Evolving Strategies for Cancer and Autoimmunity: Back to the Future
Lane, Peter J. L.; McConnell, Fiona M.; Anderson, Graham; Nawaf, Maher G.; Gaspal, Fabrina M.; Withers, David R.
2014-01-01
Although current thinking has focused on genetic variation between individuals and environmental influences as underpinning susceptibility to both autoimmunity and cancer, an alternative view is that human susceptibility to these diseases is a consequence of the way the immune system evolved. It is important to remember that the immunological genes that we inherit and the systems that they control were shaped by the drive for reproductive success rather than for individual survival. It is our view that human susceptibility to autoimmunity and cancer is the evolutionarily acceptable side effect of the immune adaptations that evolved in early placental mammals to accommodate a fundamental change in reproductive strategy. Studies of immune function in mammals show that high affinity antibodies and CD4 memory, along with its regulation, co-evolved with placentation. By dissection of the immunologically active genes and proteins that evolved to regulate this step change in the mammalian immune system, clues have emerged that may reveal ways of de-tuning both effector and regulatory arms of the immune system to abrogate autoimmune responses whilst preserving protection against infection. Paradoxically, it appears that such a detuned and deregulated immune system is much better equipped to mount anti-tumor immune responses against cancers. PMID:24782861
Viral mimicry of cytokines, chemokines and their receptors.
Alcami, Antonio
2003-01-01
Viruses have evolved elegant mechanisms to evade detection and destruction by the host immune system. One of the evasion strategies that have been adopted by large DNA viruses is to encode homologues of cytokines, chemokines and their receptors--molecules that have a crucial role in control of the immune response. Viruses have captured host genes or evolved genes to target specific immune pathways, and so viral genomes can be regarded as repositories of important information about immune processes, offering us a viral view of the host immune system. The study of viral immunomodulatory proteins might help us to uncover new human genes that control immunity, and their characterization will increase our understanding of not only viral pathogenesis, but also normal immune mechanisms. Moreover, viral proteins indicate strategies of immune modulation that might have therapeutic potential.
Natural evolution, disease, and localization in the immune system
NASA Astrophysics Data System (ADS)
Deem, Michael
2004-03-01
Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101
A screen for immunity genes evolving under positive selection in Drosophila.
Jiggins, F M; Kim, K W
2007-05-01
Genes involved in the immune system tend to have higher rates of adaptive evolution than other genes in the genome, probably because they are coevolving with pathogens. We have screened a sample of Drosophila genes to identify those evolving under positive selection. First, we identified rapidly evolving immunity genes by comparing 140 loci in Drosophila erecta and D. yakuba. Secondly, we resequenced 23 of the fastest evolving genes from the independent species pair D. melanogaster and D. simulans, and identified those under positive selection using a McDonald-Kreitman test. There was strong evidence of adaptive evolution in two serine proteases (persephone and spirit) and a homolog of the Anopheles serpin SRPN6, and weaker evidence in another serine protease and the death domain protein dFADD. These results add to mounting evidence that immune signalling pathway molecules often evolve rapidly, possibly because they are sites of host-parasite coevolution.
Evolution of complement as an effector system in innate and adaptive immunity.
Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina
2003-01-01
For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.
Overview of fish immune system and infectious diseases
USDA-ARS?s Scientific Manuscript database
A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...
Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease
NASA Astrophysics Data System (ADS)
Sun, Jun; Deem, Michael
2006-03-01
The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.
How do plants achieve immunity? Defence without specialized immune cells.
Spoel, Steven H; Dong, Xinnian
2012-01-25
Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
Hughes, A L
1998-03-01
Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well.
Independently evolved virulence effectors converge onto hubs in a plant immune system network.
Mukhtar, M Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T; Pevzner, Samuel J; Donovan, Susan E; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M; Gebreab, Fana; Gutierrez, Bryan J; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P; Hill, David E; Ecker, Joseph R; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L
2011-07-29
Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.
Role of Osmolytes in Regulating Immune System.
Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar
2016-01-01
The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.
NASA Astrophysics Data System (ADS)
Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.
2013-04-01
Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.
Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors
2014-10-01
disruption of the BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions...recently evolved adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two... innate immune functions have been emphasized traditionally: 1) the recruitment of cells and proteins to destroy pathogens and toxins, and 2) increases
Role of the Microbiota in Immunity and inflammation
Belkaid, Yasmine; Hand, Timothy
2014-01-01
The microbiota plays a fundamental role on the induction, training and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally this immune system–microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries overuse of antibiotics, changes in diet, and elimination of constitutive partners such as nematodes has selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. PMID:24679531
Advances in the understanding of cancer immunotherapy.
Shore, Neal D
2015-09-01
The principal role of the immune system is to prevent and eradicate pathogens and infections. The key characteristics or features of an effective immune response include specificity, trafficking, antigen spread and durability (memory). The immune system is recognised to have a critical role in controlling cancer through a dynamic relationship with tumour cells. Normally, at the early stages of tumour development, the immune system is capable of eliminating tumour cells or keeping tumour growth abated; however, tumour cells may evolve multiple pathways over time to evade immune control. Immunotherapy may be viewed as a treatment designed to boost or restore the ability of the immune system to fight cancer, infections and other diseases. Immunotherapy manifests differently from traditional cancer treatments, eliciting delayed response kinetics and thus may be more effective in patients with lower tumour burden, in whom disease progression may be less rapid, thereby allowing ample time for the immunotherapy to evolve. Because immunotherapies may have a different mechanism of action from traditional cytotoxic or targeted biological agents, immunotherapy techniques have the potential to combine synergistically with traditional therapies. © 2014 The Authors. BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
'Drugs from bugs': bacterial effector proteins as promising biological (immune-) therapeutics.
Rüter, Christian; Hardwidge, Philip R
2014-02-01
Immune system malfunctions cause many of the most severe human diseases. The immune system has evolved primarily to control bacterial, viral, fungal, and parasitic infections. In turn, over millions of years of coevolution, microbial pathogens have evolved various mechanisms to control and modulate the host immune system for their own benefit and survival. For example, many bacterial pathogens use virulence proteins to modulate and exploit target cell mechanisms. Our understanding of these bacterial strategies opens novel possibilities to exploit 'microbial knowledge' to control excessive immune reactions. Gaining access to strategies of microbial pathogens could lead to potentially huge benefits for the therapy of inflammatory diseases. Most work on bacterial pathogen effector proteins has the long-term aim of neutralizing the infectious capabilities of the pathogen. However, attenuated pathogens and microbial products have been used for over a century with overwhelming success in the form of vaccines to induce specific immune responses that protect against the respective infectious diseases. In this review, we focus on bacterial effector and virulence proteins capable of modulating and suppressing distinct signaling pathways with potentially desirable immune-modulating effects for treating unrelated inflammatory diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
A newly evolved Drosophila Cytorace-9 shows trade-off between longevity and immune response.
Sinam, Yoirentomba Meetei; Chatterjee, Arunita; Ranjini, Mysore S; Poojari, Adarsh; Nagarajan, Aarthi; Ramachandra, Nallur B; Nongthomba, Upendra
2016-10-01
Species with an efficient immune system would be at an advantage to evade pathogenic challenges and adapt to an ever changing ecological niche. The upkeep of immunity is a costly affair, thus trade-offs between immunity and other life history traits are expected. However, studies on the relation between immunity and life span have yielded paradoxical results. Drosophila Cytoraces, being at different stages of evolutionary divergence, provide an excellent experimental model system to study how evolving populations gain novel traits in the absence of selection. We found that in the absence of pathogenic infections, the Cytorace-9 flies lived longer than those of Cytorace-3. However, when these Cytoraces were challenged with different pathogenic microbes, the trend was opposite. After infection with pathogens, the long-lived Cytorace-9 survived worse than the short lived Cytorace-3, which can be attributed to a reduction in its immune response. This study provides evidence to support the existence of a trade-off between life span and immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
Psychoneuroimmunology - psyche and autoimmunity.
Ziemssen, Tjalf
2012-01-01
Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.
Experimental evolution of insect immune memory versus pathogen resistance.
Khan, Imroze; Prakash, Arun; Agashe, Deepa
2017-12-20
Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms. © 2017 The Author(s).
Recognising promoter sequences using an artificial immune system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, D.E.; Hunt, J.E.
1995-12-31
We have developed an artificial immune system (AIS) which is based on the human immune system. The AIS possesses an adaptive learning mechanism which enables antibodies to emerge which can be used for classification tasks. In this paper, we describe how the AIS has been used to evolve antibodies which can classify promoter containing and promoter negative DNA sequences. The DNA sequences used for teaching were 57 nucleotides in length and contained procaryotic promoters. The system classified previously unseen DNA sequences with an accuracy of approximately 90%.
Molecular mechanisms of CRISPR-mediated microbial immunity.
Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus
2014-02-01
Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.
Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equally
USDA-ARS?s Scientific Manuscript database
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdepen...
Insights into the innate immunome of actiniarians using a comparative genomic approach.
van der Burg, Chloé A; Prentis, Peter J; Surm, Joachim M; Pavasovic, Ana
2016-11-02
Innate immune genes tend to be highly conserved in metazoans, even in early divergent lineages such as Cnidaria (jellyfish, corals, hydroids and sea anemones) and Porifera (sponges). However, constant and diverse selection pressures on the immune system have driven the expansion and diversification of different immune gene families in a lineage-specific manner. To investigate how the innate immune system has evolved in a subset of sea anemone species (Order: Actiniaria), we performed a comprehensive and comparative study using 10 newly sequenced transcriptomes, as well as three publically available transcriptomes, to identify the origins, expansions and contractions of candidate and novel immune gene families. We characterised five conserved genes and gene families, as well as multiple novel innate immune genes, including the newly recognised putative pattern recognition receptor CniFL. Single copies of TLR, MyD88 and NF-κB were found in most species, and several copies of IL-1R-like, NLR and CniFL were found in almost all species. Multiple novel immune genes were identified with domain architectures including the Toll/interleukin-1 receptor (TIR) homology domain, which is well documented as functioning in protein-protein interactions and signal transduction in immune pathways. We hypothesise that these genes may interact as novel proteins in immune pathways of cnidarian species. Novelty in the actiniarian immunome is not restricted to only TIR-domain-containing proteins, as we identify a subset of NLRs which have undergone neofunctionalisation and contain 3-5 N-terminal transmembrane domains, which have so far only been identified in two anthozoan species. This research has significance in understanding the evolution and origin of the core eumetazoan gene set, including how novel innate immune genes evolve. For example, the evolution of transmembrane domain containing NLRs indicates that these NLRs may be membrane-bound, while all other metazoan and plant NLRs are exclusively cytosolic receptors. This is one example of how species without an adaptive immune system may evolve innovative solutions to detect pathogens or interact with native microbiota. Overall, these results provide an insight into the evolution of the innate immune system, and show that early divergent lineages, such as actiniarians, have a diverse repertoire of conserved and novel innate immune genes.
The S(c)ensory Immune System Theory.
Veiga-Fernandes, Henrique; Freitas, António A
2017-10-01
Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schaller, Mark; Murray, Damian R; Bangerter, Adrian
2015-05-26
The 'behavioural immune system' is composed of mechanisms that evolved as a means of facilitating behaviours that minimized infection risk and enhanced fitness. Recent empirical research on human populations suggests that these mechanisms have unique consequences for many aspects of human sociality--including sexual attitudes, gregariousness, xenophobia, conformity to majority opinion and conservative sociopolitical attitudes. Throughout much of human evolutionary history, these consequences may have had beneficial health implications; but health implications in modern human societies remain unclear. This article summarizes pertinent ways in which modern human societies are similar to and different from the ecologies within which the behavioural immune system evolved. By attending to these similarities and differences, we identify a set of plausible implications-both positive and negative-that the behavioural immune system may have on health outcomes in contemporary human contexts. We discuss both individual-level infection risk and population-level epidemiological outcomes. We also discuss a variety of additional implications, including compliance with public health policies, the adoption of novel therapeutic interventions and actual immunological functioning. Research on the behavioural immune system, and its implications in contemporary human societies, can provide unique insights into relationships between fitness, sociality and health. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The Role of the Immune System Beyond the Fight Against Infection.
Sattler, Susanne
2017-01-01
The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.
Immune Ecosystem of Virus-Infected Host Tissues.
Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long
2018-05-06
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Hygiene and other early childhood influences on the subsequent function of the immune system.
Rook, Graham A W; Lowry, Christopher A; Raison, Charles L
2015-08-18
The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The gut represents a continuously evolving ecosystem where a dynamic interaction between host immune, neuroendocrine and entero-endocrine cells and the gut microbiota influences normal physiological development and homeostasis. New antibiotic regulatory policies and cage-free rearing systems in pou...
Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA.
McCluskie, M J; Krieg, A M
2006-01-01
The adaptive immune system-with its remarkable ability to generate antigen-specific antibodies and T lymphocytes against pathogens never before "seen" by an organism-is one of the marvels of evolution. However, to generate these responses, the adaptive immune system requires activation by the innate immune system. Toll-like receptors (TLRs) are perhaps the best-understood family of innate immune receptors for detecting infections and stimulating adaptive immune responses. TLR9 appears to have evolved to recognize infections by a subtle structural difference between eukaryotic and prokaryotic/viral DNA; only the former frequently methylates CpG dinucleotides. Used as vaccine adjuvants, synthetic oligodeoxynucleotide (ODN) ligands for TLR9--CpG ODN--greatly enhance the speed and strength of the immune responses to vaccination.
T cell exhaustion: from pathophysiological basics to tumor immunotherapy.
Catakovic, Kemal; Klieser, Eckhard; Neureiter, Daniel; Geisberger, Roland
2017-01-05
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
USDA-ARS?s Scientific Manuscript database
Disease resistance (R) genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLRs define the fastest evolving...
Robustness trade-offs and host–microbial symbiosis in the immune system
Kitano, Hiroaki; Oda, Kanae
2006-01-01
The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567
Genetic adaptation of the antibacterial human innate immunity network.
Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume
2011-07-11
Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.
Genetic adaptation of the antibacterial human innate immunity network
2011-01-01
Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response. PMID:21745391
No apparent cost of evolved immune response in Drosophila melanogaster.
Gupta, Vanika; Venkatesan, Saudamini; Chatterjee, Martik; Syed, Zeeshan A; Nivsarkar, Vaishnavi; Prasad, Nagaraj G
2016-04-01
Maintenance and deployment of the immune system are costly and are hence predicted to trade-off with other resource-demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes-I (Infection with Pseudomonas entomophila), S (Sham-infection with MgSO4 ), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade-offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade-offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life-history trade-offs might play little role in maintaining variation in immunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Cheetahs have a stronger constitutive innate immunity than leopards
Heinrich, Sonja K.; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á.; Wachter, Bettina
2017-01-01
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science. PMID:28333126
Cheetahs have a stronger constitutive innate immunity than leopards.
Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina
2017-03-23
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.
Fungal Strategies to Evade the Host Immune Recognition.
Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M
2017-09-23
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense
Price, Aryn A.; Grakoui, Arash; Weiss, David S.
2016-01-01
Clustered, regularly interspaced, short palindromic repeats - CRISPR associated (CRISPR-Cas) systems are sequence specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268
The Immune System and Developmental Programming of Brain and Behavior
Bilbo, Staci D.; Schwarz, Jaclyn M.
2012-01-01
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535
Plant immunity against viruses: antiviral immune receptors in focus
Calil, Iara P.
2017-01-01
Abstract Background Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant–virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant–virus interactions that affect disease or resistance. Scope and Conclusion This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin–26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement. PMID:27780814
Evolutionary Analysis and Expression Profiling of Zebra Finch Immune Genes
Ekblom, Robert; French, Lisa; Slate, Jon; Burke, Terry
2010-01-01
Genes of the immune system are generally considered to evolve rapidly due to host–parasite coevolution. They are therefore of great interest in evolutionary biology and molecular ecology. In this study, we manually annotated 144 avian immune genes from the zebra finch (Taeniopygia guttata) genome and conducted evolutionary analyses of these by comparing them with their orthologs in the chicken (Gallus gallus). Genes classified as immune receptors showed elevated dN/dS ratios compared with other classes of immune genes. Immune genes in general also appear to be evolving more rapidly than other genes, as inferred from a higher dN/dS ratio compared with the rest of the genome. Furthermore, ten genes (of 27) for which sequence data were available from at least three bird species showed evidence of positive selection acting on specific codons. From transcriptome data of eight different tissues, we found evidence for expression of 106 of the studied immune genes, with primary expression of most of these in bursa, blood, and spleen. These immune-related genes showed a more tissue-specific expression pattern than other genes in the zebra finch genome. Several of the avian immune genes investigated here provide strong candidates for in-depth studies of molecular adaptation in birds. PMID:20884724
Statistical Physics of T-Cell Development and Pathogen Specificity
NASA Astrophysics Data System (ADS)
Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.
2013-04-01
In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.
Alternatives to conventional vaccines--mediators of innate immunity.
Eisen, D P; Liley, H G; Minchinton, R M
2004-01-01
Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.
Homeostatic Immunity and the Microbiota.
Belkaid, Yasmine; Harrison, Oliver J
2017-04-18
The microbiota plays a fundamental role in the induction, education, and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. Here we review the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. Published by Elsevier Inc.
Homeostatic immunity and the microbiota
Belkaid, Yasmine; Harrison, Oliver J.
2017-01-01
The microbiota plays a fundamental role in the induction, education and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. In this review, we will highlight the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. PMID:28423337
New paradigms in type 2 immunity.
Pulendran, Bali; Artis, David
2012-07-27
Nearly half of the world's population harbors helminth infections or suffers from allergic disorders. A common feature of this population is the so-called "type 2 immune response," which confers protection against helminths, but also promotes pathologic responses associated with allergic inflammation. However, the mechanisms that initiate and control type 2 responses remain enigmatic. Recent advances have revealed a role for the innate immune system in orchestrating type 2 responses against a bewildering array of stimuli, from nanometer-sized allergens to 20-meter-long helminth parasites. Here, we review these advances and suggest that the human immune system has evolved multiple mechanisms of sensing such stimuli, from recognition of molecular patterns via innate immune receptors to detecting metabolic changes and tissue damage caused by these stimuli.
Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro
2014-10-01
Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Diversity and dialogue in immunity to helminths.
Allen, Judith E; Maizels, Rick M
2011-06-01
The vertebrate immune system has evolved in concert with a broad range of infectious agents, including ubiquitous helminth (worm) parasites. The constant pressure of helminth infections has been a powerful force in shaping not only how immunity is initiated and maintained, but also how the body self-regulates and controls untoward immune responses to minimize overall harm. In this Review, we discuss recent advances in defining the immune cell types and molecules that are mobilized in response to helminth infection. Finally, we more broadly consider how these immunological players are blended and regulated in order to accommodate persistent infection or to mount a vigorous protective response and achieve sterile immunity.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927
Unravelling the structural and mechanistic basis of CRISPR-Cas systems.
van der Oost, John; Westra, Edze R; Jackson, Ryan N; Wiedenheft, Blake
2014-07-01
Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR-Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea.
Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila.
Hanson, Mark A; Hamilton, Phineas T; Perlman, Steve J
2016-10-24
Drosophila is an important model for studying the evolution of animal immunity, due to the powerful genetic tools developed for D. melanogaster. However, Drosophila is an incredibly speciose lineage with a wide range of ecologies, natural histories, and diverse natural enemies. Surprisingly little functional work has been done on immune systems of species other than D. melanogaster. In this study, we examine the evolution of immune genes in the speciose subgenus Drosophila, which diverged from the subgenus Sophophora (that includes D. melanogaster) approximately 25-40 Mya. We focus on D. neotestacea, a woodland species used to study interactions between insects and parasitic nematodes, and combine recent transcriptomic data with infection experiments to elucidate aspects of host immunity. We found that the vast majority of genes involved in the D. melanogaster immune response are conserved in D. neotestacea, with a few interesting exceptions, particularly in antimicrobial peptides (AMPs); until recently, AMPs were not thought to evolve rapidly in Drosophila. Unexpectedly, we found a distinct diptericin in subgenus Drosophila flies that appears to have evolved under diversifying (positive) selection. We also describe the presence of the AMP drosocin, which was previously thought to be restricted to the subgenus Sophophora, in the subgenus Drosophila. We challenged two subgenus Drosophila species, D. neotestacea and D. virilis with bacterial and fungal pathogens and quantified AMP expression. While diptericin in D. virilis was induced by exposure to gram-negative bacteria, it was not induced in D. neotestacea, showing that conservation of immune genes does not necessarily imply conservation of the realized immune response. Our study lends support to the idea that invertebrate AMPs evolve rapidly, and that Drosophila harbor a diverse repertoire of AMPs with potentially important functional consequences.
Shaffer, J Scott; Moore, Penny L; Kardar, Mehran; Chakraborty, Arup K
2016-10-24
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs.
Shaffer, J. Scott; Moore, Penny L.; Kardar, Mehran; Chakraborty, Arup K.
2016-01-01
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs. PMID:27791170
Natural history of chronic hepatitis B: phases in a complex relationship.
Croagh, Catherine M N; Lubel, John S
2014-08-14
Chronic hepatitis B (CHB) is a condition of global prevalence and its sequelae include cirrhosis and hepatocellular carcinoma. The natural history of CHB is a complex interplay of virological, environmental and host factors. The dynamic relationship between the virus and host evolves over the duration of the infection and different phases of the disease have been observed and described. These have been conceptualized in terms of the state of balance between the host immune system and the hepatitis B virus and have been given the labels immune tolerant, immune clearance, immune control and immune escape although other nomenclature is also used. Host factors, such as age at infection, determine progression to chronicity. Virological factors including hepatitis B viral load, mutations and genotype also have an impact on the adverse outcomes of the infection, as do hepatotoxic cofactors such as alcohol. Our understanding of the natural history of CHB has evolved significantly over the past few decades and characterizing the phase of disease of CHB remains an integral part of managing this virus in the clinic.
Fighting cancers from within: augmenting tumor immunity with cytokine therapy.
Pellegrini, Marc; Mak, Tak W; Ohashi, Pamela S
2010-08-01
The human immune system has successfully evolved to fight many pathogens. Through vaccination, we can harness and improve immune responses to eradicate infections. Despite this success, we are only now beginning to understand the natural tumor immune surveillance mechanisms and why, in some instances, our immune system fails to abrogate the development and growth of tumors. Encouraging results with the latest immunotherapies have renewed enthusiasm in the field. A central component of these therapies is the contribution of cytokines. Here we review our expanding knowledge of cytokine-induced effects as well as preclinical and clinical data that indicate adjuvant cytokine therapies may hold much promise in improving anti-tumor immunity. Further studies on optimal synergistic combinations, timing, duration and additional adjuvant therapies are required to realize the full potential of cytokines as immunotherapeutic agents. 2010 Elsevier Ltd. All rights reserved.
Synthetic Biology in Cell and Organ Transplantation.
Stevens, Sean
2017-02-01
The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
In this issue--engineering the immune system to fight cancer and infections.
Bot, Adrian
2011-01-01
As the immune system essentially evolved to fight off or keep at bay life-threatening infectious agents rather than cancer, the question remains as to how to best redeploy it for the treatment of a broader range of diseases. This is reflected by an unprecedented diversification of platform technologies in development, facilitated by rapid progress in biotechnology. In this issue, we host several contributions outlining major efforts in developing novel immune interventions spanning antigen-specific vaccination, non-antigen-targeted immune intervention, genetically engineered lymphocytes, and ultraspecific antigen-targeted ligands. In addition, the journal is hosting in this issue, two reviews discussing the complex matter and dynamic balance between immunity and viral infections, as the concept of fine modulation of that balance still carries the promise of yielding novel therapies.
Microbiota regulate the development and function of the immune cells.
Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei
2018-03-04
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.
Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca
2015-01-01
One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Toledo-Ibarra, G. A.; Rojas-Mayorquín, A. E.; Girón-Pérez, M. I.
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals. PMID:24324508
Toledo-Ibarra, G A; Rojas-Mayorquín, A E; Girón-Pérez, M I
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.
Pattern dynamics of the reaction-diffusion immune system.
Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie
2018-01-01
In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.
Unravelling the structural and mechanistic basis of CRISPR–Cas systems
van der Oost, John; Westra, Edze R.; Jackson, Ryan N.; Wiedenheft, Blake
2014-01-01
Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR–Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea. PMID:24909109
Plant immunity against viruses: antiviral immune receptors in focus.
Calil, Iara P; Fontes, Elizabeth P B
2017-03-01
Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Lineweaver, Charles H.; Davies, Paul C.W.; Vincent, Mark D.
2014-01-01
In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation. PMID:25043755
Host-Parasite Relationship in Cystic Echinococcosis: An Evolving Story
Siracusano, Alessandra; Delunardo, Federica; Teggi, Antonella; Ortona, Elena
2012-01-01
The larval stage of Echinococcus granulosus causes cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system, E. granulosus modulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite. In vitro and in vivo immunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation of E. granulosus infection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story of E. granulosus infection in man. PMID:22110535
Payne, Kyle K; Bear, Harry D; Manjili, Masoud H
2014-08-01
The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.
Schwab, Sebastian; Jobin, Katarzyna; Kurts, Christian
2017-12-01
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. Humans evolved various immune-dependent and independent defense mechanisms, while pathogens evolved multiple virulence factors to fight back. This article summarizes recent findings regarding the arms race between hosts and pathogens in UTIs. It was recently reported that macrophage subsets regulate neutrophil-mediated defense in primary UTIs but seem to subvert adaptive immunity upon re-infection. Moreover, some bacterial strains can survive inside macrophages, leading to recurrent infections. Inflammasome activation results in infected host cell death and pathogen release, facilitating the removal of intracellular bacteria. As a counteraction, some bacteria evolved mechanisms to disrupt inflammasome activation. Mucosal-associated invariant T cells are further effectors that can lyse infected epithelial cells and release intracellular bacteria. Once released, the bacteria are phagocytosed by neutrophils. However, some bacteria can inhibit neutrophil migration and deprive neutrophils of nutrients. Furthermore, the complement system, considered generally bactericidal, is exploited by the bacteria for cellular invasion. Another weapon against UTI is antimicrobial peptides, e.g. ribonuclease 7, but its production is inhibited by certain bacterial strains. Thus the arms race in UTI is ongoing, and knowing the enemy's methods can help in developing new drugs to win the race. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Hammerschmidt, Katrin; Kurtz, Joachim
2005-01-01
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host–parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence. PMID:16271977
Plant-bacterial pathogen interactions mediated by type III effectors.
Feng, Feng; Zhou, Jian-Min
2012-08-01
Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.
Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U
2016-11-30
The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.
CD22 and Siglec-G in B cell function and tolerance
Poe, Jonathan C.; Tedder, Thomas F.
2012-01-01
The immune system has evolved into two main arms, the primitive innate arm that is the first line of defense but relatively short-lived and broad acting, and the advanced adaptive arm that generates immunologic “memory” allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its “at the ready” nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted Siglecs, CD22 and Siglec-G, might contribute to this process. PMID:22677186
The role of the immune system in central nervous system plasticity after acute injury.
Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano
2014-12-26
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Protein trafficking during plant innate immunity.
Wang, Wen-Ming; Liu, Peng-Qiang; Xu, Yong-Ju; Xiao, Shunyuan
2016-04-01
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged. © 2015 Institute of Botany, Chinese Academy of Sciences.
Immune evasion by pathogens of bovine respiratory disease complex.
Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna
2007-12-01
Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.
CRISPR-based herd immunity can limit phage epidemics in bacterial populations
Geyrhofer, Lukas; Barton, Nicholas H
2018-01-01
Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. PMID:29521625
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Myxoma virus in the European rabbit: interactions between the virus and its susceptible host.
Stanford, Marianne M; Werden, Steven J; McFadden, Grant
2007-01-01
Myxoma virus (MV) is a poxvirus that evolved in Sylvilagus lagomorphs, and is the causative agent of myxomatosis in European rabbits (Oryctolagus cuniculus). This virus is not a natural pathogen of O. cuniculus, yet is able to subvert the host rabbit immune system defenses and cause a highly lethal systemic infection. The interaction of MV proteins and the rabbit immune system has been an ideal model to help elucidate host/poxvirus interactions, and has led to a greater understanding of how other poxvirus pathogens are able to cause disease in their respective hosts. This review will examine how MV causes myxomatosis, by examining a selection of the identified immunomodulatory proteins that this virus expresses to subvert the immune and inflammatory pathways of infected rabbit hosts.
Apps for immunization: Leveraging mobile devices to place the individual at the center of care.
Wilson, Kumanan; Atkinson, Katherine M; Westeinde, Jacqueline
2015-01-01
Mobile technology and applications (apps) have disrupted several industries including healthcare. The advantage of apps, being personally focused and permitting bidirectional communication, make them well suited to address many immunization challenges. As of April 25, 2015 searching the Android app store with the words 'immunize app' and 'immunization app' in Canada yielded 225 apps. On the Apple App Store a similar search produced 98 results. These include apps that provide immunization related information, permit vaccine tracking both for individuals and for animals, assist with the creation of customized schedules and identification of vaccine clinics and serve as sources of education. The diverse functionality of mobile apps creates the potential for transformation of immunization practice both at a personal level and a system level. For individuals, mobile apps offer the opportunity for better record keeping, assistance with the logistics of vaccination, and novel ways of communicating with and receiving information from public health officials. For the system, mobile apps offer the potential to improve the quality of information residing in immunization information systems and program evaluation, facilitate harmonization of immunization information between individuals, health care providers and public health as well as reduce vaccine hesitancy. As mobile technology continues to rapidly evolve there will emerge new ways in which apps can enhance immunization practice.
Effect of Recombination in the Evolutionary Dynamics of HIV under the Surveillance of Immune System
NASA Astrophysics Data System (ADS)
Peng, Weiqun; Yang, Wenjing; Wang, Guanyu
2009-03-01
Human immunodeficiency virus (HIV) is a retrovirus that causes acquired immunodeficiency syndrome (AIDS), which has become one of the most destructive pandemics in history. The fact that HIV virus evolves very fast plays a central role in AIDS immunopathogenesis and the difficulty we face in finding a cure or a vaccine for AIDS. A distinguishing feature of HIV is its high frequency of recombination. The effect of recombination in the HIV evolution is not clear. We establish a mathematical model of the evolutionary dynamics. This model incorporates both point mutation and recombination for genetic diversity, and employs a fitness function developed by Wang and Deem (PRL 97, 188106, 2006) that accounts for the effect of immune system. Using this model, we explore the role of recombination in the battle between the virus population and the immune system, with a special focus on the condition under which recombination helps the virus population to escape from the immune system.
Regulatory T Cells: Differentiation and Function.
Plitas, George; Rudensky, Alexander Y
2016-09-02
The immune system of vertebrate animals has evolved to mount an effective defense against a diverse set of pathogens while minimizing transient or lasting impairment in tissue function that could result from the inflammation caused by immune responses to infectious agents. In addition, misguided immune responses to "self" and dietary antigens, as well as to commensal microorganisms, can lead to a variety of inflammatory disorders, including autoimmunity, metabolic syndrome, allergies, and cancer. Regulatory T cells expressing the X chromosome-linked transcription factor Foxp3 suppress inflammatory responses in diverse biological settings and serve as a vital mechanism of negative regulation of immune-mediated inflammation. Cancer Immunol Res; 4(9); 721-5. ©2016 AACR. ©2016 American Association for Cancer Research.
Regulatory T cells: mechanisms of differentiation and function.
Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y
2012-01-01
The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.
Yue, Jia-Xing; Yu, Jr-Kai; Putnam, Nicholas H.; Holland, Linda Z.
2014-01-01
Cephalochordates, the sister group of tunicates plus vertebrates, have been called “living fossils” due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of ∼120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian. PMID:25240057
A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs.
Gordon, Y Jerold; Romanowski, Eric G; McDermott, Alison M
2005-07-01
Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Literature review. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven.
A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR
NASA Astrophysics Data System (ADS)
Han, Pu; Deem, Michael
CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.
Overview of Basic Immunology for Clinical Investigators.
Stephen, Bettzy; Hajjar, Joud
2017-01-01
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells are found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the cross talk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Pivoting the Plant Immune System from Dissection to Deployment
Dangl, Jeffery L.; Horvath, Diana M.; Staskawicz, Brian J.
2013-01-01
Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease resistance beyond the limits imposed by conventional breeding and in a manner that will replace costly and unsustainable chemical controls. PMID:23950531
Beneficial influences of systemic cooperation and sociological behavior on longevity.
Mountz, John D; Zant, Gary Van; Allison, David B; Zhang, Huang-Ge; Hsu, Hui-Chen
2002-04-30
During his long research career in the field of aging, Dr Bernard Strehler developed a series of theories concerning the identity of genes that can promote longevity and their role in natural selection. As a tribute to Dr Strehler, we have taken this opportunity to summarize a selection of these theories and to illustrate how these insights have influenced our search for longevity genes within the immune system. The identification of longevity genes has proven difficult. We believe that, at least in part, this reflects the emphasis on the concept of survival of the 'physically' fittest. We have used the immune system as a model to demonstrate that, over and above the self-evident advantage of those genes that contribute the attributes commonly associated with survival of the 'physically' fittest, those genes that lead to a predisposition to cooperate also confer a competitive survival advantage. As the acquisition of cooperativity in a society is linked to support mechanisms provided by older individuals, the search for longevity genes should not be limited to those genes that are associated with extended expression of a youthful phenotype. Rather these studies should be expanded to include identification of those genes that regulate physiologic parameters that affect individual longevity, even if they do not correspond with the traditional view of reproductive competitiveness. At the societal level, longevity genes may encode attributes that regulate sociologic or psychological parameters that may contribute to a tendency to non-aggressive or cooperative behavior that leads to achievement of common goals necessary for the survival of the species. This view of the selection for longevity impacts the analysis of longevity genes and aging at the organismal level. Dr Strehler viewed organismal aging as an integrated functional state, in which he conceived the outcome as reflecting the net balance of functional decrementers and evolved compensatory features. We propose that, in more evolved species, the longevity genes will be those genes, or sets of genes, that counterbalance of age-related functional decrementers with the age-related manifestation of evolved compensatory features. Thus, as illustrated here through analysis of the immune system, the longevity genes may well be those genes that promote overall systemic cooperation and compensation within the immune system and associated systems, rather than the genes that prevent age-related alterations in only one or a limited number of pathways.
The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy
Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J
2017-01-01
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. PMID:28193698
The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.
Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J; Gallego-Ortega, David
2017-04-01
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. © 2017 The authors.
Toor, Amir A.; Sabo, Roy T.; Roberts, Catherine H.; Moore, Bonny L.; Salman, Salman R.; Scalora, Allison F.; Aziz, May T.; Shubar Ali, Ali S.; Hall, Charles E.; Meier, Jeremy; Thorn, Radhika M.; Wang, Elaine; Song, Shiyu; Miller, Kristin; Rizzo, Kathryn; Clark, William B.; McCarty, John M.; Chung, Harold M.; Manjili, Masoud H.; Neale, Michael C.
2016-01-01
Systems that evolve over time and follow mathematical laws as they evolve are called dynamical systems. Lymphocyte recovery and clinical outcomes in 41 allograft recipients conditioned using antithymocyte globulin (ATG) and 4.5-Gy total body irradiation were studied to determine if immune reconstitution could be described as a dynamical system. Survival, relapse, and graft-versus-host disease (GVHD) were not significantly different in 2 cohorts of patients receiving different doses of ATG. However, donor-derived CD3+ cell reconstitution was superior in the lower ATG dose cohort, and there were fewer instances of donor lymphocyte infusion (DLI). Lymphoid recovery was plotted in each individual over time and demonstrated 1 of 3 sigmoid growth patterns: Pattern A (n = 15) had rapid growth with high lymphocyte counts, pattern B (n = 14) had slower growth with intermediate recovery, and pattern C (n = 10) had poor lymphocyte reconstitution. There was a significant association between lymphocyte recovery patterns and both the rate of change of donor-derived CD3+ at day 30 after stem cell transplantation (SCT) and clinical outcomes. GVHD was observed more frequently with pattern A, relapse and DLI more so with pattern C, with a consequent survival advantage in patients with patterns A and B. We conclude that evaluating immune reconstitution after SCT as a dynamical system may differentiate patients at risk of adverse outcomes and allow early intervention to modulate that risk. PMID:25849208
Intersections between immune responses and morphological regulation in plants.
Uchida, Naoyuki; Tasaka, Masao
2010-06-01
Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.
Bennett, Kaila M.; Rooijakkers, Suzan H. M.; Gorham, Ronald D.
2017-01-01
The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement. PMID:28197139
Bennett, Kaila M; Rooijakkers, Suzan H M; Gorham, Ronald D
2017-01-01
The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement.
Immune modulatory therapies for spinal cord injury--past, present and future.
Plemel, Jason R; Wee Yong, V; Stirling, David P
2014-08-01
Historically, the immune response after spinal cord injury was considered largely detrimental owing to the release of neurotoxic factors. While there is validity to this view, there is much greater heterogeneity of immune cells than was previously realized. Associated with this heterogeneity of immune cell subtypes, there is diversity of functions of immune cells that is still poorly understood after spinal cord injury. Modulating the immune system requires improved understanding of the major players: those immune cell subtypes that are more detrimental than beneficial and those that are important in repair. In this review we will discuss the early findings that supported the use of various anti-inflammatory medications as well as the evolving concept that not all immune subtypes are detrimental and some might even be beneficial. In the last section we will highlight the need to characterize better the role of immune cell subsets in the hopes of developing potential therapeutic targets for the future. Copyright © 2014 Elsevier Inc. All rights reserved.
CD22 and Siglec-G in B cell function and tolerance.
Poe, Jonathan C; Tedder, Thomas F
2012-08-01
The immune system has evolved into two main arms: the primitive innate arm that is the first line of defense but relatively short-lived and broad acting; and the advanced adaptive arm that generates immunological memory, allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its 'at the ready' nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted sialic acid binding Ig-like lectins (Siglecs), CD22 and Siglec-G, might contribute to this process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.
Kaufman, Jim
2018-04-26
The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.
Apoptosis in the homeostasis of the immune system and in human immune mediated diseases.
Giovannetti, A; Pierdominici, M; Di Iorio, A; Cianci, R; Murdaca, G; Puppo, F; Pandolfi, F; Paganelli, R
2008-01-01
The immune system has evolved sophisticated mechanisms controlling the development of responses to dangerous antigens while avoiding unnecessary attacks to innocuous, commensal or self antigens. The risk of autoimmunity is continuously checked and balanced against the risk of succumbing to exogenous infectious agents. It is therefore of paramount importance to understand the molecular events linking the breakdown of tolerance and the development of immunodeficiency. Apoptotic mechanisms are used to regulate the development of thymocytes, the shaping of T cell repertoire, its selection and the coordinate events leading to immune responses in the periphery. Moreover, they are at the heart of the homeostatic controls restoring T cell numbers and establishing T cell memory. T lymphocytes shift continuously from survival to death signals to ensure immune responsiveness without incurring in autoimmune damage. In this review we shall consider some key facts on the relationship of lymphopenia to autoreactivity, the mechanisms controlling positive and negative selection in the thymus, the role of apoptosis in selected primary immunodeficiency states and in systemic and organ-specific autoimmunity, with examples from human diseases and their animal models.
Post-translational regulation of WRKY transcription factors in plant immunity.
Ishihama, Nobuaki; Yoshioka, Hirofumi
2012-08-01
Plants have evolved immune system to protect themselves against invading pathogens. Recent research has illustrated that signaling networks, after perception of diverse pathogen-derived signals, facilitate transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. WRKY proteins, which comprise a large family of plant transcription factors, are key players in plant immune responses. WRKY transcription factors participate in the control of defense-related genes either as positive or as negative regulators, and essentially are regulated at the transcriptional level. Emerging evidence emphasizes that group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are also activated by MAPK-dependent phosphorylation, underlining their importance in plant immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mechanisms of innate immune evasion in re-emerging RNA viruses.
Ma, Daphne Y; Suthar, Mehul S
2015-06-01
Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental evolution reveals trade-offs between mating and immunity.
McNamara, Kathryn B; Wedell, Nina; Simmons, Leigh W
2013-08-23
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations.
Experimental evolution reveals trade-offs between mating and immunity
McNamara, Kathryn B.; Wedell, Nina; Simmons, Leigh W.
2013-01-01
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations. PMID:23720521
Apps for immunization: Leveraging mobile devices to place the individual at the center of care
Wilson, Kumanan; Atkinson, Katherine M; Westeinde, Jacqueline
2015-01-01
Mobile technology and applications (apps) have disrupted several industries including healthcare. The advantage of apps, being personally focused and permitting bidirectional communication, make them well suited to address many immunization challenges. As of April 25, 2015 searching the Android app store with the words ‘immunize app’ and ‘immunization app’ in Canada yielded 225 apps. On the Apple App Store a similar search produced 98 results. These include apps that provide immunization related information, permit vaccine tracking both for individuals and for animals, assist with the creation of customized schedules and identification of vaccine clinics and serve as sources of education. The diverse functionality of mobile apps creates the potential for transformation of immunization practice both at a personal level and a system level. For individuals, mobile apps offer the opportunity for better record keeping, assistance with the logistics of vaccination, and novel ways of communicating with and receiving information from public health officials. For the system, mobile apps offer the potential to improve the quality of information residing in immunization information systems and program evaluation, facilitate harmonization of immunization information between individuals, health care providers and public health as well as reduce vaccine hesitancy. As mobile technology continues to rapidly evolve there will emerge new ways in which apps can enhance immunization practice. PMID:26110351
Wu, Qi; Tan, Chuan; Wang, Bo; Zhou, Ping
2015-01-01
From evolutionary reasoning, we derived a novel hypothesis that ingroup derogation is an evolved response of behavioral immune system which follows the smoke detector principle and the functional flexibility principle. This hypothesis was tested and supported across three experiments. In Experiment 1, participants' group membership was manipulated by using a minimal group paradigm. The results indicated that mere social categorization alone - a heuristic cue that implies the differentiation between "us" and "them" - was sufficient to elicit ingroup derogation among Chinese participants, and, such an intergroup bias was positively associated with the perceived vulnerability to diseases, which was also more consistently associated with ingroup attitudes. Experiment 2 extended and partially replicated Experiment 1 by showing that when there were cues of diseases in the immediate physical environment, Chinese participants exaggerated their attitudes of ingroup derogation. The results also showed that this effect was mainly driven by outgroup attraction. Experiment 3 changed the method of disease manipulation, and found that Chinese participants responded more strongly to disease cues originating from ingroup members and that they endorsed more ingroup derogation attitudes even when the ingroup and outgroup members were both displaying cues of diseases. Taken together, these results reveal the previously unexplored effects of infectious diseases on ingroup derogation attitudes, and suggest an interesting linkage between the evolved behavioral immune system and the ingroup derogation.
The immune system as a biomonitor: explorations in innate and adaptive immunity
Thomas, Niclas; Heather, James; Pollara, Gabriel; Simpson, Nandi; Matjeka, Theres; Shawe-Taylor, John; Noursadeghi, Mahdad; Chain, Benjamin
2013-01-01
The human immune system has a highly complex, multi-layered structure which has evolved to detect and respond to changes in the internal microenvironment of the body. Recognition occurs at the molecular or submolecular scale, via classical reversible receptor–ligand interactions, and can lead to a response with great sensitivity and speed. Remarkably, recognition is coupled to memory, such that responses are modulated by events which occurred years or even decades before. Although the immune system in general responds differently and more vigorously to stimuli entering the body from the outside (e.g. infections), this is an emergent property of the system: many of the recognition molecules themselves have no inherent bias towards external stimuli (non-self) but also bind targets found within the body (self). It is quite clear that the immune response registers pathophysiological changes in general. Cancer, wounding and chronic tissue injury are some obvious examples. Against this background, the immune system ‘state’ tracks the internal processes of the body, and is likely to encode information regarding both current and past disease processes. Moreover, the distributed nature of most immune responses (e.g. typically involving lymphoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular interstitial spaces, etc.) means that many of the changes associated with immune responses are manifested systemically, and specifically can be detected in blood. This provides a very convenient route to sampling immune cells. We consider two different and complementary ways of querying the human immune ‘state’ using high-dimensional genomic screening methodologies, and discuss the potentials of these approaches and some of the technological and computational challenges to be overcome. PMID:24427535
A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs
Gordon, Y. Jerold; Romanowski, Eric G.; McDermott, Alison M.
2006-01-01
Purpose. Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Methods. Literature review. Results. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. Conclusions. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven. PMID:16020284
Notable Aspects of Glycan-Protein Interactions
Cohen, Miriam
2015-01-01
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640
Sunyer, Oriol J.
2016-01-01
Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates. PMID:26537384
Immune evasion, immunopathology and the regulation of the immune system.
Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno
2013-02-13
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Zhou, Bangjun; Zeng, Lirong
2018-01-01
Plants have evolved a sophisticated innate immune system to contend with potential infection by various pathogens. Understanding and manipulation of key molecular mechanisms that plants use to defend against various pathogens are critical for developing novel strategies in plant disease control. In plants, resistance to attempted pathogen infection is often associated with hypersensitive response (HR), a form of rapid programmed cell death (PCD) at the site of attempted pathogen invasion. In this chapter, we describe a method for rapid identification of genes that are essential for plant innate immunity. It combines virus-induced gene silencing (VIGS), a tool that is suitable for studying gene function in high-throughput, with the utilization of immunity-associated PCD, particularly HR-linked PCD as the readout of changes in plant innate immunity. The chapter covers from the design of gene fragment for VIGS, the agroinfiltration of the Nicotiana benthamian plants, to the use of immunity-associated PCD induced by twelve elicitors as the indicator of activation of plant immunity.
Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu
2014-01-01
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268
Exosomes and nanotubes: control of immune cell communication
McCoy-Simandle, Kessler; Hanna, Samer J.; Cox, Dianne
2015-01-01
Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468
The evolution of immunity in relation to colonization and migration.
O'Connor, Emily A; Cornwallis, Charlie K; Hasselquist, Dennis; Nilsson, Jan-Åke; Westerdahl, Helena
2018-05-01
Colonization and migration have a crucial effect on patterns of biodiversity, with disease predicted to play an important role in these processes. However, evidence of the effect of pathogens on broad patterns of colonization and migration is limited. Here, using phylogenetic analyses of 1,311 species of Afro-Palaearctic songbirds, we show that colonization events from regions of high (sub-Saharan Africa) to low (the Palaearctic) pathogen diversity were up to 20 times more frequent than the reverse, and that migration has evolved 3 times more frequently from African- as opposed to Palaearctic-resident species. We also found that resident species that colonized the Palaearctic from Africa, as well as African species that evolved long-distance migration to breed in the Palaearctic, have reduced diversity of key immune genes associated with pathogen recognition (major histocompatibility complex class I). These results suggest that changes in the pathogen community that occur during colonization and migration shape the evolution of the immune system, potentially by adjusting the trade-off between the benefits of extensive pathogen recognition and the costs of immunopathology that result from high major histocompatibility complex class I diversity.
Gut immune system: a new frontier for nutritional modulation of gut health
USDA-ARS?s Scientific Manuscript database
The gut represents a continuously evolving ecosystem consisting of trillions of commensal bacteria living in symbiosis with the host. The host-microbe interplay plays a crucial role in physiological development and health of the host. There is increasing evidence that shows a dynamic interaction be...
Physical mode of bacteria and virus coevolution
NASA Astrophysics Data System (ADS)
Han, Pu; Niestemski, Liang; Deem, Michael
2013-03-01
Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.
Plant immunity: unravelling the complexity of plant responses to biotic stresses.
Miller, Robert Neil Gerard; Costa Alves, Gabriel Sergio; Van Sluys, Marie-Anne
2017-03-01
Plants are constantly exposed to evolving pathogens and pests, with crop losses representing a considerable threat to global food security. As pathogen evolution can overcome disease resistance that is conferred by individual plant resistance genes, an enhanced understanding of the plant immune system is necessary for the long-term development of effective disease management strategies. Current research is rapidly advancing our understanding of the plant innate immune system, with this multidisciplinary subject area reflected in the content of the 18 papers in this Special Issue. Advances in specific areas of plant innate immunity are highlighted in this issue, with focus on molecular interactions occurring between plant hosts and viruses, bacteria, phytoplasmas, oomycetes, fungi, nematodes and insect pests. We provide a focus on research across multiple areas related to pathogen sensing and plant immune response. Topics covered are categorized as follows: binding proteins in plant immunity; cytokinin phytohormones in plant growth and immunity; plant-virus interactions; plant-phytoplasma interactions; plant-fungus interactions; plant-nematode interactions; plant immunity in Citrus; plant peptides and volatiles; and assimilate dynamics in source/sink metabolism. Although knowledge of the plant immune system remains incomplete, the considerable ongoing scientific progress into pathogen sensing and plant immune response mechanisms suggests far reaching implications for the development of durable disease resistance against pathogens and pests. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Interaction of entomopathogenic fungi with the host immune system.
Qu, Shuang; Wang, Sibao
2018-06-01
Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.
The eye: A window to the soul of the immune system.
Perez, V L; Saeed, A M; Tan, Y; Urbieta, M; Cruz-Guilloty, F
2013-09-01
The eye is considered as an immune privileged site, and with good reason. It has evolved a variety of molecular and cellular mechanisms that limit immune responses to preserve vision. For example, the cornea is mainly protected from autoimmunity by the lack of blood and lymphatic vessels, whereas the retina-blood barrier is maintained in an immunosuppressive state by the retinal pigment epithelium. However, there are several scenarios in which immune privilege is altered and the eye becomes susceptible to immune attack. In this review, we highlight the role of the immune system in two clinical conditions that affect the anterior and posterior segments of the eye: corneal transplantation and age-related macular degeneration. Interestingly, crosstalk between the innate and adaptive immune systems is critical in both acute and chronic inflammatory responses in the eye, with T cells playing a central role in combination with neutrophils and macrophages. In addition, we emphasize the advantage of using the eye as a model for in vivo longitudinal imaging of the immune system in action. Through this technique, it has been possible to identify functionally distinct intra-graft motility patterns of responding T cells, as well as the importance of chemokine signaling in situ for T cell activation. The detailed study of ocular autoimmunity could provide novel therapeutic strategies for blinding diseases while also providing more general information on acute versus chronic inflammation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toor, Amir A; Sabo, Roy T; Roberts, Catherine H; Moore, Bonny L; Salman, Salman R; Scalora, Allison F; Aziz, May T; Shubar Ali, Ali S; Hall, Charles E; Meier, Jeremy; Thorn, Radhika M; Wang, Elaine; Song, Shiyu; Miller, Kristin; Rizzo, Kathryn; Clark, William B; McCarty, John M; Chung, Harold M; Manjili, Masoud H; Neale, Michael C
2015-07-01
Systems that evolve over time and follow mathematical laws as they evolve are called dynamical systems. Lymphocyte recovery and clinical outcomes in 41 allograft recipients conditioned using antithymocyte globulin (ATG) and 4.5-Gy total body irradiation were studied to determine if immune reconstitution could be described as a dynamical system. Survival, relapse, and graft-versus-host disease (GVHD) were not significantly different in 2 cohorts of patients receiving different doses of ATG. However, donor-derived CD3(+) cell reconstitution was superior in the lower ATG dose cohort, and there were fewer instances of donor lymphocyte infusion (DLI). Lymphoid recovery was plotted in each individual over time and demonstrated 1 of 3 sigmoid growth patterns: Pattern A (n = 15) had rapid growth with high lymphocyte counts, pattern B (n = 14) had slower growth with intermediate recovery, and pattern C (n = 10) had poor lymphocyte reconstitution. There was a significant association between lymphocyte recovery patterns and both the rate of change of donor-derived CD3(+) at day 30 after stem cell transplantation (SCT) and clinical outcomes. GVHD was observed more frequently with pattern A, relapse and DLI more so with pattern C, with a consequent survival advantage in patients with patterns A and B. We conclude that evaluating immune reconstitution after SCT as a dynamical system may differentiate patients at risk of adverse outcomes and allow early intervention to modulate that risk. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Johansson, Olle; Ward, Martin
2017-01-01
It has been hypothesised that mosquitoes [Diptera: Culicidae] may play more of a role in certain cancers than is currently appreciated. Research links 33 infectious agents to cancer, 27 of which have a presence in mosquitoes, and that, in addition, mosquito saliva downregulates the immune system. The objective of this paper is to review the literature on the immune system and cancer-causing infectious agents, particularly those present in mosquitoes, with a view to establishing whether such infectious agents can, in the long run, defeat the immune system or be defeated by it. Many of the viruses, bacteria and parasites recognised by the International Agency for Research on Cancer (IARC) as carcinogenic and suspected by others as being involved in cancer have evolved numerous complex ways of avoiding, suppressing or altering the immune system's responses. These features, coupled with the multiplicity and variety of serious infectious agents carried by some species of mosquitoes and the adverse effects on the immune system of mosquito saliva, suggest that post-mosquito bite the immune system is likely to be overwhelmed. In such a situation, immunisation strategies offer little chance of cancer prevention, unless a single or limited number of critical infectious agents can be isolated from the 'mosquito' cocktail. If that proves to be impossible cancer prevention will, therefore, if the hypothesis proves to be correct, rest on the twin strategies of environmentally controlling the mosquito population and humans avoiding being bitten. The latter strategy will involve determining the factors that demark those being bitten from those that are not.
Antiviral immunity and virus vaccines
USDA-ARS?s Scientific Manuscript database
As obligate intracellular organisms, viruses have co-evolved with their respective host species, which in turn have evolved diverse and sophisticated capabilities to protect themselves against viral infections and their associated diseases. Viruses have also evolved a remarkable variety of strategie...
Immunity in urogenital protozoa.
Malla, N; Goyal, K; Dhanda, R S; Yadav, M
2014-09-01
Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated. © 2014 John Wiley & Sons Ltd.
An evolving new paradigm: endothelial cells – conditional innate immune cells
2013-01-01
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413
An evolving new paradigm: endothelial cells--conditional innate immune cells.
Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng
2013-08-22
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Look, Michael; Bandyopadhyay, Arunima; Blum, Jeremy S.; Fahmy, Tarek M.
2010-01-01
There is an urgent need for new strategies to combat infectious diseases in developing countries. Many pathogens have evolved to elude immunity and this has limited the utility of current therapies. Additionally, the emergence of co-infections and drug resistant pathogens has increased the need for advanced therapeutic and diagnostic strategies. These challenges can be addressed with therapies that boost the quality and magnitude of an immune response in a predictable, designable fashion that can be applied for wide-spread use. Here, we discuss how biomaterials and specifically nanoscale delivery vehicles can be used to modify and improve the immune system response against infectious diseases. Immunotherapy of infectious disease is the enhancement or modulation of the immune system response to more effectively prevent or clear pathogen infection. Nanoscale vehicles are particularly adept at facilitating immunotherapeutic approaches because they can be engineered to have different physical properties, encapsulated agents, and surface ligands. Additionally, nanoscaled point-of-care diagnostics offer new alternatives for portable and sensitive health monitoring that can guide the use of nanoscale immunotherapies. By exploiting the unique tunability of nanoscale biomaterials to activate, shape, and detect immune system effector function, it may be possible in the near future to generate practical strategies for the prevention and treatment of infectious diseases in the developing world. PMID:19922750
Induction of innate immunity and its perturbation by influenza viruses.
Goraya, Mohsan Ullah; Wang, Song; Munir, Muhammad; Chen, Ji-Long
2015-10-01
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5'-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.
Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers
Abdo, Joe; Cornell, David L.; Mittal, Sumeet K.; Agrawal, Devendra K.
2018-01-01
Since the 1920s the gold standard for treating cancer has been surgery, which is typically preceded or followed with chemotherapy and/or radiation, a process that perhaps contributes to the destruction of a patient’s immune defense system. Cryosurgery ablation of a solid tumor is mechanistically similar to a vaccination where hundreds of unique antigens from a heterogeneous population of tumor cells derived from the invading cancer are released. However, releasing tumor-derived self-antigens into circulation may not be sufficient enough to overcome the checkpoint escape mechanisms some cancers have evolved to avoid immune responses. The potentiated immune response caused by blocking tumor checkpoints designed to prevent programmed cell death may be the optimal treatment method for the immune system to recognize these new circulating cryoablated self-antigens. Preclinical and clinical evidence exists for the complementary roles for Cytotoxic T-lymphocyte-associated protein (CTLA-4) and PD-1 antagonists in regulating adaptive immunity, demonstrating that combination immunotherapy followed by cryosurgery provides a more targeted immune response to distant lesions, a phenomenon known as the abscopal effect. We propose that when the host’s immune system has been “primed” with combined anti-CTLA-4 and anti-PD-1 adjuvants prior to cryosurgery, the preserved cryoablated tumor antigens will be presented and processed by the host’s immune system resulting in a robust cytotoxic CD8+ T-cell response. Based on recent investigations and well-described biochemical mechanisms presented herein, a polyvalent autoinoculation of many tumor-specific antigens, derived from a heterogeneous population of tumor cancer cells, would present to an unhindered yet pre-sensitized immune system yielding a superior advantage in locating, recognizing, and destroying tumor cells throughout the body. PMID:29644213
Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation
Chattopadhyay, Saborni; Chen, Jui-Yi; Chen, Hui-Wen; Hu, Che-Ming Jack
2017-01-01
Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases. PMID:29071191
A novel immune-related gene HDD1 of silkworm Bombyx mori is involved in bacterial response.
Zhang, Kui; Pan, Guangzhao; Zhao, Yuzu; Hao, Xiangwei; Li, Chongyang; Shen, Li; Zhang, Rui; Su, Jingjing; Cui, Hongjuan
2017-08-01
Insects have evolved an effective immune system to respond to various challenges. In this study, a novel immune-related gene, called BmHDD1, was first charactered in silkworm, Bombyx mori. BmHDD1 contained an ORF of 837bp and encoding a deduced protein of 278 amino acids. BmHDD1 was specifically expressed in hemocytes, and highly expressed at the molting and metamorphosis stages under normal physiological conditions. Our results suggested that BmHDD1 was mainly generated by hemocytes and secreted into hemolymph. Our results also showed that the expression level of BmHDD1 was significantly increased after 20E injection, which indicated that BmHDD1 might be regulated by ecdysone. More importantly, BmHDD1 was dramatically induced after injected with different types of PAMPs or bacteria, either in hemocytes or fat body. Those results suggested that BmHDD1 plays a role in developing and immunity system in silkworm, Bombyx mori. Copyright © 2017. Published by Elsevier Ltd.
An integrated view of suppressor T cell subsets in immunoregulation
Jiang, Hong; Chess, Leonard
2004-01-01
The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848
Senba, Masachika; Mori, Naoki
2012-10-02
Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.
Li, Hao; Qiu, Shaofu; Song, Hongbin
2013-10-04
In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Immune Evasion Strategies and Persistence of Helicobacter pylori.
Mejías-Luque, Raquel; Gerhard, Markus
Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.
Secure VM for Monitoring Industrial Process Controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K
2011-01-01
In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less
Promoting tissue regeneration by modulating the immune system.
Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M
2017-04-15
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tailored immune responses: novel effector helper T cell subsets in protective immunity.
Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R
2014-02-01
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Koella, Jacob C; Boëte, C
2003-05-01
We describe a model of host-parasite coevolution, where the interaction depends on the investments by the host in its immune response and by the parasite in its ability to suppress (or evade) its host's immune response. We base our model on the interaction between malaria parasites and their mosquito hosts and thus describe the epidemiological dynamics with the Macdonald-Ross equation of malaria epidemiology. The qualitative predictions of the model are most sensitive to the cost of the immune response and to the intensity of transmission. If transmission is weak or the cost of immunity is low, the system evolves to a coevolutionarily stable equilibrium at intermediate levels of investment (and, generally, at a low frequency of resistance). At a higher cost of immunity and as transmission intensifies, the system is not evolutionarily stable but rather cycles around intermediate levels of investment. At more intense transmission, neither host nor parasite invests any resources in dominating its partner so that no resistance is observed in the population. These results may help to explain the lack of encapsulated malaria parasites generally observed in natural populations of mosquito vectors, despite strong selection pressure for resistance in areas of very intense transmission.
Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.
Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M
2017-08-01
Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Complement and the control of HIV infection: an evolving story.
Frank, Michael M; Hester, Christopher; Jiang, Haixiang
2014-05-01
Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.
Elmets, Craig A.; Calla, Cather; Xu, Hui
2014-01-01
SYNOPSIS The discipline that investigates the biological effects of ultraviolet radiation on the immune system is called photoimmunology. Photoimmunology evolved from an interest in understanding the role of the immune system in skin cancer development, and why immunosuppressed organ transplant recipients are at greatly increased risk for cutaneous neoplasms. Ultraviolet radiation-induced damage DNA modifies the antigen presenting function of cutaneous dendritic cells, biases the immune response towards the generation of regulatory T-cells and stimulates epidermal keratinocyte production of immunosuppressive cytokines. In addition to contributing to an understanding of the pathogenesis of non-melanoma skin cancer, the knowledge acquired about the immunological effects of ultraviolet radiation exposure has provided an understanding of its role in the pathogenesis of other photodermatologic diseases such as polymorphous light eruption, chronic actinic dermatitis and cutaneous lupus erythematosus. This information has also been helpful in developing more effective and safer phototherapeutic devices for the treatment of a variety of cutaneous diseases. PMID:24891051
Cnidarian-microbe interactions and the origin of innate immunity in metazoans.
Bosch, Thomas C G
2013-01-01
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
Adamo, Shelley A
2014-09-01
Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Sankowski, Roman; Mader, Simone; Valdés-Ferrer, Sergio Iván
2015-01-01
The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood–brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections – including anorexia, malaise, depression, and decreased physical activity – collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders. PMID:25698933
Mañes, Santos; del Real, Gustavo; Martínez-A, Carlos
2003-07-01
Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.
Stem cell transplantation as a dynamical system: are clinical outcomes deterministic?
Toor, Amir A; Kobulnicky, Jared D; Salman, Salman; Roberts, Catherine H; Jameson-Lee, Max; Meier, Jeremy; Scalora, Allison; Sheth, Nihar; Koparde, Vishal; Serrano, Myrna; Buck, Gregory A; Clark, William B; McCarty, John M; Chung, Harold M; Manjili, Masoud H; Sabo, Roy T; Neale, Michael C
2014-01-01
Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However, the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning, and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper, parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.
Stem Cell Transplantation as a Dynamical System: Are Clinical Outcomes Deterministic?
Toor, Amir A.; Kobulnicky, Jared D.; Salman, Salman; Roberts, Catherine H.; Jameson-Lee, Max; Meier, Jeremy; Scalora, Allison; Sheth, Nihar; Koparde, Vishal; Serrano, Myrna; Buck, Gregory A.; Clark, William B.; McCarty, John M.; Chung, Harold M.; Manjili, Masoud H.; Sabo, Roy T.; Neale, Michael C.
2014-01-01
Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However, the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning, and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper, parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed. PMID:25520720
Patho-biotechnology: using bad bugs to do good things.
Sleator, Roy D; Hill, Colin
2006-04-01
Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, to interact with the immune system and to interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology, medicine and food. This approach shows promise for the development of novel vaccine and drug delivery systems, as well as for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. The genetic tractability of Listeria monocytogenes, the availability of the complete genome sequence of this intracellular pathogen, its ability to cope with stress, and its ability to traverse the gastrointestinal tract and induce a strong cellular immune response make L. monocytogenes an ideal model organism for demonstrating the patho-biotechnology concept.
Gene expression profiling of dendritic cells by microarray.
Foti, Maria; Ricciardi-Castagnoli, Paola; Granucci, Francesca
2007-01-01
The immune system of vertebrate animals has evolved to respond to different types of perturbations (invading pathogens, stress signals), limiting self-tissue damage. The decision to activate an immune response is made by antigen-presenting cells (APCs) that are quiescent until they encounter a foreign microorganism or inflammatory stimuli. Early activated APCs trigger innate immune responses that represent the first line of reaction against invading pathogens to limit the infections. At later times, activated APCs acquire the ability to prime antigen-specific immune responses that clear the infections and give rise to memory. During the immune response self-tissue damage is limited and tolerance to self is maintained through life. Among the cells that constitute the immune system, dendritic cells (DC) play a central role. They are extremely versatile APCs involved in the initiation of both innate and adaptive immunity and also in the differentiation of regulatory T cells required for the maintenance of self-tolerance. How DC can mediate these diverse and almost contradictory functions has recently been investigated. The plasticity of these cells allows them to undergo a complete genetic reprogramming in response to external microbial stimuli with the sequential acquisition of different regulatory functions in innate and adaptive immunity. The specific genetic reprogramming DC undergo upon activation can be easily investigated by using microarrays to perform global gene expression analysis in different conditions.
Engineering approaches to immunotherapy.
Swartz, Melody A; Hirosue, Sachiko; Hubbell, Jeffrey A
2012-08-22
As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future.
Evolution of lactation: nutrition v. protection with special reference to five mammalian species.
McClellan, Holly L; Miller, Susan J; Hartmann, Peter E
2008-12-01
The evolutionary origin of the mammary gland has been difficult to establish because little knowledge can be gained on the origin of soft tissue organs from fossil evidence. One approach to resolve the origin of lactation has compared the anatomy of existing primitive mammals to skin glands, whilst another has examined the metabolic and molecular synergy between mammary gland development and the innate immune system. We have reviewed the physiology of lactation in five mammalian species with special reference to these theories. In all species, milk fulfils dual functions of providing protection and nutrition to the young and, furthermore, within species the quality and quantity of milk are highly conserved despite maternal malnutrition or illness. There are vast differences in birth weight, milk production, feeding frequency, macronutrient concentration, growth rate and length of lactation between rabbits, quokkas (Setonix brachyurus), pigs, cattle and humans. The components that protect the neonate against infection do so without causing inflammation. Many protective components are not unique to the mammary gland and are shared with the innate immune system. In contrast, many of the macronutrients in milk are unique to the mammary gland, have evolved from components of the innate immune system, and have either retained or developed multiple functions including the provision of nourishment and protection of the hatchling/neonate. Thus, there is a strong argument to suggest that the mammary gland evolved from the inflammatory response; however, the extensive protection that has developed in milk to actively avoid triggering inflammation seems to be a contradiction.
An affinity/avidity model of peripheral T cell regulation
Jiang, Hong; Wu, Yilun; Liang, Bitao; Zheng, Zongyu; Tang, Guomei; Kanellopoulos, Jean; Soloski, Mark; Winchester, Robert; Goldstein, Itamar; Chess, Leonard
2005-01-01
We show in these studies that Qa-1–dependent CD8+ T cells are involved in the establishment and maintenance of peripheral self tolerance as well as facilitating affinity maturation of CD4+ T cells responding to foreign antigen. We provide experimental evidence that the strategy used by the Qa-1–dependent CD8+ T cells to accomplish both these tasks in vivo is to selectively downregulate T cell clones that respond to both self and foreign antigens with intermediate, not high or low, affinity/avidity. Thus, the immune system evolved to regulate peripheral immunity using a unified mechanism that efficiently and effectively permits the system to safeguard peripheral self tolerance yet promote the capacity to deal with foreign invaders. PMID:15668735
Roles of small RNAs in plant disease resistance.
Yang, Li; Huang, Hai
2014-10-01
The interaction between plants and pathogens represents a dynamic competition between a robust immune system and efficient infectious strategies. Plant innate immunity is composed of complex and highly regulated molecular networks, which can be triggered by the perception of either conserved or race-specific pathogenic molecular signatures. Small RNAs are emerging as versatile regulators of plant development, growth and response to biotic and abiotic stresses. They act in different tiers of plant immunity, including the pathogen-associated molecular pattern-triggered and the effector-triggered immunity. On the other hand, pathogens have evolved effector molecules to suppress or hijack the host small RNA pathways. This leads to an arms race between plants and pathogens at the level of small RNA-mediated defense. Here, we review recent advances in small RNA-mediated defense responses and discuss the challenging questions in this area. © 2014 Institute of Botany, Chinese Academy of Sciences.
Deming, Dustin A
2016-01-01
Colorectal cancer is a leading cause of cancer-related death in the United States, despite recent advances in treatment strategies. The immune system has been implicated in the pathogenesis of colorectal cancer, with numerous studies identifying either antagonistic or pro-tumorigenic effects of infiltrating immune cells. Therapeutic strategies harnessing the immune system to target cancers have evolved expediently over the last 5 years, especially the use of checkpoint inhibitors. Recently, a subset of patients whose colorectal cancers harbor a deficiency in mismatch repair proteins have demonstrated dramatic and durable response to checkpoint blockade. Unfortunately, the vast majority of colorectal cancers are mismatch repair proficient and resistant to these inhibitors. The tumor microenvironment has been implicated in the resistance to checkpoint block and ways to overcome these resistance mechanisms would be a major advance for the treatment of colorectal cancer. Here we provide commentary on a manuscript from Halama et al. examining CCL5/CCR5 as an immune biomarker and the potential role of anti-CCR5 agents for the treatment of patients with colorectal cancer.
Weß, Ludger; Schnieders, Frank
2017-12-01
Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.
CRISPR-Cas: biology, mechanisms and relevance
Hille, Frank
2016-01-01
Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148
CRISPR-Cas: biology, mechanisms and relevance.
Hille, Frank; Charpentier, Emmanuelle
2016-11-05
Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes-termed spacers-into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent.This article is part of the themed issue 'The new bacteriology'. © 2016 The Authors.
Jwa, Nam-Soo; Hwang, Byung Kook
2017-01-01
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963
Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.
Butler, Mark J; Behringer, Donald C; Dolan, Thomas W; Moss, Jessica; Shields, Jeffrey D
2015-01-01
Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.
Complement in the Initiation and Evolution of Rheumatoid Arthritis
Holers, V. Michael; Banda, Nirmal K.
2018-01-01
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA. PMID:29892280
Chen, Hao; Wang, Lingling; Zhou, Zhi; Hou, Zhanhui; Liu, Zhaoqun; Wang, Weilin; Gao, Dahai; Gao, Qiang; Wang, Mengqiang; Song, Linsheng
2015-11-14
Neural-endocrine-immune (NEI) system is a major modulation network among the nervous, endocrine and immune system and weights greatly in maintaining homeostasis of organisms during stress and infection. Some microRNAs are found interacting with NEI system (designated NeurimmiRs), addressing swift modulations on immune system. The oyster Crassostrea gigas, as an intertidal bivalve, has evolved a primary NEI system. However, the knowledge about NeurimmiRs in oysters remains largely unknown. Six small RNA libraries from haemocytes of oysters stimulated with acetylcholine (ACh) and norepinephrine (NE) were sequenced to identify neurotransmitter-responsive miRNAs and survey their immunomodulation roles. A total of 331 miRNAs (132 identified in the present study plus 199 identified previously) were subjected to expression analysis, and twenty-one and sixteen of them were found ACh- or NE-responsive, respectively (FDR < 0.05). Meanwhile, 21 miRNAs exhibited different expression pattern after ACh or NE stimulation. Consequently, 355 genes were predicted as putative targets of these neurotransmitter-responsive miRNAs in oyster. Through gene onthology analysis, multiple genes involved in death, immune system process and response to stimulus were annotated to be modulated by NeurimmiRs. Besides, a significant decrease in haemocyte phagocytosis and late-apoptosis or necrosis rate was observed after ACh and NE stimulation (p < 0.05) while early-apoptosis rate remained unchanged. A comprehensive immune-related network involving PRRs, intracellular receptors, signaling transducers and immune effectors was proposed to be modulated by ACh- and NE-responsive NeurimmiRs, which would be indispensable for oyster haemocytes to respond against stress and infection. Characterization of the NeurimmiRs would be an essential step to understand the NEI system of invertebrate and the adaptation mechanism of oyster.
The Interactions of Human Neutrophils with Shiga Toxins and Related Plant Toxins: Danger or Safety?
Brigotti, Maurizio
2012-01-01
Shiga toxins and ricin are well characterized similar toxins belonging to quite different biological kingdoms. Plant and bacteria have evolved the ability to produce these powerful toxins in parallel, while humans have evolved a defense system that recognizes molecular patterns common to foreign molecules through specific receptors expressed on the surface of the main actors of innate immunity, namely monocytes and neutrophils. The interactions between these toxins and neutrophils have been widely described and have stimulated intense debate. This paper is aimed at reviewing the topic, focusing particularly on implications for the pathogenesis and diagnosis of hemolytic uremic syndrome. PMID:22741061
Transcriptional response of Musca domestica larvae to bacterial infection.
Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei
2014-01-01
The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.
Solbakken, Monica Hongrø; Voje, Kjetil Lysne; Jakobsen, Kjetill Sigurd; Jentoft, Sissel
2017-04-26
Host-intrinsic factors as well as environmental changes are known to be strong evolutionary drivers defining the genetic foundation of immunity. Using a novel set of teleost genomes and a time-calibrated phylogeny, we here investigate the family of Toll-like receptor ( TLR ) genes and address the underlying evolutionary processes shaping the diversity of the first-line defence. Our findings reveal remarkable flexibility within the evolutionary design of teleost innate immunity characterized by prominent TLR gene losses and expansions. In the order of Gadiformes, expansions correlate with the loss of major histocompatibility complex class II ( MHCII ) and diversifying selection analyses support that this has fostered new immunological innovations in TLR s within this lineage. In teleosts overall, TLRs expansions correlate with species latitudinal distributions and maximum depth. By contrast, lineage-specific gene losses overlap with well-described changes in palaeoclimate (global ocean anoxia) and past Atlantic Ocean geography. In conclusion, we suggest that the evolvability of the teleost immune system has most likely played a prominent role in the survival and successful radiation of this lineage. © 2017 The Authors.
Solomos, Andreas C; Rall, Glenn F
2016-04-20
The central nervous system (CNS) coordinates all aspects of life, autonomic and sentient, though how it has evolved to contend with pathogenic infections remains, to a great degree, a mystery. The skull and cerebrospinal fluid (CSF) provide protection from blunt force contacts, and it was once thought that the blood-brain barrier (BBB) was a fortress that restricted pathogen entry and limited inflammation. Recent studies, however, have caused a revision of this viewpoint: the CNS is monitored by blood-borne lymphocytes, but can use alternative strategies to prevent or resolve many pathogenic challenges. In this Review, we discuss emerging principles that indicate how the CNS is immunologically unique from peripheral tissues. We focus on developments that include glymphatics, recently characterized brain lymphatic vessels, distinctions in innate and adaptive immune strategies, novel points of entry for neurotropic viruses, and, finally, how the periphery can influence CNS homeostasis and immune responses within the brain. Collectively, these attributes demand a re-evaluation of immunity in the brain: not privileged, but distinct.
Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity
Gao, Xiquan; Cox, Kevin L.; He, Ping
2014-01-01
An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498
Zhang, Jingjing; Friberg, Ida M; Kift-Morgan, Ann; Parekh, Gita; Morgan, Matt P; Liuzzi, Anna Rita; Lin, Chan-Yu; Donovan, Kieron L; Colmont, Chantal S; Morgan, Peter H; Davis, Paul; Weeks, Ian; Fraser, Donald J; Topley, Nicholas; Eberl, Matthias
2017-07-01
The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
The kinetics and location of intra-host HIV evolution to evade cellular immunity are predictable
NASA Astrophysics Data System (ADS)
Barton, John; Goonetilleke, Nilu; Butler, Thomas; Walker, Bruce; McMichael, Andrew; Chakraborty, Arup
Human immunodeficiency virus (HIV) evolves within infected persons to escape targeting and clearance by the host immune system, thereby preventing effective immune control of infection. Knowledge of the timing and pathways of escape that result in loss of control of the virus could aid in the design of effective strategies to overcome the challenge of viral diversification and immune escape. We combined methods from statistical physics and evolutionary dynamics to predict the course of in vivo viral sequence evolution in response to T cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Our predictions agree well with both the location of documented escape mutations and the clinically observed time to escape. We also find that that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways, and the duration over which control is maintained by specific immune responses prior to escape, could be exploited for the rational design of immunotherapeutic strategies that may enable long-term control of HIV infection.
Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M
2018-01-01
An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.
Kieslich, Chris A; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.
Kieslich, Chris A.; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422
Microbial Invasion vs. Tick Immune Regulation.
Sonenshine, Daniel E; Macaluso, Kevin R
2017-01-01
Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins, fibrinogen-related lectins and convertase factors (Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are able to evade the tick's innate immune system and survive within the tick's body. The examples that follow describe some of the many different strategies that have evolved to enable ticks to transmit the agents of human and/or animal disease.
The Changing World of Childhood Immunizations
ERIC Educational Resources Information Center
Graville, Iris
2010-01-01
Theories and practices in early childhood education continually evolve, and the same is true in the health field. Such change is especially apparent in the area of childhood immunizations. Since vaccination to prevent smallpox was first started in the late 1700s, recommendations for which immunizations to give and when to give them have been…
Lee, Alexandra J; Das, Suman R; Wang, Wei; Fitzgerald, Theresa; Pickett, Brett E; Aevermann, Brian D; Topham, David J; Falsey, Ann R; Scheuermann, Richard H
2015-05-01
Although a large number of immune epitopes have been identified in the influenza A virus (IAV) hemagglutinin (HA) protein using various experimental systems, it is unclear which are involved in protective immunity to natural infection in humans. We developed a data mining approach analyzing natural H1N1 human isolates to identify HA protein regions that may be targeted by the human immune system and can predict the evolution of IAV. We identified 16 amino acid sites experiencing diversifying selection during the evolution of prepandemic seasonal H1N1 strains and found that 11 sites were located in experimentally determined B-cell/antibody (Ab) epitopes, including three distinct neutralizing Caton epitopes: Sa, Sb, and Ca2 [A. J. Caton, G. G. Brownlee, J. W. Yewdell, and W. Gerhard, Cell 31:417-427, 1982, http://dx.doi.org/10.1016/0092-8674(82)90135-0]. We predicted that these diversified epitope regions would be the targets of mutation as the 2009 H1N1 pandemic (pH1N1) lineage evolves in response to the development of population-level protective immunity in humans. Using a chi-squared goodness-of-fit test, we identified 10 amino acid sites that significantly differed between the pH1N1 isolates and isolates from the recent 2012-2013 and 2013-2014 influenza seasons. Three of these sites were located in the same diversified B-cell/Ab epitope regions as identified in the analysis of prepandemic sequences, including Sa and Sb. As predicted, hemagglutination inhibition (HI) assays using human sera from subjects vaccinated with the initial pH1N1 isolate demonstrated reduced reactivity against 2013-2014 isolates. Taken together, these results suggest that diversifying selection analysis can identify key immune epitopes responsible for protective immunity to influenza virus in humans and thereby predict virus evolution. The WHO estimates that approximately 5 to 10% of adults and 20 to 30% of children in the world are infected by influenza virus each year. While an adaptive immune response helps eliminate the virus following acute infection, the virus rapidly evolves to evade the established protective memory immune response, thus allowing for the regular seasonal cycles of influenza virus infection. The analytical approach described here, which combines an analysis of diversifying selection with an integration of immune epitope data, has allowed us to identify antigenic regions that contribute to protective immunity and are therefore the key targets of immune evasion by the virus. This information can be used to determine when sequence variations in seasonal influenza virus strains have affected regions responsible for protective immunity in order to decide when new vaccine formulations are warranted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lista, María José; Martins, Rodrigo Prado; Angrand, Gaelle; Quillévéré, Alicia; Daskalogianni, Chrysoula; Voisset, Cécile; Teulade-Fichou, Marie-Paule; Fåhraeus, Robin; Blondel, Marc
2017-08-31
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome replication and maintenance but also highly antigenic. Hence, EBV evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA at a minimal level to ensure its essential function thereby, at the same time, minimizing immune recognition. Defining intervention points where to interfere with EBNA1 immune evasion is an important step to trigger an immune response against EBV-carrying cancers. Thanks to a yeast-based assay that recapitulates all the aspects of EBNA1 self-limitation of expression, a recent study by Lista et al. [Nature Communications (2017) 7, 435-444] has uncovered the role of the host cell nucleolin (NCL) in this process via a direct interaction of this protein with G-quadruplexes (G4) formed in GAr-encoding sequence of EBNA1 mRNA. In addition, the G4 ligand PhenDC3 prevents NCL binding on EBNA1 mRNA and reverses GAr-mediated repression of translation and antigen presentation. This shows that the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to unveil EBV-carrying cancers to the immune system and that the yeast model can be successfully used for uncovering drugs and host factors that interfere with EBV stealthiness.
Immunosenescence in vertebrates and invertebrates.
Müller, Ludmila; Fülöp, Tamas; Pawelec, Graham
2013-04-02
There is an established consensus that it is primarily the adaptive arm of immunity, and the T cell subset in particular, that is most susceptible to the deleterious changes with age known as "immunosenescence". Can we garner any clues as to why this might be by considering comparative immunology and the evolutionary emergence of adaptive and innate immunity? The immune system is assumed to have evolved to protect the organism against pathogens, but the way in which this is accomplished is different in the innate-vs-adaptive arms, and it is unclear why the latter is necessary. Are there special characteristics of adaptive immunity which might make the system more susceptible to age-associated dysfunction? Given recent accumulating findings that actually there are age-associated changes to innate immunity and that these are broadly similar in vertebrates and invertebrates, we suggest here that it is the special property of memory in the adaptive immune system which results in the accumulation of cells with a restricted receptor repertoire, dependent on the immunological history of the individual's exposures to pathogens over the lifetime, and which is commonly taken as a hallmark of "immunosenescence". However, we further hypothesize that this immunological remodelling per se does not necessarily convey a disadvantage to the individual (ie. is not necessarily "senescence" if it is not deleterious). Indeed, under certain circumstances, or potentially even as a rule, this adaptation to the individual host environment may confer an actual survival advantage.
Innate and adaptive immune responses to cell death
Rock, Kenneth L.; Lai, Jiann-Jyh; Kono, Hajime
2011-01-01
Summary The immune system plays an essential role in protecting the host against infections and to accomplish this task has evolved mechanisms to recognize microbes and destroy them. In addition, it monitors the health of cells and responds to ones that have been injured and die, even if this occurs under sterile conditions. This process is initiated when dying cells expose intracellular molecules that can be recognized by cells of the innate immune system. As a consequence of this recognition, dendritic cells are activated in ways that help to promote T-cell responses to antigens associated with the dying cells. In addition, macrophages are stimulated to produce the cytokine interleukin-1 that then acts on radioresistant parenchymal cells in the host in ways that drive a robust inflammatory response. In addition to dead cells, a number of other sterile particles and altered physiological states can similarly stimulate an inflammatory response and do so through common pathways involving the inflammasome and interleukin-1. These pathways underlie the pathogenesis of a number of diseases. PMID:21884177
Molecular recognition of microbial lipid-based antigens by T cells.
Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Le Nours, Jérôme
2018-05-01
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.
Daskalakis, Nikolaos P.; Cohen, Hagit; Nievergelt, Caroline M.; Baker, Dewleen G.; Buxbaum, Joseph D.; Russo, Scott J.; Yehuda, Rachel
2016-01-01
Although biological systems have evolved to promote stress-resilience, there is variation in stress-responses. Understanding the biological basis of such individual differences has implications for understanding Posttraumatic Stress Disorder (PTSD) etiology, which is a maladaptive response to trauma occurring only in a subset of vulnerable individuals. PTSD involves failure to reinstate physiological homeostasis after traumatic events and is due to either intrinsic or trauma-related alterations in physiological systems across the body. Master homeostatic regulators that circulate and operate throughout the organism, such as stress hormones (e.g., glucocorticoids) and immune mediators (e.g., cytokines), are at the crossroads of peripheral and central susceptibility pathways and represent promising functional biomarkers of stress-response and target for novel therapeutics. PMID:27481726
The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC I molecules
Cruz, Freidrich M.; Colbert, Jeff D.; Merino, Elena; Kriegsman, Barry A.; Rock, Kenneth L.
2017-01-01
To monitor the health of cells, the immune system tasks antigen presenting cells with gathering antigens from other cells and reporting them to CD8 T cells in the form of peptides bound to MHC I molecules. Most cells would be unable to perform this function because they use their MHC I molecules to exclusively present peptides derived from the cell’s own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC I through a process called cross-presentation (XPT). How this important task is accomplished, its role in health and disease and its potential for exploitation are the subject of this review. PMID:28125356
Light acclimation, retrograde signalling, cell death and immune defences in plants.
Karpiński, Stanisław; Szechyńska-Hebda, Magdalena; Wituszyńska, Weronika; Burdiak, Paweł
2013-04-01
This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA). © 2012 Blackwell Publishing Ltd.
Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C
2017-01-01
Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.
Reuben, Alexandre; Godin-Ethier, Jessica; Santos, Manuela M; Lapointe, Réjean
2015-06-01
The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance. Copyright © 2015. Published by Elsevier Ltd.
Early growth response 2 and Egr3 are unique regulators in immune system.
Taefehshokr, Sina; Key, Yashar Azari; Khakpour, Mansour; Dadebighlu, Pourya; Oveisi, Amin
2017-01-01
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Bonura, Angela; Vizzini, Aiti; Vlah, Sara; Gervasi, Francesco; Longo, Alessandra; Melis, Mario R; Schildberg, Frank A; Colombo, Paolo
2018-02-01
The selective modulation of immunity is an emerging concept driven by the vast advances in our understanding of this crucial host defense system. Invertebrates have raised researchers' interest as potential sources of new bioactive molecules owing to their antibacterial, anticancer and immunomodulatory activities. A LipoPolySaccharide (LPS) challenge in the ascidian Ciona intestinalis generates the transcript, Ci8 short, with cis-regulatory elements in the 3' UTR region that are essential for shaping innate immune responses. The derived amino acidic sequence in silico analysis showed specific binding to human Major Histocompatibility Complex (MHC) Class I and Class II alleles. The role of Ci8 short peptide was investigated in a more evolved immune system using human Peripheral Blood Mononuclear Cells (PBMCs) as in vitro model. The biological activities of this molecule include the activation of 70kDa TCR ζ chain Associated Protein kinase (ZAP-70) and T Cell Receptor (TCR) Vβ oligo clonal selection on CD4 + T lymphocytes as well as increased proliferation and IFN-γ secretion. Furthermore Ci8 short affects CD4 + /CD25 high induced regulatory T cells (iTreg) subset selection which co-expressed the functional markers TGF-β1/Latency Associated Protein (LAP) and CD39/CD73. This paper describes a new molecule that modulates important responses of the human adaptive immune system. Copyright © 2017 Elsevier GmbH. All rights reserved.
Merlo, Anna; Turrini, Riccardo; Dolcetti, Riccardo; Martorelli, Debora; Muraro, Elena; Comoli, Patrizia; Rosato, Antonio
2010-01-01
The Epstein-Barr virus has evolved a plethora of strategies to evade immune system recognition and to establish latent infection in memory B cells, where the virus resides lifelong without any consequence in the majority of individuals. However, some imbalances in the equilibrium between the inherent virus transforming properties and the host immune system can lead to the development of different tumors, such as lymphoproliferative disorders, Hodgkin’s lymphoma, Burkitt’s lymphoma, and nasopharyngeal carcinoma. The expression of viral antigens in malignant cells makes them suitable targets for immunotherapeutic approaches, which are mainly based on the ex vivo expansion of EBV-specific T cells. Indeed, the infusion of virus-specific cytotoxic T lymphocytes has proved not only to be safe and effective, but also capable of restoring or inducing a protective anti-virus immunity, which is lacking, albeit to a different extent, in every EBV-driven malignancy. The purpose of this review is to summarize the results of adoptive immunotherapy approaches for EBV-related malignancies, with particular emphasis on the immunological and virological aspects linked to the clinical responses obtained. Data collected confirm the clinical relevance of the use of EBV-specific cytotoxic T lymphocytes in the field of adoptive immunotherapy and suggest the increasing importance of this approach also against other tumors, concurrent with the increasing knowledge of the intimate and continuous interplay between the virus and the host immune system. PMID:20421267
Kradin, R L
1995-01-01
In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS)
[Mechanisms of urinary tract sterility maintenance].
Okrągła, Emilia; Szychowska, Katarzyna; Wolska, Lidia
2014-06-02
Physiologically, urine and the urinary tract are maintained sterile because of physical and chemical properties of urine and the innate immune system's action. The urinary tract is constantly exposed to the invasion of microorganisms from the exterior environment, also because of the anatomical placement of the urethra, in the vicinity of the rectum. Particularly vulnerable to urinary tract infections (UTI) are women (an additional risk factor is pregnancy), but also the elderly and children. The main pathogens causing UTI are bacteria; in 70-95% of cases it is the bacterium Escherichia coli. Infections caused by viruses and fungi are less common and are associated with decreased immunity, pharmacotherapy, or some diseases. Bacteria have evolved a number of factors that facilitate the colonization of the urinary tract: the cover and cell membrane antigens O and K1, lipopolysaccharide (LPS), fimbriae, pile and cilia. On the other hand, the human organism has evolved mechanisms to hinder colonization of the urinary tract: mechanisms arising from the anatomical structure of the urinary tract, the physicochemical properties of the urine and the activity of the innate immune system, also known as non-specific, which isolates and destroys pathogens using immunological processes, and the mechanisms for release of antimicrobial substances such as Tamm-Horsfall protein, mucopolysaccharides, immunoglobulins IgA and IgG, lactoferrin, lipocalin, neutrophils, cytokines and antimicrobial peptides. This review aims to analyze the state of knowledge on the mechanisms to maintain the sterility of the urinary tract used by the human organism and bacterial virulence factors to facilitate the colonization of the urinary tract.
Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen
2008-07-17
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.
Human immunity against EBV—lessons from the clinic
2017-01-01
The mammalian immune system has evolved over many millennia to be best equipped to protect the host from pathogen infection. In many cases, host and pathogen have coevolved, each acquiring sophisticated ways of inducing or protecting from disease. Epstein-Barr virus (EBV) is a human herpes virus that infects >90% of individuals. Despite its ubiquity, infection by EBV is often subclinical; this invariably reflects the necessity of the virus to preserve its host, balanced with sophisticated host immune mechanisms that maintain viral latency. However, EBV infection can result in various, and often fatal, clinical sequelae, including fulminant infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, organomegaly, and/or malignancy. Such clinical outcomes are typically observed in immunosuppressed individuals, with the most extreme cases being Mendelian primary immunodeficiencies (PIDs). Although these conditions are rare, they have provided critical insight into the cellular, biochemical, and molecular requirements for robust and long-lasting immunity against EBV infection. Here, we review the virology of EBV, mechanisms underlying disease pathogenesis in PIDs, and developments in immune cell–mediated therapy to treat disorders associated with or induced by EBV infection. PMID:28108590
AB toxins: a paradigm switch from deadly to desirable.
Odumosu, Oludare; Nicholas, Dequina; Yano, Hiroshi; Langridge, William
2010-07-01
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
AB Toxins: A Paradigm Switch from Deadly to Desirable
Odumosu, Oludare; Nicholas, Dequina; Yano, Hiroshi; Langridge, William
2010-01-01
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity. PMID:22069653
Best, Alex; Hoyle, Andy
2013-01-01
A vast theoretical literature has explored the evolutionary dynamics of parasite virulence. The classic result from this modelling work is that, assuming a saturating transmission–virulence trade-off, there is a single evolutionary optimum where the parasite optimizes the epidemiological R0. However, there are an increasing number of models that have shown how ecological and epidemiological feedbacks to evolution can instead result in the creation and maintenance of multiple parasite strains. Here, we fully explore one such example, where recovered hosts have a limited ‘immune range’ resulting in partial cross-immunity to parasite strains that they have not previously encountered. Taking an adaptive dynamics approach, we show that, provided this immune range is not too wide, high levels of diversity can evolve and be maintained through multiple branching events. We argue that our model provides a more realistic picture of disease dynamics in vertebrate host populations and may be a key explanatory factor in the high levels of parasite diversity seen in natural systems. PMID:24516712
Innate Immunity Sensors Participating in Pathophysiology of Joint Diseases: A Brief Overview
Gallo, Jiri; Raska, Milan; Konttinen, Yrjö T.; Nich, Christophe; Goodman, Stuart B.
2015-01-01
The innate immune system consists of functionally specialized “modules” that are activated in response to a particular set of stimuli via sensors located on the surface or inside the tissue cells. These cells screen tissues for a wide range of exogenous and endogenous danger/damage-induced signals with the aim to reject or tolerate them and maintain tissue integrity. In this line of thinking, inflammation evolved as an adaptive tool for restoring tissue homeostasis. A number of diseases are mediated by a maladaptation of the innate immune response, perpetuating chronic inflammation and tissue damage. Here, we review recent evidence on the cross talk between innate immune sensors and development of rheumatoid arthritis, osteoarthritis, and aseptic loosening of total joint replacements. In relation to the latter topic, there is a growing body of evidence that aseptic loosening and periprosthetic osteolysis results from long-term maladaptation of periprosthetic tissues to the presence of by-products continuously released from an artificial joint. PMID:25747032
Immunoglobulins in the eggs of the nurse shark, Ginglymostoma cirratum.
Haines, Ashley N; Flajnik, Martin F; Rumfelt, Lynn L; Wourms, John P
2005-01-01
Elasmobranchs, which include the sharks, skates, and rays, emerged over 450 million years ago and are the oldest vertebrates to possess an adaptive immune system. They have evolved diverse reproductive modes, with a variety of physiological adaptations that enhance reproductive success. The nurse shark, Ginglymostoma cirratum, is an aplacental, viviparous elasmobranch in which the egg and its associated vitelline vasculature are the primary route for maternal-embryonic interactions. During gestation, nurse shark embryos hatch from their eggcases and develop free in the uterus, which is flushed regularly with seawater. Similar to higher vertebrates, embryonic and neonatal nurse sharks possess an immune system that is not fully competent. In birds and bony fishes, maternal immunoglobulins (Ig) stored in the egg during oogenesis confer protective immunity to embryos during gestation. However, early research suggested that such transfer of passive immunity does not occur in sharks. To better understand how elasmobranch embryos are protected from waterborne pathogens during this potentially vulnerable time, we have re-examined the existence of Igs in elasmobranch eggs. Using monoclonal antibodies, we establish the presence of two classes of Igs in nurse shark eggs: 7S IgM and IgNAR. The potential transfer of immunoglobulins from elasmobranch eggs is discussed.
Coakley, Gillian; Buck, Amy H; Maizels, Rick M
2016-07-01
Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Evolutionary origins of the blood vascular system and endothelium
Monahan-Earley, Rita; Dvorak, Ann M.; Aird, William C.
2017-01-01
Every biological trait requires both a proximate and evolutionary explanation. The field of vascular biology is focused primarily on proximate mechanisms in health and disease. Comparatively little attention has been given to the evolutionary basis of the cardiovascular system. Here, we employ a comparative approach to review the phylogenetic history of the blood vascular system and endothelium. In addition to drawing on the published literature, we provide primary ultrastructural data related to the lobster, earthworm, amphioxus and hagfish. Existing evidence suggests that the blood vascular system first appeared in an ancestor of the triploblasts over 600 million years ago, as a means to overcome the time-distance constraints of diffusion. The endothelium evolved in an ancestral vertebrate some 540–510 million years ago to optimize flow dynamics and barrier function, and/or to localize immune and coagulation functions. Finally, we emphasize that endothelial heterogeneity evolved as a core feature of the endothelium from the outset, reflecting its role in meeting the diverse needs of body tissues. PMID:23809110
Giraldo, Martha C.; Dagdas, Yasin F.; Gupta, Yogesh K.; Mentlak, Thomas A.; Yi, Mihwa; Martinez-Rocha, Ana Lilia; Saitoh, Hiromasa; Terauchi, Ryohei; Talbot, Nicholas J.; Valent, Barbara
2013-01-01
To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion. PMID:23774898
Heightened exposure to parasites favors the evolution of immunity in brood parasitic cowbirds
Hahn, Caldwell; Reisen, William K.
2011-01-01
Immunologists and evolutionary biologists are interested in how the immune system evolves to fit an ecological niche. We studied the relationship between exposure to parasites and strength of immunity by investigating the response of two species of New World cowbirds (genus Molothrus, Icteridae), obligate brood parasites with contrasting life history strategies, to experimental arboviral infection. The South American shiny cowbird (M. bonariensis) is an extreme host-generalist that lays its eggs in the nests of >225 different avian species. The Central American bronzed cowbird (M. aeneus) is a relative host-specialist that lays its eggs preferentially in the nests of approximately 12 orioles in a single sister genus. West Nile virus provided a strong challenge and delineated immune differences between these species. The extreme host-generalist shiny cowbird, like the North American host-generalist, the brown-headed cowbird, showed significantly lower viremia to three arboviruses than related icterid species that were not brood parasites. The bronzed cowbird showed intermediate viremia. These findings support the interpretation that repeated exposure to a high diversity of parasites favors the evolution of enhanced immunity in brood parasitic cowbirds and makes them useful models for future studies of innate immunity.
2012-01-01
Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines, chemokines, statins, interleukins, T cell activation markers, costimulatory molecules, cyclooxygenase, pro-inflammatory transcription factors and pro-apoptotic markers. Moreover, CFA/PTX-treatment, alone, resulted in extensive, though less robust, alterations in both CP compartments. Conclusions MOG-CFA/PTX immunization significantly affects CP morphology and stimulates distinct expression patterns of immune-related genes in CP stromal capillary and epithelial tissues during evolving EAE. CFA/PTX treatment, alone, causes widespread gene alterations that could prime the CP to unlock the CNS to T cell infiltration during neuroinflammatory disease. PMID:22870943
Poy, Alain; Minkoulou, Etienne; Shaba, Keith; Yahaya, Ali; Gaturuku, Peter; Dadja, Landoh; Okeibunor, Joseph; Mihigo, Richard; Mkanda, Pascal
2016-10-10
The PEI Programme in the WHO African region invested in recruitment of qualified staff in data management, developing data management system and standards operating systems since the revamp of the Polio Eradication Initiative in 1997 to cater for data management support needs in the Region. This support went beyond polio and was expanded to routine immunization and integrated surveillance of priority diseases. But the impact of the polio data management support to other programmes such as routine immunization and disease surveillance has not yet been fully documented. This is what this article seeks to demonstrate. We reviewed how Polio data management area of work evolved progressively along with the expansion of the data management team capacity and the evolution of the data management systems from initiation of the AFP case-based to routine immunization, other case based disease surveillance and Supplementary immunization activities. IDSR has improved the data availability with support from IST Polio funded data managers who were collecting them from countries. The data management system developed by the polio team was used by countries to record information related to not only polio SIAs but also for other interventions. From the time when routine immunization data started to be part of polio data management team responsibility, the number of reports received went from around 4000 the first year (2005) to >30,000 the second year and to >47,000 in 2014. Polio data management has helped to improve the overall VPD, IDSR and routine data management as well as emergency response in the Region. As we approach the polio end game, the African Region would benefit in using the already set infrastructure for other public health initiative in the Region. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters
Butler, Mark J.; Behringer, Donald C.; Dolan, Thomas W.; Moss, Jessica; Shields, Jeffrey D.
2015-01-01
Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of “behavioral immunity”; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system. PMID:26061629
Rapid evolutionary response to a transmissible cancer in Tasmanian devils
Epstein, Brendan; Jones, Menna; Hamede, Rodrigo; Hendricks, Sarah; McCallum, Hamish; Murchison, Elizabeth P.; Schönfeld, Barbara; Wiench, Cody; Hohenlohe, Paul; Storfer, Andrew
2016-01-01
Although cancer rarely acts as an infectious disease, a recently emerged transmissible cancer in Tasmanian devils (Sarcophilus harrisii) is virtually 100% fatal. Devil facial tumour disease (DFTD) has swept across nearly the entire species' range, resulting in localized declines exceeding 90% and an overall species decline of more than 80% in less than 20 years. Despite epidemiological models that predict extinction, populations in long-diseased sites persist. Here we report rare genomic evidence of a rapid, parallel evolutionary response to strong selection imposed by a wildlife disease. We identify two genomic regions that contain genes related to immune function or cancer risk in humans that exhibit concordant signatures of selection across three populations. DFTD spreads between hosts by suppressing and evading the immune system, and our results suggest that hosts are evolving immune-modulated resistance that could aid in species persistence in the face of this devastating disease. PMID:27575253
[Incontinentia pigmenti with defect in cellular immunity].
Zamora-Chávez, Antonio; Escobar-Sánchez, Argelia; Sadowinski-Pine, Stanislaw; Saucedo-Ramírez, Omar Josué; Delgado-Barrera, Palmira; Enríquez-Quiñones, Claudia G
Incontinentia pigmenti is a rare, X-linked genetic disease and affects all ectoderm-derived tissues such as skin, appendages, eyes, teeth and central nervous system as well as disorders of varying degree of cellular immunity characterized by decreasing melanin in the epidermis and increase in the dermis. When the condition occurs in males, it is lethal. We present the case of a 2-month-old infant with severe incontinentia pigmenti confirmed by histological examination of skin biopsy. The condition evolved with severe neurological disorders and seizures along with severe cellular immune deficiency, which affected the development of severe infections and caused the death of the patient. The importance of early clinical diagnosis is highlighted along with the importance of multidisciplinary management of neurological disorders and infectious complications. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.
Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas
2017-01-01
The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.
Madan, Juliette C
2016-04-01
The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF. Copyright © 2016. Published by Elsevier Inc.
Defining dysbiosis and its influence on host immunity and disease
Petersen, Charisse; Round, June L
2014-01-01
Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal–host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases. PMID:24798552
Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar
2018-01-01
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies. PMID:29375564
Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar
2017-01-01
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi , the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
'Bioengineered Bugs' - a patho-biotechnology approach to probiotic research and applications.
Sleator, Roy D; Hill, Colin
2008-01-01
Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and modulate essential host systems. The 'Patho-biotechnology' concept promotes the exploitation of these valuable traits for the design of more technologically robust and effective probiotic cultures with potentially improved biotechnological and clinical applications, as well as the development of novel vaccine and drug delivery platforms.
Jacobs, Sophie; Zechmann, Bernd; Molitor, Alexandra; Trujillo, Marco; Petutschnig, Elena; Lipka, Volker; Kogel, Karl-Heinz; Schäfer, Patrick
2011-01-01
Piriformospora indica is a root-colonizing basidiomycete that confers a wide range of beneficial traits to its host. The fungus shows a biotrophic growth phase in Arabidopsis (Arabidopsis thaliana) roots followed by a cell death-associated colonization phase, a colonization strategy that, to our knowledge, has not yet been reported for this plant. P. indica has evolved an extraordinary capacity for plant root colonization. Its broad host spectrum encompasses gymnosperms and monocotyledonous as well as dicotyledonous angiosperms, which suggests that it has an effective mechanism(s) for bypassing or suppressing host immunity. The results of our work argue that P. indica is confronted with a functional root immune system. Moreover, the fungus does not evade detection but rather suppresses immunity triggered by various microbe-associated molecular patterns. This ability to suppress host immunity is compromised in the jasmonate mutants jasmonate insensitive1-1 and jasmonate resistant1-1. A quintuple-DELLA mutant displaying constitutive gibberellin (GA) responses and the GA biosynthesis mutant ga1-6 (for GA requiring 1) showed higher and lower degrees of colonization, respectively, in the cell death-associated stage, suggesting that P. indica recruits GA signaling to help establish proapoptotic root cell colonization. Our study demonstrates that mutualists, like pathogens, are confronted with an effective innate immune system in roots and that colonization success essentially depends on the evolution of strategies for immunosuppression. PMID:21474434
Agent-based modeling of the immune system: NetLogo, a promising framework.
Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco
2014-01-01
Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.
Within-host co-evolution of chronic viruses and the adaptive immune system
NASA Astrophysics Data System (ADS)
Nourmohammad, Armita
We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.
Classification of current anticancer immunotherapies
Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping
2014-01-01
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519
Cytomegalovirus immune evasion by perturbation of endosomal trafficking
Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja
2015-01-01
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms. PMID:25263490
Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses.
Hastie, Kathryn M; Bale, Shridhar; Kimberlin, Christopher R; Saphire, Erica Ollmann
2012-04-01
The innate immune system is one of the first lines of defense against invading pathogens. Pathogens have, in turn, evolved different strategies to counteract these responses. Recent studies have illuminated how the hemorrhagic fever viruses Ebola and Lassa fever prevent host sensing of double-stranded RNA (dsRNA), a key hallmark of viral infection. The ebolavirus protein VP35 adopts a unique bimodal configuration to mask key cellular recognition sites on dsRNA. Conversely, the Lassa fever virus nucleoprotein actually digests the dsRNA signature. Collectively, these structural and functional studies shed new light on the mechanisms of pathogenesis of these viruses and provide new targets for therapeutic intervention. Copyright © 2012. Published by Elsevier B.V.
A depauperate immune repertoire precedes evolution of sociality in bees
USDA-ARS?s Scientific Manuscript database
Sociality has many rewards, but it can also be dangerous, as high population density and low genetic diversity, common in many social insects, is ideal for parasite transmission. Social insects may therefore be expected to have evolved a specialised immune arsenal to guard against this threat. Surpr...
Parham, Peter; Moffett, Ashley
2013-02-01
Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.
A tale of three bio-inspired computational approaches
NASA Astrophysics Data System (ADS)
Schaffer, J. David
2014-05-01
I will provide a high level walk-through for three computational approaches derived from Nature. First, evolutionary computation implements what we may call the "mother of all adaptive processes." Some variants on the basic algorithms will be sketched and some lessons I have gleaned from three decades of working with EC will be covered. Then neural networks, computational approaches that have long been studied as possible ways to make "thinking machines", an old dream of man's, and based upon the only known existing example of intelligence. Then, a little overview of attempts to combine these two approaches that some hope will allow us to evolve machines we could never hand-craft. Finally, I will touch on artificial immune systems, Nature's highly sophisticated defense mechanism, that has emerged in two major stages, the innate and the adaptive immune systems. This technology is finding applications in the cyber security world.
Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M
2007-07-27
Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.
Is lipid signaling through cannabinoid 2 receptors part of a protective system?
Pacher, P.; Mechoulam, R.
2011-01-01
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB2) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB2 receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, auto-immune, lung disorders to pain and cancer, and modulating CB2 receptor activity holds tremendous therapeutic potential in these pathologies. While CB2 receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB2 receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB2 receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects. PMID:21295074
One microenvironment does not fit all: heterogeneity beyond cancer cells.
Kim, Ik Sun; Zhang, Xiang H-F
2016-12-01
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Bailey, Paul C; Schudoma, Christian; Jackson, William; Baggs, Erin; Dagdas, Gulay; Haerty, Wilfried; Moscou, Matthew; Krasileva, Ksenia V
2018-02-19
The plant immune system is innate and encoded in the germline. Using it efficiently, plants are capable of recognizing a diverse range of rapidly evolving pathogens. A recently described phenomenon shows that plant immune receptors are able to recognize pathogen effectors through the acquisition of exogenous protein domains from other plant genes. We show that plant immune receptors with integrated domains are distributed unevenly across their phylogeny in grasses. Using phylogenetic analysis, we uncover a major integration clade, whose members underwent repeated independent integration events producing diverse fusions. This clade is ancestral in grasses with members often found on syntenic chromosomes. Analyses of these fusion events reveals that homologous receptors can be fused to diverse domains. Furthermore, we discover a 43 amino acid long motif associated with this dominant integration clade which is located immediately upstream of the fusion site. Sequence analysis reveals that DNA transposition and/or ectopic recombination are the most likely mechanisms of formation for nucleotide binding leucine rich repeat proteins with integrated domains. The identification of this subclass of plant immune receptors that is naturally adapted to new domain integration will inform biotechnological approaches for generating synthetic receptors with novel pathogen "baits."
Immune cell functions in pancreatic cancer.
Plate, J M; Harris, J E
2000-01-01
Pancreatic cancer kills nearly 29,000 people in the United States annually-as many people as are diagnosed with the disease. Chemotherapeutic treatment is ineffective in halting progression of the disease. Yet, specific immunity to pancreatic tumor cells in subjects with pancreatic cancer has been demonstrated repeatedly during the last 24 years. Attempts to expand and enhance tumor-specific immunity with biotherapy, however, have not met with success. The question remains, "Why can't specific immunity regulate pancreatic cancer growth?" The idea that tumor cells have evolved protective mechanisms against immunity was raised years ago and has recently been revisited by a number of research laboratories. In pancreatic cancer, soluble factors produced by and for the protection of the tumor environment have been detected and are often distributed to the victim's circulatory system where they may effect a more generalized immunosuppression. Yet the nature of these soluble factors remains controversial, since some also serve as tumor antigens that are recognized by the same T cells that may become inactivated by them. Unless the problem of tumor-derived immunosuppressive products is addressed directly through basic and translational research studies, successful biotherapeutic treatment for pancreatic cancer may not be forthcoming.
Self/nonself perception in plants in innate immunity and defense
Sanabria, Natasha M; Huang, Ju-Chi
2010-01-01
The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176
McGonigle, John E; Leitão, Alexandre B; Ommeslag, Sarah; Smith, Sophie; Day, Jonathan P; Jiggins, Francis M
2017-10-01
A priority for biomedical research is to understand the causes of variation in susceptibility to infection. To investigate genetic variation in a model system, we used flies collected from single populations of three different species of Drosophila and artificially selected them for resistance to the parasitoid wasp Leptopilina boulardi, and found that survival rates increased 3 to 30 fold within 6 generations. Resistance in all three species involves a large increase in the number of the circulating hemocytes that kill parasitoids. However, the different species achieve this in different ways, with D. melanogaster moving sessile hemocytes into circulation while the other species simply produce more cells. Therefore, the convergent evolution of the immune phenotype has different developmental bases. These changes are costly, as resistant populations of all three species had greatly reduced larval survival. In all three species resistance is only costly when food is in short supply, and resistance was rapidly lost from D. melanogaster populations when food is restricted. Furthermore, evolving resistance to L. boulardi resulted in cross-resistance against other parasitoids. Therefore, whether a population evolves resistance will depend on ecological conditions including food availability and the presence of different parasite species.
Ommeslag, Sarah; Smith, Sophie; Day, Jonathan P.
2017-01-01
A priority for biomedical research is to understand the causes of variation in susceptibility to infection. To investigate genetic variation in a model system, we used flies collected from single populations of three different species of Drosophila and artificially selected them for resistance to the parasitoid wasp Leptopilina boulardi, and found that survival rates increased 3 to 30 fold within 6 generations. Resistance in all three species involves a large increase in the number of the circulating hemocytes that kill parasitoids. However, the different species achieve this in different ways, with D. melanogaster moving sessile hemocytes into circulation while the other species simply produce more cells. Therefore, the convergent evolution of the immune phenotype has different developmental bases. These changes are costly, as resistant populations of all three species had greatly reduced larval survival. In all three species resistance is only costly when food is in short supply, and resistance was rapidly lost from D. melanogaster populations when food is restricted. Furthermore, evolving resistance to L. boulardi resulted in cross-resistance against other parasitoids. Therefore, whether a population evolves resistance will depend on ecological conditions including food availability and the presence of different parasite species. PMID:29049362
Contribution of autophagy to antiviral immunity.
Rey-Jurado, Emma; Riedel, Claudia A; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M
2015-11-14
Although identified in the 1960's, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a "self-eating" process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders. Furthermore, novel findings suggest that autophagy contributes to the host defense against microbial infections. In this article, we review the role of macroautophagy in antiviral immune responses and discuss molecular mechanisms evolved by viral pathogens to evade this process. A role for autophagy as an effector mechanism used both, by innate and adaptive immunity is also discussed. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
The Major Histocompatibility Complex in Bovines: A Review
Behl, Jyotsna Dhingra; Verma, N. K.; Tyagi, Neha; Mishra, Priyanka; Behl, Rahul; Joshi, B. K.
2012-01-01
Productivity in dairy cattle and buffaloes depends on the genetic factors governing the production of milk and milk constituents as well as genetic factors controlling disease resistance or susceptibility. The immune system is the adaptive defense system that has evolved in vertebrates to protect them from invading pathogens and also carcinomas. It is remarkable in the sense that it is able to generate an enormous variety of cells and biomolecules which interact with each other in numerous ways to form a complex network that helps to recognize, counteract, and eliminate the apparently limitless number of foreign invading pathogens/molecules. The major histocompatibility complex which is found to occur in all mammalian species plays a central role in the development of the immune system. It is an important candidate gene involved in susceptibility/resistance to various diseases. It is associated with intercellular recognition and with self/nonself discrimination. It plays major role in determining whether transplanted tissue will be accepted as self or rejected as foreign. PMID:23738132
HIV life cycle, innate immunity and autophagy in the central nervous system.
Meulendyke, Kelly A; Croteau, Joshua D; Zink, M Christine
2014-11-01
In this era of modern combination antiretroviral therapy (cART) HIV-associated neurocognitive disorders (HAND) continue to affect a large portion of the infected population. In this review, we highlight recent discoveries that help to define the interplay between HIV life cycle, the innate immune system and cellular autophagy in the context of the central nervous system (CNS). Investigators have recently elucidated themes in HAND, which place it in a unique framework. Cells of macrophage lineage and probably astrocytes play a role in disseminating virus through the CNS. Each of these cell types responds to a diverse population of constantly evolving virus existing in an inflammatory environment. This occurs though the failure of both host antiviral mechanisms, such as autophagy, and innate immunological signalling pathways to control viral replication. The newest findings detailed in this review help define why HIV CNS disease is a difficult target for therapeutics and create hope that these new mechanisms may be exploited to attenuate viral replication and eliminate disease.
Structure of the transporter associated with antigen processing trapped by herpes simplex virus
Oldham, Michael L; Grigorieff, Nikolaus; Chen, Jue
2016-01-01
The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI: http://dx.doi.org/10.7554/eLife.21829.001 PMID:27935481
Establishment of Chronic Infection: Brucella's Stealth Strategy
Ahmed, Waqas; Zheng, Ke; Liu, Zheng-Fei
2016-01-01
Brucella is a facultative intracellular pathogen that causes zoonotic infection known as brucellosis which results in abortion and infertility in natural host. Humans, especially in low income countries, can acquire infection by direct contact with infected animal or by consumption of animal products and show high morbidity, severe economic losses and public health problems. However for survival, host cells develop complex immune mechanisms to defeat and battle against attacking pathogens and maintain a balance between host resistance and Brucella virulence. On the other hand as a successful intracellular pathogen, Brucella has evolved multiple strategies to evade immune response mechanisms to establish persistent infection and replication within host. In this review, we mainly summarize the “Stealth” strategies employed by Brucella to modulate innate and the adaptive immune systems, autophagy, apoptosis and possible role of small noncoding RNA in the establishment of chronic infection. The purpose of this review is to give an overview for recent understanding how this pathogen evades immune response mechanisms of host, which will facilitate to understanding the pathogenesis of brucellosis and the development of novel, more effective therapeutic approaches to treat brucellosis. PMID:27014640
Da Silva, Diane M; Movius, Carly A; Raff, Adam B; Brand, Heike E; Skeate, Joseph G; Wong, Michael K; Kast, W Martin
2014-03-01
Human papillomavirus (HPV) has evolved mechanisms that allow it to evade the human immune system. Studies have shown HPV-mediated suppression of activation of Langerhans cells (LC) is a key mechanism through which HPV16 evades initial immune surveillance. However, it has not been established whether high- and low-risk mucosal and cutaneous HPV genotypes share a common mechanism of immune suppression. Here, we demonstrate that LC exposed to capsids of HPV types 18, 31, 45, 11, (alpha-papillomaviruses) and HPV5 (beta-papillomavirus) similarly suppress LC activation, including lack of costimulatory molecule expression, lack of cytokine and chemokine secretion, lack of migration, and deregulated cellular signaling. In contrast, HPV1 (mu-papillomavirus) induced costimulatory molecule and cytokine upregulation, but LC migration and cellular signaling was suppressed. These results suggest that alpha and beta HPV genotypes, and partially a mu genotype, share a conserved mechanism of immune escape that enables these viruses to remain undetected in the absence of other inflammatory events. Copyright © 2014 Elsevier Inc. All rights reserved.
Richter, Corinna; Chang, James T; Fineran, Peter C
2012-10-19
Phages are the most abundant biological entities on earth and pose a constant challenge to their bacterial hosts. Thus, bacteria have evolved numerous 'innate' mechanisms of defense against phage, such as abortive infection or restriction/modification systems. In contrast, the clustered regularly interspaced short palindromic repeats (CRISPR) systems provide acquired, yet heritable, sequence-specific 'adaptive' immunity against phage and other horizontally-acquired elements, such as plasmids. Resistance is acquired following viral infection or plasmid uptake when a short sequence of the foreign genome is added to the CRISPR array. CRISPRs are then transcribed and processed, generally by CRISPR associated (Cas) proteins, into short interfering RNAs (crRNAs), which form part of a ribonucleoprotein complex. This complex guides the crRNA to the complementary invading nucleic acid and targets this for degradation. Recently, there have been rapid advances in our understanding of CRISPR/Cas systems. In this review, we will present the current model(s) of the molecular events involved in both the acquisition of immunity and interference stages and will also address recent progress in our knowledge of the regulation of CRISPR/Cas systems.
Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives
Cooper, Dustin; Eleftherianos, Ioannis
2016-01-01
More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites. PMID:27649248
Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives.
Cooper, Dustin; Eleftherianos, Ioannis
2016-09-14
More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites.
Lucas, Alexandra; Liu, Liying; Dai, Erbin; Bot, Ilze; Viswanathan, Kasinath; Munuswamy-Ramunujam, Ganesh; Davids, Jennifer A; Bartee, Mee Y; Richardson, Jakob; Christov, Alexander; Wang, Hao; Macaulay, Colin; Poznansky, Mark; Zhong, Robert; Miller, Leslie; Biessen, Erik; Richardson, Mary; Sullivan, Collin; Moyer, Richard; Hatton, Mark; Lomas, David A; McFadden, Grant
2009-01-01
Serine proteinase inhibitors, also called serpins, are an ancient grouping of proteins found in primitive organisms from bacteria, protozoa and horseshoe crabs and thus likely present at the time of the dinosaurs, up to all mammals living today. The innate or inflammatory immune system is also an ancient metazoan regulatory system, providing the first line of defense against infection or injury. The innate inflammatory defense response evolved long before acquired, antibody dependent immunity. Viruses have developed highly effective stratagems that undermine and block a wide variety of host inflammatory and immune responses. Some of the most potent of these immune modifying strategies utilize serpins that have also been developed over millions of years, including the hijacking by some viruses for defense against host immune attacks. Serpins represent up to 2-10 percent of circulating plasma proteins, regulating actions as wide ranging as thrombosis, inflammation, blood pressure control and even hormone transport. Targeting serpin-regulated immune or inflammatory pathways makes evolutionary sense for viral defense and many of these virus-derived inhibitory proteins have proven to be highly effective, working at very low concentrations--even down to the femptomolar to picomolar range. We are studying these viral anti-inflammatory proteins as a new class of immunomodulatory therapeutic agents derived from their native viral source. One such viral serpin, Serp-1 is now in clinical trial (conducted by VIRON Therapeutics, Inc.) for acute unstable coronary syndromes (unstable angina and small heart attacks), representing a 'first in class' therapeutic study. Several other viral serpins are also currently under investigation as anti-inflammatory or anti-immune therapeutics. This chapter describes these original studies and the ongoing analysis of viral serpins as a new class of virus-derived immunotherapeutic.
Quantitative genetics of immunity and life history under different photoperiods.
Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J
2012-05-01
Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.
The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.
Griffin, Diane E
2016-10-12
Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10-14 days. The first appearance of the disease is a 2-3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4⁺ and CD8⁺ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.
Weil, Robert; Laplantine, Emmanuel; Génin, Pierre
2016-06-01
The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
The targeting of plant cellular systems by injected type III effector proteins.
Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell
2009-12-01
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.
Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?
Sumner, Rebecca P.; Thorne, Lucy G.; Fink, Doug L.; Khan, Hataf; Milne, Richard S.; Towers, Greg J.
2017-01-01
HIV-1 is the single most important sexually transmitted disease in humans from a global health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved pandemic levels of human-to-human transmission. The requirement to transmit between hosts likely provides the strongest selective forces on a virus, as without transmission, there can be no new infections within a host population. Our perspective is that evolution of all of the virus–host interactions, which are inherited and perpetuated from host-to-host, must be consistent with transmission. For example, CXCR4 use, which often evolves late in infection, does not favor transmission and is therefore lost when a virus transmits to a new host. Thus, transmission inevitably influences all aspects of virus biology, including interactions with the innate immune system, and dictates the biological niche in which the virus exists in the host. A viable viral niche typically does not select features that disfavor transmission. The innate immune response represents a significant selective pressure during the transmission process. In fact, all viruses must antagonize and/or evade the mechanisms of the host innate and adaptive immune systems that they encounter. We believe that viewing host–virus interactions from a transmission perspective helps us understand the mechanistic details of antiviral immunity and viral escape. This is particularly true for the innate immune system, which typically acts from the very earliest stages of the host–virus interaction, and must be bypassed to achieve successful infection. With this in mind, here we review the innate sensing of HIV, the consequent downstream signaling cascades and the viral restriction that results. The centrality of these mechanisms to host defense is illustrated by the array of countermeasures that HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We consider evasion strategies in detail, in particular the role of the HIV capsid and the viral accessory proteins highlighting important unanswered questions and discussing future perspectives. PMID:29056936
Rubin, Erica J; Trent, M Stephen
2013-01-01
Helicobacter pylori is an adapted gastric pathogen that colonizes the human stomach, causing severe gastritis and gastric cancer. A hallmark of infection is the ability of this organism to evade detection by the human immune system. H. pylori has evolved a number of features to achieve this, many of which involve glyco-conjugates including the lipopolysaccharide, peptidoglycan layer, glycoproteins, and glucosylated cholesterol. These major bacterial components possess unique features from those of other gram-negative organisms, including differences in structure, assembly, and modification. These defining characteristics of H. pylori glycobiology help the pathogen establish a long-lived infection by providing camouflage, modulating the host immune response, and promoting virulence mechanisms. In this way, glyco-conjugates are essential for H. pylori pathogenicity and survival, allowing it to carve out a niche in the formidable environment of the human stomach. PMID:23859890
An artificial bioindicator system for network intrusion detection.
Blum, Christian; Lozano, José A; Davidson, Pedro Pinacho
An artificial bioindicator system is developed in order to solve a network intrusion detection problem. The system, inspired by an ecological approach to biological immune systems, evolves a population of agents that learn to survive in their environment. An adaptation process allows the transformation of the agent population into a bioindicator that is capable of reacting to system anomalies. Two characteristics stand out in our proposal. On the one hand, it is able to discover new, previously unseen attacks, and on the other hand, contrary to most of the existing systems for network intrusion detection, it does not need any previous training. We experimentally compare our proposal with three state-of-the-art algorithms and show that it outperforms the competing approaches on widely used benchmark data.
Evolving adoptive cellular therapies in urological malignancies.
Wong, Yien Ning Sophia; Joshi, Kroopa; Pule, Martin; Peggs, Karl S; Swanton, Charles; Quezada, Sergio A; Linch, Mark
2017-06-01
Immunotherapies have long been used to treat urological cancers but rarely lead to cure. In the past 5 years, success of immune checkpoint inhibition has led to a resurgence of enthusiasm for immunotherapy in the treatment of solid tumours. Increased understanding of tumour immune biology, technological advancements of gene transfer and cell culture, and improved clinical infrastructures for routine delivery of cell products, has made cell-based immunotherapeutics a real prospect for cancer therapy. These scientific and clinical activities, attempting to exploit the innate and adaptive immune systems for therapeutic gain, are well exemplified by the urological malignancies of renal, bladder, prostate, and penile cancer, a group of anatomically localised diseases, each with a distinct biology and different immunotherapeutic challenges. In this Review, we present the results of clinical studies investigating autologous cellular therapies in urological malignancies. Specifically, we discuss the rationale for upcoming studies, and how novel therapies and adoptive cell combinations can be used for personalised cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chan Soeung, Sann; Grundy, John; Duncan, Richard; Thor, Rasoka; Bilous, Julian B
2013-08-01
BACKGROUND An international review of the Cambodian Expanded Programme on Immunization (EPI) in 2010 and other data show that despite immunization coverage increases and vaccine preventable diseases incidence reductions, inequities in access to immunization services exist. Utilizing immunization and health systems literature, analysis of global health databases and the EPI review findings, this paper examines the characteristics of immunization access and outcome inequities, and describes proposed longer-term strategic and operational responses to these problems. Findings The national programme has evolved from earlier central and provincial level planning to strengthening routine immunization coverage through the District level 'Reaching Every District Strategy'. However, despite remarkable improvements, the review found over 20% of children surveyed were not fully immunized, primarily from communities where inequities of both access and impact persist. These inequities relate mainly to socio-economic exposures including wealth and education level, population mobility and ethnicity. To address these problems, a shift in strategic and operational response is proposed that will include (a) a re-focus of planning on facility level to detect disadvantaged communities, (b) establishment of monitoring systems to provide detailed information on community access and utilization, (c) development of communication strategies and health networks that enable providers to adjust service delivery according to the needs of vulnerable populations, and (d) securing financial, management and political commitment for 'reaching every community'. CONCLUSIONS For Cambodia to achieve its immunization equity objectives and disease reduction goals, a shift of emphasis to health centre and community is needed. This approach will maximize the benefits of new vaccine introduction in the coming 'Decade of Vaccines', plus potentially extend the reach of other life-saving maternal and child health interventions to the socially disadvantaged, both in Cambodia and in other countries with a similar level of development.
B lymphocyte lineage cells and the respiratory system
Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.
2013-01-01
Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615
Post-translational regulation of plant immunity.
Withers, John; Dong, Xinnian
2017-08-01
Plants have evolved multi-layered molecular defense strategies to protect against pathogens. Plant immune signaling largely relies on post-translational modifications (PTMs) to induce rapid alterations of signaling pathways to achieve a response that is appropriate to the type of pathogen and infection pressure. In host cells, dynamic PTMs have emerged as powerful regulatory mechanisms that cells use to adjust their immune response. PTM is also a virulence strategy used by pathogens to subvert host immunity through the activities of effector proteins secreted into the host cell. Recent studies focusing on deciphering post-translational mechanisms underlying plant immunity have offered an in-depth view of how PTMs facilitate efficient immune responses and have provided a more dynamic and holistic view of plant immunity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
What helminth genomes have taught us about parasite evolution.
Zarowiecki, Magdalena; Berriman, Matt
2015-02-01
The genomes of more than 20 helminths have now been sequenced. Here we perform a meta-analysis of all sequenced genomes of nematodes and Platyhelminthes, and attempt to address the question of what are the defining characteristics of helminth genomes. We find that parasitic worms lack systems for surface antigenic variation, instead maintaining infections using their surfaces as the first line of defence against the host immune system, with several expanded gene families of genes associated with the surface and tegument. Parasite excretory/secretory products evolve rapidly, and proteases even more so, with each parasite exhibiting unique modifications of its protease repertoire. Endoparasitic flatworms show striking losses of metabolic capabilities, not matched by nematodes. All helminths do however exhibit an overall reduction in auxiliary metabolism (biogenesis of co-factors and vitamins). Overall, the prevailing pattern is that there are few commonalities between the genomes of independently evolved parasitic worms, with each parasite having undergone specific adaptations for their particular niche.
Protein and genome evolution in Mammalian cells for biotechnology applications.
Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J
2009-06-01
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.
Convergent balancing selection on an antimicrobial peptide in Drosophila
Unckless, Robert L.; Howick, Virginia M.; Lazzaro, Brian P.
2015-01-01
Summary Genes of the immune system often evolve rapidly and adaptively, presumably driven by antagonistic interactions with pathogens [1–4]. Those genes encoding secreted antimicrobial peptides (AMPs), however, have failed to exhibit conventional signatures of strong adaptive evolution, especially in arthropods (e.g., [5, 6]) and often segregate for null alleles and gene deletions [3, 4, 7, 8]. Furthermore, quantitative genetic studies have failed to associate naturally occurring polymorphism in AMP genes with variation in resistance to infection [9–11]. Both the lack of signatures of positive selection in AMPs and lack of association between genotype and immune phenotypes have yielded an interpretation that AMP genes evolve under relaxed evolutionary constraint, with enough functional redundancy that variation in, or even loss of, any particular peptide would have little effect on overall resistance [12, 13]. In stark contrast to the current paradigm, we identified a naturally occurring amino acid polymorphism in the antimicrobial peptide, Diptericin, that is highly predictive of resistance to bacterial infection in Drosophila melanogaster [13]. The identical amino acid polymorphism arose in parallel in the sister species D. simulans, by independent mutation with equivalent phenotypic effect. Convergent substitutions to arginine at the same amino acid residue have evolved at least five times across the Drosophila genus. We hypothesize that the alternative alleles are maintained by balancing selection through context-dependent or fluctuating selection. This pattern of evolution appears to be common in antimicrobial peptides, but is invisible to conventional screens for adaptive evolution that are predicated on elevated rates of amino acid divergence. PMID:26776733
The evolution of highly variable immunity genes across a passerine bird radiation.
O'Connor, E A; Strandh, M; Hasselquist, D; Nilsson, J-Å; Westerdahl, H
2016-02-01
To survive, individuals must be able to recognize and eliminate pathogens. The genes of the major histocompatibility complex (MHC) play an essential role in this process in vertebrates as their diversity affects the repertoire of pathogens that can be recognized by the immune system. Emerging evidence suggests that birds within the parvorder Passerida possess an exceptionally high number of MHC genes. However, this has yet to be directly investigated using a consistent framework, and the question of how this MHC diversity has evolved has not been addressed. We used next-generation sequencing to investigate how MHC class I gene copy number and sequence diversity varies across the Passerida radiation using twelve species chosen to represent the phylogenetic range of this group. Additionally, we performed phylogenetic analyses on this data to identify, for the first time, the evolutionary model that best describes how MHC class I gene diversity has evolved within Passerida. We found evidence of multiple MHC class I genes in every family tested, with an extremely broad range in gene copy number across Passerida. There was a strong phylogenetic signal in MHC gene copy number and diversity, and these traits appear to have evolved through a process of Brownian motion in the species studied, that is following the pattern of genetic drift or fluctuating selection, as opposed to towards a single optimal value or through evolutionary 'bursts'. By characterizing MHC class I gene diversity across Passerida in a systematic framework, this study provides a first step towards understanding this huge variation. © 2016 John Wiley & Sons Ltd.
Structure-informed insights for NLR functioning in plant immunity.
Sukarta, Octavina C A; Slootweg, Erik J; Goverse, Aska
2016-08-01
To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diverse mechanisms evolved by DNA viruses to inhibit early host defenses
Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.
2016-01-01
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455
Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection
Ortega-Prieto, Ana Maria; Dorner, Marcus
2017-01-01
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a “stealth” virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses. PMID:28862649
Helminths and the IBD hygiene hypothesis.
Weinstock, Joel V; Elliott, David E
2009-01-01
Helminths are parasitic animals that have evolved over 100,000,000 years to live in the intestinal track or other locations of their hosts. Colonization of humans with these organisms was nearly universal until the early 20th century. More than 1,000,000,000 people in less developed countries carry helminths even today. Helminths must quell their host's immune system to successfully colonize. It is likely that helminths sense hostile changes in the local host environment and take action to control such responses. Inflammatory bowel disease (IBD) probably results from an inappropriately vigorous immune response to contents of the intestinal lumen. Environmental factors strongly affect the risk for IBD. People living in less developed countries are protected from IBD. The "IBD hygiene hypothesis" states that raising children in extremely hygienic environments negatively affects immune development, which predisposes them to immunological diseases like IBD later in life. Modern day absence of exposure to intestinal helminths appears to be an important environmental factor contributing to development of these illnesses. Helminths interact with both host innate and adoptive immunity to stimulate immune regulatory circuitry and to dampen effector pathways that drive aberrant inflammation. The first prototype worm therapies directed against immunological diseases are now under study in the United States and various countries around the world. Additional studies are in the advanced planning stage.
Cancer Clonal Theory, Immune Escape, and Their Evolving Roles in Cancer Multi-Agent Therapeutics.
Messerschmidt, Jonathan L; Bhattacharya, Prianka; Messerschmidt, Gerald L
2017-08-12
The knowledge base of malignant cell growth and resulting targets is rapidly increasing every day. Clonal theory is essential to understand the changes required for a cell to become malignant. These changes are then clues to therapeutic intervention strategies. Immune system optimization is a critical piece to find, recognize, and eliminate all cancer cells from the host. Only by administering (1) multiple therapies that counteract the cancer cell's mutational and externally induced survival traits and (2) by augmenting the immune system to combat immune suppression processes and by enhancing specific tumor trait recognition can cancer begin to be treated with a truly targeted focus. Since the sequencing of the human genome during the 1990s, steady progress in understanding genetic alterations and gene product functions are being unraveled. In cancer, this is proceeding very fast and demonstrates that genetic mutations occur very rapidly to allow for selection of survival traits within various cancer clones. Hundreds of mutations have been identified in single individual cancers, but spread across many clones in the patient's body. Precision oncology will require accurate measurement of these cancer survival-benefiting mutations to develop strategies for effective therapy. Inhibiting these cellular mechanisms is a first step, but these malignant cells need to be eliminated by the host's mechanisms, which we are learning to direct more specifically. Cancer is one of the most complicated cellular aberrations humans have encountered. Rapidly developing significant survival traits require prompt, repeated, and total body measurements of these attributes to effectively develop multi-agent treatment of the individual's malignancy. Focused drug development to inhibit these beneficial mutations is critical to slowing cancer cell growth and, perhaps, triggering apoptosis. In many cases, activation and targeting of the immune system to kill the remaining malignant cells is essential to a cure.
Annotation and Classification of CRISPR-Cas Systems
Makarova, Kira S.; Koonin, Eugene V.
2018-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods. PMID:25981466
Annotation and Classification of CRISPR-Cas Systems.
Makarova, Kira S; Koonin, Eugene V
2015-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Burton, Dennis; Kardar, Mehran; Chakraborty, Arup
2014-03-01
The immune system comprises an intricate and evolving collection of cells and molecules that enables a defense against pathogenic agents. Its workings present a rich source of physical problems that impact human health. One intriguing example is the process of affinity maturation (AM) through which an antibody (Ab)--a component of the host immune system--evolves to more efficiently bind an antigen (Ag)--a unique part of a foreign pathogen such as a virus. Sufficiently strong binding to the Ag enables recognition and neutralization. A major challenge is to contain a diversifying mixture of Ag variants, that arise in natural infection, from evading Ab neutralization. This entails a thorough understanding of AM against multiple Ag species and mutating Ag. During AM, Ab-encoding cells undergo cycles of mutation and selection, a process reminiscent of Darwinian evolution yet occurring in real time. We first cast affinity-dependent selection into an extreme value problem and show how the binding characteristics scale with Ag diversity. We then develop an agent-based residue-resolved computational model of AM which allows us to track the evolutionary trajectories of individual cells. This dynamic model not only reveals significant stochastic effects associated with the relatively small and highly dynamic population size, it also uncovers the markedly distinct maturation outcomes if designed Ag variants are presented in different temporal procedures. Insights thus obtained would guide rational design of vaccination protocols.
Cellular Innate Immunity: An Old Game with New Players.
Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik
2017-01-01
Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.
Evolution of rational vaccine designs for genital herpes immunotherapy.
Kaufmann, Johanna Katharina; Flechtner, Jessica Baker
2016-04-01
Immunotherapeutic vaccines have emerged as a novel treatment modality for genital herpes, a sexually transmitted disease mainly caused by herpes simplex virus type 2. The approaches to identify potential vaccine antigens have evolved from classic virus attenuation and characterization of antibody and T cell responses in exposed, but seronegative individuals, to systematic screens for novel T cell antigens. Combined with implementation of novel vaccine concepts revolving around immune evasion and local recruitment of immune effectors, the development of a safe and effective therapeutic vaccine is within reach. Here, we describe the vaccine approaches that currently show promise at clinical and pre-clinical stages and link them to the evolving scientific strategies that led to their identification. Copyright © 2016 Elsevier B.V. All rights reserved.
Photodynamic therapy for cancer and activation of immune response
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.
2010-02-01
Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.
Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf
2015-12-14
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.
Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin
2013-01-01
Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.
Dobson, Adam J; Purves, Joanne; Rolff, Jens
2014-01-01
Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of ‘arming the enemy’: bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the ‘arming the enemy’ hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts. PMID:25469169
Several immune escape patterns in non-Hodgkin's lymphomas
Laurent, Camille; Charmpi, Konstantina; Gravelle, Pauline; Tosolini, Marie; Franchet, Camille; Ysebaert, Loïc; Brousset, Pierre; Bidaut, Alexandre; Ycart, Bernard; Fournié, Jean-Jacques
2015-01-01
Follicular Lymphomas (FL) and diffuse large B cell lymphomas (DLBCL) must evolve some immune escape strategy to develop from lymphoid organs, but their immune evasion pathways remain poorly characterized. We investigated this issue by transcriptome data mining and immunohistochemistry (IHC) of FL and DLBCL lymphoma biopsies. A set of genes involved in cancer immune-evasion pathways (Immune Escape Gene Set, IEGS) was defined and the distribution of the expression levels of these genes was compared in FL, DLBCL and normal B cell transcriptomes downloaded from the GEO database. The whole IEGS was significantly upregulated in all the lymphoma samples but not in B cells or other control tissues, as shown by the overexpression of the PD-1, PD-L1, PD-L2 and LAG3 genes. Tissue microarray immunostainings for PD-1, PD-L1, PD-L2 and LAG3 proteins on additional biopsies from 27 FL and 27 DLBCL patients confirmed the expression of these proteins. The immune infiltrates were more abundant in FL than DLBCL samples, and the microenvironment of FL comprised higher rates of PD-1+ lymphocytes. Further, DLBCL tumor cells comprised a higher proportion of PD-1+, PD-L1+, PD-L2+ and LAG3+ lymphoma cells than the FL tumor cells, confirming that DLBCL mount immune escape strategies distinct from FL. In addition, some cases of DLBCL had tumor cells co-expressing both PD-1, PD-L1 and PD-L2. Among the DLBCLs, the activated B cell (ABC) subtype comprised more PD-L1+ and PD-L2+ lymphoma cells than the GC subtype. Thus, we infer that FL and DLBCL evolved several pathways of immune escape. PMID:26405585
Liu, Jun; Elmore, James Mitch; Lin, Zuh-Jyh Daniel; Coaker, Gitta
2011-02-17
Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity. Copyright © 2011 Elsevier Inc. All rights reserved.
Rajamani, Sripriya; Roche, Erin; Soderberg, Karen; Bieringer, Aaron
2014-01-01
Background: Immunization information systems (IIS) operate in an evolving health care landscape with technology changes driven by initiatives such as the Centers for Medicare and Medicaid Services EHR incentive program, promoting adoption and use of electronic health record (EHR) systems, including standards-based public health reporting. There is flux in organizational affiliations to support models such as accountable care organizations (ACO). These impact institutional structure of how reporting of immunizations occurs and the methods adopted. Objectives: To evaluate the technical and organizational characteristics of healthcare provider reporting of immunizations to public health in Minnesota and to assess the adoption of standardized codes, formats and transport. Methods: Data on organizations and reporting status was obtained from Minnesota IIS (Minnesota Immunization Information Connection: MIIC) by collating information from existing lists, specialized queries and review of annual reports. EHR adoption data of clinics was obtained in collaboration with informatics office supporting the Minnesota e-Health Initiative. These data from various sources were merged, checked for quality to create a current state assessment of immunization reporting and results validated with subject matter experts. Results: Standards-based reporting of immunizations to MIIC increased to 708 sites over the last 3 years. A growth in automated real-time reporting occurred in 2013 with 143 new sites adopting the method. Though the uptake of message standards (HL7) has increased, the adoption of current version of HL7 and web services transport remains low. The EHR landscape is dominated by a single vendor (used by 40% of clinics) in the state. There is trend towards centralized reporting of immunizations with an organizational unit reporting for many sites ranging from 4 to 140 sites. Conclusion: High EHR adoption in Minnesota, predominance of a vendor in the market, and centralized reporting models present opportunities for better interoperability and also adaptation of strategies to fit this landscape. It is essential for IIS managers to have a good understanding of their constituent landscape for technical assistance and program planning purposes. PMID:25598866
The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation.
Bardhan, Kankana; Anagnostou, Theodora; Boussiotis, Vassiliki A
2016-01-01
The immune system maintains a critically organized network to defend against foreign particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors and play an important regulatory role to orchestrate the immune signals. Although central tolerance mechanism results in the removal of the most of the autoreactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and pose a threat to cause autoimmunity. The immune system evolved various mechanisms to constrain such autoreactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (T Regs ). These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role in the induction and maintenance of peripheral tolerance and for the maintenance of the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, and their consequences on the function of T effector cells.
The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation
Bardhan, Kankana; Anagnostou, Theodora; Boussiotis, Vassiliki A.
2016-01-01
The immune system maintains a critically organized network to defend against foreign particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors and play an important regulatory role to orchestrate the immune signals. Although central tolerance mechanism results in the removal of the most of the autoreactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and pose a threat to cause autoimmunity. The immune system evolved various mechanisms to constrain such autoreactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (TRegs). These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role in the induction and maintenance of peripheral tolerance and for the maintenance of the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, and their consequences on the function of T effector cells. PMID:28018338
McNamara, K B; Simmons, L W
2017-09-01
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Richter, Corinna; Chang, James T.; Fineran, Peter C.
2012-01-01
Phages are the most abundant biological entities on earth and pose a constant challenge to their bacterial hosts. Thus, bacteria have evolved numerous ‘innate’ mechanisms of defense against phage, such as abortive infection or restriction/modification systems. In contrast, the clustered regularly interspaced short palindromic repeats (CRISPR) systems provide acquired, yet heritable, sequence-specific ‘adaptive’ immunity against phage and other horizontally-acquired elements, such as plasmids. Resistance is acquired following viral infection or plasmid uptake when a short sequence of the foreign genome is added to the CRISPR array. CRISPRs are then transcribed and processed, generally by CRISPR associated (Cas) proteins, into short interfering RNAs (crRNAs), which form part of a ribonucleoprotein complex. This complex guides the crRNA to the complementary invading nucleic acid and targets this for degradation. Recently, there have been rapid advances in our understanding of CRISPR/Cas systems. In this review, we will present the current model(s) of the molecular events involved in both the acquisition of immunity and interference stages and will also address recent progress in our knowledge of the regulation of CRISPR/Cas systems. PMID:23202464
Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins.
Zhu, Yuwei; Zhang, Fan; Huang, Zhiwei
2018-03-19
A molecular arms race is progressively being unveiled between prokaryotes and viruses. Prokaryotes utilize CRISPR-mediated adaptive immune systems to kill the invading phages and mobile genetic elements, and in turn, the viruses evolve diverse anti-CRISPR proteins to fight back. The structures of several anti-CRISPR proteins have now been reported, and here we discuss their structural features, with a particular emphasis on topology, to discover their similarities and differences. We summarize the CRISPR-Cas inhibition mechanisms of these anti-CRISPR proteins in their structural context. Considering anti-CRISPRs in this way will provide important clues for studying their origin and evolution.
Immunoisolation to prevent tissue graft rejection: Current knowledge and future use
David, Anu; Day, James
2016-01-01
This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and discuss how this approach can be applied in reproductive biology. PMID:27188513
Patho-biotechnology; using bad bugs to make good bugs better.
Sleator, Roy D; Hill, Colin
2007-01-01
Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology and biomedicine. This approach shows promise for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications as well as the development of novel vaccine and drug delivery platforms.
Plant immunity triggered by microbial molecular signatures.
Zhang, Jie; Zhou, Jian-Min
2010-09-01
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resulting in diminished plant defenses and increased bacterial virulence. Some of the proteins targeted by pathogen effectors have evolved to sense the effector activity by associating with cytoplasmic immune receptors classically known as resistance proteins. This allows plants to activate a second layer of immunity termed effector-triggered immunity (ETI). Recent studies on PTI regulation and P. syringae effector targets have uncovered new components in PTI signaling. Although MAP kinase (MAPK) cascades have been considered crucial for PTI, emerging evidence indicates that a MAPK-independent pathway also plays an important role in PTI signaling.
Kuss-Duerkop, Sharon K.; Westrich, Joseph A.
2018-01-01
Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers. PMID:29438328
Management of immune thrombocytopenia: Korean experts recommendation in 2017.
Jang, Jun Ho; Kim, Ji Yoon; Mun, Yeung-Chul; Bang, Soo-Mee; Lim, Yeon Jung; Shin, Dong-Yeop; Choi, Young Bae; Yhim, Ho-Young; Lee, Jong Wook; Kook, Hoon
2017-12-01
Management options for patients with immune thrombocytopenia (ITP) have evolved substantially over the past decades. The American Society of Hematology published a treatment guideline for clinicians referring to the management of ITP in 2011. This evidence-based practice guideline for ITP enables the appropriate treatment of a larger proportion of patients and the maintenance of normal platelet counts. Korean authority operates a unified mandatory national health insurance system. Even though we have a uniform standard guideline enforced by insurance reimbursement, there are several unsolved issues in real practice in ITP treatment. To optimize the management of Korean ITP patients, the Korean Society of Hematology Aplastic Anemia Working Party (KSHAAWP) reviewed the consensus and the Korean data on the clinical practices of ITP therapy. Here, we report a Korean expert recommendation guide for the management of ITP.
Minimalist Antibodies and Mimetics: An Update and Recent Applications.
Bruce, Virginia J; Ta, Angeline N; McNaughton, Brian R
2016-10-17
The immune system utilizes antibodies to recognize foreign or disease-relevant receptors, initiating an immune response to destroy unwelcomed guests. Because researchers can evolve antibodies to bind virtually any target, it is perhaps unsurprising that these reagents, and their small-molecule conjugates, are used extensively in clinical and basic research environments. However, virtues of antibodies are countered by significant challenges. Foremost among these is the need for expression in mammalian cells (largely due to often necessary post-translational modifications). In response to these challenges, researchers have developed an array of minimalist antibodies and mimetics, which are smaller, more stable, simpler to express in Escherichia coli, and amendable to laboratory evolution and protein engineering. Here we describe these scaffolds and discuss recent applications of minimalist antibodies and mimetics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Head and Neck Carcinoma Immunotherapy: Facts and Hopes.
Whiteside, Theresa L
2018-01-01
Cancer of the head and neck (HNC) is a heterogeneous disease of the upper aerodigestive tract, encompassing distinct histologic types, different anatomic sites, and human papillomavirus (HPV)-positive as well as HPV-negative cancers. Advanced/recurrent HNCs have poor prognosis with low survival rates. Tumor-mediated inhibition of antitumor immune responses and a high mutational burden are common features of HNCs. Both are responsible for the successful escape of these tumors from the host immune system. HNCs evolve numerous mechanisms of evasion from immune destruction. These mechanisms are linked to genetic aberrations, so that HNCs with a high mutational load are also highly immunosuppressive. The tumor microenvironment of these cancers is populated by immune cells that are dysfunctional, inhibitory cytokines, and exosomes carrying suppressive ligands. Dysfunctional immune cells in patients with recurrent/metastatic HNC can be made effective by the delivery of immunotherapies in combination with conventional treatments. With many promising immune-based strategies available, the future of immune therapies in HNC is encouraging, especially as methods for genetic profiling and mapping the immune landscape of the tumor are being integrated into a personalized approach. Efficiency of immune therapies is expected to rapidly improve with the possibility for patients' selection based on personal immunogenomic profiles. Noninvasive biomarkers of response to therapy will be emerging as a better understanding of the various molecular signals co-opted by the tumors is gained. The emerging role of immunotherapy as a potentially beneficial addition to standard treatments for recurrent/metastatic HNC offers hope to the patients for whom no other therapeutic options exist. Clin Cancer Res; 24(1); 6-13. ©2017 AACR . ©2017 American Association for Cancer Research.
Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping
2018-04-01
Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Plants and animals both independently evolved the ability to recognize flagellin (also called FliC), the building block of the bacterial flagellum, as part of their innate immune response. Most plants recognize one or two short epitopes of FliC: flg22 and flgII-28. However, since most research in pl...
Wang, Haiyang; Yu, Xiaoqing; Fan, Yun
2017-06-20
With the breakthroughs achieved of programmed death-1 (PD-1)/PD-L1 inhibitors monotherapy as first-line and second-line treatment in advanced non-small cell lung cancer (NSCLC), the treatment strategy is gradually evolving and optimizing. Immune combination therapy expands the benefit population and improves the curative effect. A series of randomized phase III trials are ongoing. In this review, we discuss the prospect and current situation of immune checkpoint inhibitors in first-line treatment in advanced NSCLC patients.
RNA interference-mediated intrinsic antiviral immunity in invertebrates.
Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul
2013-01-01
In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.
Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S
2018-01-01
Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle "breathing core." Together, these data suggest that limiting antibody access to blockade antibody epitopes may be a frequent mechanism of immune evasion for GII.4 human noroviruses. Mapping blockade antibody epitopes, the interaction between adjacent epitopes on the particle, and the breathing core that mediates antibody access to epitopes provides greater mechanistic understanding of epitope camouflage strategies utilized by human viral pathogens to evade immunity.
Wippler, Juliane; Kleiner, Manuel; Lott, Christian; ...
2016-11-21
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. We generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, mostmore » likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. In addition, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.We also show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. These results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wippler, Juliane; Kleiner, Manuel; Lott, Christian
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. We generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, mostmore » likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. In addition, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.We also show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. These results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.« less
Wippler, Juliane; Kleiner, Manuel; Lott, Christian; Gruhl, Alexander; Abraham, Paul E; Giannone, Richard J; Young, Jacque C; Hettich, Robert L; Dubilier, Nicole
2016-11-21
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.
Monajemi, Mahdis; Woodworth, Claire F; Benkaroun, Jessica; Grant, Michael; Larijani, Mani
2012-04-30
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Differential Immune Responses to New World and Old World Mammalian Arenaviruses
Ly, Hinh
2017-01-01
Some New World (NW) and Old World (OW) mammalian arenaviruses are emerging, zoonotic viruses that can cause lethal hemorrhagic fever (HF) infections in humans. While these are closely related RNA viruses, the infected hosts appear to mount different types of immune responses against them. Lassa virus (LASV) infection, for example, results in suppressed immune function in progressive disease stage, whereas patients infected with Junín virus (JUNV) develop overt pro-inflammatory cytokine production. These viruses have also evolved different molecular strategies to evade host immune recognition and activation. This paper summarizes current progress in understanding the differential immune responses to pathogenic arenaviruses and how the information can be exploited toward the development of vaccines against them. PMID:28498311
The inflammation highway: metabolism accelerates inflammatory traffic in obesity
Johnson, Amy R.; Milner, J. Justin; Makowski, Liza
2012-01-01
Summary As humans evolved, perhaps the two strongest selection determinants of survival were a robust immune response able to clear bacterial, viral, and parasitic infection and an ability to efficiently store nutrients to survive times when food sources were scarce. These traits are not mutually exclusive. It is now apparent that critical proteins necessary for regulating energy metabolism such as peroxisome proliferator-activated receptors (PPARs), Toll-like receptors (TLRs), and fatty acid-binding proteins (FABPs) also act as links between nutrient metabolism and inflammatory pathway activation in immune cells. Obesity in humans is a symptom of energy imbalance: the scale has been tipped such that energy intake exceeds energy output and may be a result, in part, of evolutionary selection toward a phenotype characterized by efficient energy storage. As discussed in this review, obesity is a state of low-grade, chronic inflammation that promotes the development of insulin resistance and diabetes. Ironically, the formation of systemic and/or local, tissue-specific insulin resistance upon inflammatory cell activation may actually be a protective mechanism that co-evolved to repartition energy sources within the body during times of stress during infection. However, the point has been reached where a once beneficial adaptive trait has become detrimental to the health of the individual and an immense public health and economic burden. This article reviews the complex relationship between obesity, insulin resistance/diabetes, and inflammation, and while the liver, brain, pancreas, muscle, and other tissues are relevant, we focus specifically on how the obese adipose microenvironment can promote immune cell influx and sustain damaging inflammation that can lead to the onset of insulin resistance and diabetes. Finally, we address how substrate metabolism may regulate the immune response and discuss how fuel uptake and metabolism may be a targetable approach to limit or abrogate obesity-induced inflammation. PMID:22889225
Intestinal crosstalk: a new paradigm for understanding the gut as the "motor" of critical illness.
Clark, Jessica A; Coopersmith, Craig M
2007-10-01
For more than 20 years, the gut has been hypothesized to be the "motor" of multiple organ dysfunction syndrome. As critical care research has evolved, there have been multiple mechanisms by which the gastrointestinal tract has been proposed to drive systemic inflammation. Many of these disparate mechanisms have proved to be important in the origin and propagation of critical illness. However, this has led to an unusual situation where investigators describing the gut as a "motor" revving the systemic inflammatory response syndrome are frequently describing wholly different processes to support their claim (i.e., increased apoptosis, altered tight junctions, translocation, cytokine production, crosstalk with commensal bacteria, etc). The purpose of this review is to present a unifying theory as to how the gut drives critical illness. Although the gastrointestinal tract is frequently described simply as "the gut," it is actually made up of (1) an epithelium; (2) a diverse and robust immune arm, which contains most of the immune cells in the body; and (3) the commensal bacteria, which contain more cells than are present in the entire host organism. We propose that the intestinal epithelium, the intestinal immune system, and the intestine's endogenous bacteria all play vital roles driving multiple organ dysfunction syndrome, and the complex crosstalk between these three interrelated portions of the gastrointestinal tract is what cumulatively makes the gut a "motor" of critical illness.
Subverting Toll-Like Receptor Signaling by Bacterial Pathogens
McGuire, Victoria A.; Arthur, J. Simon C.
2015-01-01
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936
Tabor, Ala E.; Ali, Abid; Rehman, Gauhar; Rocha Garcia, Gustavo; Zangirolamo, Amanda Fonseca; Malardo, Thiago; Jonsson, Nicholas N.
2017-01-01
Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control. PMID:29322033
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches.
Belizário, José E; Napolitano, Mauro
2015-01-01
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body's microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches
Belizário, José E.; Napolitano, Mauro
2015-01-01
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body’s microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies. PMID:26500616
What are the dominant cytokines in early rheumatoid arthritis?
Ridgley, Laura A.; Anderson, Amy E.; Pratt, Arthur G.
2018-01-01
Purpose of review Rheumatoid arthritis is a systemic disease of evolving immune dysregulation that culminates in joint destruction and disability. The principle by which pro-inflammatory cytokines may be therapeutically targeted to abrogate disease is well established, but has yet to translate into reliable cures for patients. Emerging insights into cytokine-mediated pathobiology during rheumatoid arthritis development are reviewed, and their implications for future treatment strategies considered. Recent findings Accumulating data highlight cytokine perturbations before the clinical onset of rheumatoid arthritis. Some of these have now been linked to the arthritogenic activation of autoantibodies and associated pain and bone destruction in affected joints. These observations suggest cytokines may trigger the transition from systemic immunity to arthritis. Cytokine exposure could furthermore ‘prime’ synovial stromal cells to perpetuate a dominant pro-inflammatory environment. By facilitating cross-talk between infiltrating immune cells and even sustaining ectopic lymphoid structure development in some cases, cytokine interplay ultimately underpins the failure of arthritis to resolve. Summary Successful therapeutic stratification will depend upon an increasingly sophisticated appreciation of how dominant players amongst cytokine networks vary across time and anatomical space during incipient rheumatoid arthritis. The prize of sustained remission for all patients justifies the considerable effort required to achieve this understanding. PMID:29206659
2017-01-01
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections. PMID:28972547
Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia
2012-05-01
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.
DAMPs, MAMPs, and NAMPs in plant innate immunity.
Choi, Hyong Woo; Klessig, Daniel F
2016-10-26
Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Bordignon, Valentina; Trento, Elisabetta; D’Agosto, Giovanna; Cavallo, Ilaria; Pontone, Martina; Pimpinelli, Fulvia; Mariani, Luciano; Ensoli, Fabrizio
2017-01-01
The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM- and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)–STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses. PMID:29257060
Klein, Theo; Viner, Rosa I; Overall, Christopher M
2016-10-28
Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.
HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity.
Wang, Jie; Yang, Shuai; Liu, Lu; Wang, Hui; Yang, Bo
2017-03-15
The cellular antiviral innate immune system is essential for host defense and viruses have evolved a variety of strategies to evade the innate immunity. Human T lymphotropic virus type 1 (HTLV-1) belongs to the deltaretrovirus family and it can establish persistent infection in human beings for many years. However, how this virus evades the host innate immune responses remains unclear. Here we report a new strategy used by HTLV-1 to block innate immune responses. We observed that stimulator of interferon genes (STING) limited HTLV-1 protein expression and was critical to HTLV-1 reverse transcription intermediate (RTI) ssDNA90 triggered interferon (IFN)-β production in phorbol12-myristate13-acetate (PMA)-differentiated THP1 (PMA-THP1) cells. The HTLV-1 protein Tax inhibited STING overexpression induced transcriptional activation of IFN-β. Tax also impaired poly(dA:dT), interferon stimulatory DNA (ISD) or cyclic GMP-AMP (cGAMP) -stimulated IFN-β production, which was dependent on STING activation. Coimmunoprecipitation assays and confocal microscopy indicated that Tax was associated with STING in the same complex. Mechanistic studies suggested that Tax decreased the K63-linked ubiquitination of STING and disrupted the interactions between STING and TANK-binding kinase 1 (TBK1). These findings may shed more light on the molecular mechanisms underlying HTLV-1 infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Gillespie, Meagan J.; Stanley, Dragana; Chen, Honglei; Donald, John A.; Nicholas, Kevin R.; Moore, Robert J.; Crowley, Tamsyn M.
2012-01-01
Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products. PMID:23110233
Lu, Xunli; Kracher, Barbara; Saur, Isabel M. L.; Bauer, Saskia; Ellwood, Simon R.; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul
2016-01-01
Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1. Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation. PMID:27702901
Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul
2016-10-18
Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.
Kobayashi, Kazuya; Matsuura, Kenji
2017-01-01
Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole. PMID:28410430
Mitaka, Yuki; Kobayashi, Kazuya; Matsuura, Kenji
2017-01-01
Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole.
Isaac, Dervla T; Isberg, Ralph
2014-01-01
Macrophages are the front line of immune defense against invading microbes. Microbes, however, have evolved numerous and diverse mechanisms to thwart these host immune defenses and thrive intracellularly. Legionella pneumophila, a Gram-negative pathogen of amoebal and mammalian phagocytes, is one such microbe. In humans, it causes a potentially fatal pneumonia referred to as Legionnaires' disease. Armed with the Icm/Dot type IV secretion system, which is required for virulence, and approximately 300 translocated proteins, Legionella is able to enter host cells, direct the biogenesis of its own vacuolar compartment, and establish a replicative niche, where it grows to high levels before lysing the host cell. Efforts to understand the pathogenesis of this bacterium have focused on characterizing the molecular activities of its many effectors. In this article, we highlight recent strides that have been made in understanding how Legionella effectors mediate host-pathogen interactions. PMID:24762308
Changing partners at the dance
Kallal, Lara E.; Biron, Christine A.
2013-01-01
Differential use of cellular and molecular components shapes immune responses, but understanding of how these are regulated to promote defense and health during infections is still incomplete. Examples include signaling from members of the Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) cytokine family. Following receptor stimulation, individual JAK-STAT cytokines have preferences for particular key STAT molecules to lead to specific cellular responses. Certain of these cytokines, however, can conditionally activate alternative STATs as well as elicit pleiotropic and paradoxical effects. Studies examining basal and infection conditions are revealing intrinsic and induced cellular differences in various intracellular STAT concentrations to control the biological consequences of cytokine exposure. The system can be likened to changing partners at a dance based on competition and relative availability, and sets a framework for understanding the particular conditions promoting subset biological functions of cytokines as needed during evolving immune responses to infections. PMID:24058795
Neisseria meningitidis: pathogenesis and immunity.
Pizza, Mariagrazia; Rappuoli, Rino
2015-02-01
The recent advances in cellular microbiology, genomics, and immunology has opened new horizons in the understanding of meningococcal pathogenesis and in the definition of new prophylactic intervention. It is now clear that Neissera meningitidis has evolved a number of surface structures to mediate interaction with host cells and a number of mechanisms to subvert the immune system and escape complement-mediated killing. In this review we report the more recent findings on meningococcal adhesion and on the bacteria-complement interaction highlighting the redundancy of these mechanisms. An effective vaccine against meningococcus B, based on multiple antigens with different function, has been recently licensed. The antibodies induced by the 4CMenB vaccine could mediate bacterial killing by activating directly the classical complement pathway or, indirectly, by preventing binding of fH on the bacterial surface and interfering with colonization. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Plant-pathogen interactions: toward development of next-generation disease-resistant plants.
Nejat, Naghmeh; Rookes, James; Mantri, Nitin L; Cahill, David M
2017-03-01
Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
Helminths and HIV infection: epidemiological observations on immunological hypotheses
BROWN, M; MAWA, P A; KALEEBU, P; ELLIOTT, A M
2006-01-01
Parasitic helminths have co-evolved with the mammalian immune system. Current hypotheses suggest that immunological stimulation in the presence of helminths is balanced by immuno-regulation and by the broad spectrum of mechanisms possessed by helminths for countering the host immune response. The degree to which this balance is perfected, and the mechanisms by which this is achieved, vary between helminth species; we suggest that this is reflected not only in the degree of pathology induced by helminths but also in a variety of relationships with HIV infection and HIV disease. Available epidemiological data regarding interactions between helminths and HIV are largely observational; results are variable and generally inconclusive. Well designed, controlled intervention studies are required to provide definitive information on the species-specific nature of these interactions and on the advantages, disadvantages and optimal timing of de-worming in relation to HIV infection. PMID:17042933
Buried treasure: evolutionary perspectives on microbial iron piracy
Barber, Matthew F.; Elde, Nels C.
2015-01-01
Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675
Immunoisolation to prevent tissue graft rejection: Current knowledge and future use.
David, Anu; Day, James; Shikanov, Ariella
2016-05-01
This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and discuss how this approach can be applied in reproductive biology. © 2016 by the Society for Experimental Biology and Medicine.
Functional genomics of the evolution of increased resistance to parasitism in Drosophila.
Wertheim, Bregje; Kraaijeveld, Alex R; Hopkins, Meirion G; Walther Boer, Mark; Godfray, H Charles J
2011-03-01
Individual hosts normally respond to parasite attack by launching an acute immune response (a phenotypic plastic response), while host populations can respond in the longer term by evolving higher level of defence against parasites. Little is known about the genetics of the evolved response: the identity and number of genes involved and whether it involves a pre-activation of the regulatory systems governing the plastic response. We explored these questions by surveying transcriptional changes in a Drosophila melanogaster strain artificially selected for resistance against the hymenopteran endoparasitoid Asobara tabida. Using micro-arrays, we profiled gene expression at seven time points during development (from the egg to the second instar larva) and found a large number of genes (almost 900) with altered expression levels. Bioinformatic analysis showed that some were involved in immunity or defence-associated functions but many were not. Previously, we had defined a set of genes whose level of expression changed after parasitoid attack and a comparison with the present set showed a significant though comparatively small overlap. This suggests that the evolutionary response to parasitism is not a simple pre-activation of the plastic, acute response. We also found overlap in the genes involved in the evolutionary response to parasitism and to other biotic and abiotic stressors, perhaps suggesting a 'module' of genes involved in a generalized stress response as has been found in other organisms. © 2010 Blackwell Publishing Ltd.
Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses
Bidgood, Susanna R.; Mercer, Jason
2015-01-01
As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs. PMID:26308043
Disruption of Type I Interferon Induction by HIV Infection of T Cells
Sanchez, David Jesse; Miranda, Daniel; Marsden, Matthew D.; Dizon, Thomas Michael A.; Bontemps, Johnny R.; Davila, Sergio J.; Del Mundo, Lara E.; Ha, Thai; Senaati, Ashkon; Zack, Jerome A.; Cheng, Genhong
2015-01-01
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host. PMID:26375588
Disruption of Type I Interferon Induction by HIV Infection of T Cells.
Sanchez, David Jesse; Miranda, Daniel; Marsden, Matthew D; Dizon, Thomas Michael A; Bontemps, Johnny R; Davila, Sergio J; Del Mundo, Lara E; Ha, Thai; Senaati, Ashkon; Zack, Jerome A; Cheng, Genhong
2015-01-01
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.
Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?
van Die, Irma; Cummings, Richard D
2010-01-01
Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.
Bassity, Elizabeth; Clark, Theodore G.
2012-01-01
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987
Topology driven modeling: the IS metaphor.
Merelli, Emanuela; Pettini, Marco; Rasetti, Mario
In order to define a new method for analyzing the immune system within the realm of Big Data, we bear on the metaphor provided by an extension of Parisi's model, based on a mean field approach. The novelty is the multilinearity of the couplings in the configurational variables. This peculiarity allows us to compare the partition function [Formula: see text] with a particular functor of topological field theory-the generating function of the Betti numbers of the state manifold of the system-which contains the same global information of the system configurations and of the data set representing them. The comparison between the Betti numbers of the model and the real Betti numbers obtained from the topological analysis of phenomenological data, is expected to discover hidden n-ary relations among idiotypes and anti-idiotypes. The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space. How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational. Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.
Molecular clock of HIV-1 envelope genes under early immune selection
Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...
2016-06-01
Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.
Molecular clock of HIV-1 envelope genes under early immune selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.
Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.
Evolutionary divergence and functions of the human interleukin (IL) gene family
2010-01-01
Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term 'interleukin' (IL) has been used to describe a group of cytokines with complex immunomodulatory functions -- including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host's immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. Determining evolutionary relationships between ILs therefore can be confusing. More recently, crystallographic data and the identification of common structural motifs have led to a more accurate classification system. To date, the known ILs can be divided into four major groups based on distinguishing structural features. These groups include the genes encoding the IL1-like cytokines, the class I helical cytokines (IL4-like, γ-chain and IL6/12-like), the class II helical cytokines (IL10-like and IL28-like) and the IL17-like cytokines. In addition, there are a number of ILs that do not fit into any of the above groups, due either to their unique structural features or lack of structural information. This suggests that the gene family organisation may be subject to further change in the near future. PMID:21106488
Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective
2010-01-01
Background Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. Results By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized α-helical and β-sheet (CSαβ) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear α-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. Conclusion The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects. PMID:20302637
Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves
2017-01-01
Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant’s flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission. PMID:29253890
Haldar, Arun K; Piro, Anthony S; Finethy, Ryan; Espenschied, Scott T; Brown, Hannah E; Giebel, Amanda M; Frickel, Eva-Maria; Nelson, David E; Coers, Jörn
2016-12-13
The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and responsible for significant morbidity, including pelvic inflammatory disease, infertility, and ectopic pregnancies in women. As an obligate intracellular pathogen, C. trachomatis is in perpetual conflict with cell-intrinsic defense programs executed by its human host. Our study defines a novel anti-Chlamydia host resistance pathway active in human epithelial cells. This defense program promotes the deposition of the small antimicrobial protein ubiquitin on vacuoles containing Chlamydia We show that this ubiquitin-based resistance pathway of human cells is highly effective against a Chlamydia species adapted to rodents but ineffective against human-adapted C. trachomatis This observation indicates that C. trachomatis evolved strategies to avoid entrapment within ubiquitin-labeled vacuoles as part of its adaptation to the human innate immune system. Copyright © 2016 Haldar et al.
Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani
Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin
2013-01-01
Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction. PMID:23342153
Molloy, Eamonn S; Calabrese, Cassandra M; Calabrese, Leonard H
2017-02-01
Progressive multifocal leukoencephalopathy (PML) is a rare, typically fatal, demyelinating central nervous system infection caused by reactivation of the John Cunningham virus that generally occurs in immunosuppressed patients. With an evolving understanding of a greater clinical heterogeneity of PML and significant implications for therapy, PML should be considered in the differential diagnosis of neurologic presentations of rheumatic diseases. Increased awareness of PML among rheumatologists is required, as earlier diagnosis and restoration of immune function may improve the otherwise grim prognosis associated with PML. Copyright © 2016 Elsevier Inc. All rights reserved.
Simi, S; Peter, Valsa S; Peter, M C Subhash
2017-09-15
Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern of mRNA expression of Na + /K + -ATPase α-subunit isoforms; nkaα1a, nkaα1b and nkaα1c and the shift in nkaα1a and nkaα1b isoforms expression after hypoxia stress in immune-challenged fish, presents transcriptomic evidence for a modified Na + /K + ion transporter system in these fish. Collectively, our data thus provide evidence for an interactive immune-stress response in an air-breathing fish, where the patterns of cortisol-thyroid hormone interaction, the ion transporter functions and the non-specific immune responses are reversed by hypoxia stress in immune-challenged fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more.
Castro, Januario E; Kipps, Thomas J
2016-03-01
Treatment of patients with chronic lymphocytic leukemia and other B cell malignancies is evolving very rapidly. We have observed the quick transition during the last couple of years, from chemo-immunotherapy based treatments to oral targeted therapies based on B cell receptor signaling and Bcl-2 inhibitors, as well as the increasing use of second generation glyco-engineered antibodies. The next wave of revolution in the treatment for this conditions is approaching and it will be based on strategies that harness the power of the immune system to fight cancer. In the center of this biotechnological revolution is cellular engineering, the field that had made possible to redirect the immune system effector cells to achieve a more effective and targeted adoptive cellular therapy. In this chapter, we will review the historical context of these scientific developments, the most recent basic and clinical research in the field and some opinions regarding the future of adoptive cellular therapy in CLL and other B cell malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polyclonal and monoclonal antibodies in clinic.
Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses
2014-01-01
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury
Thom, Vivien; Arumugam, Thiruma V.; Magnus, Tim; Gelderblom, Mathias
2017-01-01
Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg. PMID:28824617
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back
Makarova, Kira S.
2017-01-01
Abstract The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin–antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the “guns for hire” paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. PMID:28985291
Proactive strategies to avoid infectious disease
Stevenson, Richard J.; Case, Trevor I.; Oaten, Megan J.
2011-01-01
Infectious disease exerts a large selective pressure on all organisms. One response to this has been for animals to evolve energetically costly immune systems to counter infection, while another—the focus of this theme issue—has been the evolution of proactive strategies primarily to avoid infection. These strategies can be grouped into three types, all of which demonstrate varying levels of interaction with the immune system. The first concerns maternal strategies that function to promote the immunocompetence of their offspring. The second type of strategy influences mate selection, guiding the selection of a healthy mate and one who differs maximally from the self in their complement of antigen-coding genes. The third strategy involves two classes of behaviour. One relates to the capacity of the organisms to learn associations between cues indicative of pathogen threat and immune responses. The other relates to prevention and even treatment of infection through behaviours such as avoidance, grooming, quarantine, medicine and care of the sick. In humans, disease avoidance is based upon cognition and especially the emotion of disgust. Human disease avoidance is not without its costs. There is a propensity to reject healthy individuals who just appear sick—stigmatization—and the system may malfunction, resulting in various forms of psychopathology. Pathogen threat also appears to have been a highly significant and unrecognized force in shaping human culture so as to minimize infection threats. This cultural shaping process—moralization—can be co-opted to promote human health. PMID:22042913
Curcumin and autoimmune disease.
Bright, John J
2007-01-01
The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.
Intestinal crosstalk – a new paradigm for understanding the gut as the “motor” of critical illness
Clark, Jessica A; Coopersmith, Craig M
2007-01-01
For more than 20 years, the gut has been hypothesized to be the “motor” of multiple organ dysfunction syndrome (MODS). As critical care research has evolved, there have been multiple mechanisms by which the gastrointestinal tract has been proposed to drive systemic inflammation. Many of these disparate mechanisms have proved to be important in the origin and propagation of critical illness. However, this has led to an unusual situation where investigators describing the gut as a “motor” revving the systemic inflammatory response syndrome (SIRS) are frequently describing wholly different processes to support their claim (i.e. increased apoptosis, altered tight junctions, translocation, cytokine production, crosstalk with commensal bacteria, etc). The purpose of this review is to present a unifying theory as to how the gut drives critical illness. Although the gastrointestinal tract is frequently described simply as “the gut,” it is actually made up of a) an epithelium, b) a diverse and robust immune arm, which contains the majority of immune cells in the body, and c) the commensal bacteria, which contain more cells than are present in the entire host organism. We propose that the intestinal epithelium, the intestinal immune system and the intestine’s endogenous bacteria all play vital roles driving MODS, and the complex crosstalk between these three interrelated portions of the gastrointestinal tract are cumulatively what makes the gut a “motor” of critical illness. PMID:17577136
Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R
2017-06-01
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Paramyxovirus evasion of innate immunity: Diverse strategies for common targets
Audsley, Michelle D; Moseley, Gregory W
2013-01-01
The paramyxoviruses are a family of > 30 viruses that variously infect humans, other mammals and fish to cause diverse outcomes, ranging from asymptomatic to lethal disease, with the zoonotic paramyxoviruses Nipah and Hendra showing up to 70% case-fatality rate in humans. The capacity to evade host immunity is central to viral infection, and paramyxoviruses have evolved multiple strategies to overcome the host interferon (IFN)-mediated innate immune response through the activity of their IFN-antagonist proteins. Although paramyxovirus IFN antagonists generally target common factors of the IFN system, including melanoma differentiation associated factor 5, retinoic acid-inducible gene-I, signal transducers and activators of transcription (STAT)1 and STAT2, and IFN regulatory factor 3, the mechanisms of antagonism show remarkable diversity between different genera and even individual members of the same genus; the reasons for this diversity, however, are not currently understood. Here, we review the IFN antagonism strategies of paramyxoviruses, highlighting mechanistic differences observed between individual species and genera. We also discuss potential sources of this diversity, including biological differences in the host and/or tissue specificity of different paramyxoviruses, and potential effects of experimental approaches that have largely relied on in vitro systems. Importantly, recent studies using recombinant virus systems and animal infection models are beginning to clarify the importance of certain mechanisms of IFN antagonism to in vivo infections, providing important indications not only of their critical importance to virulence, but also of their potential targeting for new therapeutic/vaccine approaches. PMID:24175230
Bilbo, Staci D; Wray, Gregory A; Perkins, Sarah E; Parker, William
2011-10-01
A wide range of hyperimmune-associated diseases plague post-industrial society, with a prevalence and impact that is staggering. Strong evidence points towards a loss of helminths from the ecosystem of the human body (the human biome) as the most important factor in this epidemic. Helminths, intestinal worms which are largely eradicated by elements of post-industrial culture including toilets and water treatment facilities, have an otherwise ubiquitous presence in vertebrates, and have co-evolved with the immune system. Not only do helminths discourage allergic and autoimmune reactions by diverting the immune system away from these pathologic processes and stimulating host regulatory networks, helminths release a variety of factors which down-modulate the immune system. A comprehensive view of hyperimmune-related disease based on studies in immunology, parasitology, evolutionary biology, epidemiology, and neurobiology indicates that the effects of biome depletion may not yet be fully realized, and may have an unexpectedly broad impact on many areas of human biology, including cognition. Fortunately, colonization with helminths results in a cure of numerous autoimmune and allergic diseases in laboratory rodents, and clinical studies in humans have indicated their utility for treatment of both multiple sclerosis and inflammatory bowel disease. Based on these considerations, commitment of considerable resources toward understanding the effects of "biome depletion" and systematically evaluating the most effective approach toward biome reconstitution is strongly encouraged. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rethinking Regenerative Medicine: A Macrophage-Centered Approach
Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.
2014-01-01
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693
Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells.
Alvarado, Alvaro G; Lathia, Justin D
2016-07-01
Innate immunity has evolved as the front-line cellular defense mechanism to acutely sense and decisively respond to microenvironmental alterations. The Toll-like receptor (TLR) family activates signaling pathways in response to stimuli and is well-characterized in both resident and infiltrating immune cells during neural inflammation, injury, and degeneration. Innate immune signaling has also been observed in neural cells during development and disease, including in the stem and progenitor cells that build the brain and are responsible for its homeostasis. Recently, the activation of developmental programs in malignant brain tumors has emerged as a driver for growth via cancer stem cells. In this review we discuss how innate immune signaling interfaces with stem cell maintenance in the normal and neoplastic brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.
Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J
2013-01-01
After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.
Periodontal disease associated to systemic genetic disorders.
Nualart Grollmus, Zacy Carola; Morales Chávez, Mariana Carolina; Silvestre Donat, Francisco Javier
2007-05-01
A number of systemic disorders increase patient susceptibility to periodontal disease, which moreover evolves more rapidly and more aggressively. The underlying factors are mainly related to alterations in immune, endocrine and connective tissue status. These alterations are associated with different pathologies and syndromes that generate periodontal disease either as a primary manifestation or by aggravating a pre-existing condition attributable to local factors. This is where the role of bacterial plaque is subject to debate. In the presence of qualitative or quantitative cellular immune alterations, periodontal disease may manifest early on a severe localized or generalized basis--in some cases related to the presence of plaque and/or specific bacteria (severe congenital neutropenia or infantile genetic agranulocytosis, Chediak-Higiashi syndrome, Down syndrome and Papillon-Lefévre syndrome). In the presence of humoral immune alterations, periodontal damage may result indirectly as a consequence of alterations in other systems. In connective tissue disorders, bacterial plaque and alterations of the periodontal tissues increase patient susceptibility to gingival inflammation and alveolar resorption (Marfan syndrome and Ehler-Danlos syndrome). The management of periodontal disease focuses on the control of infection and bacterial plaque by means of mechanical and chemical methods. Periodontal surgery and even extraction of the most seriously affected teeth have also been suggested. There are variable degrees of consensus regarding the background systemic disorder, as in the case of Chediak-Higiashi syndrome, where antibiotic treatment proves ineffective; in severe congenital neutropenia or infantile genetic agranulocytosis, where antibiotic prophylaxis is suggested; and in Papillon-Lefévre syndrome, where an established treatment protocol is available.
Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation
Wu, Chunyan
2018-01-01
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided. PMID:29662014
Norris, Michael H.; Schweizer, Herbert P.
2017-01-01
Burkholderia pseudomallei (Bp) causes the disease melioidosis. The main cause of mortality in this disease is septic shock triggered by the host responding to lipopolysaccharide (LPS) components of the Gram-negative outer membrane. Bp LPS is thought to be a weak inducer of the host immune system. LPS from several strains of Bp were purified and their ability to induce the inflammatory mediators TNF-α and iNOS in murine macrophages at low concentrations was investigated. Innate and adaptive immunity qPCR arrays were used to profile expression patterns of 84 gene targets in response to the different LPS types. Additional qPCR validation confirmed large differences in macrophage response. LPS from a high-virulence serotype B strain 576a and a virulent rough central nervous system tropic strain MSHR435 greatly induced the innate immune response indicating that the immunopathogenesis of these strains is different than in infections with strains similar to the prototype strain 1026b. The accumulation of autophagic vesicles was also increased in macrophages challenged with highly immunogenic Bp LPS. Gene induction and concomitant cytokine secretion profiles of human PBMCs in response to the various LPS were also investigated. MALDI-TOF/TOF was used to probe the lipid A portions of the LPS, indicating substantial structural differences that likely play a role in host response to LPS. These findings add to the evolving knowledge of host-response to bacterial LPS, which can be used to better understand septic shock in melioidosis patients and in the rational design of vaccines. PMID:28453531
Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search
Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.
2016-01-01
Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103
A comparative approach to the principal mechanisms of different memory systems
NASA Astrophysics Data System (ADS)
Rensing, Ludger; Koch, Michael; Becker, Annette
2009-12-01
The term “memory” applies not only to the preservation of information in neuronal and immune systems but also to phenomena observed for example in plants, single cells, and RNA viruses. We here compare the different forms of information storage with respect to possible common features. The latter may be characterized by (1) selection of pre-existing information, (2) activation of memory systems often including transcriptional, and translational, as well as epigenetic and genetic mechanisms, (3) subsequent consolidation of the activated state in a latent form ( standby mode), and (4) reactivation of the latent state of memory systems when the organism is exposed to the same (or conditioned) signal or to previous selective constraints. These features apparently also exist in the “evolutionary memory,” i.e., in evolving populations which have highly variable mutant spectra.
Using CRISPR-Cas systems as antimicrobials.
Bikard, David; Barrangou, Rodolphe
2017-06-01
Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zúñiga, Martha C
2002-09-01
The poxviruses have evolved a diverse array of proteins which serve to subvert innate and adaptive host responses that abort or at least limit viral infections. Myxoma virus and its rabbit host are considered to represent an ideal poxvirus-host system in which to study the effects of these immunomodulatory proteins. Studies of laboratory rabbits (Oryctolagus cuniculus) infected with gene knockout variants of myxoma virus have provided compelling evidence that several myxoma virus gene products contribute to the pathogenic condition known as myxomatosis. However, myxomatosis, which is characterized by skin lesions, systemic immunosuppression, and a high mortality rate, does not occur in the virus' natural South American host, Sylvilogus brasiliensis. Moreover, in Australia where myxoma virus was willfully introduced to control populations of O. cuniculus, myxomatosis-resistant rabbits emerged within a year of myxoma virus introduction into the field. In this review I discuss the characterized immunomodulatory proteins of myxoma virus, their biochemical properties, their pathogenic effects in laboratory rabbits, the role of the host immune system in the susceptibility or resistance to myxomatosis, and the evidence that immunomodulatory genes may have been attenuated during the co-adaptation of myxoma virus and O. cuniculus in Australia.
Is lipid signaling through cannabinoid 2 receptors part of a protective system?
Pacher, P; Mechoulam, R
2011-04-01
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB₂) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB₂ receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB₂ receptor activity holds tremendous therapeutic potential in these pathologies. While CB₂ receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB₂ receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB₂ receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects. Published by Elsevier Ltd.
Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance
Zaidi, Syed Shan-e-Ali; Tashkandi, Manal; Mansoor, Shahid; Mahfouz, Magdy M.
2016-01-01
Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity. PMID:27877187
Negi, Vidya Devi; Nagarajan, Arvindhan G.; Chakravortty, Dipshikha
2010-01-01
Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain ΔpmrG-HM-D (DV-STM-07) in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss. PMID:20161765
Ochayon, David E; Baranovski, Boris M; Malkin, Peter; Schuster, Ronen; Kalay, Noa; Ben-Hamo, Rotem; Sloma, Ido; Levinson, Justin; Brazg, Jared; Efroni, Sol; Lewis, Eli C; Nevo, Uri
2016-01-01
Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.
Kelly, Steven; Ivens, Alasdair; Mott, G. Adam; O’Neill, Ellis; Emms, David; Macleod, Olivia; Voorheis, Paul; Tyler, Kevin; Clark, Matthew; Matthews, Jacqueline
2017-01-01
Abstract There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response. PMID:28903536
De Boer, Rob J.; Perelson, Alan S.
2017-09-06
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Rob J.; Perelson, Alan S.
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
Evasion of Early Antiviral Responses by Herpes Simplex Viruses
Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.
2015-01-01
Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478
Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind
2017-06-13
Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.
Pinkerton, James W; Kim, Richard Y; Robertson, Avril A B; Hirota, Jeremy A; Wood, Lisa G; Knight, Darryl A; Cooper, Matthew A; O'Neill, Luke A J; Horvat, Jay C; Hansbro, Philip M
2017-06-01
Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1β and release of the pro-inflammatory cytokine, IL-1β, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regulation of the Host Antiviral State by Intercellular Communications
Assil, Sonia; Webster, Brian; Dreux, Marlène
2015-01-01
Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405
Morris, Katrina M; Mathew, Marina; Waugh, Courtney; Ujvari, Beata; Timms, Peter; Polkinghorne, Adam; Belov, Katherine
2015-10-15
Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and those without infection using qPCR. This analysis revealed that one of these four, CLEC4E, may be upregulated in response to chlamydia infection. We have characterised genes of the NKC and LRC in koalas and have discovered evidence that one of these genes may be upregulated in koalas with chlamydia, suggesting that these receptors may play a role in the immune response of koalas to chlamydia infection.
Rowat, S C
1998-01-01
The central nervous, immune, and endocrine systems communicate through multiple common messengers. Over evolutionary time, what may be termed integrated defense system(s) (IDS) have developed to coordinate these communications for specific contexts; these include the stress response, acute-phase response, nonspecific immune response, immune response to antigen, kindling, tolerance, time-dependent sensitization, neurogenic switching, and traumatic dissociation (TD). These IDSs are described and their overlap is examined. Three models of disease production are generated: damage, in which IDSs function incorrectly; inadequate/inappropriate, in which IDS response is outstripped by a changing context; and evolving/learning, in which the IDS learned response to a context is deemed pathologic. Mechanisms of multiple chemical sensitivity (MCS) are developed from several IDS disease models. Model 1A is pesticide damage to the central nervous system, overlapping with body chemical burdens, TD, and chronic zinc deficiency; model 1B is benzene disruption of interleukin-1, overlapping with childhood developmental windows and hapten-antigenic spreading; and model 1C is autoimmunity to immunoglobulin-G (IgG), overlapping with spreading to other IgG-inducers, sudden spreading of inciters, and food-contaminating chemicals. Model 2A is chemical and stress overload, including comparison with the susceptibility/sensitization/triggering/spreading model; model 2B is genetic mercury allergy, overlapping with: heavy metals/zinc displacement and childhood/gestational mercury exposures; and model 3 is MCS as evolution and learning. Remarks are offered on current MCS research. Problems with clinical measurement are suggested on the basis of IDS models. Large-sample patient self-report epidemiology is described as an alternative or addition to clinical biomarker and animal testing. Images Figure 1 Figure 2 Figure 3 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9539008
Cooper, E L; Kvell, K; Engelmann, P; Nemeth, P
2006-04-15
Multicellular organisms including invertebrates and vertebrates live in various habitats that may be aquatic or terrestrial where they are constantly exposed to deleterious pathogens. These include viruses, bacteria, fungi, and parasites. They have evolved various immunodefense mechanisms that may protect them from infection by these microorganisms. These include cellular and humoral responses and the level of differentiation of the response parallels the evolutionary development of the species. The first line of innate immunity in earthworms is the body wall that prevents the entrance of microbes into the coelomic cavity that contains fluid in which there are numerous leukocyte effectors of immune responses. When this first barrier is broken, a series of host responses is set into motion activating the leukocytes and the coelomic fluid. The responses are classified as innate, natural, non-specific, non-anticipatory, non-clonal (germ line) in contrast to the vertebrate capacity that is considered adaptive, induced, specific, anticipatory and clonal (somatic). Specific memory is associated with the vertebrate response and there is information that the innate response of invertebrates may under certain conditions possess specific memory. The invertebrate system when challenged affects phagocytosis, encapsulation, agglutination, opsonization, clotting and lysis. At least two major leukocytes, small and large mediate lytic reactions against several tumor cell targets. Destruction of tumor cells in vitro shows that phagocytosis and natural killer cell responses are distinct properties of these leukocytes. This has prompted newer searches for immune function and regulation in other systems. The innate immune system of the earthworm has been analyzed for more than 40 years with every aspect examined. However, there are no known entire sequences of the earthworm as exists in these other invertebrates. Because the earthworm lives in soil and has been utilized as a successful monitor for pollution, there are studies that reveal up and down regulation of responses in the immune system after exposure to a variety of environmental pollutants. Moreover, there are partial sequences that appear in earthworms after exposure to environmental pollutants such as cadmium and copper. There are now attempts to define the AHR receptor crucial for intracellular signaling after exposure to pollutants, but without linking the signals to changes in the immune system. There are several pathways for signal transduction, including JAK/STAT, TOLL, TRAF PIP3, known in invertebrates and vertebrates. For resistance to pathogens, conserved signal transduction components are required and these include a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. This pathway may be an ancestral innate immune signaling pathway found in a putative common ancestor of nematodes, arthropods and even vertebrates. It could also help us to link pollution, innate immunity and transduction in earthworms.
Mitigating Infectious Disease Outbreaks
NASA Astrophysics Data System (ADS)
Davey, Victoria
The emergence of new, transmissible infections poses a significant threat to human populations. As the 2009 novel influenza A/H1N1 pandemic and the 2014-2015 Ebola epidemic demonstrate, we have observed the effects of rapid spread of illness in non-immune populations and experienced disturbing uncertainty about future potential for human suffering and societal disruption. Clinical and epidemiologic characteristics of a newly emerged infectious organism are usually gathered in retrospect as the outbreak evolves and affects populations. Knowledge of potential effects of outbreaks and epidemics and most importantly, mitigation at community, regional, national and global levels is needed to inform policy that will prepare and protect people. Study of possible outcomes of evolving epidemics and application of mitigation strategies is not possible in observational or experimental research designs, but computational modeling allows conduct of `virtual' experiments. Results of well-designed computer simulations can aid in the selection and implementation of strategies that limit illness and death, and maintain systems of healthcare and other critical resources that are vital to public protection. Mitigating Infectious Disease Outbreaks.
Social Immunity: Emergence and Evolution of Colony-Level Disease Protection.
Cremer, Sylvia; Pull, Christopher D; Fürst, Matthias A
2018-01-07
Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.
The evolving roles of memory immune cells in transplantation
Chen, Wenhao; Ghobrial, Rafik M.; Li, Xian C.
2015-01-01
Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance. PMID:26102615
The cGAS-STING Defense Pathway and Its Counteraction by Viruses.
Ma, Zhe; Damania, Blossom
2016-02-10
Upon virus infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently, cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis, and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Yoon, Dok Hyun; Osborn, Mark J.; Tolar, Jakub; Kim, Chong Jai
2018-01-01
Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade. PMID:29364163
Innate immune escape by Dengue and West Nile viruses.
Gack, Michaela U; Diamond, Michael S
2016-10-01
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Immunological mechanisms of vaccination
Pulendran, Bali; Ahmed, Rafi
2011-01-01
Vaccines represent one of the greatest triumphs of modern medicine. Despite the common origins of vaccinology and immunology more than 200 years ago, the two disciplines have evolved along such different trajectories that most of the highly successful vaccines have been made empirically, with little or no immunological insight. Recent advances in innate immunity have offered new insights about the mechanisms of vaccine-induced immunity and have facilitated a more rational approach to vaccine design. Here we will discuss these advances and emerging themes on the immunology of vaccination. PMID:21739679
HMGB1, an alarmin promoting HIV dissemination and latency in dendritic cells
Gougeon, M-L; Melki, M-T; Saïdi, H
2012-01-01
Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK–DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis. PMID:22033335
Endegue-Zanga, Marie Claire; Sadeuh-Mba, Serge Alain; Iber, Jane; Burns, Cara C; Moeletsi, Nicksy Gumede; Baba, Marycelin; Bukbuk, David; Delpeyroux, Francis; Mengouo, Marcellin Nimpa; Demanou, Maurice; Vernet, Guy; Etoa, François-Xavier; Njouom, Richard
2016-06-01
Efficient implementation of the global eradication strategies consisting of Acute Flaccid Paralysis (AFP) surveillance and mass immunization campaigns led to interruption of indigenous wild poliovirus transmission in Cameroon in 1999. This study describes type 1 and type 3 wild poliovirus (WPV) importation, incidence, geographic distribution and control since the original interruption of transmission in Cameroon. Stool samples from AFP patients under the age of 15 years in Cameroon were collected nationwide and subjected to virus isolation on RD and L20B cell cultures. Resulting virus isolates were typed by intratypic differentiation (ITD) and analysis of the VP1 coding sequence of the viral genome. Surveillance data originating from Cameroon between 2000 and 2014 were considered for retrospective descriptive analyses. From 2003 to 2009, multiple WPV importation events from neighboring countries affected mainly in the northern regions of Cameroon but did not led to sustained local transmission. Throughout this period, 16 WPV1 and 5 WPV3 were detected and identified as members of multiple clusters within type-specific West Africa B genotypes (WEAF-B). In 2013-2014, a polio outbreak associated to a highly evolved ("orphan") WPV1 affected four southern regions of Cameroon. The appearance of highly evolved lineage of type 1 WPV suggests potential surveillance gap and underscore the need to maintain comprehensive polio immunization activities and sensitive surveillance systems in place as long as any country in the world remains endemic for WPV. Copyright © 2016 Elsevier B.V. All rights reserved.
Charlton, Bruce G
2010-06-01
Everyone living in modernizing 'Western' societies will have noticed the long-term, progressive growth and spread of bureaucracy infiltrating all forms of social organization: nobody loves it, many loathe it, yet it keeps expanding. Such unrelenting growth implies that bureaucracy is parasitic and its growth uncontrollable - in other words it is a cancer that eludes the host immune system. Old-fashioned functional, 'rational' bureaucracy that incorporated individual decision-making is now all-but extinct, rendered obsolete by computerization. But modern bureaucracy evolved from it, the key 'parasitic' mutation being the introduction of committees for major decision-making or decision-ratification. Committees are a fundamentally irrational, incoherent, unpredictable decision-making procedure; which has the twin advantages that it cannot be formalized and replaced by computerization, and that it generates random variation or 'noise' which provides the basis for natural selection processes. Modern bureaucracies have simultaneously grown and spread in a positive feedback cycle; such that interlinking bureaucracies now constitute the major environmental feature of human society which affects organizational survival and reproduction. Individual bureaucracies must become useless parasites which ignore the 'real-world' in order to adapt to rapidly-changing 'bureaucratic reality'. Within science, the major manifestation of bureaucracy is peer review, which - cancer-like - has expanded to obliterate individual authority and autonomy. There has been local elaboration of peer review and metastatic spread of peer review to include all major functions such as admissions, appointments, promotions, grant review, project management, research evaluation, journal and book refereeing and the award of prizes. Peer review eludes the immune system of science since it has now been accepted by other bureaucracies as intrinsically valid, such that any residual individual decision-making (no matter how effective in real-world terms) is regarded as intrinsically unreliable (self-interested and corrupt). Thus the endemic failures of peer review merely trigger demands for ever-more elaborate and widespread peer review. Just as peer review is killing science with its inefficiency and ineffectiveness, so parasitic bureaucracy is an un-containable phenomenon; dangerous to the extent that it cannot be allowed to exist unmolested, but must be utterly extirpated. Or else modernizing societies will themselves be destroyed by sclerosis, resource misallocation, incorrigibly-wrong decisions and the distortions of 'bureaucratic reality'. However, unfortunately, social collapse is the more probable outcome, since parasites can evolve more rapidly than host immune systems.
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
Powell, Joshua D.; Waters, Katrina M.
2017-01-01
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes. PMID:28604586
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Waters, Katrina M.
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less
An integrative feminist model: the evolving feminist perspective on intimate partner violence.
McPhail, Beverly A; Busch, Noël Bridget; Kulkarni, Shanti; Rice, Gail
2007-08-01
The feminist perspective on intimate partner violence is a predominant model in the field, although not immune to criticism. In this research, frontline workers in the violence against women movement responded to critiques of the feminist model. The project used a focus group and a modified grounded theory analysis. Participants agreed with some criticisms, including an overreliance on a punitive criminal justice system, but reported skepticism toward proposed alternatives. Findings led to the development of the Integrative Feminist Model, which expands the feminist perspective in response to critiques, new research, and alternative theories while retaining a gendered analysis of violence.
Adoptive cell therapy: past, present and future.
Cohen, Jonathan E; Merims, Sharon; Frank, Stephen; Engelstein, Roni; Peretz, Tamar; Lotem, Michal
2017-01-01
The immune system is a potent inhibitor of tumor growth with curative potential, constituting in many eyes the future of antineoplastic therapy. Adoptive cell therapy (ACT) is a form of immunotherapy in which autologous cancer-cognate lymphocytes are expanded and modified ex vivo and re-infused to combat the tumor. This review follows the evolvement of ACT and treatment protocols, focusing on unresolved dilemmas regarding this treatment while providing evidence for its effectiveness in refractory patients. Future directions of ACT are discussed, in particular with regard to genetic engineering of autologous cells, and the role of ACT in the era of checkpoint inhibitors is addressed.
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
Powell, Joshua D.; Waters, Katrina M.
2017-06-10
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less
Novel Strategies in the Prevention and Treatment of Urinary Tract Infections
Lüthje, Petra; Brauner, Annelie
2016-01-01
Urinary tract infections are one of the most common bacterial infections, especially in women and children, frequently treated with antibiotics. The alarming increase in antibiotic resistance is a global threat to future treatment of infections. Therefore, alternative strategies are urgently needed. The innate immune system plays a fundamental role in protecting the urinary tract from infections. Antimicrobial peptides form an important part of the innate immunity. They are produced by epithelial cells and neutrophils and defend the urinary tract against invading bacteria. Since efficient resistance mechanisms have not evolved among bacterial pathogens, much effort has been put into exploring the role of antimicrobial peptides and possibilities to utilize them in clinical practice. Here, we describe the impact of antimicrobial peptides in the urinary tract and ways to enhance the production by hormones like vitamin D and estrogen. We also discuss the potential of medicinal herbs to be used in the prophylaxis and the treatment of urinary tract infections. PMID:26828523
Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?
Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R
2018-03-16
Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.
Evolution of Alternative Adaptive Immune Systems in Vertebrates.
Boehm, Thomas; Hirano, Masayuki; Holland, Stephen J; Das, Sabyasachi; Schorpp, Michael; Cooper, Max D
2018-04-26
Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.
Discrimination of Self and Non-Self Ribonucleic Acids
Gebhardt, Anna; Laudenbach, Beatrice T.
2017-01-01
Most virus infections are controlled through the innate and adaptive immune system. A surprisingly limited number of so-called pattern recognition receptors (PRRs) have the ability to sense a large variety of virus infections. The reason for the broad activity of PRRs lies in the ability to recognize viral nucleic acids. These nucleic acids lack signatures that are present in cytoplasmic cellular nucleic acids and thereby marking them as pathogen-derived. Accumulating evidence suggests that these signatures, which are predominantly sensed by a class of PRRs called retinoic acid-inducible gene I (RIG-I)-like receptors and other proteins, are not unique to viruses but rather resemble immature forms of cellular ribonucleic acids generated by cellular polymerases. RIG-I-like receptors, and other cellular antiviral proteins, may therefore have mainly evolved to sense nonprocessed nucleic acids typically generated by primitive organisms and pathogens. This capability has not only implications on induction of antiviral immunity but also on the function of cellular proteins to handle self-derived RNA with stimulatory potential. PMID:28475460
Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.
Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I
2018-01-01
Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.
New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness
Corraliza-Gorjón, Isabel; Somovilla-Crespo, Beatriz; Santamaria, Silvia; Garcia-Sanz, Jose A.; Kremer, Leonor
2017-01-01
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system. PMID:29312320
Influenza and Memory T Cells: How to Awake the Force
Spitaels, Jan; Roose, Kenny; Saelens, Xavier
2016-01-01
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus. PMID:27754364
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System
Forger, Nancy G.; Strahan, J. Alex; Castillo-Ruiz, Alexandra
2016-01-01
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to rethink often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970
In vitro evolution of high-titer, virus-like vesicles containing a single structural protein
Rose, Nina F.; Buonocore, Linda; Schell, John B.; Chattopadhyay, Anasuya; Bahl, Kapil; Liu, Xinran; Rose, John K.
2014-01-01
Self-propagating, infectious, virus-like vesicles (VLVs) are generated when an alphavirus RNA replicon expresses the vesicular stomatitis virus glycoprotein (VSV G) as the only structural protein. The mechanism that generates these VLVs lacking a capsid protein has remained a mystery for over 20 years. We present evidence that VLVs arise from membrane-enveloped RNA replication factories (spherules) containing VSV G protein that are largely trapped on the cell surface. After extensive passaging, VLVs evolve to grow to high titers through acquisition of multiple point mutations in their nonstructural replicase proteins. We reconstituted these mutations into a plasmid-based system from which high-titer VLVs can be recovered. One of these mutations generates a late domain motif (PTAP) that is critical for high-titer VLV production. We propose a model in which the VLVs have evolved in vitro to exploit a cellular budding pathway that is hijacked by many enveloped viruses, allowing them to bud efficiently from the cell surface. Our results suggest a basic mechanism of propagation that may have been used by primitive RNA viruses lacking capsid proteins. Capsids may have evolved later to allow more efficient packaging of RNA, greater virus stability, and evasion of innate immunity. PMID:25385608
Autophagy in the regulation of pathogen replication and adaptive immunity
Randow, Felix; Münz, Christian
2012-01-01
Autophagy is an evolutionary conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo-receptors autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for MHC presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example upon phagosomal damage, while pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy. PMID:22796170
Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent
2013-06-01
We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.
Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.
2013-01-01
We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619
Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep
2015-11-01
Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep
2015-01-01
Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell–cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell–cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. PMID:26248667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapin, B.A.; Stasilevich, Z.K.
1962-07-01
The influence of sublethal doses of x radiation on the course of measles and the formation of immunity was studned. Experiments were staged on 12 monkeys. The results show that during x irradiation in a dose of 300 r and infection of the animals with the measles virus a reciprocal aggravation of the radiation and infectious processes occurs. As a result there is a sharp reduction of the resistance of the monkey's organism with attending complications, which lead to a lethal outcome in nearly haif of the cases. Experiments with irradiation and infection with measles of immune animals disclosed thatmore » the antimeasles immunity evolved earlier proved to be so stable that even irradiation does not weaken it. (auth)« less
Granulocytes in Helminth Infection - Who is Calling the Shots?
Makepeace, BL; Martin, C; Turner, JD; Specht, S
2012-01-01
Helminths are parasitic organisms that can be broadly described as “worms” due to their elongated body plan, but which otherwise differ in shape, development, migratory routes and the predilection site of the adults and larvae. They are divided into three major groups: trematodes (flukes), which are leaf-shaped, hermaphroditic (except for blood flukes) flatworms with oral and ventral suckers; cestodes (tapeworms), which are segmented, hermaphroditic flatworms that inhabit the intestinal lumen; and nematodes (roundworms), which are dioecious, cylindrical parasites that inhabit intestinal and peripheral tissue sites. Helminths exhibit a sublime co-evolution with the host´s immune system that has enabled them to successfully colonize almost all multicellular species present in every geographical environment, including over two billion humans. In the face of this challenge, the host immune system has evolved to strike a delicate balance between attempts to neutralize the infectious assault versus limitation of damage to host tissues. Among the most important cell types during helminthic invasion are granulocytes: eosinophils, neutrophils and basophils. Depending on the specific context, these leukocytes may have pivotal roles in host protection, immunopathology, or facilitation of helminth establishment. This review provides an overview of the function of granulocytes in helminthic infections. PMID:22360486
Neurovirulent Vaccine-Derived Polioviruses in Sewage from Highly Immune Populations
Shulman, Lester M.; Manor, Yossi; Sofer, Danit; Handsher, Rachel; Swartz, Tiberio; Delpeyroux, Francis; Mendelson, Ella
2006-01-01
Background Vaccine-derived polioviruses (VDPVs) have caused poliomyelitis outbreaks in communities with sub-optimal vaccination. Israeli environmental surveillance of sewage from populations with high (>95%) documented vaccine coverage of confirmed efficacy identified two separate evolutionary clusters of VDPVs: Group 1 (1998–2005, one system, population 1.6×106) and Group 2 (2006, 2 systems, populations 0.7×106 and 5×104). Principal Findings Molecular analyses support evolution of nine Group 1 VDPVs along five different lineages, starting from a common ancestral type 2 vaccine-derived Sabin-2/Sabin-1 recombinant strain, and independent evolution of three Group 2 VDPVs along one lineage starting from a different recombinant strain. The primary evidence for two independent origins was based on comparison of unique recombination fingerprints, the number and distribution of identical substitutions, and evolutionary rates. Geometric mean titers of neutralizing antibodies against Group 1 VDPVs were significantly lower than against vaccine strains in all age-group cohorts tested. All individuals had neutralizing titers >1∶8 against these VDPVs except 7% of the 20–50 year cohort. Group 1 VDPVs were highly neurovirulent in a transgenic mouse model. Intermediate levels of protective immunity against Group 2 VDPVs correlated with fewer (5.0+1.0) amino acid substitutions in neutralizing antigenic sites than in Group 1 VDPV's (12.1±1.5). Significance VDPVs that revert from live oral attenuated vaccines and reacquire characteristics of wild-type polioviruses not only threaten populations with poor immune coverage, but are also a potential source for re-introduction of poliomyelitis into highly immune populations through older individuals with waning immunity. The presence of two independently evolved groups of VDPVs in Israel and the growing number of reports of environmental VDPV elsewhere make it imperative to determine the global frequency of environmental VDPV. Our study underscores the importance of the environmental surveillance and the need to reconsider the global strategies for polio eradication and the proposed cessation of vaccination. PMID:17183700
2013-01-01
Background In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). Results We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. Conclusions In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands. PMID:24028551
Super-resolution microscopy reveals protein spatial reorganization in early innate immune responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, Bryan D.; Aaron, Jesse S.; Timlin, Jerilyn Ann
2010-10-01
Over the past decade optical approaches were introduced that effectively break the diffraction barrier. Of particular note were introductions of Stimulated Emission/Depletion (STED) microscopy, Photo-Activated Localization Microscopy (PALM), and the closely related Stochastic Optical Reconstruction Microscopy (STORM). STORM represents an attractive method for researchers, as it does not require highly specialized optical setups, can be implemented using commercially available dyes, and is more easily amenable to multicolor imaging. We implemented a simultaneous dual-color, direct-STORM imaging system through the use of an objective-based TIRF microscope and filter-based image splitter. This system allows for excitation and detection of two fluorophors simultaneously, viamore » projection of each fluorophor's signal onto separate regions of a detector. We imaged the sub-resolution organization of the TLR4 receptor, a key mediator of innate immune response, after challenge with lipopolysaccharide (LPS), a bacteria-specific antigen. While distinct forms of LPS have evolved among various bacteria, only some LPS variations (such as that derived from E. coli) typically result in significant cellular immune response. Others (such as from the plague bacteria Y. pestis) do not, despite affinity to TLR4. We will show that challenge with LPS antigens produces a statistically significant increase in TLR4 receptor clusters on the cell membrane, presumably due to recruitment of receptors to lipid rafts. These changes, however, are only detectable below the diffraction limit and are not evident using conventional imaging methods. Furthermore, we will compare the spatiotemporal behavior of TLR4 receptors in response to different LPS chemotypes in order to elucidate possible routes by which pathogens such as Y. pestis are able to circumvent the innate immune system. Finally, we will exploit the dual-color STORM capabilities to simultaneously image LPS and TLR4 receptors in the cellular membrane at resolutions at or below 40nm.« less
An evaluation of immunization education resources by family medicine residency directors.
Nowalk, Mary Patricia; Zimmerman, Richard K; Middleton, Donald B; Sherwood, Roger A; Ko, Feng-Shou; Kimmel, Sanford R; Troy, Judith A
2007-01-01
Immunization is a rapidly evolving field, and teachers of family medicine are responsible for ensuring that they and their students are knowledgeable about the latest vaccine recommendations. A survey was mailed to 456 family medicine residency directors across the United States to obtain their evaluation of immunization resources developed by the Society of Teachers of Family Medicine's Group on Immunization Education. Frequencies, measures of central tendency, and differences between responses from 2001 to 2005 were analyzed. Directors of 261 (57%) family medicine residencies responded, with >80% reporting satisfaction with immunization teaching resources. The popularity of bound resources decreased from 2001 to 2005, while immunization Web sites increased in importance. The journal supplement, "Vaccines Across the Lifespan, 2005" was less frequently read in 2005 than its predecessor published in 2001, but quality ratings remained high. Use of the Web site, www.ImmunizationEd.org, and the Shots software for both desktop and handheld computers has increased since their creation. Electronic immunization teaching resources are increasingly popular among family medicine residencies. As the field continues to change, the use of electronic resources is expected to continue, since they are easily updated and, in the case of www.ImmunizationEd.org and Shots software, are available free of charge.
Cross-species malaria immunity induced by chemically attenuated parasites
Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia
2013-01-01
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622
Croze, Myriam; Živković, Daniel; Stephan, Wolfgang; Hutter, Stephan
2016-08-01
Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.
Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos
2015-03-10
To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.
Gurven, Michael D.; Trumble, Benjamin C.; Stieglitz, Jonathan; Blackwell, Aaron D.; Michalik, David E.; Finch, Caleb E.; Kaplan, Hillard S.
2016-01-01
Heart disease and type 2 diabetes are commonly believed to be rare among contemporary subsistence-level human populations, and by extension prehistoric populations. Although some caveats remain, evidence shows these diseases to be unusual among well-studied hunter-gatherers and other subsistence populations with minimal access to healthcare. Here we expand on a relatively new proposal for why these and other populations may not show major signs of these diseases. Chronic infections, especially helminths, may offer protection against heart disease and diabetes through direct and indirect pathways. As part of a strategy to insure their own survival and reproduction, helminths exert multiple cardio-protective effects on their host through their effects on immune function and blood lipid metabolism. Helminths consume blood lipids and glucose, alter lipid metabolism, and modulate immune function towards Th-2 polarization—which combined can lower blood cholesterol, reduce obesity, increase insulin sensitivity, decrease atheroma progression, and reduce likelihood of atherosclerotic plaque rupture. Traditional cardiometabolic risk factors, coupled with the mismatch between our evolved immune systems and modern, hygienic environments may interact in complex ways. In this review, we survey existing studies in the non-human animal and human literature, highlight unresolved questions and suggest future directions to explore the role of helminths in the etiology of cardio-metabolic disease. PMID:27666719
Trimming Surface Sugars Protects Histoplasma from Immune Attack.
Brown, Gordon D
2016-04-26
Dectin-1 is an essential innate immune receptor that recognizes β-glucans in fungal cell walls. Its importance is underscored by the mechanisms that fungal pathogens have evolved to avoid detection by this receptor. One such pathogen is Histoplasma capsulatum, and in a recent article in mBio, Rappleye's group presented data showing that yeasts of this organism secrete a β-glucanase, Eng1, which acts to prune β-glucans that are exposed on the fungal cell surface [A. L. Garfoot et al., mBio 7(2):e01388-15, 2016, http://dx.doi.org/10.1128/mBio.01388-15]. The trimming of these sugars reduces immune recognition through Dectin-1 and subsequent inflammatory responses, enhancing the pathogenesis of H. capsulatum. Copyright © 2016 Brown.
Reactive oxygen species-dependent wound responses in animals and plants.
Suzuki, Nobuhiro; Mittler, Ron
2012-12-15
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed. Published by Elsevier Inc.
Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy
Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok
2016-01-01
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research. PMID:27348247
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Koonin, Eugene V; Makarova, Kira S
2017-10-01
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin-antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the "guns for hire" paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.
Craigo, Jodi K.; Montelaro, Ronald C.
2013-01-01
Equine infectious anemia (EIA), identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV) has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env) proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine. PMID:24316675
Effector-triggered immunity: from pathogen perception to robust defense.
Cui, Haitao; Tsuda, Kenichi; Parker, Jane E
2015-01-01
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Can immunostimulatory agents enhance the abscopal effect of radiotherapy?
Levy, Antonin; Chargari, Cyrus; Marabelle, Aurelien; Perfettini, Jean-Luc; Magné, Nicolas; Deutsch, Eric
2016-07-01
Ionising radiation (IR) may harm cancer cells through a rare indirect out-of-field phenomenon described as the abscopal effect. Increasing evidence demonstrates that radiotherapy could be capable of generating tumour-specific immune responses. On the other hand, effects of IR also include inhibitory immune signals on the tumour microenvironment. Following these observations, and in the context of newly available immunostimulatory agents in metastatic cancers (anti-cytotoxic T lymphocyte-associated antigen 4 and programmed cell death protein-1 or -ligand 1 [PD1 or PDL-1]), there is a remarkable potential for synergistic combinations of IR with such agents that act through the reactivation of immune surveillance. Here, we present and discuss the pre-clinical and clinical rationale supporting the enhancement of the abscopal effect of IR on the blockade of immune checkpoints and discuss the evolving potential of immunoradiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.
Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M
2016-03-01
Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in immunogenicity. Our results are important as many common biomaterials (e.g., PLGA) are now known to exhibit immune activity that alters how vaccines are processed. Thus, the results of this study could contribute to more rational design of biomaterial carriers that also actively direct the properties of responses generated by vaccines. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Distinctive properties of metastasis-initiating cells
Celià-Terrassa, Toni; Kang, Yibin
2016-01-01
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies. PMID:27083997
Tybur, Joshua M; Merriman, Leslie A; Hooper, Ann E Caldwell; McDonald, Melissa M; Navarrete, Carlos David
2010-10-26
Previous research suggests that several individual and cultural level attitudes, cognitions, and societal structures may have evolved to mitigate the pathogen threats posed by intergroup interactions. It has been suggested that these anti-pathogen defenses are at the root of conservative political ideology. Here, we test a hypothesis that political conservatism functions as a pathogen-avoidance strategy. Across three studies, we consistently find no relationship between sensitivity to pathogen disgust and multiple measures of political conservatism. These results are contrasted with theoretical perspectives suggesting a relationship between conservatism and pathogen avoidance, and with previous findings of a relationship between conservatism and disgust sensitivity.
Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia
Egawa, Nagayasu; Egawa, Kiyofumi; Griffin, Heather; Doorbar, John
2015-01-01
Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted. PMID:26193301
Predation on multiple trophic levels shapes the evolution of pathogen virulence.
Friman, Ville-Petri; Lindstedt, Carita; Hiltunen, Teppo; Laakso, Jouni; Mappes, Johanna
2009-08-25
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.
Evolvable synthetic neural system
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2009-01-01
An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.
Where does HIV hide? A focus on the central nervous system
Churchill, Melissa; Nath, Avindra
2017-01-01
Purpose of review To review the literature on infection and evolution of HIV within the brain in the context for understanding the nature of the brain reservoir and its consequences. Recent findings HIV-1 in the brain can evolve in separate compartments within macrophage/microglia and astrocytes. The virus adapts to the brain environment to infect these cells and brain-specific mutations can be found in nearly all genes of the virus. The virus evolves to become more neurovirulent. Summary The brain is an ideal reservoir for the HIV. The brain is a relatively immune privileged site and the blood–brain barrier prevents easy access to antiretroviral drugs. Further, the virus infects resident macrophages and astrocytes which are long-lived cells and causes minimal cytopathology in these cells. Hence as we move towards developing strategies for eradication of the virus from the peripheral reservoirs, it is critical that we pay close attention to the virus in the brain and develop strategies for maintaining it in a latent state failure of which could result in dire consequences. PMID:23429501
The roles of picornavirus untranslated regions in infection and innate immunity
USDA-ARS?s Scientific Manuscript database
Viral genomes have evolved to maximize their potential of overcoming host defense mechanisms and to induce a variety of disease syndromes. Structurally, a genome of a virus consists of coding and noncoding regions, and both have been shown to contribute to initiation and progression of disease. Ac...
The gastropod shell has been co-opted to kill parasitic nematodes.
Rae, R
2017-07-06
Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and is made of conchiolin and calcium carbonate, which provides protection from predators and extreme environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90-130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system.
Miller, Marcia M.; Taylor, Robert L.
2016-01-01
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry. PMID:26740135
In silico Analysis of Toxins of Staphylococcus aureus for Validating Putative Drug Targets.
Mohana, Ramadevi; Venugopal, Subhashree
2017-01-01
Toxins are one among the numerous virulence factors produced by the bacteria. These are powerful poisonous substances enabling the bacteria to encounter the defense mechanism of human body. The pathogenic system of Staphylococcus aureus is evolved with various exotoxins that cause detrimental effects on human immune system. Four toxins namely enterotoxin A, exfoliative toxin A, TSST-1 and γ-hemolysin were downloaded from Uniprot database and were analyzed to understand the nature of the toxins and for drug target validation. The results inferred that the toxins were found to interact with many protein partners and no homologous sequences for human proteome were found, and based on similarity search in Drugbank, the targets were identified as novel drug targets. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Targeting of the hydrophobic metabolome by pathogens.
Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F
2015-05-01
The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Landscape of post-transcriptional gene regulation during hepatitis C virus infection
Schwerk, Johannes; Jarret, Abigail P.; Joslyn, Rochelle C.; Savan, Ram
2015-01-01
Post-transcriptional regulation of gene expression plays a pivotal role in various gene regulatory networks including, but not limited to metabolism, embryogenesis and immune responses. Different mechanisms of post-transcriptional regulation, which can act individually, synergistically, or even in an antagonistic manner have been described. Hepatitis C virus (HCV) is notorious for subverting host immune responses and indeed exploits several components of the host’s post-transcriptional regulatory machinery for its own benefit. At the same time, HCV replication is post-transcriptionally targeted by host cell components to blunt viral propagation. This review discusses the interplay of post-transcriptional mechanisms that affect host immune responses in the setting of HCV infection and highlights the sophisticated mechanisms both host and virus have evolved in the race for superiority. PMID:25890065
Viruses and Human Cancers: a Long Road of Discovery of Molecular Paradigms
White, Martyn K.; Pagano, Joseph S.
2014-01-01
SUMMARY About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved. PMID:24982317
Wan, Qiu-Hong; Pan, Sheng-Kai; Hu, Li; Zhu, Ying; Xu, Peng-Wei; Xia, Jin-Quan; Chen, Hui; He, Gen-Yun; He, Jing; Ni, Xiao-Wei; Hou, Hao-Long; Liao, Sheng-Guang; Yang, Hai-Qiong; Chen, Ying; Gao, Shu-Kun; Ge, Yun-Fa; Cao, Chang-Chang; Li, Peng-Fei; Fang, Li-Ming; Liao, Li; Zhang, Shu; Wang, Meng-Zhen; Dong, Wei; Fang, Sheng-Guo
2013-01-01
Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted. PMID:23917531
Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun
2015-01-01
Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems.
Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun
2015-01-01
Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems. PMID:26513657
Immunoglobulin Heavy Chain Exclusion in the Shark
Malecek, Karolina; Lee, Victor; Feng, Wendy; Huang, Jing Li; Flajnik, Martin F; Ohta, Yuko; Hsu, Ellen
2008-01-01
The adaptive immune system depends on specific antigen receptors, immunoglobulins (Ig) in B lymphocytes and T cell receptors (TCR) in T lymphocytes. Adaptive responses to immune challenge are based on the expression of a single species of antigen receptor per cell; and in B cells, this is mediated in part by allelic exclusion at the Ig heavy (H) chain locus. How allelic exclusion is regulated is unclear; we considered that sharks, the oldest vertebrates possessing the Ig/TCR-based immune system, would yield insights not previously approachable and reveal the primordial basis of the regulation of allelic exclusion. Sharks have an IgH locus organization consisting of 15–200 independently rearranging miniloci (VH-D1-D2-JH-Cμ), a gene organization that is considered ancestral to the tetrapod and bony fish IgH locus. We found that rearrangement takes place only within a minilocus, and the recombining gene segments are assembled simultaneously and randomly. Only one or few H chain genes were fully rearranged in each shark B cell, whereas the other loci retained their germline configuration. In contrast, most IgH were partially rearranged in every thymocyte (developing T cell) examined, but no IgH transcripts were detected. The distinction between B and T cells in their IgH configurations and transcription reveals a heretofore unsuspected chromatin state permissive for rearrangement in precursor lymphocytes, and suggests that controlled limitation of B cell lineage-specific factors mediate regulated rearrangement and allelic exclusion. This regulation may be shared by higher vertebrates in which additional mechanistic and regulatory elements have evolved with their structurally complex IgH locus. PMID:18578572
Wan, Qiu-Hong; Pan, Sheng-Kai; Hu, Li; Zhu, Ying; Xu, Peng-Wei; Xia, Jin-Quan; Chen, Hui; He, Gen-Yun; He, Jing; Ni, Xiao-Wei; Hou, Hao-Long; Liao, Sheng-Guang; Yang, Hai-Qiong; Chen, Ying; Gao, Shu-Kun; Ge, Yun-Fa; Cao, Chang-Chang; Li, Peng-Fei; Fang, Li-Ming; Liao, Li; Zhang, Shu; Wang, Meng-Zhen; Dong, Wei; Fang, Sheng-Guo
2013-09-01
Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted.
Money for microbes-Pathogen avoidance and out-group helping behaviour.
Laakasuo, Michael; Köbis, Nils; Palomäki, Jussi; Jokela, Markus
2017-02-23
Humans have evolved various adaptations against pathogens, including the physiological immune system. However, not all of these adaptations are physiological: the cognitive mechanisms whereby we avoid potential sources of pathogens-for example, disgust elicited by uncleanliness-can be considered as parts of a behavioural immune system (BIS). The mechanisms of BIS extend also to inter-group relations: Pathogen cues have been shown to increase xenophobia/ethnocentrism, as people prefer to keep their societal in-group norms unaltered and "clean." Nonetheless, little is known how pathogen cues influence people's willingness to provide humanitarian aid to out-group members. We examined how pathogen cues affected decisions of providing humanitarian aid in either instrumental (sending money) or non-instrumental form (sending personnel to help, or accepting refugees), and whether these effects were moderated by individual differences in BIS sensitivity. Data were collected in two online studies (Ns: 188 and 210). When the hypothetical humanitarian crisis involved a clear risk of infection, participants with high BIS sensitivity preferred to send money rather than personnel or to accept refugees. The results suggest that pathogen cues influence BIS-sensitive individuals' willingness to provide humanitarian aid when there is a risk of contamination to in-group members. © 2017 International Union of Psychological Science.
Factors Related to Public Health Data Sharing between Local and State Health Departments
Vest, Joshua R; Issel, L Michele
2014-01-01
Objective Public health organizations increasingly face the need to be able to share data among themselves and ultimately with other providers. We examined what factors contribute to public health organizations’ data exchange capabilities. Data Sources National Association of County and City Health Officials’ 2008 National Profile of Local Health Departments survey was linked to the Association of State and Territorial Health Official’s 2007 Profile of State Public Health Survey. Study Design We conducted a cross-sectional analysis of organizational factors associated with gaps in data sharing between state health agencies (SHAs) and local health departments (LHDs) in the areas of childhood immunizations, vital records, and reportable conditions. Data Collection Based on reported information system (IS) capabilities, we created a binary variable that measured whether bidirectional data sharing was structurally possible between an LHD and its respective SHA. Principal Findings The proportion of LHDs experiencing a data sharing gap was 34.0 percent for immunizations, 69.8 percent for vital records, and 81.8 percent for reportable conditions. Increased SHA technological capacity and size reduced the odds of gaps. Conclusions Improving the IS capabilities of public health agencies may be the key to their remaining relevant in the currently evolving health care system. PMID:24359636
Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang
2016-01-18
Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development.
Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang
2016-01-01
Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate’s protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545
[The odontogenic abscess. Aetiology, treatment and involvement in the orofacial region].
Spijkervet, F K; Vissink, A; Raghoebar, G M
2004-04-01
Odontogenic infections are a common problem in daily practice. Occasionally, an odontogenic infection evolves an abscess. This article discusses the aetiology, the treatment and the involvement of odontogenic abscesses in the oro-facial region. Their occurrence, course and treatment are depending on the patient's immune response, and on microbial and environmental factors.
CRISPR Editing Technology in Biological and Biomedical Investigation.
White, Martyn K; Kaminski, Rafal; Young, Won-Bin; Roehm, Pamela C; Khalili, Kamel
2017-11-01
The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Turula, Holly; Wobus, Christiane E
2018-05-03
The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.
Clemente, Ann Maria; Castronovo, Giuseppe; Antonelli, Alberto; D’Andrea, Marco Maria; Tanturli, Michele; Perissi, Eloisa; Paccosi, Sara; Parenti, Astrid; Cozzolino, Federico; Rossolini, Gian Maria
2017-01-01
The spread of KPC-type carbapenemases is mainly attributed to the global dissemination of Klebsiella pneumoniae (KP) strains belonging to the clonal group (CG) 258, including sequence type (ST) 258 and other related STs. Two distinct clades of CG258-KP have evolved, which differ mainly for the composition of their capsular polysaccharides, and recent studies indicate that clade 1 evolved from an ancestor of clade 2 by recombination of a genomic fragment carrying the capsular polysaccharide (cps) locus. In this paper, we investigated the ability of two ST258-KP strains, KKBO-1 and KK207-1, selected as representatives of ST258-KP clade 2 and clade 1, respectively, to activate an adaptive immune response using ex vivo-stimulation of PBMC from normal donors as an experimental model. Our data showed that KKBO-1 (clade 2) induces a Th17 response more efficiently than KK207-1 (clade 1): the percentage of CD4+IL17+ cells and the production of IL-17A were significantly higher in cultures with KKBO-1 compared to cultures with KK207-1. While no differences in the rate of bacterial internalization or in the bacteria-induced expression of CD86 and HLA-DR by monocytes and myeloid dendritic cells were revealed, we found that the two strains significantly differ in inducing the production of cytokines involved in the adaptive immune response, as IL-1β, IL-23 and TNF-α, by antigen-presenting cells, with KKBO-1 being a more efficient inducer than KK207-1. The immune responses elicited by KK207-1 were comparable to those elicited by CIP 52.145, a highly virulent K. pneumoniae reference strain known to escape immune-inflammatory responses. Altogether, present results suggest that CG258-KP of the two clades are capable of inducing a different response of adaptive immunity in the human host. PMID:28586386
Tarbell, Kristin V; Egen, Jackson G
2018-02-02
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction. ©2018 Society for Leukocyte Biology.
Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick
2015-01-01
In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786
Allen, Judith E.; Sutherland, Tara E.
2014-01-01
Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4Rα that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340
Cutaneous immunization: an evolving paradigm in influenza vaccines
Gill, Harvinder S; Kang, Sang-Moo; Quan, Fu-Shi; Compans, Richard W
2014-01-01
Introduction Most vaccines are administered by intramuscular injection using a hypodermic needle and syringe. Some limitations of this procedure include reluctance to be immunized because of fear of needlesticks, and concerns associated with the safe disposal of needles after their use. Skin delivery is an alternate route of vaccination that has potential to be painless and could even lead to dose reduction of vaccines. Recently, microneedles have emerged as a novel painless approach for delivery of influenza vaccines via the skin. Areas covered In this review, we briefly summarize the approaches and devices used for skin vaccination, and then focus on studies of skin immunization with influenza vaccines using microneedles. We discuss both the functional immune response and the nature of this immune response following vaccination with microneedles. Expert opinion The cutaneous administration of influenza vaccines using microneedles offers several advantages: it is painless, elicits stronger immune responses in preclinical studies and could improve responses in high-risk populations. These dry formulations of vaccines provide enhanced stability, a property of high importance in enabling their rapid global distribution in response to possible outbreaks of pandemic influenza and newly emerging infectious diseases. PMID:24521050
Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.
Zhang, Qingzhan; Yoo, Dongwan
2016-12-02
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
Verbsky, James W; Chatila, Talal A
2013-12-01
To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.
Dash, Pujarini; Kar, Banya; Mishra, Arpita; Sahoo, P K
2014-03-01
The monogenean ectoparasite, Dactylogyrus sp. is a major pathogen in freshwater aquaculture. The immune responses in parasitized fish were analyzed by quantitation of innate immune factors (natural agglutinin level, haemolysin titre, antiprotease, lysozyme and myeloperoxidase activities) in serum and immune-relevant gene expression in gill and anterior kidney. The antiprotease activity and natural agglutinin level were found to be significantly higher and lysozyme activity was significantly lower in parasitized fish. Most of the genes viz., beta2-microglobulin (beta2M), major histocompatibility complex I (MHCI), MHCII, tumor necrosis factor alpha (TNFalpha) and toll-like receptor 22 (TLR22) in gill samples were significantly down-regulated in the experimental group. In the anterior kidney, the expression of superoxide dismutase and interleukin 1beta (IL1beta) were significantly up-regulated whereas a significant down regulation of MHCII and TNFalpha was also observed. The down-regulation of most of the genes viz, MHCI, beta2M, MHCII, TLR22 and TNFalpha in infected gills indicated a well evolved mechanism in this parasite to escape the host immune response. The modulation of innate and adaptive immunity by this parasite can be further explored to understand host susceptibility.
Le Burel, Sébastien; Thepenier, Cédric; Boutin, Laetitia; Lataillade, Jean-Jacques; Peltzer, Juliette
2017-10-15
Sepsis is a complex process, including a first wave of damage partially due to the body's response to pathogens, followed by a phase of immune cell dysfunction. The efficacy of a pharmacological approach facing a rapidly evolving system implies a perfect timing of administration-this difficulty could explain the recent failure of clinical trials. Mesenchymal stromal cells (MSCs) are usually defined as immunosuppressive and their beneficial effects in preclinical models of acute sepsis have been shown to rely partly on such ability. If nonregulated, this phenotype could be harmful in the immunosuppressed context arising hours after sepsis onset. However, MSCs being environment sensitive, we hypothesized that they could reverse their immunosuppressive properties when confronted with suffering immune cells. Our objective was to evaluate the effect of human MSCs on activated human lymphocytes in an in vitro endotoxemia model. Peripheral blood mononuclear cells (PBMCs) underwent a 24-h lipopolysaccharide (LPS) intoxication and were stimulated with phytohemagglutinin (PHA) in contact with MSCs. MSCs induced a differential effect on lymphocytes depending on PBMC intoxication with LPS. Unintoxicated lymphocytes were highly proliferative with PHA and were inhibited by MSCs, whereas LPS-intoxicated lymphocytes showed a low proliferation rate, but were supported by MSCs, even when monocytes were depleted. These data, highlighting MSC plasticity in their immunomodulatory activity, pave the way for further studies investigating the mechanisms of mutual interactions between MSCs and immune cells in sepsis. Thus, MSCs might be able to fight against both early sepsis-induced hyperinflammatory response and later time points of immune dysfunction.
How dying cells alert the immune system to danger
Kono, Hajime; Rock, Kenneth L.
2009-01-01
When a cell dies in vivo the event does not go unnoticed. The host has evolved mechanisms to detect the death of cells and rapidly investigate the nature of their demise. If cell death is a result of natural causes, that is, it is part of normal physiological processes, then there is little threat to the organism. In this situation, little else is done other than removing the corpse. However, if cells have died as the consequence of some violence or disease, then both defence and repair mechanisms are mobilized. The importance of this process to host defence and disease pathogenesis has only been appreciated relatively recently. This article will review our current knowledge of these processes. PMID:18340345
Social Regulation of Human Gene Expression: Mechanisms and Implications for Public Health
2013-01-01
Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific “social programs” to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health. PMID:23927506
Broderick, Nichole A
2016-05-26
Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).
2016-01-01
Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160597
Diet and microbiota in inflammatory bowel disease: The gut in disharmony.
Rapozo, Davy C M; Bernardazzi, Claudio; de Souza, Heitor Siffert Pereira
2017-03-28
Bacterial colonization of the gut shapes both the local and the systemic immune response and is implicated in the modulation of immunity in both healthy and disease states. Recently, quantitative and qualitative changes in the composition of the gut microbiota have been detected in Crohn's disease and ulcerative colitis, reinforcing the hypothesis of dysbiosis as a relevant mechanism underlying inflammatory bowel disease (IBD) pathogenesis. Humans and microbes have co-existed and co-evolved for a long time in a mutually beneficial symbiotic association essential for maintaining homeostasis. However, the microbiome is dynamic, changing with age and in response to environmental modifications. Among such environmental factors, food and alimentary habits, progressively altered in modern societies, appear to be critical modulators of the microbiota, contributing to or co-participating in dysbiosis. In addition, food constituents such as micronutrients are important regulators of mucosal immunity, with direct or indirect effects on the gut microbiota. Moreover, food constituents have recently been shown to modulate epigenetic mechanisms, which can result in increased risk for the development and progression of IBD. Therefore, it is likely that a better understanding of the role of different food components in intestinal homeostasis and the resident microbiota will be essential for unravelling the complex molecular basis of the epigenetic, genetic and environment interactions underlying IBD pathogenesis as well as for offering dietary interventions with minimal side effects.
Diet and microbiota in inflammatory bowel disease: The gut in disharmony
Rapozo, Davy C M; Bernardazzi, Claudio; de Souza, Heitor Siffert Pereira
2017-01-01
Bacterial colonization of the gut shapes both the local and the systemic immune response and is implicated in the modulation of immunity in both healthy and disease states. Recently, quantitative and qualitative changes in the composition of the gut microbiota have been detected in Crohn’s disease and ulcerative colitis, reinforcing the hypothesis of dysbiosis as a relevant mechanism underlying inflammatory bowel disease (IBD) pathogenesis. Humans and microbes have co-existed and co-evolved for a long time in a mutually beneficial symbiotic association essential for maintaining homeostasis. However, the microbiome is dynamic, changing with age and in response to environmental modifications. Among such environmental factors, food and alimentary habits, progressively altered in modern societies, appear to be critical modulators of the microbiota, contributing to or co-participating in dysbiosis. In addition, food constituents such as micronutrients are important regulators of mucosal immunity, with direct or indirect effects on the gut microbiota. Moreover, food constituents have recently been shown to modulate epigenetic mechanisms, which can result in increased risk for the development and progression of IBD. Therefore, it is likely that a better understanding of the role of different food components in intestinal homeostasis and the resident microbiota will be essential for unravelling the complex molecular basis of the epigenetic, genetic and environment interactions underlying IBD pathogenesis as well as for offering dietary interventions with minimal side effects. PMID:28405140
Nuclear processes associated with plant immunity and pathogen susceptibility
Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja
2015-01-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755
Nuclear processes associated with plant immunity and pathogen susceptibility.
Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar
2015-07-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.
New Perspectives on Ebola Virus Evolution.
Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty
2016-01-01
Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.
Supportive care in the era of immunotherapies for advanced non-small-cell lung cancer.
Awada, Gil; Klastersky, Jean
2018-03-01
The therapeutic armamentarium for advanced non-small-cell lung cancer has evolved considerably over the past years. Immune checkpoint inhibitors targeting programmed cell death-1 such as pembrolizumab and nivolumab or programmed cell death ligand 1 such as atezolizumab, durvalumab and avelumab have shown favorable efficacy results in this patient population in the first-line and second-line setting. These immunotherapies are associated with a distinct toxicity profile based on autoimmune organ toxicity which is a new challenge for supportive care during treatment with these drugs. The differential diagnosis of events occurring during immune checkpoint inhibitor treatment is broad: they can be due to immune-related or nonimmune-related adverse events, atypical tumor responses (pseudoprogression or hyperprogression) or events related to comorbidities or other treatments. The management of these patients includes a thorough baseline clinical, biological and radiologic evaluation, patient education, correct follow-up and management by a multidisciplinary team with a central role for the medical oncologist. Immune-related toxicities should be managed according to available guidelines.
Pan, Keyao; Deem, Michael W.
2011-01-01
Many viruses evolve rapidly. For example, haemagglutinin (HA) of the H3N2 influenza A virus evolves to escape antibody binding. This evolution of the H3N2 virus means that people who have previously been exposed to an influenza strain may be infected by a newly emerged virus. In this paper, we use Shannon entropy and relative entropy to measure the diversity and selection pressure by an antibody in each amino acid site of H3 HA between the 1992–1993 season and the 2009–2010 season. Shannon entropy and relative entropy are two independent state variables that we use to characterize H3N2 evolution. The entropy method estimates future H3N2 evolution and migration using currently available H3 HA sequences. First, we show that the rate of evolution increases with the virus diversity in the current season. The Shannon entropy of the sequence in the current season predicts relative entropy between sequences in the current season and those in the next season. Second, a global migration pattern of H3N2 is assembled by comparing the relative entropy flows of sequences sampled in China, Japan, the USA and Europe. We verify this entropy method by describing two aspects of historical H3N2 evolution. First, we identify 54 amino acid sites in HA that have evolved in the past to evade the immune system. Second, the entropy method shows that epitopes A and B on the top of HA evolve most vigorously to escape antibody binding. Our work provides a novel entropy-based method to predict and quantify future H3N2 evolution and to describe the evolutionary history of H3N2. PMID:21543352
RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense.
Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi
2017-01-01
Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
Peng, Rui; Liu, Yuliang; Cai, Zhigang; Shen, Fujun; Chen, Jiasong; Hou, Rong; Zou, Fangdong
2018-01-01
Giant pandas, an endangered species, are a powerful symbol of species conservation. Giant pandas may suffer from a variety of diseases. Owing to their highly specialized diet of bamboo, giant pandas are thought to have a relatively weak ability to resist diseases. The spleen is the largest organ in the lymphatic system. However, there is little known about giant panda spleen at a molecular level. Thus, clarifying the regulatory mechanisms of spleen could help us further understand the immune system of the giant panda as well as its conservation. The two giant panda spleens were from two male individuals, one newborn and one an adult, in a non-pathological condition. The whole transcriptomes of mRNA, lncRNA, miRNA, and circRNA in the two spleens were sequenced using the Illumina HiSeq platform. EBseq and IDEG6 were used to observe the differentially expressed genes (DEGs) between these two spleens. Gene Ontology and KEGG analyses were used to annotate the function of DEGs. Furthermore, networks between non-coding RNAs and protein-coding genes were constructed to investigate the relationship between non-coding RNAs and immune-associated genes. By comparative analysis of the whole transcriptomes of these two spleens, we found that one of the major roles of lncRNAs could be involved in the regulation of immune responses of giant panda spleens. In addition, our results also revealed that microRNAs and circRNAs may have evolved to regulate a large set of biological processes of giant panda spleens, and circRNAs may function as miRNA sponges. To our knowledge, this is the first report of lncRNAs and circRNAs in giant panda, which could be a useful resource for further giant panda research. Our study reveals the potential functional roles of miRNAs, lncRNAs, and circRNAs in giant panda spleen. © 2018 The Author(s). Published by S. Karger AG, Basel.
Nanoparticle Design Strategies for Effective Cancer Immunotherapy
Velpurisiva, Praveena; Gad, Aniket; Piel, Brandon; Jadia, Rahul; Rai, Prakash
2017-01-01
Cancer immunotherapy is a rapidly evolving and paradigm shifting treatment modality that adds a strong tool to the collective cancer treatment arsenal. It can be effective even for late stage diagnoses and has already received clinical approval. Tumors are known to not only avoid immune surveillance but also exploit the immune system to continue local tumor growth and metastasis. Because of this, most immunotherapies, particularly those directed against solid cancers, have thus far only benefited a small minority of patients. Early clinical substantiation lends weight to the claim that cancer immunotherapies, which are adaptive and enduring treatment methods, generate much more sustained and robust anticancer effects when they are effectively formulated in nanoparticles or scaffolds than when they are administered as free drugs. Engineering cancer immunotherapies using nanomaterials is, therefore, a very promising area worthy of further consideration and investigation. This review focuses on the recent advances in cancer immunoengineering using nanoparticles for enhancing the therapeutic efficacy of a diverse range of immunotherapies. The delivery of immunostimulatory agents to antitumor immune cells, such as dendritic or antigen presenting cells, may be a far more efficient tactic to eradicate tumors than delivery of conventional chemotherapeutic and cytotoxic drugs to cancer cells. In addition to its immense therapeutic potential, immunoengineering using nanoparticles also provides a valuable tool for unearthing and understanding the basics of tumor biology. Recent research using nanoparticles for cancer immunotherapy has demonstrated the advantage of physicochemical manipulation in improving the delivery of immunostimulatory agents. In vivo studies have tested a range of particle sizes, mostly less than 300 nm, and particles with both positive and negative zeta potentials for various applications. Material composition and surface modifications have been shown to contribute significantly in selective targeting, efficient delivery and active stimulation of immune system targets. Thus, these investigations, including a wide array of nanoparticles for cancer immunotherapy, substantiate the employment of nanocarriers for efficacious cancer immunotherapies. PMID:28503405
Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi
2014-11-01
Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yersinia type III effectors perturb host innate immune responses
Pha, Khavong; Navarro, Lorena
2016-01-01
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis. PMID:26981193
The Peyer’s Patch Mononuclear Phagocyte System at Steady State and during Infection
Da Silva, Clément; Wagner, Camille; Bonnardel, Johnny; Gorvel, Jean-Pierre; Lelouard, Hugues
2017-01-01
The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different phagocyte subsets during PP stimulation or infection are discussed. PMID:29038658
No Love Lost Between Viruses and Interferons.
Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C
2015-11-01
The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.
Social interaction in synthetic and natural microbial communities.
Xavier, Joao B
2011-04-12
Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.
NASA Astrophysics Data System (ADS)
La Porta, Caterina A. M.; Zapperi, Stefano
2016-07-01
The process of inflammation tries to protect the body after an injury due to biological causes such as the presence of pathogens or chemicals, or to physical processes such as burns or cuts. The biological rationale for this process has the main goal of eliminating the cause of the injury and then repairing the damaged tissues. We can distinguish two kinds of inflammations: acute and chronic. In acute inflammation, a series of events involving the local vascular systems, the immune system and various cells within the injured tissue work together to eradicate the harmful stimuli. If the inflammation does not resolve the problem, it can evolve into a chronic inflammation, where the type of cells involved changes and there is a simultaneous destruction and healing of the tissue from the inflammation process.
Spencer, Juliet V
2007-02-01
Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.
NOD-like receptor cooperativity in effector-triggered immunity.
Griebel, Thomas; Maekawa, Takaki; Parker, Jane E
2014-11-01
Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations. Copyright © 2014. Published by Elsevier Ltd.
Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.
Rapicavoli, Jeannette N; Blanco-Ulate, Barbara; Muszyński, Artur; Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Azadi, Parastoo; Dobruchowska, Justyna M; Castro, Claudia; Cantu, Dario; Roper, M Caroline
2018-01-26
Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.
Zheng, Yadong
2013-11-01
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases. © 2013.
Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions.
Bauché, David; Marie, Julien C
2017-04-01
The relationship between host organisms and their microbiota has co-evolved towards an inter-dependent network of mutualistic interactions. This interplay is particularly well studied in the gastrointestinal tract, where microbiota and host immune cells can modulate each other directly, as well as indirectly, through the production and release of chemical molecules and signals. In this review, we define the functional impact of transforming growth factor-beta (TGF-β) on this complex interplay, especially through its modulation of the activity of local regulatory T cells (Tregs), type 17 helper (Th17) cells, innate lymphoid cells (ILCs) and B cells.
The effect of malnutrition on norovirus infection.
Hickman, Danielle; Jones, Melissa K; Zhu, Shu; Kirkpatrick, Ericka; Ostrov, David A; Wang, Xiaoyu; Ukhanova, Maria; Sun, Yijun; Mai, Volker; Salemi, Marco; Karst, Stephanie M
2014-03-04
Human noroviruses are the primary cause of severe childhood diarrhea in the United States, and they are of particular clinical importance in pediatric populations in the developing world. A major contributing factor to the general increased severity of infectious diseases in these regions is malnutrition-nutritional status shapes host immune responses and the composition of the host intestinal microbiota, both of which can influence the outcome of pathogenic infections. In terms of enteric norovirus infections, mucosal immunity and intestinal microbes are likely to contribute to the infection outcome in substantial ways. We probed these interactions using a murine model of malnutrition and murine norovirus infection. Our results reveal that malnutrition is associated with more severe norovirus infections as defined by weight loss, impaired control of norovirus infections, reduced antiviral antibody responses, loss of protective immunity, and enhanced viral evolution. Moreover, the microbiota is dramatically altered by malnutrition. Interestingly, murine norovirus infection also causes changes in the host microbial composition within the intestine but only in healthy mice. In fact, the infection-associated microbiota resembles the malnutrition-associated microbiota. Collectively, these findings represent an extensive characterization of a new malnutrition model of norovirus infection that will ultimately facilitate elucidation of the nutritionally regulated host parameters that predispose to more severe infections and impaired memory immune responses. In a broad sense, this model may provide insight into the reduced efficacy of oral vaccines in malnourished hosts and the potential for malnourished individuals to act as reservoirs of emergent virus strains. IMPORTANCE Malnourished children in developing countries are susceptible to more severe infections than their healthy counterparts, in particular enteric infections that cause diarrhea. In order to probe the effects of malnutrition on an enteric infection in a well-controlled system devoid of other environmental and genetic variability, we studied norovirus infection in a mouse model. We have revealed that malnourished mice develop more severe norovirus infections and they fail to mount effective memory immunity to a secondary challenge. This is of particular importance because malnourished children generally mount less effective immune responses to oral vaccines, and we can now use our new model system to probe the immunological basis of this impairment. We have also determined that noroviruses evolve more readily in the face of malnutrition. Finally, both norovirus infection and malnutrition independently alter the composition of the intestinal microbiota in substantial and overlapping ways.
USDA-ARS?s Scientific Manuscript database
Helminths, including GI nematodes, colonize > 1/3 of the world’s population and have evolved with humans and their microbiome. Parasites inherently regulate the host immune response to ensure their survival through mechanisms that dampen host inflammation. These unique properties of nematodes have b...
Brokordt, Katherina B.; González, Roxana C.; Farías, William J.; Winkler, Federico M.
2015-01-01
Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h 2) and the additive genetic coefficient of variation (CV A) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h 2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h 2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CV A of 13.3–16.2% in young adults and of 2.7–8.1% in pre-harvest adults. Thus, despite its low h 2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals. PMID:26529324
Brokordt, Katherina B; González, Roxana C; Farías, William J; Winkler, Federico M
2015-01-01
Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h2) and the additive genetic coefficient of variation (CVA) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CVA of 13.3-16.2% in young adults and of 2.7-8.1% in pre-harvest adults. Thus, despite its low h2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals.
Wang, Song; Chi, Xiaojuan; Wei, Haitao; Chen, Yuhai; Chen, Zhilong; Huang, Shile; Chen, Ji-Long
2014-08-01
Although alteration in host cellular translation machinery occurs in virus-infected cells, the role of such alteration and the precise pathogenic processes are not well understood. Influenza A virus (IAV) infection shuts off host cell gene expression at transcriptional and translational levels. Here, we found that the protein level of eukaryotic translation initiation factor 4B (eIF4B), an integral component of the translation initiation apparatus, was dramatically reduced in A549 cells as well as in the lung, spleen, and thymus of mice infected with IAV. The decrease in eIF4B level was attributed to lysosomal degradation of eIF4B, which was induced by viral NS1 protein. Silencing eIF4B expression in A549 cells significantly promoted IAV replication, and conversely, overexpression of eIF4B markedly inhibited the viral replication. Importantly, we observed that eIF4B knockdown transgenic mice were more susceptible to IAV infection, exhibiting faster weight loss, shorter survival time, and more-severe organ damage. Furthermore, we demonstrated that eIF4B regulated the expression of interferon-induced transmembrane protein 3 (IFITM3), a critical protein involved in immune defense against a variety of RNA viruses, including influenza virus. Taken together, our findings reveal that eIF4B plays an important role in host defense against IAV infection at least by regulating the expression of IFITM3, which restricts viral entry and thereby blocks early stages of viral production. These data also indicate that influenza virus has evolved a strategy to overcome host innate immunity by downregulating eIF4B protein. Influenza A virus (IAV) infection stimulates the host innate immune system, in part, by inducing interferons (IFNs). Secreted IFNs activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, leading to elevated transcription of a large group of IFN-stimulated genes that have antiviral function. To circumvent the host innate immune response, influenza virus has evolved multiple strategies for suppressing the production of IFNs. Here, we show that IAV infection induces lysosomal degradation of eIF4B protein; and eIF4B inhibits IAV replication by upregulating expression of interferon-induced transmembrane protein 3 (IFITM3), a key protein that protects the host from virus infection. Our finding illustrates a critical role of eIF4B in the host innate immune response and provides novel insights into the complex mechanisms by which influenza virus interacts with its host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Yarbrough, Victoria L; Winkle, Sean; Herbst-Kralovetz, Melissa M
2015-01-01
At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased susceptibility to these pathogens. During pregnancy, AMP are key immune effectors of the fetal membranes and placenta and are dysregulated in states of intrauterine infection and other complications of pregnancy. At the level of the FRT, AMP serve to inhibit infection by sexually and vertically transmissible as well as by opportunistic bacteria, fungi, viruses, and protozoa and must do so throughout the hormone flux of menses and pregnancy. Guarding the exclusive site of reproduction, AMP modulate the vaginal microbiome of the lower FRT to aid in preventing ascending microbes into the upper FRT. Evolving in parallel with, and in response to, pathogenic insults, AMP are relatively immune to the resistance mechanisms employed by rapidly evolving pathogens and play a key role in barrier function and host defense throughout the FRT. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Killing machines: three pore-forming proteins of the immune system
McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki
2014-01-01
The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008
Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins
Yun, Thomas H.; Cott, Jessica E.; Tapping, Richard I.; Slauch, James M.
2009-01-01
The immune response to infection includes activation of the blood clotting system, leading to extravascular fibrin deposition to limit the spread of invasive microorganisms. Some bacteria have evolved mechanisms to counteract this host response. Pla, a member of the omptin family of Gram-negative bacterial proteases, promotes the invasiveness of the plague bacterium, Yersinia pestis, by activating plasminogen to plasmin to digest fibrin. We now show that the endogenous anticoagulant tissue factor pathway inhibitor (TFPI) is also highly sensitive to proteolysis by Pla and its orthologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium. Using gene deletions, we demonstrate that bacterial inactivation of TFPI requires omptin expression. TFPI inactivation is mediated by proteolysis since Western blot analysis showed that TFPI cleavage correlated with loss of anticoagulant function in clotting assays. Rates of TFPI inactivation were much higher than rates of plasminogen activation, indicating that TFPI is a better substrate for omptins. We hypothesize that TFPI has evolved sensitivity to proteolytic inactivation by bacterial omptins to potentiate procoagulant responses to bacterial infection. This may contribute to the hemostatic imbalance in disseminated intravascular coagulation and other coagulopathies accompanying severe sepsis. PMID:18988866
The Peculiar Characteristics of Fish Type I Interferons
Boudinot, Pierre; Langevin, Christelle; Secombes, Christopher J.; Levraud, Jean-Pierre
2016-01-01
Antiviral type I interferons (IFNs) have been discovered in fish. Genomic studies revealed their considerable number in many species; some genes encode secreted and non-secreted isoforms. Based on cysteine motifs, fish type I IFNs fall in two subgroups, which use two different receptors. Mammalian type I IFN genes are intronless while type III have introns; in fish, all have introns, but structurally, both subgroups belong to type I. Type I IFNs likely appeared early in vertebrates as intron containing genes, and evolved in parallel in tetrapods and fishes. The diversity of their repertoires in fish and mammals is likely a convergent feature, selected as a response to the variety of viral strategies. Several alternative nomenclatures have been established for different taxonomic fish groups, calling for a unified system. The specific functions of each type I gene remains poorly understood, as well as their interactions in antiviral responses. However, distinct induction pathways, kinetics of response, and tissue specificity indicate that fish type I likely are highly specialized, especially in groups where they are numerous such as salmonids or cyprinids. Unravelling their functional integration constitutes the next challenge to understand how these cytokines evolved to orchestrate antiviral innate immunity in vertebrates. PMID:27827855
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raine, C.S.
1988-01-01
This volume presents the proceedings of the Second International Congress of Neuroimmunology. It brought together basic researchers and clinicians involved in the application of immunologic methodologies to the elucidation of problems related to nervous system development and disease. Neuroimmunology as a discipline is still in its infancy although its roots date back more than 50 years when it was realized that certain neurologic disorders were related to allergic reactions. Since then, it has been shown that immunological mechanisms are involved not only in a growing number of disease processes of the nervous system, but also in the development of nervousmore » tissue. It is now widely accepted that the nervous system shares a unique relationship with the immune system, sometimes through shared receptors, and possesses a large repertoire of specific antigens. Thus, with the continuing and intensive application of immunologic techniques to the neurologic sciences, the specialty of neuroimmunology has evolved. The major diseases that now fall into its realm include multiple sclerosis, myasthenia gravis, peripheral neuropathy, systemic lupus erythematosus, AIDS, leprosy, narcolepsy, tumors, viral encephalitis, and their experimental counterparts.« less
Cutaneous immunology: basics and new concepts.
Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran
2016-01-01
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Breed, Matthew W.; Jordan, Andrea P. O.; Aye, Pyone P.; Lichtveld, Cornelis F.; Midkiff, Cecily C.; Schiro, Faith R.; Haggarty, Beth S.; Sugimoto, Chie; Alvarez, Xavier; Sandler, Netanya G.; Douek, Daniel C.; Kuroda, Marcelo J.; Pahar, Bapi; Piatak, Michael; Lifson, Jeffrey D.; Keele, Brandon F.; Hoxie, James A.
2013-01-01
A hallmark of pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections is the rapid and near-complete depletion of mucosal CD4+ T lymphocytes from the gastrointestinal tract. Loss of these cells and disruption of epithelial barrier function are associated with microbial translocation, which has been proposed to drive chronic systemic immune activation and disease progression. Here, we evaluate in rhesus macaques a novel attenuated variant of pathogenic SIVmac239, termed ΔGY, which contains a deletion of a Tyr and a proximal Gly from a highly conserved YxxØ trafficking motif in the envelope cytoplasmic tail. Compared to SIVmac239, ΔGY established a comparable acute peak of viremia but only transiently infected lamina propria and caused little or no acute depletion of mucosal CD4+ T cells and no detectable microbial translocation. Nonetheless, these animals developed T-cell activation and declining peripheral blood CD4+ T cells and ultimately progressed with clinical or pathological features of AIDS. ΔGY-infected animals also showed no infection of macrophages or central nervous system tissues even in late-stage disease. Although the ΔGY mutation persisted, novel mutations evolved, including the formation of new YxxØ motifs in two of four animals. These findings indicate that disruption of this trafficking motif by the ΔGY mutation leads to a striking alteration in anatomic distribution of virus with sparing of lamina propria and a lack of microbial translocation. Because these animals exhibited wild-type levels of acute viremia and immune activation, our findings indicate that these pathological events are dissociable and that immune activation unrelated to gut damage can be sufficient for the development of AIDS. PMID:23152518
Zanoni, Ivan; Balzaretti, Silvia; Miriani, Matteo; Taverniti, Valentina; De Noni, Ivano; Presti, Ilaria; Stuknyte, Milda; Scarafoni, Alessio; Arioli, Stefania; Iametti, Stefania; Bonomi, Francesco; Mora, Diego; Karp, Matti; Granucci, Francesca
2014-01-01
Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system. PMID:24814791
Hancock, David G; Shklovskaya, Elena; Guy, Thomas V; Falsafi, Reza; Fjell, Chris D; Ritchie, William; Hancock, Robert E W; Fazekas de St Groth, Barbara
2014-01-01
Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that 'fine-tune' the network Hubs expressed in common. We propose a model in which signalling through common pathway components is 'fine-tuned' by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.
Condition-Dependent Trade-Off Between Weapon Size and Immunity in Males of the European Earwig.
Körner, Maximilian; Vogelweith, Fanny; Foitzik, Susanne; Meunier, Joël
2017-08-11
Investigating the expression of trade-offs between key life-history functions is central to our understanding of how these functions evolved and are maintained. However, detecting trade-offs can be challenging due to variation in resource availability, which masks trade-offs at the population level. Here, we investigated in the European earwig Forficula auricularia whether (1) weapon size trades off with three key immune parameters - hemocyte concentration, phenoloxidase and prophenoloxidase activity - and whether (2) expression and strength of these trade-offs depend on male body condition (body size) and/or change after an immune challenge. Our results partially confirmed condition dependent trade-offs between weapon size and immunity in male earwigs. Specifically, we found that after an immune challenge, weapon size trades off with hemocyte concentrations in low-condition, but not in good-condition males. Contrastingly, weapon size was independent of pre-challenge hemocyte concentration. We also found no trade-off between weapon size and phenoloxidase activity, independent of body condition and immune challenge. Overall, our study reveals that trade-offs with sexual traits may weaken or disappear in good-condition individuals. Given the importance of weapon size for male reproductive success, our results highlight how low-condition individuals may employ alternative life-history investment strategies to cope with resource limitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hraber, Peter; Korber, Bette; Wagh, Kshitij
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less
Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun
2017-01-01
Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.
Shen, Zu T; Sigalov, Alexander B
2016-06-28
During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities.
The Granuloma in Tuberculosis: Dynamics of a Host–Pathogen Collusion
Ehlers, Stefan; Schaible, Ulrich E.
2012-01-01
A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission. PMID:23308075
Hraber, Peter; Korber, Bette; Wagh, Kshitij; ...
2015-10-21
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less
A Quantitative Approach to Assessing System Evolvability
NASA Technical Reports Server (NTRS)
Christian, John A., III
2004-01-01
When selecting a system from multiple candidates, the customer seeks the one that best meets his or her needs. Recently the desire for evolvable systems has become more important and engineers are striving to develop systems that accommodate this need. In response to this search for evolvability, we present a historical perspective on evolvability, propose a refined definition of evolvability, and develop a quantitative method for measuring this property. We address this quantitative methodology from both a theoretical and practical perspective. This quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study.
Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds.
Irene Tieleman, B; Williams, Joseph B; Ricklefs, Robert E; Klasing, Kirk C
2005-08-22
We studied the relationship between one component of immune function and basal metabolic rate (BMR), an indicator of the 'pace-of-life syndrome', among 12 tropical bird species and among individuals of the tropical house wren (Troglodytes aedon), to gain insights into functional connections between life history and physiology. To assess constitutive innate immunity we introduced a new technique in the field of ecological and evolutionary immunology that quantifies the bactericidal activity of whole blood. This in vitro assay utilises a single blood sample to provide a functional, integrated measure of constitutive innate immunity. We found that the bactericidal activity of whole blood varied considerably among species and among individuals within a species. This variation was not correlated with body mass or whole-organism BMR. However, among species, bacteria killing activity was negatively correlated with mass-adjusted BMR, suggesting that species with a slower pace-of-life have evolved a more robust constitutive innate immune capability. Among individuals of a single species, the house wren, bacteria killing activity was positively correlated with mass-adjusted BMR, pointing to physiological differences in individual quality on which natural selection potentially could act.
The role of the plasma membrane H+-ATPase in plant-microbe interactions.
Elmore, James Mitch; Coaker, Gitta
2011-05-01
Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant-pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.