information between health units and their corresponding districts or because completed recording forms were not available from health units. All countries had weaknesses in their monitoring systems; these included the inconsistent use of monitoring charts; inadequate monitoring of vaccine stocks, injection supplies and adverse events; unsafe computer practices; and poor monitoring of completeness and timeliness of reporting. CONCLUSION: Inconsistencies in immunization data occur in many countries, hampering their ability to manage their immunization programmes. Countries should use these findings to strengthen monitoring systems so that data can reliably guide programme activities. The DQA is an innovative tool that provides a way to independently assess the quality of immunization monitoring systems at all levels of a health service and serves as a point of entry to make improvements. It provides a useful example for other global health initiatives. PMID:16175824
A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs.
Gordon, Y Jerold; Romanowski, Eric G; McDermott, Alison M
2005-07-01
Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Literature review. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven.
T-cell selection and intestinal homeostasis
Ai, Teresa L.; Solomon, Benjamin D.; Hsieh, Chyi-Song
2014-01-01
Summary Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggests that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease. PMID:24712459
The cutaneous citadel: a holistic view of skin and immunity.
Spellberg, B
2000-06-23
Human skin has 4 major functions: endogenous homeostasis (e.g. regulation of body temperature and fluid balance), metabolism (e.g. Vitamin D synthesis), sensory input, and to serve as a barrier to external threats (e.g. infection, mechanical injury, ultraviolet light). It is the latter function which concerns this review, for the skin's remarkable success in protecting the human body from the outside world is a major component of our immune system. The eminent pathologist, Virchow, whose work in the mid 19th century revolutionized many aspects of medical understanding, viewed the skin as an effective but inanimate barrier (1). However, recent technologies have elucidated a highly complex, dynamic interplay between the skin and other members of the immune system.
Immune dysfunction in cirrhosis.
Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria
2014-03-14
Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality.
Immune dysfunction in cirrhosis
Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria
2014-01-01
Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592
Kaminsky, Vjacheslav; Chernyshov, Viktor; Grynevych, Oleksandr; Benyuk, Vasil; Kornatskaya, Alla; Shalko, Miroslava; Usevich, Igor; Revenko, Oleg; Shepetko, Maxim; Solomakha, Ludmila
2017-03-21
Reporting of clinical trials results for Proteflazid® in the drug formulation suppositories and vaginal swabs soaked in the solution of the drug to the local immunity of the female reproductive tract. The aim of study was to examine the state of local immunity in the reproductive tract of women with sexually transmitted diseases caused by human papillomavirus, herpes viruses (Type 1, 2) and mixed infection (herpes viruses + chlamydia). The trials involved 216 women with viral sexually transmitted diseases: Cervical Dysplasia associated with papillomavirus infection (HPV) (Group 1); Herpes genitalis type 1 (HSV- 1) and type 2 (HSV-1) (Group 2); mixed infection - HSV-1, HSV-2 and chlamydia (Group 3). Treatment results have confirmed that Proteflazid® contributes to sustainable performance improvement of basic factors of local immunity - sIgA, lysozyme and complement component C3 in the cervical mucus for all three groups of women. Proteflazid® enhances level of local immunity markers (sIgA, lysozyme, C3 complement component) and improves their ratios. Also it intensifies anticontagious activity of mucosal protection and female reproductive system as whole, during treatment diseases caused by human papillomavirus, herpesvirus and mixed urogenital infections (herpesvirus and chlamydia).
Carbone, Donatella; Faggio, Caterina
2016-07-01
Infectious diseases in fish represent a major problem for the aquaculture field as they produce extensive damages and loss. Over the last few years, with increased development of the aquaculture industry, different methods have been used to contrast these pathologies. Common interest has led to the use of components (as additives in diets) that could contrast diseases without causing any negative impact on the environment. These components are represented by prebiotics, probiotics, and plant extracts. In this review, the effects of prebiotics are described. Prebiotics are indigestible fibres fermented by gut enzymes and commensal bacteria, whose beneficial effects are due to the by-products generated from fermentation. The influence of pre-biotics on the immune system of fish is called immunosaccharides. Mannanoligosaccharides (MOS), Fructooligosaccharides (FOS) and Inulin act at different levels in the innate immune response. For example, through phagocytosis, lysozyme activity, and the complement system activity, an increase in fish growth and an amelioration of their health status is brought about. In this review, the use of prebiotics in aquaculture, such as immunostimulants, has been highlighted: particularly in two teleost fish species, Sparus aurata and Dicentrarchus labrax. The results demonstrate that the road is still long and further studies are required, but the use of prebiotics, individually or coupled together, can open the doors to pioneering a new model of alternative components to antimicrobial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
CD8+ T Cells Need a Little Help(er) for Sustained Antitumor Response | Center for Cancer Research
The immune system comprises a powerful army of specialized cells and molecules that protect the body against invading foreign agents. For years, researchers have been trying to find a way to turn the wrath of the immune system against cancer. A significant amount of work related to cancer immunotherapy has focused on the potential of CD8+ cytotoxic T cells to attack and eliminate cancer cells. However, this approach has proved challenging for two reasons. First, there are several mechanisms in place to make sure that T cells and other components of the immune system ignore “self” molecules and cells, even if these cells become cancerous. Second, tumor microenvironments are often characterized by the presence of immunosuppressive factors capable of stifling T cell activation (a process called tolerization).
Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido
2015-01-01
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448
Tadesse, Tefera; Getachew, Kinde; Assefa, Tersit; Ababu, Yohannes; Simireta, Tesfaye; Birhanu, Zewdie; Hailemichael, Yohannes
2017-01-01
Introduction While the routine childhood immunization program might be affected by several factors, its identification using qualitative evidence of caretakers is generally minimal. This article explores the various factors and misperceptions of routine childhood immunization service uptake in Ethiopia and provides possible recommendations to mitigate them. Methods In this study, we used a qualitative multiple case study design collecting primary data from 63 focus group discussions (FGDs) conducted with a purposefully selected sample of children's caretakers (n = 630). Results According to the results of this study, the use of routine childhood immunization is dependent on four major factors: caretakers' behavior, family characteristics, information and communication and immunization service system. In addition, the participants had some misperceptions about routine childhood immunization. For example, immunization should be taken when the child gets sick and a single dose vaccine is enough for a child. These factors and misperceptions are complex and sometimes context-specific and vary between categories of caretakers. Conclusion Our interpretations suggest that no single factor affects immunization service uptake alone in a unique way. Rather, it is the synergy among the factors that has a collective influence on the childhood immunization system. Therefore, intervention efforts should target these multiple factors simultaneously. Importantly, this study recommends improving the quality of existing childhood immunization services and building awareness among caretakers as crucial components. PMID:29675124
DYSMICROBISM, INFLAMMATORY BOWEL DISEASE AND THYROIDITIS: ANALYSIS OF THE LITERATURE.
Tomasello, G; Tralongo, P; Amoroso, F; Damiani, P; Sinagra, E; Noto, M; Arculeo, V M; Jurjus Zein, R; Saad, W; Jurjus, A; Gerbino, A; Leone, A
2015-01-01
The human body is colonized by a large number of microbes that are collectively referred to as the microbiota. They interact with the hosting organism and some do contribute to the physiological maintenance of the general good health thru regulation of some metabolic processes while some others are essential for the synthesis of vitamins and short-chain fatty acids. The abnormal variation, in the quality and/or quantity of individual bacterial species residing in the gastro-intestinal tract, is called dysmicrobism. The immune system of the host will respond to these changes at the intestinal mucosa level which could lead to Inflammatory Bowel Diseases (IBD). This inflammatory immune response could subsequently extend to other organs and systems outside the digestive tract such as the thyroid, culminating in thyroiditis. The goal of the present study is to review and analyze data reported in the literature about thyroiditis associated with inflammatory bowel diseases such as Ulcerative Colitis (UC) and Crohns Disease (CD). It was reported that similarities of some molecular bacterial components with molecular components of the host are considered among the factors causing IBD through an autoimmune reaction which could involve other non-immune cell types. The axis dysmicrobism-IBD-autoimmune reaction will be investigated as a possible etiopathogenic mechanism to Autoimmune Thyroiditis. If such is the case, then the employment of specific probiotic strains may represent a useful approach to moderate the immune system.
Flipping the NF-κB Switch in Macrophages | Center for Cancer Research
A critical component of the innate immune system, macrophages respond to diverse microbes by recognizing certain molecular patterns, such as the Gram-negative bacteria product lipopolysaccharide (LPS), via Toll-like receptors. Receptor activation stimulates a complex signaling network that involves, among others, the NF-κB pathway. The complexity of this network has hampered researchers’ understanding of how macrophages resolve conflicting signals to determine when to mount an immune response.
The effects of Candida albicans cell wall protein fraction on dendritic cell maturation.
Roudbary, Maryam; Roudbar Mohammadi, Shahla; Bozorgmehr, Mahmood; Moazzeni, Seyed Mohammad
2009-06-01
Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, beta glucans and chitins, and proteins that partially modulate the host immune responses. Dendritic cells (DC), as the most important antigen-presenting cells of the immune system, play a critical role in inducing immune responses against different pathogens. We investigated the effect of the cell wall protein fraction (CPF) of C. albicans on DC maturation. The CPF of C. albicans cells was extracted by a lysis buffer containing sodium dodecyl sulphate, 2-mercaptoethanol and phosphate-buffered saline. The extract was dialyzed and its protein pattern was evaluated by electrophoresis. Dendritic cells were purified from Balb/c mice spleens through a three-step method including mononuclear cell separation, as well as 2-h and overnight cultures. The purified CPF was added at different concentrations to DC. The purity and maturation status of DC were determined by flow cytometry using monoclonal antibodies against CD11c, MHC-II, CD40 and CD86. Treatment of DC with 10 microg/ml of CPF increased the expression of maturation markers including MHC-II, CD86 and CD40 on DC compared to the control group. In this study we used C. albicans CPF with the molecular weight of 40-45 kDa for pulsing and maturation of dendritic cells. Since according to our results CPF significantly increased the expression of maturation markers on DC, we suggest that CPF may act as an efficient immunomodulator, or may be used as a potential adjuvant to boost the host immune system against infections.
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Zinc in Infection and Inflammation
Gammoh, Nour Zahi; Rink, Lothar
2017-01-01
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136
Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.
Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G
2017-01-01
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Lasting monitoring of immune state in patients with coronary atherosclerosis
NASA Astrophysics Data System (ADS)
Malinova, Lidia I.; Denisova, Tatyana P.; Tuchin, Valery V.
2007-02-01
Immune state monitoring is an expensive, invasive and sometimes difficult necessity in patients with different disorders. Immune reaction dynamics study in patients with coronary atherosclerosis provides one of the leading components to complication development, clinical course prognosis and treatment and rehabilitation tactics. We've chosen intravenous glucose injection as metabolic irritant in the following four groups of patients: men with proved coronary atherosclerosis (CA), non insulin dependent diabetes mellitus (NIDDM), men hereditary burden by CA and NIDDM and practically healthy persons with longlivers in generation. Immune state parameters such as quantity of leukocytes and lymphocytes, circulating immune complexes levels, serum immunoglobulin levels, HLA antigen markers were studied at 0, 30 and 60 minutes during glucose loading. To obtain continues time function of studied parameters received data were approximated by polynomials of high degree with after going first derivatives. Time functions analyze elucidate principally different dynamics studied parameters in all chosen groups of patients, which couldn't be obtained from discontinuous data compare. Leukocyte and lymphocyte levels dynamics correlated HLA antigen markers in all studied groups. Analytical estimation of immune state in patients with coronary atherosclerosis shows the functional "margin of safety" of immune system state under glucose disturbance. Proposed method of analytical estimation also can be used in immune system monitoring in other groups of patients.
Zinc in Infection and Inflammation.
Gammoh, Nour Zahi; Rink, Lothar
2017-06-17
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.
Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity.
Murphy, J E; Robert, C; Kupper, T S
2000-03-01
As our primary interface with the environment, the skin is constantly subjected to injury and invasion by pathogens. The fundamental force driving the evolution of the immune system has been the need to protect the host against overwhelming infection. The ability of T and B cells to recombine antigen receptor genes during development provides an efficient, flexible, and powerful immune system with nearly unlimited specificity for antigen. The capacity to expand subsets of antigen-specific lymphocytes that become activated by environmental antigens (memory response) is termed "acquired" immunity. Immunologic memory, although a fundamental aspect of mammalian biology, is a relatively recent evolutionary event that permits organisms to live for years to decades. "Innate" immunity, mediated by genes that remain in germ line conformation and encode for proteins that recognize conserved structural patterns on microorganisms, is a much more ancient system of host defense. Defensins and other antimicrobial peptides, complement and opsonins, and endocytic receptors are all considered components of the innate immune system. None of these, however, are signal-transducing receptors. Most recently, a large family of cell surface receptors that mediate signaling through the NF-kappaB transcription factor has been identified. This family of proteins shares striking homology with plant and Drosophila genes that mediate innate immunity. In mammals, this family includes the type I interleukin-1 receptor, the interleukin-18 receptor, and a growing family of Toll-like receptors, two of which were recently identified as signal-transducing receptors for bacterial endotoxin. In this review, we discuss how interleukin-1 links the innate and acquired immune systems to provide synergistic host defense activities in skin.
Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei
2010-04-26
Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.
Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease
Allen Reish, Heather E.; Standaert, David G.
2015-01-01
Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354
Vascular, glial, and lymphatic immune gateways of the central nervous system.
Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O
2016-09-01
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Haematopoietic development and immunological function in the absence of cathepsin D
Tulone, Calogero; Uchiyama, Yasuo; Novelli, Marco; Grosvenor, Nicholas; Saftig, Paul; Chain, Benjamin M
2007-01-01
Background Cathepsin D is a well-characterized aspartic protease expressed ubiquitously in lysosomes. Cathepsin D deficiency is associated with a spectrum of pathologies leading ultimately to death. Cathepsin D is expressed at high levels in many cells of the immune system, but its role in immune function is not well understood. This study examines the reconstitution and function of the immune system in the absence of cathepsin D, using bone marrow radiation chimaeras in which all haematopoietic cells are derived from cathepsin D deficient mice. Results Cathepsin D deficient bone marrow cells fully reconstitute the major cellular components of both the adaptive and innate immune systems. Spleen cells from cathepsin D deficient chimaeric mice contained an increased number of autofluorescent granules characteristic of lipofuscin positive lysosomal storage diseases. Biochemical and ultrastructural changes in cathepsin D deficient spleen are consistent with increased autolysosomal activity. Chimaeric mice were immunised with either soluble (dinitrophenylated bovine gamma globulin) or particulate (sheep red blood cells) antigens. Both antigens induced equivalent immune responses in wild type or cathepsin D deficient chimaeras. Conclusion All the parameters of haematopoietic reconstitution and adaptive immunity which were measured in this study were found to be normal in the absence of cathepsin D, even though cathepsin D deficiency leads to dysregulation of lysosomal function. PMID:17897442
Koonin, Eugene V
2017-02-10
Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.
Cocoa Diet and Antibody Immune Response in Preclinical Studies.
Camps-Bossacoma, Mariona; Massot-Cladera, Malen; Abril-Gil, Mar; Franch, Angels; Pérez-Cano, Francisco J; Castell, Margarida
2017-01-01
The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system's functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig) G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.
Jacobsen, Jonathan Henry W; Buisman-Pijlman, Femke T A; Mustafa, Sanam; Rice, Kenner C; Hutchinson, Mark R
2018-01-01
Circadian rhythm affects drug-induced reward behaviour and the innate immune system. Peaks in reward-associated behaviour and immune responses typically occur during the active (dark) phase of rodents. While the role of the immune system, specifically, Toll-like receptor 4 (TLR4, an innate immune receptor) in drug-induced reward is becoming increasingly appreciated, it is unclear whether its effects vary according to light-cycle. Therefore, the aim of this study was to characterise the effects of the phase of the light-cycle and the state of the innate immune system on alcohol reward behaviour and subsequently determine whether the efficacy of targeting the immune component of drug reward depends upon the light-cycle. This study demonstrates that mice exhibit greater alcohol-induced conditioned place preference and alcohol two-bottle choice preference during the dark cycle. This effect overlapped with elevations in reward-, thirst- and immune-related genes. Administration of (+)-Naltrexone, a TLR4 antagonist, reduced immune-related gene mRNA expression and alcohol preference with its effects most pronounced during the dark cycle. However, (+)-Naltrexone, like other TLR4 antagonists exhibited off-target side effects, with a significant reduction in overall saccharin intake - an effect likely attributable to a reduction in tyrosine hydroxylase (Th) mRNA expression levels. Collectively, the study highlights a link between a time-of-day dependent influence of TLR4 on natural and alcohol reward-like behaviour in mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Mansour, Abdallah Tageldein; Miao, Liang; Espinosa, Cristóbal; García-Beltrán, José María; Ceballos Francisco, Diana C; Esteban, M Ángeles
2018-08-01
The effect of the dietary incorporation of drumstick, Moringa oleifera, leaf meal (MOL; 0, 5, 10 and 15%) on the growth, feed utilization, some skin mucus and systemic immune parameters and intestinal immune-related gene expression in gilthead seabream (Sparus aurata) specimens. The experiment lasted 4 weeks. The results revealed that MOL can be incorporated in S. aurata diet up to 10% with no significant negative effect on growth and feed utilization. However, there was a significant decrease with MOL at a level of 15% after 2 weeks of feeding. The systemic immune status of fish fed with the different levels of MOL showed an improvement in head kidney leucocyte phagocytosis, respiratory burst and peroxidase activities. Also, serum humoral components, including protease, ACH 50 and lysozyme activities and IgM level, increased with MOL inclusion especially at the 5% level. MOL at 5% improved skin-mucosal immunity such as protease, antiprotease, peroxidase and lysozyme activities. Moreover, the feeding of MOL revealed an upregulation of the intestinal mucosal immunity genes (lyso and c3), tight junction proteins (occludin and zo-1) and anti-inflammatory cytokines (tgf-β) with a downregulation of pro-inflammatory cytokine (tnf-α). Therefore, it is recommended to incorporate MOL in S. aurata diets at a level of 5% for the best immune status or 10% for the high growth performance and acceptable immune surveillance. Graphical abstract ᅟ.
Linking autoimmunity to the origin of the adaptive immune system.
Bayersdorf, Robert; Fruscalzo, Arrigo; Catania, Francesco
2018-01-01
In jawed vertebrates, the adaptive immune system (AIS) cooperates with the innate immune system (IIS) to protect hosts from infections. Although targeting non-self-components, the AIS also generates self-reactive antibodies which, when inadequately counter-selected, can give rise to autoimmune diseases (ADs). ADs are on the rise in western countries. Why haven't ADs been eliminated during the evolution of a ∼500 million-year old system? And why have they become more frequent in recent decades? Self-recognition is an attribute of the phylogenetically more ancient IIS and empirical data compellingly show that some self-reactive antibodies, which are classifiable as elements of the IIS rather then the AIS, may protect from (rather than cause) ADs. Here, we propose that the IIS's self-recognition system originally fathered the AIS and, as a consequence of this relationship, its activity is dampened in hygienic environments. Rather than a mere breakdown or failure of the mechanisms of self-tolerance, ADs might thus arise from architectural constraints.
T cells play an essential role in anti-F1 mediated rapid protection against bubonic plague.
Levy, Yinon; Flashner, Yehuda; Tidhar, Avital; Zauberman, Ayelet; Aftalion, Moshe; Lazar, Shirley; Gur, David; Shafferman, Avigdor; Mamroud, Emanuelle
2011-09-16
Plague, which is initiated by Yersinia pestis infection, is a fatal disease that progresses rapidly and leads to high mortality rates if not treated. Antibiotics are an effective plague therapy, but antibiotic-resistant Y. pestis strains have been reported and therefore alternative countermeasures are needed. In the present study, we assessed the potential of an F1 plus LcrV-based vaccine to provide protection shortly pre- or post-exposure to a lethal Y. pestis infection. Mice vaccinated up to one day before or even several hours after subcutaneous challenge were effectively protected. Mice immunized one or three days pre-challenge were protected even though their anti-F1 and anti-LcrV titers were below detection levels at the day of challenge. Moreover, using B-cell deficient μMT mice, we found that rapidly induced protective immunity requires the integrity of the humoral immune system. Analysis of the individual contributions of vaccine components to protection revealed that rF1 is responsible for the observed rapid antibody-mediated immunity. Applying anti-F1 passive therapy in the mouse model of bubonic plague demonstrated that anti-F1 F(ab')(2) can delay mortality, but it cannot provide long-lasting protection, as do intact anti-F1 molecules. Fc-dependent immune components, such as the complement system and (to a lesser extent) neutrophils, were found to contribute to mouse survival. Interestingly, T cells but not B cells were found to be essential for the recovery of infected animals following passive anti-F1 mediated therapy. These data extend our understanding of the immune mechanisms required for the development of a rapid and effective post-exposure therapy against plague. Copyright © 2011 Elsevier Ltd. All rights reserved.
Trivedi, Sumita; Srivastava, Raghvendra M; Concha-Benavente, Fernando; Ferrone, Soldano; Garcia-Bates, Tatiana M; Li, Jing; Ferris, Robert L
2016-11-01
EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8 + T cells in patients treated with cetuximab compared with those treated with panitumumab. Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR. ©2016 American Association for Cancer Research.
Pivoting the Plant Immune System from Dissection to Deployment
Dangl, Jeffery L.; Horvath, Diana M.; Staskawicz, Brian J.
2013-01-01
Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease resistance beyond the limits imposed by conventional breeding and in a manner that will replace costly and unsustainable chemical controls. PMID:23950531
A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs
Gordon, Y. Jerold; Romanowski, Eric G.; McDermott, Alison M.
2006-01-01
Purpose. Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Methods. Literature review. Results. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. Conclusions. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven. PMID:16020284
Brokordt, Katherina B.; González, Roxana C.; Farías, William J.; Winkler, Federico M.
2015-01-01
Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h 2) and the additive genetic coefficient of variation (CV A) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h 2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h 2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CV A of 13.3–16.2% in young adults and of 2.7–8.1% in pre-harvest adults. Thus, despite its low h 2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals. PMID:26529324
Brokordt, Katherina B; González, Roxana C; Farías, William J; Winkler, Federico M
2015-01-01
Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h2) and the additive genetic coefficient of variation (CVA) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CVA of 13.3-16.2% in young adults and of 2.7-8.1% in pre-harvest adults. Thus, despite its low h2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals.
Polio Endgame: Lessons Learned From the Immunization Systems Management Group.
Zipursky, Simona; Vandelaer, Jos; Brooks, Alan; Dietz, Vance; Kachra, Tasleem; Farrell, Margaret; Ottosen, Ann; Sever, John L; Zaffran, Michel J
2017-07-01
The Immunization Systems Management Group (IMG) was established to coordinate and oversee objective 2 of the Polio Eradication and Endgame Strategic Plan 2013-2018, namely, (1) introduction of ≥1 dose of inactivated poliovirus vaccine in all 126 countries using oral poliovirus vaccine (OPV) only as of 2012, (2) full withdrawal of OPV, starting with the withdrawal of its type 2 component, and (3) using polio assets to strengthen immunization systems in 10 priority countries. The IMG's inclusive, transparent, and partnership-focused approach proved an effective means of leveraging the comparative and complementary strengths of each IMG member agency. This article outlines 10 key factors behind the IMG's success, providing a potential set of guiding principles for the establishment and implementation of other interagency collaborations and initiatives beyond the polio sphere. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
A systematic review on the impact of diabetes mellitus on the ocular surface
Shih, K Co; Lam, K S-L; Tong, L
2017-01-01
Diabetes mellitus is associated with extensive morbidity and mortality in any human community. It is well understood that the burden of diabetes is attributed to chronic progressive damage in major end-organs, but it is underappreciated that the most superficial and transparent organ affected by diabetes is the cornea. Different corneal components (epithelium, nerves, immune cells and endothelium) underpin specific systemic complications of diabetes. Just as diabetic retinopathy is a marker of more generalized microvascular disease, corneal nerve changes can predict peripheral and autonomic neuropathy, providing a window of opportunity for early treatment. In addition, alterations of immune cells in corneas suggest an inflammatory component in diabetic complications. Furthermore, impaired corneal epithelial wound healing may also imply more widespread disease. The non-invasiveness and improvement in imaging technology facilitates the emergence of new screening tools. Systemic control of diabetes can improve ocular surface health, possibly aided by anti-inflammatory and vasoprotective agents. PMID:28319106
Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.
Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T
2018-04-01
Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.
ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity.
Sun, Tongjun; Zhang, Yaxi; Li, Yan; Zhang, Qian; Ding, Yuli; Zhang, Yuelin
2015-12-18
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses.
Latifoğlu, Fatma; Polat, Kemal; Kara, Sadik; Güneş, Salih
2008-02-01
In this study, we proposed a new medical diagnosis system based on principal component analysis (PCA), k-NN based weighting pre-processing, and Artificial Immune Recognition System (AIRS) for diagnosis of atherosclerosis from Carotid Artery Doppler Signals. The suggested system consists of four stages. First, in the feature extraction stage, we have obtained the features related with atherosclerosis disease using Fast Fourier Transformation (FFT) modeling and by calculating of maximum frequency envelope of sonograms. Second, in the dimensionality reduction stage, the 61 features of atherosclerosis disease have been reduced to 4 features using PCA. Third, in the pre-processing stage, we have weighted these 4 features using different values of k in a new weighting scheme based on k-NN based weighting pre-processing. Finally, in the classification stage, AIRS classifier has been used to classify subjects as healthy or having atherosclerosis. Hundred percent of classification accuracy has been obtained by the proposed system using 10-fold cross validation. This success shows that the proposed system is a robust and effective system in diagnosis of atherosclerosis disease.
Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben
2016-04-01
Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
Keller, Isabel S; Salzburger, Walter; Roth, Olivia
2017-12-20
Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure.
Evolution of lactation: nutrition v. protection with special reference to five mammalian species.
McClellan, Holly L; Miller, Susan J; Hartmann, Peter E
2008-12-01
The evolutionary origin of the mammary gland has been difficult to establish because little knowledge can be gained on the origin of soft tissue organs from fossil evidence. One approach to resolve the origin of lactation has compared the anatomy of existing primitive mammals to skin glands, whilst another has examined the metabolic and molecular synergy between mammary gland development and the innate immune system. We have reviewed the physiology of lactation in five mammalian species with special reference to these theories. In all species, milk fulfils dual functions of providing protection and nutrition to the young and, furthermore, within species the quality and quantity of milk are highly conserved despite maternal malnutrition or illness. There are vast differences in birth weight, milk production, feeding frequency, macronutrient concentration, growth rate and length of lactation between rabbits, quokkas (Setonix brachyurus), pigs, cattle and humans. The components that protect the neonate against infection do so without causing inflammation. Many protective components are not unique to the mammary gland and are shared with the innate immune system. In contrast, many of the macronutrients in milk are unique to the mammary gland, have evolved from components of the innate immune system, and have either retained or developed multiple functions including the provision of nourishment and protection of the hatchling/neonate. Thus, there is a strong argument to suggest that the mammary gland evolved from the inflammatory response; however, the extensive protection that has developed in milk to actively avoid triggering inflammation seems to be a contradiction.
Robbins, Marjorie; Judge, Adam; MacLachlan, Ian
2009-06-01
Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.
Hadland, Brandon; Yoshimoto, Momoko
2018-04-01
In adult hematopoiesis, the hematopoietic stem cell (HSC) sits at the top of a hierarchy of hematopoietic progenitors responsible for generating the diverse repertoire of blood and immune cells. During embryonic development, however, the initial waves of hematopoiesis provide the first functioning blood cells of the developing embryo, such as primitive erythrocytes arising in the yolk sac, independently of HSCs. In the field of developmental immunology, it has been recognized that some components of the immune system, such as B-1a lymphocytes, are uniquely produced during the embryonic and neonatal period, suggesting a "layered" development of immunity. Several recent studies have shed new light on the developmental origin of the layered immune system, suggesting complex and sometimes multiple contributions to unique populations of innate-like immune cells from both fetal HSCs and earlier HSC-independent progenitors. In this review, we will attempt to synthesize these studies to provide an integrated model of developmental hematopoiesis and layered immunity that may offer new insights into the origin of HSCs. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Han, Bin; Li, Xiuping; Hao, Junwei
2017-06-01
Acetylcholine (ACh), as a classical neurotransmitter, regulates the neuronal network in response to internal and external stimuli. In recent decades, the biology of ACh has been endowed with unparalleled new insights, especially with respect to cholinergic anti-inflammatory properties in non-neuronal cells. In fact, a mechanism frequently referred to as the "cholinergic anti-inflammatory pathway" has been termed to describe interactions between the central nervous system (CNS) and the immune system via vagus nerve. As well documented, immune cells express choline acetyltransferase, a direct synthetase for ACh, and other corresponding cholinergic components. Alternatively, the ACh released from immune cells or cholinergic neurons modulates immune function in an autocrine/paracrine manner by acting on its receptors. Moreover, muscarinic or nicotinic ACh receptors on various immune cells and CNS glial cells administer the work of their respective agonists, causing functional and biochemical changes. In this review, we focus on the anti-inflammatory benefits of non-neuronal and neuronal ACh as a means of providing new insights into treating inflammation-related neurological diseases, as exemplified by those described herein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Van Wees, Saskia C M; Van Pelt, Johan A; Bakker, Peter A H M; Pieterse, Corné M J
2013-01-01
Jasmonates, together with other plant hormones, are important orchestrators of the plant immune system. The different hormone-controlled signaling pathways cross-communicate in an antagonistic or a synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Jasmonic acid (JA) signaling is required for plant resistance to harmful organisms, such as necrotrophic pathogens and herbivorous insects. Furthermore, JA signaling is essential in interactions of plants with beneficial microbes that induce systemic resistance to pathogens and insects. The role of JA signaling components in plant immunity can be studied by performing bioassays with different interacting organisms. Determination of the level of resistance and the induction of defense responses in plants with altered JA components, through mutation or ectopic expression, will unveil novel mechanisms of JA signaling. We provide detailed protocols of bioassays with the model plant Arabidopsis thaliana challenged with the pathogens Botrytis cinerea and Pseudomonas syringae, the insect herbivore Pieris rapae, and the beneficial microbe Pseudomonas fluorescens. In addition, we describe pharmacological assays to study the modulation of JA-regulated responses by exogenous application of combinations of hormones, because a simultaneous rise in hormone levels occurs during interaction of plants with other organisms.
Bekkari, Nadjia; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima
2015-01-01
Androctonus australis hector scorpion venom is well known by its high toxicity, it induces massive release of neurotransmitters that lead to pathophysiological disorders in cardiovascular, neuro-hormonal and immune systems. Previous studies have shown the relationship between the severity of scorpion envenoming and immune system activation. This study was assessed to investigate the involvement of complement system and inflammatory mediators after sublethal injection of Aah venom, its toxic fraction (FtoxG50) and its main toxins (AahI and AahII) into NMRI mice. The Activation complement system by the venom is also compared to that induced of lipopolysaccharides (LPS). Obtained results showed that seric complement system (CS) is activated by the venom and by its toxic components; this activation is more pronounced into liver tissue when toxic components (FtoxG50, AahI or AahII) are used. Increase of cytokine levels (IL1β, TNFα and ICAM) into hepatic tissue induced by AahI or AahII neurotoxins is correlated with tissue alterations. Aprotinin, a non specific inhibitor of complement system seems to be able to reduce CS consumption and to restore partially the induced tissue damage by venom. The mechanisms by which toxic fraction or LPS induced the activation of complement system seem to be different. Sensitivity of hepatic tissue is more pronounced after FtoxG50 injection; however lung tissue is more sensible to LPS than FoxG50. Copyright © 2015 Elsevier GmbH. All rights reserved.
Immune response varies with rate of dispersal in invasive cane toads (Rhinella marina).
Brown, Gregory P; Shine, Richard
2014-01-01
What level of immunocompetence should an animal maintain while undertaking long-distance dispersal? Immune function (surveillance and response) might be down-regulated during prolonged physical exertion due to energy depletion, and/or to avoid autoimmune reactions arising from damaged tissue. On the other hand, heightened immune vigilance might be favored if the organism encounters novel pathogens as it enters novel environments. We assessed the links between immune defense and long-distance movement in a population of invasive cane toads (Rhinella marina) in Australia. Toads were radio-tracked for seven days to measure their activity levels and were then captured and subjected to a suite of immune assays. Toads that moved further showed decreased bacteria-killing ability in their plasma and decreased phagocytic activity in their whole blood, but a heightened skin-swelling response to phytohemagglutinin. Baseline and post-stress corticosterone levels were unrelated to distance moved. Thus, long-distance movement in cane toads is associated with a dampened response in some systems and enhanced response in another. This pattern suggests that sustained activity is accompanied by trade-offs among immune components rather than an overall down or up-regulation. The finding that high mobility is accompanied by modification of the immune system has important implications for animal invasions.
Drosophila cellular immunity: a story of migration and adhesion.
Fauvarque, Marie-Odile; Williams, Michael J
2011-05-01
Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.
Viral ancestors of antiviral systems.
Villarreal, Luis P
2011-10-01
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Viral Ancestors of Antiviral Systems
Villarreal, Luis P.
2011-01-01
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523
[Depression and neuroplasticity. Interaction of nervous, endocrine and immune systems].
Cassano, Paola; Argibay, Pablo
2010-01-01
Clinical depression is a physical and psychic disease that has neuropathological basis, although the clear understanding of its ethiopathology is still missing. There is evidence of a genetic component in depression, however, the participation of environment is crucial. Stress plays an essential role in the onset of depression. The interaction and the response of the endocrine system with the immune and nervous system are altered in depression. The observation of the effect of antidepressants on monoaminergic transmitters leads to the hypothesis of monoamines. However this hypothesis cannot explain many of the mechanisms involved in the action of antidepressants. The new hypothesis proposed to explain the action of antidepressant is the neuro-plasticity hypothesis. This hypothesis suggests that the effects of antidepressants on nervous, immune and endocrine systems are able to induce neuroadaptative changes in the brain. The neuroplasticity have been described as the ability of the brain to reorganize itself and form new neuronal connections throughout life. It is proposed that antidepressants influence neuroplasticity inducing improvements in the symptoms of this illness.
Han, Xiaozhe; LaRosa, Karen B; Kawai, Toshihisa; Taubman, Martin A
2014-01-03
Porphyromonas gingivalis (Pg) is one of a constellation of oral organisms associated with human chronic periodontitis. While adaptive immunity to periodontal pathogen proteins has been investigated and is an important component of periodontal bone resorption, the effect of periodontal pathogen DNA in eliciting systemic and mucosal antibody and modulating immune responses has not been investigated. Rowett rats were locally injected with whole genomic Pg DNA in alum. Escherichia coli (Ec) genomic DNA, Fusobacterium nucleatum (Fn) genomic DNA, and saline/alum injected rats served as controls. After various time points, serum IgG and salivary IgA antibody to Ec, Fn or Pg were detected by ELISA. Serum and salivary antibody reactions with Pg surface antigens were determined by Western blot analyses and the specific antigen was identified by mass spectrometry. Effects of genomic DNA immunization on Pg bacterial colonization and experimental periodontal bone resorption were also evaluated. Sera from Pg DNA, Ec DNA and Fn DNA-injected rats did not react with Ec or Fn bacteria. Serum IgG antibody levels to Pg and Pg surface extracts were significantly higher in animals immunized with Pg DNA as compared to the control groups. Rats injected with Pg DNA demonstrated a strong serum IgG and salivary IgA antibody reaction solely to Pg fimbrillin (41kDa), the major protein component of Pg fimbriae. In the Pg DNA-immunized group, the numbers of Pg bacteria in oral cavity and the extent of periodontal bone resorption were significantly reduced after Pg infection. This study suggests that infected hosts may select specific genes from whole genomic DNA of the periodontal pathogen for transcription and presentation. The results indicate that the unique gene selected can initiate a host protective immune response to the parent bacterium. Copyright © 2013 Elsevier Ltd. All rights reserved.
Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia
Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.
2012-01-01
Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085
[Breast milk: its nutritional composition and functional properties].
Tackoen, M
2012-09-01
Human milk is a complex biological fluid with thousands of components. The milk composition in the mammalian species is specific and adapted to the needs of the offspring. It contains macronutrients (proteins, lipids and carbohydrates), micronutrients (minerals and vitamins) and numerous biologically active substrates. Human milk not only covers the nutritional needs of the newborn but protects the baby against infection, inflammation and oxidative stress. It has immunomodulation properties and confers trophical protection to the intestinal mucosa. The newborn infant is particularly immature: innate immunity, adaptive immunity and intestinal immaturity. Human milk will offer this exogenous protective and immunomodulating source. The development of the composition of the intestinal microflora of the neonate will be impacted by pre- and probiotic components of human milk. Current scientific knowledge of human milk properties highlights interdependency of the different components, ontogeny of the intestinal function, development of the mucosal intestinal immune system, colonization by the intestinal microbiota and protection against pathogens. Quality of these interactions influences the newborn's short and long-term health status. The promotion of breastfeeding with the support of the Baby Friendly Hospital Initiative (BFHI) program and labeling has been shown to have positive impact in public health.
Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens.
Grayfer, Leon; Andino, Francisco De Jesús; Chen, Guangchun; Chinchar, Gregory V; Robert, Jacques
2012-07-01
Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95-100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections.
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J
2014-01-01
The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809
VIP as a potential therapeutic agent in gram negative sepsis.
Ibrahim, Hiba; Barrow, Paul; Foster, Neil
2012-12-01
Gram negative sepsis remains a high cause of mortality and places a great burden on public health finance in both the developed and developing world. Treatment of sepsis, using antibiotics, is often ineffective since pathology associated with the disease occurs due to dysregulation of the immune system (failure to return to steady state conditions) which continues after the bacteria, which induced the immune response, have been cleared. Immune modulation is therefore a rational approach to the treatment of sepsis but to date no drug has been developed which is highly effective, cheap and completely safe to use. One potential therapeutic agent is VIP, which is a natural peptide and is highly homologous in all vertebrates. In this review we will discuss the effect of VIP on components of the immune system, relevant to gram negative sepsis, and present data from animal models. Furthermore we will hypothesise on how these studies could be improved in future and speculate on the possible different ways in which VIP could be used in clinical medicine.
NASA Astrophysics Data System (ADS)
Cooper, Edwin L.; Overstreet, Nicola
2014-03-01
Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among the prokaryotes, not exclusively among eukaryotes. Mathematical models have been proposed which simulate the evolutionary patterns of CRISPR, however large gaps in our understanding of CRISPR-Cas function and evolution still exist. The CRISPR-Cas system is analogous to small RNAs involved in resistance mechanisms throughout the tree of life, and a deeper understanding of the evolution of small RNA pathways is necessary before the relationship between these convergent systems is to be determined. Presented in this review are novel RNAi therapies based on CRISPR-Cas analogs and the potential for future therapies based on CRISPR-Cas system components.
Innovative Strategies for Breast Cancer Immunotherapy
2014-09-01
as well as T regulatory cells ( Tregs : FOXP3 and CD25 positive) were determined in K-CAR T cells obtained from BC patients or normal female donors...since Tregs are a component of the immune system that suppresses immune responses of other cells. A sample from a BC patient (#243, diagnosed with...33). Suppression of CD8+ effector cells by CD4+CD25+FoxP3+ regulatory T cells ( Tregs ) plays a key role in this immunosuppression (34). Our results
Innovative Strategies for Breast Cancer Immunotherapy
2014-09-01
donors, percentages of CD4+ and CD8+ T cells as well as T regulatory cells ( Tregs : FOXP3 and CD25 positive) were determined in K-CAR T cells...obtained from BC patients or normal female donors, since Tregs are a component of the immune system that suppresses immune responses of other cells. A...immunosuppressive mechanisms that inhibit T cell activation (33). Suppression of CD8+ effector cells by CD4+CD25+FoxP3+ regulatory T cells ( Tregs ) plays a key role
Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung
2016-01-01
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032
Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System
Hudson, Lauren E.; McDermott, Courtney D.; Stewart, Taryn P.; Hudson, William H.; Rios, Daniel; Fasken, Milo B.; Corbett, Anita H.; Lamb, Tracey J.
2016-01-01
The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer’s patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle. PMID:27064405
Hudson, Lauren E; McDermott, Courtney D; Stewart, Taryn P; Hudson, William H; Rios, Daniel; Fasken, Milo B; Corbett, Anita H; Lamb, Tracey J
2016-01-01
The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer's patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle.
Induction of innate immunity and its perturbation by influenza viruses.
Goraya, Mohsan Ullah; Wang, Song; Munir, Muhammad; Chen, Ji-Long
2015-10-01
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5'-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.
Kidney dendritic cells in acute and chronic renal disease.
Hochheiser, Katharina; Tittel, André; Kurts, Christian
2011-06-01
Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Peptidegic stimulation of differentiation of pineal immune cells.
Linkova, N S; Khavinson, V Kh; Chalisova, N I; Katanugina, A S; Koncevaya, E A
2011-11-01
We studied cell composition of the pineal lymphoid tissue and the effect of peptides on its differentiation and proliferation capacity. It was shown that the lymphoid component of the pineal gland in organotypic culture is primarily presented by low-differentiated CD5(+)-lymphocytes, while mature T and B cells are less abundant. Dipeptide vilon stimulates differentiation of precursors into T-helpers, cytotoxic T lymphocytes, and B cells, while tetrapeptide epithalon stimulated their differentiation towards B cells. Tripeptide vesugen had no effect on differentiation capacity of immune cells of the pineal gland, but enhanced their proliferation potential. Thus, dipeptide vilon acts as an inductor of differentiation of pineal immune cells, which can play an important compensatory role in age-related atrophy of the thymus, the central organ of the immune system.
Protective Microbiota: From Localized to Long-Reaching Co-Immunity
Chiu, Lynn; Bazin, Thomas; Truchetet, Marie-Elise; Schaeverbeke, Thierry; Delhaes, Laurence; Pradeu, Thomas
2017-01-01
Resident microbiota do not just shape host immunity, they can also contribute to host protection against pathogens and infectious diseases. Previous reviews of the protective roles of the microbiota have focused exclusively on colonization resistance localized within a microenvironment. This review shows that the protection against pathogens also involves the mitigation of pathogenic impact without eliminating the pathogens (i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic spread. Protective microorganisms can have an impact beyond their niche, interfering with the entry, establishment, growth, and spread of pathogenic microorganisms. More fundamentally, we propose a series of conceptual clarifications in support of the idea of a “co-immunity,” where an organism is protected by both its own immune system and components of its microbiota. PMID:29270167
Cocoa Diet and Antibody Immune Response in Preclinical Studies
Camps-Bossacoma, Mariona; Massot-Cladera, Malen; Abril-Gil, Mar; Franch, Angels; Pérez-Cano, Francisco J.; Castell, Margarida
2017-01-01
The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system’s functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig) G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status. PMID:28702458
Innate Immunity and Breast Milk.
Cacho, Nicole Theresa; Lawrence, Robert M
2017-01-01
Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.
Systemic lupus erythematosus biomarkers: the challenging quest
Wren, Jonathan D.; Munroe, Melissa E.; Mohan, Chandra
2017-01-01
Abstract SLE, a multisystem heterogeneous disease, is characterized by production of antibodies to cellular components, with activation of both the innate and the adaptive immune system. Decades of investigation of blood biomarkers has resulted in incremental improvements in the understanding of SLE. Owing to the heterogeneity of immune dysregulation, no single biomarker has emerged as a surrogate for disease activity or prediction of disease. Beyond identification of surrogate biomarkers, a multitude of clinical trials have sought to inhibit elevated SLE biomarkers for therapeutic benefit. Armed with new -omics technologies, the necessary yet daunting quest to identify better surrogate biomarkers and successful therapeutics for SLE continues with tenacity. PMID:28013203
Kradin, R L
1995-01-01
In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS)
MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers
Franzenburg, Sören; Fraune, Sebastian; Künzel, Sven; Baines, John F.; Domazet-Lošo, Tomislav; Bosch, Thomas C. G.
2012-01-01
Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens. PMID:23112184
MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers.
Franzenburg, Sören; Fraune, Sebastian; Künzel, Sven; Baines, John F; Domazet-Loso, Tomislav; Bosch, Thomas C G
2012-11-20
Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.
Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.
Fuess, Lauren E; Eisenlord, Morgan E; Closek, Collin J; Tracy, Allison M; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A; Harvell, C Drew; Friedman, Carolyn S; Hewson, Ian; Hershberger, Paul K; Roberts, Steven B
2015-01-01
Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.
Criscitiello, Michael F
2014-07-01
Sharks have successfully lived in marine ecosystems, often atop food chains as apex predators, for nearly one and a half billion years. Throughout this period they have benefitted from an immune system with the same fundamental components found in terrestrial vertebrates like man. Additionally, sharks have some rather extraordinary immune mechanisms which mammals lack. In this review the author briefly orients the reader to sharks, their adaptive immunity, and their important phylogenetic position in comparative immunology. The author also differentiates some of the myths from facts concerning these animals, their cartilage, and cancer. From thereon, the author explores some of the more remarkable capabilities and products of shark lymphocytes. Sharks have an isotype of light chain-less antibodies that are useful tools in molecular biology and are moving towards translational use in the clinic. These special antibodies are just one of the several tricks of shark lymphocyte antigen receptor systems. While shark cartilage has not helped oncology patients, shark immunoglobulins and T cell receptors do offer exciting novel possibilities for immunotherapeutics. Much of the clinical immunology developmental pipeline has turned from traditional vaccines to passively delivered monoclonal antibody-based drugs for targeted depletion, activation, blocking and immunomodulation. The immunogenetic tools of shark lymphocytes, battle-tested since the dawn of our adaptive immune system, are well poised to expand the design landscape for the next generation of immunotherapy products.
Mucosal and systemic adjuvant activity of alphavirus replicon particles
NASA Astrophysics Data System (ADS)
Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.
2006-03-01
Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus
The Role of Immune Escape and Immune Cell Infiltration in Breast Cancer.
Steven, André; Seliger, Barbara
2018-03-01
While detailed analysis of aberrant cancer cell signaling pathways and changes in cancer cell DNA has dominated the field of breast cancer biology for years, there now exists increasing evidence that the tumor microenvironment (TME) including tumor-infiltrating immune cells support the growth and development of breast cancer and further facilitate invasion and metastasis formation as well as sensitivity to drug therapy. Furthermore, breast cancer cells have developed different strategies to escape surveillance from the adaptive and innate immune system. These include loss of expression of immunostimulatory molecules, gain of expression of immunoinhibitory molecules such as PD-L1 and HLA-G, and altered expression of components involved in apoptosis. Furthermore, the composition of the TME plays a key role in breast cancer development and treatment response. In this review we will focus on i) the different immune evasion mechanisms used by breast cancer cells, ii) the role of immune cell infiltration in this disease, and (iii) implication for breast cancer-based immunotherapies.
Adipose tissue immunity and cancer
Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema
2013-01-01
Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481
Rural telemedicine project in northern New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zink, S.; Hahn, H.; Rudnick, J.
A virtual electronic medical record system is being deployed over the Internet with security in northern New Mexico using TeleMed, a multimedia medical records management system that uses CORBA-based client-server technology and distributed database architecture. The goal of the NNM Rural Telemedicine Project is to implement TeleMed into fifteen rural clinics and two hospitals within a 25,000 square mile area of northern New Mexico. Evaluation of the project consists of three components: job task analysis, audit of immunized children, and time motion studies. Preliminary results of the evaluation components are presented.
2010-01-01
multi-system organ failure, and remote organ injury at sites such as the lung, liver , small intestines, and brain, representing major causes of...inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound...healing, multi-system organ failure and increased mortality. Methods: In this study, we examined the impact of thermal injury -induced systemic
Jacobsen, Jonathan Henry W; Watkins, Linda R; Hutchinson, Mark R
2014-01-01
Opioids have historically, and continue to be, an integral component of pain management. However, despite pharmacokinetic and dynamic optimization over the past 100 years, opioids continue to produce many undesirable side effects such as tolerance, reward, and dependence. As such, opioids are liable for addiction. Traditionally, opioid addiction was viewed as a solely neuronal process, and while substantial headway has been made into understanding the molecular and cellular mechanisms mediating this process, research has however, been relatively ambivalent to how the rest of the central nervous system (CNS) responds to opioids. Evidence over the past 20 years has clearly demonstrated the importance of the immunocompetent cells of the CNS (glia) in many aspects of opioid pharmacology. Particular focus has been placed on microglia and astrocytes, who in response to opioids, become activated and release inflammatory mediators. Importantly, the mechanism underlying immune activation is beginning to be elucidated. Evidence suggests an innate immune pattern-recognition receptor (toll-like receptor 4) as an integral component underlying opioid-induced glial activation. The subsequent proinflammatory response may be viewed akin to neurotransmission creating a process termed central immune signaling. Translationally, we are beginning to appreciate the importance of central immune signaling as it contributes to many behavioral actions of addiction including reward, withdrawal, and craving. As such, the aim of this chapter is to review and integrate the neuronal and central immune signaling perspective of addiction. © 2014 Elsevier Inc. All rights reserved.
Immune defense and host life history.
Zuk, Marlene; Stoehr, Andrew M
2002-10-01
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
Toll-like Receptors in the Vascular System: Sensing the Dangers Within
McCarthy, Cameron G.; Webb, R. Clinton
2016-01-01
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin
Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, ismore » also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.« less
Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A
2008-12-01
The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.
IMMUNE DIFFUSION ANALYSIS OF THE EXTRACELLULAR SOLUBLE ANTIGENS OF TWO STRAINS OF RHIZOBIUM MELILOTI
Dudman, W. F.
1964-01-01
Dudman, W. F. (Commonwealth Scientific and Industrial Research Organization, Canberra, Australia). Immune diffusion analysis of the extracellular soluble antigens of two strains of Rhizobium meliloti. J. Bacteriol. 88:782–794. 1964.—Immune diffusion techniques applied to cultures of two strains of Rhizobium meliloti grown in liquid defined medium showed the presence of multiple antigens. Improved resolution of precipitin patterns was obtained with concentrated antigens separated from the cultures as the extracellular soluble fraction or as suspensions of washed cells. The extracellular fraction contained the same diffusible antigens as the washed cells, but additional antigens were found in the cells after ultrasonic disruption. The extracellular soluble antigens were shown by analysis to contain polysaccharide and protein components. In immune diffusion systems, they gave rise to three groups of precipitin bands, two of which were characterized as polysaccharides by their susceptibility to periodate oxidation, and the third as protein by its lability to heat. All the extracellular antigens of both strains were shared except a fast-diffusing polysaccharide, which was specific for each strain. Despite the sharing of all but one of their antigens, cells of these strains showed only a low degree of cross-agglutination, suggesting that their surfaces are dominated by the specific polysaccharide. No differences could be found in the composition of the polysaccharides in the unfractionated extracellular antigens of the two strains, the main components of which were glucose (66%) and galactose (12%) in the presence of several other unidentified sugars in smaller amounts. The pattern of precipitin bands produced in immune diffusion systems by the extracellular soluble fraction could be changed by altering the cultural conditions. Images PMID:14208519
Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C
2016-10-01
Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Keiser, Nicholas W; Birket, Susan E; Evans, Idil A; Tyler, Scott R; Crooke, Adrianne K; Sun, Xingshen; Zhou, Weihong; Nellis, Joseph R; Stroebele, Elizabeth K; Chu, Kengyeh K; Tearney, Guillermo J; Stevens, Mark J; Harris, J Kirk; Rowe, Steven M; Engelhardt, John F
2015-06-01
Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography-tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals.
Keiser, Nicholas W.; Birket, Susan E.; Evans, Idil A.; Tyler, Scott R.; Crooke, Adrianne K.; Sun, Xingshen; Zhou, Weihong; Nellis, Joseph R.; Stroebele, Elizabeth K.; Chu, Kengyeh K.; Tearney, Guillermo J.; Stevens, Mark J.; Harris, J. Kirk; Rowe, Steven M.
2015-01-01
Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography–tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals. PMID:25317669
Dadashev, S Ia; Gorach, G G; Kolomiets, O L
1994-01-01
Male mice were immunized with the suspension of synaptonemal complexes (SC) isolated from mouse spermatocytes nuclei. The indirect immunofluorescent analysis showed the active binding of sera obtained from immunized mice to SC of mouse spermatocyte spreads. At early and mid-pachytene, SC can be clearly identified in 19 autosome bivalents and in sex chromosome bivalent. According to the electron microscopic analysis, all structural elements of SC bind antibodies. Metaphase chromosomes were not stained with the immune sera. Specificity of interaction between SC components and antibodies was confirmed in a series of control experiments. Analysis of sera obtained from mice after their syngeneic immunization with isolated SC fraction suggested that certain mouse SC components induce the formation of autoantibodies. This, in turn, suggests that these SC components are meiosis-specific.
Hospital For Special Surgery/Immune System REgulation In Musculoskeletal Disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Meffre; Lionel Ivashkiv
2007-08-20
Inflammation on musculoskeletal disorders such as rheumatoid arthritis (RA) is the result of dysregulation of the immune system. When the immune system, which maintains the integrity of the organism in an environment rich in infectious microbes, becomes misdirected toward components of one’s own tissue, autoimmune disease can result with autoantibodies contributing to the inflammation and tissue damage. RA is a chronic autoimmune disease marked by severe inflammation that causes pain, swelling, stiffness and loss of function in the joints, which is estimated to affect 1 percent of the US adult population. Furthermore, autoimmune diseases, which affect women at a highermore » rate, are the fourth largest cause of disability among women in the US and among the top ten causes of death. The long range goal of this study is to elucidate the mechanisms that regulate the generation of autoantibodies by B cells in normal individuals and in patients with autoimmune diseases and provide insights into potential therapeutic interventions.« less
Novel adjuvants & delivery vehicles for vaccines development: a road ahead.
Mohan, Teena; Verma, Priyanka; Rao, D Nageswara
2013-11-01
The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.
Novel adjuvants & delivery vehicles for vaccines development: A road ahead
Mohan, Teena; Verma, Priyanka; Rao, D. Nageswara
2013-01-01
The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines. PMID:24434331
Dreyfus, David H.
2009-01-01
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination. PMID:19492059
Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds.
Banskota, Samagya; Yousefpour, Parisa; Chilkoti, Ashutosh
2017-01-01
The goal of drug delivery is to deliver therapeutics to the site of disease while reducing unwanted side effects. In recent years, a diverse variety of synthetic nano and microparticles have been developed as drug delivery systems. The success of these systems for drug delivery lies in their ability to overcome biological barriers such as the blood-brain barrier, to evade immune clearance and avoid nonspecific biodistribution. This Review provides an overview of recent advances in the design of biohybrid drug delivery systems, which combine cells with synthetic systems to overcome some of these biological hurdles. Examples include eukaryotic cells, such as stem cells, red blood cells, immune cells, platelets, and cancer cells that are used to carry drug-loaded synthetic particles. Synthetic particles can also be cloaked with naturally derived cell membranes and thereby evade immune clearance, exhibit prolonged systemic circulation, and target specific tissues by capitalizing on the interaction/homing tendency of certain cells and their membrane components to particular tissues. Different designs of cell-based biohybrid systems and their applications, as well as their promise and limitations, are discussed herein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C
2016-10-01
Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system. Copyright © 2016 by the Genetics Society of America.
Rádl, J.; van den Berg, P.; Voormolen, M.; Hendriks, W. D. H.; Schaefer, U. W.
1974-01-01
The immunoglobulin pattern in the sera of lethally irradiated and bone marrow transplanted Rhesus monkeys was studied during the reconstitution of their immune system. All of the irradiated monkeys which survived longer than 30 days, and in which reconstitution of their immune system took place, also developed homogeneous immunoglobulins (HI) in their sera. These homogeneous, sometimes multiple, immunoglobulins were transient. However, they persisted frequently in the sera for several months. In two monkeys which were additionally immunized with a complex antigen (normal human serum), clear-cut M-components appeared in the serum about 10 days later. These HI of IgG class did not precipitate the antigen in immunodiffusion techniques; however, when passing the serum through an immunoadsorbent prepared from normal human serum, only the HI were specifically retained on the column and afterwards isolated by elution. ImagesFIG. 1FIG. 2 PMID:4143277
DeLong, Robert K; Curtis, Chandler B
2017-03-01
Traditionally, vaccines have been composed of live attenuated or killed microorganisms. Alternatively, individual protein subunits or other molecular components of the microorganism can serve as the antigen and trigger an antibody response by the immune system. The immune system is a coordinated molecular and cellular response that works in concert to check the spread of infection. In the past decade, there has been much progress on DNA vaccines. DNA vaccination includes using the coding segments of a viral or bacterial genome to generate an immune response. However, the potential advantage of combining an RNA molecule with inorganic nanoparticle delivery should be considered, with the goal to achieve immuno-synergy between the two and to overcome some of the current limitations of DNA vaccines and traditional vaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1415. doi: 10.1002/wnan.1415 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Type I Interferon in the Pathogenesis of Lupus
Crow, Mary K.
2014-01-01
Investigations of patients with systemic lupus erythematosus (SLE) have applied insights from studies of the innate immune response to define type I interferon (IFN-I), with IFN-α the dominant mediator, as central to the pathogenesis of this prototype systemic autoimmune disease. Genetic association data identify regulators of nucleic acid degradation and components of TLR-independent, endosomal TLR-dependent, and IFN-I signaling pathways as contributors to lupus disease susceptibility. Together with a gene expression signature characterized by IFNI-induced gene transcripts in lupus blood and tissue, those data support the conclusion that many of the immunologic and pathologic features of this disease are a consequence of a persistent self-directed immune reaction driven by IFN-I and mimicking a sustained anti-virus response. This expanding knowledge of the role of IFN-I and the innate immune response suggests candidate therapeutic targets that are being tested in lupus patients. PMID:24907379
Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.
Jiang, Tony T; Shao, Tzu-Yu; Ang, W X Gladys; Kinder, Jeremy M; Turner, Lucien H; Pham, Giang; Whitt, Jordan; Alenghat, Theresa; Way, Sing Sing
2017-12-13
Commensal intestinal microbes are collectively beneficial in preventing local tissue injury and augmenting systemic antimicrobial immunity. However, given the near-exclusive focus on bacterial species in establishing these protective benefits, the contributions of other types of commensal microbes remain poorly defined. Here, we show that commensal fungi can functionally replace intestinal bacteria by conferring protection against injury to mucosal tissues and positively calibrating the responsiveness of circulating immune cells. Susceptibility to colitis and influenza A virus infection occurring upon commensal bacteria eradication is efficiently overturned by mono-colonization with either Candida albicans or Saccharomyces cerevisiae. The protective benefits of commensal fungi are mediated by mannans, a highly conserved component of fungal cell walls, since intestinal stimulation with this moiety alone overrides disease susceptibility in mice depleted of commensal bacteria. Thus, commensal enteric fungi safeguard local and systemic immunity by providing tonic microbial stimulation that can functionally replace intestinal bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Receptor-like kinases in plant innate immunity.
Wu, Ying; Zhou, Jian-Min
2013-12-01
Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens. [Figure: see text] Jian-Min Zhou (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.
Heine, Shannon J.; Diaz-McNair, Jovita; Martinez-Becerra, Francisco J.; Choudhari, Shyamal P.; Clements, John D.; Picking, Wendy L.; Pasetti, Marcela F.
2013-01-01
Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are components of the bacterial type III secretion system (TTSS), can prevent infection in a mouse model of intranasal immunization and lethal pulmonary challenge. Because they are conserved across Shigella spp. and highly immunogenic, these proteins are excellent candidates for a cross-protective vaccine. Ideally, such a vaccine could be administered to humans orally to induce mucosal and systemic immunity. In this study, we investigated the immunogenicity and protective efficacy of Shigella IpaB and IpaD administered orally with a double mutant of the Escherichia coli heat labile toxin (dmLT) as a mucosal adjuvant. We characterized the immune responses induced by oral vs. intranasal immunization and the protective efficacy using a mouse pulmonary infection model. Serum IgG and fecal IgA against IpaB were induced after oral immunization. These responses, however, were lower than those obtained after intranasal immunization despite a 100-fold dosage increase. The level of protection induced by oral immunization with IpaB and IpaD was 40%, while intranasal immunization resulted in 90% protective efficacy. IpaB- and IpaD-specific IgA antibody-secreting cells in the lungs and spleen and T-cell-derived IL-2, IL-5, IL-17 and IL-10 were associated with protection. These results demonstrate the immunogenicity of orally administered IpaB and IpaD and support further studies in humans. PMID:23644075
Paula Neto, Heitor A.; Ausina, Priscila; Gomez, Lilian S.; Leandro, João G. B.; Zancan, Patricia; Sola-Penna, Mauro
2017-01-01
Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited. PMID:29163542
Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro
2017-01-01
Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.
Mawas, Fatme; Dickinson, Robert; Douglas-Bardsley, Alexandra; Xing, Dorothy K L; Sesardic, Dorothea; Corbel, Michael J
2006-04-24
We have previously shown that, consistent with clinical trial results, the immune response to a Haemophilus influenzae b (Hib) conjugate vaccine in a rat model was compromised and modulated when given combined with a DTaP3 vaccine, as compared to both vaccines given separately. The present study extended our investigation to evaluate the immunogenicity of all DTaP3 components in combined versus separate administration of Hib with DTaP3 and investigated immune interactions between Hib and individual components of DTaP3. Rats were immunised with Hib and DTaP3 or with Hib and individual DTaP3 components. Cellular and humoral immune responses to Hib and DTaP3 components were evaluated. Our results indicate that the immunogenicity of DTaP3 components was similar or greater in combined versus separate administration of Hib and DTaP3. Moreover, combined administration of Hib and TT reduced immunogenicity of both Hib and TT. Hib immunogenicity was also significantly reduced when given combined with FHA and following adsorption to Al(OH)3.
[Human milk, immune responses and health effects].
Løland, Beate Fossum; Baerug, Anne B; Nylander, Gro
2007-09-20
Besides providing optimal nutrition to infants, human milk contains a multitude of immunological components. These components are important for protection against infections and also support the development and maturation of the infant's own immune system. This review focuses on the function of some classical immunocomponents of human milk. Relevant studies are presented that describe health benefits of human milk for the child and of lactation for the mother. Relevant articles were found mainly by searching PubMed. Humoral and cellular components of human milk confer protection against infections in the respiratory--, gastrointestinal--and urinary tract. Human milk also protects premature children from neonatal sepsis and necrotizing enterocolitis. There is evidence that human milk may confer long-term benefits such as lower risk of certain autoimmune diseases, inflammatory bowel disease and probably some malignancies. Human milk possibly affects components of the metabolic syndrome. Recent studies demonstrate long-term health benefits of lactation also for the mother. A reduced incidence of breast cancer is best documented. An increasing number of studies indicate protection against ovarian cancer, rheumatoid arthritis and type II diabetes.
Hovland, Anders; Jonasson, Lena; Garred, Peter; Yndestad, Arne; Aukrust, Pål; Lappegård, Knut T; Espevik, Terje; Mollnes, Tom E
2015-08-01
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Complement in the Initiation and Evolution of Rheumatoid Arthritis
Holers, V. Michael; Banda, Nirmal K.
2018-01-01
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA. PMID:29892280
The Role of the Immune System in Triplet Repeat Expansion Diseases
Urbanek, Martyna O.; Krzyzosiak, Wlodzimierz J.
2015-01-01
Trinucleotide repeat expansion disorders (TREDs) are a group of dominantly inherited neurological diseases caused by the expansion of unstable repeats in specific regions of the associated genes. Expansion of CAG repeat tracts in translated regions of the respective genes results in polyglutamine- (polyQ-) rich proteins that form intracellular aggregates that affect numerous cellular activities. Recent evidence suggests the involvement of an RNA toxicity component in polyQ expansion disorders, thus increasing the complexity of the pathogenic processes. Neurodegeneration, accompanied by reactive gliosis and astrocytosis is the common feature of most TREDs, which may suggest involvement of inflammation in pathogenesis. Indeed, a number of immune response markers have been observed in the blood and CNS of patients and mouse models, and the activation of these markers was even observed in the premanifest stage of the disease. Although inflammation is not an initiating factor of TREDs, growing evidence indicates that inflammatory responses involving astrocytes, microglia, and the peripheral immune system may contribute to disease progression. Herein, we review the involvement of the immune system in the pathogenesis of triplet repeat expansion diseases, with particular emphasis on polyglutamine disorders. We also present various therapeutic approaches targeting the dysregulated inflammation pathways in these diseases. PMID:25873774
Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus
Drayton, Jean M.; Hall, Matthew D.; Hunt, John; Jennions, Michael D.
2012-01-01
The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. commodus produce both advertisement and courtship calls prior to mating. We measured fine-scale structural parameters of both call types and also recorded nightly advertisement calling effort. We then measured two standard indices of immune function: lysozyme-like activity of the haemolymph and haemocyte counts. We found a weak, positive relationship between advertisement calling effort and lysozyme-like activity. There was, however, little evidence that individual structural call components or the net multivariate attractiveness of either call type signalled immune function. The relationships between immunity and sexual signaling did not differ between inbred and outbred males. Our data suggest that it is unlikely that females assess overall male immune function using male calls. PMID:22808047
2010-01-01
Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909
Ringel-Scaia, Veronica M.; McDaniel, Dylan K.; Allen, Irving C.
2017-01-01
Recent advances have revealed significant insight into Inflammatory bowel disease (IBD) pathobiology. Ulcerative colitis and Crohn's disease, the chronic relapsing clinical manifestations of IBD, are complex disorders with genetic and environmental influences. These diseases are associated with the dysregulation of immune tolerance, excessive Inflammation, and damage to the epithelial cell barrier. Increasing evidence indicates that pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), function to maintain immune system homeostasis, modulate the gastrointestinal microbiome, and promote proper intestinal epithelial cell regeneration and repair. New insights have revealed that NLR family members are essential components in maintaining this immune system homeostasis. To date, the vast majority of studies associated with NLRs have focused on family members that form a multiprotein signaling platform called the Inflammasome. These signaling complexes are responsible for the cleavage and activation of the potent pleotropic cytokines IL-1β and IL-18, and they facilitate a unique form of cell death defined as pyroptosis. In this review, we summarize the current paradigms associated with NLR Inflammasome maintenance of immune system homeostasis in the gastrointestinal system. New concepts related to canonical and noncanonical Inflammasome signaling, as well as the implications of classical and alternative Inflammasomes in IBD pathogenesis, are also reviewed. PMID:28322135
Sengur, Abdulkadir
2008-03-01
In the last two decades, the use of artificial intelligence methods in medical analysis is increasing. This is mainly because the effectiveness of classification and detection systems have improved a great deal to help the medical experts in diagnosing. In this work, we investigate the use of principal component analysis (PCA), artificial immune system (AIS) and fuzzy k-NN to determine the normal and abnormal heart valves from the Doppler heart sounds. The proposed heart valve disorder detection system is composed of three stages. The first stage is the pre-processing stage. Filtering, normalization and white de-noising are the processes that were used in this stage. The feature extraction is the second stage. During feature extraction stage, wavelet packet decomposition was used. As a next step, wavelet entropy was considered as features. For reducing the complexity of the system, PCA was used for feature reduction. In the classification stage, AIS and fuzzy k-NN were used. To evaluate the performance of the proposed methodology, a comparative study is realized by using a data set containing 215 samples. The validation of the proposed method is measured by using the sensitivity and specificity parameters; 95.9% sensitivity and 96% specificity rate was obtained.
Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just; Kelve, Merike; Uriz, Maria Jesus
2009-01-01
Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2',5'-oligoadenylate synthetase (OAS). The components of the antiviral 2',5'-oligoadenylate (2-5A) system (OAS, 2'-Phosphodiesterase (2'-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2'-PDE activity, which highlights the probable existence of a premature 2-5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2-5A degrading activity. Upon this finding, two out of three elements forming the 2-5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.
Characterization of mannose binding lectin from channel catfish Ictalurus punctatus
USDA-ARS?s Scientific Manuscript database
Mannose-binding lectin (MBL) is an important component of innate immunity capable of activating the lectin pathway of the complement system. A MBL gene was isolated from channel catfish (Ictalurus punctatus). The deduced protein contains a canonical collagen-like domain, a carbohydrate recognition d...
Transcriptional response of Musca domestica larvae to bacterial infection.
Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei
2014-01-01
The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.
Schmid, C D; Stienekemeier, M; Oehen, S; Bootz, F; Zielasek, J; Gold, R; Toyka, K V; Schachner, M; Martini, R
2000-01-15
The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.
Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases.
Aparicio-Soto, Marina; Sánchez-Hidalgo, Marina; Rosillo, Ma Ángeles; Castejón, Ma Luisa; Alarcón-de-la-Lastra, Catalina
2016-11-09
Nowadays, it is clear that an unhealthy diet is one of the prime factors that contributes to the rise of inflammatory diseases and autoimmunity in the populations of both developed and developing countries. The Mediterranean diet has been associated with a reduced incidence of certain pathologies related to chronic inflammation and the immune system. Olive oil, the principal source of dietary lipids of the Mediterranean diet, possesses a high nutritional quality and a particular composition, which is especially relevant in the case of Extra Virgin Olive Oil (EVOO). EVOO is obtained from olives solely by mechanical or other physical preparation methods, under conditions that do not alter the natural composition. EVOO is described as a key bioactive food with multiple beneficial properties and it may be effective in the management of some immune-inflammatory diseases. In this review, the key research is summarised which provides evidence of the beneficial effects of EVOO and its minor components focusing on their mechanisms on immune-inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and sclerosis.
Up in arms: Immune and nervous system response to sea star wasting disease
Fuess, Lauren E; Eiselord, Morgan E.; Closek, Collin J.; Tracy, Allison M.; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A.; Harvell, Drew; Friedman, Carolyn S.; Hershberger, Paul K.; Roberts, Steven B.
2015-01-01
Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013–2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.
Innate immunity in vertebrates: an overview.
Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila
2016-06-01
Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.
Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish.
Williams, Julie A; Sathyanarayanan, Sriram; Hendricks, Joan C; Sehgal, Amita
2007-04-01
The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.
Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish
Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita
2010-01-01
Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783
Song, Geun C; Choi, Hye K; Ryu, Choong-Min
2015-01-01
3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.
The Role of Nutritional Aspects in Food Allergy: Prevention and Management.
Mazzocchi, Alessandra; Venter, Carina; Maslin, Kate; Agostoni, Carlo
2017-08-09
The prevalence of food allergy in childhood appears to be increasing in both developed and transitional countries. The aim of this paper is to review and summarise key findings in the prevention and management of food allergy, focusing on the role of dietary components and nutritional habits in the development and optimal functioning of the immune system. Essential fatty acids, zinc and vitamin D are likely to enhance the anti-inflammatory and antioxidative barrier and promote immunologic tolerance. Additionally, nutritional components such as pre- and probiotics represent a novel research approach in the attempt to induce a tolerogenic immune environment. For all these reasons, the traditional avoidance diet has been, in recent years, completely reconsidered. New findings on the protective effect of an increased diversity of food introduced in the first year of life on allergic diseases are consistent with the hypothesis that exposure to a variety of food antigens during early life might play a role in the development of immune tolerance. Accordingly, therapeutic (and even preventive) interventions should be planned on an individual basis.
Ishigaki, Hirohito; Maeda, Toshinaga; Inoue, Hirokazu; Akagi, Tsuyoshi; Sasamura, Takako; Ishida, Hideaki; Inubushi, Toshiro; Okahara, Junko; Shiina, Takashi; Nakayama, Misako; Itoh, Yasushi; Ogasawara, Kazumasa
2017-11-01
Immune surveillance is a critical component of the antitumor response in vivo , yet the specific components of the immune system involved in this regulatory response remain unclear. In this study, we demonstrate that autoantibodies can mitigate tumor growth in vitro and in vivo We generated two cancer cell lines, embryonal carcinoma and glioblastoma cell lines, from monkey-induced pluripotent stem cells (iPSC) carrying a homozygous haplotype of major histocompatibility complex (MHC, Mafa in Macaca fascicularis). To establish a monkey cancer model, we transplanted these cells into monkeys carrying the matched Mafa haplotype in one of the chromosomes. Neither Mafa-homozygous cancer cell line grew in monkeys carrying the matched Mafa haplotype heterozygously. We detected in the plasma of these monkeys an IgG autoantibody against GRP94, a heat shock protein. Injection of the plasma prevented growth of the tumor cells in immunodeficient mice, whereas plasma IgG depleted of GRP94 IgG exhibited reduced killing activity against cancer cells in vitro These results indicate that humoral immunity, including autoantibodies against GRP94, plays a role in cancer immune surveillance. Cancer Res; 77(21); 6001-10. ©2017 AACR . ©2017 American Association for Cancer Research.
The role of cytokines in immune changes induced by spaceflight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Miller, E. S.
1993-01-01
It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.
Rodrigues, Raquel; Grosso, Ana Rita; Moita, Luís
2013-01-01
The immune system relies on the plasticity of its components to produce appropriate responses to frequent environmental challenges. Dendritic cells (DCs) are critical initiators of innate immunity and orchestrate the later and more specific adaptive immunity. The generation of diversity in transcriptional programs is central for effective immune responses. Alternative splicing is widely considered a key generator of transcriptional and proteomic complexity, but its role has been rarely addressed systematically in immune cells. Here we used splicing-sensitive arrays to assess genome-wide gene- and exon-level expression profiles in human DCs in response to a bacterial challenge. We find widespread alternative splicing events and splicing factor transcriptional signatures induced by an E. coli challenge to human DCs. Alternative splicing acts in concert with transcriptional modulation, but these two mechanisms of gene regulation affect primarily distinct functional gene groups. Alternative splicing is likely to have an important role in DC immunobiology because it affects genes known to be involved in DC development, endocytosis, antigen presentation and cell cycle arrest.
Immune Privilege and Eye-Derived T-Regulatory Cells.
Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao
2018-01-01
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens.
Gimenez-Ibanez, Selena; Solano, Roberto
2013-01-01
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens
Gimenez-Ibanez, Selena; Solano, Roberto
2013-01-01
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014
Plant immunity triggered by microbial molecular signatures.
Zhang, Jie; Zhou, Jian-Min
2010-09-01
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resulting in diminished plant defenses and increased bacterial virulence. Some of the proteins targeted by pathogen effectors have evolved to sense the effector activity by associating with cytoplasmic immune receptors classically known as resistance proteins. This allows plants to activate a second layer of immunity termed effector-triggered immunity (ETI). Recent studies on PTI regulation and P. syringae effector targets have uncovered new components in PTI signaling. Although MAP kinase (MAPK) cascades have been considered crucial for PTI, emerging evidence indicates that a MAPK-independent pathway also plays an important role in PTI signaling.
Influence of diabetes mellitus on immunity to human tuberculosis.
Kumar Nathella, Pavan; Babu, Subash
2017-09-01
Type 2 diabetes mellitus(DM) is a major risk factor for the development of active pulmonary tuberculosis (TB), with development of DM pandemic in countries where TB is also endemic. Understanding the impact of DM on TB and the determinants of co-morbidity is essential in responding to this growing public health problem with improved therapeutic approaches. Despite the clinical and public health significance posed by the dual burden of TB and DM, little is known about the immunological and biochemical mechanisms of susceptibility. One possible mechanism is that an impaired immune response in patients with DM facilitates either primary infection with Mycobacterium tuberculosis or reactivation of latent TB. Diabetes is associated with immune dysfunction and alterations in the components of the immune system, including altered levels of specific cytokines and chemokines. Some effects of DM on adaptive immunity that are potentially relevant to TB defence have been identified in humans. In this review, we summarize current findings regarding the alterations in the innate and adaptive immune responses and immunological mechanisms of susceptibility of patients with DM to M. tuberculosis infection and disease. © 2017 John Wiley & Sons Ltd.
Role of the endocannabinoid system in the neuroendocrine responses to inflammation.
De Laurentiis, Andrea; Araujo, Hugo A; Rettori, Valeria
2014-01-01
A few years ago the endocannabinoid system has been recognized as a major neuromodulatory system whose main functions are to exert and maintain the body homeostasis. Several different endocannabinoids are synthesized in a broad class of cell types, including those in the brain and the immune system; they bind to cannabinoid G-protein-coupled receptors, having profound effects on a variety of behavioral, neuroendocrine and autonomic functions. The coordinated neural, immune, behavioral and endocrine responses to inflammation are orchestrated to provide an important defense against infections and help homeostasis restoration in the body. These responses are executed and controlled mainly by the hypothalamic-pituitary adrenal axis. Also, the hypothalamic-neurohypophyseal system is essential for survival and plays a role recovering the homeostasis under a variety of stress conditions, including inflammation and infection. Since the endocannabinoid system components are present at sites involved in the hypothalamic-pituitary axis regulation, several studies were performed in order to investigate the endocannabinoid-mediated neurotransmitters and hormones secretion under physiological and pathological conditions. In the present review we focused on the endocannabinoids actions on the neuroendocrine response to inflammation and infection. We provide a detailed overview of the current understanding of the role of the endocannabinoid system in the recovering of homeostasis as well as potential pharmacological therapies based on the manipulation of endocannabinoid system components that could provide novel treatments for a wide range of disorders.
[Comparative study of main components of ginseng on immune function of rats].
Jia, Zhi-Ying; Xie, Xie; Wang, Xiao-Yan; Jia, Wei
2014-09-01
Ginseng and its effective components are famous for their influence to enhance human immunity, regulate endocrine and antioxidant action. However, the different effects of different components are not clear. In this study, Wistar rats were used to study the effects of main components of ginseng, including total ginsenoside, panaxadiol saponins, panaxtrol saponin and ginseng polysaccharide. The results showed that the effects of panaxadiol saponins and ginseng polysaccharide on improving animal immune organ weight, plasma interleukin 2 (IL-2), interleukin 6 (IL-6), plasma gamma-interferon (IFN-γ), tumor necrosis factor alpha (TNF-α) were better than that of the other groups. Total ginsenoside and panaxtrol saponin can effectively increase the concentration of spleen NK cells (NKC) while panaxadiol saponins and ginseng polysaccharide can significantly increase the concentrations of rat plasma adrenocorticotrophic hormone (ACTH), corticosterone (CORT) and thyroid stimulating hormone (TSH). As for the effect of increasing organization nitric oxide (NO) and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA), total ginsenoside is better than that of other groups. In brief, different components in ginseng possess different effects on enhancing immunity, regulating endocrine and resisting oxidation. Panaxadiol saponins and ginseng polysaccharide are better in enhancing immune, and total ginsenoside shows advantages in resisting oxidation and stress.
Mucin biosynthesis in the bovine goblet cell induced by Cooperia oncophora infection
USDA-ARS?s Scientific Manuscript database
Mucin hypersecretion is considered to be one of the most common components of the immune response to gastrointestinal nematode infection. However, investigations have not been conducted in the Cattle-Cooperia oncophora system to verify the findings largely derived from murine models. In this study, ...
USDA-ARS?s Scientific Manuscript database
Functional amyloid, in the form of adhesive fimbrial proteins termed curli, was first described in Salmonella and Escherichia coli. Curli fibers adhere to various host cells and structural proteins, interact with components of the host immune system, and participate in biofilm formation. Shiga toxin...
Immunostimulatory properties and antitumor activities of glucans
VANNUCCI, LUCA; KRIZAN, JIRI; SIMA, PETR; STAKHEEV, DMITRY; CAJA, FABIAN; RAJSIGLOVA, LENKA; HORAK, VRATISLAV; SAIEH, MUSTAFA
2013-01-01
New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments. PMID:23739801
Antimicrobial autophagy: a conserved innate immune response in Drosophila.
Moy, Ryan H; Cherry, Sara
2013-01-01
Autophagy is a highly conserved degradative pathway that has rapidly emerged as a critical component of immunity and host defense. Studies have implicated autophagy genes in restricting the replication of a diverse array of pathogens, including bacteria, viruses and protozoans. However, in most cases, the in vivo role of antimicrobial autophagy against pathogens has been undefined. Drosophila provides a genetically tractable model system that can be easily adapted to study autophagy in innate immunity, and recent studies in flies have demonstrated that autophagy is an essential antimicrobial response against bacteria and viruses in vivo. These findings reveal striking conservation of antimicrobial autophagy between flies and mammals, and in particular, the role of pathogen-associated pattern recognition in triggering this response. This review discusses our current understanding of antimicrobial autophagy in Drosophila and its potential relevance to human immunity. Copyright © 2013 S. Karger AG, Basel.
The Immunology of AD and its Reversibility with Broad Spectrum and Targeted Therapies
Brunner, Patrick M.; Guttman-Yassky, Emma; Leung, Donald Y. M.
2017-01-01
Atopic dermatitis (AD), the most common chronic inflammatory skin disease, is driven by both terminal keratinocyte differentiation defects and strong type 2 immune responses. In contrast to chronic plaque-type psoriasis, AD is now understood to be a much more heterogeneous disease, with additional activation of Th22, Th17/IL-23 and Th1 cytokine pathways, depending on the subtype of the disease. In this review, we discuss our current understanding of the AD immune map in both early-onset as well as chronic disease. Clinical studies using broad and targeted therapeutics have helped to elucidate the contribution of various immune axes to the disease phenotype. Importantly, immune activation extends well beyond lesional AD, as non-lesional skin and the blood component harbor AD-specific inflammatory changes. For this reason, future therapeutics will need to focus on a systemic treatment approach, especially in patients suffering from moderate-to-severe disease. PMID:28390479
Genetic Diversity of Toll-Like Receptors and Immunity to M. leprae Infection
Hart, Bryan E.; Tapping, Richard I.
2012-01-01
Genetic association studies of leprosy cohorts across the world have identified numerous polymorphisms which alter susceptibility and outcome to infection with Mycobacterium leprae. As expected, many of the polymorphisms reside within genes that encode components of the innate and adaptive immune system. Despite the preponderance of these studies, our understanding of the mechanisms that underlie these genetic associations remains sparse. Toll-like receptors (TLRs) have emerged as an essential family of innate immune pattern recognition receptors which play a pivotal role in host defense against microbes, including pathogenic strains of mycobacteria. This paper will highlight studies which have uncovered the association of specific TLR gene polymorphisms with leprosy or tuberculosis: two important diseases resulting from mycobacterial infection. This analysis will focus on the potential influence these polymorphic variants have on TLR expression and function and how altered TLR recognition or signaling may contribute to successful antimycobacterial immunity. PMID:22529866
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.
2014-03-01
Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.
Innate Immunity and Breast Milk
Cacho, Nicole Theresa; Lawrence, Robert M.
2017-01-01
Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant. PMID:28611768
Uhde, Melanie; Ajamian, Mary; Caio, Giacomo; De Giorgio, Roberto; Indart, Alyssa; Green, Peter H; Verna, Elizabeth C; Volta, Umberto; Alaedini, Armin
2016-12-01
Wheat gluten and related proteins can trigger an autoimmune enteropathy, known as coeliac disease, in people with genetic susceptibility. However, some individuals experience a range of symptoms in response to wheat ingestion, without the characteristic serological or histological evidence of coeliac disease. The aetiology and mechanism of these symptoms are unknown, and no biomarkers have been identified. We aimed to determine if sensitivity to wheat in the absence of coeliac disease is associated with systemic immune activation that may be linked to an enteropathy. Study participants included individuals who reported symptoms in response to wheat intake and in whom coeliac disease and wheat allergy were ruled out, patients with coeliac disease and healthy controls. Sera were analysed for markers of intestinal cell damage and systemic immune response to microbial components. Individuals with wheat sensitivity had significantly increased serum levels of soluble CD14 and lipopolysaccharide (LPS)-binding protein, as well as antibody reactivity to bacterial LPS and flagellin. Circulating levels of fatty acid-binding protein 2 (FABP2), a marker of intestinal epithelial cell damage, were significantly elevated in the affected individuals and correlated with the immune responses to microbial products. There was a significant change towards normalisation of the levels of FABP2 and immune activation markers in a subgroup of individuals with wheat sensitivity who observed a diet excluding wheat and related cereals. These findings reveal a state of systemic immune activation in conjunction with a compromised intestinal epithelium affecting a subset of individuals who experience sensitivity to wheat in the absence of coeliac disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Uhde, Melanie; Ajamian, Mary; Caio, Giacomo; De Giorgio, Roberto; Indart, Alyssa; Green, Peter H; Verna, Elizabeth C; Volta, Umberto; Alaedini, Armin
2016-01-01
Objective Wheat gluten and related proteins can trigger an autoimmune enteropathy, known as coeliac disease, in people with genetic susceptibility. However, some individuals experience a range of symptoms in response to wheat ingestion, without the characteristic serological or histological evidence of coeliac disease. The aetiology and mechanism of these symptoms are unknown, and no biomarkers have been identified. We aimed to determine if sensitivity to wheat in the absence of coeliac disease is associated with systemic immune activation that may be linked to an enteropathy. Design Study participants included individuals who reported symptoms in response to wheat intake and in whom coeliac disease and wheat allergy were ruled out, patients with coeliac disease and healthy controls. Sera were analysed for markers of intestinal cell damage and systemic immune response to microbial components. Results Individuals with wheat sensitivity had significantly increased serum levels of soluble CD14 and lipopolysaccharide (LPS)-binding protein, as well as antibody reactivity to bacterial LPS and flagellin. Circulating levels of fatty acid-binding protein 2 (FABP2), a marker of intestinal epithelial cell damage, were significantly elevated in the affected individuals and correlated with the immune responses to microbial products. There was a significant change towards normalisation of the levels of FABP2 and immune activation markers in a subgroup of individuals with wheat sensitivity who observed a diet excluding wheat and related cereals. Conclusions These findings reveal a state of systemic immune activation in conjunction with a compromised intestinal epithelium affecting a subset of individuals who experience sensitivity to wheat in the absence of coeliac disease. PMID:27459152
Yersinia adhesin A (YadA)--beauty & beast.
Mühlenkamp, Melanie; Oberhettinger, Philipp; Leo, Jack C; Linke, Dirk; Schütz, Monika S
2015-02-01
The trimeric autotransporter adhesin Yersinia adhesin A is the prototype of the type Vc secretion systems. It is expressed by enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis strains, but not by Yersinia pestis. A characteristic trait of YadA is its modular composition and trimeric nature. YadA consists of an N-terminal passenger domain which is exposed on the bacterial cell surface. The translocation of this passenger onto the surface is facilitated by a C-terminal β-barrel domain which concomitantly anchors YadA into the outer membrane with three YadA monomers contributing to the formation of a single β-barrel. In Y. enterocolitica, but not Y. pseudotuberculosis, YadA is a decisive virulence factor and its deletion renders the bacteria virtually avirulent in mouse models of infection. This striking importance of YadA in infection may derive from its manifold functions in host cell interaction. Presumably the most important function of YadA is that it mediates adhesion to extracellular matrix components of eukaryotic host cells. Only tight adhesion allows for the injection of "anti-host" effector proteins via a type III secretion system into the host cell cytosol. These effector proteins enable Yersinia to subvert the host immune system in order to replicate and establish infection. YadA is also essential for the survival of Y. enterocolitica upon contact with serum, an important immune-evasion mechanism called serum resistance. To this end, YadA interacts with several components of the host complement system, the first line of immune defense. This review will summarize recent findings about the structure and biogenesis of YadA and its interactions with the host complement system. Copyright © 2015 Elsevier GmbH. All rights reserved.
Knop, E; Knop, N
2003-11-01
Components of the mucosal immune system (MALT) have been identified in the conjunctiva (as CALT) and the lacrimal drainage system (as LDALT). Their structural and functional relation with the established immune protection by the lacrimal gland is unclear. Macroscopically normal and complete tissues of the conjunctiva, lacrimal drainage system and lacrimal gland from human body donors were investigated by analysis of translucent whole mounts, and using histology, immunohistology as well as scanning and transmission electron microscopy. A typical diffuse lymphoid tissue, composed of effector cells of the immune system (T-lymphocytes and IgA producing plasma cells) under an epithelium that contains the IgA transporter SC, is not isolated in the conjunctiva and lacrimal drainage system. It is anatomically continuous from the lacrimal gland along its excretory ducts into the conjunctiva and from there via the lacrimal canaliculi into the lacrimal drainage system. Lymphoid follicles occur in a majority (about 60%) and with bilateral symmetry. The topography of CALT corresponds to the position of the cornea in the closed eye. These results show that the MALT of the lacrimal gland, conjunctiva and lacrimal drainage system constitute an anatomical and functional unit for immune protection of the ocular surface. Therefore it should be integrated as an "eye-associated lymphoid tissue" (EALT) into the MALT system of the body. EALT can detect ocular surface antigens by the lymphoid follicles and can supply other organs and the ocular surface including the lacrimal gland with specific effector cells via the regulated recirculation of lymphoid cells.
Integrated Neural and Endocrine Control of Gastrointestinal Function.
Furness, John B
The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and phytochemical receptors, are primarily located on EEC. Hormones released by EEC act via both the ENS and CNS to optimise digestion. Toxic chemicals and pathogens are sensed and then avoided, expelled or metabolised. These defensive activities also involve the EEC and signalling from EEC to the ENS and the CNS. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut, via its effector systems, the ENS, extrinsic innervation, EEC and the gut immune system, to the sensory information it receives.
Heaton, Alexis; Krudwig, Kirstin; Lorenson, Tina; Burgess, Craig; Cunningham, Andrew; Steinglass, Robert
2017-04-19
The widespread use of multidose vaccine containers in low and middle income countries' immunization programs is assumed to have multiple benefits and efficiencies for health systems, yet the broader impacts on immunization coverage, costs, and safety are not well understood. To document what is known on this topic, how it has been studied, and confirm the gaps in evidence that allow us to assess the complex system interactions, the authors undertook a review of published literature that explored the relationship between doses per container and immunization systems. The relationships examined in this study are organized within a systems framework consisting of operational costs, timely coverage, safety, product costs/wastage, and policy/correct use, with the idea that a change in dose per container affects all of them, and the optimal solution will depend on what is prioritized and used to measure performance. Studies on this topic are limited and largely rely on modeling to assess the relationship between doses per container and other aspects of immunization systems. Very few studies attempt to look at how a change in doses per container affects vaccination coverage rates and other systems components simultaneously. This article summarizes the published knowledge on this topic to date and suggests areas of current and future research to ultimately improve decision making around vaccine doses per container and increase understanding of how this decision relates to other program goals. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian
2015-08-01
Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vogelweith, Fanny; Moreau, Jérôme; Thiéry, Denis; Moret, Yannick
2015-06-01
Inherent to the cost of immunity, the immune system itself can exhibit tradeoffs between its arms. Phytophagous insects face a wide range of microbial and eukaryotic parasites, each activating different immune pathways that could compromise the activity of the others. Feeding larvae are primarily exposed to microbes, which growth is controlled by antibiotic secondary metabolites produced by the host plant. The resulting variation in abundance of microbes on plants is expected to differentially stimulate the insect antimicrobial immune defenses. Under the above tradeoff hypothesis, stimulation of the insect antimicrobial defenses is expected to compromise immune activity against eukaryote parasites. In the European grape berry moth, Eupoecilia ambiguella, immune effectors directed towards microbes are negatively correlated to those directed towards eukaryotic parasites among host plants. Here, we hypothesize this relationship is caused by a variable control of the microbial community among host plants by their antibiotic metabolites. To test this hypothesis, we first quantified antimicrobial activity in berries of several grape varieties. We then measured immune defenses of E. ambiguella larvae raised on artificial diets in which we mimicked levels of antimicrobial activity of grape berries using tetracycline to control the abundance of growing microbes. Another group of larvae was raised on artificial diets made of berry extracts only to control for the effect of nutrition. We found that controlling microbe abundance with tetracycline in diets did not explain variation in the immune function whereas the presence of berry extracts did. This suggests that variation in immune defenses of E. ambiguella among grape varieties is caused by nutritional difference among host plants rather than microbe abundance. Further study of the effects of berry compounds on larval immune parameters will be needed to explain the observed tradeoff among immune system components. Copyright © 2015 Elsevier Ltd. All rights reserved.
Human neutrophils in auto-immunity.
Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique
2016-04-01
Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of kefir fractions on innate immunity.
Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal
2006-01-01
Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.
Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.
Rachdaoui, Nadia; Sarkar, Dipak K
2017-01-01
Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.
Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D
2015-04-01
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.
Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.
2015-01-01
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625
Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter
2015-01-01
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002
Beheshti, Afshin; Wage, Justin; McDonald, J. Tyson; Lamont, Clare; Peluso, Michael; Hahnfeldt, Philip; Hlatky, Lynn
2015-01-01
The concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3ε, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease. PMID:26497558
2014-01-01
Background The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1 b and Gpnmb R150X ) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation. Here, we tested the role of specific immune components in the progression of the iris disease and high IOP. Results We tested the role of NK cells in disease etiology by genetically modifying the B6.D2-Gpnmb R150X Tyrp1 b strain, which develops the same iris disease as DBA/2J mice. Our findings demonstrate that neither diminishing NK mediated cytotoxic activity (Prf1 mutation) nor NK cell depletion (Il2rg mutation) has any influence on the severity or timing of Gpnmb R150X Tyrp1 b mediated iris disease. Since DBA/2J mice are deficient in CD94, an important immune modulator that often acts as an immune suppressor, we generated DBA/2J mice sufficient in CD94. Sufficiency of CD94 failed to alter either the iris disease or the subsequent IOP elevation. Additionally CD94 status had no detected effect on glaucomatous optic nerve damage. Conclusion Our previous data implicate immune components in the manifestation of pigment dispersion and/or IOP elevation in DBA/2J mice. The current study eliminates important immune components, specifically NK cells and CD94 deficiency, as critical in the progression of iris disease and glaucoma. This narrows the field of possible immune components responsible for disease progression. PMID:24678736
Caubet, Jean-Christoph; Ponvert, Claude
2014-08-01
Overdiagnosis of vaccine allergy is considered a major public health problem. This article discusses the different types of allergic reactions after immunization based on the timing (immediate vs nonimmediate) and the extent of the reaction (local vs systemic). The vaccine components potentially responsible for an allergic reaction are discussed, as well as the management of patients with a history of reaction to a specific vaccine and those with a history of allergy to one of the vaccine components. Copyright © 2014 Elsevier Inc. All rights reserved.
Chang, Peixi; Li, Weitian; Shi, Guolin; Li, Huan; Yang, Xiaoqing; Xia, Zechen; Ren, Yuan; Li, Zhiwei; Chen, Huanchun; Bei, Weicheng
2018-01-01
ABSTRACT Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity. PMID:29471718
Rosa, Rafael D; Capelli-Peixoto, Janaína; Mesquita, Rafael D; Kalil, Sandra P; Pohl, Paula C; Braz, Glória R; Fogaça, Andrea C; Daffre, Sirlei
2016-06-01
In dipteran insects, invading pathogens are selectively recognized by four major pathways, namely Toll, IMD, JNK, and JAK/STAT, and trigger the activation of several immune effectors. Although substantial advances have been made in understanding the immunity of model insects such as Drosophila melanogaster, knowledge on the activation of immune responses in other arthropods such as ticks remains limited. Herein, we have deepened our understanding of the intracellular signalling pathways likely to be involved in tick immunity by combining a large-scale in silico approach with high-throughput gene expression analysis. Data from in silico analysis revealed that although both the Toll and JAK/STAT signalling pathways are evolutionarily conserved across arthropods, ticks lack central components of the D. melanogaster IMD pathway. Moreover, we show that tick immune signalling-associated genes are constitutively transcribed in BME26 cells (a cell lineage derived from embryos of the cattle tick Rhipicephalus microplus) and exhibit different transcriptional patterns in response to microbial challenge. Interestingly, Anaplasma marginale, a pathogen that is naturally transmitted by R. microplus, causes downregulation of immune-related genes, suggesting that this pathogen may manipulate the tick immune system, favouring its survival and vector colonization. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Perspective on the Role of Computational Models in Immunology.
Chakraborty, Arup K
2017-04-26
This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.
[Inflammasome and its role in immunological and inflammatory response at early stage of burns].
Zhang, Fang; Li, Jiahui; Xia, Zhaofan
2014-06-01
Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.
Progress in understanding the immunopathogenesis of psoriasis
Mak, R.K.H.; Hundhausen, C.; Nestle, F.O.
2010-01-01
This review emphasizes how translation from bench research to clinical knowledge and vice versa has resulted in considerable progress in understanding the immunopathogenesis of psoriasis. First, the journey in understanding the pathogenic mechanisms behind psoriasis is described. The roles of different components of the adaptive and innate immune systems involved in driving the inflammatory response are explained. Discovery of new immune pathways i.e. the IL23/Th17 axis and its subsequent impact on the development of novel biological therapies is highlighted. Identification of potential targets warranting further research for future therapeutic development are also discussed. PMID:20096156
Tao, Pan; Li, Qin; Shivachandra, Sathish B; Rao, Venigalla B
2017-01-01
Protein-based subunit vaccines represent a safer alternative to the whole pathogen in vaccine development. However, limitations of physiological instability and low immunogenicity of such vaccines demand an efficient delivery system to stimulate robust immune responses. The bacteriophage T4 capsid-based antigen delivery system can robustly elicit both humoral and cellular immune responses without any adjuvant. Therefore, it offers a strong promise as a novel antigen delivery system. Currently Bacillus anthracis, the causative agent of anthrax, is a serious biothreat agent and no FDA-approved anthrax vaccine is available for mass vaccination. Here, we describe a potential anthrax vaccine using a T4 capsid platform to display and deliver the 83 kDa protective antigen, PA, a key component of the anthrax toxin. This T4 vaccine platform might serve as a universal antigen delivery system that can be adapted to develop vaccines against any infectious disease.
Biochemical and immunological mechanisms by which sickle cell trait protects against malaria.
Gong, Lauren; Parikh, Sunil; Rosenthal, Philip J; Greenhouse, Bryan
2013-09-11
Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria.
Biochemical and immunological mechanisms by which sickle cell trait protects against malaria
2013-01-01
Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria. PMID:24025776
Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M.; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S.; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian
2014-01-01
SUMMARY Primary infection with the human oncogenic Epstein Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion, which predisposes for the development of distinct EBV-associated lymphomas. It remains unclear why some individuals experience this symptomatic primary EBV infection, while the majority acquires the virus asymptomatically. Using a mouse model with reconstituted human immune system components, we show here that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis, mainly due to loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. PMID:24360958
Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi
2016-09-02
Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen repartitioning in dairy cows exposed to HS. Our findings expand our current knowledge on the effects of HS on plasma proteomics in dairy cows and offer a new perspective for future research. Copyright © 2016 Elsevier B.V. All rights reserved.
[Application on food preservative of antimicrobial peptides].
Zhao, Hongyan; Mu, Yu; Zhao, Baohua
2009-07-01
Antimicrobial peptides are an integral component of the innate immune system, it can counteract outer membrane pathogen such as bacteria, fungi, viruses, protozoan and so on. Owing to the sterilization and innocuity, it has the potential to be crude food preservative. In this paper the uses of antibacterial peptides in the food preservative were analyzed.
Chemotherapy remains an essential element of personalized care for persons with lung cancers
Hellmann, M. D.; Li, B. T.; Chaft, J. E.; Kris, M. G.
2016-01-01
Molecularly targeted and immunotherapies have improved the care of patients with lung cancers. These successes have rallied calls to replace or avoid chemotherapy. Yet, even in this era of precision medicine and exciting advances, cytotoxic chemotherapies remain an essential component of lung cancer treatment. In the setting of locoregional disease, chemotherapy is the only systemic therapy thus far proven to enhance curability when combined with surgery or radiation. In the metastatic setting, chemotherapy can improve the length and quality of life in many patients. Chemotherapy remains the mainstay of care for individuals whose cancers with oncogenic drivers have acquired resistance to targeted agents. Chemotherapy also has the potential to modulate the immune system to enhance the effectiveness of immune checkpoint inhibitors. In this context, chemotherapy should be framed as a critical component of the armamentarium available for optimizing cancer care rather than an unfortunate anachronism. We examine the role of chemotherapy with precision medicine in the current care of patients with lung cancers, as well as opportunities for future integration in combinations with targeted agents, angiogenesis inhibitors, immunotherapies, and antibody drug conjugates. PMID:27456296
Contextual control of skin immunity and inflammation by Corynebacterium.
Ridaura, Vanessa K; Bouladoux, Nicolas; Claesen, Jan; Chen, Y Erin; Byrd, Allyson L; Constantinides, Michael G; Merrill, Eric D; Tamoutounour, Samira; Fischbach, Michael A; Belkaid, Yasmine
2018-03-05
How defined microbes influence the skin immune system remains poorly understood. Here we demonstrate that Corynebacteria , dominant members of the skin microbiota, promote a dramatic increase in the number and activation of a defined subset of γδ T cells. This effect is long-lasting, occurs independently of other microbes, and is, in part, mediated by interleukin (IL)-23. Under steady-state conditions, the impact of Corynebacterium is discrete and noninflammatory. However, when applied to the skin of a host fed a high-fat diet, Corynebacterium accolens alone promotes inflammation in an IL-23-dependent manner. Such effect is highly conserved among species of Corynebacterium and dependent on the expression of a dominant component of the cell envelope, mycolic acid. Our data uncover a mode of communication between the immune system and a dominant genus of the skin microbiota and reveal that the functional impact of canonical skin microbial determinants is contextually controlled by the inflammatory and metabolic state of the host. © 2018 Ridaura et al.
CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone
Young, James L.; Mora, Alfonso; Cerny, Anna; Czech, Michael P.; Woda, Bruce; Kurt-Jones, Evelyn A.; Finberg, Robert W.; Corvera, Silvia
2012-01-01
The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis. PMID:22253759
Molecular recognition of microbial lipid-based antigens by T cells.
Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Le Nours, Jérôme
2018-05-01
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.
Inference on the Strength of Balancing Selection for Epistatically Interacting Loci
Buzbas, Erkan Ozge; Joyce, Paul; Rosenberg, Noah A.
2011-01-01
Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes rely on the assumption that there are no epistatic interactions between loci. Complex systems in which balancing selection is prevalent, such as sets of human immune system genes, are known to contain components that interact epistatically. Therefore, current methods may not produce reliable inference on the strength of selection at these loci. In this paper, we address this problem by presenting statistical methods that can account for epistatic interactions in making inference about balancing selection. A theoretical result due to Fearnhead (2006) is used to build a multi-locus Wright-Fisher model of balancing selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions are examined. The joint posterior distribution of the selection and mutation parameters is sampled by Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As a component of the inference process, an algorithm to generate multi-locus allele frequencies under balancing selection models with epistasis is also presented. Recent evidence on interactions among a set of human immune system genes is introduced as a motivating biological system for the epistatic model, and data on these genes are used to demonstrate the methods. PMID:21277883
HIV neuropathogenesis: a tight rope walk of innate immunity.
Yao, Honghong; Bethel-Brown, Crystal; Li, Cicy Zidong; Buch, Shilpa J
2010-12-01
During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.
Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses
Hossain, Fokhrul; Majumder, Samarpan; Ucar, Deniz A.; Rodriguez, Paulo C.; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.; Miele, Lucio
2018-01-01
Cancer immunotherapy, which stimulates or augments host immune responses to treat malignancies, is the latest development in the rapidly advancing field of cancer immunology. The basic principles of immunotherapies are either to enhance the functions of specific components of the immune system or to neutralize immune-suppressive signals produced by cancer cells or tumor microenvironment cells. When successful, these approaches translate into long-term survival for patients. However, durable responses are only seen in a subset of patients and so far, only in some cancer types. As for other cancer treatments, resistance to immunotherapy can also develop. Numerous research groups are trying to understand why immunotherapy is effective in some patients but not others and to develop strategies to enhance the effectiveness of immunotherapy. The Notch signaling pathway is involved in many aspects of tumor biology, from angiogenesis to cancer stem cell maintenance to tumor immunity. The role of Notch in the development and modulation of the immune response is complex, involving an intricate crosstalk between antigen-presenting cells, T-cell subpopulations, cancer cells, and other components of the tumor microenvironment. Elegant studies have shown that Notch is a central mediator of tumor-induced T-cell anergy and that activation of Notch1 in CD8 T-cells enhances cancer immunotherapy. Tumor-infiltrating myeloid cells, including myeloid-derived suppressor cells, altered dendritic cells, and tumor-associated macrophages along with regulatory T cells, are major obstacles to the development of successful cancer immunotherapies. In this article, we focus on the roles of Notch signaling in modulating tumor-infiltrating myeloid cells and discuss implications for therapeutic strategies that modulate Notch signaling to enhance cancer immunotherapy.
Senovilla, Laura; Vacchelli, Erika; Galon, Jerome; Adjemian, Sandy; Eggermont, Alexander; Fridman, Wolf Hervé; Sautès-Fridman, Catherine; Ma, Yuting; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo
2012-01-01
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies. PMID:23243596
Nature, nurture, and microbes: The development of multiple sclerosis.
Wekerle, H
2017-11-01
This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vibration-immune high-sensitivity profilometer built with the technique of composite interferometry.
Lin, Yu-Kai; Chang, Chun-Wei; Hou, Max T; Hsu, I-Jen
2016-03-10
A prototype of a profilometer was built with the technique of composite interferometry for measurement of the distribution of both the amplitude and phase information of the surface of a material simultaneously. The composite interferometer was composed of a Michelson interferometer for measuring the surface profile of the sample and a Mach-Zehnder interferometer for measuring the phase deviation caused by the scanning component and environmental perturbations. A high-sensitivity surface profile can be obtained by use of the phase compensation mechanism through subtraction of the phases of the interferograms detected in the two interferometers. With the new design and improvement of robustness of the optical system, the measurement speed and accuracy were significantly improved. Furthermore, an additional optical delay component results in a higher sensitivity of the interference signal. This prototype of vibration-immune profilometer was examined to have a displacement sensitivity of 0.64 nm.
FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jongseok; Shin, Sooan; Teng, C.-H.
2005-09-02
The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-{alpha}. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-{kappa}B were involved inmore » FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.« less
Post-translational modification of host proteins in pathogen-triggered defence signalling in plants.
Stulemeijer, Iris J E; Joosten, Matthieu H A J
2008-07-01
Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.
Immunization information system progress--United States, 2004.
2005-11-18
One of the national health objectives for 2010 is to increase to at least 95% the proportion of children aged <6 years who participate in fully operational, population-based immunization registries (objective no. 14-26). Immunization registries are confidential, computerized information systems that collect and consolidate vaccination data from multiple health-care providers, generate reminder and recall notifications, and assess vaccination coverage within a defined geographic area. A registry with added capabilities, such as vaccine management, adverse event reporting, lifespan vaccination histories, and linkages with electronic data sources, is called an immunization information system (IIS). This report summarizes data from CDC's 2004 IIS Annual Report, a survey of 56 grantees in 50 states, five cities, and the District of Columbia (DC) that receive funding under section 317b of the Public Health Service Act. The findings indicate that approximately 48% of U.S. children aged <6 years participated in an IIS. Moreover, 76% of public vaccination provider sites and 39% of private vaccination provider sites submitted immunization data to an IIS during the last 6 months of 2004. Overcoming challenges and barriers to increasing the number of provider sites and the percentage of children aged <6 years participating in an IIS is critical to achieving the national health objective. CDC has developed a plan of action to address those challenges. Major components of the plan include, but are not limited to, a multiyear IIS business plan for each grantee and enhanced technical assistance to grantees with unresolved challenges.
Intestinal barrier: A gentlemen’s agreement between microbiota and immunity
Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva
2014-01-01
Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host’s adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier. PMID:24891972
Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling
2016-02-01
Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A depauperate immune repertoire precedes evolution of sociality in bees.
Barribeau, Seth M; Sadd, Ben M; du Plessis, Louis; Brown, Mark J F; Buechel, Severine D; Cappelle, Kaat; Carolan, James C; Christiaens, Olivier; Colgan, Thomas J; Erler, Silvio; Evans, Jay; Helbing, Sophie; Karaus, Elke; Lattorff, H Michael G; Marxer, Monika; Meeus, Ivan; Näpflin, Kathrin; Niu, Jinzhi; Schmid-Hempel, Regula; Smagghe, Guy; Waterhouse, Robert M; Yu, Na; Zdobnov, Evgeny M; Schmid-Hempel, Paul
2015-04-24
Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman's principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.
Childhood Immunization: A Key Component of Early Childhood Development
ERIC Educational Resources Information Center
Messonnier, Nancy
2017-01-01
Physical health is a key component of early childhood development and school readiness. By keeping children healthy and decreasing the chances of disease outbreaks, immunizations help early childhood programs create a safe environment for children. While overall vaccination rates are high nationally for most vaccines routinely recommended for…
Yoga and immune system functioning: a systematic review of randomized controlled trials.
Falkenberg, R I; Eising, C; Peters, M L
2018-02-10
Yoga is an ancient mind-body practice that is increasingly recognized to have health benefits in a variety of clinical and non-clinical conditions. This systematic review summarizes the findings of randomized controlled trials examining the effects of yoga on immune system functioning which is imperative to justify its application in the clinic. Fifteen RCTs were eligible for the review. Even though the existing evidence is not entirely consistent, a general pattern emerged suggesting that yoga can downregulate pro-inflammatory markers. In particular, the qualitative evaluation of RCTs revealed decreases in IL-1beta, as well as indications for reductions in IL-6 and TNF-alpha. These results imply that yoga may be implemented as a complementary intervention for populations at risk or already suffering from diseases with an inflammatory component. Beyond this, yoga practice may exert further beneficial effects by enhancing cell-mediated and mucosal immunity. It is hypothesized that longer time spans of yoga practice are required to achieve consistent effects especially on circulating inflammatory markers. Overall, this field of investigation is still young, hence the current body of evidence is small and for most immune parameters, more research is required to draw distinct conclusions.
Feliform carnivores have a distinguished constitutive innate immune response
Heinrich, Sonja K.; Wachter, Bettina; Aschenborn, Ortwin H. K.; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á.
2016-01-01
ABSTRACT Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. PMID:27044323
Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response
Chotirmall, Sanjay H.; Al-Alawi, Mazen; Logan, P. Mark; Greene, Catherine M.; McElvaney, Noel G.
2013-01-01
Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit. PMID:23971044
Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.
Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K
2018-06-12
Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.
Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases
Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi
2013-01-01
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886
The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes
Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.
2014-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454
Cheng, Yu Ti; Germain, Hugo; Wiermer, Marcel; Bi, Dongling; Xu, Fang; García, Ana V; Wirthmueller, Lennart; Després, Charles; Parker, Jane E; Zhang, Yuelin; Li, Xin
2009-08-01
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.
B cells in chronic obstructive pulmonary disease: moving to center stage
Polverino, Francesca; Seys, Leen J. M.; Bracke, Ken R.
2016-01-01
Chronic inflammatory responses in the lungs contribute to the development and progression of chronic obstructive pulmonary disease (COPD). Although research studies focused initially on the contributions of the innate immune system to the pathogenesis of COPD, more recent studies have implicated adaptive immune responses in COPD. In particular, studies have demonstrated increases in B cell counts and increases in the number and size of B cell-rich lymphoid follicles in COPD lungs that correlate directly with COPD severity. There are also increases in lung levels of mediators that promote B cell maturation, activation, and survival in COPD patients. B cell products such as autoantibodies directed against lung cells, components of cells, and extracellular matrix proteins are also present in COPD lungs. These autoantibodies may contribute to lung inflammation and injury in COPD patients, in part, by forming immune complexes that activate complement components. Studies of B cell-deficient mice and human COPD patients have linked B cells most strongly to the emphysema phenotype. However, B cells have protective activities during acute exacerbations of COPD by promoting adaptive immune responses that contribute to host defense against pathogens. This review outlines the evidence that links B cells and B cell-rich lymphoid follicles to the pathogenesis of COPD and the mechanisms involved. It also reviews the potential and limitations of B cells as therapeutic targets to slow the progression of human COPD. PMID:27542809
The plant cell nucleus: a true arena for the fight between plants and pathogens.
Deslandes, Laurent; Rivas, Susana
2011-01-01
Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.
Comparative genomics of defense systems in archaea and bacteria
Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.
2013-01-01
Our knowledge of prokaryotic defense systems has vastly expanded as the result of comparative genomic analysis, followed by experimental validation. This expansion is both quantitative, including the discovery of diverse new examples of known types of defense systems, such as restriction-modification or toxin-antitoxin systems, and qualitative, including the discovery of fundamentally new defense mechanisms, such as the CRISPR-Cas immunity system. Large-scale statistical analysis reveals that the distribution of different defense systems in bacterial and archaeal taxa is non-uniform, with four groups of organisms distinguishable with respect to the overall abundance and the balance between specific types of defense systems. The genes encoding defense system components in bacterial and archaea typically cluster in defense islands. In addition to genes encoding known defense systems, these islands contain numerous uncharacterized genes, which are candidates for new types of defense systems. The tight association of the genes encoding immunity systems and dormancy- or cell death-inducing defense systems in prokaryotic genomes suggests that these two major types of defense are functionally coupled, providing for effective protection at the population level. PMID:23470997
Temporal-logic analysis of microglial phenotypic conversion with exposure to amyloid-β.
Anastasio, Thomas J
2015-02-01
Alzheimer Disease (AD) remains a leading killer with no adequate treatment. Ongoing research increasingly implicates the brain's immune system as a critical contributor to AD pathogenesis, but the complexity of the immune contribution poses a barrier to understanding. Here I use temporal logic to analyze a computational specification of the immune component of AD. Temporal logic is an extension of logic to propositions expressed in terms of time. It has traditionally been used to analyze computational specifications of complex engineered systems but applications to complex biological systems are now appearing. The inflammatory component of AD involves the responses of microglia to the peptide amyloid-β (Aβ), which is an inflammatory stimulus and a likely causative AD agent. Temporal-logic analysis of the model provides explanations for the puzzling findings that Aβ induces an anti-inflammatory and well as a pro-inflammatory response, and that Aβ is phagocytized by microglia in young but not in old animals. To potentially explain the first puzzle, the model suggests that interferon-γ acts as an "autocrine bridge" over which an Aβ-induced increase in pro-inflammatory cytokines leads to an increase in anti-inflammatory mediators also. To potentially explain the second puzzle, the model identifies a potential instability in signaling via insulin-like growth factor 1 that could explain the failure of old microglia to phagocytize Aβ. The model predicts that augmentation of insulin-like growth factor 1 signaling, and activation of protein kinase C in particular, could move old microglia from a neurotoxic back toward a more neuroprotective and phagocytic phenotype.
Nest predation risk modifies nestlings' immune function depending on the level of threat.
Roncalli, Gianluca; Colombo, Elisa; Soler, Manuel; Tieleman, B Irene; Versteegh, Maaike A; Ruiz-Raya, Fran; Gómez Samblas, Mercedes; Ibáñez-Álamo, Juan Diego
2018-05-20
Predation risk is thought to modify the physiology of prey mainly through the stress response. However, little is known about its potential effects on the immunity of animals, particularly in young individuals, despite the importance of overcoming wounding and pathogen aggression following a predator attack. We investigated the effect of four progressive levels of nest predation risk on several components of the immune system in common blackbird ( Turdus merula ) nestlings by presenting them with four different calls during 1 h: non-predator calls, predator calls, parental alarm calls and conspecific distress calls to induce a null, moderate, high and extreme level of risk, respectively. Nest predation risk induced an increase in ovotransferrin, immunoglobulin and the number of lymphocytes and eosinophils. Thus, the perception of a potential predator per se could stimulate the mobilization of a nestling's immune function and enable the organism to rapidly respond to the immune stimuli imposed by a predator attack. Interestingly, only high and extreme levels of risk caused immunological changes, suggesting that different immunological parameters are modulated according to the perceived level of threat. We also found a mediator role of parasites (i.e. Leucocytozoon ) and the current health status of the individual, as only nestlings not parasitized or in good body condition were able to modify their immune system. This study highlights a previously unknown link between predation risk and immunity, emphasizing the complex relationship among different selective pressures (predation, parasitism) in developing organisms and accentuating the importance of studying predation from a physiological point of view. © 2018. Published by The Company of Biologists Ltd.
Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica
2018-01-01
The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways are currently being targeted for clinical application in oncology.
Immunization studies with attenuated strains of Bacillus anthracis.
Ivins, B E; Ezzell, J W; Jemski, J; Hedlund, K W; Ristroph, J D; Leppla, S H
1986-01-01
Live, attenuated strains of Bacillus anthracis lacking either the capsule plasmid pXO2, the toxin plasmid pXO1, or both were tested for their efficacy as vaccines against intravenous challenge with anthrax toxin in Fischer 344 rats and against aerosol or intramuscular challenge with virulent anthrax spores in Hartley guinea pigs. Animals immunized with toxigenic, nonencapsulated (pXO1+, pXO2-) strains survived toxin and spore challenge and demonstrated postimmunization antibody titers to the three components of anthrax toxin (protective antigen, lethal factor, and edema factor). Immunization with two nontoxigenic, encapsulated (pXO1-, pXO2+), Pasteur vaccine strains neither provided protection nor elicited titers to any of the toxin components. Therefore, to immunize successfully against anthrax toxin or spore challenge, attenuated, live strains of B. anthracis must produce the toxin components specified by the pXO1 plasmid. PMID:3084383
Muralidharan, S; Box, M S; Sedivy, E L; Wigge, P A; Weigel, D; Rowan, B A
2014-11-01
Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species-specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature-based suppression of ectopic immune activation in hybrids exhibits a linear or non-linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non-linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade-off between immunity and growth depends on the specific defence components involved. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kumar, Varun; Mangal, Abha; Panesar, Sanjeet; Yadav, Geeta; Talwar, Richa; Raut, Deepak; Singh, Saudan
2014-01-01
Background. Obtaining baseline data about current patterns of work is important for assessing the effects of interventions designed to improve care delivery. Time and motion studies allow for the most accurate measurement of structured components. Therefore, the present study was conducted to study the operational efficiency of an immunization clinic in Delhi, India. Methods. An observational cross-sectional study was conducted at the immunization clinic of Rural Health Training Centre in Delhi, India, from January 2014 to March 2014. The study composed two stage evaluations, a passive observation and a time and motion study. Systemic random sampling method was used to select 863 mothers/caregivers attending the immunization clinic. Results. At the immunization clinic, the study participants spent 64.1% of their total time in waiting. For new cases, the mean time taken for initial registration and receiving postvaccination advice was found to be significantly longer than old cases. Delivering health care services took more time during Mondays and also during the first hour of the day. Conclusion. Results of this study will guide public health decision-makers at all government levels in planning and implementation of immunization programs in developing countries. PMID:25431679
Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen
2008-07-17
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.
Wilkie, Bruce N; Rupa, Prithy; Schmied, Julie
2012-07-15
The importance of environment in immune response is identified and the increase in prevalence of allergic, autoimmune and chronic inflammatory diseases reviewed. In particular, altered opportunity to acquire evolutionarily anticipated commensal microbiota is associated through the "hygiene hypothesis" with defective developmental and response signals to the innate and adaptive immune systems. Evidence of the detrimental effects of such environments is reviewed as is evidence for remediation using controlled exposure to bacteria or their active components such as LPS or peptidoglycan ligands for TLR and NOD-like receptors. Occurrence of major environmentally associated changes in porcine immune response phenotype are described. The prophylactic effects of heat-killed Escherichia coli given intramuscularly or of oral Lactococcus lactis on experimental ovomucoid-induced allergy in piglets are described in the context of altered immune response bias favouring reduced type-2 phenotypes. The high frequency of clinical tolerance to developing allergic signs even in the face of classical sensitization indicates possible function in this pig model of regulatory effectors such as Treg cells. Copyright © 2011 Elsevier B.V. All rights reserved.
The autistic brain in the context of normal neurodevelopment.
Ziats, Mark N; Edmonson, Catherine; Rennert, Owen M
2015-01-01
The etiology of autism spectrum disorders (ASDs) is complex and largely unclear. Among various lines of inquiry, many have suggested convergence onto disruptions in both neural circuitry and immune regulation/glial cell function pathways. However, the interpretation of the relationship between these two putative mechanisms has largely focused on the role of exogenous factors and insults, such as maternal infection, in activating immune pathways that in turn result in neural network abnormalities. Yet, given recent insights into our understanding of human neurodevelopment, and in particular the critical role of glia and the immune system in normal brain development, it is important to consider these putative pathological processes in their appropriate normal neurodevelopmental context. In this review, we explore the hypothesis that the autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune processes constitutively operant in normal brain development that result in the observed neural network dysfunction. We review recent studies demonstrating the intercalated role of neural circuit development, the immune system, and glial cells in the normal developing brain, and integrate them with studies demonstrating pathological alterations in these processes in autism. By discussing known abnormalities in the autistic brain in the context of normal brain development, we explore the hypothesis that the glial/immune component of ASD may instead be related to intrinsic exaggerated/abnormal constitutive neurodevelopmental processes such as network pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental disorders that share genetic, pathologic, and clinical features with autism.
Nystrand, M; Dowling, D K
2014-05-01
Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales--the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge--but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor
Rappleye, Chad A.; Eissenberg, Linda Groppe; Goldman, William E.
2007-01-01
Successful infection by fungal pathogens depends on subversion of host immune mechanisms that detect conserved cell wall components such as β-glucans. A less common polysaccharide, α-(1,3)-glucan, is a cell wall constituent of most fungal respiratory pathogens and has been correlated with pathogenicity or linked directly to virulence. However, the precise mechanism by which α-(1,3)-glucan promotes fungal virulence is unknown. Here, we show that α-(1,3)-glucan is present in the outermost layer of the Histoplasma capsulatum yeast cell wall and contributes to pathogenesis by concealing immunostimulatory β-glucans from detection by host phagocytic cells. Production of proinflammatory TNFα by phagocytes was suppressed either by the presence of the α-(1,3)-glucan layer on yeast cells or by RNA interference based depletion of the host β-glucan receptor dectin-1. Thus, we have functionally defined key molecular components influencing the initial host–pathogen interaction in histoplasmosis and have revealed an important mechanism by which H. capsulatum thwarts the host immune system. Furthermore, we propose that the degree of this evasion contributes to the difference in pathogenic potential between dimorphic fungal pathogens and opportunistic fungi. PMID:17227865
The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes
Mills, SC; Windsor, AC; Knight, SC
2005-01-01
n-3 Polyunsaturated fatty acids (PUFAs) are recognized as having an anti-inflammatory effect, which is initiated and propagated via a number of mechanisms involving the cells of the immune system. These include: eicosanoid profiles, membrane fluidity and lipid rafts, signal transduction, gene expression and antigen presentation. The wide-range of mechanisms of action of n-3 PUFAs offer a number of potential therapeutic tools with which to treat inflammatory diseases. In this review we discuss the molecular, animal model and clinical evidence for manipulation of the immune profile by n-3 PUFAs with respect to inflammatory bowel disease. In addition to providing a potential therapy for inflammatory bowel disease there is also recent evidence that abnormalities in fatty acid profiles, both in the plasma phospholipid membrane and in perinodal adipose tissue, may be a key component in the multi-factorial aetiology of inflammatory bowel disease. Such abnormalities are likely to be the result of a genetic susceptibility to the changing ratios of n-3 : n-6 fatty acids in the western diet. Evidence that the fatty acid components of perinodal adipose are fuelling the pro- or anti-inflammatory bias of the immune response is also reviewed. PMID:16232207
Pedrini, Nicolás
2018-06-01
Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Systematic discovery of antiphage defense systems in the microbial pangenome.
Doron, Shany; Melamed, Sarah; Ofir, Gal; Leavitt, Azita; Lopatina, Anna; Keren, Mai; Amitai, Gil; Sorek, Rotem
2018-03-02
The arms race between bacteria and phages led to the development of sophisticated antiphage defense systems, including CRISPR-Cas and restriction-modification systems. Evidence suggests that known and unknown defense systems are located in "defense islands" in microbial genomes. Here, we comprehensively characterized the bacterial defensive arsenal by examining gene families that are clustered next to known defense genes in prokaryotic genomes. Candidate defense systems were systematically engineered and validated in model bacteria for their antiphage activities. We report nine previously unknown antiphage systems and one antiplasmid system that are widespread in microbes and strongly protect against foreign invaders. These include systems that adopted components of the bacterial flagella and condensin complexes. Our data also suggest a common, ancient ancestry of innate immunity components shared between animals, plants, and bacteria. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Keeping It All Going-Complement Meets Metabolism.
Kolev, Martin; Kemper, Claudia
2017-01-01
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather "predictable" but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
Use of electronic immunization registry in the surveillance of adverse events following immunization
Sato, Ana Paula Sayuri; Ferreira, Vinícius Leati de Rossi; Tauil, Márcia de Cantuária; Rodrigues, Laura Cunha; Barros, Mariana Bernardes; Martineli, Edmar; Costa, Ângela Aparecida; Inenami, Marta; Waldman, Eliseu Alves
2018-01-01
ABSTRACT OBJECTIVE To describe adverse events following vaccination (AEFV) of children under two years old and analyze trend of this events from 2000 to 2013, in the city of Araraquara (SP), Brazil. METHODS This is a descriptive study conducted with data of the passive surveillance system of AEFV that is available in the electronic immunization registry (EIR) of the computerized medical record of the municipal health service (Juarez System). The study variables were: age, gender, vaccine, dose, clinical manifestations and hospitalization. We estimated rates using AEFV as numerator and administered doses of vaccines as denominator. The surveillance sensitivity was estimated by applying the method proposed by the Centers for Disease Control and Prevention. We used Prais-Winsten regression with a significance level of 5.0%. RESULTS The average annual rate of AEFV was 11.3/10,000 administered doses, however without a trend in the study period (p=0.491). Most cases occurred after the first dose (41.7%) and among children under one year of age (72.6%). Vaccines with pertussis component, yellow fever and measles-mumps-rubella were the most reactogenic. We highlighted the rates of hypotonic-hyporesponsive episodes and convulsion that were 4.1/10,000 and 1.5/10,000 doses of vaccines with pertussis component, respectively, most frequently in the first dose; 60,0% of cases presented symptoms in the first 24 hours after vaccination, however, 18.6% showed after 96 hours. The sensitivity of surveillance was 71.9% and 78.9% for hypotonic-hyporesponsive episodes and convulsion, respectively. CONCLUSIONS The EIR-based AEFV surveillance system proved to be useful and highly sensitive to describe the safety profile of vaccines in a medium-sized city. It was also shown that the significant increase of the vaccines included in the basic vaccination schedule in childhood in the last decade did not alter the high safety standard of the National Immunization Program. PMID:29412373
Sato, Ana Paula Sayuri; Ferreira, Vinícius Leati de Rossi; Tauil, Márcia de Cantuária; Rodrigues, Laura Cunha; Barros, Mariana Bernardes; Martineli, Edmar; Costa, Ângela Aparecida; Inenami, Marta; Waldman, Eliseu Alves
2018-02-05
To describe adverse events following vaccination (AEFV) of children under two years old and analyze trend of this events from 2000 to 2013, in the city of Araraquara (SP), Brazil. This is a descriptive study conducted with data of the passive surveillance system of AEFV that is available in the electronic immunization registry (EIR) of the computerized medical record of the municipal health service (Juarez System). The study variables were: age, gender, vaccine, dose, clinical manifestations and hospitalization. We estimated rates using AEFV as numerator and administered doses of vaccines as denominator. The surveillance sensitivity was estimated by applying the method proposed by the Centers for Disease Control and Prevention. We used Prais-Winsten regression with a significance level of 5.0%. The average annual rate of AEFV was 11.3/10,000 administered doses, however without a trend in the study period (p=0.491). Most cases occurred after the first dose (41.7%) and among children under one year of age (72.6%). Vaccines with pertussis component, yellow fever and measles-mumps-rubella were the most reactogenic. We highlighted the rates of hypotonic-hyporesponsive episodes and convulsion that were 4.1/10,000 and 1.5/10,000 doses of vaccines with pertussis component, respectively, most frequently in the first dose; 60,0% of cases presented symptoms in the first 24 hours after vaccination, however, 18.6% showed after 96 hours. The sensitivity of surveillance was 71.9% and 78.9% for hypotonic-hyporesponsive episodes and convulsion, respectively. The EIR-based AEFV surveillance system proved to be useful and highly sensitive to describe the safety profile of vaccines in a medium-sized city. It was also shown that the significant increase of the vaccines included in the basic vaccination schedule in childhood in the last decade did not alter the high safety standard of the National Immunization Program.
Kiss, Márton; Kiss, András A; Radics, Monika; Popovics, Nikoletta; Hermesz, Edit; Csiszár, Katalin; Mink, Mátyás
2016-01-01
The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM. In order to determine the consequences of altered BMfunctions due to aberrant COL4A1 protein, we have carried out a series of tests using Drosophila DTS-L3 mutants from our allelic series of col4a1 mutations with confirmed degeneration of various cell types and lowest survival rate among the col4a1 mutant lines at restrictive temperature. Results demonstrated epithelial cell degeneration in the gut, shortened gut, enlarged midgut with multiple diverticulae, intestinal dysfunction and shortened life span. Midgut immunohistochemistry analyses confirmed altered expression and distribution of BM components integrin PSI and PSII alpha subunits, laminin gamma 1, and COL4A1 both in larvae and adults. Global gene expression analysis revealed activation of the effector AMP genes of the primary innate immune system including Metchnikowin, Diptericin, Diptericin B, and edin that preceded morphological changes. Attacin::GFP midgut expression pattern further supported these changes. An increase in ROS production and changes in gut bacterial flora were also noted and may have further enhanced an immune response. The phenotypic features of Drosophila col4a1 mutants confirmed an essential role for type IV collagen in maintaining epithelial integrity, gut morphology and intestinal function and suggest that aberrant structure and function of the COL4A1 protein may also be a significant factor in modulating immunity.
Immunotoxicity and genotoxicity testing for in-flight experiments under microgravity
NASA Astrophysics Data System (ADS)
Hansen, Peter-Diedrich; Hansen, Peter-Diedrich; Unruh, Eckehardt
Life Sciences as Related to Space (F) Influence of Spaceflight Environment on Biological Systems (F44) Immunotoxicity and genotoxicity testing for In-flight experiments under microgravity Sensing approaches for ecosystem and human health Author: Peter D. Hansen Technische Universit¨t Berlin, Faculty VI - Planen, Bauen, Umwelt, a Institute for Ecological Research and Technology, Department for Ecotoxicology, Berlin, Germany Peter-diedrich.hansen@tu-berlin.de Eckehardt Unruh Technische Universit¨t Berlin, Faculty VI - Planen, Bauen, Umwelt, Institute a for Ecological Research and Technology, Department for Ecotoxicology, Berlin, Germany An immune response by mussel hemocytes is the selective reaction to particles which are identified as foreign by its immune system shown by phagocytosis. Phagocytotic activity is based on the chemotaxis and adhesion, ingestion and phagosome formation. The attachment at the surface of the hemocytes and consequently the uptake of the particles or bacteria can be directly quantified in the format of a fluorescent assay. Another relevant endpoint of phagocytosis is oxidative burst measured by luminescence. Phagocytosis-related production of ROS will be stimulated with opsonised zymosan. The hemocytes will be stored frozen at -80oC and reconstituted in-flight for the experiment. The assay system of the TRIPLELUX-B Experiment has been performed with a well-defined quantification and evaluation of the immune function phagocytosis. The indicator cells are the hemocytes of blue mussels (Mytilus edulis). The signals of the immuno cellular responses are translated into luminescence as a rapid optical reporter system. The results expected will determine whether the observed responses are caused by microgravity and/or radiation (change in permeability, endpoints in genotoxicity: DNA unwinding). The samples for genotoxicity will be processed after returning to earth. The immune system of invertebrates has not been studied so far in space. The choice of phagocytes from invertebrates is justified to study the universal validity of innate immune responses. The TRIPLELUX-B Experiment contributes to risk assessment concerning immunotoxicity under space flight conditions. The components of the phagocytosis test system for the BIOLAB are now established and the technical realization of the TRIPLELUX- B Experiment is in final progess. The components of the fully automated AEC (Advanced Experimental Containment) will be demonstrated in the poster. There will be two AECs for reference measurements at 1xg and 0xg. The AEC of the TRIPLELUX-B experiment will contribute to a real time operational monitoring for immunotoxicity testing on earth. The AEC will allow "real time monitoring" providing automated observations of immunotoxicity in coastal and inland waters.
Barbour, Elie K; Itani, Houssam H; Sleiman, Fawwak T; Saade, Maya F; Harakeh, Steve; Nour, Afif M Abdel; Shaib, Houssam A
2012-01-01
Three objectives were included in this research work. The first objective compared different immune components in healthy mature males, mature females, and female kids of local and imported Saanen goats, reared under a sub-tropical environment. The significantly differing immune components were the blood monocyte percent, blood CD8 count, and the total white blood cell count. The second objective compared the performance of Saanen versus local does. The means of the milk yield and prolificacy of the imported Saanen does were significantly higher than those of the local does (p<0.05). The third objective compared the immune responses (hemagglutination-HA titers) and complement fixation (CF) titers in mature does of the two breeds to chicken red blood cells (c-RBC). The HA titers showed a significant seroconversion only in imported Saanen (p<0.05) but not in local does; however, the CF titers increased significantly at 4 weeks following priming with c-RBC in local (p<0.05) but not in the imported Saanen does. The impact of the differences in blood immune components and responses to antigens in the compared goats on protection potential against prevalent diseases in the sub-tropical zone of the eastern Mediterranean countries is discussed.
Capsaicin-enriched diet ameliorates autoimmune neuritis in rats.
Motte, Jeremias; Ambrosius, Björn; Grüter, Thomas; Bachir, Hussein; Sgodzai, Melissa; Pedreiturria, Xiomara; Pitarokoili, Kalliopi; Gold, Ralf
2018-04-24
Autoimmune neuropathies are common PNS disorders and effective treatment is challenging. Environmental influence and dietary components are known to affect the course of autoimmune diseases. Capsaicin as pungent component of chili-peppers is common in human nutrition. An influence of capsaicin on autoimmune diseases has been postulated. We tested capsaicin in the animal model of experimental autoimmune neuritis (EAN) in Lewis rat. Rats were immunized with P2-peptide and were treated with capsaicin in different preventive settings. Electrophysiological, histological, and molecular biological analyses of the sciatic nerve were performed to analyze T-cell and macrophage cell count, TRPV1, and cytokine expression. Moreover, FACS analyses including the intestinal immune system were executed. We observed an immunomodulatory effect of an early preventive diet-concept, where a physiological dosage of oral capsaicin was given 10 days before immunization in EAN. A reduced inflammation of the sciatic nerve was significant detectable clinically, electrophysiologically (CMAPs reduced in control group p < 0.01; increase of nerve conduction blocks in control group p < 0.05), histologically (significant reduction of T-cells, macrophages and demyelination), and at cytokine level. In contrast, this therapeutic effect was missing with capsaicin given from the day of immunization onwards. As possible underlying mechanism, we were able to show changes in the expression of the capsaicin receptor in the sciatic nerve and the small intestine, as well as altered immune cell populations in the small intestine. This is the first report about the immunomodulatory effect of the common nutrient, capsaicin, in an experimental model for autoimmune neuropathies.
The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss.
Miller, David J; Hemmrich, Georg; Ball, Eldon E; Hayward, David C; Khalturin, Konstantin; Funayama, Noriko; Agata, Kiyokazu; Bosch, Thomas C G
2007-01-01
Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest--it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-kappaB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.
Helminths and their implication in sepsis – a new branch of their immunomodulatory behaviour?
Hübner, Marc P; Layland, Laura E; Hoerauf, Achim
2013-01-01
The prevalence of autoimmune and allergic disorders has dramatically increased in developed countries, and it is believed that our ‘cleaner living’ reduces exposure to certain microorganisms and leads to deviated and/or reduced regulation of the immune system. In substantiation of this health hygiene hypothesis, multiple epidemiological studies and animal models have characterized the protective immune responses induced by helminths during auto-inflammatory disorders. The beneficial effects of such helminths, like schistosomes and filariae, are thought to lie in their immunomodulatory capacity, which can be induced by different life-cycle stages or components thereof. In addition to suppressing autoimmunity recent evidence indicates that concurrent helminth infections also counterbalance exacerbated pro-inflammatory immune responses that occur during sepsis, improving survival. As with allergy, epidemiological studies have observed a steady rise in severe sepsis cases and although this may have resulted from several factors (immunosuppressive drugs, chemotherapy, transplantation, increased awareness and increased surgical procedures), it is tempting to hypothesize that the lack of helminth infections in Western countries may have contributed to this phenomenon. This review summarizes how helminths modulate host immunity during sepsis, such as manipulating macrophage activation and provides an overview about the possible implications that may arise during overwhelming bacterial co-infections. This well written review gives a comprehensive overview on the immunopathology of sepsis and the modulation of immune responses by helminths. It provides evidence that helminths or components thereof may improve the outcome of severe infections. This will allow the development of therapeutic strategies to fight infections and sepsis. PMID:23929557
Beyond mice and men: Environmental change, immunity and infections in wild ungulates
Jolles, Anna E.; Beechler, Brianna R.; Dolan, Brian P.
2014-01-01
In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: Many components of environmental change – shifts in biotic assemblages, altered climate patterns, and reduced environmental predictability – may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission; and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding patterns of immunity and infection in natural populations and across species. PMID:25354672
The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.
Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo
2017-02-01
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Alvarado, Raquel; O'Brien, Bronwyn; Tanaka, Akane; Dalton, John P; Donnelly, Sheila
2015-02-01
Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.
Anaemia, iron deficiency and susceptibility to infections.
Jonker, Femke A M; Boele van Hensbroek, Michaël
2014-11-01
Anaemia, iron deficiency and infections are three major causes of childhood morbidity and mortality throughout the world, although they predominantly occur in resource limited settings. As the three conditions may have the same underlying aetiologies, they often occur simultaneously and may interact. Being an essential component in erythropoiesis, iron is also essential for proper functioning of the host immune system as well as an essential nutrient for growth of various pathogens, including non-typhoid salmonella. This has resulted in a treatment dilemma in which iron is needed to treat the iron deficient anaemia and improve the immune system of the host (child), but the same treatment may also put the child at an increased, potentially fatal, infection risk. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Profile of the spleen transcriptome in beef steers with variation in gain and feed intake
USDA-ARS?s Scientific Manuscript database
We have previously identified components of the immune system contributing to feed intake and gain in both the rumen and small intestine of beef steers. In this study, we examined the spleen, a major lymphatic organ near the digestive tract, to determine whether it was also contributing to an animal...
Flipping the NF-κB Switch in Macrophages | Center for Cancer Research
A critical component of the innate immune system, macrophages respond to diverse microbes by recognizing certain molecular patterns, such as the Gram-negative bacteria product lipopolysaccharide (LPS), via Toll-like receptors. Receptor activation stimulates a complex signaling network that involves, among others, the NF-κB pathway. The complexity of this network has hampered
USDA-ARS?s Scientific Manuscript database
Secretory IgA (sIgA) and its transcytosis receptor, polymeric immunoglobulin receptor (pIgR), along with mucus, form the first lines of intestinal defense. Threonine (Thr) is a major constituent component of intestinal mucins and IgA, which are highly secreted under lipopolysaccharide (LPS) induced ...
USDA-ARS?s Scientific Manuscript database
Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified making it an interesting molecule from a functional perspective. In the present study, ...
Zhong, Weihao; McClure, Colin D; Evans, Cara R; Mlynski, David T; Immonen, Elina; Ritchie, Michael G; Priest, Nicholas K
2013-12-22
Although it is well known that mating increases the risk of infection, we do not know how females mitigate the fitness costs of sexually transmitted infections (STIs). It has recently been shown that female fruitflies, Drosophila melanogaster, specifically upregulate two members of the Turandot family of immune and stress response genes, Turandot M and Turandot C (TotM and TotC), when they hear male courtship song. Here, we use the Gal4/UAS RNAi gene knockdown system to test whether the expression of these genes provides fitness benefits for females infected with the entomopathogenic fungus, Metarhizium robertsii under sexual transmission. As a control, we also examined the immunity conferred by Dorsal-related immunity factor (Dif), a central component of the Toll signalling pathway thought to provide immunity against fungal infections. We show that TotM, but not TotC or Dif, provides survival benefits to females following STIs, but not after direct topical infections. We also show that though the expression of TotM provides fecundity benefits for healthy females, it comes at a cost to their survival, which helps to explain why TotM is not constitutively expressed. Together, these results show that the anticipatory expression of TotM promotes specific immunity against fungal STIs and suggest that immune anticipation is more common than currently appreciated.
NASA Astrophysics Data System (ADS)
McReynolds, Naomi; Cooke, Fiona G. M.; Chen, Mingzhou; Powis, Simon J.; Dholakia, Kishan
2017-02-01
Moving towards label-free techniques for cell identification is essential for many clinical and research applications. Raman spectroscopy and digital holographic microscopy (DHM) are both label-free, non-destructive optical techniques capable of providing complimentary information. We demonstrate a multi-modal system which may simultaneously take Raman spectra and DHM images to provide both a molecular and a morphological description of our sample. In this study we use Raman spectroscopy and DHM to discriminate between three immune cell populations CD4+ T cells, B cells, and monocytes, which together comprise key functional immune cell subsets in immune responses to invading pathogens. Various parameters that may be used to describe the phase images are also examined such as pixel value histograms or texture analysis. Using our system it is possible to consider each technique individually or in combination. Principal component analysis is used on the data set to discriminate between cell types and leave-one-out cross-validation is used to estimate the efficiency of our method. Raman spectroscopy provides specific chemical information but requires relatively long acquisition times, combining this with a faster modality such as DHM could help achieve faster throughput rates. The combination of these two complimentary optical techniques provides a wealth of information for cell characterisation which is a step towards achieving label free technology for the identification of human immune cells.
Effect of Bacopa monniera Linn. extract on murine immune response in vitro.
Saraphanchotiwitthaya, Aurasorn; Ingkaninan, Kornkanok; Sripalakit, Pattana
2008-10-01
The study was to investigate and compare the effects of the Bacopa monniera Linn. extract and bacoside A on the ICR mice immune system in vitro. Splenocyte proliferation without or with mitogen (lipopolysaccharide, pokeweed mitogen, phytohaemagglutinin and concanavalin A) and phagocytic activity were assayed. The results showed that B. monniera extract at 0.001-1 mg/mL slightly suppressed splenocyte proliferation (SI 0.7) and decreased T-lymphocyte proliferation (SI 0.4) at 0.001 and 0.1 mg/mL with concanavalin A. Bacoside A at 0.001 mg/mL gave the highest splenocyte proliferation (SI 1.5) and strongly increased T-lymphocyte proliferation (SI 2.0) at 0.1 mg/mL with concanavalin A. Thus, it is possible to attribute the effect of B. monniera extract on splenocyte proliferation to the presence of bacoside A with other combined components. However, only B. monniera extract at 10 mg/mL produced a slight increase in lysosomal enzyme activity (PI 1.2), indicating a weak effect on phagocytic activation. It might be concluded that B. monniera manifests various effects on the murine immune system depending on the immune cell types, in accordance with its folklore uses. New assays are being carried out to study its mechanisms and to further investigate its applications in the treatment of human immune mediated diseases. (c) 2008 John Wiley & Sons, Ltd.
Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian
2013-12-26
Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
In Vivo Imaging of Influenza Virus Infection in Immunized Mice
Czakó, Rita; Vogel, Leatrice; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Ellebedy, Ali H.; Ahmed, Rafi
2017-01-01
ABSTRACT Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS) technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice. PMID:28559489
CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.
Kirchner, Marion; Schneider, Sabine
2015-11-09
The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Defense system shortcuts and limits of scope.
Rewald, E; Francischetti, M M
2000-10-01
Defense, as a key factor of life, shares the biological tendencies of simplicity and energy saving. We propose that, like the mind, defense tends to rely on shortcuts via immune memes. Also, response repetition may induce the formation of virtual 'modules' [toolkits] to simplify and perfect performance. Engaged modules may expand by proliferating or by capturing immune components from the 'dormant' and even perhaps from active ones. With regard to recovery and/or survival, complexity of the integrated defense system (IDS) (1) requires to be inside of what we call the 'functional window'. In contrast to the physiological and common disease repair, energy is squandered when IDS perceives real danger. Our concern is the uncertain transition to conditions that do not fit into the IDS routine and, even worse, that are outside the functional window where the system is lacking. Copyright 2000 Harcourt Publishers Ltd.
Supernatural T cells: genetic modification of T cells for cancer therapy.
Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K
2005-12-01
Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.
Huber, Victor C.; Peltola, Ville; Iverson, Amy R.; McCullers, Jonathan A.
2010-01-01
Secondary bacterial infections contribute to morbidity and mortality from influenza. Vaccine effectiveness is typically assessed using prevention of influenza, not secondary infections, as an endpoint. We vaccinated mice with formalin-inactivated influenza virus vaccine preparations containing disparate HA and NA proteins and demonstrated an ability to induce the appropriate anti-HA and anti-NA immune profiles. Protection from both primary viral and secondary bacterial infection was demonstrated with vaccine-induced immunity directed toward either the HA or the NA. This finding suggests that immunity toward the NA component of the virion is desirable and should be considered in generation of influenza vaccines. PMID:20130054
Wang, Yucai; Liu, Yunyan; Zheng, Lianhe
2014-01-01
Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy. PMID:24466232
Hills, Rebecca A.; Allwes, Deborah; Rasmussen, Lisa
2013-01-01
Objectives Meningitis and bacteremia due to Neisseria meningitidis are rare but potentially deadly diseases that can be prevented with immunization. Beginning in 2008, Arizona school immunization requirements were amended to include immunization of children aged 11 years or older with meningococcal vaccine before entering the sixth grade. We describe patterns in meningococcal vaccine uptake surrounding these school-entry requirement changes in Arizona. Methods We used immunization records from the Arizona State Immunization Information System (ASIIS) to compare immunization rates in 11- and 12-year-olds. We used principal component analysis and hierarchical cluster analysis to identify and analyze demographic variables reported by the 2010 U.S. Census. Results Adolescent meningococcal immunization rates in Arizona increased after implementation of statewide school-entry immunization requirements. The increase in meningococcal vaccination rates among 11- and 12-year-olds from 2007 to 2008 was statistically significant (p<0.0001). All demographic groups had significantly higher odds of on-schedule vaccination after the school-entry requirement change (odds ratio range = 5.57 to 12.81, p<0.0001). County demographic factors that were associated with lower odds of on-schedule vaccination included higher poverty, more children younger than 18 years of age, fewer high school graduates, and a higher proportion of Native Americans. Conclusions This analysis suggests that implementation of school immunization requirements resulted in increased meningococcal vaccination rates in Arizona, with degree of response varying by demographic profile. ASIIS was useful for assessing changes in immunization rates over time. Further study is required to identify methods to control for population overestimates in registry data. PMID:23277658
Hofmann, Claudia; Dunger, Nadja; Doser, Kristina; Lippert, Elisabeth; Siller, Sebastian; Edinger, Matthias; Falk, Werner; Obermeier, Florian
2014-01-01
Cytosine-guanosine dinucleotide (CpG) motifs are immunostimulatory components of bacterial DNA and activators of innate immunity through Toll-like receptor 9 (TLR9). Administration of CpG oligodeoxynucleotides before the onset of experimental colitis prevents intestinal inflammation by enforcement of regulatory mechanisms. It was investigated whether physiologic CpG/TLR9 interactions are critical for the homeostasis of the intestinal immune system. Mesenteric lymph node cell and lamina propria mononuclear cell (LPMC) populations from BALB/c wild-type (wt) or TLR9 mice were assessed by flow cytometry and proteome profiling. Cytokine secretion was determined and nuclear extracts were analyzed for nuclear factor kappa B (NF-κB) and cAMP response-element binding protein activity. To assess the colitogenic potential of intestinal T cells, CD4-enriched cells from LPMC of wt or TLR9 donor mice were injected intraperitoneally in recipient CB-17 SCID mice. TLR9 deficiency was accompanied by slight changes in cellular composition and phosphorylation of signaling proteins of mesenteric lymph node cell and LPMC. LPMC from TLR9 mice displayed an increased proinflammatory phenotype compared with wt LPMC. NF-κB activity in cells from TLR9 mice was enhanced, whereas cAMP response-element binding activity was reduced compared with wt. Transfer of lamina propria CD4-enriched T cells from TLR9 mice induced severe colitis, whereas wt lamina propria CD4-enriched T cells displayed an attenuated phenotype. Lack of physiologic CpG/TLR9 interaction impairs the function of the intestinal immune system indicated by enhanced proinflammatory properties. Thus, physiologic CpG/TLR interaction is essential for homeostasis of the intestinal immune system as it is required for the induction of counterregulating anti-inflammatory mechanisms.
Immune functions of the garment workers.
Sultana, R; Ferdous, K J; Hossain, M; Zahid, M S H; Islam, L N
2012-10-01
Occupational exposure to cotton dust, fibers, metal fumes and different chemicals used in the aparrel manufacturing industries cause a wide range of physical and psychological health problems in the garment workers that may also affect their immune function. To assess the immune system function in garment workers. A total of 45 workers of a garment factory, and 41 control subjects, not exposed to the garment working environment were enrolled in this study. In the study subjects, the complement system function was assessed as bactericidal activity on Escherichia coli DH5α cells using the standard plate count method. Serum complement components C3 and C4 were measured by immunoprecipitation, and IgG was measured by immunonephelometry. The bactericidal activity of serum complement in the garment workers (range: 93.5%-99.9%) was significantly (p<0.01) lower than that in the controls (range: 98.6%-100%). The heat-inactivated serum of the workers showed a significantly enhanced bactericidal activity. In the garment workers, the mean levels of complement C3, and C4 were 1.75 and 0.26 g/L, respectively that were close to those of the controls. The mean IgG level in the garment workers was 13.5 g/L that was significantly (p<0.001) higher than that in the controls. Working in a garment factory may affect the immune system.
Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies
van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C
2017-01-01
Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400
Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System
Rachdaoui, Nadia; Sarkar, Dipak K.
2017-01-01
Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577
Fukuda, Tadashi; Iwaki, Masaaki; Komiya, Takako; Shibayama, Keigo; Takahashi, Motohide; Nakashima, Hideki
2013-01-01
Haemophilus influenzae type b vaccine conjugated with tetanus toxoid (HibT) was licensed for use in childhood immunization in Japan in 2007. As adsorbed diphtheria-tetanus-acellular pertussis (DTaP) combined with HibT vaccine has not been introduced in Japan, DTaP and HibT vaccines are injected at separate sites with a similar immunization schedule. There are various interfering or stimulatory effects between components of combined vaccines contained in DTaP and HibT vaccines. In this study, we investigated the effect of HibT containing combination vaccines on anti-tetanus potencies by using animal models (mouse, guinea pig, and rat). HibT vaccine and HibT components of imported DTaP-HibT vaccine alone showed comparable or higher anti-tetanus potency than DTaP vaccine and DTaP-containing components of combination vaccines. Mixing these components before injection resulted in potencies greater than the sum of individual potencies. Injecting individual components at separate sites in animals resulted in potency roughly equivalent to the sum of the individual potencies. These results provide useful information regarding the use of HibT-containing multivalent vaccines in childhood immunization.
Innate immunity and HIV-1 infection.
Lehner, T; Wang, Y; Whittall, T; Seidl, T
2011-04-01
HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.
Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling.
Kangasjärvi, Saijaliisa; Tikkanen, Mikko; Durian, Guido; Aro, Eva-Mari
2014-08-01
Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Reboul, Angéline; Lemaître, Nadine; Titecat, Marie; Merchez, Maud; Deloison, Gaspard; Ricard, Isabelle; Pradel, Elizabeth; Marceau, Michaël; Sebbane, Florent
2014-11-01
Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique
2011-01-01
An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808
Comparative genomic analysis of the Tribolium immune system
Zou, Zhen; Evans, Jay D; Lu, Zhiqiang; Zhao, Picheng; Williams, Michael; Sumathipala, Niranji; Hetru, Charles; Hultmark, Dan; Jiang, Haobo
2007-01-01
Background Tribolium castaneum is a species of Coleoptera, the largest and most diverse order of all eukaryotes. Components of the innate immune system are hardly known in this insect, which is in a key phylogenetic position to inform us about genetic innovations accompanying the evolution of holometabolous insects. We have annotated immunity-related genes and compared them with homologous molecules from other species. Results Around 300 candidate defense proteins are identified based on sequence similarity to homologs known to participate in immune responses. In most cases, paralog counts are lower than those of Drosophila melanogaster or Anopheles gambiae but are substantially higher than those of Apis mellifera. The genome contains probable orthologs for nearly all members of the Toll, IMD, and JAK/STAT pathways. While total numbers of the clip-domain serine proteinases are approximately equal in the fly (29), mosquito (32) and beetle (30), lineage-specific expansion of the family is discovered in all three species. Sixteen of the thirty-one serpin genes form a large cluster in a 50 kb region that resulted from extensive gene duplications. Among the nine Toll-like proteins, four are orthologous to Drosophila Toll. The presence of scavenger receptors and other related proteins indicates a role of cellular responses in the entire system. The structures of some antimicrobial peptides drastically differ from those in other orders of insects. Conclusion A framework of information on Tribolium immunity is established, which may serve as a stepping stone for future genetic analyses of defense responses in a nondrosophiline genetic model insect. PMID:17727709
Sayes, Fadel; Pawlik, Alexandre; Frigui, Wafa; Gröschel, Matthias I.; Crommelynck, Samuel; Fayolle, Catherine; Cia, Felipe; Bancroft, Gregory J.; Bottai, Daria; Leclerc, Claude; Brosch, Roland; Majlessi, Laleh
2016-01-01
Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. PMID:27467705
Kdo2-lipid A: structural diversity and impact on immunopharmacology
Wang, Xiaoyuan; Quinn, Peter J; Yan, Aixin
2015-01-01
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development. PMID:24838025
Agent-based modeling of the immune system: NetLogo, a promising framework.
Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco
2014-01-01
Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.
γδ T Cells Are a Component of Early Immunity against Preerythrocytic Malaria Parasites
McKenna, Kyle C.; Tsuji, Moriya; Sarzotti, Marcella; Sacci, John B.; Witney, Adam A.; Azad, Abdu F.
2000-01-01
We tested the hypothesis that γδ T cells are a component of an early immune response directed against preerythrocytic malaria parasites that are required for the induction of an effector αβ T-cell immune response generated by irradiated-sporozoite (irr-spz) immunization. γδ T-cell-deficient (TCRδ−/−) mice on a C57BL/6 background were challenged with Plasmodium yoelii (17XNL strain) sporozoites, and then liver parasite burden was measured at 42 h postchallenge. Liver parasite burden was measured by quantification of parasite-specific 18S rRNA in total liver RNA by quantitative-competitive reverse transcription-PCR and by an automated 5′ exonuclease PCR. Sporozoite-challenged TCRδ−/− mice showed a significant (P < 0.01) increase in liver parasite burden compared to similarly challenged immunocompetent mice. In support of this result, TCRδ−/− mice were also found to be more susceptible than immunocompetent mice to a sporozoite challenge when blood-stage parasitemia was used as a readout. A greater percentage of TCRδ−/− mice than of immunocompetent mice progressed to a blood-stage infection when challenged with five or fewer sporozoites (odds ratio = 2.35, P = 0.06). TCRδ−/− mice receiving a single irr-spz immunization showed percent inhibition of liver parasites comparable to that of immunized immunocompetent mice following a sporozoite challenge. These data support the hypothesis that γδ T cells are a component of early immunity directed against malaria preerythrocytic parasites and suggest that γδ T cells are not required for the induction of an effector αβ T-cell immune response generated by irr-spz immunization. PMID:10722623
Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Kitikiew, Suwaree; Li, Hui-Fang; Bai, Jia-Chin; Tseng, Kuei-Chi; Lin, Bo-Wei; Liu, Po-Chun; Shi, Yin-Ze; Kuo, Yi-Hsuan; Chang, Yu-Hsuan
2014-01-01
Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), β-1,3-glucan (βG) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, βG, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-β, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-β, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-β, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity. PMID:25517999
Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael
2013-01-01
The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010
Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.
Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D
2015-11-01
With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms. © 2014 Wiley Periodicals, Inc.
Nicaise, Valerie; Joe, Anna; Jeong, Byeong-ryool; Korneli, Christin; Boutrot, Freddy; Westedt, Isa; Staiger, Dorothee; Alfano, James R; Zipfel, Cyril
2013-03-06
Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.
Eichmann, Klaus; Braun, Dietmar G.; Feizi, Ten; Krause, Richard M.
1970-01-01
Electrophoretically monodisperse antibody components in rabbit antisera to the carbohydrates of the Groups A and C streptococci have been examined for their individual antigenic specificity. In these antibody components which were isolated by preparative electrophoresis, individual antigenic specificity was confined to the specific antibody and was absent in the nonantibody γ-globulin. Radioprecipitation experiments and the use of immune absorbent columns constructed from goat anti-antisera, which had been absorbed with fraction II, revealed that all the specific antibody in an electrophoretically monodisperse component was reactive with the homologous anti-antibody. Antibodies with either identical or distinct individual antigenic specificities may occur in the same rabbit with repeated immunizations. Antibodies with identical antigenic specificity had identical electrophoretic mobility, whereas antibodies with unrelated antigenic specificities had distinct electrophoretic mobilities. In the interval between immunizations, if antibody to the carbohydrate antigen was absent, there was no detectable antibody with individual antigenic specificity. PMID:4192569
NASA Astrophysics Data System (ADS)
Al Azzawi, Dia
Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight simulator. The abnormal conditions considered in this work include locked actuators (stabilator, aileron, rudder, and throttle), structural damage of the wing, horizontal tail, and vertical tail, malfunctioning sensors, and reduced engine effectiveness. The results of applying the proposed approach to this wide range of abnormal conditions show its high capability in detecting the abnormal conditions with zero false alarms and very high detection rates, correctly identifying the failed subsystem and evaluating the type and severity of the failure. The results also reveal that the post-failure flight envelope can be reasonably predicted within this framework.
Testisimmune privilege - Assumptions versus facts
Kaur, G.; Mital, P.; Dufour, J.M.
2013-01-01
The testis has long enjoyed a reputation as an immunologically privileged site based on its ability to protect auto-antigenic germ cells and provide an optimal environment for the extended survival of transplanted allo- or xeno-grafts. Exploration of the role of anatomical, physiological, immunological and cellular components in testis immune privilege revealed that the tolerogenic environment of the testis is a result of the immunomodulatory factors expressed or secreted by testicular cells (mainly Sertoli cells, peritubular myoid cells, Leydig cells, and resident macrophages). The blood-testis barrier/Sertoli cell barrier, is also important to seclude advanced germ cells but its requirement in testis immune privilege needs further investigation. Testicular immune privilege is not permanent, as an effective immune response can be mounted against transplanted tissue, and bacterial/viral infections in the testis can be effectively eliminated. Overall, the cellular components control the fate of the immune response and can shift the response from immunodestructive to immunoprotective, resulting in immune privilege. PMID:25309630
Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A
2014-01-01
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421
USDA-ARS?s Scientific Manuscript database
Escherichia coli strains are classified based on O-antigens that are components of the lipopolysaccharide (LPS) in the cell envelope. O-antigens are important virulence factors, targets of both the innate and adaptive immune system, and play a role in host-pathogen interaction. Because they are hi...