DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelson, A.S.; Weisbuch, G.
1997-10-01
The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less
Hammerschmidt, Katrin; Kurtz, Joachim
2005-01-01
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host–parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence. PMID:16271977
Erchick, Daniel J.; George, Asha S.; Umeh, Chukwunonso; Wonodi, Chizoba
2017-01-01
Background: Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. Methods: A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Results: Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Conclusion: Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. PMID:28812836
[Regulatory role of the immune system in the organism].
Alekseev, L P; Khaitov, R M
2010-08-01
The paper presents modern idea of regulatory role of the human immune system in performing a number of physiological functions including intercellular interactions, reproductive process, and forming of protection against external and internal aggression. Significance of the immune system is considered and substantiated, that of genes of the human immune response in particular in provision of human survival as a biological species.
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E.
2014-01-01
Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information. PMID:25954452
Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E
2014-01-01
Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information.
Erchick, Daniel J; George, Asha S; Umeh, Chukwunonso; Wonodi, Chizoba
2016-12-10
Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
USDA-ARS?s Scientific Manuscript database
The immune system is a multifaceted arrangement of membranes (skin, epithelial, mucus), cells, and molecules whose function is to eradicate invading pathogens or cancer cells from a host. Working together, the various components of the immune system perform a balancing act of being lethal enough to...
Poy, Alain; van den Ent, Maya M V X; Sosler, Stephen; Hinman, Alan R; Brown, Sidney; Sodha, Samir; Ehlman, Daniel C; Wallace, Aaron S; Mihigo, Richard
2017-07-01
To monitor immunization-system strengthening in the Polio Eradication Endgame Strategic Plan 2013-2018 (PEESP), the Global Polio Eradication Initiative identified 1 indicator: 10% annual improvement in third dose of diphtheria- tetanus-pertussis-containing vaccine (DTP3) coverage in polio high-risk districts of 10 polio focus countries. A multiagency team, including staff from the African Region, developed a comprehensive list of outcome and process indicators measuring various aspects of the performance of an immunization system. The development and implementation of the dashboard to assess immunization system performance allowed national program managers to monitor the key immunization indicators and stratify by high-risk and non-high-risk districts. Although only a single outcome indicator goal (at least 10% annual increase in DTP3 coverage achieved in 80% of high-risk districts) initially existed in the endgame strategy, we successfully added additional outcome indicators (eg, decreasing the number of DTP3-unvaccinated children) as well as program process indicators focusing on cold chain, stock availability, and vaccination sessions to better describe progress on the pathway to raising immunization coverage. When measuring progress toward improving immunization systems, it is helpful to use a comprehensive approach that allows for measuring multiple dimensions of the system. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Robustness trade-offs and host–microbial symbiosis in the immune system
Kitano, Hiroaki; Oda, Kanae
2006-01-01
The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567
Approaches Mediating Oxytocin Regulation of the Immune System.
Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng
2016-01-01
The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.
Role of the immune system in regeneration and its dynamic interplay with adult stem cells.
Abnave, Prasad; Ghigo, Eric
2018-04-09
The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somayaji, Anil B.; Amai, Wendy A.; Walther, Eleanor A.
This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here aremore » extensible to any system that processes a sequence of data through a software interface.« less
Immune system changes during simulated planetary exploration on Devon Island, high arctic
Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence
2007-01-01
Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions. PMID:17521440
The effect of tonsillectomy on the immune system: A systematic review and meta-analysis.
Bitar, Mohamad A; Dowli, Alexander; Mourad, Marc
2015-08-01
The immunological sequelae of tonsillectomy in children have been a source of debate among physicians and a continuous concern for parents. Contradictory pertinent results exist in the literature. To understand the real effect of tonsillectomy on the immune system. MEDLINE, EMBASE and COCHRANE. Articles addressing the effect of tonsillectomy on the immune system, up to Dec 2014. Related keywords and medical subject headings were used during the search. The abstracts were reviewed to determine suitability for inclusion based on a set of criteria. Manual crosscheck of references was performed. We checked the tests results and the conclusion of each study to classify it as supporting or refuting the hypothesis of a negative effect of tonsillectomy on the immune system. We reviewed 35 articles, published between 1971 and 2014, including 1997 patients. Only Four studies (11.4%), including 406 patients (20.3%) found that tonsillectomy negatively affects the immune system. We performed a separate meta-analysis on various reviewed humoral and cellular immunological parameters (e.g. total and specific serum Ig's, SecIgA, cellular immunity, and Ag specific Ig). There is more evidence to suggest that tonsillectomy has no negative clinical or immunological sequalae on the immune system. Study limitations included heterogeneity in the diagnostic tools, timing of testing, indication for tonsillectomy and patients' age. It is reasonable to say that there is enough evidence to conclude that tonsillectomy has no clinically significant negative effect on the immune system. It will be important for future studies to uniformly use both preoperative and control laboratory tests' levels to compare the postoperative levels with, to have short and long term follow-up levels, and to include both humoral and cellular immunity in their measurements. The results should reassure both surgeons and parents that tonsillectomy has no proven clinical sequalae. If more research is to be done in the future, it should be performed in a standardized way to avoid the heterogeneity seen in the literature. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile
2016-06-01
To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.
NASA Astrophysics Data System (ADS)
Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma
2014-07-01
Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f
The cellular and humoral immunity assay in patients with complicated urolithiasis.
Ceban, E; Banov, P; Galescu, A; Tanase, D
2017-01-01
Especially complicated, renal lithiasis contributes to the general inflammatory syndrome development that interferes with nonspecific, humoral and cellular immune system. The surgical treatment of nephrolithiasis is closely related to drug therapy of urinary infection, one of the reasons being the reduction of the immune status. The work is performed by evaluating the immunological status preoperatively in 58 patients with complicated lithiasis. The analysis of the status in these patients demonstrated that complicated urolithiasis results in significant changes in the immune system, these changes being expressed at the cellular and humoral level of immunity.
Artificial immune system algorithm in VLSI circuit configuration
NASA Astrophysics Data System (ADS)
Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd
2017-08-01
In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart
The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the developing immune system for DEHP.« less
Fungal Strategies to Evade the Host Immune Recognition.
Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M
2017-09-23
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Changes in the immune system are conditioned by nutrition.
Marcos, A; Nova, E; Montero, A
2003-09-01
Undernutrition due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients impairs the immune system, suppressing immune functions that are fundamental to host protection. The most consistent abnormalities are seen in cell-mediated immunity, complement system, phagocyte function, cytokine production, mucosal secretory antibody response, and antibody affinity. There is a number of physiological situations such as ageing and performance of intense physical exercise associated with an impairment of some immune parameters' response. Nutrition can influence the extent of immune alteration in both of them. There are also numerous pathological situations in which nutrition plays a role as a primary or secondary determinant of some underlying immunological impairments. This includes obesity, eating disorders (anorexia nervosa and bulimia nervosa), food hypersensitivity and gastrointestinal disorders as some examples. The implications of nutrition on immune function in these disorders are briefly reviewed.
LaFond, Anne; Kanagat, Natasha; Steinglass, Robert; Fields, Rebecca; Sequeira, Jenny; Mookherji, Sangeeta
2015-01-01
There is limited understanding of why routine immunization (RI) coverage improves in some settings in Africa and not in others. Using a grounded theory approach, we conducted in-depth case studies to understand pathways to coverage improvement by comparing immunization programme experience in 12 districts in three countries (Ethiopia, Cameroon and Ghana). Drawing on positive deviance or assets model techniques we compared the experience of districts where diphtheria–tetanus–pertussis (DTP3)/pentavalent3 (Penta3) coverage improved with districts where DTP3/Penta3 coverage remained unchanged (or steady) over the same period, focusing on basic readiness to deliver immunization services and drivers of coverage improvement. The results informed a model for immunization coverage improvement that emphasizes the dynamics of immunization systems at district level. In all districts, whether improving or steady, we found that a set of basic RI system resources were in place from 2006 to 2010 and did not observe major differences in infrastructure. We found that the differences in coverage trends were due to factors other than basic RI system capacity or service readiness. We identified six common drivers of RI coverage performance improvement—four direct drivers and two enabling drivers—that were present in well-performing districts and weaker or absent in steady coverage districts, and map the pathways from driver to improved supply, demand and coverage. Findings emphasize the critical role of implementation strategies and the need for locally skilled managers that are capable of tailoring strategies to specific settings and community needs. The case studies are unique in their focus on the positive drivers of change and the identification of pathways to coverage improvement, an approach that should be considered in future studies and routine assessments of district-level immunization system performance. PMID:24615431
Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming
2018-06-28
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
Childhood immunization: one HMO's experience in benchmarking and improving plan performance.
Keitel, C
1995-01-01
In 1994, Health Net initiated a childhood immunization campaign and research project to improve health plan member immunization rates by motivating and educating parents of children 20-32 months old as to the importance of fully immunizing their child. The findings indicate that 88 percent of those parents with children who were not fully immunized believed their child had been fully immunized by age two. This lack of awareness may explain the unreliability of self-reported immunization status. Future immunization campaigns must include ongoing member reminder systems, educate members as to the immunization schedule, and must take into consideration the barriers, real and perceived, that block full immunization.
The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.
Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng
2016-02-01
As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sugishita, Yoshiyuki; Hayashi, Kunihiko; Mori, Toru; Horiguchi, Itsuko; Marui, Eiji
2012-03-01
The BCG immunization has long been performed in Japan. Although the BCG immunization service is the responsibility of the municipality, the manner in which the BCG immunization is delivered differs from municipality to municipality. The purpose of this study was to clarify how the different manner of the BCG immunization delivery systems influenced the BCG immunization coverage. The study of BCG immunization coverage was conducted in the Tama area located in the western suburbs of Tokyo in 2004. The birth data and the immunization history by the age of 3 years were collected in the three-year-old health check-up from a total of 2,341 children residing in the Tama area. Based on the age at immunization for each child, the BCG immunization coverage was calculated according to the types of the BCG immunization delivery system. The immunization types were defined as follows; the BCG immunization given on the occasion of the mass health check-up (Group 1); the exclusive mass BCG immunization in a monthly service (Group 2); the exclusive mass BCG immunization in a bimonthly service (Group 3); the exclusive mass BCG immunization in services of fewer than every two months (Group 4); and the immunization given on an individual basis by a general practitioner (Group 5). A univariate analysis was performed to examine the relationship between the BCG immunization coverage by the age of 6 months and the difference among the BCG immunization delivery systems, followed by a multivariate regression analysis to adjust for the factors related to the demography, health care services and the socio-economic status of the municipalities. Unadjusted odds ratios and adjusted odds ratios for BCG unimmunized children under the age of 6 months by the BCG immunization delivery manner groups were OR 1 reference, adj. OR 1 reference in Group 1; OR 1.42 CI 0.87-2.29, adj. OR 4.01 CI 2.24-7.11 in Group 2; OR 4.96 CI 3.66-6.82, adj. OR 15.59 CI 10.10-24.49 in Group 3;OR 18.60 CI 13.77-25.49, adj. OR 48.17 CI 29.62-79.75 in Group 4; and OR 4.24 CI 2.86-6.31, adj. OR 15.61 CI 9.05-27.26 in Group 5. The univariate analysis and multivariate regression analysis revealed an influence of the BCG immunization delivery manner on the BCG immunization coverage. The choice of BCG immunization delivery manner is very important to raise the BCG immunization coverage. The BCG immunization given on the occasion of the mass health check-up and the high-frequent immunization service are thought to improve the BCG immunization coverage.
NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.
2011-01-01
This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.
Methods for increasing noise immunity of radio electronic systems with redundancy
NASA Astrophysics Data System (ADS)
Orlov, P. E.; Medvedev, A. V.; Sharafutdinov, V. R.; Gazizov, T. R.; Ubaichin, A. V.
2018-05-01
The idea of increasing the noise immunity of radioelectronic systems with redundancy is presented. Specific technical solutions based on this idea of modal redundancy are described. An estimation of noise immunity improvement was performed by the example of implementation of modal redundancy with the broad-side electromagnetic coupling for a printed circuit board of the digital signal processing unit for an autonomous navigation system of a spacecraft. It is shown that the implementation of modal redundancy can provide an attenuation coefficient for the interference signal up to 12 dB.
Mining the human gut microbiota for effector strains that shape the immune system
Ahern, Philip P.; Faith, Jeremiah J.; Gordon, Jeffrey I.
2014-01-01
Summary The gut microbiota co-develops with the immune system beginning at birth. Mining the microbiota for bacterial strains responsible for shaping the structure and dynamic operations of the innate and adaptive arms of the immune system represents a formidable combinatorial problem but one that needs to be overcome to advance mechanistic understanding of microbial community-immune system co-regulation, and in order to develop new diagnostic and therapeutic approaches that promote health. Here, we discuss a scalable, less biased approach for identifying effector strains in complex microbial communities that impact immune function. The approach begins by identifying uncultured human fecal microbiota samples that transmit immune phenotypes to germ-free mice. Clonally-arrayed sequenced collections of bacterial strains are constructed from representative donor microbiota. If the collection transmits phenotypes, effector strains are identified by testing randomly generated subsets with overlapping membership in individually-housed germ-free animals. Detailed mechanistic studies of effector strain-host interactions can then be performed. PMID:24950201
Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes
Salmela, Heli; Amdam, Gro Vang; Münch, Daniel
2017-01-01
Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity. PMID:28877227
Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.
Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel
2017-01-01
Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.
[THE SYSTEMIC IMMUNITY CELLULAR LINK REACTION IN PATIENTS WITH TRAUMATIC ILLNESS].
Plehutsa, I M; Sydorchuk, R I; Plehutsa, O M
2015-01-01
The effect of trauma on parameters of cellular immunity changes is studied. The study includes 52 patients with various forms of traumatic illness, aged 18-69 years (37.91-4.28). The control group consisted of 16 patients who underwent routine surgery not related to the pathology of musculoskeletal system. All patients of the main group were divided into 3 groups according to severity of the condition. Analysis of parameters of cellular link of immune system was performed by defining subpopulations of T-lymphocytes in indirect immunofluorescence method using a panel of monoclonal antibodies for CD3, CD4, CD8, CD22 lymphocytes' receptors and calculation of integrated indicators. The highest expression (immune disorders of II-III grades) of changes of cellular immunity observed in patients with severe traumatic: illness (expand clinical picture). Surgical intervention, even without traumatic injury significantly impact cellular immunity, but in patients with traumatic illness immunity violation were significantly higher than in comparison groups patients except immunoregulatory index.
Can the big five factors of personality predict lymphocyte counts?
Ožura, Ana; Ihan, Alojz; Musek, Janek
2012-03-01
Psychological stress is known to affect the immune system. The Limbic Hypothalamic Pituitary Adrenal (LHPA) axis has been identified as the principal path of the bidirectional communication between the immune system and the central nervous system with significant psychological activators. Personality traits acted as moderators of the relationship between life conflicts and psychological distress. This study focuses on the relationship between the Big Five factors of personality and immune regulation as indicated by Lymphocyte counts. Our study included 32 professional soldiers from the Slovenian Army that completed the Big Five questionnaire (Goldberg IPIP-300). We also assessed their white blood cell counts with a detailed lymphocyte analysis using flow cytometry. The correlations between personality variables and immune system parameters were calculated. Furthermore, regression analyses were performed using personality variables as predictors and immune parameters as criteria. The results demonstrated that the model using the Big Five factors as predictors of Lymphocyte counts is significant in predicting the variance in NK and B cell counts. Agreeableness showed the strongest predictive function. The results offer support for the theoretical models that stressed the essential links between personality and immune regulation. Further studies with larger samples examining the Big five factors and immune system parameters are needed.
Clonal selection versus clonal cooperation: the integrated perception of immune objects
Nataf, Serge
2016-01-01
Analogies between the immune and nervous systems were first envisioned by the immunologist Niels Jerne who introduced the concepts of antigen "recognition" and immune "memory". However, since then, it appears that only the cognitive immunology paradigm proposed by Irun Cohen, attempted to further theorize the immune system functions through the prism of neurosciences. The present paper is aimed at revisiting this analogy-based reasoning. In particular, a parallel is drawn between the brain pathways of visual perception and the processes allowing the global perception of an "immune object". Thus, in the visual system, distinct features of a visual object (shape, color, motion) are perceived separately by distinct neuronal populations during a primary perception task. The output signals generated during this first step instruct then an integrated perception task performed by other neuronal networks. Such a higher order perception step is by essence a cooperative task that is mandatory for the global perception of visual objects. Based on a re-interpretation of recent experimental data, it is suggested that similar general principles drive the integrated perception of immune objects in secondary lymphoid organs (SLOs). In this scheme, the four main categories of signals characterizing an immune object (antigenic, contextual, temporal and localization signals) are first perceived separately by distinct networks of immunocompetent cells. Then, in a multitude of SLO niches, the output signals generated during this primary perception step are integrated by TH-cells at the single cell level. This process eventually generates a multitude of T-cell and B-cell clones that perform, at the scale of SLOs, an integrated perception of immune objects. Overall, this new framework proposes that integrated immune perception and, consequently, integrated immune responses, rely essentially on clonal cooperation rather than clonal selection. PMID:27830060
Effects of Sex Steroids on Fish Leukocytes
Cabas, Isabel
2018-01-01
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish. PMID:29315244
The immune response against Candida spp. and Sporothrix schenckii.
Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M
2014-01-01
Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Country Immunization Information System Assessments - Kenya, 2015 and Ghana, 2016.
Scott, Colleen; Clarke, Kristie E N; Grevendonk, Jan; Dolan, Samantha B; Ahmed, Hussein Osman; Kamau, Peter; Ademba, Peter Aswani; Osadebe, Lynda; Bonsu, George; Opare, Joseph; Diamenu, Stanley; Amenuvegbe, Gregory; Quaye, Pamela; Osei-Sarpong, Fred; Abotsi, Francis; Ankrah, Joseph Dwomor; MacNeil, Adam
2017-11-10
The collection, analysis, and use of data to measure and improve immunization program performance are priorities for the World Health Organization (WHO), global partners, and national immunization programs (NIPs). High quality data are essential for evidence-based decision-making to support successful NIPs. Consistent recording and reporting practices, optimal access to and use of health information systems, and rigorous interpretation and use of data for decision-making are characteristics of high-quality immunization information systems. In 2015 and 2016, immunization information system assessments (IISAs) were conducted in Kenya and Ghana using a new WHO and CDC assessment methodology designed to identify root causes of immunization data quality problems and facilitate development of plans for improvement. Data quality challenges common to both countries included low confidence in facility-level target population data (Kenya = 50%, Ghana = 53%) and poor data concordance between child registers and facility tally sheets (Kenya = 0%, Ghana = 3%). In Kenya, systemic challenges included limited supportive supervision and lack of resources to access electronic reporting systems; in Ghana, challenges included a poorly defined subdistrict administrative level. Data quality improvement plans (DQIPs) based on assessment findings are being implemented in both countries. IISAs can help countries identify and address root causes of poor immunization data to provide a stronger evidence base for future investments in immunization programs.
Romanenko, E G
2014-01-01
Study of the immune system mechanisms in chronic catarrhal gingivitis in children with gastrointestinal pathology was performed in 102 children (49 with chronic gastritis and duodenitis and 53 with no signs of gastrointestinal pathology). Forty-eight children with healthy periodontium constituted control group. Generalized chronic catarrhal gingivitis in children with gastroduodenal pathology is characterized by intense humoral response by simultaneous T-cell immunity suppression. Detection of high serum titers of circulating immune complexes in patients with chronic catarrhal gingivitis suggests a role of immune response in the pathogenesis of periodontal disease increases with concomitant diseases of the upper gastrointestinal tract.
Artificial immune system approach for air combat maneuvering
NASA Astrophysics Data System (ADS)
Kaneshige, John; Krishnakumar, Kalmanje
2007-04-01
Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.
NASA Astrophysics Data System (ADS)
Cohen, Luchino
Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.
Electronic immunization data collection systems: application of an evaluation framework.
Heidebrecht, Christine L; Kwong, Jeffrey C; Finkelstein, Michael; Quan, Sherman D; Pereira, Jennifer A; Quach, Susan; Deeks, Shelley L
2014-01-14
Evaluating the features and performance of health information systems can serve to strengthen the systems themselves as well as to guide other organizations in the process of designing and implementing surveillance tools. We adapted an evaluation framework in order to assess electronic immunization data collection systems, and applied it in two Ontario public health units. The Centers for Disease Control and Prevention's Guidelines for Evaluating Public Health Surveillance Systems are broad in nature and serve as an organizational tool to guide the development of comprehensive evaluation materials. Based on these Guidelines, and informed by other evaluation resources and input from stakeholders in the public health community, we applied an evaluation framework to two examples of immunization data collection and examined several system attributes: simplicity, flexibility, data quality, timeliness, and acceptability. Data collection approaches included key informant interviews, logic and completeness assessments, client surveys, and on-site observations. Both evaluated systems allow high-quality immunization data to be collected, analyzed, and applied in a rapid fashion. However, neither system is currently able to link to other providers' immunization data or provincial data sources, limiting the comprehensiveness of coverage assessments. We recommended that both organizations explore possibilities for external data linkage and collaborate with other jurisdictions to promote a provincial immunization repository or data sharing platform. Electronic systems such as the ones described in this paper allow immunization data to be collected, analyzed, and applied in a rapid fashion, and represent the infostructure required to establish a population-based immunization registry, critical for comprehensively assessing vaccine coverage.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-11-16
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-01-01
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence
2007-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.
Michel, J.; Hsiao, A.; Fenick, A.
2014-01-01
Summary Background Transitioning between Electronic Medical Records (EMR) can result in patient data being stranded in legacy systems with subsequent failure to provide appropriate patient care. Manual chart abstraction is labor intensive, error-prone, and difficult to institute for immunizations on a systems level in a timely fashion. Objectives We sought to transfer immunization data from two of our health system’s soon to be replaced EMRs to the future EMR using a single process instead of separate interfaces for each facility. Methods We used scripted data entry, a process where a computer automates manual data entry, to insert data into the future EMR. Using the Center for Disease Control’s CVX immunization codes we developed a bridge between immunization identifiers within our system’s EMRs. We performed a two-step process evaluation of the data transfer using automated data comparison and manual chart review. Results We completed the data migration from two facilities in 16.8 hours with no data loss or corruption. We successfully populated the future EMR with 99.16% of our legacy immunization data – 500,906 records – just prior to our EMR transition date. A subset of immunizations, first recognized during clinical care, had not originally been extracted from the legacy systems. Once identified, this data – 1,695 records – was migrated using the same process with minimal additional effort. Conclusions Scripted data entry for immunizations is more accurate than published estimates for manual data entry and we completed our data transfer in 1.2% of the total time we predicted for manual data entry. Performing this process before EMR conversion helped identify obstacles to data migration. Drawing upon this work, we will reuse this process for other healthcare facilities in our health system as they transition to the future EMR. PMID:24734139
Influence of Melatonin on the Immune System of Fish: A Review
Esteban, M. Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José
2013-01-01
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates. PMID:23579958
Influence of melatonin on the immune system of fish: a review.
Esteban, M Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José
2013-04-11
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.
Countermeasure for space flight effects on immune system: nutritional nucleotides
NASA Technical Reports Server (NTRS)
Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.
2005-01-01
Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.
CHECKPOINT INHIBITOR IMMUNE THERAPY: Systemic Indications and Ophthalmic Side Effects.
Dalvin, Lauren A; Shields, Carol L; Orloff, Marlana; Sato, Takami; Shields, Jerry A
2018-06-01
To review immune checkpoint inhibitor indications and ophthalmic side effects. A literature review was performed using a PubMed search for publications between 1990 and 2017. Immune checkpoint inhibitors are designed to treat system malignancies by targeting one of three ligands, leading to T-cell activation for attack against malignant cells. These ligands (and targeted drug) include cytotoxic T-lymphocyte antigen-4 (CTLA-4, ipilimumab), programmed death protein 1 (PD-1, pembrolizumab, nivolumab), and programmed death ligand-1 (PD-L1, atezolizumab, avelumab, durvalumab). These medications upregulate the immune system and cause autoimmune-like side effects. Ophthalmic side effects most frequently manifest as uveitis (1%) and dry eye (1-24%). Other side effects include myasthenia gravis (n = 19 reports), inflammatory orbitopathy (n = 11), keratitis (n = 3), cranial nerve palsy (n = 3), optic neuropathy (n = 2), serous retinal detachment (n = 2), extraocular muscle myopathy (n = 1), atypical chorioretinal lesions (n = 1), immune retinopathy (n = 1), and neuroretinitis (n = 1). Most inflammatory side effects are managed with topical or periocular corticosteroids, but advanced cases require systemic corticosteroids and cessation of checkpoint inhibitor therapy. Checkpoint inhibitors enhance the immune system by releasing inhibition on T cells, with risk of autoimmune-like side effects. Ophthalmologists should include immune-related adverse events in their differential when examining cancer patients with new ocular symptoms.
Transforming cold chain performance and management in lower-income countries.
Brison, Mike; LeTallec, Yann
2017-04-19
In many countries, one of the common factors limiting full and equitable access to effective immunization is the existence of gaps in cold chain and logistics (CCL) systems. This article focuses on the critical contribution that better management of CCL performance can make in addressing these barriers, as well as some essential practices needed to achieve and sustain these gains. These include (i) an emphasis on continuous improvement in CCL performance indicators, (ii) strong coordination and accountability across multiple stakeholders, and (iii) making the most of limited financial resources. This article is informed by the Clinton Health Access Initiative's (CHAI's) experience working with National Immunization Programs (NIPs) and immunization partners to improve the effectiveness and efficiency of CCL systems (including CCE deployment and maintenance, temperature monitoring and control, stock management and distribution) across ten Gavi-supported "focus" countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Morphostructure of Immune System Organs in Cattle of Different Age.
Gasisova, A I; Atkenova, A B; Ahmetzhanova, N B; Murzabekova, L M; Bekenova, A C
2017-04-01
This article provides comprehensive consideration of the age-dependent morphofunctional state of organs and tissues of the immune system (thymus, spleen, superficial and deep lymph nodes) in cattle. The morphofunctional maturity of organs and tissues of the immune system in cattle will be taken into account in various experimental studies, preventive and therapeutic measures. Performed analysis provides description of the spleen formation as well as the thymus and lymph nodes in post-natal ontogenesis and the macro- and microscopic structure of lymphoid cells and macrophages. The obtained results can be used to study immune responses of the thymus, spleen, lymph nodes in the pathological immunogenesis and may serve as a basis for development of recommendations related to diagnosis and treatment of diseases of the cattle immune system. The morphofunctional state of organs and tissues of the immune system in cattle was first studied with regard to the age dynamics. Based on the immunohistological studies, this article described the distribution and topography of immunocompetent cells (T lymphocytes, B lymphocytes and macrophages) and proliferative activity of lymphoid cells in the lymphoid organs and tissues in cattle. © 2016 Blackwell Verlag GmbH.
Guayerbas, Noelia; Catalán, Marina; Víctor, Víctor M; Miquel, Jaime; De la Fuente, Mónica
2002-08-21
According to our previous work, mice of the same strain and age show striking inter-individual differences in behaviour when exposed to a T-maze test. Further, the animals exploring the maze slowly (slow mice) or staying at the starting point (freezing behaviour), which show high levels of emotionality/anxiety in other standard behavioural tests, have a less competent immune system (earlier immunosenescence) than those which explore it quickly (fast mice). The present longitudinal study on OF-1 Swiss female mice confirms and extends the above findings. Thus, the animals showing a lower performance in the T-test (slow mice) which is accompanied by a poor neuromuscular coordination in a tightrope test, have a shorter life span than the good performers (fast mice). Moreover, the slow mice have a less competent immune system as regards the following functions of peritoneal macrophages: adherence to substrate, chemotaxis, ingestion of particles and superoxide anion production. This suggests that, at the same chronological age and as regards their immune competence, the slow mice are biologically older than the fast mice. This agrees with current ideas on the close functional relationship between the nervous and the immune system in the physiological adaptation to stress, and supports the concept that an optimum level of performance of these two systems is needed to attain a long life span. Copyright 2002 Elsevier Science B.V.
Immunization in India 1993-1999: wealth, gender, and regional inequalities revisited.
Gaudin, Sylvestre; Yazbeck, Abdo S
2006-02-01
Previously published evidence from the 1992-1993 Indian National Family and Health Survey (NFHS) on the state of childhood immunization showed the importance of analyzing immunization outcomes beyond national averages. Reported total system failure (no immunization for all) in some low performance areas suggested that improvements in immunization levels may come with a worsening of the distribution of immunization based on wealth. In this paper, using the second wave of the NFHS (1998-1999), we take a new snapshot of the situation and compare it to 1992-1993, focusing on heterogeneities between states, rural-urban differentials, gender differentials, and more specifically on wealth-related inequalities. To assess whether improvements in overall immunization rates (levels) were accompanied by distributional improvements, or conversely, whether inequalities were reduced at the expense of overall achievement, we use a recently developed methodology to calculate an inequality-adjusted achievement index that captures performance both in terms of efficiency (change in levels) and equity (distribution by wealth quintiles) for each of the 17 largest Indian states. Comparing 1992-1993 to 1998-1999 achievements using different degrees of "inequality aversion" provides no evidence that distributional improvements occur at the expense of overall performance.
Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness
2011-09-01
testing on software • Performed static and dynamic analysis on safety code Research Interests To understand how the nervous system operates, how...dynamics of these systems to reset control of the HPA-immune axis to normal. We have completed the negotiation of sub-awards to the CFIDS Association...We propose that severe physical or psychological insult to the endocrine and immune systems can displace these from a normal regulatory equilibrium
Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development
Liongue, Clifford; O'Sullivan, Lynda A.; Trengove, Monique C.; Ward, Alister C.
2012-01-01
Background Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. Results Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. Conclusion Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity. PMID:22412924
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2008-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. The first in-flight activity for integrated immunity very recently occurred during the STS-120 Space Shuttle mission. The protocols functioned well from a technical perspective, and accurate in-flight data was obtained from 1 Shuttle and 2 ISS crewmembers. Crew participation rates for the study continue to be robust.
Depleting tumor-specific Tregs at a single site eradicates disseminated tumors
Marabelle, Aurélien; Kohrt, Holbrook; Sagiv-Barfi, Idit; Ajami, Bahareh; Axtell, Robert C.; Zhou, Gang; Rajapaksa, Ranjani; Green, Michael R.; Torchia, James; Brody, Joshua; Luong, Richard; Rosenblum, Michael D.; Steinman, Lawrence; Levitsky, Hyam I.; Tse, Victor; Levy, Ronald
2013-01-01
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti–CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response. PMID:23728179
The influence of immune system stimulation on encapsulated islet graft survival.
Orłowski, Tadeusz M; Godlewska, Ewa; Tarchalska, Magda; Kinasiewicz, Joanna; Antosiak, Magda; Sabat, Marek
2005-01-01
The aim of this study was to determine the influence activating of the recipient immune system on the function of microencapsulated islet xenografts. The skin of WAG or Fisher rats and WAG free or encapsulated (APA) Langerhans islets were transplanted to healthy or to streptozotocin diabetic BALB/c mice. Skin grafts were performed following the method of Billingham and Medawar. Rat islets were isolated from pancreas by the Lacy and Kostianovsy method and encapsulated with calcium alginate-poly-L-lysine-alginate according to the 3-step coating method of Sun. The transplantation of encapsulated WAG islets, despite activation of the host immune system, restored euglycemia for over 180 +/-100 days. A subsequent skin graft taken from the same donor was rejected in the second set mode, but euglycemia persisted. In diabetic recipients, impaired immune response was corrected by successful encapsulated islet transplantation. In diabetic mice, strong stimulation with 2-fold skin transplantation induced primary non-function of grafted islets despite their encapsulation. The survival of an islet xenograft depends on the level of activation of the recipient immune system. The immune response of diabetic mice was impaired, but increased after post-transplant restitution of euglycemia. Microencapsulation sufficiently protected grafted islets, and remission of diabetes was preserved. However, after strong specific or non-specific stimulation of the host immune system, non-function of xenografted islets developed despite their encapsulation. Therefore, islet graft recipients should avoid procedures which could stimulate their immune systems. If absolutely necessary, the graft should be protected by exogenous insulin therapy at that time.
Immunization Information Systems: A Decade of Progress in Law and Policy
Martin, Daniel W.; Lowery, N. Elaine; Brand, Bill; Gold, Rebecca; Horlick, Gail
2015-01-01
This article reports on a study of laws, regulations, and policies governing Immunization Information Systems (IIS, also known as “immunization registries”) in states and selected urban areas of the United States. The study included a search of relevant statutes, administrative codes and published attorney general opinions/findings, an online questionnaire completed by immunization program managers and/or their staff, and follow-up telephone interviews. The legal/regulatory framework for IIS has changed considerably since 2000, largely in ways that improve IIS’ ability to perform their public health functions while continuing to maintain strict confidentiality and privacy controls. Nevertheless, the exchange of immunization data and other health information between care providers and public health and between entities in different jurisdictions remains difficult due in part to ongoing regulatory diversity. To continue to be leaders in health information exchange and facilitate immunization of children and adults, IIS will need to address the challenges presented by the interplay of federal and state legislation, regulations, and policies and continue to move toward standardized data collection and sharing necessary for interoperable systems. PMID:24402434
Aalaei-Andabili, Seyed Hossein; Rezaei, Nima
2016-01-01
Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.
Control of an automated mobile manipulator using artificial immune system
NASA Astrophysics Data System (ADS)
Deepak, B. B. V. L.; Parhi, Dayal R.
2016-03-01
This paper addresses the coordination and control of a wheeled mobile manipulator (WMM) using artificial immune system. The aim of the developed methodology is to navigate the system autonomously and transport jobs and tools in manufacturing environments. This study integrates the kinematic structures of a four-axis manipulator and a differential wheeled mobile platform. The motion of the developed WMM is controlled by the complete system of parametric equation in terms of joint velocities and makes the robot to follow desired trajectories by the manipulator and platform within its workspace. The developed robot system performs its action intelligently according to the sensed environmental criteria within its search space. To verify the effectiveness of the proposed immune-based motion planner for WMM, simulations as well as experimental results are presented in various unknown environments.
Differential Location and Distribution of Hepatic Immune Cells
Freitas-Lopes, Maria Alice; Mafra, Kassiana; David, Bruna A.; Carvalho-Gontijo, Raquel; Menezes, Gustavo B.
2017-01-01
The liver is one of the main organs in the body, performing several metabolic and immunological functions that are indispensable to the organism. The liver is strategically positioned in the abdominal cavity between the intestine and the systemic circulation. Due to its location, the liver is continually exposed to nutritional insults, microbiota products from the intestinal tract, and to toxic substances. Hepatocytes are the major functional constituents of the hepatic lobes, and perform most of the liver’s secretory and synthesizing functions, although another important cell population sustains the vitality of the organ: the hepatic immune cells. Liver immune cells play a fundamental role in host immune responses and exquisite mechanisms are necessary to govern the density and the location of the different hepatic leukocytes. Here we discuss the location of these pivotal cells within the different liver compartments, and how their frequency and tissular location can dictate the fate of liver immune responses. PMID:29215603
Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic
NASA Technical Reports Server (NTRS)
Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence
2006-01-01
Dysregulation of the immune system has been shown to occur during space flight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions has yet to be established. In addition, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive field immunology assessment on crewmembers participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate mission-associated effects on the human immune system, as well as to evaluate techniques developed for processing immune samples in remote field locations. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, wholeblood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles and plasma EBV viral antibody levels. Study timepoints were L-30, midmission and R+60. The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed in the field location, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in Astronauts following spaceflight. The sample processing protocol developed for this study may have applications for immune assessment during exploration-class space missions or in remote terrestrial field locations. The data validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology.
Beschasnyĭ, S P
2013-01-01
We investigated the effects of chronic bilateral sensorineural hearing loss of III-IV degree on the performance of interleukins, immunoglobulins serum and saliva, the functional activity of granulocyte-monocyte cell immunity, evaluated the activity of the hypothalamic-pituitary-adrenal system in children aged 7-11 years. It was found that due to stress activation of the sympathetic-adrenal system the function of granulocytes and monocytes is suppressed, with a predominance of production of anti-inflammatory interleukins. This leads to the dominance of T-helper type 2. Products granulocytes and T-helper type-2 anti-inflammatory interleukins IL-4, IL-5, IL-10, IL-13 leads to the activation of B-cells. Thus, in children 7-11 years of age with congenital bilateral sensorineural hearing loss is a decrease of non-specific humoral immunity dominated type of immune response to increased levels of IgG.
Assessment of the innate immune response in the periparturient cow.
Trevisi, Erminio; Minuti, Andrea
2018-02-01
The transition period is the most critical phase in the life of high yielding dairy cows. Within a few weeks, cows are submitted to many challenges (physiological, nutritional, psychological, management) that require prompt and effective adaptive responses. The immune system is involved in this process, and many changes of the cow's immune system components have been observed around calving. Cows are considered to be immunosuppressed in late lactation, and available data suggest that the immune system is dysregulated around parturition. Significant attention has been focused on modification of cellular functions (e.g. the reduction of phagocytosis and diapedesis), but growing interest concerns the components of the innate immune system, which often exhibits increased responses such as susceptibility to inflammatory events and the related acute phase response (APR). Systemic inflammation plays a significant role in early lactation, affects many liver functions and has been associated with the impairment of cow performance (i.e. reduced feed intake, milk yield, fertility, welfare). The assessment of variations in immune-metabolic indices offers opportunities to predict the onset of the health troubles and to anticipate the proper therapies needed to guarantee health, good welfare and fertility in the following lactation. The frequency of diseases (metabolic and infectious) before calving is rare, but several clues suggest that various metabolic and immune variations can begin during the dry period. Interesting preliminary results encourage this perspective and possible candidates are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.
Innate immunity is not related to the sex of adult Tree Swallows during the nestling period
Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell
2011-01-01
Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.
An Immunized Aircraft Maneuver Selection System
NASA Technical Reports Server (NTRS)
Karr, Charles L.
2003-01-01
The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.
Kumaraswamy, Monika; Kousha, Armin; Nizet, Victor
2017-01-01
ABSTRACT This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. PMID:29242830
Heaton, Alexis; Krudwig, Kirstin; Lorenson, Tina; Burgess, Craig; Cunningham, Andrew; Steinglass, Robert
2017-04-19
The widespread use of multidose vaccine containers in low and middle income countries' immunization programs is assumed to have multiple benefits and efficiencies for health systems, yet the broader impacts on immunization coverage, costs, and safety are not well understood. To document what is known on this topic, how it has been studied, and confirm the gaps in evidence that allow us to assess the complex system interactions, the authors undertook a review of published literature that explored the relationship between doses per container and immunization systems. The relationships examined in this study are organized within a systems framework consisting of operational costs, timely coverage, safety, product costs/wastage, and policy/correct use, with the idea that a change in dose per container affects all of them, and the optimal solution will depend on what is prioritized and used to measure performance. Studies on this topic are limited and largely rely on modeling to assess the relationship between doses per container and other aspects of immunization systems. Very few studies attempt to look at how a change in doses per container affects vaccination coverage rates and other systems components simultaneously. This article summarizes the published knowledge on this topic to date and suggests areas of current and future research to ultimately improve decision making around vaccine doses per container and increase understanding of how this decision relates to other program goals. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Human Immune Function and Microbial Pathogenesis in Human Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane J.; Ott, M.
2006-01-01
This oral presentation was requested by Conference conveners. The requested subject is microbial risk assessment considering changes in the human immune system during flight and microbial diversity of environmental samples aboard the International Space Station (ISS). The presentation will begin with an introduction discussing the goals and limitations of microbial risk assessment during flight. The main portion of the presentation will include changes in the immune system that have been published, historical data from microbial analyses, and initial modeling of the environmental flora aboard ISS. The presentation will conclude with future goals and techniques to enhance our ability to perform microbial risk assessment on long duration missions.
Improving cold chain systems: Challenges and solutions.
Ashok, Ashvin; Brison, Michael; LeTallec, Yann
2017-04-19
While a number of new vaccines have been rolled out across the developing world (with more vaccines in the pipeline), cold chain systems are struggling to efficiently support national immunization programs in ensuring the availability of safe and potent vaccines. This article reflects on the Clinton Health Access Initiative, Inc. (CHAI) experience working since 2010 with national immunization programs and partners to improve vaccines cold chains in 10 countries-Ethiopia, Nigeria, Kenya, Malawi, Tanzania, Uganda, Cameroon, Mozambique, Lesotho and India - to identify the root causes and solutions for three common issues limiting cold chain performance. Key recommendations include: Collectively, the solutions detailed in this article chart a path to substantially improving the performance of the cold chain. Combined with an enabling global and in-country environment, it is possible to eliminate cold chain issues as a substantial barrier to effective and full immunization coverage over the next few years. Copyright © 2017. Published by Elsevier Ltd.
Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles.
Li, Bowen; Xie, Jingyi; Yuan, Zhefan; Jain, Priyesh; Lin, Xiaojie; Wu, Kan; Jiang, Shaoyi
2018-04-16
While hydrophobic nanoparticles (NPs) have been long recognized to boost the immune activation, whether hydrophilic NPs modulate an immune system challenged by immune stimulators and how their hydrophilic properties may affect the immune response is still unclear. To answer this question, three polymers, poly(ethylene glycol) (PEG), poly(sulfobetaine) (PSB) and poly(carboxybetaine) (PCB), which are commonly considered hydrophilic, are studied in this work. For comparison, nanogels with uniform size and homogeneous surface functionalities were made from these polymers. Peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide (LPS) and an LPS-induced lung inflammation murine model were used to investigate the influence of nanogels on the immune system. Results show that the treatment of hydrophilic nanogels attenuated the immune responses elicited by LPS both in vitro and in vivo. Moreover, we found that PCB nanogels, which have the strongest hydration and the lowest non-specific protein binding, manifested the best performance in alleviating the immune activation, followed by PSB and PEG nanogels. This reveals that the immunomodulatory effect of hydrophilic materials is closely related to their hydration characteristics and their ability to resist non-specific binding in complex media. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harris, D T; Badowski, M; Balamurugan, A; Yang, O O
2013-12-01
The murine immune system is not necessarily identical to it human counterpart, which has led to the construction of humanized mice. The current study analysed whether or not a human immune system contained within the non-obese diabetic (NOD)-Rag1(null) -γ chain(null) (NRG) mouse model was an accurate representation of the original stem cell donor and if multiple mice constructed from the same donor were similar to one another. To that end, lightly irradiated NRG mice were injected intrahepatically on day 1 of life with purified cord blood-derived CD34(+) stem and progenitor cells. Multiple mice were constructed from each cord blood donor. Mice were analysed quarterly for changes in the immune system, and followed for periods up to 12 months post-transplant. Mice from the same donor were compared directly with each other as well as with the original donor. Analyses were performed for immune reconstitution, including flow cytometry, T cell receptor (TCR) and B cell receptor (BCR) spectratyping. It was observed that NRG mice could be 'humanized' long-term using cord blood stem cells, and that animals constructed from the same cord blood donor were nearly identical to one another, but quite different from the original stem cell donor immune system. © 2013 British Society for Immunology.
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)
1978-01-01
The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.
Immune dysfunction in cirrhosis.
Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria
2014-03-14
Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality.
Immune dysfunction in cirrhosis
Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria
2014-01-01
Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592
Hepatitis C performance measure on hepatitis A and B vaccination: missed opportunities?
Hernandez, Bridget; Hasson, Noelle K; Cheung, Ramsey
2009-08-01
Prevention of hepatitis A virus (HAV) and hepatitis B virus (HBV) infection in patients with chronic hepatitis C (CHC) through vaccination is endorsed by all major professional societies. This study was conducted to determine adherence to the recently adopted physician performance measure on HAV and HBV vaccination. This was a retrospective study. Hepatitis A and B serology data and immunization records between 2000 and 2007 from CHC patients with detectable hepatitis C virus (HCV) RNA were analyzed. A total of 2,968 CHC patients were included in the study. Of these, 2,143 patients (72%) were tested for susceptibility to HAV, of which 53% had immunity. Of the non-immune patients, 746 (74%) were vaccinated as well as an additional 218 without prior testing. For HBV, 2,303 patients (78%) were tested for immunity and 782 (34%) were immune. Of the susceptible patients, 1,086 (71%) were vaccinated as well as an additional 197 patients without prior testing. The overall vaccination performance measure adherence rate was 71% for HAV, 70% for HBV, and 62% for both HAV and HBV. Random review of 176 charts found the major reasons for non-adherence were missed opportunity (41%), change of health care system (31%), and documented vaccination outside our health care system (22%). Our study found a high and improved adherence to the recommendations, but missed opportunity was still the main reason of non-adherence. This study also supported the strategy of selective vaccination in the veteran population.
Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand
Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin
2014-01-01
In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881
Ji, Jie; Torrealba, Debora; Ruyra, Àngels; Roher, Nerea
2015-01-01
Fish disease treatments have progressed significantly over the last few years and have moved from the massive use of antibiotics to the development of vaccines mainly based on inactivated bacteria. Today, the incorporation of immunostimulants and antigens into nanomaterials provide us with new tools to enhance the performance of immunostimulation. Nanoparticles are dispersions or solid particles designed with specific physical properties (size, surface charge, or loading capacity), which allow controlled delivery and therefore improved targeting and stimulation of the immune system. The use of these nanodelivery platforms in fish is in the initial steps of development. Here we review the advances in the application of nanoparticles to fish disease prevention including: the type of biomaterial, the type of immunostimulant or vaccine loaded into the nanoparticles, and how they target the fish immune system. PMID:26492276
Paz, M. L.; Leoni, J.
2016-01-01
Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system. PMID:28070504
Grushka, N G; Pavlovych, S I; Bryzgina, T M; Sukhina, V S; Makogon, N V; Yanchiy, R I
2015-01-01
There were performed the studies of genotoxic stress and the ways of immunocompetent cells death (apoptosis and necrosis) in the modeling of immune system damage by immunization of CBA mice with the bovine serum albumin. Immunofluorescence studies of immunized mice were established the fixation of immune complexes in liver tissue, spleen, kidney and the aorta. Histological studies of these organs showed vascular system affection and, to a lesser extent, parenchyma. It has been shown that DNA comets index increases in 1,4 time in the lymph node cells and in 1,5 time in the thymus cells in the presence of BSA immunization. We also observed an increase in the number of cells with maximum damage DNA thymus preparations (3.4 fold) and lymph nodes (3.3-fold), respectively, indicating strong genotoxic stress. There were shown the reduce of live ICC number and their death increase, including the pro-inflammatory and immunogenic necrotic way. In that way, data which were obtained on the experimental model is evidenced that generalized immunecomplex pathologic process leads to DNA damage and ICC death both central and peripheral organs of the immune system. ICC genotoxic stress and their death amplification by the necrotic way may play a significant role in the immunecomplex deseases development. These factors of peripheral blood lymphocytes can serve as a prospective test system for assessing the severity of autoimmune and immune complex diseases and their treatment effectiveness.
Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively. PMID:23637758
Barisani-Asenbauer, Talin; Inic-Kanada, Aleksandra; Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
Swift, Rachel D.; Anaokar, Sameer; Hegg, Lea Anne; Eggers, Rudolf; Cochi, Stephen L.
2017-01-01
Abstract Background. The Polio Eradication and Endgame Strategic Plan (PEESP) established a target that at least 50% of the time of personnel receiving funding from the Global Polio Eradication Initiative (GPEI) for polio eradication activities (hereafter, “GPEI-funded personnel”) should be dedicated to the strengthening of immunization systems. This article describes the self-reported profile of how GPEI-funded personnel allocate their time toward immunization goals and activities beyond those associated with polio, the training they have received to conduct tasks to strengthen routine immunization systems, and the type of tasks they have conducted. Methods. A survey of approximately 1000 field managers of frontline GPEI-funded personnel was conducted by Boston Consulting Group in the 10 focus countries of the PEESP during 2 phases, in 2013 and 2014, to determine time allocation among frontline staff. Country-specific reports on the training of GPEI-funded personnel were reviewed, and an analysis of the types of tasks that were reported was conducted. Results. A total of 467 managers responded to the survey. Forty-seven percent of the time (range, 23%–61%) of GPEI-funded personnel was dedicated to tasks related to strengthening immunization programs, other than polio eradication. Less time was spent on polio-associated activities in countries that had already interrupted wild poliovirus (WPV) transmission, compared with findings for WPV-endemic countries. All countries conducted periodic trainings of the GPEI-funded personnel. The types of non–polio-related tasks performed by GPEI-funded personnel varied among countries and included surveillance, microplanning, newborn registration and defaulter tracing, monitoring of routine immunization activities, and support of district immunization task teams, as well as promotion of health behaviors, such as clean-water use and good hygiene and sanitation practices. Conclusion. In all countries, GPEI-funded personnel perform critical tasks in the strengthening of routine immunization programs and the control of measles and rubella. In certain countries with very weak immunization systems, GPEI-funded personnel provide critical support for the immunization programs, and sudden discontinuation of their employment would potentially disrupt the immunization programs in their countries and create a setback in capacity and effectiveness that would put children at higher risk for vaccine-preventable diseases. PMID:28838165
van den Ent, Maya M V X; Swift, Rachel D; Anaokar, Sameer; Hegg, Lea Anne; Eggers, Rudolf; Cochi, Stephen L
2017-07-01
The Polio Eradication and Endgame Strategic Plan (PEESP) established a target that at least 50% of the time of personnel receiving funding from the Global Polio Eradication Initiative (GPEI) for polio eradication activities (hereafter, "GPEI-funded personnel") should be dedicated to the strengthening of immunization systems. This article describes the self-reported profile of how GPEI-funded personnel allocate their time toward immunization goals and activities beyond those associated with polio, the training they have received to conduct tasks to strengthen routine immunization systems, and the type of tasks they have conducted. A survey of approximately 1000 field managers of frontline GPEI-funded personnel was conducted by Boston Consulting Group in the 10 focus countries of the PEESP during 2 phases, in 2013 and 2014, to determine time allocation among frontline staff. Country-specific reports on the training of GPEI-funded personnel were reviewed, and an analysis of the types of tasks that were reported was conducted. A total of 467 managers responded to the survey. Forty-seven percent of the time (range, 23%-61%) of GPEI-funded personnel was dedicated to tasks related to strengthening immunization programs, other than polio eradication. Less time was spent on polio-associated activities in countries that had already interrupted wild poliovirus (WPV) transmission, compared with findings for WPV-endemic countries. All countries conducted periodic trainings of the GPEI-funded personnel. The types of non-polio-related tasks performed by GPEI-funded personnel varied among countries and included surveillance, microplanning, newborn registration and defaulter tracing, monitoring of routine immunization activities, and support of district immunization task teams, as well as promotion of health behaviors, such as clean-water use and good hygiene and sanitation practices. In all countries, GPEI-funded personnel perform critical tasks in the strengthening of routine immunization programs and the control of measles and rubella. In certain countries with very weak immunization systems, GPEI-funded personnel provide critical support for the immunization programs, and sudden discontinuation of their employment would potentially disrupt the immunization programs in their countries and create a setback in capacity and effectiveness that would put children at higher risk for vaccine-preventable diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
2013-01-01
Background Studies that have looked at the effect of polio eradication efforts in India on routine immunization programs have provided mixed findings. One polio eradication project, funded by US Agency for International Development (USAID) and carried out by the CORE Group Polio Project (CGPP) in the state of Uttar Pradesh of India, has included the strengthening of routine immunization systems as a core part of its polio eradication strategy. This paper explores the performance of routine immunization services in the CGPP intervention areas concurrent with intensive polio eradication activities. The paper also explores determinants of routine immunization performance such as caretaker characteristics and CGPP activities to strengthen routine immunization services. Methods We conduct secondary data analysis of the latest project household immunization survey in 2011 and compare these findings to reports of past surveys in the CGPP program area and at the Uttar Pradesh state level (as measured by children’s receipt of DPT vaccinations). This is done to judge if there is any evidence that routine immunization services are being disrupted. We also model characteristics of survey respondents and respondents’ exposure to CGPP, communication activities against their children’s receipt of key vaccinations in order to identify determinants of routine immunization coverage. Results Routine immunization coverage has increased between the first survey (2005 for state level estimates, 2008 for the CGPP program) and the latest (2011 for both state level and CGPP areas), as measured by children’s receipt of DPT vaccination. This increase occurred concurrent with polio eradication efforts intensive enough to result in interruption of transmission. In addition, a mothers’ exposure to specific communication materials, her religion and education were associated with whether or not her children receive one or more doses of DPT. Conclusions A limitation of the analysis is the absence of a controlled comparison. It is possible routine immunization coverage would have increased even more in the absence of polio eradication efforts. At the same time, however, there is no evidence that routine immunization services were disrupted by polio eradication efforts. Targeted health communications are helpful in improving routine immunization performance. Strategies to address other determinants of routine immunization, such as religion and education, are also needed to maximize coverage. PMID:23680228
Ansari, M Azim; Pedergnana, Vincent; L C Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C A
2017-05-01
Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control.
Colorectal cancer prevention: Immune modulation taking the stage.
Fletcher, Rochelle; Wang, Yi-Jun; Schoen, Robert E; Finn, Olivera J; Yu, Jian; Zhang, Lin
2018-04-01
Prevention or early detection is one of the most promising strategies against colorectal cancer (CRC), the second leading cause of cancer death in the US. Recent studies indicate that antitumor immunity plays a key role in CRC prevention. Accumulating evidence suggests that immunosurveillance represents a critical barrier that emerging tumor cells have to overcome in order to sustain the course of tumor development. Virtually all of the agents with cancer preventive activity have been shown to have an immune modulating effect. A number of immunoprevention studies aimed at triggering antitumor immune response against early lesions have been performed, some of which have shown promising results. Furthermore, the recent success of immune checkpoint blockade therapy reinforces the notion that cancers including CRC can be effectively intervened via immune modulation including immune normalization, and has stimulated various immune-based combination prevention studies. This review summarizes recent advances to help better harness the immune system in CRC prevention. Copyright © 2018 Elsevier B.V. All rights reserved.
Mansour, Abdallah Tageldein; Miao, Liang; Espinosa, Cristóbal; García-Beltrán, José María; Ceballos Francisco, Diana C; Esteban, M Ángeles
2018-08-01
The effect of the dietary incorporation of drumstick, Moringa oleifera, leaf meal (MOL; 0, 5, 10 and 15%) on the growth, feed utilization, some skin mucus and systemic immune parameters and intestinal immune-related gene expression in gilthead seabream (Sparus aurata) specimens. The experiment lasted 4 weeks. The results revealed that MOL can be incorporated in S. aurata diet up to 10% with no significant negative effect on growth and feed utilization. However, there was a significant decrease with MOL at a level of 15% after 2 weeks of feeding. The systemic immune status of fish fed with the different levels of MOL showed an improvement in head kidney leucocyte phagocytosis, respiratory burst and peroxidase activities. Also, serum humoral components, including protease, ACH 50 and lysozyme activities and IgM level, increased with MOL inclusion especially at the 5% level. MOL at 5% improved skin-mucosal immunity such as protease, antiprotease, peroxidase and lysozyme activities. Moreover, the feeding of MOL revealed an upregulation of the intestinal mucosal immunity genes (lyso and c3), tight junction proteins (occludin and zo-1) and anti-inflammatory cytokines (tgf-β) with a downregulation of pro-inflammatory cytokine (tnf-α). Therefore, it is recommended to incorporate MOL in S. aurata diets at a level of 5% for the best immune status or 10% for the high growth performance and acceptable immune surveillance. Graphical abstract ᅟ.
NASA Astrophysics Data System (ADS)
Liu, Xiangdong; Li, Qingze; Pan, Jianxin
2018-06-01
Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.
The role of cortistatin in the human immune system.
van Hagen, P Martin; Dalm, Virgil A; Staal, Frank; Hofland, Leo J
2008-05-14
Cortistatin (CST) is a recently described neuropeptide that shares high homology with somatostatin (somatotropin release-inhibiting factor, SRIF) and binds with high affinity to all somatostatin (sst) receptor subtypes. CST is currently known to have a widespread distribution in many human organs including the immune system. The activities specific to CST may be partially attributable to its binding to the growth hormone secretagogue (GHS)-receptor (GHS-R) and the orphan G-protein-coupled receptor MrgX2. Human immune cells produce CST, whereas macrophage lineage and activated endothelium express sst2, and human lymphocytes express sst3. The human thymus expresses sst1, 2, 3, MrgX2 and almost all immune cells express GHS-R. Moreover, at this very moment promising research with CST in experimental animal models is being performed. On the basis of these promising results, studies aiming to further evaluate the possibilities of CST as a therapeutic agent in human immune-mediated inflammatory diseases are warranted.
AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems
Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya
2015-01-01
A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911
Keller, Isabel S; Salzburger, Walter; Roth, Olivia
2017-12-20
Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure.
Hernández-Castellano, Lorenzo E; Özçelik, Ranya; Hernandez, Laura L; Bruckmaier, Rupert M
2018-01-01
In ruminants, colostrum is the main source of immunoglobulins for the newborn animal, conferring immune protection until the immune system becomes active and able to synthesize its own immunoglobulins. Serotonin (5-HT), a biogenic amine derived from tryptophan, has stimulatory effects on many physiological processes, including components of the innate (mastocytes, eosinophils, and natural killer cells) and adaptive (T and B lymphocytes) immune systems. Based on the known effects of 5-HT on the immune system, we hypothesized that increased concentrations of 5-HT, through administration of its precursor 5-hydroxy-l-tryptophan (5-HTP), may positively affect development of the calf's immune system and therefore support health and growth performance during the first weeks of life. Eighteen calves were randomly assigned to 1 of 2 experimental groups (control and 5-HTP), resulting in n = 9 per treatment group. Both groups received 2 colostrum meals from a common pool of colostrum. Thereafter, calves were fed milk replacer twice daily for 30 d. In the 5-HTP group, colostrum and milk replacer were supplemented with 1.5 mg of 5-HTP/kg of birth weight during the first 15 d after birth. Body weight was recorded at birth and on d 5, 10, 15, and 30 after birth. Blood samples were collected every morning (0800 h) before feeding from birth until d 5 and then on d 7, 9, 11, 13, 15, and 30 after birth. Serum 5-HT concentrations were increased as a consequence of the 5-HTP supplementation. Plasma immunoglobulin G concentrations did not differ between groups throughout the experimental period. The blood mRNA abundance of several factors related to the innate and adaptive immune system [nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), serum amyloid A-1 (SAA1), chemokine C-C motif ligand 5 (CCL5), cyclooxygenase 2 (PTGS2), haptoglobin (HP), and IL-1β] were increased in calves supplemented with 5-HTP. Supplementation of 5-HTP did not affect any of the measured metabolites (fatty acids and glucose) or minerals (calcium and magnesium) or milk feed intake, feed conversion ratio, and growth. In conclusion, 5-HTP supplementation induced an increase of 5-HT concentrations in blood and caused an increase in mRNA abundance of several factors related to the innate and adaptive immune systems, which might increase the protection of the calf against external agents. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pragya, Prakash; Shukla, Arvind Kumar; Murthy, Ramesh Chandra; Abdin, Malik Zainul; Kar Chowdhuri, Debapratim
2014-01-01
The evolutionarily conserved innate immune system plays critical role for maintaining the health of an organism. However, a number of environmental chemicals including metals are known to exert adverse effects on immune system. The present study assessed the in vivo effect of a major environmental chemical, Cr(VI), on cellular immune response using Drosophila melanogaster and subsequently the protective role of superoxide dismutase (SOD) based on the comparable performance of the tested anti-oxidant enzymes. The immuno-modulatory potential of Cr(VI) was demonstrated by observing a significant reduction in the total hemocyte count along with impaired phagocytic activity in exposed organism. Concurrently, a significant increase in the percentage of Annexin V-FITC positive cells, activation of DEVDase activity, generation of free radical species along with inhibition of anti-oxidant enzyme activities was observed in the hemocytes of exposed organism. In addition, we have shown that ONOO− is primarily responsible for Cr(VI) induced adverse effects on Drosophila hemocytes along with O2 −. While generation of O2 −/ONOO− in Cr(VI) exposed Drosophila hemocytes was found to be responsible for the suppression of Drosophila cellular immune response, Cr(VI) induced alteration was significantly reduced by the over-expression of sod in Drosophila hemocytes. Overall, our results suggest that manipulation of one of the anti-oxidant genes, sod, benefits the organism from Cr(VI) induced alteration in cellular immunity. Further, this study demonstrates the applicability of D. melanogaster to examine the possible effects of environmental chemicals on innate immunity which can be extrapolated to higher organisms due to evolutionary conservation of innate immune system between Drosophila and mammals. PMID:24505420
Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J
2015-01-01
Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.
Use of Gnotobiotic Zebrafish to Study Vibrio anguillarum Pathogenicity
Oyarbide, Usua; Iturria, Iñaki; Rainieri, Sandra
2015-01-01
Abstract We evaluated the use of the gnotobiotic zebrafish system to study the effects of bacterial infection, and analyzed expression of genes involved in zebrafish innate immunity. Using a GFP-labeled strain of Vibrio anguillarum, we fluorescently monitored colonization of the zebrafish intestinal tract and used gene expression analysis to compare changes in genes involved in innate immunity between nongnotobiotic and gnotobiotic larvae. The experiments performed with the gnotobiotic zebrafish reveal new insights into V. anguillarum pathogenesis. Specifically, an alteration of the host immune system was detected through the suppression of a number of innate immune genes (NFKB, IL1B, TLR4, MPX, and TRF) during the first 3 h post infection. This immunomodulation can be indicative of a “stealth mechanism” of mucus invasion in which the pathogen found a sheltered niche, a typical trait of intracellular pathogens. PMID:25548877
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
Hefazi, Mehrdad; Maleki, Masoud; Mahmoudi, Mahmoud; Tabatabaee, Abbas; Balali-Mood, Mahdi
2006-09-01
Extensive cutaneous burns caused by alkylating chemical warfare agent sulfur mustard (SM) have been associated with the severe suppression of the immune system in humans. We aimed to study the association between late cutaneous and immunological complications of SM poisoning. Skin examination was performed on all SM-poisoned Iranian veterans in the province of Khorasan, Iran, who had significant clinical complications, and their SM intoxication was confirmed by toxicological analysis. Light microscopy was performed on eight skin biopsies. Blood cell counts, serum immunoglobulin and complement factor, as well as flow cytometric, analyses were performed on all the patients. The severity of cutaneous complications were classified into four grades and compared with hematological and immunological parameters, using Spearman's rank correlation test. Forty male subjects, confirmed with SM poisoning 16-20 years earlier, were studied. The main objective findings were hyperpigmentation (55%), dry skin (40%), multiple cherry angiomas (37.5%), atrophy (27.5%), and hypopigmentation (25%). Histopathologic findings were nonspecific and compatible with hyperpigmented old atrophic scars. Except for the hematocrit and C4 levels, hematological and immunological parameters revealed no significant correlation with the severity grades of cutaneous complications. Sulfur mustard is an alkylating agent with prolonged adverse effects on both the skin and the immune system. Although skin is a major transporting system for SM's systemic absorption, there is probably no correlation between the severity of late cutaneous and immunological complications of SM poisoning.
Feio, Danielle Cristinne Azevedo; Muniz, José Augusto Pereira Carneiro; Montenegro, Raquel Carvalho; Burbano, Rommel Rodriguez; De Brito Junior, Lacy Cardoso; De Lima, Patrícia Danielle Lima
2014-01-01
The immune response modifier Canova® is a homeopathic remedy indicated for patients with depressed immune system, since this drug appears to increase adaptive immunity and induce an immune response against multiple and severe pathological conditions, including cancer. We evaluated the pattern of immune cellular response in non-human primates of the species Cebus apella exposed to N-methyl-N-nitrosourea (MNU) with and without Canova®. Twelve animals were divided into four groups, with three animals each: negative control and three experimental groups, MNU-alone (35 days); MNU (35 days)-plus-Canova® (3 days) and Canova®-alone (3 days). The animals received MNU orally and Canova® by three intravenous injections. Evaluation of the cellular immune response was performed by immunophenotyping of T-lymphocytes (CD4(+), CD8(+)), B-lymphocytes and natural killer cells. Analysis was also performed of the cell cycle. Our results suggest an increase of T-lymphocytes (CD4(+)CD3(+)) only in the Canova® group, while in the MNU-plus-Canova® group only B-lymphocytes increased. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection
NASA Technical Reports Server (NTRS)
Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje
2005-01-01
This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.
Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies
van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C
2017-01-01
Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400
Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction
NASA Astrophysics Data System (ADS)
Khajanchi, Subhas
This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.
Huntley, Nichole F; Nyachoti, C Martin; Patience, John F
2018-01-01
Pathogen or diet-induced immune activation can partition energy and nutrients away from growth, but clear relationships between immune responses and the direction and magnitude of energy partitioning responses have yet to be elucidated. The objectives were to determine how β-mannanase supplementation and lipopolysaccharide (LPS) immune stimulation affect maintenance energy requirements (MEm) and to characterize immune parameters, digestibility, growth performance, and energy balance. In a randomized complete block design, 30 young weaned pigs were assigned to either the control treatment (CON; basal corn, soybean meal and soybean hulls diet), the enzyme treatment (ENZ; basal diet + 0.056% β-mannanase), or the immune system stimulation treatment (ISS; basal diet + 0.056% β-mannanase, challenged with repeated increasing doses of Escherichia coli LPS). The experiment consisted of a 10-d adaptation period, 5-d digestibility and nitrogen balance measurement, 22 h of heat production (HP) measurements, and 12 h of fasting HP measurements in indirect calorimetry chambers. The immune challenge consisted of 4 injections of either LPS (ISS) or sterile saline (CON and ENZ), one every 48 h beginning on d 10. Blood was collected pre- and post-challenge for complete blood counts with differential, haptoglobin and mannan binding lectin, 12 cytokines, and glucose and insulin concentrations. Beta-mannanase supplementation did not affect immune status, nutrient digestibility, growth performance, energy balance, or ME m . The ISS treatment induced fever, elevated proinflammatory cytokines and decreased leukocyte concentrations ( P < 0.05). The ISS treatment did not impact nitrogen balance or nutrient digestibility ( P > 0.10), but increased total HP (21%) and ME m (23%), resulting in decreased lipid deposition (-30%) and average daily gain (-18%) ( P < 0.05). This experiment provides novel data on β-mannanase supplementation effects on immune parameters and energy balance in pigs and is the first to directly relate decreased ADG to increased ME m independent of changes in feed intake in immune challenged pigs. Immune stimulation increased energy partitioning to the immune system by 23% which limited lipid deposition and weight gain. Understanding energy and nutrient partitioning in immune-stressed pigs may provide insight into more effective feeding and management strategies.
Barcia, Carlos; Gerdes, Christian; Xiong, Wei-Dong; Thomas, Clare E.; Liu, Chunyan; Kroeger, Kurt M.; Castro, Maria G.; Lowenstein, Pedro R.
2007-01-01
First-generation adenovirus can be engineered with powerful promoters to drive expression of therapeutic transgenes. Numerous clinical trials for glioblastoma multiforme using first generation adenoviral vectors have either been performed or are ongoing, including an ongoing, Phase III, multicenter trial in Europe and Israel (Ark Therapeutics, Inc.). Although in the absence of anti-adenovirus immune responses expression in the brain lasts 6–18 months, systemic infection with adenovirus induces immune responses that inhibit dramatically therapeutic transgene expression from first generation adenoviral vectors, thus, potentially compromising therapeutic efficacy. Here, we show evidence of an immunization threshold for the dose that generates an immune response strong enough to eliminate transgene expression from the CNS. For the systemic immunization to eliminate transgene expression from the brain, ≥1 × 107 infectious units (iu) of adenovirus need to be used as immunogen. Furthermore, this immune response eliminates >90% of transgene expression from 1 × 107–1 × 10³ iu of vector injected into the striatum 60 days earlier. Importantly, elimination of transgene expression is independent of the nature of the promoter that drives transgene expression and is accompanied by brain infiltration of CD8+ T cells and macrophages. In conclusion, once the threshold for systemic immunization (i.e. 1 × 107 iu) is crossed, the immune response eliminates transgene expression by >90% even from brains that receive as little as 1000 iu of adenoviral vectors, independently of the type of promoter that drives expression. PMID:18084640
Shearer, Jessica C; Walker, Damian G; Risko, Nicholas; Levine, Orin S
2012-12-14
A surge of new and underutilized vaccine introductions into national immunization programmes has called into question the effect of new vaccine introduction on immunization and health systems. In particular, countries deciding whether to introduce a new or underutilized vaccine into their routine immunization programme may query possible effects on the delivery and coverage of existing vaccines. Using coverage of diphtheria-tetanus-pertussis (DTP) vaccine as a proxy for immunization system performance, this study aims to test whether new vaccine introduction into national immunization programs was associated with changes in coverage of three doses of DTP vaccine among infants. DTP3 vaccine coverage was analyzed in 187 countries during 1999-2009 using multivariable cross-national mixed-effect longitudinal models. Controlling for other possible determinants of DTP3 coverage at the national level these models found minimal association between the introduction of Hepatitis-, Haemophilus influenzae type b-, and rotavirus-containing vaccines and DTP3 coverage. Instead, frequent and sometimes large fluctuations in coverage are associated with other development and health systems variables, including the presence of armed conflict, coverage of antenatal care services, infant mortality, the percent of health expenditures that are private and total health expenditures per capita. Introductions of new vaccines did not affect national coverage of DTP3 vaccine in the countries studied. Introductions of other new vaccines and multiple vaccine introductions should be monitored for immunization and health systems impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.
An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.
Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T
2016-08-01
Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Immune Thrombocytopenic Purpura Presenting as Unprovoked Gingival Hemorrhage: a Case Report
Bal, Mehmet V; Koyuncuoglu, Cenker Z; Saygun, Işıl
2014-01-01
Immune thrombocytopenic purpura is an autoimmune disease characterized by auto-antibody induced platelet destruction and reduced platelet production, leading to low blood platelet count. In this case report, the clinical diagnose of a patient with immune thrombocytopenic purpura and spontaneous gingival hemorrhage by a dentist is presented. The patient did not have any systemic disease that would cause any spontaneous hemorrhage. The patient was referred to a hematologist urgently and her thrombocyte number was found to be 2000/μL. Other test results were in normal range and immune thrombocytopenic purpura diagnose was verified. Then hematological treatment was performed and patient’s health improved without further problems. Hematologic diseases like immune thrombocytopenic purpura, in some cases may appear firstly in the oral cavity and dentists must be conscious of unexplained gingival hemorrhage. In addition, the dental treatment of immune thrombocytopenic purpura patients must be planned with a hematologist. PMID:25317211
Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong
2017-03-22
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.
Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori
2017-11-04
(1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.
Immune Response and Function: Exercise Conditioning Versus Bed-Rest and Spaceflight Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Jackson, C. G. R.; Lawless, D.
1994-01-01
Immune responses measured at rest immediately or some hours after exercise training (some with and some without increase in maximal oxygen uptake) gave variable and sometimes conflicting results; therefore, no general conclusions can be drawn. On the other hand, most immune responses were either unchanged (immunoglobulin, T cells, CD4+, and natural killer activity) or decreased (blood properdin, neutrophil phagocytic activity, salivary lysozymes, brain immunoglobulin A and G, and liver B lymphocytes and phytohemagglutinin activity) during prolonged bed rest. Some data suggested that exercise training during bed rest may partially ameliorate the decreased functioning of the immune system. Exercise and change in body position, especially during prolonged bed rest with plasma fluid shifts and diuresis, may induce a change in plasma protein concentration and content, which can influence drug metabolism as well as immune function. Leukocytosis, accompanied by lymphopenia and a depressed lymphocyte response, occurs in astronauts on return to Earth from spaceflight; recovery may depend on time of exposure to microgravity. It is clear that the effect of drugs and exercise used as countermeasures for microgravity deconditioning should be evaluated for their effect on an astronaut's immune system to assure optimal health and performance on long-duration space missions.
System redesign of the immunization supply chain: Experiences from Benin and Mozambique.
Prosser, Wendy; Jaillard, Philippe; Assy, Emmanuelle; Brown, Shawn T; Matsinhe, Graça; Dekoun, Mawutondji; Lee, Bruce Y
2017-04-19
Evidence suggests that immunization supply chains are becoming outdated and unable to deliver needed vaccines due to growing populations and new vaccine introductions. Redesigning a supply chain could result in meeting current demands. The Ministries of Health in Benin in Mozambique recognized known barriers to the immunization supply chain and undertook a system redesign to address those barriers. Changes were made to introduce an informed push system while consolidating storage points, introducing transport loops, and increasing human resource capacity for distribution. Evaluations were completed in each country. Evaluation in each country indicated improved performance of the supply chain. The Effective Vaccine Management (EVM) assessment in Benin documented notable improvements in the distribution criteria of the tool, increasing from 40% to 100% at the district level. In Mozambique, results showed reduced stockouts at health facility level from 79% at baseline to less than 1% at endline. Coverage rates of DTP3 also increased from 68.9% to 92.8%. Benin and Mozambique are undertaking system redesign in order to respond to constraints identified in the vaccine supply chain. Results and learnings show improvements in supply chain performance and make a strong case for system redesign. These countries demonstrate the feasibility of system redesign for other countries considering how to address outdated supply chains. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Gene expression profiling of dendritic cells by microarray.
Foti, Maria; Ricciardi-Castagnoli, Paola; Granucci, Francesca
2007-01-01
The immune system of vertebrate animals has evolved to respond to different types of perturbations (invading pathogens, stress signals), limiting self-tissue damage. The decision to activate an immune response is made by antigen-presenting cells (APCs) that are quiescent until they encounter a foreign microorganism or inflammatory stimuli. Early activated APCs trigger innate immune responses that represent the first line of reaction against invading pathogens to limit the infections. At later times, activated APCs acquire the ability to prime antigen-specific immune responses that clear the infections and give rise to memory. During the immune response self-tissue damage is limited and tolerance to self is maintained through life. Among the cells that constitute the immune system, dendritic cells (DC) play a central role. They are extremely versatile APCs involved in the initiation of both innate and adaptive immunity and also in the differentiation of regulatory T cells required for the maintenance of self-tolerance. How DC can mediate these diverse and almost contradictory functions has recently been investigated. The plasticity of these cells allows them to undergo a complete genetic reprogramming in response to external microbial stimuli with the sequential acquisition of different regulatory functions in innate and adaptive immunity. The specific genetic reprogramming DC undergo upon activation can be easily investigated by using microarrays to perform global gene expression analysis in different conditions.
Equity and immunization supply chain in Madagascar.
van den Ent, Maya M V X; Yameogo, Andre; Ribaira, Eric; Hanson, Celina M; Ratoto, Ramiandrasoa; Rasolomanana, Saholy; Foncha, Chrysanthus; Gasse, François
2017-04-19
Vaccination rates have improved in many countries, yet immunization inequities persist within countries and the poorest communities often bear the largest burden of vaccine preventable disease. Madagascar has one of the world's largest equity gaps in immunization rates. Barriers to immunization include immunization supply chain, human resources, and service delivery to reflect the health system building blocks, which affect poor rural communities more than affluent communities. The Reaching Every District (RED) approach was revised to address barriers and bottlenecks. This approach focuses on the provision of regular services, including making cold chain functional. This report describes Madagascar's inequities in immunization, its programmatic causes and the country's plans to address barriers to immunization in the poorest regions in the country. Two cross-sectional health facility surveys conducted in November and December 2013 and in March 2015 were performed in four regions of Madagascar to quantify immunization system barriers. Of the four regions studied, 26-33% of the population live beyond 5km (km) of a health center. By 2015, acceptable (fridges stopped working for less than 6days) cold chains were found in 52-80% of health facilities. Only 10-57% of health centers had at least two qualified health workers. Between 65% and 95% of planned fixed vaccination sessions were conducted and 50-88% of planned outreach sessions were conducted. The proportion of planned outreach sessions that were conducted increased between the two surveys. Madagascar's immunization program faces serious challenges and those affected most are the poorest populations. Major inequities in immunization were found at the subnational level and were mainly geographic in nature. Approaches to improve immunization systems need to be equitable. This may include the replacement of supply chain equipment with those powered by sustainable energy sources, monitoring its functionality at health facility level and vaccination services in all communities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Cutaneous immunology: basics and new concepts.
Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran
2016-01-01
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects?
Burnett, Karen G; Burnett, Louis E
2015-11-01
Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have developed a separate tracheal system for the delivery of oxygen to tissues, so this particular tradeoff between oxygen transport and immune function is avoided. Few studies in crustaceans or insects have tested whether mounting an immune response might impact other functions of the cardiovascular system or alter integrity of the gut, respiratory, and reproductive epithelia where processes of the attack on pathogens, defense by the host, and physiological functions play out. Such tradeoffs might be fruitfully addressed by capitalizing on the ease of molecular and genetic manipulation in insects. Given the extensive similarities between the insect and the crustacean immune systems, such models of epithelial infection could benefit our understanding of the physiological consequences of immune defense in all of the Pancrustacea. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Insights into the innate immunome of actiniarians using a comparative genomic approach.
van der Burg, Chloé A; Prentis, Peter J; Surm, Joachim M; Pavasovic, Ana
2016-11-02
Innate immune genes tend to be highly conserved in metazoans, even in early divergent lineages such as Cnidaria (jellyfish, corals, hydroids and sea anemones) and Porifera (sponges). However, constant and diverse selection pressures on the immune system have driven the expansion and diversification of different immune gene families in a lineage-specific manner. To investigate how the innate immune system has evolved in a subset of sea anemone species (Order: Actiniaria), we performed a comprehensive and comparative study using 10 newly sequenced transcriptomes, as well as three publically available transcriptomes, to identify the origins, expansions and contractions of candidate and novel immune gene families. We characterised five conserved genes and gene families, as well as multiple novel innate immune genes, including the newly recognised putative pattern recognition receptor CniFL. Single copies of TLR, MyD88 and NF-κB were found in most species, and several copies of IL-1R-like, NLR and CniFL were found in almost all species. Multiple novel immune genes were identified with domain architectures including the Toll/interleukin-1 receptor (TIR) homology domain, which is well documented as functioning in protein-protein interactions and signal transduction in immune pathways. We hypothesise that these genes may interact as novel proteins in immune pathways of cnidarian species. Novelty in the actiniarian immunome is not restricted to only TIR-domain-containing proteins, as we identify a subset of NLRs which have undergone neofunctionalisation and contain 3-5 N-terminal transmembrane domains, which have so far only been identified in two anthozoan species. This research has significance in understanding the evolution and origin of the core eumetazoan gene set, including how novel innate immune genes evolve. For example, the evolution of transmembrane domain containing NLRs indicates that these NLRs may be membrane-bound, while all other metazoan and plant NLRs are exclusively cytosolic receptors. This is one example of how species without an adaptive immune system may evolve innovative solutions to detect pathogens or interact with native microbiota. Overall, these results provide an insight into the evolution of the innate immune system, and show that early divergent lineages, such as actiniarians, have a diverse repertoire of conserved and novel innate immune genes.
An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters
NASA Astrophysics Data System (ADS)
Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.
2017-09-01
In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.
Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy
2015-04-01
To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of medicinal plants on growth performance and immune status in fish.
Awad, Elham; Awaad, Amani
2017-08-01
Disease outbreaks increase proportionally with increases in intensive aquaculture. Natural products including medicinal plants have been known from thousands of years for treating some human diseases. It is well known that many active compounds are responsible for potential bio-activities. For that reason, there has been considerable interest in the use of medicinal plants in aquaculture with a view to providing safe and eco-friendly compounds for replacing antibiotics and chemical compounds as well as to enhance immune status and control fish diseases. This article describes a wide range of medicinal plants such as herbs, seeds, and spices with different forms such as crude, extracts, mixed and active compounds, used as immunostimulants and resulting in a marked enhancement in the immune system of fish to prevent and control microbial diseases. Moreover, different activity was recorded from plant parts like seeds, roots, flowers and leaves. The mode of action of medicinal plants was stimulation of the cellular and humoral immune response which was monitored through elevation in immune parameters. Various levels of immune stimulation have been shown by medicinal plants at different concentrations through injection or immersion or oral administration. However, it is critically important to determine the optimal dose to enhance the immune system of fish and avoid the risk of immunosuppression. Some medicinal plants have been used to replace the protein in fishmeal as a cheap source of protein and proved to be efficient in this respect. Medicinal plants can act as a growth promoter and immunomodulator at the same time. Further investigations should be carried out to examine the influence of those plants on fish health (including physiological and histological parameters) as a preliminary step for use in large scale in aquaculture. The current review describes the role of medicinal plants and their derivatives on innate and adaptive immune status as well as growth performance in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.
Branger, Christine G; Fetherston, Jacqueline D; Perry, Robert D; Curtiss, Roy
2007-01-01
The use of live recombinant Salmonella attenuated vaccine (RASV) encoding Yersinia proteins is a promising new approach for the vaccination against Yersinia pestis. We have tested the efficacy of 2 proteins, Psn and a portion of LcrV in protecting mice against virulent Yersinia pestis challenge. To remove the immunosuppressive properties of LcrV protein, the lcrV gene, without the TLR2 receptor sequence, was cloned into a beta-lactamase secretion vector. Immunizations were performed with RSAV expressing LcrV or Psn. Challenge with a virulent Y. pestis strain was performed 4 weeks after the last immunization. Our results show that the truncated LcrV protein delivered by RASV is sufficient to afford a full protective immune response in a mouse model of bubonic plague and the Psn protein afforded partial protection in a non-optimized system. This finding should facilitate the design and development of a new generation of vaccines against Y. pestis.
Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo
Lei, Runhong; Zhao, Tuo; Li, Qiang; Wang, Xiao; Ma, Hong; Deng, Yulin
2015-01-01
Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3+CD4−CD8+ T-cells in the thymus and the proportion of CD3+CD4+CD8− T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation. PMID:26633364
High-performance multi-channel fiber-based absolute distance measuring interferometer system
NASA Astrophysics Data System (ADS)
Deck, Leslie L.
2009-08-01
I describe the principle of operation and performance of a fiber-based absolute distance measuring interferometer system with 60 independent simultaneous channels. The system was designed for demanding applications requiring passive, electrically immune sensors with an extremely long MTTF. In addition to providing better than 0.3nm measurement repeatability at 5KHz for all channels, the system demonstrated absolute distance uncertainty of less than 5nm over a 500 micron measurement range.
Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew
2016-01-01
The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167
Immune Evasion by Epstein-Barr Virus.
Ressing, Maaike E; van Gent, Michiel; Gram, Anna M; Hooykaas, Marjolein J G; Piersma, Sytse J; Wiertz, Emmanuel J H J
2015-01-01
Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.
Tayebati, Seyed Khosrow; Amenta, Francesco
2008-01-01
Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.
Effect of level of chronic immune system activation on the lactational performance of sows.
Sauber, T E; Stahly, T S; Nonnecke, B J
1999-08-01
The effect of the level of chronic immune system (IS) activation on sow lactational performance was determined in 11 pairs of littermate, primiparous sows. Sows with a low level of IS activation were created by rearing the animals via early weaning, isolated rearing schemes. During lactation, two levels of IS activation were achieved in each littermate sow pair by subcutaneous administration of either 0 (saline) or 5 microg/kg of sow BW of Escherichia coli lipopolysaccharide (LPS) in a mineral oil adjuvant emulsion on d 2 and 10 of lactation. Litters were standardized to 13 pigs by 8 h postpartum. Sows were offered daily 6.0 kg of a corn-soy diet formulated to contain a minimum of 250% of the dietary nutrient concentrations estimated to be needed by lactating sows. Based on antibody titers to LPS and serum concentrations of alpha-1 acid glycoprotein (AGP), high IS sows mounted an immune response to the LPS during lactation, and low IS sows maintained a low level of IS activation. Over an 18-d lactation, a high level of chronic activation of the sows' immune systems depressed daily sow feed intakes by .56 kg, litter weight gains by .32 kg, and daily milk by 1.4 kg, milk energy by 1.7 Mcal, and milk protein yields by 71 g, but did not alter sow body weight loss. The reductions in yields of milk and milk nutrients likely were because of proinflammatory cytokine-induced inhibition of the lactogenic hormones resulting from high chronic IS activation. Based on these data, the level of chronic IS activation alters the lactational performance of sows.
Ni, Hengjia; Martínez, Yordan; Guan, Guiping; Rodríguez, Román; Más, Dairon; Peng, Hanhui; Valdivié Navarro, Manuel; Liu, Gang
2016-01-01
Medicinal extract has been chronicled extensively in traditional Chinese medicine. Isoquinoline alkaloids, extract of Macleaya cordata (Willd.) R. Br., have been used as feed additive in both swine and poultry. Dietary supplementation with isoquinoline alkaloids increases feed intake and weight gain. In addition, recent researches have demonstrated that isoquinoline alkaloids can regulate metabolic processes, innate immune system, and digestive functioning in animals. This review summarizes the latest scientific researches on isoquinoline alkaloids which are extracted from Macleaya cordata (Willd.) R. Br. This review specifically focuses on its role as a feed supplement and its associated impact on growth performance and innate immune system, as well as its capacity to act as a substitute for oral antibiotics.
Martínez, Yordan; Rodríguez, Román; Más, Dairon; Peng, Hanhui; Valdivié Navarro, Manuel
2016-01-01
Medicinal extract has been chronicled extensively in traditional Chinese medicine. Isoquinoline alkaloids, extract of Macleaya cordata (Willd.) R. Br., have been used as feed additive in both swine and poultry. Dietary supplementation with isoquinoline alkaloids increases feed intake and weight gain. In addition, recent researches have demonstrated that isoquinoline alkaloids can regulate metabolic processes, innate immune system, and digestive functioning in animals. This review summarizes the latest scientific researches on isoquinoline alkaloids which are extracted from Macleaya cordata (Willd.) R. Br. This review specifically focuses on its role as a feed supplement and its associated impact on growth performance and innate immune system, as well as its capacity to act as a substitute for oral antibiotics. PMID:28042566
Immunizations and African Americans
... Minority Health at HHS Advisory Committee Committees and Working Groups News HHS Disparities Action Plan National Partnership for Action Campaigns and Initiatives Performance Improvement and Management System Report to Congress Knowledge ...
The Immune System: Basis of so much Health and Disease: 2. Innate Immunity.
Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan
2017-03-01
The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covering innate immunity. Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.
The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.
Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan
2017-04-01
The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.
Nebel, Silke; Buehler, Deborah M; MacMillan, Alexander; Guglielmo, Christopher G
2013-07-15
Migratory birds have been implicated in the spread of some zoonotic diseases, but how well infected individuals can fly remains poorly understood. We used western sandpipers, Calidris mauri, to experimentally test whether flight is affected when long-distance migrants are mounting an immune response and whether migrants maintain immune defences during a flight in a wind tunnel. We measured five indicators of innate immunity in 'flown-healthy' birds (flying in a wind tunnel without mounting an immune response), 'flown-sick' birds (flying while mounting an acute phase response, which is part of induced innate immunity), and a non-flying control group ('not-flown'). Voluntary flight duration did not differ between flown-healthy and flown-sick birds, indicating that mounting an acute phase response to simulated infection did not hamper an individual's ability to fly for up to 3 h. However, in comparison to not-flown birds, bacterial killing ability of plasma was significantly reduced after flight in flown-sick birds. In flown-healthy birds, voluntary flight duration was positively correlated with bacterial killing ability and baseline haptoglobin concentration of the blood plasma measured 1-3 weeks before experimental flights, suggesting that high quality birds had strong immune systems and greater flight capacity. Our findings indicate that flight performance is not diminished by prior immune challenge, but that flight while mounting an acute phase response negatively affects other aspects of immune function. These findings have important implications for our understanding of the transmission of avian diseases, as they suggest that birds can still migrate while fighting an infection.
Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma.
Garzon-Muvdi, Tomas; Theodros, Debebe; Luksik, Andrew S; Maxwell, Russell; Kim, Eileen; Jackson, Christopher M; Belcaid, Zineb; Ganguly, Sudipto; Tyler, Betty; Brem, Henry; Pardoll, Drew M; Lim, Michael
2018-04-17
The glioblastoma (GBM) immune microenvironment is highly suppressive as it targets and hinders multiple components of the immune system. Checkpoint blockade (CB) is being evaluated for GBM patients. However, biomarker analyses suggest that CB monotherapy may be effective only in a small fraction of GBM patients. We hypothesized that activation of antigen presentation would increase the therapeutic response to PD-1 blockade. We show that activating DCs through TLR3 agonists enhances the anti-tumor immune response to CB and increases survival in GBM. Mice treated with TLR3 agonist poly(I:C) and anti-PD-1 demonstrated increased DC activation and increased T cell proliferation in tumor draining lymph nodes. We show that DCs are necessary for the improved anti-tumor immune response. This study suggests that augmenting antigen presentation is an effective multimodal immunotherapy strategy that intensifies anti-tumor responses in GBM. Specifically, these data represent an expanded role for TLR3 agonists as adjuvants to CB. Using a preclinical model of GBM, we tested the efficacy of combinatorial immunotherapy with anti-PD-1 and TLR3 agonist, poly(I:C). Characterization of the immune response in tumor infiltrating immune cells and in secondary lymphoid organs was performed. Additionally, dendritic cell (DC) depletion experiments were performed.
Slobodkin, D; Zielske, P G; Kitlas, J L; McDermott, M F; Miller, S; Rydman, R
1998-11-01
To demonstrate the feasibility of systematic immunization against influenza and pneumococcus in a public emergency department. This was a demonstration project conducted from October 21, 1996, through December 2, 1996, at Cook County Hospital, an inner-city hospital with a 1996 adult ED census of 120,449. Seventy-eight percent of patients are uninsured; 92% are people of color; 73% deny having a primary physician. Only 15% have emergency complaints. Nurses received standing orders that all nonemergency adult patients meeting Centers for Disease Control and Prevention criteria for high risk should be offered immunization against influenza and pneumococcus at triage. Cash prizes were offered to nurses appropriately immunizing the most patients. The date of immunization was entered into the computerized patient registration system, available to all providers within the county system. From November 4 through November 18, an extra nurse was assigned to triage to test for improvement in immunization rates. A time-motion study determined the time required per immunization on the basis of a convenience sample of 8 nurses drawn from all 3 shifts. Only 3% of identified high-risk patients reported previous pneumococcal immunization. Despite extreme variation in nurse performance, 2,631 patients (24% of patients triaged) were screened, and 716 high-risk patients were identified (27% of patients screened). A total of 1234 patients were immunized against influenza, and 241 patients were appropriately immunized against pneumococcus. Sixty-one percent of high-risk patients with no contraindication to influenza immunization were immunized against influenza. Thirty-five percent of high-risk patients not previously immunized against pneumococcus were immunized against pneumococcus. Immunizations per shift per triage nurse varied from 0 to 24. Median time for all activities related to immunization was 4 minutes (range, 2 to 10 minutes). There was no increase in immunization rates with the addition of an extra nurse at triage (95% confidence interval for odds ratio, .929 to 1.153). Systematic immunization against influenza and pneumococcus is both needed and feasible in a public ED. "Buy-in" by nurses is variable. Increased staffing alone does not improve immunization rates.
Hanf, Matthieu; Quantin, Catherine; Farrington, Paddy; Benzenine, Eric; Hocine, N Mounia; Velten, Michel; Tubert-Bitter, Pascale; Escolano, Sylvie
2013-12-02
In the French national health insurance information system (SNIIR-AM), routine records of health claimed reimbursements are linked to hospital admissions for the whole French population. The main focus of this work is the usability of this system for vaccine safety assessment programme. Self-controlled case series analyses were performed using an exhaustive SNIIR-AM extraction of French children aged less than 3 years, to investigate the relationship between MMR immunization and children hospitalizations for febrile convulsions, a well-documented rare adverse event, over 2009-2010. The results suggest a significant increase of febrile convulsions during the 6-11 days period following any MMR immunization (IRR=1.49, 95% CI=1.22, 1.83; p=0.0001) and no increase 15-35 days post any MMR immunization (IRR=1.03, 95% CI=0.89, 1.18; p=0.72). These results are in accordance with other results obtained from large epidemiologic studies, which suggest the usability of the SNIIR-AM as a relevant database to study the occurrence of adverse events associated with immunization. For future use, results associated with risk of convulsion during the day of vaccination should nevertheless be considered with particular caution. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver
2017-01-01
The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.
Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.
2017-01-01
The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable “steady state” after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions. PMID:28419128
Qiao, Wenjie; Zarzyńska-Nowak, Aleksandra; Nerva, Luca; Kuo, Yen-Wen; Falk, Bryce W
2018-04-28
RNA silencing is a conserved antiviral defense mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harboring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RdRp sequence exhibited immunity to systemic LIYV infection. Deep-sequencing analysis was performed to characterize virus-derived siRNAs (vsiRNAs) generated upon systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants except a significant increase of t-siRNAs of 24 nt in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21-, 22-, and 24- nt in length. The accumulated 24-nt sequences haven't yet been reported in transgenic plants partially resistant to criniviruses, thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nt t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24 nt t-siRNAs is associated with crinivirus immunity in transgenic plants. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C
2017-01-01
Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
How do plants achieve immunity? Defence without specialized immune cells.
Spoel, Steven H; Dong, Xinnian
2012-01-25
Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio
2011-12-01
The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system.
Stier, Heike; Bischoff, Stephan C
2016-01-01
The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii ) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile -associated diarrhea, traveller's diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host's infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens' ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated.
Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system
Stier, Heike; Bischoff, Stephan C
2016-01-01
Background The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, traveller’s diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. Aim The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. Methods A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). Results and conclusion S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host’s infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens’ ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated. PMID:27695355
A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.
Chen, Shu-Hwa; Kuo, Wen-Yu; Su, Sheng-Yao; Chung, Wei-Chun; Ho, Jen-Ming; Lu, Henry Horng-Shing; Lin, Chung-Yen
2018-05-08
A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types. Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods. Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .
Kurtz, Sherry L.
2015-01-01
A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537
Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.
Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S
2017-07-10
Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.
Immunizations and Asians and Pacific Islanders
... Minority Health at HHS Advisory Committee Committees and Working Groups News HHS Disparities Action Plan National Partnership for Action Campaigns and Initiatives Performance Improvement and Management System Report to Congress Knowledge ...
Use of animal models for space flight physiology studies, with special focus on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
2005-01-01
Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.
Ito, Fumito; Ku, Amy W; Bucsek, Mark J; Muhitch, Jason B; Vardam-Kaur, Trupti; Kim, Minhyung; Fisher, Daniel T; Camoriano, Marta; Khoury, Thaer; Skitzki, Joseph J; Gollnick, Sandra O; Evans, Sharon S
2015-01-01
While surgical resection is a cornerstone of cancer treatment, local and distant recurrences continue to adversely affect outcome in a significant proportion of patients. Evidence that an alternative debulking strategy involving radiofrequency ablation (RFA) induces antitumor immunity prompted the current investigation of the efficacy of performing RFA prior to surgical resection (pre-resectional RFA) in a preclinical mouse model. Therapeutic efficacy and systemic immune responses were assessed following pre-resectional RFA treatment of murine CT26 colon adenocarcinoma. Treatment with pre-resectional RFA significantly delayed tumor growth and improved overall survival compared to sham surgery, RFA, or resection alone. Mice in the pre-resectional RFA group that achieved a complete response demonstrated durable antitumor immunity upon tumor re-challenge. Failure to achieve a therapeutic benefit in immunodeficient mice confirmed that tumor control by pre-resectional RFA depends on an intact adaptive immune response rather than changes in physical parameters that make ablated tumors more amenable to a complete surgical excision. RFA causes a marked increase in intratumoral CD8+ T lymphocyte infiltration, thus substantially enhancing the ratio of CD8+ effector T cells: FoxP3+ regulatory T cells. Importantly, pre-resectional RFA significantly increases the number of antigen-specific CD8+ T cells within the tumor microenvironment and tumor-draining lymph node but had no impact on infiltration by myeloid-derived suppressor cells, M1 macrophages or M2 macrophages at tumor sites or in peripheral lymphoid organs (i.e., spleen). Finally, pre-resectional RFA of primary tumors delayed growth of distant tumors through a mechanism that depends on systemic CD8+ T cell-mediated antitumor immunity. Improved survival and antitumor systemic immunity elicited by pre-resectional RFA support the translational potential of this neoadjuvant treatment for cancer patients with high-risk of local and systemic recurrence.
The twilight of immunity: emerging concepts in aging of the immune system.
Nikolich-Žugich, Janko
2018-01-01
Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.
Burian, Marc; Velic, Ana; Matic, Katarina; Günther, Stephanie; Kraft, Beatrice; Gonser, Lena; Forchhammer, Stephan; Tiffert, Yvonne; Naumer, Christian; Krohn, Michael; Berneburg, Mark; Yazdi, Amir S; Maček, Boris; Schittek, Birgit
2015-03-01
In healthy human skin host defense molecules such as antimicrobial peptides (AMPs) contribute to skin immune homeostasis. In patients with the congenital disease ectodermal dysplasia (ED) skin integrity is disturbed and as a result patients have recurrent skin infections. The disease is characterized by developmental abnormalities of ectodermal derivatives and absent or reduced sweating. We hypothesized that ED patients have a reduced skin immune defense because of the reduced ability to sweat. Therefore, we performed a label-free quantitative proteome analysis of wash solution of human skin from ED patients or healthy individuals. A clear-cut difference between both cohorts could be observed in cellular processes related to immunity and host defense. In line with the extensive underrepresentation of proteins of the immune system, dermcidin, a sweat-derived AMP, was reduced in its abundance in the skin secretome of ED patients. In contrast, proteins involved in metabolic/catabolic and biosynthetic processes were enriched in the skin secretome of ED patients. In summary, our proteome profiling provides insights into the actual situation of healthy versus diseased skin. The systematic reduction in immune system and defense-related proteins may contribute to the high susceptibility of ED patients to skin infections and altered skin colonization.
Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy
2017-01-01
Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600
Chronic infection and the origin of adaptive immune system.
Usharauli, David
2010-08-01
It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.
Li, Zhoufang; Liu, Guangjie; Tong, Yin; Zhang, Meng; Xu, Ying; Qin, Li; Wang, Zhanhui; Chen, Xiaoping; He, Jiankui
2015-01-01
Profiling immune repertoires by high throughput sequencing enhances our understanding of immune system complexity and immune-related diseases in humans. Previously, cloning and Sanger sequencing identified limited numbers of T cell receptor (TCR) nucleotide sequences in rhesus monkeys, thus their full immune repertoire is unknown. We applied multiplex PCR and Illumina high throughput sequencing to study the TCRβ of rhesus monkeys. We identified 1.26 million TCRβ sequences corresponding to 643,570 unique TCRβ sequences and 270,557 unique complementarity-determining region 3 (CDR3) gene sequences. Precise measurements of CDR3 length distribution, CDR3 amino acid distribution, length distribution of N nucleotide of junctional region, and TCRV and TCRJ gene usage preferences were performed. A comprehensive profile of rhesus monkey immune repertoire might aid human infectious disease studies using rhesus monkeys. PMID:25961410
Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish.
Williams, Julie A; Sathyanarayanan, Sriram; Hendricks, Joan C; Sehgal, Amita
2007-04-01
The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.
Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish
Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita
2010-01-01
Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783
The Immune System: Basis of so much Health and Disease: 4. Immunocytes.
Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan
2017-05-01
The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covers cells of the immune system (immunocytes). Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.
Heler, Robert; Wright, Addison V; Vucelja, Marija; Bikard, David; Doudna, Jennifer A; Marraffini, Luciano A
2017-01-05
CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan
2014-01-01
Beta-glucans are a heterogeneous group of natural polysaccharides mostly investigated for their immunological effects. Due to the low systemic availability of oral preparations, it has been thought that only parenterally applied beta-glucans can modulate the immune system. However, several in vivo and in vitro investigations have revealed that orally applied beta-glucans also exert such effects. Various receptor interactions, explaining possible mode of actions, have been detected. The effects mainly depend on the source and structure of the beta-glucans. In the meantime, several human clinical trials with dietary insoluble yeast beta-glucans have been performed. The results confirm the previous findings of in vivo studies. The results of all studies taken together clearly indicate that oral intake of insoluble yeast beta-glucans is safe and has an immune strengthening effect. PMID:24774968
Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A
2012-02-01
An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.
Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing
NASA Astrophysics Data System (ADS)
Suma, T.; Murugesan, R.
2018-04-01
The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
Systems vaccinology: Probing humanity’s diverse immune systems with vaccines
Pulendran, Bali
2014-01-01
Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102
Systems vaccinology: probing humanity's diverse immune systems with vaccines.
Pulendran, Bali
2014-08-26
Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.
NASA Astrophysics Data System (ADS)
Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.
1999-04-01
Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.
Baran, Arkadiusz; Jakiel, Grzegorz; Wójcik, Grazyna
2008-01-01
The adaptation of an organism to a change in environmental conditions is a complex and in some aspects a poorly understood physiological process. The activating influence of stress on the sympathetic nervous system, the hypothalamic - pituitary - adrenal axis and the suppression of TSH, LH, FSH release is well known. The interplay of communication between the endocrine and immune systems plays an essential role in modulating the response to stress related mediators. The basis of many contradictory and incoherent results of experiments is due to the various methodologies of creating changes in environmental conditions, the way of collecting blood samples which influence stress mediators, the case of assessing the influence of many factors on reproductive functions and the performance of experiments without synchronization with the reproductive cycle. The review will focus on the presentation of simple and repeatable methods of development of an adaptation stress to changed environmental conditions (temperature, oxygenation, humidity) and the technique of blood collection during hour-long estimation of interactions between the endocrine, nervous and immune systems. We would like to place emphasis on appropriate ways of performing experiments on female rats, with regards to the choice of a suitable phase of the reproductive cycle. Also on ways of anaesthesia and microsurgical techniques of vein catheterisation for repeated blood sampling. The performance of all phases of the experiment allow us to estimate only the influence of environmental conditions and eliminate interfering factors during the process of preparing animal for the experiment.
Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C
2016-10-01
Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system. Copyright © 2016 by the Genetics Society of America.
The Role of the Immune System Beyond the Fight Against Infection.
Sattler, Susanne
2017-01-01
The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.
Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz
2017-06-01
Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Haddad, Slim; Bicaba, Abel; Feletto, Marta; Taminy, Elie; Kabore, Moussa; Ouédraogo, Boubacar; Contreras, Gisèle; Larocque, Renée; Fournier, Pierre
2009-10-14
Despite rapid and tangible progress in vaccine coverage and in premature mortality rates registered in sub-Saharan Africa, inequities to access remain firmly entrenched, large pockets of low vaccination coverage persist, and coverage often varies considerably across regions, districts, and health facilities' areas of responsibility. This paper focuses on system-related factors that can explain disparities in immunization coverage among districts in Burkina Faso. A multiple-case study was conducted of six districts representative of different immunization trends and overall performance. A participative process that involved local experts and key actors led to a focus on key factors that could possibly determine the efficiency and efficacy of district vaccination services: occurrence of disease outbreaks and immunization days, overall district management performance, resources available for vaccination services, and institutional elements. The methodology, geared toward reconstructing the evolution of vaccine services performance from 2000 to 2006, is based on data from documents and from individual and group interviews in each of the six health districts. The process of interpreting results brought together the field personnel and the research team. The districts that perform best are those that assemble a set of favourable conditions. However, the leadership of the district medical officer (DMO) appears to be the main conduit and the rallying point for these conditions. Typically, strong leadership that is recognized by the field teams ensures smooth operation of the vaccination services, promotes the emergence of new initiatives and offers some protection against risks related to outbreaks of epidemics or supplementary activities that can hinder routine functioning. The same is true for the ability of nurse managers and their teams to cope with new situations (epidemics, shortages of certain stocks). The discourse on factors that determine the performance or breakdown of local health care systems in lower and middle income countries remains largely concentrated on technocratic and financial considerations, targeting institutional reforms, availability of resources, or accessibility of health services. The leadership role of those responsible for the district, and more broadly, of those we label "the human factor", in the performance of local health care systems is mentioned only marginally. This study shows that strong and committed leadership promotes an effective mobilization of teams and creates the conditions for good performance in districts, even when they have only limited access to supports provided by external partners. ABSTRACT IN FRENCH: See the full article online for a translation of this abstract in French.
Review of the systems biology of the immune system using agent-based models.
Shinde, Snehal B; Kurhekar, Manish P
2018-06-01
The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.
... Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...
A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.
Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar
2017-11-01
High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.
Multiscale modeling of mucosal immune responses
2015-01-01
Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787
Multiscale modeling of mucosal immune responses.
Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep
2015-01-01
Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.
Immune and hemorheological changes in Chronic Fatigue Syndrome
2010-01-01
Background Chronic Fatigue Syndrome (CFS) is a multifactorial disorder that affects various physiological systems including immune and neurological systems. The immune system has been substantially examined in CFS with equivocal results, however, little is known about the role of neutrophils and natural killer (NK) phenotypes in the pathomechanism of this disorder. Additionally the role of erythrocyte rheological characteristics in CFS has not been fully expounded. The objective of this present study was to determine deficiencies in lymphocyte function and erythrocyte rheology in CFS patients. Methods Flow cytometric measurements were performed for neutrophil function, lymphocyte numbers, NK phenotypes (CD56dimCD16+ and CD56brightCD16-) and NK cytotoxic activity. Erythrocyte aggregation, deformability and fibrinogen levels were also assessed. Results CFS patients (n = 10) had significant decreases in neutrophil respiratory burst, NK cytotoxic activity and CD56brightCD16- NK phenotypes in comparison to healthy controls (n = 10). However, hemorheological characteristic, aggregation, deformability, fibrinogen, lymphocyte numbers and CD56dimCD16+ NK cells were similar between the two groups. Conclusion These results indicate immune dysfunction as potential contributors to the mechanism of CFS, as indicated by decreases in neutrophil respiratory burst, NK cell activity and NK phenotypes. Thus, immune cell function and phenotypes may be important diagnostic markers for CFS. The absence of rheological changes may indicate no abnormalities in erythrocytes of CFS patients. PMID:20064266
Song, Geun C; Choi, Hye K; Ryu, Choong-Min
2015-01-01
3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.
Immune System Dysfunction in the Elderly.
Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván
2017-01-01
Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.
Design of a light delivery system for the photodynamic treatment of the Crohn's disease
NASA Astrophysics Data System (ADS)
Gabrecht, Tanja; Borle, Francois; van den Bergh, Hubert; Michetti, Pierre; Ortner, Maria-Anna; Wagnières, Georges
2007-07-01
Crohn's disease is an inflammatory bowel disease originating from an overwhelming response of the mucosal immune system. Low dose photodynamic therapy (PDT) may modify the mucosal immune response and thus serve as a therapy for Crohn's disease. Most patients with Crohn's disease show inflammatory reactions in the terminal ileum or colon where PDT treatment is feasible by low-invasive endoscopic techniques. However, the tube like geometry of the colon, it's folding, and the presences of multiple foci of Crohn's lesions along the colon require the development of adequate light delivery techniques. We present a prototype light delivery system for endoscopic clinical PDT in patients with Crohn's disease. The system is based on a cylindrical light diffuser inserted into a diffusing balloon catheter. Homogenous irradiation is performed with a 4 W diode laser at 635 nm. Light dosimetry is performed using a calibrated integrating sphere. The system can be used with conventional colonoscopes and colonovideoscopes having a 3.8 mm diameter working channel. The feasibility of PDT in colon with our prototype was demonstrated in first clinical trials.
NASA Astrophysics Data System (ADS)
Singh, Surya P. N.; Thayer, Scott M.
2002-02-01
This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.
Innate immune memory in plants.
Reimer-Michalski, Eva-Maria; Conrath, Uwe
2016-08-01
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Terme, Magali; Tanchot, Corinne
2017-02-01
Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.
Vora, Bianca; Wang, Aolin; Kosti, Idit; Huang, Hongtai; Paranjpe, Ishan; Woodruff, Tracey J.; MacKenzie, Tippi; Sirota, Marina
2018-01-01
Preterm birth (PTB) is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.
Immune cell landscape in therapy-naïve squamous cell and adenocarcinomas of the lung.
Brcic, Luka; Stanzer, Stefanie; Krenbek, Dagmar; Gruber-Moesenbacher, Ulrike; Absenger, Gudrun; Quehenberger, Franz; Valipour, Arschang; Lindenmann, Joerg; Stoeger, Herbert; Al Effah, Mohamed; Fediuk, Melanie; Balic, Marija; Popper, Helmut H
2018-04-01
Squamous cell and adenocarcinomas of the lung develop different mechanisms during carcinogenesis to evade attacks of the immune system. Besides the well-known check-point control programmed death 1 and its ligand, many more mechanisms, acting either tumoricidal or in favor of tumor progression, exist. Analysis of the immune cell profiles in resected tissues and bronchoalveolar lavage samples and correlation between them and with overall survival data was performed. In all tumor samples in this study, cells of the immune system expressed a tumor-cooperating phenotype. High numbers of regulatory T cells, or alternatively expression of Vista on lymphocytes was present. Tumoricidal dendritic cells were absent in tumor tissue, and barely present in bronchoalveolar lavage, whereas tumor-friendly monocytoid and plasmocytoid dendritic cells were seen in both. Alveolar macrophages were predominantly differentiated into tumor-cooperating M2 types, whereas tumoricidal M1 macrophages were absent or rare. The expression of PDL1 on tumor cells did not correlate with any other immune cells. Expression of PD1 on lymphocytes was frequently encountered. None of analyzed immune cells showed correlation with overall survival. Immune cells in bronchoalveolar lavage and tissue did not correlate. For the first time, a tissue-based analysis of different immune cells in squamous cell and adenocarcinomas of the lung is provided, trying to explain their potential role in tumor development and progression. Discordant numbers of cells with bronchoalveolar lavage are most probably due to the fact that bronchoalveolar lavage reflects the situation in the whole lung, where chronic obstructive lung disease and other conditions are present.
Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A
2016-01-01
Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.
2014-03-01
Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.
Sarafijanović, Slavisa; Le Boudec, Jean-Yves
2005-09-01
In mobile ad hoc networks, nodes act both as terminals and information relays, and they participate in a common routing protocol, such as dynamic source routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. In this paper, we investigate the use of an artificial immune system (AIS) to detect node misbehavior in a mobile ad hoc network using DSR. The system is inspired by the natural immune system (IS) of vertebrates. Our goal is to build a system that, like its natural counterpart, automatically learns, and detects new misbehavior. We describe our solution for the classification task of the AIS; it employs negative selection and clonal selection, the algorithms for learning and adaptation used by the natural IS. We define how we map the natural IS concepts such as self, antigen, and antibody to a mobile ad hoc network and give the resulting algorithm for classifying nodes as misbehaving. We implemented the system in the network simulator Glomosim; we present detection results and discuss how the system parameters affect the performance of primary and secondary response. Further steps will extend the design by using an analogy to the innate system, danger signal, and memory cells.
Exploring the Homeostatic and Sensory Roles of the Immune System.
Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins
2016-01-01
Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.
Muscoplat, Miriam Halstead; Rajamani, Sripriya
2017-01-01
The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.
Immunotoxicology of arc welding fume: Worker and experimental animal studies
Zeidler-Erdely, Patti C.; Erdely, Aaron; Antonini, James M.
2015-01-01
Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses. PMID:22734811
Katrib, J; Nadi, M; Kourtiche, D; Magne, I; Schmitt, P; Souques, M; Roth, P
2013-10-01
Public concern for the compatibility of electromagnetic (EM) sources with active implantable medical devices (AIMD) has prompted the development of new systems that can perform accurate exposure studies. EM field interference with active cardiac implants (e.g. implantable cardioverter-defibrillators (ICDs)) can be critical. This paper describes a magnetic field (MF) exposure system and the method developed for testing the immunity of ICD to continuous-wave MFs. The MFs were created by Helmholtz coils, housed in a Faraday cage. The coils were able to produce highly uniform MFs up to 4000 µT at 50 Hz and 3900 µT at 60 Hz, within the test space. Four ICDs were tested. No dysfunctions were found in the generated MFs. These results confirm that the tested ICDs were immune to low frequency MFs.
Assessing immune competence in pigs by immunization with tetanus toxoid.
Gimsa, U; Tuchscherer, A; Gimsa, J; Tuchscherer, M
2018-01-01
Immune competence can be tested by challenging organisms with a set of infectious agents. However, disease control requirements impose restrictions on the infliction of infections upon domestic pigs. Alternatively, vaccinations induce detectable immune responses that reflect immune competence. Here, we tested this approach with tetanus toxoid (TT) in young domestic pigs. To optimize the vaccination protocol, we immunized the pigs with a commercial TT vaccine at the age of 21 or 35 days. Booster immunizations were performed either 14 or 21 days later. TT-specific antibodies in plasma as well as lymphoproliferative responses were determined both 7 and 14 days after booster immunization using ELISA and lymphocyte transformation tests, respectively. In addition, general IgG and IgM plasma concentrations and mitogen-induced proliferation were measured. The highest TT-specific antibody responses were detected when blood samples were collected 1 week after a booster immunization conducted 21 days after primary immunization. The pigs' age at primary immunization did not have a significant influence on TT-specific antibody responses. Similarly, the TT-specific proliferative responses were highest when blood samples were collected 1 week after booster immunization, while age and time of primary and booster immunization were irrelevant in our setup. While general IgG and IgM plasma levels were highly age dependent, there were no significant age effects for TT-specific immune responses. In addition, mitogen-induced proliferation was independent of immunization as well as blood sampling protocols. In summary, our model of TT vaccination provides an interesting approach for the assessment of immune competence in young pigs. The detected vaccination effects were not biased by age, even though our data were acquired from immune systems that were under development during our tests.
In immune defense: redefining the role of the immune system in chronic disease.
Rubinow, Katya B; Rubinow, David R
2017-03-01
The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.
Roles of microRNA in the immature immune system of neonates.
Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou
2018-06-13
Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.
Strengthening health system to improve immunization for migrants in China.
Fang, Hai; Yang, Li; Zhang, Huyang; Li, Chenyang; Wen, Liankui; Sun, Li; Hanson, Kara; Meng, Qingyue
2017-07-01
Immunization is the most cost-effective method to prevent and control vaccine-preventable diseases. Migrant population in China has been rising rapidly, and their immunization status is poor. China has tried various strategies to strengthen its health system, which has significantly improved immunization for migrants. This study applied a qualitative retrospective review method aiming to collect, analyze and synthesize health system strengthening experiences and practices about improving immunizations for migrants in China. A conceptual framework of Theory of Change was used to extract the searched literatures. 11 searched literatures and 4 national laws and policies related to immunizations for migrant children were carefully studied. China mainly employed 3 health system strengthening strategies to significantly improve immunization for migrant population: stop charging immunization fees or immunization insurance, manage immunization certificates well, and pay extra attentions on immunization for special children including migrant children. These health system strengthening strategies were very effective, and searched literatures show that up-to-date and age-appropriate immunization rates were significantly improved for migrant children. Economic development led to higher migrant population in China, but immunization for migrants, particularly migrant children, were poor. Fortunately various health system strengthening strategies were employed to improve immunization for migrants in China and they were rather successful. The experiences and lessons of immunization for migrant population in China might be helpful for other developing countries with a large number of migrant population.
The cholinergic anti-inflammatory pathway revisited.
Murray, K; Reardon, C
2018-03-01
Inflammatory bowel disease negatively affects the quality of life of millions of patients around the world. Although the precise etiology of the disease remains elusive, aberrant immune system activation is an underlying cause. As such, therapies that selectively inhibit immune cell activation without broad immunosuppression are desired. Inhibition of immune cell activation preventing pro-inflammatory cytokine production through neural stimulation has emerged as one such treatment. These therapeutics are based on the discovery of the cholinergic anti-inflammatory pathway, a reflex arc that induces efferent vagal nerve signaling to reduce immune cell activation and consequently mortality during septic shock. Despite the success of preclinical and clinical trials, the neural circuitry and mechanisms of action of these immune-regulatory circuits are controversial. At the heart of this controversy is the protective effect of vagal nerve stimulation despite an apparent lack of neuroanatomical connections between the vagus and target organs. Additional studies have further emphasized the importance of sympathetic innervation of these organs, and that alternative neural circuits could be involved in neural regulation of the immune system. Such controversies also extend to the regulation of intestinal inflammation, with the importance of efferent vagus nerve signals in question. Experiments that better characterize these pathways have now been performed by Willemze et al. in this issue of Neurogastroenterology & Motility. These continued efforts will be critical to the development of better neurostimulator based therapeutics for inflammatory bowel disease. © 2018 John Wiley & Sons Ltd.
Baygin, Mehmet; Karakose, Mehmet
2013-01-01
Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods. PMID:23935433
Immune System Toxicity and Immunotoxicity Hazard Identification
Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...
Conceptual Spaces of the Immune System.
Fierz, Walter
2016-01-01
The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.
de Lourdes Nahhas Rodacki, Cintia; Rodacki, André Luiz Felix; Coelho, Isabela; Pequito, Daniele; Krause, Maressa; Bonatto, Sandro; Naliwaiko, Katya; Fernandes, Luiz Cláudio
2015-07-14
Immune function changes with ageing and is influenced by physical activity (strength training, ST) and diet (fish oil, FO). The present study investigated the effect of FO and ST on the immune system of elderly women. Forty-five women (64 (sd 1.4) years) were assigned to ST for 90 d (ST; n 15), ST plus 2 g/d FO for 90 d (ST90; n 15) or 2 g/d FO for 60 d followed by ST plus FO for 90 d (ST150; n 15). Training was performed three times per week, for 12 weeks. A number of innate (zymosan phagocytosis, lysosomal volume, superoxide anion, peroxide of hydrogen) and adaptive (cluster of differentiation 4 (CD4), CD8, TNF-α, interferon-γ (IFN-γ), IL-2, IL-6 and IL-10 produced by lymphocytes) immune parameters were assessed before supplementation (base), before (pre-) and after (post-) training. ST induced no immune changes. FO supplementation caused increased phagocytosis (48 %), lysosomal volume (100 %) and the production of superoxide anion (32 %) and H₂O₂(70 %) in the ST90. Additional FO supplementation (ST150) caused no additive influence on the immune system, as ST150 and ST90 did not differ, but caused greater changes when compared to the ST (P< 0·05). FO increased CD4+ and CD8+ lymphocytes in the ST150, which remained unchanged when training was introduced. The combination of ST and FO reduced TNF-α in the ST150 from base to post-test. FO supplementation (ST150, base-pre) when combined with exercise (ST150, pre-post) increased IFN-γ, IL-2, IL-6 and IL-10 production. The immune parameters improved in response to FO supplementation; however, ST alone did not enhance the immune system.
Veazey, Ronald S; Siddiqui, Asna; Klein, Katja; Buffa, Viviana; Fischetti, Lucia; Doyle-Meyers, Lara; King, Deborah F; Tregoning, John S; Shattock, Robin J
2015-01-01
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
Song, Jie; Hu, Yajie; Hu, Yunguang; Wang, Jingjing; Zhang, Xiaolong; Wang, Lichun; Guo, Lei; Wang, Yancui; Ning, Ruotong; Liao, Yun; Zhang, Ying; Zheng, Huiwen; Shi, Haijing; He, Zhanlong; Li, Qihan; Liu, Longding
2016-03-02
Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
Vagus Nerve Stimulation as a Treatment Strategy for Gulf War Illness
2016-10-01
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TEXAS A&M UNIVERSITY SYSTEM ,THE 200 TECHNOLOGY WAY, STE 2079COLLEGE STATION...IgD) expression in splenocytes. IgD is an immunoglobulin that appears in species with an adaptive immune system . Among its numerous activities in the
Shanely, R. Andrew; Nieman, David C.; Perkins-Veazie, Penelope; Henson, Dru A.; Meaney, Mary P.; Knab, Amy M.; Cialdell-Kam, Lynn
2016-01-01
Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488
Shanely, R Andrew; Nieman, David C; Perkins-Veazie, Penelope; Henson, Dru A; Meaney, Mary P; Knab, Amy M; Cialdell-Kam, Lynn
2016-08-22
Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.
Testicular defense systems: immune privilege and innate immunity
Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu
2014-01-01
The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222
Immune biomarkers in older adults: Role of physical activity.
Valdiglesias, Vanessa; Sánchez-Flores, María; Maseda, Ana; Lorenzo-López, Laura; Marcos-Pérez, Diego; López-Cortón, Ana; Strasser, Barbara; Fuchs, Dietmar; Laffon, Blanca; Millán-Calenti, José C; Pásaro, Eduardo
2017-01-01
Aging is associated with a decline in the normal functioning of the immune system. Several studies described the relationship between immunological alterations, including immunosenescence and inflammation, and aging or age-related outcomes, such as sarcopenia, depression, and neurodegenerative disorders. Physical activity is known to improve muscle function and to exert a number of benefits on older adult health, including reduced risk for heart and metabolic system chronic diseases. However, the positive influence of physical activity on the immune system has not been elucidated. In order to shed light on the role of physical activity in immune responses of older individuals, a number of immunological parameters comprising % lymphocyte subsets (CD3 + , CD4 + , CD8 + , CD19 + , and CD16 + 56 + ) and serum levels of neopterin and tryptophan metabolism products were evaluated in peripheral blood samples of older adults performing normal (N = 170) or reduced (N = 89) physical activity. In addition, the potential influence of other clinical and epidemiological factors was also considered. Results showed that subjects with reduced physical activity displayed significantly higher levels of CD4 + /CD8 + ratio, kynurenine/tryptophan ratio, and serum neopterin, along with lower %CD19 + cells and tryptophan concentrations. Further, some immunological biomarkers were associated with cognitive impairment and functional status. These data contribute to reinforce the postulation that physical activity supports healthy aging, particularly by helping to protect the immunological system from aging-related changes.
Immunotherapy and gene therapy as novel treatments for cancer
Rangel-Sosa, Martha Montserrat; Aguilar-Córdova, Estuardo
2017-01-01
Abstract The immune system interacts closely with tumors during the disease development and progression to metastasis. The complex communication between the immune system and the tumor cells can prevent or promote tumor growth. New therapeutic approaches harnessing protective immunological mechanisms have recently shown very promising results. This is performed by blocking inhibitory signals or by activating immunological effector cells directly. Immune checkpoint blockade with monoclonal antibodies directed against the inhibitory immune receptors CTLA-4 and PD-1 has emerged as a successful treatment approach for patients with advanced melanoma. Ipilimumab is an anti-CTLA-4 antibody which demonstrated good results when administered to patients with melanoma. Gene therapy has also shown promising results in clinical trials. Particularly, Herpes simplex virus (HSV)-mediated delivery of the HSV thymidine kinase (TK) gene to tumor cells in combination with ganciclovir (GCV) may provide an effective suicide gene therapy for destruction of glioblastomas, prostate tumors and other neoplasias by recruiting tumor-infiltrating lymphocytes into the tumor. The development of new treatment strategies or combination of available innovative therapies to improve cell cytotoxic T lymphocytes trafficking into the tumor mass and the production of inhibitory molecules blocking tumor tissue immune-tolerance are crucial to improve the efficacy of cancer therapy. PMID:29213157
Natural evolution, disease, and localization in the immune system
NASA Astrophysics Data System (ADS)
Deem, Michael
2004-03-01
Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101
Immune cell changes in response to a swimming training session during a 24-h recovery period.
Morgado, José P; Monteiro, Cristina P; Teles, Júlia; Reis, Joana F; Matias, Catarina; Seixas, Maria T; Alvim, Marta G; Bourbon, Mafalda; Laires, Maria J; Alves, Francisco
2016-05-01
Understanding the impact of training sessions on the immune response is crucial for the adequate periodization of training, to prevent both a negative influence on health and a performance impairment of the athlete. This study evaluated acute systemic immune cell changes in response to an actual swimming session, during a 24-h recovery period, controlling for sex, menstrual cycle phases, maturity, and age group. Competitive swimmers (30 females, 15 ± 1.3 years old; and 35 males, 16.5 ± 2.1 years old) performed a high-intensity training session. Blood samples were collected before, immediately after, 2 h after, and 24 h after exercise. Standard procedures for the assessment of leukogram by automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur BD, Biosciences) were used. Subjects were grouped according to competitive age groups and pubertal Tanner stages. Menstrual cycle phase was monitored. The training session induced neutrophilia, lymphopenia, and a low eosinophil count, lasting for at least 2 h, independent of sex and maturity. At 24 h postexercise, the acquired immunity of juniors (15-17 years old), expressed by total lymphocytes and total T lymphocytes (CD3(+)), was not fully recovered. This should be accounted for when planning a weekly training program. The observed lymphopenia suggests a lower immune surveillance at the end of the session that may depress the immunity of athletes, highlighting the need for extra care when athletes are exposed to aggressive environmental agents such as swimming pools.
From birth to ‘immuno-health’, allergies and enterocolitis
Houghteling, Pearl D.; Walker, W. Allan
2015-01-01
Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970
Control of adaptive immunity by the innate immune system.
Iwasaki, Akiko; Medzhitov, Ruslan
2015-04-01
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Microbiota regulate the development and function of the immune cells.
Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei
2018-03-04
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
The role of the immune system in Alzheimer disease: Etiology and treatment.
Jevtic, Stefan; Sengar, Ameet S; Salter, Michael W; McLaurin, JoAnne
2017-11-01
The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets. Copyright © 2017. Published by Elsevier B.V.
The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.
Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca
2015-01-01
One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.
Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe
2018-01-01
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?
Ameri, Pietro; Ferone, Diego
2012-01-01
During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.
Sovereign immunity: Principles and application in medical malpractice.
Suk, Michael
2012-05-01
Tort law seeks accountability when parties engage in negligent conduct, and aims to compensate the victims of such conduct. An exception to this general rule governing medical negligence is the doctrine of sovereign immunity. Historically, individuals acting under the authority of the government or other sovereign entity had almost complete protection against tort liability. This article addressed the following: (1) the development of sovereign immunity in law, (2) the lasting impact of the Federal Tort Claims Act on sovereign immunity, and (3) the contemporary application of sovereign immunity to medical malpractice, using case examples from Virginia and Florida. I performed an Internet search to identify sources that addressed the concept of sovereign immunity, followed by a focused search for relevant articles in PubMed and LexisNexis, literature databases for medical and legal professionals, respectively. Historically, sovereign liability conferred absolute immunity from lawsuits in favor of the sovereign (ie, the government). Practical considerations in our democratic system have contributed to an evolution of this doctrine. Understanding sovereign immunity and its contemporary application are of value for any physician interested in the debate concerning medical malpractice in the United States. Under certain circumstances, physicians working as employees of the federal or state government may be protected against individual liability if the government is substituted as the defendant.
Enhancement of Th1 immune responses to recombinant influenza nucleoprotein by Ribi adjuvant.
Cargnelutti, Diego E; Sanchez, María A V; Alvarez, Paula; Boado, Lorena; Mattion, Nora; Scodeller, Eduardo A
2013-04-01
A broad coverage influenza vaccine against multiple viral strains based on the viral nucleoprotein (NP) is a goal pursued by many laboratories. If the goal is to formulate the vaccine with recombinant NP it is essential to count on adjuvants capable of inducing cellular immunity. This work have studied the effect of the monophosphoryl lipid A and trehalose dimycolate, known as the Ribi Adjuvant System (RAS), in the immune response induced in mice immunized with recombinant NP. The NP was formulated with RAS and used to immunize BALB/c mice. Immunizations with NP-RAS increased the humoral and cellular immune responses compared to unadjuvanted NP. The predominant antibody isotype was IgG2a, suggesting the development of a Th1 response. Analysis of the cytokines from mice immunized with NP-RAS showed a significant increase in the production of IFN-g and a decreased production of IL-10 and IL-4 compared to controls without RAS. These results are similar to those usually obtained using Freund’s adjuvant, known to induce Th1 and CTL responses when co-administered with purified proteins, and suggest that a similar approach may be possible to enhance the performance of a T-cell vaccine containing NP.
Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan
2018-04-25
Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A
2014-01-01
The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.
2013-01-01
Objectives The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. Introduction Acetylcholine can influence the immune system via the ‘cholinergic anti-inflammatory pathway’. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. Methods A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the ‘cholinergic anti-inflammatory pathway’ in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. Conclusion The evidence suggests a functional nonneuronal ‘cholinergic anti-inflammatory pathway’ may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease. PMID:22777144
Mbabazi, William; Lako, Anthony K; Ngemera, Daniel; Laku, Richard; Yehia, Mostafah; Nshakira, Nathan
2013-01-01
Since the comprehensive peace agreement was signed in 2005, institutionalization of immunization services in South Sudan remained a priority. Routine administrative reporting systems were established and showed that national coverage rates for DTP-3 rose from 20% in 2002 to 80% in 2011. This survey was conducted as part of an overall review of progress in implementation of the first EPI Multi-Year Plan for South Sudan 2007-2011. This report provides maiden community coverage estimates for immunization. A cross sectional community survey was conducted between January and May 2012. Ten cluster surveys were conducted to generate state-specific coverage estimates. The WHO 30x7 cluster sampling method was employed. Data was collected using pre-tested, interviewer guided, structured questionnaires through house to house visits. The fully immunized children were 7.3%. Coverage for specific antigens were; BCG (28.3%), DTP-1(25.9%), DTP-3 (22.0%), Measles (16.8%). The drop-out rate between the first and third doses of DTP was 21.3%. Immunization coverage estimates based on card and history were higher, at 45.7% for DTP-3, 45.8% for MCV and 32.2% for full immunization. Majority of immunizations (80.8%) were received at health facilities compared to community service points (19.2%). The major reason for missed immunizations was inadequate information (41.1%). The proportion of card-verified, fully vaccinated among children aged 12-23 months is very low at 7.3%. Future efforts to improve vaccination quality and coverage should prioritize training of vaccinators and program communication to levels equivalent or higher than investments in EPI cold chain systems since 2007.
Rühle, Paul F; Wunderlich, Roland; Deloch, Lisa; Fournier, Claudia; Maier, Andreas; Klein, Gerhart; Fietkau, Rainer; Gaipl, Udo S; Frey, Benjamin
2017-03-01
The pain-relieving effects of low-dose radon therapies on patients suffering from chronic painful inflammatory diseases have been described for centuries. Even though it has been suggested that low doses of radiation may attenuate chronic inflammation, the underlying mechanisms remain elusive. Thus, the RAD-ON01 study was initiated to examine the effects of radon spa therapy and its low doses of alpha radiation on the human immune system. In addition to an evaluation of pain parameters, blood was drawn from 100 patients suffering from chronic painful degenerative musculoskeletal diseases before as well as 6, 12, 18, and 30 weeks after the start of therapy. We verified significant long-term pain reduction for the majority of patients which was accompanied by modulations of the peripheral immune cells. Detailed immune monitoring was performed using a multicolor flow cytometry-based whole blood assay. After therapy, the major immune cells were only marginally affected. Nevertheless, a small but long-lasting increase in T cells and monocytes was observed. Moreover, neutrophils, eosinophils and, in particular, dendritic cells were temporarily modulated after therapy. Regarding the immune cell subsets, cytotoxic T and NK cells, in particular, were altered. However, the most prominent effects were identified in a strong reduction of the activation marker CD69 on T, B, and NK cells. Simultaneously, the percentage of HLA-DR + T cells was elevated after therapy. The RAD-ON01 study showed for the first time a modulation of the peripheral immune cells following standard radon spa therapy. These modulations are in line with attenuation of inflammation.
Luhm, Karin Regina; Cardoso, Maria Regina Alves; Waldman, Eliseu Alves
2011-02-01
To evaluate the immunization program for 12 and 24-month-old children based on electronic immunization registry. A descriptive study of a random sample of 2,637 children born in 2002 living in the city of Curitiba, Southern Brazil was performed. Data was collected from local electronic immunization registers and the National Live Birth Information System, as well as from a household survey for cases with incomplete records. Coverage at 12 and 24 months was estimated and analyzed according to the socioeconomic characteristics of each administrative district and the child's enrollment status in the health care service. The coverage, completeness, and record duplication in the registry were analyzed. Coverage of immunization was 95.3% at 12 months, with no disparities among administrative districts, and 90.3% at 24 months, with higher coverage in a district with lower socioeconomic conditions (p < 0.01). The proportion of vaccines, according to type, given before and after the recommended age reached 0.9% and 32.2%, respectively. In the surveyed sample, electronic immunization registry coverage was 98%, underreporting of vaccine doses was 11%, and record duplication was 20.6%. Groups with highest coverage included children with permanent records, children with three or more appointments through the National Unified Health Care System, and children seen within Primary Health Care Facilities fully adopting the Family Health Strategy. Vaccination coverage in Curitiba was high and homogeneous among districts, and health service enrollment status was an important factor in these results. The electronic immunization registry was a useful tool for monitoring vaccine coverage; however, it will be important to determine cost-effectiveness prior to wide-scale adoption by the National Immunization Program.
Mbabazi, William; Lako, Anthony K; Ngemera, Daniel; Laku, Richard; Yehia, Mostafah; Nshakira, Nathan
2013-01-01
Introduction Since the comprehensive peace agreement was signed in 2005, institutionalization of immunization services in South Sudan remained a priority. Routine administrative reporting systems were established and showed that national coverage rates for DTP-3 rose from 20% in 2002 to 80% in 2011. This survey was conducted as part of an overall review of progress in implementation of the first EPI Multi-Year Plan for South Sudan 2007-2011. This report provides maiden community coverage estimates for immunization. Methods A cross sectional community survey was conducted between January and May 2012. Ten cluster surveys were conducted to generate state-specific coverage estimates. The WHO 30x7 cluster sampling method was employed. Data was collected using pre-tested, interviewer guided, structured questionnaires through house to house visits. Results The fully immunized children were 7.3%. Coverage for specific antigens were; BCG (28.3%), DTP-1(25.9%), DTP-3 (22.0%), Measles (16.8%). The drop-out rate between the first and third doses of DTP was 21.3%. Immunization coverage estimates based on card and history were higher, at 45.7% for DTP-3, 45.8% for MCV and 32.2% for full immunization. Majority of immunizations (80.8%) were received at health facilities compared to community service points (19.2%). The major reason for missed immunizations was inadequate information (41.1%). Conclusion The proportion of card-verified, fully vaccinated among children aged 12-23 months is very low at 7.3%. Future efforts to improve vaccination quality and coverage should prioritize training of vaccinators and program communication to levels equivalent or higher than investments in EPI cold chain systems since 2007. PMID:24876899
Li, Tingting; Cheng, Zhengguo; Zhang, Le
2017-01-01
Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393
Li, Tingting; Cheng, Zhengguo; Zhang, Le
2017-12-01
Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.
Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F
Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.
... or radiation patients, bone marrow or stem cell recipients, or patients with weak immune systems should also consider having regular oral screenings by a physician. The first sign of oral cancer is a mouth sore that does not heal. What kind of screenings are performed? ...
Innate immune system and tissue regeneration in planarians: an area ripe for exploration.
Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J
2014-08-01
The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Effects of Mind-Body Therapies on the Immune System: Meta-Analysis
Morgan, Nani; Irwin, Michael R.; Chung, Mei; Wang, Chenchen
2014-01-01
Importance Psychological and health-restorative benefits of mind-body therapies have been investigated, but their impact on the immune system remain less defined. Objective To conduct the first comprehensive review of available controlled trial evidence to evaluate the effects of mind-body therapies on the immune system, focusing on markers of inflammation and anti-viral related immune responses. Methods Data sources included MEDLINE, CINAHL, SPORTDiscus, and PsycINFO through September 1, 2013. Randomized controlled trials published in English evaluating at least four weeks of Tai Chi, Qi Gong, meditation, or Yoga that reported immune outcome measures were selected. Studies were synthesized separately by inflammatory (n = 18), anti-viral related immunity (n = 7), and enumerative (n = 14) outcomes measures. We performed random-effects meta-analyses using standardized mean difference when appropriate. Results Thirty-four studies published in 39 articles (total 2, 219 participants) met inclusion criteria. For inflammatory measures, after 7 to 16 weeks of mind-body intervention, there was a moderate effect on reduction of C-reactive protein (effect size [ES], 0.58; 95% confidence interval [CI], 0.04 to 1.12), a small but not statistically significant reduction of interleukin-6 (ES, 0.35; 95% CI, −0.04 to 0.75), and negligible effect on tumor necrosis factor-α (ES, 0.21; 95% CI, −0.15 to 0.58). For anti-viral related immune and enumerative measures, there were negligible effects on CD4 counts (ES, 0.15; 95% CI, −0.04 to 0.34) and natural killer cell counts (ES, 0.12, 95% CI −0.21 to 0.45). Some evidence indicated mind-body therapies increase immune responses to vaccination. Conclusions Mind-body therapies reduce markers of inflammation and influence virus-specific immune responses to vaccination despite minimal evidence suggesting effects on resting anti-viral or enumerative measures. These immunomodulatory effects, albeit incomplete, warrant further methodologically rigorous studies to determine the clinical implications of these findings for inflammatory and infectious disease outcomes. PMID:24988414
[Cancer immunotherapy. Importance of overcoming immune suppression].
Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo
2010-01-01
Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.
HIV-1 and hijacking of the host immune system: the current scenario.
Imran, Muhammad; Manzoor, Sobia; Saalim, Muhammad; Resham, Saleha; Ashraf, Javed; Javed, Aneela; Waqar, Ahmed Bilal
2016-10-01
Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Deji, Shizuhiko; Ito, Shigeki; Ariga, Eiji; Mori, Kazuyuki; Hirota, Masahiro; Saze, Takuya; Nishizawa, Kunihide
2006-08-01
High frequency electromagnetic fields in the 120 kHz band emitted from card readers for access control systems in radiation control areas cause abnormally high and erroneous indicated dose readings on semiconductor-type electronic personal dosimeters (SEPDs). All SEPDs malfunctioned but recovered their normal performance by resetting after the exposure ceased. The minimum distances required to prevent electromagnetic interference varied from 5.0 to 38.0 cm. The electric and magnetic immunity levels ranged from 35.1 to 267.6 V m(-1) and from 1.0 to 16.6 A m(-1), respectively. Electromagnetic immunity levels of SEPDs should be strengthened from the standpoint of radiation protection.
Immune Function Changes during a Spaceflight-Analog Undersea Mission
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Quiniarte, Heather; Yetman, Deborah; Pierson, Duane; Sams, Clarence
2008-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. It is attractive to utilize ground-based spaceflight analogs as appropriate to investigate this phenomenon. For spaceflight-associated immune dysregulation (SAID), the authors believe the most appropriate analogs might be NEEMO (short duration, Shuttle analog), Antarctic winter-over (long-duration, ISS analog) and the Haughton Mars Project in the Canadian Arctic (intermediate-duration). Each of these analogs replicate isolation, mission-associated stress, disrupted circadian rhythms, and other aspects of flight thought to contribute to SAID. To validate NEEMO as a flight analog with respect to SAID, a pilot study was conducted during the NEEMO-12 and 13 missions during 2007. Assays were performed that assessed immune status, physiological stress and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission timepoints.
Exploiting single-cell variability to infer the dynamics of immune responses
NASA Astrophysics Data System (ADS)
Höfer, Thomas
Cell division, differentiation, migration and death determine the dynamics of immune responses. These processes are regulated by a multitude of biochemical signals which, at present, cannot faithfully be reconstituted outside the living organism. However, quantitative measurements in living organisms have been limited. In recent years experimental techniques for the ``fate mapping'' of single immune cells have been developed that allow performing parallel single-cell experiments in an experimental animal. The resulting data are more informative about underlying biological processes than traditional measurements. I will show how the theory of stochastic dynamical systems can be used to infer the topology and dynamics of cell differentiation pathways from such data. The focus will be on joint theoretical and experimental work addressing: (i) the development of immune cells during hematopoiesis, and (ii) T cell responses to diverse pathogens. I will discuss questions on the nature of cellular variability that are posed by these new findings.
NASA Technical Reports Server (NTRS)
Mehta, Satish K.; Crucian, Brian; Pierson, Duane L.; Sams, Clarence; Stowe, Raymond P.
2007-01-01
Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 degrees head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity (AG) as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system, and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of Epstein barr virus (EBV), Cytomegalovirus (CMV), and Varicella zoster virus (VZV) was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 106 PBMCs. Overall, these data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.
NASA Technical Reports Server (NTRS)
Mehta, Satish; Crusian, Brian; Pierson, Duane; Sams, Clarence; Stowe, Raymond
2007-01-01
Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 deg. head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of EBV and CMV was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in plasma cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 10(exp 6) PBMCs. These data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.
Pardo, Carlos A; Farmer, Cristan A; Thurm, Audrey; Shebl, Fatma M; Ilieva, Jorjetta; Kalra, Simran; Swedo, Susan
2017-01-01
The causes of autism likely involve genetic and environmental factors that influence neurobiological changes and the neurological and behavioral features of the disorder. Immune factors and inflammation are hypothesized pathogenic influences, but have not been examined longitudinally. In a cohort of 104 participants with autism, we performed an assessment of immune mediators such as cytokines, chemokines, or growth factors in serum and cerebrospinal fluid ( n = 67) to determine potential influences of such mediators in autism. As compared with 54 typically developing controls, we found no evidence of differences in the blood profile of immune mediators supportive of active systemic inflammation mechanisms in participants with autism. Some modulators of immune function (e.g., EGF and soluble CD40 ligand) were increased in the autism group; however, no evidence of group differences in traditional markers of active inflammation (e.g., IL-6, TNFα, IL-1β) were observed in the serum. Further, within-subject stability (measured by estimated intraclass correlations) of most analytes was low, indicating that a single measurement is not a reliable prospective indicator of concentration for most analytes. Additionally, in participants with autism, there was little correspondence between the blood and CSF profiles of cytokines, chemokines, and growth factors, suggesting that peripheral markers may not optimally reflect the immune status of the central nervous system. Although the relatively high fraction of intrathecal production of selected chemokines involved in monocyte/microglia function may suggest a possible relationship with the homeostatic role of microglia, control data are needed for further interpretation of its relevance in autism. These longitudinal observations fail to provide support for the hypothesized role of disturbances in the expression of circulating cytokines and chemokines as an indicator of systemic inflammation in autism. ClinicalTrials.gov, NCT00298246.
Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A
2006-07-01
Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.
Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy
2017-05-01
To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.
2014-01-01
Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505
A machine learning evaluation of an artificial immune system.
Glickman, Matthew; Balthrop, Justin; Forrest, Stephanie
2005-01-01
ARTIS is an artificial immune system framework which contains several adaptive mechanisms. LISYS is a version of ARTIS specialized for the problem of network intrusion detection. The adaptive mechanisms of LISYS are characterized in terms of their machine-learning counterparts, and a series of experiments is described, each of which isolates a different mechanism of LISYS and studies its contribution to the system's overall performance. The experiments were conducted on a new data set, which is more recent and realistic than earlier data sets. The network intrusion detection problem is challenging because it requires one-class learning in an on-line setting with concept drift. The experiments confirm earlier experimental results with LISYS, and they study in detail how LISYS achieves success on the new data set.
The role of the immune system in kidney disease.
Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M
2018-05-01
The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.
Regulatory dendritic cells: there is more than just immune activation.
Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L
2012-01-01
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Regulatory dendritic cells: there is more than just immune activation
Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.
2012-01-01
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies. PMID:22969767
Impact of aging immune system on neurodegeneration and potential immunotherapies.
Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong
2017-10-01
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Invited essay: Cognitive influences on the psychological immune system.
Rachman, S J
2016-12-01
The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training. Copyright © 2016 Elsevier Ltd. All rights reserved.
Local and systemic tumor immune dynamics
NASA Astrophysics Data System (ADS)
Enderling, Heiko
Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Scearce, Stephen A.
2000-01-01
For electromagnetic immunity testing of an electronic system, it is desirable to demonstrate its functional integrity when exposed to the full range and intensity of environmental electromagnetic threats that may be encountered over its operational life. As part of this, it is necessary to show proper system operation when exposed to representative threat signal modulations. Modulated signal transition time is easily overlooked, but can be highly significant to system susceptibility. Radiated electromagnetic field immunity testing is increasingly being performed in Mode Stirred Chambers. Because the peak field vs. time relationship is affected by the operation of a reverberating room, it is important to understand how the room may influence any input signal modulation characteristics. This paper will provide insight into the field intensity vs. time relationship within the test environment of a mode stirred chamber. An understanding of this relationship is important to EMC engineers in determining what input signal modulation characteristics will be transferred to the equipment under test. References will be given for the development of this topic, and experimental data will be presented
Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors
2016-06-01
BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune
Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe
2015-02-01
There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gowda, Charitha; Dong, Shiming; Potter, Rachel C; Dombkowski, Kevin J; Stokley, Shannon; Dempsey, Amanda F
2013-01-01
Immunization information systems (IISs) are valuable surveillance tools; however, population relocation may introduce bias when determining immunization coverage. We explored alternative methods for estimating the vaccine-eligible population when calculating adolescent immunization levels using a statewide IIS. We performed a retrospective analysis of the Michigan State Care Improvement Registry (MCIR) for all adolescents aged 11-18 years registered in the MCIR as of October 2010. We explored four methods for determining denominators: (1) including all adolescents with MCIR records, (2) excluding adolescents with out-of-state residence, (3) further excluding those without MCIR activity ≥ 10 years prior to the evaluation date, and (4) using a denominator based on U.S. Census data. We estimated state- and county-specific coverage levels for four adolescent vaccines. We found a 20% difference in estimated vaccination coverage between the most inclusive and restrictive denominator populations. Although there was some variability among the four methods in vaccination at the state level (2%-11%), greater variation occurred at the county level (up to 21%). This variation was substantial enough to potentially impact public health assessments of immunization programs. Generally, vaccines with higher coverage levels had greater absolute variation, as did counties with smaller populations. At the county level, using the four denominator calculation methods resulted in substantial differences in estimated adolescent immunization rates that were less apparent when aggregated at the state level. Further research is needed to ascertain the most appropriate method for estimating vaccine coverage levels using IIS data.
Plant innate immunity: an updated insight into defense mechanism.
Muthamilarasan, Mehanathan; Prasad, Manoj
2013-06-01
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido
2012-01-01
Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.
Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten
2016-10-01
The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.
NASA Astrophysics Data System (ADS)
Al Azzawi, Dia
Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight simulator. The abnormal conditions considered in this work include locked actuators (stabilator, aileron, rudder, and throttle), structural damage of the wing, horizontal tail, and vertical tail, malfunctioning sensors, and reduced engine effectiveness. The results of applying the proposed approach to this wide range of abnormal conditions show its high capability in detecting the abnormal conditions with zero false alarms and very high detection rates, correctly identifying the failed subsystem and evaluating the type and severity of the failure. The results also reveal that the post-failure flight envelope can be reasonably predicted within this framework.
Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred
2008-01-01
During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.
Adamo, Shelley A
2017-02-01
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Vitamin E, immunity, and infection
USDA-ARS?s Scientific Manuscript database
A normally functioning immune system is critical for the body to fight and eliminate invading pathogens from the environment. On the other hand, the immune system also protects the body from internal risks such as neoplasia growing within and autoimmune responses that attack self. The immune system ...
Turvey, Stuart E.; Broide, David H.
2009-01-01
Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920
Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.
Hsu, Peter; Nanan, Ralph
2014-10-01
In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Prophenoloxidase system and its role in shrimp immune responses against major pathogens.
Amparyup, Piti; Charoensapsri, Walaiporn; Tassanakajon, Anchalee
2013-04-01
The global shrimp industry still faces various serious disease-related problems that are mainly caused by pathogenic bacteria and viruses. Understanding the host defense mechanisms is likely to be beneficial in designing and implementing effective strategies to solve the current and future pathogen-related problems. Melanization, which is performed by phenoloxidase (PO) and controlled by the prophenoloxidase (proPO) activation cascade, plays an important role in the invertebrate immune system in allowing a rapid response to pathogen infection. The activation of the proPO system, by the specific recognition of microorganisms by pattern-recognition proteins (PRPs), triggers a serine proteinase cascade, eventually leading to the cleavage of the inactive proPO to the active PO that functions to produce the melanin and toxic reactive intermediates against invading pathogens. This review highlights the recent discoveries of the critical roles of the proPO system in the shrimp immune responses against major pathogens, and emphasizes the functional characterizations of four major groups of genes and proteins in the proPO cascade in penaeid shrimp, that is the PRPs, serine proteinases, proPO and inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Physical Theory of the Competition that Allows HIV to Escape from the Immune System
NASA Astrophysics Data System (ADS)
Wang, Guanyu; Deem, Michael W.
2006-11-01
Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.
Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.
2015-01-01
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788
Psychoneuroimmunology - psyche and autoimmunity.
Ziemssen, Tjalf
2012-01-01
Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.
The discontinuity theory of immunity
Pradeu, Thomas; Vivier, Eric
2017-01-01
Some biological systems detect the rate of change in a stimulus rather than the stimulus itself only. We suggest that the immune system works in this way. According to the discontinuity theory of immunity, the immune system responds to sudden changes in antigenic stimulation and is rendered tolerant by slow or continuous stimulation. This basic principle, which is supported by recent data on immune checkpoints in viral infections, cancers, and allergies, can be seen as a unifying framework for diverse immune responses. PMID:28239677
Exercise immunology: practical applications.
Nieman, D C
1997-03-01
During the last 95 years, 629 papers (60% in the 1990s) dealing specifically with exercise and immunology have been published. Major findings of practical importance in terms of public health and athletic endeavor include: (a) In response to acute exercise (the most frequently studied area of exercise immunology), a rapid interchange of immune cells between peripheral lymphoid tissues and the circulation occurs. The response depends on many factors, including the intensity, duration, and mode of exercise, concentrations of hormones and cytokines, change in body temperature, blood flow, hydration status, and body position. Of all immune cells, natural killer (NK) cells, neutrophils, and macrophages (of the innate immune system) appear to be most responsive to the effects of acute exercise, both in terms of numbers and function. In general, acute exercise bouts of moderate duration (< 60 min) and intensity (< 60% VO2max) are associated with fewer perturbations and less stress to the immune system than are prolonged, high-intensity sessions. (b) In response to long-term exercise training, the only finding to date reported with some congruity between investigators is a significant elevation in NK cell activity. Changes in the function of neutrophils, macrophages, and T and B cells in response to training have been reported inconsistently, but there is some indication that neutrophil function is suppressed during periods of heavy training. (c) Limited data suggest that unusually heavy acute or chronic exercise may increase the risk of upper respiratory tract infection (URTI), while regular moderate physical activity may reduce URTI symptomatology. (d) Work performance tends to diminish with most systemic infectious, and clinical case studies and animal data suggest that infection severity, relapse, and myocarditis may result when patients exercise vigorously. (e) Although regular exercise has many benefits for HIV-infected individuals, helper T cell counts and other immune measures are not enhanced significantly. (f) Data suggest that the incidence and mortality rates for certain types of cancer are lower among active subjects. The role of the immune system may be limited, however, depending on the sensitivity of the specific tumor to cytolysis, the stage of cancer, the type of exercise program, and many other complex factors. (g) As individuals age, they experience a decline in most cell- mediated and humoral immune responses. Two human studies suggest that immune function is superior in highly conditioned versus sedentary elderly subjects. (h) Mental stress, undernourishment, quick weight loss, and improper hygiene have each been associated with impaired immunity. Athletes who are undergoing heavy training regimens should realize that each of these factors has the potential to compound the effect that exercise stress is having on their immune systems.
Reciprocal Interactions of the Intestinal Microbiota and Immune System
Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.
2013-01-01
Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296
Kawano, Yoshihiko; Suzuki, Michio; Kawada, Jun-ichi; Kimura, Hiroshi; Kamei, Hideya; Ohnishi, Yasuharu; Ono, Yasuyuki; Uchida, Hiroo; Ogura, Yasuhiro; Ito, Yoshinori
2015-03-17
Liver transplantation recipients are at high risk for severe complications due to infections because of being treated with immunosuppressive drugs that affect the immune system. Vaccination for liver transplantation candidates is generally recommended before surgery, but the opportunities for vaccination prior to transplantation in pediatric candidates are often limited by severe disease conditions. The participants in this study comprised 39 pediatric recipients of living donor liver transplantation performed between 2005 and 2013. Criteria for administering live-attenuated (measles, rubella, mumps, and varicella) and inactivated (hepatitis B, pertussis, and Japanese encephalitis) vaccines were as follows: (1) >1 year after transplantation; (2) no use of systemic steroids to treat acute rejection within the last 6 months; (3) serum trough concentration of tacrolimus <5 ng/mL; (4) no severe immunosuppression according to blood examinations; and (5) provision of written informed consent. Median age at transplantation was 17 months, and median period from transplantation to the beginning of immunization was 18 months. Seroprotection rates for measles, rubella, mumps, varicella, hepatitis B, pertussis, and Japanese encephalitis after post-transplant immunization were 44% (11/25), 70% (19/27), 48% (12/25), 32% (6/19), 83% (19/23), 87% (13/15), and 88% (7/8), respectively. Seroprotection rates for measles, rubella, mumps, and varicella after second vaccination for recipients with primary vaccine failure after first vaccination were 100% (8/8), 50% (1/2), 71% (5/7), and 50% (5/10), respectively. While four recipients contracted mumps and eight contracted varicella before immunization, one recipient developed varicella after immunization. No serious systemic adverse events were observed in vaccinated recipients. Seroprotection rates for measles, mumps, and varicella appeared low in children after the first post-transplantation vaccination. Immunizations with four live-attenuated and three inactivated vaccines were safe and effective for pediatric liver transplantation recipients who were not severely immunosuppressed. Copyright © 2015. Published by Elsevier Ltd.
Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.
2012-01-01
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795
Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead
2016-01-01
Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.
Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina
2014-12-01
Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.
Immunotherapy: How the Immune System Fights Cancer
Immunotherapy uses the body’s immune system to fight cancer. This animation explains three types of immunotherapy used to treat cancer: nonspecific immune stimulation, T-cell transfer therapy, and immune checkpoint inhibitors.
Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.
Buchon, Nicolas; Silverman, Neal; Cherry, Sara
2014-12-01
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Dosselli, Ryan; Grassl, Julia; Carson, Andrew; Simmons, Leigh W.; Baer, Boris
2016-01-01
Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services. PMID:27827404
Dosselli, Ryan; Grassl, Julia; Carson, Andrew; Simmons, Leigh W; Baer, Boris
2016-11-09
Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services.
Synthetic immunology: modulating the human immune system.
Geering, Barbara; Fussenegger, Martin
2015-02-01
Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Environmental factors, immune changes and respiratory diseases in troops during military activities.
Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Chciałowski, Andrzej; Korsak, Jolanta
2013-06-01
Combat operations in contemporary theaters of war, as well as combat training, are carried out in all parts of the world, typically in a harsh environment. Specific environmental conditions, such as heat, cold, high-altitudes, desert climates, as well as chemical and biological pollution of both the atmosphere and soil, together with over-exertion, food restrictions, sleep deprivation, and psychological stress can all result in changes in the immune system and the occurrence of associated diseases. Respiratory diseases are one of the most common health problems among military personnel participating in combat training or deployed to operations in areas characterized by difficult climatic and sanitary conditions. They are, therefore, one of the main reasons for military personnel requiring ambulant and hospital treatment. The aim of the study was to discuss the influence of environmental factors and the conditions in which active duty is performed on changes in the immune system and the occurrence of respiratory tract diseases in a military environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Kao, Damian; Lai, Alvina G; Stamataki, Evangelia; Rosic, Silvana; Konstantinides, Nikolaos; Jarvis, Erin; Di Donfrancesco, Alessia; Pouchkina-Stancheva, Natalia; Sémon, Marie; Grillo, Marco; Bruce, Heather; Kumar, Suyash; Siwanowicz, Igor; Le, Andy; Lemire, Andrew; Eisen, Michael B; Extavour, Cassandra; Browne, William E; Wolff, Carsten; Averof, Michalis; Patel, Nipam H; Sarkies, Peter; Pavlopoulos, Anastasios; Aboobaker, Aziz
2016-01-01
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source. DOI: http://dx.doi.org/10.7554/eLife.20062.001 PMID:27849518
Kao, Damian; Lai, Alvina G; Stamataki, Evangelia; Rosic, Silvana; Konstantinides, Nikolaos; Jarvis, Erin; Di Donfrancesco, Alessia; Pouchkina-Stancheva, Natalia; Sémon, Marie; Grillo, Marco; Bruce, Heather; Kumar, Suyash; Siwanowicz, Igor; Le, Andy; Lemire, Andrew; Eisen, Michael B; Extavour, Cassandra; Browne, William E; Wolff, Carsten; Averof, Michalis; Patel, Nipam H; Sarkies, Peter; Pavlopoulos, Anastasios; Aboobaker, Aziz
2016-11-16
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.
The deconvolution of complex spectra by artificial immune system
NASA Astrophysics Data System (ADS)
Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.
2017-11-01
An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.
Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D
2017-05-17
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Role of the immune system in cardiac tissue damage and repair following myocardial infarction.
Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya
2017-09-01
The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.
Evolution of complement as an effector system in innate and adaptive immunity.
Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina
2003-01-01
For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.
Anti-Immune Strategies of Pathogenic Fungi
Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.
2016-01-01
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220
Effects of engineered nanoparticles on the innate immune system.
Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M
2017-12-01
Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hoseinifar, Seyed Hossein; Khodadadian Zou, Hassan; Kolangi Miandare, Hamed; Van Doan, Hien; Romano, Nicholas; Dadar, Maryam
2017-08-01
A feeding trial was performed to assess the effects of dietary Medlar (Mespilus germanica) leaf extract (MLE) on the growth performance, skin mucus non-specific immune parameters as well as mRNA levels of immune and antioxidant related genes in the skin of common carp (Cyprinus carpio) fingerlings. Fish were fed diets supplemented with graded levels (0, 0.25, 0.50, and 1.00%) of MLE for 49 days. The results revealed an improvement to the growth performance and feed conversion ratio in MLE fed carps (P < 0.05), regardless of the inclusion level. The immunoglobulin levels and interleukin 8 levels in the skin mucous and skin, respectively, revealed significant increment in fish fed 1% MLE (P < 0.05) in comparison with the other MLE treatments and control group. Also, feeding on 0.25% and 0.50% MLE remarkably increased skin mucus lysozyme activity (P < 0.05). However, there were no significant difference between MLE treated groups and control (P > 0.05) in case protease activity in the skin mucous or tumor necrosis factor alpha and interleukin 1 beta gene expression in the skin of carps (P > 0.05). The expression of genes encoding glutathione reductase and glutathione S-transferase alpha were remarkably increased in MLE fed carps compared to the control group (P < 0.05) while carp fed 0.50% or 1.00% MLE had significantly increased glutathione peroxidase expression in their skin (P < 0.05). The present results revealed the potentially beneficial effects of MLE on the mucosal immune system and growth performance in common carp fingerlings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Probiotics, antibiotics and the immune responses to vaccines
Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep
2015-01-01
Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456
Gilbert, Sarah Skye; Thakare, Neeraj; Ramanujapuram, Arun; Akkihal, Anup
2017-04-19
Immunization supply chains in low resource settings do not always reach children with necessary vaccines. Digital information systems can enable real time visibility of inventory and improve vaccine availability. In 2014, a digital, mobile/web-based information system was implemented in two districts of Uttar Pradesh, India. This retrospective investigates improvements and stabilization of supply chain performance following introduction of the digital information system. All data were collected via the digital information system between March 2014 and September 2015. Data included metadata and transaction logs providing information about users, facilities, and vaccines. Metrics evaluated include adoption (system access, timeliness and completeness), data quality (error rates), and performance (stock availability on immunization session days, replenishment response duration, rate of zero stock events). Stability was defined as the phase in which quality and performance metrics achieved equilibrium rates with minimal volatility. The analysis compared performance across different facilities and vaccines. Adoption appeared sufficiently high from the onset to commence stability measures of data quality and supply chain performance. Data quality stabilized from month 3 onwards, and supply chain performance stabilized from month 13 onwards. For data quality, error rates reduced by two thirds post stabilization. Although vaccine availability remained high throughout the pilot, the three lowest-performing facilities improved from 91.05% pre-stability to 98.70% post-stability (p<0.01; t-test). Average replenishment duration (as a corrective response to stock-out events) decreased 52.3% from 4.93days to 2.35days (p<0.01; t-test). Diphtheria-tetanus-pertussis vaccine was significantly less likely to be stocked out than any other material. The results suggest that given sufficient adoption, stability is sequentially achieved, beginning with data quality, and then performance. Identifying when a pilot stabilizes can enable more predictable, reliable cost estimates, and outcome forecasts in the scale-up phase. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Early age exposure to moisture damage and systemic inflammation at the age of 6 years.
Karvonen, A M; Tischer, C; Kirjavainen, P V; Roponen, M; Hyvärinen, A; Illi, S; Mustonen, K; Pfefferle, P I; Renz, H; Remes, S; Schaub, B; von Mutius, E; Pekkanen, J
2018-05-01
Cross-sectional studies have shown that exposure to indoor moisture damage and mold may be associated with subclinical inflammation. Our aim was to determine whether early age exposure to moisture damage or mold is prospectively associated with subclinical systemic inflammation or with immune responsiveness in later childhood. Home inspections were performed in children's homes in the first year of life. At age 6 years, subclinical systemic inflammation was measured by serum C-reactive protein (CRP) and blood leukocytes and immune responsiveness by ex vivo production of interleukin 1-beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) in whole blood cultures without stimulation or after 24 hours stimulation with phorbol 12-myristate 13-acetate and ionomycin (PI), lipopolysaccharide (LPS), or peptidoglycan (PPG) in 251-270 children. Moisture damage in child's main living areas in infancy was not significantly associated with elevated levels of CRP or leukocytes at 6 years. In contrast, there was some suggestion for an effect on immune responsiveness, as moisture damage with visible mold was positively associated with LPS-stimulated production of TNF-α and minor moisture damage was inversely associated with PI-stimulated IL-1β. While early life exposure to mold damage may have some influence on later immune responsiveness, it does not seem to increase subclinical systemic inflammation in later life. © 2018 National Institute for Health and Welfare, Finland Indoor Air published by John Wiley & Sons Ltd.
Bragazzi, Nicola Luigi; Watad, Abdulla; Sharif, Kassem; Adawi, Mohammad; Aljadeff, Gali; Amital, Howard; Shoenfeld, Yehuda
2017-10-01
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. In SLE, immune system dysfunction is postulated to result by virtue of the disease itself as well as by the impact of treatment modalities employed. A myriad of immune dysregulations occur including complement system dysfunction among others. Infectious agents are known to complicate the disease course in close to 25-45% of SLE patients. Areas covered: In this review a discussion of the immunogenicity and safety of viral and bacterial vaccinations in SLE was performed. The search included ISI Web of Science (WoS), Scopus, MEDLINE/PubMed, Google-Scholar, DOAJ, EbscoHOST, Scirus, Science Direct, Cochrane Library and ProQuest. Proper string made up of a key-words including 'SLE', 'vaccination', 'safety' and 'efficacy' was used. Expert commentary: Vaccination of SLE patients is proven to be immunogenic. Concerns regarding vaccine safety are postulated, yet no direct relationship between vaccination and disease exacerbation were established. While live virus vaccines are generally contraindicated in immunosuppressive states, generally live attenuated vaccinations are recommended in SLE patients on a case-to-case basis. In SLE patients, clinical parameters such as vaccination during disease exacerbations have not been intensively studied and therefore while apparently safe, vaccination is generally recommended while disease is quiescent.
Mind-body hypnotic imagery in the treatment of auto-immune disorders.
Torem, Moshe S
2007-10-01
For many years Western Medicine has considered the immune system to be separate and independent from the central nervous system. However, significant scientific advances and research discoveries that occurred during the past 50 years have presented additional facts that the immune system does interact with the central nervous system with mutual influence. This article provides a systematic review of the literature on the connection between the brain and the immune system and its clinical implications. It then provides a rational foundation for the role of using hypnosis and imagery to therapeutically influence the immune system. Five case examples are provided with illustrated instructions for clinicians on how hypnosis and imagery may be utilized in the treatment of patients with auto-immune disorders. Suggestions for future research in this field are included.
Mold, Jeff E; McCune, Joseph M
2011-04-01
"We do not grow absolutely, chronologically. We grow sometimes in one dimension, and not in another; unevenly. We grow partially. We are relative. We are mature in one realm, childish in another. The past, present and future mingle and pull us backward, forward, or fix us in the present. We are made up of layers, cells, constellations."-Anaïs NinIt has long been recognized that the developing immune system exhibits certain peculiarities when compared to the adult immune system. Nonetheless, many still regard the fetal immune system as simply being an immature version of the adult immune system. Here we discuss historical evidence as well as recent findings, which suggest that the human immune system may develop in distinct layers with specific functions at different stages of development.
What's in a country average? Wealth, gender, and regional inequalities in immunization in India.
Pande, Rohini P; Yazbeck, Abdo S
2003-12-01
Recent attention to Millennium Development Goals by the international development community has led to the formation of targets to measure country-level achievements, including achievements on health status indicators such as childhood immunization. Using the example of immunization in India, this paper demonstrates the importance of disaggregating national averages for a better understanding of social disparities in health. Specifically, the paper uses data from the India National Family Health Survey 1992-93 to analyze socioeconomic, gender, urban-rural and regional inequalities in immunization in India for each of the 17 largest states. Results show that, on average, southern states have better immunization levels and lower immunization inequalities than many northern states. Wealth and regional inequalities are correlated with overall levels of immunization in a non-linear fashion. Gender inequalities persist in most states, including in the south, and seem unrelated to overall immunization or the levels of other inequalities measured here. This suggests that the gender differentials reflect deep-seated societal factors rather than health system issues per se. The disaggregated information and analysis used in this paper allows for setting more meaningful targets than country averages. Additionally, it helps policy makers and planners to understand programmatic constraints and needs by identifying disparities between sub-groups of the population, including strong and weak performers at the state and regional levels.
St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A
2017-01-01
While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.
Gap junction-mediated intercellular communication in the immune system.
Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques
2007-01-01
Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.
The effects of early life adversity on the immune system.
Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D
2017-08-01
Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Carol, Arnoud; Witkamp, Renger F; Wichers, Harry J; Mensink, Marco
2011-04-01
The purpose of this study was to investigate the potential of bovine colostrum to attenuate postexercise decline in immune function. The authors evaluated the time course of a number of immune variables after short-term intense exercise in 9 male athletes after 10 d of supplementation with either colostrum or skim-milk powder. To increase the stress on the immune system subjects performed a glycogen-depletion trial the evening before the endurance trial (90 min at 50% Wmax). Blood samples were taken before the glycogen-depletion trial, before and after the endurance trial, and the next morning, ~22 hr after cessation of the exercise. Plasma cortisol levels increased over time, reaching the highest level directly after exercise, and were still elevated ~22 hr after exercise compared with baseline values (p < .001). Neutrophil cell count was increased after exercise and dropped below starting values 22 hr after exercise (time effect p < .001). Circulating immunoglobulins did not change over time. A significant time effect was seen for interleukin (IL)-6, IL-10, IL-1-receptor agonist, and C-reactive protein, with levels being higher directly after exercise (p < .05). Other cytokines (interferon-γ, IL-1a, IL-8, tumor necrosis factor-a) did not show a time effect. No differences were seen between colostrum and skim-milk powder in any of the investigated variables. Our results are consistent with the hypothesis that intense exercise affects several variables of the immune system. Colostrum did not alter any of the postexercise immune variables compared with skim-milk powder, suggesting no role for bovine colostrum supplementation in preventing postexercise immune suppression after short-term intense exercise.
Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena
2014-01-01
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.
Interplay Between Innate Immunity and the Plant Microbiota.
Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul
2017-08-04
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Falcao‐Pires, Ines; Balligand, Jean‐Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J.; Giacca, Mauro; Hamdani, Nazha; Hilfiker‐Kleiner, Denise; Hirsch, Emilio; Leite‐Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G.; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane
2018-01-01
Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. PMID:29333691
Recent Advances in Aptamers Targeting Immune System.
Hu, Piao-Ping
2017-02-01
The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.
ERIC Educational Resources Information Center
Littrell, Jill
1996-01-01
Discusses the psychological states associated with enhanced immune system functioning and those associated with suppressed immune functioning. Reviews studies of psychological and behavioral interventions to boost the immune systems of people who are HIV positive. Suggests that group interventions can enhance psychological states associated with…
Ageing and the immune system: focus on macrophages.
Linehan, E; Fitzgerald, D C
2015-03-01
A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.
Neuro-immune interactions in inflammation and host defense: Implications for transplantation.
Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M
2018-03-01
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Immune System and Kidney Transplantation.
Shrestha, Badri Man
2017-01-01
The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.
Immune system and melanoma biology: a balance between immunosurveillance and immune escape.
Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco
2017-12-01
Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.
Distributed delays in a hybrid model of tumor-immune system interplay.
Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto
2013-02-01
A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
Cryptosporidium: Infection - Immunocompromised Persons
... might be immunocompromised or have a weakened immune system? Examples of persons with weakened immune systems include ... How does cryptosporidiosis affect you if your immune system is severely weakened? In persons with AIDS and ...
Hughes, A L
1998-03-01
Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well.
Tanlock loop noise reduction using an optimised phase detector
NASA Astrophysics Data System (ADS)
Al-kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh
2013-06-01
This article proposes a time-delay digital tanlock loop (TDTL), which uses a new phase detector (PD) design that is optimised for noise reduction making it amenable for applications that require wide lock range without sacrificing the level of noise immunity. The proposed system uses an improved phase detector design which uses two phase detectors; one PD is used to optimise the noise immunity whilst the other is used to control the acquisition time of the TDTL system. Using the modified phase detector it is possible to reduce the second- and higher-order harmonics by at least 50% compared with the conventional TDTL system. The proposed system was simulated and tested using MATLAB/Simulink using frequency step inputs and inputs corrupted with varying levels of harmonic distortion. A hardware prototype of the system was implemented using a field programmable gate array (FPGA). The practical and simulation results indicate considerable improvement in the noise performance of the proposed system over the conventional TDTL architecture.
NASA Astrophysics Data System (ADS)
Xavier, M. P.; do Nascimento, T. M.; dos Santos, R. W.; Lobosco, M.
2014-03-01
The development of computational systems that mimics the physiological response of organs or even the entire body is a complex task. One of the issues that makes this task extremely complex is the huge computational resources needed to execute the simulations. For this reason, the use of parallel computing is mandatory. In this work, we focus on the simulation of temporal and spatial behaviour of some human innate immune system cells and molecules in a small three-dimensional section of a tissue. To perform this simulation, we use multiple Graphics Processing Units (GPUs) in a shared-memory environment. Despite of high initialization and communication costs imposed by the use of GPUs, the techniques used to implement the HIS simulator have shown to be very effective to achieve this purpose.
Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching
2018-03-01
The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissecting innate immune responses with the tools of systems biology.
Smith, Kelly D; Bolouri, Hamid
2005-02-01
Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.
Neuroimmunologic aspects of sleep and sleep loss
NASA Technical Reports Server (NTRS)
Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.
2001-01-01
The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.
NASA Astrophysics Data System (ADS)
Salamatova, T.; Zhukov, V.
2017-02-01
The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.
Systemic immunity influences hearing preservation in cochlear implantation.
Souter, Melanie; Eastwood, Hayden; Marovic, Paul; Kel, Gordana; Wongprasartsuk, Sarin; Ryan, Allen F; O'Leary, Stephen John
2012-06-01
To determine whether a systemic immune response influences hearing thresholds and tissue response after cochlear implantation of hearing guinea pigs. Guinea pigs were inoculated with sterile antigen (Keyhole limpet hemocyanin) 3 weeks before cochlear implantation. Pure-tone auditory brainstem response thresholds were performed before implantation and 1 and 4 weeks later. Dexamethasone phosphate 20% was adsorbed onto a hyaluronic acid carboxymethylcellulose sponge and was applied to the round window for 30 minutes before electrode insertion. Normal saline was used for controls. Cochlear histology was performed at 4 weeks after implantation to assess the tissue response to implantation. To control for the effect of keyhole limpet hemocyanin priming, a group of unprimed animals underwent cochlear implantation with a saline-soaked pledget applied to the round window. Keyhole limpet hemocyanin priming had no significant detrimental effect on thresholds without implantation. Thresholds were elevated after implantation across all frequencies tested (2-32 kHz) in primed animals but only at higher frequencies (4-32 kHz) in unprimed controls. In primed animals, dexamethasone treatment significantly reduced threshold shifts at 2 and 8 kHz. Keyhole limpet hemocyanin led to the more frequent observation of lymphocytes in the tissue response to the implant. Systemic immune activation at the time of cochlear implantation broadened the range of frequencies experiencing elevated thresholds after implantation. Local dexamethasone provides partial protection against this hearing loss, but the degree and extent of protection are less compared to previous studies with unprimed animals.
... can also happen in people without weak immune systems Fungal infections that are not life-threatening, such ... to cause an infection. People with weak immune systems Infections that happen because a person’s immune system ...
The Immune System and Developmental Programming of Brain and Behavior
Bilbo, Staci D.; Schwarz, Jaclyn M.
2012-01-01
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535
Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.
Cooper, Dustin; Eleftherianos, Ioannis
2017-01-01
The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.
Cytokines in Bipolar Disorder: Paving the Way for Neuroprogression
Barbosa, Izabela Guimarães; Bauer, Moisés Evandro; Machado-Vieira, Rodrigo; Teixeira, Antonio Lucio
2014-01-01
Bipolar disorder (BD) is a severe, chronic, and recurrent psychiatric illness. It has been associated with high prevalence of medical comorbidities and cognitive impairment. Its neurobiology is not completely understood, but recent evidence has shown a wide range of immune changes. Cytokines are proteins involved in the regulation and the orchestration of the immune response. We performed a review on the involvement of cytokines in BD. We also discuss the cytokines involvement in the neuroprogression of BD. It has been demonstrated that increased expression of cytokines in the central nervous system in postmortem studies is in line with the elevated circulating levels of proinflammatory cytokines in BD patients. The proinflammatory profile and the immune imbalance in BD might be regarded as potential targets to the development of new therapeutic strategies. PMID:25313338
An immunity-based anomaly detection system with sensor agents.
Okamoto, Takeshi; Ishida, Yoshiteru
2009-01-01
This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.
Novel Ruggedized Packaging Technology for VCSELs
2017-03-01
Novel Ruggedized Packaging Technology for VCSELs Charlie Kuznia ckuznia@ultracomm-inc.com Ultra Communications, Inc. Vista, CA, USA, 92081...n ac hieve l ow-power, E MI-immune links within hi gh-performance m ilitary computing an d sensor systems. Figure 1. Chip-scale-packaging of
Weakened Immune System and Adult Vaccination
... Adult Vaccination Resources for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...
[The role of immune system in the control of cancer development and growth].
Sütő, Gábor
2016-06-01
The role of immune system is the maintenace of the integritiy of the living organism. The elements of the immune system are connected by several ways forming a complex biological network. This network senses the changes of the inner and outer environment and works out the most effective response against infections and tumors. Dysfunction of the immune system leads to the development of cancer development and chronic inflammatory diseases. Modulation of the checkpoints of the immune system opened new perspecitves in the treatment of rheumatological and oncological diseases as well. Beside the potent antiinflammatory activity, new therapies are able to stimulate anticancer activity of the immune system. The result of these recent developments is a better outcome of malignant diseases, which had an unfavorable outcome in the past. Orv. Hetil., 2016, 157(Suppl. 2), 3-8.
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Unique aspects of the perinatal immune system.
Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard
2017-08-01
The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.
Performance Evaluation of a UWB-RFID System for Potential Space Applications
NASA Technical Reports Server (NTRS)
Phan, Chan T.; Arndt, D.; Ngo, P.; Gross, J.; Ni, Jianjun; Rafford, Melinda
2006-01-01
This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation of a commercially available UWB-RFID system. There are many RFID systems available today, but many provide just basic identification for auditing and inventory tracking. For applications that require high precision real time tracking, UWB technology has been shown to be a viable solution. The use of extremely short bursts of RF pulses offers high immunity to interference from other RF systems, precise tracking due to sub-nanosecond time resolution, and robust performance in multipath environments. The UWB-RFID system Sapphire DART (Digital Active RFID & Tracking) will be introduced in this talk. Laboratory testing using Sapphire DART is performed to evaluate its capability such as coverage area, accuracy, ease of operation, and robustness. Performance evaluation of this system in an operational environment (a receiving warehouse) for inventory tracking is also conducted. Concepts of using the UWB-RFID technology to track astronauts and assets are being proposed for space exploration.
A Physical Theory of the Competition that Allows HIV to Escape from the Immune System
NASA Astrophysics Data System (ADS)
Deem, Michael
2007-03-01
Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies [1]. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1. 1) G. Wang and M. W. Deem, Phys. Rev. Lett. 97 (2006) 188106.
The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths.
Agrawal, Madhur; Kern, Philip A; Nikolajczyk, Barbara S
2017-08-15
Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.
The immune-neuro-endocrine interactions.
Tomaszewska, D; Przekop, F
1997-06-01
This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.
Gowda, Charitha; Dong, Shiming; Potter, Rachel C.; Dombkowski, Kevin J.; Stokley, Shannon
2013-01-01
Objective Immunization information systems (IISs) are valuable surveillance tools; however, population relocation may introduce bias when determining immunization coverage. We explored alternative methods for estimating the vaccine-eligible population when calculating adolescent immunization levels using a statewide IIS. Methods We performed a retrospective analysis of the Michigan State Care Improvement Registry (MCIR) for all adolescents aged 11–18 years registered in the MCIR as of October 2010. We explored four methods for determining denominators: (1) including all adolescents with MCIR records, (2) excluding adolescents with out-of-state residence, (3) further excluding those without MCIR activity ≥10 years prior to the evaluation date, and (4) using a denominator based on U.S. Census data. We estimated state- and county-specific coverage levels for four adolescent vaccines. Results We found a 20% difference in estimated vaccination coverage between the most inclusive and restrictive denominator populations. Although there was some variability among the four methods in vaccination at the state level (2%–11%), greater variation occurred at the county level (up to 21%). This variation was substantial enough to potentially impact public health assessments of immunization programs. Generally, vaccines with higher coverage levels had greater absolute variation, as did counties with smaller populations. Conclusion At the county level, using the four denominator calculation methods resulted in substantial differences in estimated adolescent immunization rates that were less apparent when aggregated at the state level. Further research is needed to ascertain the most appropriate method for estimating vaccine coverage levels using IIS data. PMID:24179260
NASA Technical Reports Server (NTRS)
Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra
2008-01-01
Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.
Leentjens, Jenneke; Quintin, Jessica; Gerretsen, Jelle; Kox, Matthijs; Pickkers, Peter; Netea, Mihai G.
2014-01-01
Rationale To prevent or combat infection, increasing the effectiveness of the immune response is highly desirable, especially in case of compromised immune system function. However, immunostimulatory therapies are scarce, expensive, and often have unwanted side-effects. β-glucans have been shown to exert immunostimulatory effects in vitro and in vivo in experimental animal models. Oral β-glucan is inexpensive and well-tolerated, and therefore may represent a promising immunostimulatory compound for human use. Methods We performed a randomized open-label intervention pilot-study in 15 healthy male volunteers. Subjects were randomized to either the β -glucan (n = 10) or the control group (n = 5). Subjects in the β-glucan group ingested β-glucan 1000 mg once daily for 7 days. Blood was sampled at various time-points to determine β-glucan serum levels, perform ex vivo stimulation of leukocytes, and analyze microbicidal activity. Results β-glucan was barely detectable in serum of volunteers at all time-points. Furthermore, neither cytokine production nor microbicidal activity of leukocytes were affected by orally administered β-glucan. Conclusion The present study does not support the use of oral β-glucan to enhance innate immune responses in humans. Trial Registration ClinicalTrials.gov NCT01727895 PMID:25268806
Costs of mounting an immune response during pregnancy in a lizard.
Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald
2013-01-01
Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.
van Krimpen, M M; Torki, M; Schokker, D
2017-09-01
An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 d of age on immune competence-related parameters and performance of broilers. A total of 960 day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to 1 of 3 experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence-related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d 14 to 28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which among others are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds. © 2017 Poultry Science Association Inc.
Touray, Kebba; Mkanda, Pascal; Tegegn, Sisay G; Nsubuga, Peter; Erbeto, Tesfaye B; Banda, Richard; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G
2016-05-01
Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance. In each local government area where tracking was conducted, global positioning system-enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria. © 2016 World Health Organization; licensee Oxford Journals.
NASA Astrophysics Data System (ADS)
Suja Priyadharsini, S.; Edward Rajan, S.; Femilin Sheniha, S.
2016-03-01
Electroencephalogram (EEG) is the recording of electrical activities of the brain. It is contaminated by other biological signals, such as cardiac signal (electrocardiogram), signals generated by eye movement/eye blinks (electrooculogram) and muscular artefact signal (electromyogram), called artefacts. Optimisation is an important tool for solving many real-world problems. In the proposed work, artefact removal, based on the adaptive neuro-fuzzy inference system (ANFIS) is employed, by optimising the parameters of ANFIS. Artificial Immune System (AIS) algorithm is used to optimise the parameters of ANFIS (ANFIS-AIS). Implementation results depict that ANFIS-AIS is effective in removing artefacts from EEG signal than ANFIS. Furthermore, in the proposed work, improved AIS (IAIS) is developed by including suitable selection processes in the AIS algorithm. The performance of the proposed method IAIS is compared with AIS and with genetic algorithm (GA). Measures such as signal-to-noise ratio, mean square error (MSE) value, correlation coefficient, power spectrum density plot and convergence time are used for analysing the performance of the proposed method. From the results, it is found that the IAIS algorithm converges faster than the AIS and performs better than the AIS and GA. Hence, IAIS tuned ANFIS (ANFIS-IAIS) is effective in removing artefacts from EEG signals.
Butler, Michael W.; Stahlschmidt, Zachary R.; Ardia, Daniel R.; Davies, Scott; Davis, Jon; Guillette, Louis J.; Johnson, Nicholas; McCormick, Stephen D.; McGraw, Kevin J.; DeNardo, Dale F.
2013-01-01
Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.
Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It helps ... to find and destroy them. If your immune system cannot do its job, the results can be ...
The Pollutant Organotins Leads to Respiratory Disease by Inflammation: A Mini-Review
Nunes-Silva, Albená; Dittz, Dalton; Santana, Higor Scardini; Faria, Rodrigo Alves; Freitas, Katia Michelle; Coutinho, Christiane Rabelo; de Melo Rodrigues, Livia Carla; Miranda-Alves, Leandro; Silva, Ian Victor; Graceli, Jones Bernardes; Freitas Lima, Leandro Ceotto
2018-01-01
Organotins (OTs) are organometallic pollutants. The OTs are organometallic pollutants that are used in many industrial, agricultural, and domestic products, and it works as powerful biocidal compound against large types of microorganisms such as fungi and bacteria. In addition, OTs are well known to be endocrine-disrupting chemicals, leading abnormalities an “imposex” phenomenon in the female mollusks. There are some studies showing that OTs’ exposure is responsible for neural, endocrine, and reproductive dysfunctions in vitro and in vivo models. However, OTs’ effects over the mammalian immune system are poorly understood, particularly in respiratory diseases. The immune system, as well as their cellular components, performs a pivotal role in the control of the several physiologic functions, and in the maintenance and recovery of homeostasis. Thus, it is becoming important to better understand the association between environmental contaminants, as OTs, and the physiological function of immune system. There are no many scientific works studying the relationship between OTs and respiratory disease, especially about immune system activation. Herein, we reported studies in animal, humans, and in vitro models. We searched studies in PUBMED, LILACS, and Scielo platforms. Studies have reported that OTs exposure was able to suppress T helper 1 (Th1) and exacerbate T helper 2 (Th2) response in the immune system. In addition, OTs’ contact could elevate in the airway inflammatory response, throughout a mechanism associated with the apoptosis of T-regulatory cells and increased oxidative stress response. In addition, OTs induce macrophage recruitment to the tissue, leading to the increased necrosis, which stimulates an inflammatory cytokines secretion exacerbating the local inflammation and tissue function loss. Thus, the main intention of this mini-review is to up to date the main findings involving the inflammatory profile (especially Th1 and Th2 response) in the respiratory tract as a result of OTs’ exposure. PMID:29403432
Heuts, Frank; Nagy, Noemi
2017-01-01
Recent developments in mouse models that harbor part of a human immune system have proved extremely valuable to study the in vivo immune response to human specific pathogens such as Epstein-Barr virus. Over the last decades, advances in immunodeficient mouse strains that can be used as recipients for human immune cells have greatly enhanced the use of these models. Here, we describe the generation of mice with reconstituted human immune system (HIS mice) using immunocompromised mice transplanted with human CD34 + hematopoietic stem cells. We will also describe how such mice, in which human immune cells are generated de novo, can be used to study EBV infection.
Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan
2006-11-01
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
Schröder, J M; Reich, K; Kabashima, K; Liu, F T; Romani, N; Metz, M; Kerstan, A; Lee, P H A; Loser, K; Schön, M P; Maurer, M; Stoitzner, P; Beissert, S; Tokura, Y; Gallo, R L
2006-11-01
Our views of the skin immunity theatre are undergoing constant change. These not only reflect paradigm shifts in general immunology and skin biology, but also have profound clinical implications, which call for strategic changes in dermatological therapy. Nowhere can this be witnessed at a greater level of instructiveness and fascination than when addressing the question posed by this new Controversies feature. Thus, after a very long period of dominance by T cells and Langerhans cells as 'lead actors' on the skin immunity stage, the lowly keratinocyte has recently made an astounding theatrical appearance as a key protagonist of the innate skin immunity system, which may control even acquired skin immune responses. Further enhancing dramatic complexity and tension, the mast cell has entered as an additional actor claiming centre stage, and the epidermal Langerhans cell has slipped in a surprise appearance as the chief agent of immunotolerance. May you, esteemed reader, enjoy the spectacle offered here by selected immunodermatology authorities who double as 'stage managers' pushing their respective favourite actors into the limelight. You get everything you may expect from a good performance - complete with the impresario's overture that lures you into the theatre and sets the stage, competing divas, recently discovered new talents and even the critic's digest while the performance is still ongoing. By the time the curtain drops, you will have reached your own, independent conclusions on how to answer the title question of this play - at least for the time being...
Shirasaki, Yoshitaka; Yamagishi, Mai; Shimura, Nanako; Hijikata, Atsushi; Ohara, Osamu
2013-01-01
The immune system is a very complex and dynamic cellular system, and its intricacies are considered akin to those of human society. Disturbance of homeostasis of the immune system results in various types of diseases; therefore, the homeostatic mechanism of the immune system has long been a subject of great interest in biology, and a lot of information has been accumulated at the cellular and the molecular levels. However, the sociological aspects of the immune system remain too abstract to address because of its high complexity, which mainly originates from a large number and variety of cell-cell interactions. As long-range interactions mediated by cytokines play a key role in the homeostasis of the immune system, cytokine secretion analyses, ranging from analyses of the micro level of individual cells to the macro level of a bulk of cell ensembles, provide us with a solid basis of a sociological viewpoint of the immune system. In this review, as the first step toward a comprehensive understanding of immune cell sociology, cytokine secretion of immune cells is surveyed with a special emphasis on the single-cell level, which has been overlooked but should serve as a basis of immune cell sociology. Now that it has become evident that large cell-to-cell variations in cytokine secretion exist at the single-cell level, we face a tricky yet interesting question: How is homeostasis maintained when the system is composed of intrinsically noisy agents? In this context, we discuss how the heterogeneity of cytokine secretion at the single-cell level affects our view of immune cell sociology. While the apparent inconsistency between homeostasis and cell-to-cell heterogeneity is difficult to address by a conventional reductive approach, comparison and integration of single-cell data with macroscopic data will offer us a new direction for the comprehensive understanding of immune cell sociology. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Hendrickson, Bryan K; Panchanathan, Sarada S; Petitti, Diana
2015-01-01
Information systems are used by most states to maintain registries of immunization data both for monitoring population-level adherence and for use in clinical practice and research. Direct data exchange between such systems and electronic health record systems presents an opportunity to improve the completeness and quality of information available. Our goals were to describe and compare the completeness of the Arizona State Immunization System, the electronic health record at a large community health provider in Arizona exchanging electronic data with the Arizona system, and personal immunization records in an effort to contribute to the discussion on the completeness of state-run immunization registries and data exchange with these registries. Immunization histories from these sources were collected and reviewed sequentially. Unique dates of vaccination administrations were counted for each patient and tagged on the basis of comparisons across sources. We quantified completeness by combining information from all 3 sources and comparing each source with the complete set. We determined that the state registry was 71.8% complete, the hospital electronic health record was 81.9% complete, and personal records were 87.8% complete. Of the 2017 unique vaccination administrations, 65% were present in all 3 sources, 24.6% in 2 of the 3 sources, and 10.4% in only 1 source. Only 11% of patients had records in complete agreement across the 3 sources. This study highlights issues related to data completeness, exchange, and reporting of immunization information to state registries and suggests that there is some degree of deficiency in completeness of immunization registries and other sources. This study indicates that there is a need to strengthen links between electronic data sources with immunization information and describes potential improvements in completeness that such efforts could provide, enabling providers to better rely on state immunization registries and to improve research utilization of immunization information systems.
Genetic selection of cattle for improved immunity and health.
Mallard, Bonnie A; Emam, Mehdi; Paibomesai, Marlene; Thompson-Crispi, Kathleen; Wagter-Lesperance, Lauraine
2015-02-01
The immune system is a sensing structure composed of tissues and molecules that are well integrated with the neuroendocrine system. This integrate system ensures non-self from self-discrimination. In this capacity the immune system provides detection and protection from a wide range of pathogens. In mammals, the immune system is regulated by several thousand genes (8-9% of the genome) which indicate its high genetic priority as a critical fitness trait providing survival of the species. Identifying and selectively breeding livestock with the inherent ability to make superior immune responses can reduce disease occurrence, improve milk quality and increase farm profitability. Healthier animals also may be expected to demonstrate improvements in other traits, including reproductive fitness. Using the University of Guelph's patented High Immune Response technology it is possible to classify animals as high, average, or low responders based on their genetic estimated breeding value for immune responsiveness. High responders have the inherent ability to produce more balanced and robust immune responses compared with average or low responders. High responders dairy cattle essentially have about one-half the disease occurrence of low responders, and can pass their superior immune response genes on to future generations thereby accumulating health benefits within the dairy herd.
Balzar, Silvana
2017-01-01
Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.
Clinical Quality Performance in U.S. Health Centers
Shi, Leiyu; Lebrun, Lydie A; Zhu, Jinsheng; Hayashi, Arthur S; Sharma, Ravi; Daly, Charles A; Sripipatana, Alek; Ngo-Metzger, Quyen
2012-01-01
Objective To describe current clinical quality among the nation's community health centers and to examine health center characteristics associated with performance excellence. Data Sources National data from the 2009 Uniform Data System. Data Collection/Extraction Methods Health centers reviewed patient records and reported aggregate data to the Uniform Data System. Study Design Six measures were examined: first-trimester prenatal care, childhood immunization completion, Pap tests, low birth weight, controlled hypertension, and controlled diabetes. The top 25 percent performing centers were compared with lower performing (bottom 75 percent) centers on these measures. Logistic regressions were utilized to assess the impact of patient, provider, and institutional characteristics on health center performance. Principal Findings Clinical care and outcomes among health centers were generally comparable to national averages. For instance, 67 percent of pregnant patients received timely prenatal care (national = 68 percent), 69 percent of children achieved immunization completion (national = 67 percent), and 63 percent of hypertensive patients had blood pressure under control (national = 48 percent). Depending on the measure, centers with more uninsured patients were less likely to do well, while centers with more physicians and enabling service providers were more likely to do well. Conclusions Health centers provide quality care at rates comparable to national averages. Performance may be improved by increasing insurance coverage among patients and increasing the ratios of physicians and enabling service providers to patients. PMID:22594465
The immune system: a target for functional foods?
Calder, Philip C; Kew, Samantha
2002-11-01
The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies in one or more of these nutrients. Animal and human studies have demonstrated that adding the deficient nutrient back to the diet can restore immune function and resistance to infection. Among the nutrients studied most in this regard are vitamin E and Zn. Increasing intakes of some nutrients above habitual and recommended levels can enhance some aspects of immune function. However, excess amounts of some nutrients also impair immune function. There is increasing evidence that probiotic bacteria improve host immune function. The effect of enhancing immune function on host resistance to infection in healthy individuals is not clear.
NASA Astrophysics Data System (ADS)
Krajewski, Grzegorz; Wegrzyński, Wojciech
2018-01-01
In this paper, the Authors present results of a complex case study, in which a natural smoke ventilation system was introduced into a historical mall Koszyki Market Hall located in the centre of Warsaw. As historical authorities protected the building, the only solution possible was to use a natural system - known for deficient performance in façade applications. To maximise the performance of the smoke control system, a Computational Wind Engineering exercise was performed. The goal was to find the most difficult wind attack angles, and optimise the performance at these conditions. Once the wind influence was known, a transient analysis was performed that included the growth of the fire within the building, as well as a numerical evacuation study. The resulting system was immune to the wind effects, and provided safe evacuation to users of the building, even in difficult wind conditions.
... Weak immune system. People with a weak immune system are at greater risk of septic arthritis. This includes people with diabetes, kidney and liver problems, and those taking drugs that suppress their immune systems. Joint trauma. Animal bites, puncture woods or cuts ...
NASA Technical Reports Server (NTRS)
Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece
2010-01-01
This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.
Trained immunity in newborn infants of HBV-infected mothers
Hong, Michelle; Sandalova, Elena; Low, Diana; Gehring, Adam J.; Fieni, Stefania; Amadei, Barbara; Urbani, Simonetta; Chong, Yap-Seng; Guccione, Ernesto; Bertoletti, Antonio
2015-01-01
The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero. PMID:25807344
Frantz, Stefan; Falcao-Pires, Ines; Balligand, Jean-Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J; Giacca, Mauro; Hamdani, Nazha; Hilfiker-Kleiner, Denise; Hirsch, Emilio; Leite-Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane
2018-03-01
Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. © 2018 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
The mucosal immune system: From dentistry to vaccine development
KIYONO, Hiroshi; AZEGAMI, Tatsuhiko
2015-01-01
The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases. PMID:26460320
Activation of the immune system by bacterial CpG-DNA
Häcker, Georg; Redecke, Vanessa; Häcker, Hans
2002-01-01
The past decade has seen a remarkable process of refocusing in immunology. Cells of the innate immune system, especially macrophages and dendritic cells, have been at the centre of this process. These cells had been regarded by some scientists as non-specific, sometimes perhaps even confined to the menial job of serving T cells by scavenging antigen and presenting it to the sophisticated adaptive immune system. Only over the last few years has it become unequivocally clear that cells of the innate immunity hold, by variation of context and mode of antigen presentation, the power of shaping an adaptive immune response. The innate immune response, in turn, is to a significant degree the result of stimulation by so-called pathogen-associated molecular patterns (PAMPs). One compound with high stimulatory potential for the innate immune system is bacterial DNA. Here we will review recent evidence that bacterial DNA should be ranked with other PAMPs such as lipopolysaccharide (LPS) and lipoteichoic acid. We will further review our present knowledge of DNA recognition and DNA-dependent signal transduction in cells of the immune system. PMID:11918685
Promoting tissue regeneration by modulating the immune system.
Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M
2017-04-15
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Immune-based strategies for mood disorders: facts and challenges.
Colpo, Gabriela D; Leboyer, Marion; Dantzer, Robert; Trivedi, Mahdukar H; Teixeira, Antonio L
2018-02-01
Inflammation seems to play a role in the pathophysiology of mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD). In the last years several studies have shown increased levels of inflammatory and/or immune markers in patients with mood disorders. Accordingly, the immune system has become a target of interest for the development of biomarkers and therapeutics for mood disorders. Areas covered: Here, we review the evidence showing low-grade inflammation in mood disorders and the studies evaluating immune-based strategies for the treatment of these conditions. Expert commentary: Clinical trials with non-steroidal anti-inflammatory drugs, polyunsaturated acids, N-acetylcysteine, anti-cytokines, physical activity and probiotics have provided promising results in terms of antidepressant efficacy in patients with MDD and BD. Regarding stem cells, only studies with animal models have been performed so far with interesting pre-clinical results. Due to the preliminary nature of the results, most of the clinical studies need to be replicated and/or confirmed in larger clinical settings, embracing the highly heterogeneous pathophysiology of mood disorders.
Innate lymphoid cells: the new kids on the block.
Withers, David R; Mackley, Emma C; Jones, Nick D
2015-08-01
The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.
Pang, Phillip S; Planet, Paul J; Glenn, Jeffrey S
2009-08-11
Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system. We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR). An evolutionary analysis of all available HCV genomes supports the hypothesis that immune selection was a significant driving force in the divergence of the major HCV genotypes and that viral factors that acquired the ability to inhibit the immune response may play a role in determining genotype-specific response rates to interferon therapy.
Learning and Memory... and the Immune System
ERIC Educational Resources Information Center
Marin, Ioana; Kipnis, Jonathan
2013-01-01
The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…
Tissue homeostasis and immunity--more on models.
Cunliffe, J
2006-09-01
This article continues the ongoing debate around models of the immune system. Earlier contributors have paid much attention to the various processes that lead to adaptive immune system aggression or tolerance. They have often based their discussions around facts that have been established by experimental investigation. However, both the observation and interpretation of these facts have been influenced by the function--or system goal--that is believed to have generated them. The perception of this function (of all or part of the immune system) is influenced by long established theories in immunology (e.g. horror autotoxicus, clonal deletion in utero, pathogen elimination, clonal selection, auto-immunity and so on) which, for many, have become enshrined as facts. One function that has had less consideration and has not been extensively investigated is the maintenance of tissue homeostasis. When the immune system is viewed from this perspective, the facts invite alternative interpretations. Whilst this perspective may not necessarily be the only valid one, let alone a correct one, viewing things this way--at least briefly--might help to expose hidden assumptions. It also emphasizes that the immune system is a system and, as such, it can by analysed through the principles of general systems theory.
Lin, Jingjing; Jing, Honglei
2016-01-01
Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662
Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael
2009-04-01
Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.
The S(c)ensory Immune System Theory.
Veiga-Fernandes, Henrique; Freitas, António A
2017-10-01
Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immune networks: multitasking capabilities near saturation
NASA Astrophysics Data System (ADS)
Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.
2013-10-01
Pattern-diluted associative networks were recently introduced as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T- and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with NT T-lymphocytes can manage a number N_B={ {O}}(N_T^\\delta ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime NB = αNT, with a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as NT → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system’s performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.
Novel vaccine development strategies for inducing mucosal immunity
Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro
2012-01-01
To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827
Host Immune Response to Influenza A Virus Infection.
Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long
2018-01-01
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W
Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.
Yang, Tae Un; Kim, Eunsung; Park, Young-Joon; Kim, Dongwook; Kwon, Yoon Hyung; Shin, Jae Kyong; Park, Ok
2016-03-18
Although pneumococcal vaccines had been recommended for the elderly population in South Korea for a considerable period of time, the coverage has been well below the optimal level. To increase the vaccination rate with integrating the pre-existing public health infrastructure and governmental funding, the Korean government introduced an elderly pneumococcal vaccination into the national immunization program with a 23-valent pneumococcal polysaccharide vaccine in May 2013. The aim of this study was to assess the performance of the program in increasing the vaccine coverage rate and maintaining stable vaccine supply and safe vaccination during the 20 months of the program. We qualitatively and quantitatively analyzed the process of introducing and the outcomes of the program in terms of the systematic organization, efficiency, and stability at the national level. A staggered introduction during the first year utilizing the public sector, with a target coverage of 60%, was implemented based on the public demand for an elderly pneumococcal vaccination, vaccine supply capacity, vaccine delivery capacity, safety, and sustainability. During the 20-month program period, the pneumococcal vaccine coverage rate among the population aged ≥65 years increased from 5.0% to 57.3% without a noticeable vaccine shortage or safety issues. A web-based integrated immunization information system, which includes the immunization registry, vaccine supply chain management, and surveillance of adverse events following immunization, reduced programmatic errors and harmonized the overall performance of the program. Introduction of an elderly pneumococcal vaccination in the national immunization program based on strong government commitment, meticulous preparation, financial support, and the pre-existing public health infrastructure resulted in an efficient, stable, and sustainable increase in vaccination coverage. Copyright © 2016. Published by Elsevier Ltd.
Zeretzke, Cristina M; McIntosh, Mark S; Kalynych, Colleen J; Wylie, Todd; Lott, Michelle; Wood, David
2012-07-01
This study examined whether utilization of the Florida State Health Online Tracking System (SHOTS) immunization registry to determine Haemophilus influenzae type B and heptavalent pneumococcal conjugate (PCV7) vaccine status impacts the protocolized decision to perform a screening blood draw for occult bacteremia (OB) in young children. A convenience sample of children 6 to 24 months of age presenting to the pediatric emergency department with fever of greater than 39°C without a source was enrolled. Physicians were trained to use the SHOTS immunization registry and reviewed the emergency department's fever protocol. A "preregistry" workup plan was documented for each patient based on clinical history, immunization status before accessing SHOTS, and physical examination. A "postregistry" workup plan was then documented based on the SHOTS record. Demographic and registry data were recorded. Preregistry workup plans indicated OB screening blood draws for 100% (n = 91; 95% confidence interval [CI], 96-100) of patients with unconfirmed immunization status. Of those 91 children, 58% (n = 53; 95% CI, 55-61) were documented in SHOTS as having received their primary conjugate vaccine series at ages 2, 4, and 6 months. Registry access reduced the percentage of screening blood draws from 100% (n = 91) to 42% (n = 38; 95% CI, 37-53; P < 0.001). The state immunization registry is an adjunctive tool to caregiver recall, which can be used by emergency medicine practitioners to confirm completion of the primary conjugate vaccine series before making the decision to perform blood screens for OB in children aged 6 to 24 months who present with fever without a source.
Oliveira, Carolina R; Rezende, Cíntia M F; Silva, Marina R; Pêgo, Ana Paula; Borges, Olga; Goes, Alfredo M
2012-01-01
Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.
A benign helminth alters the host immune system and the gut microbiota in a rat model system.
Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina
2017-01-01
Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.
A benign helminth alters the host immune system and the gut microbiota in a rat model system
Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina
2017-01-01
Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach. PMID:28771620
Wilson, Kumanan; Atkinson, Katherine M; Deeks, Shelley L; Crowcroft, Natasha S
2016-01-01
Immunization registries or information systems are critical to improving the quality and evaluating the ongoing success of immunization programs. However, the completeness of these systems is challenged by a myriad of factors including the fragmentation of vaccine administration, increasing mobility of individuals, new vaccine development, use of multiple products, and increasingly frequent changes in recommendations. Mobile technologies could offer a solution, which mitigates some of these challenges. Engaging individuals to have more control of their own immunization information using their mobile devices could improve the timeliness and accuracy of data in central immunization information systems. Other opportunities presented by mobile technologies that could be exploited to improve immunization information systems include mobile reporting of adverse events following immunization, the capacity to scan 2D barcodes, and enabling bidirectional communication between individuals and public health officials. Challenges to utilizing mobile solutions include ensuring privacy of data, access, and equity concerns, obtaining consent and ensuring adoption of technology at sufficiently high rates. By empowering individuals with their own health information, mobile technologies can also serve as a mechanism to transfer immunization information as individuals cross local, regional, and national borders. Ultimately, mobile enhanced immunization information systems can help realize the goal of the individual, the healthcare provider, and public health officials always having access to the same immunization information. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ginaldi, Lia; De Martinis, Massimo
2016-01-01
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity. PMID:27604089
Immunotoxicological effects of JP-8 jet fuel exposure.
Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M
1997-01-01
Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.
Immune mediators in the brain and peripheral tissues in autism spectrum disorder
Estes, Myka L.; McAllister, A. Kimberley
2017-01-01
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and animal models of this disorder. Recently, several molecular signalling pathways have been identified that link immune activation to ASD phenotypes, including pathways downstream of cytokines, hepatocyte growth factor receptor (MET), MHCI molecules, microglia and complement factors. These findings indicate that the immune system is a point of convergence for various ASD-related genetic and environmental risk factors. PMID:26189694
Recombinant poxviruses as mucosal vaccine vectors.
Gherardi, M Magdalena; Esteban, Mariano
2005-11-01
The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.
Modernizing Immunization Practice Through the Use of Cloud Based Platforms.
Bell, Cameron; Atkinson, Katherine M; Wilson, Kumanan
2017-04-01
Collection of timely and accurate immunization information is essential for effective immunization programs. Current immunization information systems have important limitations that impact the ability to collect this data. Based on our experience releasing a national immunization app we describe a cloud-based platform that would allow individuals to store their records digitally and exchange these records with public health information systems thus improving the quality of immunization information held by individuals and public health officials.
Breast Milk and Solid Food Shaping Intestinal Immunity
Parigi, Sara M.; Eldh, Maria; Larssen, Pia; Gabrielsson, Susanne; Villablanca, Eduardo J.
2015-01-01
After birth, the intestinal immune system enters a critical developmental stage, in which tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the host. The neonatal health is continuously challenged by microbial colonization and food intake, first in the form of breast milk or formula and later in the form of solid food. The microbiota and dietary compounds shape the newborn immune system, which acquires the ability to induce tolerance against innocuous antigens or induce pro-inflammatory immune responses against pathogens. Disruption of these homeostatic mechanisms might lead to undesired immune reactions, such as food allergies and inflammatory bowel disease. Hence, a proper education and maturation of the intestinal immune system is likely important to maintain life-long intestinal homeostasis. In this review, the most recent literature regarding the effects of dietary compounds in the development of the intestinal immune system are discussed. PMID:26347740
Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa
2017-01-01
According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Changes of Cytokines during a Spaceflight Analog - a 45-Day Head-Down Bed Rest
Zhang, Shusong; Pang, Xuewen; Liu, Hongju; Li, Li; Sun, Xiuyuan; Zhang, Yu; Wu, Hounan; Chen, Xiaoping; Ge, Qing
2013-01-01
Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR) treatment, was also examined. A significant decrease of interferon-γ (IFN-γ) and interleukin-17 (IL-17) productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg) were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity. PMID:24143230
Immunomodulatory potential of Anacyclus pyrethrum (L.) and Mucuna pruriens (L.) In male albino rats.
Yousaf, F; Shahid, M; Riaz, M; Atta, A; Fatima, H
2017-01-01
The present study was designed to investigate the immunomodulatory potential of Anacyclus pyrethrum roots and Mucuna pruriens seeds in male albino rats. The roots of A. pyrethrum and seeds of M. pruriens were extracted with methanolic solvent (70:30) and administered at dose concentrations of 50, 100 and 200 mg/Kg body weight to healthy male rats. The immune system of rats was suppressed by injecting carbon tetrachloride to animals in the toxic control group and test group animals. Cell-mediated immune response of animals was examined by performing neutrophil adhesion test and the humoral immune response was evaluated by determining serum immunoglobulin levels of the animals under study. The administration of methanolic extracts of A. pyrethrum roots and M. pruriens seeds significantly (p less than 0.05) increased the neutrophil adhesion to the nylon fiber. Increase in % neutrophil adhesion was observed in animals treated with 200 mg of each plant extract. Significant (p less than 0.05) improvement in immunoglobulin levels was recorded in the extract treated group animals, showing that the root extract of A. pyrethrum and seed extract of M. pruriens have immunomodulatory potential. We therefore conclude that the tested extracts can be used as immunomodulatory agents to stimulate the immune system.
Acute and Subacute Oral Toxicity of Periodate in Rats
2014-11-17
presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram
Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1
Batbayar, Sainkhuu; Lee, Dong Hee; Kim, Ha Won
2012-01-01
During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. β-Glucans are glucose polymers of a linear β(1,3)-glucan backbone with β(1,6)-linked side chains. The immunostimulatory and antitumor activities of β-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate β-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled β-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of β-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of β-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of β-glucan contributes to its immunostimulating effect in hosts and the potential uses of β-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of β-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens. PMID:24009832
Effects of Space Missions on the Human Immune System: A Meta-Analysis
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Barger, L. K.; Baldini, F.; Huff, D.
1995-01-01
Future spaceflight will require travelers to spend ever-increasing periods of time in microgravity. Optimal functioning of the immune system is of paramount importance for the health and performance of these travelers. A meta-analysis statistical procedure was used to analyze immune system data from crew members in United States and Soviet space missions from 8.5 to 140 days duration between 1968 and 1985. Ten immunological parameters (immunoglobulins A, G, M, D, white blood cell (WBC) count, number of lymphocytes, percent total lymphocytes, percent B lymphocytes, percent T lymphocytes, and lymphocyte reactivity to mitogen) were investigated using multifactorial, repeated measure analysis of variance. With the preflight level set at 100, WBC count increased to 154 +/- 14% (mean +/- SE; p less than or equal to 0.05) immediately after flight; there was a decrease in lymphocyte count (83 +/- 4%; p less than or equal to 0.05) and percent of total lymphocytes (69 +/- 1%; p less than or equal to 0.05) immediately after flight, with reduction in RNA synthesis to phytohemagglutinin (PHA) to 51 +/- 21% (p less than or equal to 0.05) and DNA synthesis to PHA to 61 +/- 8% (p less than or equal to 0.05) at the first postflight measurement. Thus, some cellular immunological functions are decreased significantly following spaceflight. More data are needed on astronauts' age, aerobic power output, and parameters of their exercise training program to determine if these immune system responses are due solely to microgravity exposure or perhaps to some other aspect of spaceflight.
Jet fuel-induced immunotoxicity.
Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M
2000-09-01
Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.
High-performance wireless powering for peripheral nerve neuromodulation systems.
Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.
High-performance wireless powering for peripheral nerve neuromodulation systems
Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141
Abrams, Elizabeth T; Miller, Elizabeth M
2011-01-01
Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.
Sexual dimorphism in immune function changes during the annual cycle in house sparrows
NASA Astrophysics Data System (ADS)
Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis
2010-10-01
Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.
The University Immune System: Overcoming Resistance to Change
ERIC Educational Resources Information Center
Gilley, Ann; Godek, Marisha; Gilley, Jerry W.
2009-01-01
A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.
Immunity-Based Aircraft Fault Detection System
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.
Mechanism study of tumor-specific immune responses induced by laser immunotherapy
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.
2011-03-01
Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.
Conjugated linoleic acid enhanced the immune function in broiler chicks.
Zhang, Haijun; Guo, Yuming; Yuan, Jianmin
2005-11-01
This study was undertaken to investigate the growth performance and immune responses of broiler chicks fed diets supplemented with conjugated linoleic acid (CLA). Two hundred and forty day-old Arbor Acre male broiler chicks were randomly allotted into four dietary treatments with different inclusion levels of CLA (0, 2.5, 5.0 or 10.0 g pure CLA/kg) for 6 weeks. Growth performance, lysozyme activity, peripheral blood mononuclear cell (PBMC) proliferation, prostaglandin E2 (PGE2) synthesis and antibody production were investigated. There were no significant differences in growth performance among treatments (P>0.05). Chicks fed 10.0 g CLA/kg diet produced 40 % and 49 % more lysozyme activity in serum and spleen than the control group at 21 d of age (P<0.05). Dietary CLA enhanced the PBMC proliferation in response to concanavalin A at the age of 21 and 42 d (P<0.05). Systemic and peripheral blood lymphocytic synthesis of PGE2 in chicks fed 10.0 g CLA/kg diet was significantly decreased by 57 % and 42 % compared to chicks fed control diet (P<0.05). Antibody production to sheep red blood cell and bovine serum albumin were elevated in either 2.5 or 10.0 g CLA/kg dietary treatments (P<0.05). The results indicated dietary CLA could enhance the immune response in broiler chicks, but did not alter the growth performance.
Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A
2018-04-01
Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Defense system shortcuts and limits of scope.
Rewald, E; Francischetti, M M
2000-10-01
Defense, as a key factor of life, shares the biological tendencies of simplicity and energy saving. We propose that, like the mind, defense tends to rely on shortcuts via immune memes. Also, response repetition may induce the formation of virtual 'modules' [toolkits] to simplify and perfect performance. Engaged modules may expand by proliferating or by capturing immune components from the 'dormant' and even perhaps from active ones. With regard to recovery and/or survival, complexity of the integrated defense system (IDS) (1) requires to be inside of what we call the 'functional window'. In contrast to the physiological and common disease repair, energy is squandered when IDS perceives real danger. Our concern is the uncertain transition to conditions that do not fit into the IDS routine and, even worse, that are outside the functional window where the system is lacking. Copyright 2000 Harcourt Publishers Ltd.
Chikh, Mohamed Amine; Saidi, Meryem; Settouti, Nesma
2012-10-01
The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.
Aging of the Immune System. Mechanisms and Therapeutic Targets.
Weyand, Cornelia M; Goronzy, Jörg J
2016-12-01
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Liguori, Giorgio; Parlato, Antonino; Zamparelli, Alessandro Sanduzzi; Belfiore, Patrizia; Gallé, Francesca; Di Onofrio, Valeria; Riganti, Carla; Zamparelli, Bruno
2014-01-01
Pneumococcal pneumonia has a high clinical burden in terms of morbidity, mortality and hospitalization rate, with heavy implications for worldwide health systems. In particular, higher incidence and mortality rates of community-acquired pneumonia (CAP) cases, with related costs, are registered among elderly. This study aimed to an economic evaluation about the immunization with PCV13 in the adult population in Campania region, South Italy. For this purpose we performed, considering a period of 5 y, a budget impact analysis (BIA) and a cost-effectiveness analysis which considered 2 scenarios of immunization compared with lack of immunization for 2 targeted cohorts: first, the high risk subjects aged 50-79 y, and second the high risk individuals aged 50-64 y, together with all those aged 65 y. Regarding the first group, the decrease of pneumonia could give savings equal to €29,005,660, while the immunization of the second cohort could allow savings equal to €10,006,017. The economic evaluation of pneumococcal vaccine for adult groups represents an essential instrument to support health policies. This study showed that both hypothesized immunization strategies could produce savings. Obtained results support the use of pneumococcal conjugate vaccine for adults. This strategy could represent a sustainable and savings-producer health policy.
Probiotics, antibiotics and the immune responses to vaccines.
Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep
2015-06-19
Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.
2016-01-01
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G
2016-01-05
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming
2015-01-01
Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951
The Immune System as a Model for Pattern Recognition and Classification
Carter, Jerome H.
2000-01-01
Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961
Optimization of immunoglobulin substitution therapy by a stochastic immune response model.
Figge, Marc Thilo
2009-05-28
The immune system is a complex adaptive system of cells and molecules that are interwoven in a highly organized communication network. Primary immune deficiencies are disorders in which essential parts of the immune system are absent or do not function according to plan. X-linked agammaglobulinemia is a B-lymphocyte maturation disorder in which the production of immunoglobulin is prohibited by a genetic defect. Patients have to be put on life-long immunoglobulin substitution therapy in order to prevent recurrent and persistent opportunistic infections. We formulate an immune response model in terms of stochastic differential equations and perform a systematic analysis of empirical therapy protocols that differ in the treatment frequency. The model accounts for the immunoglobulin reduction by natural degradation and by antigenic consumption, as well as for the periodic immunoglobulin replenishment that gives rise to an inhomogeneous distribution of immunoglobulin specificities in the shape space. Results are obtained from computer simulations and from analytical calculations within the framework of the Fokker-Planck formalism, which enables us to derive closed expressions for undetermined model parameters such as the infection clearance rate. We find that the critical value of the clearance rate, below which a chronic infection develops, is strongly dependent on the strength of fluctuations in the administered immunoglobulin dose per treatment and is an increasing function of the treatment frequency. The comparative analysis of therapy protocols with regard to the treatment frequency yields quantitative predictions of therapeutic relevance, where the choice of the optimal treatment frequency reveals a conflict of competing interests: In order to diminish immunomodulatory effects and to make good economic sense, therapeutic immunoglobulin levels should be kept close to physiological levels, implying high treatment frequencies. However, clearing infections without additional medication is more reliably achieved by substitution therapies with low treatment frequencies. Our immune response model predicts that the compromise solution of immunoglobulin substitution therapy has a treatment frequency in the range from one infusion per week to one infusion per two weeks.
Shah, Hemangi B.; Robertson, Julie M.; Fife, Dustin A.; Maecker, Holden T.; Du, Hongwu; Fathman, Charles G.; Chakravarty, Eliza F.; Scofield, R. Hal; Kamen, Diane L.; Guthridge, Joel M.; James, Judith A.
2014-01-01
Objective In recent years, vitamin D has been shown to possess a wide range of immunomodulatory effects. Although there is extensive amount of research on vitamin D, we lack a comprehensive understanding of the prevalence of vitamin D deficiency or the mechanism by which vitamin D regulates the human immune system. This study examined the prevalence and correlates of vitamin D deficiency and the relationship between vitamin D and the immune system in healthy individuals. Methods Healthy individuals (n = 774) comprised of European-Americans (EA, n = 470), African–Americans (AA, n = 125), and Native Americans (NA, n = 179) were screened for 25-hydroxyvitamin D [25(OH)D] levels by ELISA. To identify the most noticeable effects of vitamin D on the immune system, 20 EA individuals with severely deficient (<11.3 ng/mL) and sufficient (>24.8 ng/mL) vitamin D levels were matched and selected for further analysis. Serum cytokine level measurement, immune cell phenotyping, and phosphoflow cytometry were performed. Results Vitamin D sufficiency was observed in 37.5% of the study cohort. By multivariate analysis, AA, NA, and females with a high body mass index (BMI, >30) demonstrate higher rates of vitamin D deficiency (p<0.05). Individuals with vitamin D deficiency had significantly higher levels of serum GM-CSF (p = 0.04), decreased circulating activated CD4+ (p = 0.04) and CD8+ T (p = 0.04) cell frequencies than individuals with sufficient vitamin D levels. Conclusion A large portion of healthy individuals have vitamin D deficiency. These individuals have altered T and B cell responses, indicating that the absence of sufficient vitamin D levels could result in undesirable cellular and molecular alterations ultimately contributing to immune dysregulation. PMID:24727903
Ma, Zhiyong; Liu, Jia; Wu, Weimin; Zhang, Ejuan; Zhang, Xiaoyong; Li, Qian; Zelinskyy, Gennadiy; Buer, Jan; Dittmer, Ulf; Kirschning, Carsten J; Lu, Mengji
2017-12-01
The outcome of hepatitis B viral (HBV) infection is determined by the complex interactions between replicating HBV and the immune system. While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively, the contribution of innate immune mechanisms remains to be defined. Here we examined the role of the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model. Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice (WT) and a panel of mouse strains lacking specific innate immunity component expression. We found higher levels of HBV protein production and replication in Tlr2 -/- , Tlr23479 -/- , 3d/Tlr24 -/- , Myd88/Trif -/- and Irak4 -/- mice, which was associated with reduced HBV-specific CD8 + T-cell responses in these mice. Importantly, HBV clearance was delayed for more than 2 weeks in 3d/Tlr24 -/- , Myd88/Trif -/- and Irak4 -/- mice compared to WT mice. HBV-specific CD8 + T-cell responses were functionally impaired for producing the cytokines IFN-γ, TNF-α and IL-2 in TLR signaling-deficient mice compared to WT mice. In conclusion, the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8 + T-cell responses.
Evolution of immune systems from self/not self to danger to artificial immune systems (AIS).
Cooper, Edwin L
2010-03-01
This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.
Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)
NASA Astrophysics Data System (ADS)
Cooper, Edwin L.
2010-03-01
This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.
The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC I molecules
Cruz, Freidrich M.; Colbert, Jeff D.; Merino, Elena; Kriegsman, Barry A.; Rock, Kenneth L.
2017-01-01
To monitor the health of cells, the immune system tasks antigen presenting cells with gathering antigens from other cells and reporting them to CD8 T cells in the form of peptides bound to MHC I molecules. Most cells would be unable to perform this function because they use their MHC I molecules to exclusively present peptides derived from the cell’s own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC I through a process called cross-presentation (XPT). How this important task is accomplished, its role in health and disease and its potential for exploitation are the subject of this review. PMID:28125356
Interplay between behavioural thermoregulation and immune response in mealworms.
Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco
2012-11-01
Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stoll, Matthew L
2011-01-01
The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarize evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions. PMID:21269576
Malietzis, George; Lee, Gui H; Jenkins, John T; Bernardo, David; Moorghen, Morgan; Knight, Stella C; Al-Hassi, Hafid O
2015-01-01
Dendritic cells (DCs) either boost the immune system (enhancing immunity) or dampen it (leading to tolerance). This dual effect explains their vital role in cancer development and progression. DCs have been tested as a predictor of outcomes for cancer progression. Eight studies evaluated tumour-infiltrating DCs (TIDCs) as a predictor for colorectal cancer (CRC) outcomes. The detection of TIDCs has not kept pace with the increased knowledge about the identification of DC subsets and their maturation status. For that reason, it is difficult to draw a conclusion about the performance of DCs as a predictor of outcome for CRC. In this review, we comprehensively examine the evidence for the in situ immune response due to DC infiltration, in predicting outcome in primary CRC and how such information may be incorporated into routine clinical assessment.
Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System.
Díaz-Muñoz, Manuel D; Turner, Martin
2018-01-01
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System
Symowski, Cornelia; Voehringer, David
2017-01-01
Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497
Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.
Symowski, Cornelia; Voehringer, David
2017-01-01
Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.
Pavlov, Valentin A.; Tracey, Kevin J.
2015-01-01
Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000
ERIC Educational Resources Information Center
Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.
2015-01-01
We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…
The developing immune system - from foetus to toddler.
Ygberg, Sofia; Nilsson, Anna
2012-02-01
During foetal development, neonatal period and childhood, the immune system is constantly maturing. In the foetus, infection responsiveness is low and associates with spontaneous abortion. During the neonatal period, the infection response shifts towards a more pro-inflammatory response. The immune system of the newborn acquires adaptive features as a result of exposure to microbes. The development of the human immune system is a continuous process where both accelerated and retarded development is deleterious. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
An Investigation of the Memory Response of the Local Immune System to Shigella Antigens.
1985-12-31
kAD-A±75 215 AN INVESTIOATION OF THE MEMORY RESPONSE OF THE LOCAL L/1 I IMMUNE SYSTEM TO SHIGELLA ANTIGENS(U) MICHIGAN UNIV ANN I RBOR D F KEREN 31...IMMUNE SYSTEM TO SHIGELLA ANTIGENS ANNUAL REPORT DAVID F. KEREN, M.D. DECEMBER 31, 1985 FOR THE PERIOD DECEMBER 1, 1984 - NOVEMBER 30, 1985 SUPPORTED...Security Classification) An Investigation of the Memory Response of the Local Immune System to Shigella Antigens 12 PERSONAL AUTHOR(S) Keren, David F
Alcohol and HIV Effects on the Immune System.
Bagby, Gregory J; Amedee, Angela M; Siggins, Robert W; Molina, Patricia E; Nelson, Steve; Veazey, Ronald S
2015-01-01
HIV disease and alcohol independently influence the human immune system, so it stands to reason that, together, their influence may be additive. Here, we review the evidence that alcohol can exacerbate HIV's influence on the immune system, thereby affecting disease progression and transmission. We focus particularly on alcohol's effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract and the lungs, all of which play a role in transmission and progression of HIV disease.
Alcohol and HIV Effects on the Immune System
Bagby, Gregory J.; Amedee, Angela M.; Siggins, Robert W.; Molina, Patricia E.; Nelson, Steve; Veazey, Ronald S.
2015-01-01
HIV disease and alcohol independently influence the human immune system, so it stands to reason that, together, their influence may be additive. Here, we review the evidence that alcohol can exacerbate HIV’s influence on the immune system, thereby affecting disease progression and transmission. We focus particularly on alcohol’s effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract and the lungs, all of which play a role in transmission and progression of HIV disease. PMID:26695751
Modulating the function of the immune system by thyroid hormones and thyrotropin.
Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A
2017-04-01
Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Słotwińska, Sylwia Małgorzata; Słotwiński, Robert
2017-01-01
Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.
Senthamaraikannan, Paranthaman; Presicce, Pietro; Rueda, Cesar M; Maneenil, Gunlawadee; Schmidt, Augusto F; Miller, Lisa A; Waites, Ken B; Jobe, Alan H; Kallapur, Suhas G; Chougnet, Claire A
2016-11-15
Although Ureaplasma species are the most common organisms associated with prematurity, their effects on the maternal and fetal immune system remain poorly characterized. Rhesus macaque dams at approximately 80% gestation were injected intra-amniotically with 10 7 colony-forming units of Ureaplasma parvum or saline (control). Fetuses were delivered surgically 3 or 7 days later. We performed comprehensive assessments of inflammation and immune effects in multiple fetal and maternal tissues. Although U. parvum grew well in amniotic fluid, there was minimal chorioamnionitis. U. parvum colonized the fetal lung, but fetal systemic microbial invasion was limited. Fetal lung inflammation was mild, with elevations in CXCL8, tumor necrosis factor (TNF) α, and CCL2 levels in alveolar washes at day 7. Inflammation was not detected in the fetal brain. Significantly, U. parvum decreased regulatory T cells (Tregs) and activated interferon γ production in these Tregs in the fetus. It was detected in uterine tissue by day 7 and induced mild inflammation and increased expression of connexin 43, a gap junction protein involved with labor. U. parvum colonized the amniotic fluid and caused uterine inflammation, but without overt chorioamnionitis. It caused mild fetal lung inflammation but had a more profound effect on the fetal immune system, decreasing Tregs and polarizing them toward a T-helper 1 phenotype. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
SŁOTWIŃSKI, ROBERT
2017-01-01
Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa. PMID:29204095
Letting Our Cells Do the Fighting: Flight-Induced Changes in the Immune Response
NASA Technical Reports Server (NTRS)
Pierson, Duane; Bloomberg, Jacob; Lee, Angie (Technical Monitor)
2002-01-01
The organisms that make us ill, such as bacteria, viruses, and fungi, are like attacking armies. We now know a great deal more about this unseen world of microscopic invaders. Fortunately for us, the human immune system is ever vigilant against them. Microorganisms such as bacteria, viruses, and fungi occupy almost every corner of the Earth, and even parts of the human body. Some organisms are beneficial to us, helping to produce milk, cheese or yogurt. Others are potentially harmful, yet we don#t always develop illnesses from them; they are kept in check by the sentinels of our immune system. Our immune system is routinely challenged by these organisms every day. When the immune response is diminished, our ability to fight off these "bugs" is lowered. And that's when we become ill. Space flight presents a challenge to the immune system. Scientists believe that the stressful conditions of space flight - launch into orbit, adapting to microgravity, heavy workloads, and isolation from family and friends, to name but a few - reduce the astronauts' immunity. This immune suppression makes them more susceptible to common illnesses from bacteria and to re-infections from latent viruses in the body. In addition, risk of spreading illness in the confined environment of the Space Shuttle is high. Understanding changes in immune function will help scientists develop ways to keep astronauts healthy in space. This knowledge can also benefit earthbound populations. This experiment will give scientists insight into the immune system by comparing how certain cells of astronauts' innate immune system - the first line of defense against invaders - function after flight compared to before flight.
Web-based e-learning and virtual lab of human-artificial immune system.
Gong, Tao; Ding, Yongsheng; Xiong, Qin
2014-05-01
Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.
Levy, Ofer; Netea, Mihai G.
2014-01-01
Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476
Takahashi, Leonardo Susumu; Biller-Takahashi, Jaqueline Dalbello; Mansano, Cleber Fernando Menegasso; Urbinati, Elisabeth Criscuolo; Gimbo, Rodrigo Yukihiro; Saita, Marcos Vinícius
2017-01-01
Selenium (Se) is an essential nutrient for antioxidant defenses in fish because of its role in preventing immunosuppression caused by oxidative stress. In this study it was demonstrated the relation between the oxidative stress and immune status after a long Se supplementation period, as a result of the evaluation of immunological, hematological and antioxidant responses, as well as growth performance of pacu fed diets supplemented with different concentrations of organic selenium (0, 0.3, 0.6, 0.9, and 1.8 mg Se-yeast/kg, but the final analyzed selenium concentrations were 0.72, 0.94, 1.15, 1.57 and 2.51 mg/kg, respectively) for 65 days. Dietary Se supplementation at 1.15 mg Se-yeast/kg (analyzed value) restored the production of antioxidant enzymes (glutathione peroxidase (GPx) and glutathione S-transferase (GST)), and consequently allowed the increased of some immunological parameters (leukocyte respiratory burst activity and lysozyme activity), hematological parameters (red blood cell count (RBC), hematocrit (HTC), mean corpuscular volume (MCV), and white blood cell count (WBC)). Se supplementation in pacu diets at 1.15 mg Se-yeast/kg for 65 days improved immune response and antioxidant defenses, suggesting that oxidative stress impairs immune system response to prevent excessive reactive oxygen species in cells and indicating the occurrence of a physiological trade-off between immune and antioxidant systems. Higher Se levels, such as 1.57 mg Se-yeast/kg increased the leukocyte respiratory burst activity, the WBC and thrombocyte counts, the RBC and HTC, and the GST and GPx enzymes. However, 2.51 mg Se-yeast/kg decreased the lysozyme levels, the WBC and thrombocyte counts, the RBC, HTC and MCV, and the GST and GPx enzymes. Those findings are important to future studies because showed the negative effect of oxidative stress on immunity, and may help to prevent any inhibition of the expected immune response after immunomodulators administration and vaccination. Also it was possible to meet the dietary selenium requirement of pacu, that was estimated to be 1.56 mg/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lutwak, Nancy; Dill, Curt
2012-01-01
Herpes zoster is a common illness that can lead to serious morbidity. There is now evidence that HIV-infected patients who have been treated with antiretroviral therapy are at greater risk of developing herpes zoster not when they are severely immunocompromised but, paradoxically, when their immune system is recovering. This is a manifestation of the immune reconstitution inflammatory syndrome. The objectives of this report are to (1) inform health care providers that HIV-infected patients may develop multiple infectious, autoimmune, and oncological manifestations after treatment with antiretroviral medication, as they have immune system reconstitution, and (2) discuss herpes zoster, one of the possible manifestations. The patient is a 68-year-old HIV-positive man who presented with herpes zoster after being treated with highly active antiretroviral therapy (HAART) when his immune system was recovering, not when he was most immunosuppressed. Emergency department physicians should be aware that HIV-infected patients treated with HAART may have clinical deterioration despite immune system strengthening. This immune reconstitution inflammatory syndrome can present with infectious, autoimmune, or oncological manifestations. Our case patient, an HIV-positive man with immune system recovery after treatment with HAART, presented with an infectious manifestation, herpes zoster.
The immunological response created by interstitial and non-invasive laser immunotherapy
NASA Astrophysics Data System (ADS)
Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; West, Connor L.; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.
2015-03-01
Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. LIT can be performed through either interstitial or non-invasive laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. The development of LIT has been focused on creating an optimal immune response created by irradiating the tumor. One important factor that could enhance the immune response is the duration of laser irradiation. Irradiating the tumor for a shorter or longer amount of time could weaken the immune response created by LIT. Another factor that could weaken this immune response is the proliferation of regulatory T cells (TRegs) in response to the laser irradiation. However, low dose cyclophosphamide (CY) can help suppress the proliferation of TRegs and help create a more optimal immune response. An additional factor that could weaken the effectiveness of LIT is the selectivity of the laser. If LIT is performed non-invasively, then deeply embedded tumors and highly pigmented skin could cause an uneven temperature distribution inside the tumor. To solve this problem, an immunologically modified carbon nanotube system was created by using an immunoadjuvant known as glycated chitosan (GC) as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. In this preliminary study, tumor-bearing rats were treated with LIT either interstitially by an 805-nm laser with GC and low-dose CY, or non-invasively by a 980-nm laser with SWNT-GC. The goal was to observe the effects of CY on the immune response induced by LIT and to also determine the effect of irradiation duration for interstitial and noninvasive LIT.
Insect Immunity to Entomopathogenic Fungi.
Lu, H-L; St Leger, R J
2016-01-01
The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Goltz, Diane; Hittetiya, Kanishka; Gevensleben, Heidrun; Kirfel, Jutta; Diehl, Linda; Meyer, Rainer; Büttner, Reinhard
2016-04-15
The pathogenesis of myocardial ischemia-reperfusion injury (MI/R) involves an inflammatory response. Since the four-and-a-half LIM domain-containing protein 2 (Fhl2) has been observed to modulate immune cell migration, we aimed to study the consequences of Fhl2(-/-) under MI/R with respect to immune reaction, scar formation, and hemodynamic performance. In a closed chest model of 1h MI/R, immune cell invasion of phagocytic monocytes was characterized by flow cytometry and immunohistochemistry. In addition, infarct size was assessed by triphenyltetrazolium chloride/Masson trichrome staining 24h/21days after reperfusion and a set of hemodynamic parameters was recorded by catheterisation in Fhl2(-/-) mice and controls. While flow cytometry did not reveal differences in myocardial CD45(high) immune cell infiltrate, histological analysis showed that infiltrating immune cells in Fhl2(-/-) animals were preferentially located in the perivascular area, whereas in wild type, immune cells were well dispersed within the area at risk. After 24h and 21days of reperfusion, infarct size was significantly reduced in Fhl2(-/-) compared to WT animals. In addition, hemodynamic performance was better in Fhl2(-/-) mice, compared to WT mice up to day 21 of reperfusion. The loss of Fhl2 leads to an altered immune response to myocardial ischemia, which results in smaller infarcts and better hemodynamic performance up to 21days after myocardial ischemia reperfusion. Immune cell invasion plays a pivotal role in the context of MI/R. Fhl2 significantly influences immune cell function and immune cell interaction with injured cardiac tissue leading to altered scar composition. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of surgery, immunization, and laser immunotherapy on a non-immunogenic metastic tumor model
NASA Astrophysics Data System (ADS)
Chen, Wei R.; Huang, Zheng; Andrienko, Kirill; Stefanov, Stefan; Wolf, Roman F.; Liu, Hong
2006-08-01
Traditional local cancer treatment modalities include surgery and radiation, which has the immediate tumor response due to tumor removal or radiation induced cell death. However, such therapeutic approaches usually do not result in eradiation of tumors, particularly when treating metastatic tumors. In fact, local treatment of primary tumors may stimulate the growth and spread of remote metastasis. Commonly used systemic therapies include chemotherapy and immunotherapy, which target the dividing cells or the immune systems. However, in addition to the severe side effects, chemotherapy often suppresses the immune systems, hence lessening the host's ability to fight the disease. Immunotherapy, on the other hand, aims at educating and stimulating immune systems using either general immune enhancements or antigen-oriented specific immune stimulation. However, so far, the traditional immunotherapy has yielded only limited success in treating cancer patients. A different approach is needed. To combine the advantages of both local therapies for acute and targeted treatment responses and the systemic therapies for stimulation of the immune systems, laser immunotherapy was proposed to use selective photothermal therapy as the local treatment modality and the adjuvant-assisted immunotherapy for systemic control. Laser immunotherapy has show positive results in treating metastatic tumors. In this study, we conducted a comparative study using surgery, freeze-thaw immunization and laser immunotherapy in the treatment of metastatic rat mammary tumors. Our results showed that removal of the primary tumors was unsuccessful at changing the course of tumor progression. The tumor cell lysate immunization delayed the emergence of metastases but did not provide immunity against the tumor challenge. Laser immunotherapy, on the other hand, resulted in regression and eradication.
Jafri, Salema; Ormiston, Mark L
2017-12-01
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.
Phoummalaysith, Bounfeng; Yamamoto, Eiko; Xeuatvongsa, Anonh; Louangpradith, Viengsakhone; Keohavong, Bounxou; Saw, Yu Mon; Hamajima, Nobuyuki
2018-05-03
Routine vaccination is administered free of charge to all children under one year old in Lao People's Democratic Republic (Lao PDR) and the national goal is to achieve at least 95% coverage with all vaccines included in the national immunization program by 2025. In this study, factors related to the immunization system and characteristics of provinces and districts in Lao PDR were examined to evaluate the association with routine immunization coverage. Coverage rates for Bacillus Calmette-Guerin (BCG), Diphtheria-Tetanus-Pertussis-Hepatitis B (DTP-HepB), DTP-HepB-Hib (Haemophilus influenzae type B), polio (OPV), and measles (MCV1) vaccines from 2002 to 2014 collected through regular reporting system, were used to identify the immunization coverage trends in Lao PDR. Correlation analysis was performed using immunization coverage, characteristics of provinces or districts (population, population density, and proportion of poor villages and high-risk villages), and factors related to immunization service (including the proportions of the following: villages served by health facility levels, vaccine session types, and presence of well-functioning cold chain equipment). To determine factors associated with low coverage, provinces were categorized based on 80% of DTP-HepB-Hib3 coverage (<80% = low group; ≥80% = high group). Coverages of BCG, DTP-HepB3, OPV3 and MCV1 increased gradually from 2007 to 2014 (82.2-88.3% in 2014). However, BCG coverage showed the least improvement from 2002 to 2014. The coverage of each vaccine correlated with the coverage of the other vaccines and DTP-HepB-Hib dropout rate in provinces as well as districts. The provinces with low immunization coverage were correlated with higher proportions of poor villages. Routine immunization coverage has been improving in the last 13 years, but the national goal is not yet reached in Lao PDR. The results of this study suggest that BCG coverage and poor villages should be targeted to improve nationwide coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.
The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.
Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T
2011-11-01
Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.
Innate control of adaptive immunity: Beyond the three-signal paradigm
Jain, Aakanksha; Pasare, Chandrashekhar
2017-01-01
Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987
Chronic grouped social restriction triggers long-lasting immune system adaptations.
Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei
2017-05-16
Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.
Interactions between adipose tissue and the immune system in health and malnutrition.
Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Polić, Bojan
2015-09-01
Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric
2015-06-23
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Jiang, Hong; Chess, Leonard
2008-11-01
By discriminating self from nonself and controlling the magnitude and class of immune responses, the immune system mounts effective immunity against virtually any foreign antigens but avoids harmful immune responses to self. These are two equally important and related but distinct processes, which function in concert to ensure an optimal function of the immune system. Immunologically relevant clinical problems often occur because of failure of either process, especially the former. Currently, there is no unified conceptual framework to characterize the precise relationship between thymic negative selection and peripheral immune regulation, which is the basis for understanding self-non-self discrimination versus control of magnitude and class of immune responses. In this article, we explore a novel hypothesis of how the immune system discriminates self from nonself in the periphery during adaptive immunity. This hypothesis permits rational analysis of various seemingly unrelated biomedical problems inherent in immunologic disorders that cannot be uniformly interpreted by any currently existing paradigms. The proposed hypothesis is based on a unified conceptual framework of the "avidity model of peripheral T-cell regulation" that we originally proposed and tested, in both basic and clinical immunology, to understand how the immune system achieves self-nonself discrimination in the periphery.
Putra, N
2009-01-01
Vaccination is a highly effective method and a cheap tool for preventing certain infectious diseases. Routine immunization programs protect most of the world's children from diseases that claim millions of lives each year. There are many practical problems impeding vaccine delivery, especially to maintain the cold chain system, which is the means for storing and transporting vaccines in a potent state from the manufacturer to the person being immunized at a temperature of 2-8 degrees C. The development of the solid state thermoelectric cooling system has permitted newly developed packages that are capable of meeting many requirements and applications where environmental concern, size, weight, performance and noise are an issue. This paper describes the development of a vaccine carrier box. A combination of a thermoelectric module and a heat pipe is used for the cooling system. The position of the heat pipe as a heat sink on the hot side of the thermoelectric module will enhance the thermoelectric performance. The minimum temperature in the cabin of the vaccine carrier box reached -10 degrees C, which indicates that the design of the vaccine carrier box can maintain the vaccine at desired temperatures.
The mucosal immune system in health and disease, with an emphasis on parasitic infection
Allardyce, R. A.; Bienenstock, J.
1984-01-01
This article briefly describes the network of immunity involving selected humoral and cellular elements shared between mucosal surfaces that are both exposed to and remote from antigen challenge. The mechanisms promoting the production, concentration, and secretion of specific antibody isotypes, as well as the migration and localization of various lymphoid cell populations, have been discussed with regard to host mucosal protection against pathogenic agents and other potentially harmful macromolecules. Although certain aspects of the mucosal immune system may be viewed as separate from the systemic immune system, they are not exclusively so. We have drawn attention to their interactions with systemic immune reactants and other, nonimmunological, cellular and humoral constituents of mucosal surfaces and tissues such as the liver. At another level of interaction we have considered the teleological translation of host defence and immunoregulation from one generation to the next through the medium of colostrum and breast milk. The manipulation of the mucosal immune system in order to enhance host resistance, modulate autoimmune and allergic systemic reactivity, or even modify fertility holds great promise. Achievement of these goals depends on gaining further insight into the mechanisms that contribute to mucosal immunity and their interactions with the systemic immune system. Much of our current knowledge is based upon experimental animal models or human populations living in relative prosperity. However, the results of oral vaccination, for example, are known to differ considerably in populations that suffer from parasitic infestations, lack adequate nutrition, and are very old or very young. We have chosen to focus attention on these groups because they constitute a large proportion of the world's population and because mucosal infections are a common cause of illness and death among them. Lastly, the recent discovery that immune deficiencies due to insufficient dietary zinc may extend to subsequent generations of optimally nourished offspring calls for a re-evaluation of immunization protocols in malnourished populations, and of our current understanding of disease inheritance and susceptibility. PMID:6424959
USDA-ARS?s Scientific Manuscript database
Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on growth performance and immune response during an indirect immune challenge. Two replicates of 600 pigs each were weaned from the sow at 2...
Leontovich, Alexey A; Dronca, Roxana S; Nevala, Wendy K; Thompson, Michael A; Kottschade, Lisa A; Ivanov, Leonid V; Markovic, Svetomir N
2017-02-01
Skin cancer affects more individuals in the USA than any other malignancy and malignant melanoma is particularly deadly because of its metastatic potential. Melanoma has been recognized as one of the most immunogenic malignancies; therefore, understanding the mechanisms of tumor-immune interaction is key for developing more efficient treatments. As the tumor microenvironment shows an immunosuppressive action, immunotherapeutic agents promoting endogenous immune response to cancer have been tested (interleukin-2, anticytotoxic-T-lymphocyte-associated antigen 4, and antiprogrammed cell death protein 1 monoclonal antibodies) as well as combinations of cytotoxic chemotherapy agents and inhibitors of angiogenesis (taxol/carboplatin/avastin). However, clinical outcomes are variable, with only a minority of patients achieving durable complete responses. The variability of immune homeostasis, which may be more active or more tolerant at any given time, in cancer patients and the interaction of the immune system with the tumor could explain the inconsistency in clinical outcomes among these patients. Recently, the role of the lymphocyte-to-monocyte-ratio (LMR) in the peripheral blood has been investigated and has been proven to be an independent predictor of survival in different hematological malignancies and in solid tumors. In melanoma, our group has validated the significance of LMR as a predictor of relapse after resection of advanced melanoma. In this study, we examined the dynamics in the immune system of patients with advanced melanoma by performing serial multiday concentration measurements of cytokines and immune cell subsets in the peripheral blood. The analysis of outcomes of chemotherapy administration as related to LMR on the day of treatment initiation showed that progression-free survival was improved in the patients who received chemotherapy on the day when LMR was elevated.
Kasonde, Musonda; Steele, Pamela
2017-04-19
Human resources is the backbone of any system and the key enabler for all other functions to effectively perform. This is no different with the Immunization Supply Chain, more so in todays' complex operating environment with the increasing strain caused by new vaccines and expanding immunization programmes (Source: WHO, UNICEF). In order to drive the change that is required for sustainability and continuous improvement, every immunization supply chain needs an effective leader. A dedicated and competent immunization supply chain leader with adequate numbers of skilled, accountable, motivated and empowered personnel at all levels of the health system to overcome existing and emerging immunization supply chain (ISC) challenges. Without an effective supply chain leader supported by capable and motivated staff, none of the interventions designed to strengthen the supply chain can be effective or sustainable (Source: Gavi Alliance SC Strategy 2014). This landscape analysis was preceded by an HR Evidence Review (March 2014) and has served to inform global partner strategies and country activities, as well as highlight where most support is required. The study also aimed to define the status quo in order to create some form of baseline against which to measure the impact of interventions related to HR going forward. The analysis was comprised of a comprehensive desk review, a survey of 40 respondents from 32 countries and consultations with ISC practitioners in several forums. The findings highlight key areas that should inform the pillars of a HR capacity development plan. At the same time, it revealed that there are some positive examples of where countries are actively addressing some of the issues identified and putting in place mechanisms and structures to optimize the SC function. Copyright © 2017. Published by Elsevier Ltd.
Kaminsky, Vjacheslav; Chernyshov, Viktor; Grynevych, Oleksandr; Benyuk, Vasil; Kornatskaya, Alla; Shalko, Miroslava; Usevich, Igor; Revenko, Oleg; Shepetko, Maxim; Solomakha, Ludmila
2017-03-21
Reporting of clinical trials results for Proteflazid® in the drug formulation suppositories and vaginal swabs soaked in the solution of the drug to the local immunity of the female reproductive tract. The aim of study was to examine the state of local immunity in the reproductive tract of women with sexually transmitted diseases caused by human papillomavirus, herpes viruses (Type 1, 2) and mixed infection (herpes viruses + chlamydia). The trials involved 216 women with viral sexually transmitted diseases: Cervical Dysplasia associated with papillomavirus infection (HPV) (Group 1); Herpes genitalis type 1 (HSV- 1) and type 2 (HSV-1) (Group 2); mixed infection - HSV-1, HSV-2 and chlamydia (Group 3). Treatment results have confirmed that Proteflazid® contributes to sustainable performance improvement of basic factors of local immunity - sIgA, lysozyme and complement component C3 in the cervical mucus for all three groups of women. Proteflazid® enhances level of local immunity markers (sIgA, lysozyme, C3 complement component) and improves their ratios. Also it intensifies anticontagious activity of mucosal protection and female reproductive system as whole, during treatment diseases caused by human papillomavirus, herpesvirus and mixed urogenital infections (herpesvirus and chlamydia).
Immune system gene dysregulation in autism and schizophrenia.
Michel, Maximilian; Schmidt, Martin J; Mirnics, Karoly
2012-10-01
Gene*environment interactions play critical roles in the emergence of autism and schizophrenia pathophysiology. In both disorders, recent genetic association studies have provided evidence for disease-linked variation in immune system genes and postmortem gene expression studies have shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore, peripheral biomarker studies revealed that both innate and adaptive immune systems are dysregulated. In both disorders symptoms of the disease correlate with the immune system dysfunction; yet, in autism this process appears to be chronic and sustained, while in schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these immune changes actively contribute to disease symptoms. Modeling these changes in animals provided further evidence that prenatal maternal immune activation alters neurodevelopment and leads to behavioral changes that are relevant for autism and schizophrenia. The converging evidence strongly argues that neurodevelopmental immune insults and genetic background critically interact and result in increased risk for either autism or schizophrenia. Further research in these areas may improve prenatal health screening in genetically at-risk families and may also lead to new preventive and/or therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.
Annotation and Classification of CRISPR-Cas Systems
Makarova, Kira S.; Koonin, Eugene V.
2018-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods. PMID:25981466
Annotation and Classification of CRISPR-Cas Systems.
Makarova, Kira S; Koonin, Eugene V
2015-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.
A cognitive computational model inspired by the immune system response.
Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim
2014-01-01
The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.
A Cognitive Computational Model Inspired by the Immune System Response
Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim
2014-01-01
The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131
Viana, Kelvinson Fernandes; Aguiar-Soares, Rodrigo Dian Oliveira; Ker, Henrique Gama; Resende, Lucilene Aparecida; Souza-Fagundes, Elaine Maria; Dutra, Walderez Ornelas; Fujiwara, Ricardo Toshio; da Silveira-Lemos, Denise; Sant'Ana, Rita de Cássia Oliveira; Wardini, Amanda Brito; Araújo, Márcio Sobreira Silva; Martins-Filho, Olindo Assis; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro
2015-07-30
New methods for evaluating the canine immune system are necessary, not only to monitor immunological disorders, but also to provide insights for vaccine evaluations and therapeutic interventions, reducing the costs of assays using dog models, and provide a more rational way for analyzing the canine immune response. The present study intended to establish an in vitro toll to assess the parasitological/immunological status of dogs, applicable in pre-clinical trials of vaccinology, prognosis follow-up and therapeutics analysis of canine visceral leishmaniasis. We have evaluated the performance of co-culture systems of canine Leishmania chagasi-infected macrophages with different cell ratios of total lymphocytes or purified CD4(+) and CD8(+) T-cells. Peripheral blood mononuclear cells from uninfected dogs were used for the system set up. Employing the co-culture systems of L. chagasi-infected macrophages and purified CD4(+) or CD8(+) T-cell subsets we observed a microenvironment compatible with the expected status of the analyzed dogs. In this context, it was clearly demonstrated that, at this selected T-cell:target ratio, the adaptive immune response of uninfected dogs, composed by L. chagasi-unprimed T-cells was not able to perform the in vitro killing of L. chagasi-infected macrophages. Our data demonstrated that the co-culture system with T-cells from uninfected dogs at 1:5 and 1:2 ratio did not control the infection, yielding to patent in vitro parasitism (≥ 80%), low NO production (≤ 5 μM) and IL-10 modulated (IFN-γ/IL-10 ≤ 2) immunological profile in vitro. CD4(+) or CD8(+) T-cells at 1:5 or 1:2 ratio to L. chagasi-infected macrophages seems to be ideal for in vitro assays. This co-culture system may have great potential as a canine immunological analysis method, as well as in vaccine evaluations, prognosis follow-up and therapeutic interventions. Copyright © 2015 Elsevier B.V. All rights reserved.
Tinospora species: An overview of their modulating effects on the immune system.
Haque, Md Areeful; Jantan, Ibrahim; Abbas Bukhari, Syed Nasir
2017-07-31
Studies on the effects of natural immunomodulators to heal various diseases related to the immune system have been a growing interest in recent years. Amongst the medicinal plants, Tinospora species (family; Menispermaceae) have been one of the widely investigated plants for their modulating effects on the immune system due to their wide use in ethnomedicine to treat various ailments related to immune-related diseases. However, their ethnopharmacological uses are mainly with limited or without scientific basis. In this article, we have reviewed the literature on the phytochemicals of several Tinospora species, which have shown strong immunomodulatory effects and critically analyzed the reports to provide perspectives and instructions for future research for the plants as a potential source of new immunomodulators for use as medicinal agents or dietary supplements. Electronic search on worldwide accepted scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, ACS Publications Today) was performed to compile the relevant information. Some information was obtained from books, database on medicinal plants used in Ayurveda, MSc dissertations and herbal classics books written in various languages. T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata have been reported to possess significant immunomodulatory effects. For a few decades, initiatives in molecular research on the effects of these species on the immune system have been carried out. However, most of the biological and pharmacological studies were carried out using the crude extracts of plants. The bioactive compounds contributing to the bioactivities have not been properly identified, and mechanistic studies to understand the immunomodulatory effects of the plants are limited by many considerations with regard to design, conduct, and interpretation. The plant extracts and their active constituents should be subjected to more detail mechanistic studies, in vivo investigations in various animal models including pharmacokinetic and bioavailability studies, and elaborate toxicity study before submission to clinical trials. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Soliman, Bangly; Salem, Ahmed; Ghazy, Mohamed; Abu-Shahba, Nourhan; El Hefnawi, Mahmoud
2018-05-01
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
NASA Astrophysics Data System (ADS)
Aponte, Vanessa M.
The dynamics of how astronauts' immune systems respond to space flight have been studied extensively, but the complex process has not to date been thoroughly characterized, nor have the underlying principles of what causes the immune system to change in microgravity been fully determined. To obtain statistically significant results regarding overall immunological effects in space, collecting in vivo data during flight is desirable, but no sensor is currently capable of performing such function in this environment. The aims of this research were to establish appropriate markers for in-flight monitoring of the immune system and develop a novel approach for a benchtop sensor to measure them. Quartz Crystal Microbalances (QCMs) were used as platforms to study a surface biochemistry process selective towards cytokines, which are used as stress-related immune markers in space and ground medicine. Pilot studies elucidated that a thiolated streptavidin-biotinylated antibody surface assembly did not form the protein monolayer necessary for stable cytokine sensing. Improved experiments incorporated self-assembled monolayers (SAMs) by using di-thiol tethers at the base of a dual antibody sandwich and fluorophore assembly. The goals of the improved experiments were to achieve a stable monolayer of covalently bound tethers, to enhance sensitivity by the addition of a second monoclonal antibody, and to have a fluorescence tether attached to the last antibody layer as a way to corroborate the amount of proteins attached to the surface by using confocal fluorescence microscopy (CFM). Atomic Force Microscopy (AFM) results confirmed the formation of an even protein monolayer at the surface of the QCM, while CFM corroborated that the entire sandwich assembly had been achieved. Frequency changes increased directly proportional to concentration of cytokines, adhering to non-linear behavior explained by viscoelastic fluid models. Results point to the promising use of this surface chemistry within an optical platform such as Surface Plasmon Resonance (SPR), rather than a piezoelectric device. Consideration is given to the potential application of this concept to MEMS/NEMS devices.
Why AIDS? The Mystery of How HIV Attacks the Immune System.
ERIC Educational Resources Information Center
Christensen, Damaris
1999-01-01
Reviews differing theories surrounding the mystery of how human immunodeficiency virus (HIV) attacks the immune system. Claims that understanding how HIV triggers immune-cell depletion may enable researchers to block its effects. New knowledge could reveal strategies for acquired immune deficiency syndrome (AIDS) therapies that go beyond the drugs…
Diet Modifies the Neuroimmune System by Influencing Macrophage Activation
ERIC Educational Resources Information Center
Sherry, Christina Lynn
2009-01-01
It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…
Liu, Zhaoqun; Zhou, Zhi; Jiang, Qiufen; Wang, Lingling; Yi, Qilin; Qiu, Limei; Song, Linsheng
2017-01-01
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca 2+ This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the 'nervous-haemocyte' NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network. © 2017 The Authors.
The Impact of Gut Microbiota on Gender-Specific Differences in Immunity
Fransen, Floris; van Beek, Adriaan A.; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; van der Gaast-de Jongh, Christa; Savelkoul, Huub F.; de Jonge, Marien I.; Faas, Marijke M.; Boekschoten, Mark V.; Smidt, Hauke; El Aidy, Sahar; de Vos, Paul
2017-01-01
Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF) animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system. PMID:28713378
Garay, Paula A.; McAllister, A. Kimberley
2010-01-01
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522
Toskala, Elina
2014-09-01
Knowledge of our immune system functions is critical for understanding allergic airway disease development as well as for selection of appropriate diagnostic and therapeutic options for patients with respiratory allergies. This review explains the current understanding of the basic immunology of the upper airways and the pathophysiology of allergic responses, including the mechanisms behind allergic rhinitis. The immune system can be divided to 2 main defense systems that function differently-innate immunity and adaptive immunity. Innate immunity includes several defensive mechanisms such as anatomic or physical barriers, physiological barriers, phagocytosis, and inflammation. The adaptive immune response is activated in an antigen-specific way to provide for the elimination of antigen and induce lasting protection. Hypersensitivity reactions occur when an exaggerated adaptive immune response is activated. Allergic rhinitis is an example of a type I, immunoglobulin E, mediated hypersensitivity reaction. Today we have several immunomodulatory treatment options for patients with allergic airway diseases, such as subcutaneous and sublingual immunotherapy. An understanding of the basics of our immune system and its method of functions is key for using these therapies appropriately. © 2014 ARS-AAOA, LLC.
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix
2017-01-01
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert
2017-01-01
A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao
2018-06-01
Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.
Canonical Nlrp3 inflammasome links systemic low grade inflammation to functional decline in aging
Youm, Yun-Hee; Grant, Ryan W.; McCabe, Laura R.; Albarado, Diana C.; Nguyen, Kim Yen; Ravussin, Anthony; Pistell, Paul; Newman, Susan; Carter, Renee; Laque, Amanda; Münzberg, Heike; Rosen, Clifford J.; Ingram, Donald K.; Salbaum, J. Michael; Dixit, Vishwa Deep
2014-01-01
SUMMARY Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism that the Nlrp3 inflammasome controls systemic low grade age-related ‘sterile’ inflammation in both periphery and brain independently of the non-canonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome and astrogliosis. Consistent with the hypothesis that systemic low grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases. PMID:24093676
Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut
2018-03-21
Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.
USDA-ARS?s Scientific Manuscript database
This chapter is an update on the swine Immune System. It will be Chapter 16 in the 11th Edition (2018) of Diseases of Swine. The chapter outlines all aspects of the swine immune system in development and in responses to infection and vaccination. It illustrates the tremendous influence that the immu...
Overview of fish immune system and infectious diseases
USDA-ARS?s Scientific Manuscript database
A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...
76 FR 30731 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... as systemic immune response. The method comprises administrating to the treated subject at least two... vaccination strategy assure both local (i.e. vaginal track) and systemic immunity. Development Status: Proof... technology can provide mucosal/local and systemic immunization simultaneously and thus it may prove to be...
Immunity-based detection, identification, and evaluation of aircraft sub-system failures
NASA Astrophysics Data System (ADS)
Moncayo, Hever Y.
This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also analyzed in this thesis. They showed to have an important effect on detection performance and are a critical aspect when designing the configuration of the AIS. The results presented in this thesis show that the AIS paradigm addresses directly the complexity and multi-dimensionality associated with a damaged aircraft dynamic response and provides the tools necessary for a comprehensive/integrated solution to the FDIE problem. Excellent detection, identification, and evaluation performance has been recorded for all types of failures considered. The implementation of the proposed AIS-based scheme can potentially have a significant impact on the safety of aircraft operation. The output information obtained from the scheme will be useful to increase pilot situational awareness and determine automated compensation.
[Indicators of the persistent pro-inflammatory activation of the immune system in depression].
Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy
2006-01-01
The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.
Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System
Díaz-Muñoz, Manuel D.; Turner, Martin
2018-01-01
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome. PMID:29875770
Immunology and Immunotherapy of Head and Neck Cancer
Ferris, Robert L.
2015-01-01
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330
The Importance of Human Milk for Immunity in Preterm Infants.
Lewis, Erin D; Richard, Caroline; Larsen, Bodil M; Field, Catherine J
2017-03-01
The immune system of preterm infants is immature, placing them at increased risk for serious immune-related complications. Human milk provides a variety of immune protective and immune maturation factors that are beneficial to the preterm infant's poorly developed immune system. The most studied immune components in human milk include antimicrobial proteins, maternal leukocytes, immunoglobulins, cytokines and chemokines, oligosaccharides, gangliosides, nucleotides, and long-chain polyunsaturated fatty acids. There is growing evidence that these components contribute to the lower incidence of immune-related conditions in the preterm infant. Therefore, provision of these components in human milk, donor milk, or formula may provide immunologic benefits. Copyright © 2016 Elsevier Inc. All rights reserved.
Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros
2017-01-01
Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160
Hyperoxia Inhibits T Cell Activation in Mice
NASA Astrophysics Data System (ADS)
Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.
2013-02-01
Background: The immune response is blunted in mice and humans in spaceflight. The effects of hyperoxia in mice alter expression of some of the same immune response genes. If these two conditions are additive, there could be an increased risk of infection in long duration missions. Immunosuppression is seen in healthy astronauts who have flown in space; however little is known about the mechanisms that cause the reduced immunity in spaceflight. Here we examine the role of oxidative stress on mice exposed to periods of high O2 levels mimicking pre-breathing protocols and extravehicular activity (EVA). To prevent decompression sickness, astronauts are exposed to elevated oxygen (hyperoxia) before and during EVA activities. Spaceflight missions may entail up to 24 hours of EVA per crewmember per week to perform construction and maintenance tasks. The effectiveness and success of these missions depends on designing EVA systems and protocols that maximize human performance and efficiency while minimizing health and safety risks for crewmembers. To our knowledge, no studies have been conducted on the immune system under 100% oxygen exposures to determine the potential for immune compromise due to prolonged and repeated EVAs. Methods: Animals were exposed to hyperoxic or control conditions for 8 hours per day over a period of 3 days, initiated 4 hours into the dark cycle (12h dark/12h light), using animal environmental control cabinets and oxygen controller (Biospherix, Lacona, NY). Experimental mice were exposed to 98-100% oxygen as a model for pre-breathing and EVA conditions, while control mice were maintained in chambers supplied with compressed air. These are ground control studies where we use real-time RTPCR (qRTPCR) to measure gene expression of the early immune gene expression during bead activation of splenocytes of normoxic and hyperoxic mice. All procedures were reviewed and approved by the IACUC at Ames Research Center. After the last 8h of hyperoxic exposure, spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.
Toledo-Ibarra, G. A.; Rojas-Mayorquín, A. E.; Girón-Pérez, M. I.
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals. PMID:24324508
Toledo-Ibarra, G A; Rojas-Mayorquín, A E; Girón-Pérez, M I
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.
Schlieckau, Florian; Schulz, Daniela; Fill Malfertheiner, Sara; Entleutner, Kathrin; Seelbach-Goebel, Birgit; Ernst, Wolfgang
2018-04-19
Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pakula, Malgorzata M; Maier, Thorsten J; Vorup-Jensen, Thomas
2017-06-01
Amino acids (AAs) support a broad range of functions in living organisms, including several that affect the immune system. The functions of the immune system are affected when free AAs are depleted or in excess because of external factors, such as starvation, or because of genetic factors, such as inborn errors of metabolism. Areas covered: In this review, we discuss the current insights into how free AAs affect immune responses. When possible, we make comparisons to known disease states resulting from inborn errors of metabolism, in which changed levels of AAs or AA metabolites provide insight into the impact of AAs on the human immune system in vivo. We also explore the literature describing how changes in AA levels might provide pharmaceutical targets for safe immunomodulatory treatment. Expert opinion: The impact of free AAs on the immune system is a neglected topic in most immunology textbooks. That neglect is undeserved, because free AAs have both direct and indirect effects on the immune system. Consistent choices of pre-clinical models and better strategies for creating formulations are required to gain clinical impact.
Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity
Aballay, Alejandro
2010-01-01
The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed. PMID:19270528
Visceral Inflammation and Immune Activation Stress the Brain
Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian
2017-01-01
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271
Artificial Immune System Approaches for Aerospace Applications
NASA Technical Reports Server (NTRS)
KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)
2002-01-01
Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.
Crosstalk between cancer and the neuro-immune system.
Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira
2018-02-15
In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.