A database for the analysis of immunity genes in Drosophila: PADMA database.
Lee, Mark J; Mondal, Ariful; Small, Chiyedza; Paddibhatla, Indira; Kawaguchi, Akira; Govind, Shubha
2011-01-01
While microarray experiments generate voluminous data, discerning trends that support an existing or alternative paradigm is challenging. To synergize hypothesis building and testing, we designed the Pathogen Associated Drosophila MicroArray (PADMA) database for easy retrieval and comparison of microarray results from immunity-related experiments (www.padmadatabase.org). PADMA also allows biologists to upload their microarray-results and compare it with datasets housed within PADMA. We tested PADMA using a preliminary dataset from Ganaspis xanthopoda-infected fly larvae, and uncovered unexpected trends in gene expression, reshaping our hypothesis. Thus, the PADMA database will be a useful resource to fly researchers to evaluate, revise, and refine hypotheses.
The Innate Immune Database (IIDB)
Korb, Martin; Rust, Aistair G; Thorsson, Vesteinn; Battail, Christophe; Li, Bin; Hwang, Daehee; Kennedy, Kathleen A; Roach, Jared C; Rosenberger, Carrie M; Gilchrist, Mark; Zak, Daniel; Johnson, Carrie; Marzolf, Bruz; Aderem, Alan; Shmulevich, Ilya; Bolouri, Hamid
2008-01-01
Background As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens. Description We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser. Conclusion We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at . PMID:18321385
Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...
2014-11-14
An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf
An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less
Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M
2015-09-01
Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.
2015-01-01
Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385
A review of the immune molecules in the sea cucumber.
Xue, Zhuang; Li, Hui; Wang, Xiuli; Li, Xia; Liu, Yang; Sun, Jing; Liu, Cenjie
2015-05-01
It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Welker, Noah C; Habig, Jeffrey W; Bass, Brenda L
2007-07-01
We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes.
Welker, Noah C.; Habig, Jeffrey W.; Bass, Brenda L.
2007-01-01
We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes. PMID:17526642
Microarray analyses reveal distinct roles for Rel proteins in the Drosophila immune response
Pal, Subhamoy; Wu, Junlin; Wu, Louisa P.
2007-01-01
The NF-κB group of transcription factors play an important role in mediating immune responses in organisms as diverse as insects and mammals. The fruit fly Drosophila melanogaster express three closely related NF-κB-like transcription factors: Dorsal, Dif, and Relish. To study their roles in vivo, we used microarrays to determine the effect of null mutations in individual Rel transcription factors on larval immune gene expression. Of the 188 genes that were significantly up-regulated in wildtype larvae upon bacterial challenge, overlapping but distinct groups of genes were affected in the Rel mutants. We also ectopically expressed Dorsal or Dif and used cDNA microarrays to determine the genes that were up-regulated in the presence of these transcription factors. This expression was sufficient to drive expression of some immune genes, suggesting redundancy in the regulation of these genes. Combining this data, we also identified novel genes that may be specific targets of Dif. PMID:17537510
Song, Jie; Hu, Yajie; Hu, Yunguang; Wang, Jingjing; Zhang, Xiaolong; Wang, Lichun; Guo, Lei; Wang, Yancui; Ning, Ruotong; Liao, Yun; Zhang, Ying; Zheng, Huiwen; Shi, Haijing; He, Zhanlong; Li, Qihan; Liu, Longding
2016-03-02
Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus. Copyright © 2016 Elsevier B.V. All rights reserved.
Mocellin, Simone; Lise, Mario; Nitti, Donato
2007-01-01
Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.
Biosignatures of Exposure/Transmission and Immunity.
King, Christopher L; Davies, D Huw; Felgner, Phil; Baum, Elizabeth; Jain, Aarti; Randall, Arlo; Tetteh, Kevin; Drakeley, Christopher J; Greenhouse, Bryan
2015-09-01
A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission. © The American Society of Tropical Medicine and Hygiene.
Pérez-Bercoff, Lena; Valentini, Davide; Gaseitsiwe, Simani; Mahdavifar, Shahnaz; Schutkowski, Mike; Poiret, Thomas; Pérez-Bercoff, Åsa; Ljungman, Per; Maeurer, Markus J.
2014-01-01
Cytomegalovirus (CMV) infection represents a vital complication after Hematopoietic Stem Cell Transplantation (HSCT). We screened the entire CMV proteome to visualize the humoral target epitope-focus profile in serum after HSCT. IgG profiling from four patient groups (donor and/or recipient +/− for CMV) was performed at 6, 12 and 24 months after HSCT using microarray slides containing 17174 of 15mer-peptides overlapping by 4 aa covering 214 proteins from CMV. Data were analyzed using maSigPro, PAM and the ‘exclusive recognition analysis (ERA)’ to identify unique CMV epitope responses for each patient group. The ‘exclusive recognition analysis’ of serum epitope patterns segregated best 12 months after HSCT for the D+/R+ group (versus D−/R−). Epitopes were derived from UL123 (IE1), UL99 (pp28), UL32 (pp150), this changed at 24 months to 2 strongly recognized peptides provided from UL123 and UL100. Strongly (IgG) recognized CMV targets elicited also robust cytokine production in T-cells from patients after HSCT defined by intracellular cytokine staining (IL-2, TNF, IFN and IL-17). High-content peptide microarrays allow epitope profiling of entire viral proteomes; this approach can be useful to map relevant targets for diagnostics and therapy in patients with well defined clinical endpoints. Peptide microarray analysis visualizes the breadth of B-cell immune reconstitution after HSCT and provides a useful tool to gauge immune reconstitution. PMID:24740411
Booman, Marije; Borza, Tudor; Feng, Charles Y; Hori, Tiago S; Higgins, Brent; Culf, Adrian; Léger, Daniel; Chute, Ian C; Belkaid, Anissa; Rise, Marlies; Gamperl, A Kurt; Hubert, Sophie; Kimball, Jennifer; Ouellette, Rodney J; Johnson, Stewart C; Bowman, Sharen; Rise, Matthew L
2011-08-01
The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.
Lee, Sang Kil; Kim, Hyo Jong; Chi, Sung Gil
2010-01-01
Saccharomyces boulardii has been reported to be beneficial in the treatment of inflammatory bowel disease. The aim of this work was to evaluate the effect of S. boulardii in a mice model of 2,4,6-trinitrobencene sulfonic acid (TNBS) induced colitis and analyze the expression of genes in S. boulardii treated mice by microarray. BALB/c mice received TNBS or TNBS and S. boulardii treatment for 4 days. Microarray was performed on total mRNA form colon, and histologic evaluation was also performed. In mice treated with S. boulardii, the histological appearance and mortality rate were significantly restored compared with rats receiving only TNBS. Among 330 genes which were altered by both S. boulardii and TNBS (>2 folds), 193 genes were down-regulated by S. boulardii in microarray. Most of genes which were down-regulated by S. bouardii were functionally classified as inflammatory and immune response related genes. S. boulardii may reduce colonic inflammation along with regulation of inflammatory and immune responsive genes in TNBS-induced colitis.
Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus
Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.
2013-01-01
Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423
Microarray data mining using Bioconductor packages.
Nie, Haisheng; Neerincx, Pieter B T; van der Poel, Jan; Ferrari, Francesco; Bicciato, Silvio; Leunissen, Jack A M; Groenen, Martien A M
2009-07-16
This paper describes the results of a Gene Ontology (GO) term enrichment analysis of chicken microarray data using the Bioconductor packages. By checking the enriched GO terms in three contrasts, MM8-PM8, MM8-MA8, and MM8-MM24, of the provided microarray data during this workshop, this analysis aimed to investigate the host reactions in chickens occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. The results of GO enrichment analysis using GO terms annotated to chicken genes and GO terms annotated to chicken-human orthologous genes were also compared. Furthermore, a locally adaptive statistical procedure (LAP) was performed to test differentially expressed chromosomal regions, rather than individual genes, in the chicken genome after Eimeria challenge. GO enrichment analysis identified significant (raw p-value < 0.05) GO terms for all three contrasts included in the analysis. Some of the GO terms linked to, generally, primary immune responses or secondary immune responses indicating the GO enrichment analysis is a useful approach to analyze microarray data. The comparisons of GO enrichment results using chicken gene information and chicken-human orthologous gene information showed more refined GO terms related to immune responses when using chicken-human orthologous gene information, this suggests that using chicken-human orthologous gene information has higher power to detect significant GO terms with more refined functionality. Furthermore, three chromosome regions were identified to be significantly up-regulated in contrast MM8-PM8 (q-value < 0.01). Overall, this paper describes a practical approach to analyze microarray data in farm animals where the genome information is still incomplete. For farm animals, such as chicken, with currently limited gene annotation, borrowing gene annotation information from orthologous genes in well-annotated species, such as human, will help improve the pathway analysis results substantially. Furthermore, LAP analysis approach is a relatively new and very useful way to be applied in microarray analysis.
Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang
2014-01-01
Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms “viral replication” and “humoral immune response” as well as down-regulated genes functionally related to “metabolite and energy generation”. PMID:24755553
Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang
2014-01-01
Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms "viral replication" and "humoral immune response" as well as down-regulated genes functionally related to "metabolite and energy generation".
Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.
2012-01-01
Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331
Functional analysis of PGRP-LA in Drosophila immunity.
Gendrin, Mathilde; Zaidman-Rémy, Anna; Broderick, Nichole A; Paredes, Juan; Poidevin, Mickaël; Roussel, Alain; Lemaitre, Bruno
2013-01-01
PeptidoGlycan Recognition Proteins (PGRPs) are key regulators of the insect innate antibacterial response. Even if they have been intensively studied, some of them have yet unknown functions. Here, we present a functional analysis of PGRP-LA, an as yet uncharacterized Drosophila PGRP. The PGRP-LA gene is located in cluster with PGRP-LC and PGRP-LF, which encode a receptor and a negative regulator of the Imd pathway, respectively. Structure predictions indicate that PGRP-LA would not bind to peptidoglycan, pointing to a regulatory role of this PGRP. PGRP-LA expression was enriched in barrier epithelia, but low in the fat body. Use of a newly generated PGRP-LA deficient mutant indicates that PGRP-LA is not required for the production of antimicrobial peptides by the fat body in response to a systemic infection. Focusing on the respiratory tract, where PGRP-LA is strongly expressed, we conducted a genome-wide microarray analysis of the tracheal immune response of wild-type, Relish, and PGRP-LA mutant larvae. Comparing our data to previous microarray studies, we report that a majority of genes regulated in the trachea upon infection differ from those induced in the gut or the fat body. Importantly, antimicrobial peptide gene expression was reduced in the tracheae of larvae and in the adult gut of PGRP-LA-deficient Drosophila upon oral bacterial infection. Together, our results suggest that PGRP-LA positively regulates the Imd pathway in barrier epithelia.
Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua
2012-01-01
There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903
Gene expression profiling of dendritic cells by microarray.
Foti, Maria; Ricciardi-Castagnoli, Paola; Granucci, Francesca
2007-01-01
The immune system of vertebrate animals has evolved to respond to different types of perturbations (invading pathogens, stress signals), limiting self-tissue damage. The decision to activate an immune response is made by antigen-presenting cells (APCs) that are quiescent until they encounter a foreign microorganism or inflammatory stimuli. Early activated APCs trigger innate immune responses that represent the first line of reaction against invading pathogens to limit the infections. At later times, activated APCs acquire the ability to prime antigen-specific immune responses that clear the infections and give rise to memory. During the immune response self-tissue damage is limited and tolerance to self is maintained through life. Among the cells that constitute the immune system, dendritic cells (DC) play a central role. They are extremely versatile APCs involved in the initiation of both innate and adaptive immunity and also in the differentiation of regulatory T cells required for the maintenance of self-tolerance. How DC can mediate these diverse and almost contradictory functions has recently been investigated. The plasticity of these cells allows them to undergo a complete genetic reprogramming in response to external microbial stimuli with the sequential acquisition of different regulatory functions in innate and adaptive immunity. The specific genetic reprogramming DC undergo upon activation can be easily investigated by using microarrays to perform global gene expression analysis in different conditions.
Cribbs, David H; Berchtold, Nicole C; Perreau, Victoria; Coleman, Paul D; Rogers, Joseph; Tenner, Andrea J; Cotman, Carl W
2012-07-23
This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer's disease (AD). In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.
2012-01-01
Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife. PMID:22824372
Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G
2015-06-01
White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.
The Microarray Revolution: Perspectives from Educators
ERIC Educational Resources Information Center
Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.
2004-01-01
In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…
Hindmarch, Charles C T; Fry, Mark; Smith, Pauline M; Yao, Song T; Hazell, Georgina G J; Lolait, Stephen J; Paton, Julian F R; Ferguson, Alastair V; Murphy, David
2011-05-01
The area postrema (AP) is a sensory circumventricular organ characterized by extensive fenestrated vasculature and neurons which are capable of detecting circulating signals of osmotic, cardiovascular, immune and metabolic status. The AP can communicate these messages via efferent projections to brainstem and hypothalamic structures that are able to orchestrate an appropriate response. We have used microarrays to profile the transcriptome of the AP in the Sprague-Dawley (SD) and Wistar-Kyoto rat and present here a comprehensive catalogue of gene expression, focusing specifically on the population of ion channels, receptors and G protein-coupled receptors expressed in this sensory tissue; of the G protein-coupled receptors expressed in the rat AP, we identified ∼36% that are orphans, having no established ligand. We have also looked at the ways in which the AP transcriptome responds to the physiological stressors of 72 h dehydration (DSD) and 48 h fasting (FSD) and have performed microarrays in these conditions. Comparison between the DSD and SD or between FSD and SD revealed only a modest number of AP genes that are regulated by these homeostatic challenges. The expression levels of a much larger number of genes are altered in the spontaneously hypertensive rat AP compared with the normotensive Wistar-Kyoto control rat, however. Finally, analysis of these 'hypertension-related' elements revealed genes that are involved in the regulation of both blood pressure and immune function and as such are excellent targets for further study.
de Silva, Thushan I; Gould, Victoria; Mohammed, Nuredin I; Cope, Alethea; Meijer, Adam; Zutt, Ilse; Reimerink, Johan; Kampmann, Beate; Hoschler, Katja; Zambon, Maria; Tregoning, John S
2017-10-01
We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
Profiling the humoral immune response of acute and chronic Q fever by protein microarray.
Vigil, Adam; Chen, Chen; Jain, Aarti; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Pablo, Jozelyn; Hendrix, Laura R; Samuel, James E; Felgner, Philip L
2011-10-01
Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.
Differential gene expression related to Nora virus infection of Drosophila melanogaster
Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.
2013-01-01
Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562
Peptidoglycan microarray as a novel tool to explore protein-ligand recognition.
Wang, Ning; Hirata, Akiyoshi; Nokihara, Kiyoshi; Fukase, Koichi; Fujimoto, Yukari
2016-11-04
Peptidoglycan is a giant bag-shaped molecule essential for bacterial cell shape and resistance to osmotic stresses. The activity of a large number of bacterial surface proteins involved in cell growth and division requires binding to this macromolecule. Recognition of peptidoglycan by immune effectors is also crucial for the establishment of the immune response against pathogens. The availability of pure and chemically defined peptidoglycan fragments is a major technical bottleneck that has precluded systematic studies of the mechanisms underpinning protein-mediated peptidoglycan recognition. Here, we report a microarray strategy suitable to carry out comprehensive studies to characterize proteins-peptidoglycan interactions. We describe a method to introduce a functional group on peptidoglycan fragments allowing their stable immobilization on amorphous carbon chip plates to minimize nonspecific binding. Such peptidoglycan microarrays were used with a model peptidoglycan binding protein-the human peptidoglycan recognition protein-S (hPGRP-S). We propose that this strategy could be implemented to carry out high-throughput analyses to study peptidoglycan binding proteins. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 422-429, 2016. © 2016 Wiley Periodicals, Inc.
Liu, Jiabin; Behrens, Timothy W.; Kearney, John F.
2014-01-01
Marginal Zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and Follicular (FO) B cells were sort-purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. 99 genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, idiotype positive and negative MZ B cells were sort-purified before (0 hour) or after (1 hour) i.v. immunization with heat killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up regulated or down regulated at 1 hour following immunization in the idiotype positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs. FO B cells and the specific regulation of gene expression in antigen-specific MZ B cells following interaction with antigen. PMID:18453586
Reverse engineering biological networks :applications in immune responses to bio-toxins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.
Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less
cDNA microarray analysis of esophageal cancer: discoveries and prospects.
Shimada, Yutaka; Sato, Fumiaki; Shimizu, Kazuharu; Tsujimoto, Gozoh; Tsukada, Kazuhiro
2009-07-01
Recent progress in molecular biology has revealed many genetic and epigenetic alterations that are involved in the development and progression of esophageal cancer. Microarray analysis has also revealed several genetic networks that are involved in esophageal cancer. However, clinical application of microarray techniques and use of microarray data have not yet occurred. In this review, we focus on the recent developments and problems with microarray analysis of esophageal cancer.
Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael
2015-01-01
GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853
Antibody induction directed against the tumor-associated MUC4 glycoprotein.
Cai, Hui; Palitzsch, Björn; Hartmann, Sebastian; Stergiou, Natascha; Kunz, Horst; Schmitt, Edgar; Westerlind, Ulrika
2015-04-13
Mucin glycoproteins are important diagnostic and therapeutic targets for cancer treatment. Although several strategies have been developed to explore anti-tumor vaccines based on MUC1 glycopeptides, only few studies have focused on vaccines directed against the tumor-associated MUC4 glycoprotein. MUC4 is an important tumor marker overexpressed in lung cancer and uniquely expressed in pancreatic ductual adenocarcinoma. The aberrant glycosylation of MUC4 in tumor cells results in an exposure of its peptide backbone and the formation of tumor-associated glycopeptide antigens. Due to the low immunogenicity of these endogenous structures, their conjugation with immune stimulating peptide or protein carriers are required. In this study, MUC4 tandem-repeat glycopeptides were conjugated to the tetanus toxoid and used for vaccination of mice. Immunological evaluations showed that our MUC4-based vaccines induced very strong antigen-specific immune responses. In addition, antibody binding epitope analysis on glycopeptide microarrays, were demonstrating a clear glycosylation site dependence of the induced antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212
Leite, Ricardo B; Milan, Massimo; Coppe, Alessandro; Bortoluzzi, Stefania; dos Anjos, António; Reinhardt, Richard; Saavedra, Carlos; Patarnello, Tomaso; Cancela, M Leonor; Bargelloni, Luca
2013-10-29
The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.
Röschmann, K I L; van Kuijen, A-M; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M
2012-01-01
By definition, allergens are proteins with the ability to elicit powerful T helper lymphocyte type 2 (Th2) responses, culminating in immunoglobulin (Ig)E antibody production. Why specific proteins cause aberrant immune responses has remained largely unanswered. Recent data suggest that there may be several molecular paths that may affect allergenicity of proteins. The focus of this study is the response of airway epithelium to a major allergen from Phleum pratense Phl p 1. Instead of focusing on a few genes and proteins that might be affected by the major allergen, our aim was to obtain a broader view on the immune stimulatory capacity of Phl p 1. We therefore performed detailed analysis on mRNA and protein level by using a microarray approach to define Phl p 1-induced gene expression. We found that this allergen induces modulation and release of a broad range of mediators, indicating it to be a powerful trigger of the immune system. We were able to show that genes belonging to the GO cluster ‘cell communication’ were among the most prominent functional groups, which is also reflected in cytokines and chemokines building centres in a computational model of direct gene interaction. Further detailed comparison of grass pollen extract (GPE)- and Phl p 1-induced gene expression might be beneficial with regard to the application of single components within diagnosis and immunotherapy. PMID:22288584
Microarray profiling of human white adipose tissue after exogenous leptin injection.
Taleb, S; Van Haaften, R; Henegar, C; Hukshorn, C; Cancello, R; Pelloux, V; Hanczar, B; Viguerie, N; Langin, D; Evelo, C; Zucker, J; Clément, K; Saris, W H M
2006-03-01
Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.
Moreira, Rebeca; Balseiro, Pablo; Planas, Josep V.; Fuste, Berta; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio
2012-01-01
Background The Manila clam (Ruditapes philippinarum) is a worldwide cultured bivalve species with important commercial value. Diseases affecting this species can result in large economic losses. Because knowledge of the molecular mechanisms of the immune response in bivalves, especially clams, is scarce and fragmentary, we sequenced RNA from immune-stimulated R. philippinarum hemocytes by 454-pyrosequencing to identify genes involved in their immune defense against infectious diseases. Methodology and Principal Findings High-throughput deep sequencing of R. philippinarum using 454 pyrosequencing technology yielded 974,976 high-quality reads with an average read length of 250 bp. The reads were assembled into 51,265 contigs and the 44.7% of the translated nucleotide sequences into protein were annotated successfully. The 35 most frequently found contigs included a large number of immune-related genes, and a more detailed analysis showed the presence of putative members of several immune pathways and processes like the apoptosis, the toll like signaling pathway and the complement cascade. We have found sequences from molecules never described in bivalves before, especially in the complement pathway where almost all the components are present. Conclusions This study represents the first transcriptome analysis using 454-pyrosequencing conducted on R. philippinarum focused on its immune system. Our results will provide a rich source of data to discover and identify new genes, which will serve as a basis for microarray construction and the study of gene expression as well as for the identification of genetic markers. The discovery of new immune sequences was very productive and resulted in a large variety of contigs that may play a role in the defense mechanisms of Ruditapes philippinarum. PMID:22536348
Wang, David B.; Dayton, Robert D.; Zweig, Richard M.; Klein, Ronald L.
2010-01-01
Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of two weeks. Specific decreases in messages for dopamine related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression. PMID:20346943
Differential gene expression related to Nora virus infection of Drosophila melanogaster.
Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A
2013-08-01
Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.
Maeda, Yukihide; Omichi, Ryotaro; Sugaya, Akiko; Kariya, Shin; Nishizaki, Kazunori
2017-08-01
To elucidate molecular mechanisms of noise-induced hearing loss (NIHL) and glucocorticoid therapy in the cochlea. Glucocorticoids are used to treat many forms of acute sensorineural hearing loss, but their molecular action in the cochlea remains poorly understood. Dexamethasone was administered intraperitoneally immediately following acoustic overstimulation at 120 dB SPL for 2 hours to mice. The whole cochlear transcriptome was analyzed 12 and 24 hours following noise trauma and dexamethasone administration by both next-generation sequencing (RNA-seq) and DNA microarray. Differentially expressed genes (DEGs) with more than 2-fold changes after noise trauma and dexamethasone administration were identified. The functions of these DEGs were analyzed by David Bioinformatics Resources and a literature search. Twelve hours after acoustic overstimulation, immune-related gene pathways such as "chemokine signaling activity," "cytokine-cytokine receptor interaction," and "cell adhesion molecules (CAMs) in the immune system" were significantly changed compared with the baseline level without noise. These DEGs were involved in immune and defense responses in the cochlea. Dexamethasone was administered to this NIHL model, and it modulated gene pathways of "cytokine-cytokine receptor interaction" and "cell adhesion molecules (CAMs) in the immune system" at 12 hours, compared with saline-injected control. Dexamethasone-dependent DEGs were also involved in immune and defense responses. A literature search showed that 10 other genes associated with hearing functions were regulated by dexamethasone both at 12 and 24 hours post-administration. Dexamethasone modulates the immune reaction in the traumatized cochlea following acoustic overstimulation. Dexamethasone may also regulate cochlear functions other than immunity.
Tree, Julia A; Flick-Smith, Helen; Elmore, Michael J; Rowland, Caroline A
2014-01-01
Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of "omic" technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.
Adema, Coen M; Hanington, Patrick C.; Lun, Cheng-Man; Rosenberg, George H.; Aragon, Anthony D; Stout, Barbara A; Richard, Mara L. Lennard; Gross, Paul S.; Loker, Eric S
2009-01-01
A 70-mer oligonucleotide-based microarray (1152 features) that emphasizes stress and immune responses factors was constructed to study transcriptomic responses of the snail Biomphalaria glabrata to different immune challenges. In addition to sequences with relevant putative ID and Gene Ontology (GO) annotation, the array features non-immune factors and unknown B. glabrata ESTs for functional gene discovery. The transcription profiles of B. glabrata (3 biological replicates, each a pool of 5 snails) were recorded at 12 hours post wounding, exposure to Gram negative or Gram positive bacteria (Escherichia coli and Micrococcus luteus, respectively), or infection with compatible trematode parasites (S. mansoni or E. paraensei, 20 miracidia/snail), relative to controls, using universal reference RNA. The data were subjected to Significance Analysis for Microarrays (SAM), with a false positive rate (FPR) ≤10%. Wounding yielded a modest differential expression profile (27 up/21 down) with affected features mostly dissimilar from other treatments. Partially overlapping, yet distinct expression profiles were recorded from snails challenged with E. coli (83 up/20 down) or M. luteus (120 up/42 down), mostly showing up-regulation of defense and stress-related features. Significantly altered expression of selected immune features indicates that B. glabrata detects and responds differently to compatible trematodes. Echinostoma paraensei infection was associated mostly with down regulation of many (immune-) transcripts (42 up/68 down), whereas S. mansoni exposure yielded a preponderance of up-regulated features (140 up/23 down), with only few known immune genes affected. These observations may reflect the divergent strategies developed by trematodes during their evolution as specialized pathogens of snails to negate host defense responses. Clearly, the immune defenses of B. glabrata distinguish and respond differently to various immune challenges. PMID:19962194
Exploring new packaging and delivery options for the immunization supply chain.
Zehrung, Darin; Jarrahian, Courtney; Giersing, Birgitte; Kristensen, Debra
2017-04-19
A variety of vaccine packaging and delivery technologies may benefit the immunization supply chain. These include alternative primary packaging, such as blow-fill-seal polymer containers, and novel delivery technologies, such intradermal delivery devices, microarray patches, and sublingual formulations of vaccines, and others in development. The potential timeline to availability of these technologies varies and depends on their stage of development and the type of data necessary to achieve licensure. Some new delivery devices are anticipated to be introduced in 2017, such as intradermal devices for delivery of inactivated poliovirus vaccine to stretch vaccine supplies due to a supply limitation. Other new technologies requiring vaccine reformulation, such as microarray patches and sublingual vaccines, may become available in the long term (2021 and beyond). Development of many new technologies requires partnership between vaccine and technology manufacturers and identification of the applicable regulatory pathway. Interaction with public-sector stakeholders early on (through engagement with forums such as the World Health Organization's Immunization Practices Advisory Committee Delivery Technologies Working Group) is important to ensure suitability for immunization program use. Key considerations for programmatic suitability of a new vaccine, packaging, and delivery device include cold chain volume, costs, and health impact. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
EDRN Biomarker Reference Lab: Pacific Northwest National Laboratory — EDRN Public Portal
The purpose of this project is to develop antibody microarrays incorporating three major improvements compared to previous antibody microarray platforms, and to produce and disseminate these antibody microarray technologies for the Early Detection Research Network (EDRN) and the research community focusing on early detection, and risk assessment of cancer.
Röschmann, K I L; van Kuijen, A-M; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M
2012-03-01
By definition, allergens are proteins with the ability to elicit powerful T helper lymphocyte type 2 (Th2) responses, culminating in immunoglobulin (Ig)E antibody production. Why specific proteins cause aberrant immune responses has remained largely unanswered. Recent data suggest that there may be several molecular paths that may affect allergenicity of proteins. The focus of this study is the response of airway epithelium to a major allergen from Phleum pratense Phl p 1. Instead of focusing on a few genes and proteins that might be affected by the major allergen, our aim was to obtain a broader view on the immune stimulatory capacity of Phl p 1. We therefore performed detailed analysis on mRNA and protein level by using a microarray approach to define Phl p 1-induced gene expression. We found that this allergen induces modulation and release of a broad range of mediators, indicating it to be a powerful trigger of the immune system. We were able to show that genes belonging to the GO cluster 'cell communication' were among the most prominent functional groups, which is also reflected in cytokines and chemokines building centres in a computational model of direct gene interaction. Further detailed comparison of grass pollen extract (GPE)- and Phl p 1-induced gene expression might be beneficial with regard to the application of single components within diagnosis and immunotherapy. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
A gene expression signature associated with survival in metastatic melanoma
Mandruzzato, Susanna; Callegaro, Andrea; Turcatel, Gianluca; Francescato, Samuela; Montesco, Maria C; Chiarion-Sileni, Vanna; Mocellin, Simone; Rossi, Carlo R; Bicciato, Silvio; Wang, Ena; Marincola, Francesco M; Zanovello, Paola
2006-01-01
Background Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. Methods Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. Results SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. Conclusion The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells. PMID:17129373
Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.
2016-01-01
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777
Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J
2016-10-01
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.
Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren
2012-01-01
Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.
Kim, Younghoon; Wen, Xianyu; Cho, Nam Yun; Kang, Gyeong Hoon
2018-05-01
The prognostic value of immune cells expressing programmed cell death 1 (PD-1) and PD-1 ligand 1 (PD-L1) in cancer are controversial, and the potential differential impact of using tissue microarrays and whole tissue sections to assess the positivity of immune cells has not been addressed. The current study included 30 eligible studies with 7251 patients that evaluated the relationship between tumor-infiltrating lymphocytes expressing PD-1/PD-L1 and overall survival and disease-free survival, or progression-free survival. Subgroup analysis was based on the tissue type of cancer and the type of tissue sampling (tissue microarray or whole tissue section). In the meta-analysis, PD-1-positive and PD-L1-positive tumor-infiltrating lymphocytes had a positive effect on disease-free survival or progression-free survival (hazard ratio [HR] 0.732; 95% confidence interval [CI] 0.565, 0.947; and HR 0.727; 95% CI 0.584, 0.905, respectively). PD-L1-positive tumor-infiltrating lymphocytes had a positive impact on overall survival in studies using tissue microarray (HR 0.586; 95% CI 0.476, 0.721), but had a poor impact when only whole tissue sections were considered (HR 1.558; 95% CI 1.232, 1.969). Lung cancer was associated with good overall survival and disease-free survival (HR 0.639; 95% CI 0.491, 0.831; and HR 0.693; 95% CI 0.538, 0.891, respectively) for PD-1-positive tumor-infiltrating lymphocytes, and colorectal cancer showed favorable disease-free survival (HR 0.471; 95% CI 0.308, 0.722) for PD-L1-positive tumor-infiltrating lymphocytes. Immune cells expressing PD-1 and PD-L1 within tumors are associated with the prognosis. However, the correlation may vary among different tumor types and by the type of tissue sampling used for the assessment.
Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino
2016-12-01
The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Markus Maeurer on the LifeGene project.
Maeurer, Markus
2010-09-01
This year will see the full-scale roll-out of the LifeGene study. Coordinated by the Karolinska Institutet (Stockholm, Sweden), the project looks set to be one of the largest health studies performed in the world, aiming to enroll 500,000 Swedes in order to determine the relationship between disease and environmental, lifestyle and hereditary factors. International experts from a broad spectrum of scientific fields will collaborate on this project, including Mark Maeurer, Chair of the infections working group in LifeGene (www.lifegene.se). Maeurer leads the additional study on influenza-like illnesses, which is currently being run within the LifeGene project. Maeurer studied medicine in Germany, Switzerland and the USA. He is board-certified in medical microbiology, has served as Assistant Professor of Surgery at the University of Pittsburgh Medical School (PA, USA) in the Department of Surgical Oncology and Immunotherapy, as Professor of Medical Microbiology at the University of Mainz, Germany, and is now Professor of Clinical Immunology at the Microbiology and Tumor Cell Biology Center at the Karolinska Institutet. Maeurer has conducted experiments with nonhuman primate models to study TB vaccine take, with the aim to profile markers of immune protection. His general interests are in the field of immune reconstitution and memory immune responses, with a particular focus on gauging protective T-cell responses and antibody immune signatures using high-content peptide microarrays. He has published more than 100 original articles, ten book chapters and serves as a reviewer for a number of international scientific journals.
Tylee, Daniel S; Hess, Jonathan L; Quinn, Thomas P; Barve, Rahul; Huang, Hailiang; Zhang-James, Yanli; Chang, Jeffrey; Stamova, Boryana S; Sharp, Frank R; Hertz-Picciotto, Irva; Faraone, Stephen V; Kong, Sek Won; Glatt, Stephen J
2017-04-01
Blood-based microarray studies comparing individuals affected with autism spectrum disorder (ASD) and typically developing individuals help characterize differences in circulating immune cell functions and offer potential biomarker signal. We sought to combine the subject-level data from previously published studies by mega-analysis to increase the statistical power. We identified studies that compared ex vivo blood or lymphocytes from ASD-affected individuals and unrelated comparison subjects using Affymetrix or Illumina array platforms. Raw microarray data and clinical meta-data were obtained from seven studies, totaling 626 affected and 447 comparison subjects. Microarray data were processed using uniform methods. Covariate-controlled mixed-effect linear models were used to identify gene transcripts and co-expression network modules that were significantly associated with diagnostic status. Permutation-based gene-set analysis was used to identify functionally related sets of genes that were over- and under-expressed among ASD samples. Our results were consistent with diminished interferon-, EGF-, PDGF-, PI3K-AKT-mTOR-, and RAS-MAPK-signaling cascades, and increased ribosomal translation and NK-cell related activity in ASD. We explored evidence for sex-differences in the ASD-related transcriptomic signature. We also demonstrated that machine-learning classifiers using blood transcriptome data perform with moderate accuracy when data are combined across studies. Comparing our results with those from blood-based studies of protein biomarkers (e.g., cytokines and trophic factors), we propose that ASD may feature decoupling between certain circulating signaling proteins (higher in ASD samples) and the transcriptional cascades which they typically elicit within circulating immune cells (lower in ASD samples). These findings provide insight into ASD-related transcriptional differences in circulating immune cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Guerra, Susana; López-Fernández, Luis A.; Conde, Raquel; Pascual-Montano, Alberto; Harshman, Keith; Esteban, Mariano
2004-01-01
The potential use of the modified vaccinia virus Ankara (MVA) strain as a live recombinant vector to deliver antigens and elicit protective immune responses against infectious diseases demands a comprehensive understanding of the effect of MVA infection on human host gene expression. We used microarrays containing more than 15,000 human cDNAs to identify gene expression changes in human HeLa cell cultures at 2, 6, and 16 h postinfection. Clustering of the 410 differentially regulated genes identified 11 discrete gene clusters with altered expression patterns after MVA infection. Clusters 1 and 2 (accounting for 16.59% [68 of 410] of the genes) contained 68 transcripts showing a robust induction pattern that was maintained during the course of infection. Changes in cellular gene transcription detected by microarrays after MVA infection were confirmed for selected genes by Northern blot analysis and by real-time reverse transcription-PCR. Upregulated transcripts in clusters 1 and 2 included 20 genes implicated in immune responses, including interleukin 1A (IL-1A), IL-6, IL-7, IL-8, and IL-15 genes. MVA infection also stimulated the expression of NF-κB and components of the NF-κB signal transduction pathway, including p50 and TRAF-interacting protein. A marked increase in the expression of histone family members was also induced during MVA infection. Expression of the Wiskott-Aldrich syndrome family members WAS, WASF1, and the small GTP-binding protein RAC-1, which are involved in actin cytoskeleton reorganization, was enhanced after MVA infection. This study demonstrates that MVA infection triggered the induction of groups of genes, some of which may be involved in host resistance and immune modulation during virus infection. PMID:15140980
Tylee, Daniel S.; Hess, Jonathan L.; Quinn, Thomas P.; Barve, Rahul; Huang, Hailiang; Zhang-James, Yanli; Chang, Jeffrey; Stamova, Boryana S.; Sharp, Frank R.; Hertz-Picciotto, Irva; Faraone, Stephen V.; Kong, Sek Won; Glatt, Stephen J.
2017-01-01
Blood-based microarray studies comparing individuals affected with autism spectrum disorder (ASD) and typically developing individuals help characterize differences in circulating immune cell functions and offer potential biomarker signal. We sought to combine the subject-level data from previously published studies by mega-analysis to increase the statistical power. We identified studies that compared ex-vivo blood or lymphocytes from ASD-affected individuals and unrelated comparison subjects using Affymetrix or Illumina array platforms. Raw microarray data and clinical meta-data were obtained from seven studies, totaling 626 affected and 447 comparison subjects. Microarray data were processed using uniform methods. Covariate-controlled mixed-effect linear models were used to identify gene transcripts and co-expression network modules that were significantly associated with diagnostic status. Permutation-based gene-set analysis was used to identify functionally related sets of genes that were over- and under-expressed among ASD samples. Our results were consistent with diminished interferon-, EGF-, PDGF-, PI3K-AKT-mTOR-, and RAS-MAPK-signaling cascades, and increased ribosomal translation and NK-cell related activity in ASD. We explored evidence for sex-differences in the ASD-related transcriptomic signature. We also demonstrated that machine-learning classifiers using blood transcriptome data perform with moderate accuracy when data are combined across studies. Comparing our results with those from blood-based studies of protein biomarkers (e.g., cytokines and trophic factors), we propose that ASD may feature decoupling between certain circulating signaling proteins (higher in ASD samples) and the transcriptional cascades which they typically elicit within circulating immune cells (lower in ASD samples). These findings provide insight into ASD-related transcriptional differences in circulating immune cells. PMID:27862943
A Perspective on DNA Microarrays in Pathology Research and Practice
Pollack, Jonathan R.
2007-01-01
DNA microarray technology matured in the mid-1990s, and the past decade has witnessed a tremendous growth in its application. DNA microarrays have provided powerful tools for pathology researchers seeking to describe, classify, and understand human disease. There has also been great expectation that the technology would advance the practice of pathology. This review highlights some of the key contributions of DNA microarrays to experimental pathology, focusing in the area of cancer research. Also discussed are some of the current challenges in translating utility to clinical practice. PMID:17600117
Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang
2018-01-01
DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE. PMID:29257335
Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili
2005-02-01
The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study provides the first evidence that Qigong practice may exert transcriptional regulation at a genomic level. New approaches are needed to study how genes are regulated by elements associated with human uniqueness, such as consciousness, cognition, and spirituality.
Zhang, Hongtao; Palma, Angelina S; Zhang, Yibing; Childs, Robert A; Liu, Yan; Mitchell, Daniel A; Guidolin, Leticia S; Weigel, Wilfried; Mulloy, Barbara; Ciocchini, Andrés E; Feizi, Ten; Chai, Wengang
2016-01-01
The β1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the β1,2-gluco-oligosaccharides, with degrees of polymerization 2–13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the β1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CβG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by β1,2-glucans in mammalian systems. PMID:27053576
USDA-ARS?s Scientific Manuscript database
Immunomodulatory mechanisms associated with clearance versus persistence of foot-and-mouth disease virus (FMDV) in distinct microanatomic compartments of the bovine nasopharynx were investigated using quantitative RT-PCR and whole transcriptome microarray. Analysis of tissue samples obtained during ...
Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus
2015-01-01
A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813
A focused microarray approach to functional glycomics: transcriptional regulation of the glycome.
Comelli, Elena M; Head, Steven R; Gilmartin, Tim; Whisenant, Thomas; Haslam, Stuart M; North, Simon J; Wong, Nyet-Kui; Kudo, Takashi; Narimatsu, Hisashi; Esko, Jeffrey D; Drickamer, Kurt; Dell, Anne; Paulson, James C
2006-02-01
Glycosylation is the most common posttranslational modification of proteins, yet genes relevant to the synthesis of glycan structures and function are incompletely represented and poorly annotated on the commercially available arrays. To fill the need for expression analysis of such genes, we employed the Affymetrix technology to develop a focused and highly annotated glycogene-chip representing human and murine glycogenes, including glycosyltransferases, nucleotide sugar transporters, glycosidases, proteoglycans, and glycan-binding proteins. In this report, the array has been used to generate glycogene-expression profiles of nine murine tissues. Global analysis with a hierarchical clustering algorithm reveals that expression profiles in immune tissues (thymus [THY], spleen [SPL], lymph node, and bone marrow [BM]) are more closely related, relative to those of nonimmune tissues (kidney [KID], liver [LIV], brain [BRN], and testes [TES]). Of the biosynthetic enzymes, those responsible for synthesis of the core regions of N- and O-linked oligosaccharides are ubiquitously expressed, whereas glycosyltransferases that elaborate terminal structures are expressed in a highly tissue-specific manner, accounting for tissue and ultimately cell-type-specific glycosylation. Comparison of gene expression profiles with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) profiling of N-linked oligosaccharides suggested that the alpha1-3 fucosyltransferase 9, Fut9, is the enzyme responsible for terminal fucosylation in KID and BRN, a finding validated by analysis of Fut9 knockout mice. Two families of glycan-binding proteins, C-type lectins and Siglecs, are predominately expressed in the immune tissues, consistent with their emerging functions in both innate and acquired immunity. The glycogene chip reported in this study is available to the scientific community through the Consortium for Functional Glycomics (CFG) (http://www.functionalglycomics.org).
Imholte, Gregory; Gottardo, Raphael
2017-01-01
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097
[Application to allergic diseases].
Saito, Hirohisa
2005-04-01
The increasing prevalence of allergic diseases in developed countries is considered to be caused, at least in part, by rapid improvement of human hygiene. In human beings, the immune system developed as an ingenious device for defending against frequent attacks by microbes. Therefore, our immune system seems to have become deranged in our recent, unprecedentedly hygienic environment. It is now necessary to understand the total functional elements comprising the immune system, not just a single molecule present in an immunocyte working in our immune system. Microarray analysis is now becoming capable of detecting the whole transcripts present in a cell. It is anticipated that we can understand the deranged human immunity using the system biology. It is also expected to predict previously unexpected drug-related adverse events caused by interaction of a drug with responsible molecules present in vital organs.
Progress in the application of DNA microarrays.
Lobenhofer, E K; Bushel, P R; Afshari, C A; Hamadeh, H K
2001-01-01
Microarray technology has been applied to a variety of different fields to address fundamental research questions. The use of microarrays, or DNA chips, to study the gene expression profiles of biologic samples began in 1995. Since that time, the fundamental concepts behind the chip, the technology required for making and using these chips, and the multitude of statistical tools for analyzing the data have been extensively reviewed. For this reason, the focus of this review will be not on the technology itself but on the application of microarrays as a research tool and the future challenges of the field. PMID:11673116
Ca2+/Calmodulin-Dependent AtSR1/CAMTA3 Plays Critical Roles in Balancing Plant Growth and Immunity.
Yuan, Peiguo; Du, Liqun; Poovaiah, B W
2018-06-14
During plant-pathogen interactions, plants have to relocate their resources including energy to defend invading organisms; as a result, plant growth and development are usually reduced. Arabidopsis signal responsive1 (AtSR1) has been documented as a negative regulator of plant immune responses and could serve as a positive regulator of plant growth and development. However, the mechanism by which AtSR1 balances plant growth and immunity is poorly understood. Here, we performed a global gene expression profiling using Affymetrix microarrays to study how AtSR1 regulates defense- and growth-related genes in plants with and without bacterial pathogen infection. Results revealed that AtSR1 negatively regulates most of the immune-related genes involved in molecular pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and in salicylic acid (SA)- and jasmonate (JA)-mediated signaling pathways. AtSR1 may rigidly regulate several steps of the SA-mediated pathway, from the activation of SA synthesis to the perception of SA signal. Furthermore, AtSR1 may also regulate plant growth through its involvement in regulating auxin- and BRs-related pathways. Although microarray data revealed that expression levels of defense-related genes induced by pathogens are higher in wild-type (WT) plants than that in atsr1 mutant plants, WT plants are more susceptible to the infection of virulent pathogen as compared to atsr1 mutant plants. These observations indicate that the AtSR1 functions in suppressing the expression of genes induced by pathogen attack and contributes to the rapid establishment of resistance in WT background. Results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR assays suggest that AtSR1 acts as transcription factor in balancing plant growth and immunity, through interaction with the “CGCG” containing CG-box in the promotors of its target genes.
Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.
2015-01-01
Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231
Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding
2016-01-01
Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-11-19
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-01-01
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides. PMID:28952593
2012-01-01
Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after transfecting Tax proteins into bovine cells and human HeLa cells. Conclusion A comparative analysis of wild-type and mutant Tax proteins indicates that Tax protein exerts a significant impact on cellular functions as diverse as transcription, signal transduction, cell growth, stress response and immune response. Importantly, our study is the first report that shows the extent to which BLV Tax regulates the innate immune response. PMID:22455445
USDA-ARS?s Scientific Manuscript database
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, whe...
USDA-ARS?s Scientific Manuscript database
Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus ISA 70 VG (ISA 70) or ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray hybridizations were performed to ascertain global transcriptome changes induced by profilin...
Detecting specific infections in children through host responses: a paradigm shift.
Mejias, Asuncion; Suarez, Nicolas M; Ramilo, Octavio
2014-06-01
There is a need for improved diagnosis and for optimal classification of patients with infectious diseases. An alternative approach to the pathogen-detection strategy is based on a comprehensive analysis of the host response to the infection. This review focuses on the value of transcriptome analyses of blood leukocytes for the diagnosis and management of patients with infectious diseases. Initial studies showed that RNA from blood leukocytes of children with acute viral and bacterial infections carried pathogen-specific transcriptional signatures. Subsequently, transcriptional signatures for several other infections have been described and validated in humans with malaria, dengue, salmonella, melioidosis, respiratory syncytial virus, influenza, tuberculosis, and HIV. In addition, transcriptome analyses represent an invaluable tool to understand disease pathogenesis and to objectively classify patients according to the clinical severity. Microarray studies have been shown to be highly reproducible using different platforms, and in different patient populations, confirming the value of blood transcriptome analyses to study pathogen-specific host immune responses in the clinical setting. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Microtiter plate-based antibody microarrays for bacteria and toxins
USDA-ARS?s Scientific Manuscript database
Research has focused on the development of rapid biosensor-based, high-throughput, and multiplexed detection of pathogenic bacteria in foods. Specifically, antibody microarrays in 96-well microtiter plates have been generated for the purpose of selective detection of Shiga toxin-producing E. coli (...
Wang, Yuwei; Yang, Chun; He, Yonglin; Zhan, Xingxing; Xu, Lei
2016-08-01
Tuberculosis is a major challenge to global public health. However, the Bacille Calmette‑Guérin (BCG), the only vaccine available against tuberculosis, has been questioned for the low protective effect. The present study used the mouse gene intracellular pathogen resistance I (Ipr1) gene to alter the current BCG vaccine and evaluated its immunity effect against tuberculosis. This study also investigated the intrinsic relationships of Ipr1 and innate immunity. The reformed BCG (BCGi) carrying the Ipr1 gene was constructed. The mice were intranasally challenged with the M. tuberculosis H37Rv strain after vaccination with BCGi. Protection efficacy of the vaccine was assessed by the organ coefficient, bacterial load and pathological changes in the lung. The differential expression of 113 immune‑related genes between BCGi and BCG groups were detected by an oligo microarray. According to the results of organ coefficient, bacterial load and pathological changes in the organization, BCGi had been shown to have stronger protective effects against M. tuberculosis than BCG. The oligo microarray and reverse transcription‑quantitative polymerase chain reaction further revealed that the Ipr1 gene could upregulate the expression of 13 genes, including a >3‑fold increase in Toll‑like receptor (TLR)4 and 10‑fold increase in surfactant protein D (sftpd). The two genes not only participate in innate immunity against pathogens, but also are closely interrelated. Ipr1 could activate the TLR4 and sftpd signaling pathway and improve the innate immunity against tuberculosis, therefore Ipr1 modified BCG may be a candidate vaccine against M. tuberculosis.
Gene expression changes in chronic inflammatory demyelinating polyneuropathy skin biopsies.
Puttini, Stefania; Panaite, Petrica-Adrian; Mermod, Nicolas; Renaud, Susanne; Steck, Andreas J; Kuntzer, Thierry
2014-05-15
Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays.
Hu, Chao-Jun; Song, Guang; Huang, Wei; Liu, Guo-Zhen; Deng, Chui-Wen; Zeng, Hai-Pan; Wang, Li; Zhang, Feng-Chun; Zhang, Xuan; Jeong, Jun Seop; Blackshaw, Seth; Jiang, Li-Zhi; Zhu, Heng; Wu, Lin; Li, Yong-Zhe
2012-09-01
Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.
Galectins are human milk glycan receptors
Noll, Alexander J; Gourdine, Jean-Philippe; Yu, Ying; Lasanajak, Yi; Smith, David F; Cummings, Richard D
2016-01-01
The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin–HMG interactions may play a role in infant immunity. PMID:26747425
Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis.
Liu, Mingyuan; Hou, Xiaojun; Zhang, Ping; Hao, Yong; Yang, Yiting; Wu, Xiongfeng; Zhu, Desheng; Guan, Yangtai
2013-05-01
Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.
USDA-ARS?s Scientific Manuscript database
Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus MontanideTM ISA 70 VG (ISA 70) or MontanideTM ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray analyses were performed to ascertain global transcriptomic changes ...
Biotechnology and DNA vaccines for aquatic animals
Kurath, G.
2008-01-01
Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.
Kessler, Anne; Campo, Joseph J; Harawa, Visopo; Mandala, Wilson L; Rogerson, Stephen J; Mowrey, Wenzhu B; Seydel, Karl B; Kim, Kami
2018-04-25
Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of "virulent" PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including PfEMP1 domains that can be investigated as strain-transcendent vaccine candidates.
Manfredini, Fabio; Brown, Mark J F; Vergoz, Vanina; Oldroyd, Benjamin P
2015-07-31
Mating is a complex process, which is frequently associated with behavioural and physiological changes. However, understanding of the genetic underpinnings of these changes is limited. Honey bees are both a model system in behavioural genomics, and the dominant managed pollinator of human crops; consequently understanding the mating process has both pure and applied value. We used next-generation transcriptomics to probe changes in gene expression in the brains of honey bee queens, as they transition from virgin to mated reproductive status. In addition, we used CO2-narcosis, which induces oviposition without mating, to isolate the process of reproductive maturation. The mating process produced significant changes in the expression of vision, chemo-reception, metabolic, and immune-related genes. Differential expression of these genes maps clearly onto known behavioural and physiological changes that occur during the transition from being a virgin queen to a newly-mated queen. A subset of these changes in gene expression were also detected in CO2-treated queens, as predicted from previous physiological studies. In addition, we compared our results to previous studies that used microarray techniques across a range of experimental time-points. Changes in expression of immune- and vision-related genes were common to all studies, supporting an involvement of these groups of genes in the mating process. Our study is an important step in understanding the molecular mechanisms regulating post-mating behavioural transitions in a natural system. The weak overlap in patterns of gene expression with previous studies demonstrates the high sensitivity of genome-wide approaches. Thus, while we build on previous microarray studies that explored post-mating changes in honey bees, the broader experimental design, use of RNA-sequencing, and focus on Australian honey bees, which remain free from the devastating parasite Varroa destructor, in the current study, provide unique insights into the biology of the mating process in honey bees.
Two-way learning with one-way supervision for gene expression data.
Wong, Monica H T; Mutch, David M; McNicholas, Paul D
2017-03-04
A family of parsimonious Gaussian mixture models for the biclustering of gene expression data is introduced. Biclustering is accommodated by adopting a mixture of factor analyzers model with a binary, row-stochastic factor loadings matrix. This particular form of factor loadings matrix results in a block-diagonal covariance matrix, which is a useful property in gene expression analyses, specifically in biomarker discovery scenarios where blood can potentially act as a surrogate tissue for other less accessible tissues. Prior knowledge of the factor loadings matrix is useful in this application and is reflected in the one-way supervised nature of the algorithm. Additionally, the factor loadings matrix can be assumed to be constant across all components because of the relationship desired between the various types of tissue samples. Parameter estimates are obtained through a variant of the expectation-maximization algorithm and the best-fitting model is selected using the Bayesian information criterion. The family of models is demonstrated using simulated data and two real microarray data sets. The first real data set is from a rat study that investigated the influence of diabetes on gene expression in different tissues. The second real data set is from a human transcriptomics study that focused on blood and immune tissues. The microarray data sets illustrate the biclustering family's performance in biomarker discovery involving peripheral blood as surrogate biopsy material. The simulation studies indicate that the algorithm identifies the correct biclusters, most optimally when the number of observation clusters is known. Moreover, the biclustering algorithm identified biclusters comprised of biologically meaningful data related to insulin resistance and immune function in the rat and human real data sets, respectively. Initial results using real data show that this biclustering technique provides a novel approach for biomarker discovery by enabling blood to be used as a surrogate for hard-to-obtain tissues.
Fluorescence-based bioassays for the detection and evaluation of food materials.
Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti
2015-10-13
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials
Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti
2015-01-01
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials. PMID:26473869
Cell-Based Microarrays for In Vitro Toxicology
NASA Astrophysics Data System (ADS)
Wegener, Joachim
2015-07-01
DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.
Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.
2015-01-01
Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789
Haralambieva, Iana H.; Gibson, Michael J.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Warner, Nathaniel D.; Grill, Diane E.
2017-01-01
Introduction//Background The lack of standardization of the currently used commercial anti-rubella IgG antibody assays leads to frequent misinterpretation of results for samples with low/equivocal antibody concentration. The use of alternative approaches in rubella serology could add new information leading to a fuller understanding of rubella protective immunity and neutralizing antibody response after vaccination. Methods We applied microarray technology to measure antibodies to all rubella virus proteins in 75 high and 75 low rubella virus-specific antibody responders after two MMR vaccine doses. These data were used in multivariate penalized logistic regression modeling of rubella-specific neutralizing antibody response after vaccination. Results We measured antibodies to all rubella virus structural proteins (i.e., the glycoproteins E1 and E2 and the capsid C protein) and to the non-structural protein P150. Antibody levels to each of these proteins were: correlated with the neutralizing antibody titer (p<0.006); demonstrated differences between the high and the low antibody responder groups (p<0.008); and were components of the model associated with/predictive of vaccine-induced rubella virus-specific neutralizing antibody titers (misclassification error = 0.2). Conclusion Our study supports the use of this new technology, as well as the use of antibody profiles/patterns (rather than single antibody measures) as biomarkers of neutralizing antibody response and correlates of protective immunity in rubella virus serology. PMID:29145521
Split-plot microarray experiments: issues of design, power and sample size.
Tsai, Pi-Wen; Lee, Mei-Ling Ting
2005-01-01
This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.
Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon
2017-02-03
This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.
Kunz, Meik; Dandekar, Thomas; Naseem, Muhammad
2017-01-01
Cytokinins (CKs) play an important role in plant growth and development. Also, several studies highlight the modulatory implications of CKs for plant-pathogen interaction. However, the underlying mechanisms of CK mediating immune networks in plants are still not fully understood. A detailed analysis of high-throughput transcriptome (RNA-Seq and microarrays) datasets under modulated conditions of plant CKs and its mergence with cellular interactome (large-scale protein-protein interaction data) has the potential to unlock the contribution of CKs to plant defense. Here, we specifically describe a detailed systems biology methodology pertinent to the acquisition and analysis of various omics datasets that delineate the role of plant CKs in impacting immune pathways in Arabidopsis.
USDA-ARS?s Scientific Manuscript database
In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...
Antunes, Heliton S; Wajnberg, Gabriel; Pinho, Marcos B; Jorge, Natasha Andressa Nogueira; de Moraes, Joyce Luana Melo; Stefanoff, Claudio Gustavo; Herchenhorn, Daniel; Araújo, Carlos M M; Viégas, Celia Maria Pais; Rampini, Mariana P; Dias, Fernando L; de Araujo-Souza, Patricia Savio; Passetti, Fabio; Ferreira, Carlos G
2018-01-01
Oral mucositis is an acute toxicity that occurs in patients submitted to chemoradiotherapy to treat head and neck squamous cell carcinoma. In this study, we evaluated differences in gene expression in the keratinocytes of the oral mucosa of patients treated with photobiomodulation therapy and tried to associate the molecular mechanisms with clinical findings. From June 2009 to December 2010, 27 patients were included in a randomized double-blind pilot study. Buccal smears from 13 patients were obtained at days 1 and 10 of chemoradiotherapy, and overall gene expression of samples from both dates were analyzed by complementary DNA (cDNA) microarray. In addition, samples from other 14 patients were also collected at D1 and D10 of chemoradiotherapy for subsequent validation of cDNA microarray findings by qPCR. The expression array analysis identified 105 upregulated and 60 downregulated genes in our post-treatment samples when compared with controls. Among the upregulated genes with the highest fold change, it was interesting to observe the presence of genes related to keratinocyte differentiation. Among downregulated genes were observed genes related to cytotoxicity and immune response. The results indicate that genes known to be induced during differentiation of human epidermal keratinocytes were upregulated while genes associated with cytotoxicity and immune response were downregulated in the laser group. These results support previous clinical findings indicating that the lower incidence of oral mucositis associated with photobiomodulation therapy might be correlated to the activation of genes involved in keratinocyte differentiation.
Impact of developmental lead exposure on splenic factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten-Jolly, Jane, E-mail: kjolly@wadsworth.or; Heo, Yong, E-mail: yheo@cu.ac.k; Lawrence, David A., E-mail: david.lawrence@wadsworth.or
2010-09-01
Lead (Pb) is known to alter the functions of numerous organ systems, including the hematopoietic and immune systems. Pb can induce anemia and can lower host resistance to bacterial and viral infections. The anemia is due to Pb's inhibition of hemoglobin synthesis and Pb's induction of membrane changes, leading to early erythrocyte senescence. Pb also increases B-cell activation/proliferation and skews T-cell help (Th) toward Th2 subset generation. The specific mechanisms for many of the Pb effects are, as yet, not completely understood. Therefore, we performed gene expression analysis, via microarray, on RNA from the spleens of developmentally Pb-exposed mice, inmore » order to gain further insight into these Pb effects. Splenic RNA microarray analysis indicated strong up-regulation of genes coding for proteolytic enzymes, lipases, amylase, and RNaseA. The data also showed that Pb affected the expression of many genes associated with innate immunity. Analysis of the microarray results via GeneSifter software indicated that Pb increased apoptosis, B-cell differentiation, and Th2 development. Direct up-regulation by Pb of expression of the gene encoding the heme-regulated inhibitor (HRI) suggested that Pb can decrease erythropoiesis by blocking globin mRNA translation. Pb's high elevation of digestive/catabolizing enzymes could generate immunogenic self peptides. With Pb's potential to induce new self-peptides and to enhance the expression of caspases, cytokines, and other immunomodulators, further evaluation of Pb's involvement in autoimmune phenomena, especially Th2-mediated autoantibody production, and alteration of organ system activities is warranted.« less
The Role of Cytokine PF4 in the Antiviral Immune Response of Shrimp
Chen, Yulei; Cao, Jiao; Zhang, Xiaobo
2016-01-01
During viral infection in vertebrates, cytokines play important roles in the host defense against the virus. However, the function of cytokines in invertebrates has not been well characterized. In this study, shrimp cytokines involved in viral infection were screened using a cytokine antibody microarray. The results showed that three cytokines, the Fas receptor (Fas), platelet factor 4 (PF4) and interleukin-22 (IL-22), were significantly upregulated in the white spot syndrome virus (WSSV)-challenged shrimp, suggesting that these cytokines played positive regulatory roles in the immune response of shrimp against the virus. Further experiments revealed that PF4 had positive effects on the antiviral immunity of shrimp by enhancing the shrimp phagocytic activity and inhibiting the apoptotic activity of virus-infected hemocytes. Therefore, our study presented a novel mechanism of cytokines in the innate immunity of invertebrates. PMID:27631372
Evaluation of the skin irritation using a DNA microarray on a reconstructed human epidermal model.
Niwa, Makoto; Nagai, Kanji; Oike, Hideaki; Kobori, Masuko
2009-02-01
To avoid the need to use animals to test the skin irritancy potential of chemicals and cosmetics, it is important to establish an in vitro method based on the reconstructed human epidermal model. To evaluate skin irritancy efficiently and sensitively, we determined the gene expression induced by a topically-applied mild irritant sodium dodecyl sulfate (SDS) in a reconstructed human epidermal model LabCyte EPI-MODEL (LabCyte) using a DNA microarray carrying genes that were related to inflammation, immunity, stress and housekeeping. The expression and secretion of IL-1alpha in reconstructed human epidermal culture is known to be induced by irritation. We detected the induction of IL-1alpha expression and its secretion into the cell culture medium by treatment with 0.075% SDS for 18 h in LabCyte culture using DNA microarray, quantitative reverse-transcription polymerase chain reaction (RT-PCR) and ELISA. DNA microarray analysis indicated that the expression of 10 of the 205 genes carried on the DNA microarray was significantly induced in a LabCyte culture by 0.05% or 0.075% SDS irritation for 18 h. RT-PCR analysis confirmed that SDS treatment significantly induced the expressions of interleukin-1 receptor antagonist (IL-1RN), FOS-like antigen 1 (FOSL1), heat shock 70 kDa protein 1A (HSPA1) and myeloid differentiation primary response gene (88) (MYD88), as well as the known marker genes for irritation IL-1beta and IL-8 in a LabCyte culture. Our results showed that a DNA microarray is a useful tool for efficiently evaluating mild skin irritation using a reconstructed human epidermal model.
Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation
Hu, Wenchao; Liu, Yuting; Yan, Jun
2014-01-01
Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240
Travassos, Mark A; Coulibaly, Drissa; Bailey, Jason A; Niangaly, Amadou; Adams, Matthew; Nyunt, Myaing M; Ouattara, Amed; Lyke, Kirsten E; Laurens, Matthew B; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Berry, Andrea A; Takala-Harrison, Shannon; Kone, Abdoulaye K; Kouriba, Bourema; Rowe, J Alexandra; Doumbo, Ogobara K; Thera, Mahamadou A; Laufer, Miriam K; Felgner, Philip L; Plowe, Christopher V
2015-06-01
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates parasite sequestration in small capillaries through tissue-specific cytoadherence. The best characterized of these proteins is VAR2CSA, which is expressed on the surface of infected erythrocytes that bind to chondroitin sulfate in the placental matrix. Antibodies to VAR2CSA prevent placental cytoadherence and protect against placental malaria. The size and complexity of the VAR2CSA protein pose challenges for vaccine development, but smaller constitutive domains may be suitable for subunit vaccine development. A protein microarray was printed to include five overlapping fragments of the 3D7 VAR2CSA extracellular region. Malian women with a history of at least one pregnancy had antibody recognition of four of these fragments and had stronger reactivity against the two distal fragments than did nulliparous women, children, and men from Mali, suggesting that the C-terminal extracellular VAR2CSA domains are a potential focus of protective immunity. With carefully chosen sera from longitudinal studies of pregnant women, this approach has the potential to identify seroreactive VAR2CSA domains associated with protective immunity against pregnancy-associated malaria. © The American Society of Tropical Medicine and Hygiene.
Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis
2011-01-01
Background Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. Results We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. Conclusions The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on Vibrio-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the Mytilus species to an evolving microbial world. PMID:21269501
Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection
Ferreira, Karen S.; Silva, Simoneide S.; Macedo, Cláudia; Bocca, Anamélia L.; Passos, Geraldo A.; Almeida, Sandro R.; Silva-Pereira, Ildinete
2012-01-01
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this β-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen. PMID:22235359
Morton, Charles Oliver; Fliesser, Mirjam; Dittrich, Marcus; Mueller, Tobias; Bauer, Ruth; Kneitz, Susanne; Hope, William; Rogers, Thomas Richard; Einsele, Hermann; Loeffler, Juergen
2014-01-01
The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA. PMID:24870357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katika, Madhumohan R.; Department of Health Risk Analysis and Toxicology, Maastricht University; Netherlands Toxicogenomics Centre
Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examinedmore » gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human PBMCs were exposed to DON. ► Whole-genome microarray experiments were performed. ► Microarray data indicates that DON affects ribosome and RNA/protein synthesis. ► DON treatment induces ER stress, calcium mediated signaling, NFAT and NF-κB. ► Exposure to DON induces T cell activation, oxidative stress and apoptosis.« less
2016-09-01
2):401–407. 13. Wang Y, et al. Mer receptor tyrosine kinase pro- motes invasion and survival in glioblastoma mul- tiforme. Oncogene. 2013;32(7):872...Nature. 2012; 481(7380):190–194. 15. Jansen FH, et al. Profiling of antibody production against xenograft -released proteins by protein microarrays
Ciencewicki, Jonathan M.; Verhein, Kirsten C.; Gerrish, Kevin; McCaw, Zachary R.; Li, Jianying; Bushel, Pierre R.
2016-01-01
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl−/− than Mbl+/+ mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl+/+ and Mbl−/− mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS2 data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model. PMID:27106289
Aspler, Anne L; Bolshin, Carly; Vernon, Suzanne D; Broderick, Gordon
2008-09-26
Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue syndrome (CFS) however interpretation remains challenging without immune demographic context. The object of this work is to identify modulation of specific immune functional components and restructuring of co-expression networks characteristic of CFS using the quantitative genomics of peripheral blood. Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were classified using empiric case definition (U.S. Centers for Disease Control and Prevention) and unsupervised latent cluster analysis (LCA). Microarray profiles of peripheral blood were analyzed for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified from topological evaluation of linear correlation networks. Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was significantly lower in CFS (p = 0.01) due mainly to PTPRK and TSPAN3 expression. Although no other gene set was differentially expressed at p < 0.05, patterns of co-expression in each group differed markedly. Significant co-expression of CD14+ monocyte with CD16+ neutrophil (p = 0.01) and CD19+ B cell sets (p = 0.00) characterized CFS and fatigue phenotype groups. Also in CFS was a significant negative correlation between CD8+ and both CD19+ up-regulated (p = 0.02) and NK gene sets (p = 0.08). These patterns were absent in controls. Dissection of blood microarray profiles points to B cell dysfunction with coordinated immune activation supporting persistent inflammation and antibody-mediated NK cell modulation of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.
Lessa-Aquino, Carolina; Lindow, Janet C.; Randall, Arlo; Wunder, Elsio; Pablo, Jozelyn; Nakajima, Rie; Jasinskas, Algis; Cruz, Jaqueline S.; Damião, Alcineia O.; Nery, Nívison; Ribeiro, Guilherme S.; Costa, Federico; Hagan, José E.; Reis, Mitermayer Galvão; Ko, Albert I.; Medeiros, Marco Alberto; Felgner, Philip L.
2017-01-01
Background Leptospirosis is an important zoonotic disease worldwide. Humans usually present a mild non-specific febrile illness, but a proportion of them develop more severe outcomes, such as multi-organ failure, lung hemorrhage and death. Such complications are thought to depend on several factors, including the host immunity. Protective immunity is associated with humoral immune response, but little is known about the immune response mounted during naturally-acquired Leptospira infection. Methods and principal findings Here, we used protein microarray chip to profile the antibody responses of patients with severe and mild leptospirosis against the complete Leptospira interrogans serovar Copenhageni predicted ORFeome. We discovered a limited number of immunodominant antigens, with 36 antigens specific to patients, of which 11 were potential serodiagnostic antigens, identified at acute phase, and 33 were potential subunit vaccine targets, detected after recovery. Moreover, we found distinct antibody profiles in patients with different clinical outcomes: in the severe group, overall IgM responses do not change and IgG responses increase over time, while both IgM and IgG responses remain stable in the mild patient group. Analyses of individual patients’ responses showed that >74% of patients in the severe group had significant IgG increases over time compared to 29% of patients in the mild group. Additionally, 90% of IgM responses did not change over time in the mild group, compared to ~51% in the severe group. Conclusions In the present study, we detected antibody profiles associated with disease severity and speculate that patients with mild disease were protected from severe outcomes due to pre-existing antibodies, while patients with severe leptospirosis demonstrated an antibody profile typical of first exposure. Our findings represent a significant advance in the understanding of the humoral immune response to Leptospira infection, and we have identified new targets for the development of subunit vaccines and diagnostic tests. PMID:28141801
Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal
2006-09-20
High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option.GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike.
Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal
2006-01-01
Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike. PMID:16987406
Kalograiaki, Ioanna; Campanero-Rhodes, María A; Proverbio, Davide; Euba, Begoña; Garmendia, Junkal; Aastrup, Teodor; Solís, Dolores
2018-01-01
Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment. © 2018 Elsevier Inc. All rights reserved.
Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity
Aballay, Alejandro
2010-01-01
The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed. PMID:19270528
Maughan, Michele N; Dougherty, Lorna S; Preskenis, Lauren A; Ladman, Brian S; Gelb, Jack; Spackman, Erica V; Keeler, Calvin L
2013-03-23
Wild waterfowl, including ducks, represent the classic reservoir for low pathogenicity avian influenza (LPAI) viruses and play a major role in the worldwide dissemination of AIV. AIVs belonging to the hemagglutinin (H) 7 subtype are of epidemiological and economic importance due to their potential to mutate into a highly pathogenic form of the virus. Thus far, however, relatively little work has been conducted on elucidating the host-pathogen interactions of ducks and H7 LPAIVs. In the current study, three H7 LPAIVs isolated from either chicken, duck, or turkey avian species were evaluated for their comparative effect on the transcriptional innate immune response of ducks. Three H7 LPAIV isolates, chicken-origin (A/chicken/Maryland/MinhMa/2004), duck-origin (A/pintail/Minnesota/423/1999), and turkey-origin (A/turkey/Virginia/SEP-67/2002) were used to infect Pekin ducks. At 3 days post-infection, RNA from spleen tissue was used for transcriptional analysis using the Avian Innate Immune Microarray (AIIM) and quantitative real-time RT-PCR (qRT-PCR). Microarray analysis revealed that a core set of 61 genes was differentially regulated in response to all three LPAIVs. Furthermore, we observed 101, 135, and 628 differentially expressed genes unique to infection with the chicken-, duck-, or turkey-origin LPAIV isolates, respectively. qRT-PCR results revealed significant (p<0.05) induction of IL-1β, IL-2, and IFNγ transcription, with the greatest induction observed upon infection with the chicken-origin isolate. Several key innate immune pathways were activated in response to LPAIV infection including the toll-like receptor and RIG-I-like receptor pathways. Pekin ducks elicit a unique innate immune response to different species-of-origin H7 LPAIV isolates. However, twelve identifiable genes and their associated cell signaling pathways (RIG-I, NOD, TLR) are differentially expressed regardless of isolate origin. This core set of genes are critical to the duck immune response to AI. These data provide insight into the potential mechanisms employed by ducks to tolerate AI viral infection.
Trivedi, Prinal; Edwards, Jode W; Wang, Jelai; Gadbury, Gary L; Srinivasasainagendra, Vinodh; Zakharkin, Stanislav O; Kim, Kyoungmi; Mehta, Tapan; Brand, Jacob P L; Patki, Amit; Page, Grier P; Allison, David B
2005-04-06
Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics) is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing. Results generated from data preprocessing methods, quality control analysis and hypothesis testing methods are output in the form of Excel CSV tables, graphs and an Html report summarizing data analysis. HDBStat! is a platform-independent software that is freely available to academic institutions and non-profit organizations. It can be downloaded from our website http://www.soph.uab.edu/ssg_content.asp?id=1164.
Identification of differentially expressed genes and false discovery rate in microarray studies.
Gusnanto, Arief; Calza, Stefano; Pawitan, Yudi
2007-04-01
To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.
Palma, Angelina S.; Liu, Yan; Zhang, Hongtao; Zhang, Yibing; McCleary, Barry V.; Yu, Guangli; Huang, Qilin; Guidolin, Leticia S.; Ciocchini, Andres E.; Torosantucci, Antonella; Wang, Denong; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.; Mulloy, Barbara; Childs, Robert A.; Feizi, Ten; Chai, Wengang
2015-01-01
Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure–function studies and their exploitation. We describe construction of a “glucome” microarray, the first sequence-defined glycome-scale microarray, using a “designer” approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear “homo” and “hetero” and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides. PMID:25670804
The MGED ontology: a framework for describing functional genomics experiments.
Stoeckert, Christian J; Parkinson, Helen
2003-01-01
The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organisms and their properties. Our solution was to create a framework for describing microarray experiments with an initial focus on the biological sample and its manipulation. For concepts that are common for many species, we could provide a manageable listing of controlled terms. For concepts that are species-specific or whose values cannot be readily listed, we created an 'OntologyEntry' concept that referenced an external resource. The MGED ontology is a work in progress that needs additional instances and particularly needs constraints to be added. The ontology currently covers the experimental sample and design, and we have begun capturing aspects of the microarrays themselves as well. The primary application of the ontology will be to develop forms for entering information into databases, and consequently allowing queries, taking advantage of the structure provided by the ontology. The application of an ontology of experimental conditions extends beyond microarray experiments and, as the scope of MGED includes other aspects of functional genomics, so too will the MGED ontology.
Role of Macrophage-Induced Inflammation in Mesothelioma
2010-07-01
in human mesothelioma tumors and correlate immune cell infiltration with histopathologic subtype (months 1-6). Using tumor tissue microarrays of... histopathologic subtype (months 1-6). • Acquired 71 fixed and paraffin-embedded mesothelioma tumor samples • Prepared mesothelioma tumor tissue...Biol., 2008. 84: p. 1-8. 5. Dave, S.S., et al., Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating
Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bo; Chen, Tian-Ming; Zhong, Yingbin
This study was aimed to explore the mechanisms underlying cadmium-induced circadian rhythms disruption. Two groups of zebrafish larvae treated with or without 5 ppm CdCl{sub 2} were incubated in a photoperiod of 14-h light/10-h dark conditions. The mRNA levels of clock1a, bmal1b, per2 and per1b in two groups were determined. Microarray data were generated in two group of samples. Differential expression of genes were identified and the changes in expression level for some genes were validated by RT-PCR. Finally, Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) were performed. In comparison with normal group, the mRNAmore » levels of clock1a, bmal1b, and per2 were significantly changed and varied over the circadian cycle in CdCl2-treated group. DEGs were obtained from the light (84 h, ZT12) and dark (88 h, ZT16) phase. In addition, G-protein coupled receptor protein signaling pathway and immune response were both enriched by DEGs in both groups. While, proteolysis and amino acid metabolism were found associated with DEGs in light phase, and Neuroactive ligand-receptor interaction and oxidation-reduction process were significantly enriched by DEGs in dark phase. Besides, the expression pattern of genes including hsp70l and or115-11 obtained by RT-PCR were consistent with those obtained by microarray analysis. As a consequence, cadmium could make significant effects on circadian rhythms through immune response and G protein-coupled receptor signaling pathway. Besides, between the dark and the light phase, the mechanism by which cadmium inducing disruption of circadian rhythms were different to some extent. - Highlights: • Cadmium could affect the expression levels of circadian rhythm-related genes. • Genes expression in microarray data were consistent with those in RT-PCR analysis. • Immune response and G protein-coupled receptor signaling pathway were identified. • Cadmium induces circadian rhythm disruption by different mechanism in day and night.« less
Kumar, Amod; Gaur, Gyanendra Kumar; Gandham, Ravi Kumar; Panigrahi, Manjit; Ghosh, Shrikant; Saravanan, B C; Bhushan, Bharat; Tiwari, Ashok Kumar; Sulabh, Sourabh; Priya, Bhuvana; V N, Muhasin Asaf; Gupta, Jay Prakash; Wani, Sajad Ahmad; Sahu, Amit Ranjan; Sahoo, Aditya Prasad
2017-01-01
Bovine tropical theileriosis is an important haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints of the livestock development programmes in India and Southeast Asia. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance to tropical theileriosis in indigenous cattle is not well documented. Recent studies incited an idea that differentially expressed genes in exotic and indigenous cattle play significant role in breed specific resistance to tropical theileriosis. The present study was designed to determine the global gene expression profile in peripheral blood mononuclear cells derived from indigenous (Tharparkar) and cross-bred cattle following in vitro infection of T. annulata (Parbhani strain). Two separate microarray experiments were carried out each for cross-bred and Tharparkar cattle. The cross-bred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were down-regulated and 485 were up-regulated. Their fold change varied from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes including 451 down-regulated and 424 up-regulated. The fold change varied from 94.93 to -19.20. A subset of genes was validated by qRT-PCR and results were correlated well with microarray data indicating that microarray results provided an accurate report of transcript level. Functional annotation study of DEGs confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. It is therefore, hypothesized that the different susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against T. annulata infection. Copyright © 2016 Elsevier B.V. All rights reserved.
The Glycan Microarray Story from Construction to Applications.
Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae
2017-04-18
Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.
Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra
2017-11-01
We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.
Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong
2018-04-01
Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.
Transcriptional Changes That Characterize the Immune Reactions of Leprosy
Dupnik, Kathryn M.; Bair, Thomas B.; Maia, Andressa O.; Amorim, Francianne M.; Costa, Marcos R.; Keesen, Tatjana S. L.; Valverde, Joanna G.; Queiroz, Maria do Carmo A. P.; Medeiros, Lúcio L.; de Lucena, Nelly L.; Wilson, Mary E.; Nobre, Mauricio L.; Johnson, Warren D.; Jeronimo, Selma M. B.
2015-01-01
Background. Leprosy morbidity is increased by 2 pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL). Methods. To discover host factors related to immune reactions, global transcriptional profiles of peripheral blood mononuclear cells were compared between 11 RR, 11 ENL, and 19 matched control patients, with confirmation by quantitative polymerase chain reaction. Encoded proteins were investigated in skin biopsy specimens by means of immunohistochemistry. Results. There were 275 genes differentially expressed in RR and 517 differentially expressed in ENL on the microarray. Pathway analysis showed immunity-related pathways represented in RR and ENL transcriptional profiles, with the “complement and coagulation” pathway common to both. Interferon γ was identified as a significant upstream regulator of the expression changes for RR and ENL. Immunohistochemical staining of skin lesions showed increased C1q in both RR and ENL. Conclusions. These data suggest a previously underrecognized role for complement in the pathogenesis of both RR and ENL, and we propose new hypotheses for reaction pathogenesis. PMID:25398459
Tsujikawa, Takahiro; Kumar, Sushil; Borkar, Rohan N.; Azimi, Vahid; Thibault, Guillaume; Chang, Young Hwan; Balter, Ariel; Kawashima, Rie; Choe, Gina; Sauer, David; El Rassi, Edward; Clayburgh, Daniel R.; Kulesz-Martin, Molly F.; Lutz, Eric R.; Zheng, Lei; Jaffee, Elizabeth M.; Leyshock, Patrick; Margolin, Adam A.; Mori, Motomi; Gray, Joe W.; Flint, Paul W.; Coussens, Lisa M.
2017-01-01
SUMMARY Here we describe a multiplexed immunohistochemical platform, with computational image processing workflows including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas, and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination, and revealed that response to therapy correlated with degree of mono-myelocytic cell density, and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification, and provide digital image processing pipelines (https://github.com/multiplexIHC/cppipe) to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to thus improve biomarker discovery and assessment. PMID:28380359
T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.
Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania
2015-06-01
Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.
Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie
2008-01-01
Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127
Baines, John F.; Roller, Julia; Saminadin-Peter, Sarah S.; Parsch, John; Jiggins, Francis M.
2009-01-01
Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus. PMID:19718442
Carpenter, Jennifer; Hutter, Stephan; Baines, John F; Roller, Julia; Saminadin-Peter, Sarah S; Parsch, John; Jiggins, Francis M
2009-08-31
Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.
Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus
Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira
2016-01-01
In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863
Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A.; Atluri, Vidya L.; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A.; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W. John W.; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H.; Vinetz, Joseph M.; Tsolis, Renée M.; Felgner, Philip L.
2010-01-01
Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host. PMID:20454614
Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno
2016-12-13
Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.
Antibodies enhance CXCL10 production during RSV infection of infant and adult immune cells.
Vissers, Marloes; Schreurs, Inge; Jans, Jop; Heldens, Jacco; de Groot, Ronald; de Jonge, Marien I; Ferwerda, Gerben
2015-12-01
Respiratory syncytial virus (RSV) bronchiolitis is a major burden in infants below three months of age, when the primary immune response is mainly dependent on innate immunity and maternal antibodies. We investigated the influence of antibodies on innate immunity during RSV infection. PBMCs from infants and adults were stimulated with live RSV and inactivated RSV in combination with antibody-containing and antibody-depleted serum. The immune response was determined by transcriptome analysis and chemokine levels were measured using ELISA and flow cytometry. Microarray data showed that CXCL10 gene transcription was RSV dependent, whereas CXCL11 and IFNα were upregulated in an antibody-dependent manner. Although the presence of antibodies reduces RSV infection rate, it enhances the innate immune response. In adult immune cells, antibodies enhance CXCL10, CXCL11, IFNα and IFNγ production in response to RSV infection. Contrary, in infant immune cells only CXCL10 was enhanced in an antibody-dependent manner. Monocytes are the main source of CXCL10 and they produce CXCL10 in both an antibody- and virus-dependent manner. This study shows that antibodies enhance CXCL10 production in infant immune cells. CXCL10 has been implicated in exuberating the inflammatory response during viral infections and antibodies could therefore play a role in the pathogenesis of RSV infections. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Xiu-Li; Liu, Qing-Tao; Cao, Rui-Bing; Zhou, Bin; Ma, Zhi-Yong; Deng, Wen-Lei; Wei, Jian-Chao; Qiu, Ya-Feng; Wang, Fang-Quan; Gu, Jin-Yan; Wang, Feng-Juan; Zheng, Qi-Sheng; Ishag, Hassan; Chen, Pu-Yan
2012-01-01
The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement. PMID:22184121
Feng, Xiu-Li; Liu, Qing-Tao; Cao, Rui-Bing; Zhou, Bin; Ma, Zhi-Yong; Deng, Wen-Lei; Wei, Jian-Chao; Qiu, Ya-Feng; Wang, Fang-Quan; Gu, Jin-Yan; Wang, Feng-Juan; Zheng, Qi-Sheng; Ishag, Hassan; Chen, Pu-Yan
2012-02-03
The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement.
Systematic Omics Analysis Review (SOAR) Tool to Support Risk Assessment
McConnell, Emma R.; Bell, Shannon M.; Cote, Ila; Wang, Rong-Lin; Perkins, Edward J.; Garcia-Reyero, Natàlia; Gong, Ping; Burgoon, Lyle D.
2014-01-01
Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment. PMID:25531884
Clustering approaches to identifying gene expression patterns from DNA microarray data.
Do, Jin Hwan; Choi, Dong-Kug
2008-04-30
The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.
Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M. Javad
2014-01-01
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. PMID:25230936
Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M Javad; Ulrich, Robert G
2014-12-01
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.
Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S
2013-12-01
Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells
2009-04-01
expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by
Dotsey, Emmanuel Y.; Gorlani, Andrea; Ingale, Sampat; Achenbach, Chad J.; Forthal, Donald N.; Felgner, Philip L.; Gach, Johannes S.
2015-01-01
In recent years, high throughput discovery of human recombinant monoclonal antibodies (mAbs) has been applied to greatly advance our understanding of the specificity, and functional activity of antibodies against HIV. Thousands of antibodies have been generated and screened in functional neutralization assays, and antibodies associated with cross-strain neutralization and passive protection in primates, have been identified. To facilitate this type of discovery, a high throughput-screening tool is needed to accurately classify mAbs, and their antigen targets. In this study, we analyzed and evaluated a prototype microarray chip comprised of the HIV-1 recombinant proteins gp140, gp120, gp41, and several membrane proximal external region peptides. The protein microarray analysis of 11 HIV-1 envelope-specific mAbs revealed diverse binding affinities and specificities across clades. Half maximal effective concentrations, generated by our chip analysis, correlated significantly (P<0.0001) with concentrations from ELISA binding measurements. Polyclonal immune responses in plasma samples from HIV-1 infected subjects exhibited different binding patterns, and reactivity against printed proteins. Examining the totality of the specificity of the humoral response in this way reveals the exquisite diversity, and specificity of the humoral response to HIV. PMID:25938510
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.
Cole, Steve W; Galic, Zoran; Zack, Jerome A
2003-09-22
Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
Grenville-Briggs, Laura J; Stansfield, Ian
2011-01-01
This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate active learning through experience of current research methods in bioinformatics and functional genomics. They seek to closely mimic a realistic research environment, and require the students first to propose research hypotheses, then test those hypotheses using specific sections of the microarray dataset. The complexity of the microarray data provides students with the freedom to propose their own unique hypotheses, tested using appropriate sections of the microarray data. This research latitude was highly regarded by students and is a strength of this practical. In addition, the focus on DNA damage by radiation and mutagenic chemicals allows them to place their results in a human medical context, and successfully sparks broad interest in the subject material. In evaluation, 79% of students scored the practical workshops on a five-point scale as 4 or 5 (totally effective) for student learning. More broadly, the general use of microarray data as a "student research playground" is also discussed. Copyright © 2011 Wiley Periodicals, Inc.
Nithichanon, Arnone; Rinchai, Darawan; Buddhisa, Surachat; Saenmuang, Pornpun; Kewcharoenwong, Chidchamai; Kessler, Bianca; Khaenam, Prasong; Chetchotisakd, Ploenchan; Maillere, Bernard; Robinson, John; Reynolds, Catherine J.; Boyton, Rosemary J.; Altmann, Daniel M.; Lertmemongkolchai, Ganjana
2018-01-01
Burkholderia pseudomallei (Bp) is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our findings suggest that a large repertoire of CD4 T cells, high in frequency and with broad coverage of antigens and epitopes, is important in controlling Bp infection. This offers an attractive potential strategy for subunit or epitope-based vaccines. PMID:29616023
Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G
2009-02-01
White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.
Wei, Jun S; Kuznetsov, Igor B; Zhang, Shile; Song, Young K; Asgharzadeh, Shahab; Sindiri, Sivasish; Wen, Xinyu; Patidar, Rajesh; Nagaraj, Sushma; Walton, Ashley; Guidry Auvil, Jaime M; Gerhard, Daniela S; Yuksel, Aysen; Catchpoole, Daniel R; Hewitt, Stephen M; Sondel, Paul M; Seeger, Robert C; Maris, John M; Khan, Javed
2018-05-21
High-risk neuroblastoma is an aggressive disease. DNA sequencing studies have revealed a paucity of actionable genomic alterations and a low mutation burden, posing challenges to develop effective novel therapies. We used RNA sequencing (RNA-seq) to investigate the biology of this disease including a focus on tumor-infiltrating lymphocytes (TILs). We performed deep RNA-seq on pre-treatment diagnostic tumors from 129 high-risk and 21 low- or intermediate-risk patients with neuroblastomas. We used single-sample gene set enrichment analysis to detect gene expression signatures of TILs in tumors and examined their association with clinical and molecular parameters including patient outcome. The expression profiles of 190 additional pre-treatment diagnostic neuroblastomas, a neuroblastoma tissue microarray, and T-cell receptor (TCR) sequencing were used to validate our findings. We found that MYCN -not-amplified ( MYCN -NA) tumors had significant higher cytotoxic TIL signatures compared to MYCN -amplified ( MYCN -A) tumors. A reported MYCN-activation-signature was significantly associated with poor outcome for high-risk patients with MYCN -NA tumors; however, a subgroup of these patients who had elevated activated NK cells, CD8+ T-cells, and cytolytic signatures showed improved outcome and expansion of infiltrating T-cell receptor (TCR) clones. Furthermore, we observed up-regulation of immune exhaustion marker genes, indicating an immune suppressive microenvironment in these neuroblastomas. Conclusions: This study provides evidence that RNA signatures of cytotoxic TIL are associated with the presence of activated NK-/T-cells and improved outcomes in high-risk neuroblastoma patients harboring MYCN -NA tumors. Our findings suggest that these high-risk patients with MYCN -NA neuroblastoma may benefit from additional immunotherapies incorporated into the current therapeutic strategies. Copyright ©2018, American Association for Cancer Research.
ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis.
Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal
2017-05-04
Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis.
ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis
Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal
2017-01-01
ABSTRACT Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis. PMID:27362366
Krasnov, Aleksei; Kileng, Øyvind; Skugor, Stanko; Jørgensen, Sven Martin; Afanasyev, Sergey; Timmerhaus, Gerrit; Sommer, Ann-Inger; Jensen, Ingvill
2013-07-01
Genome sequencing combined with transcriptome profiling promotes exploration of defence against pathogens and discovery of immune genes. Based on sequences from the recently released genome of Atlantic cod, a genome-wide oligonucleotide microarray (ACIQ-1) was designed and used for analyses of gene expression in the brain during infection with nervous necrosis virus (NNV). A challenge experiment with NNV was performed with Atlantic cod juveniles and brain samples from virus infected and uninfected fish were used for microarray analysis. Expression of virus induced genes increased at 5 days post challenge and persisted at stable level to the last sampling at 25 days post challenge. A large fraction of the up-regulated genes (546 features) were known or expected to have immune functions and most of these have not previously been characterized in Atlantic cod. Transcriptomic changes induced by the virus involved strong activation of genes associated with interferon and tumour necrosis factor related responses and acute inflammation. Up-regulation of genes involved in adaptive immunity suggested a rapid recruitment of B and T lymphocytes to the NNV infected brain. QPCR analyses of 15 candidate genes of innate immunity showed rapid induction by poly(I:C) in Atlantic cod larvae cells suggesting an antiviral role. Earliest and greatest expression changes after poly I:C stimulation was observed for interferon regulatory factors IRF4 and IRF7. Comparative studies between teleost species provided new knowledge about the evolution of innate antiviral immunity in fish. A number of genes is present or responds to viruses only in fish. Innate immunity of Atlantic cod is characterized by selective expansion of several medium-sized multigene families with ribose binding domains. An interesting finding was the high representation of three large gene families among the early antiviral genes, including tripartite motif proteins (TRIM) and proteins with PRY-SPRY and NACHT domains. The latter two with respectively 52 and 114 members in Atlantic cod have gone through expansions in different groups of fish. These proteins most likely have ligand binding properties and their propagation could be linked to the loss of MHC class II in the Atlantic cod genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Iwata-Yoshikawa, Naoko; Uda, Akihiko; Suzuki, Tadaki; Tsunetsugu-Yokota, Yasuko; Sato, Yuko; Morikawa, Shigeru; Tashiro, Masato; Sata, Tetsutaro; Hasegawa, Hideki
2014-01-01
ABSTRACT Severe acute respiratory syndrome-related coronavirus (SARS-CoV) is an emerging pathogen that causes severe respiratory illness. Whole UV-inactivated SARS-CoV (UV-V), bearing multiple epitopes and proteins, is a candidate vaccine against this virus. However, whole inactivated SARS vaccine that includes nucleocapsid protein is reported to induce eosinophilic infiltration in mouse lungs after challenge with live SARS-CoV. In this study, an ability of Toll-like receptor (TLR) agonists to reduce the side effects of UV-V vaccination in a 6-month-old adult BALB/c mouse model was investigated, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. Immunization of adult mice with UV-V, with or without alum, resulted in partial protection from lethal doses of SARS-CoV challenge, but extensive eosinophil infiltration in the lungs was observed. In contrast, TLR agonists added to UV-V vaccine, including lipopolysaccharide, poly(U), and poly(I·C) (UV-V+TLR), strikingly reduced excess eosinophilic infiltration in the lungs and induced lower levels of interleukin-4 and -13 and eotaxin in the lungs than UV-V-immunization alone. Additionally, microarray analysis showed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-V-immunized but not in UV-V+TLR-immunized mice. In particular, CD11b+ cells in the lungs of UV-V-immunized mice showed the upregulation of genes associated with the induction of eosinophils after challenge. These findings suggest that vaccine-induced eosinophil immunopathology in the lungs upon SARS-CoV infection could be avoided by the TLR agonist adjuvants. IMPORTANCE Inactivated whole severe acute respiratory syndrome-related coronavirus (SARS-CoV) vaccines induce neutralizing antibodies in mouse models; however, they also cause increased eosinophilic immunopathology in the lungs upon SARS-CoV challenge. In this study, the ability of adjuvant Toll-like receptor (TLR) agonists to reduce the side effects of UV-inactivated SARS-CoV vaccination in a BALB/c mouse model was tested, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. We found that TLR stimulation reduced the high level of eosinophilic infiltration that occurred in the lungs of mice immunized with UV-inactivated SARS-CoV. Microarray analysis revealed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-inactivated SARS-CoV-immunized mice. This study may be helpful for elucidating the pathogenesis underlying eosinophilic infiltration resulting from immunization with inactivated vaccine. PMID:24850731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
Coutinho, Rita; Clear, Andrew J.; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G.
2015-01-01
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. PMID:25425693
Coutinho, Rita; Clear, Andrew J; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G
2015-03-01
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. Copyright© Ferrata Storti Foundation.
PUFA diets alter the microRNA expression profiles in an inflammation rat model
ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI
2015-01-01
Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643
Bagheri, Mozhdeh; Dong, Yupeng; Ono, Masao
2015-06-01
Activated macrophages have been classified into classical (M1) and alternative (M2) macrophages. We aimed to establish a method to yield enough number of macrophages to analyze their molecular, biological and immunological functions. We used drugs; adjuvant albumin from chicken egg whites--Imject Alum (OVA-Alum) and OVA Complete Freund Adjuvant (OVA-CFA), to induce macrophages to M2 and M1 respectively. We analyzed the phenotype of purified macrophages induced under these immune conditions, using flow cytometry (FACS) to detect cell-surface molecules and the enzyme-linked immunosorbent assay (ELISA) was used to detect cytokines. The cDNA microarray was employed to measure changes in expression level of cell surface protein between M1 and M2 macrophages. Phenotype analysis of purified macrophages, induced under these immune conditions, showed macrophages induced by OVA-Alum was almost M2 while the proportion of M1 macrophages induced by OVA-CFA was significantly higher. The results also showed higher expression level of macrophage galactose N- acetyl-galactosamine specific lectin-2 protein (MGL1/2-PE), a known M2 macrophage marker, on the surface of Alum-induced macrophages. On the basis of these preliminary data, ELISA results revealed that after macrophage stimulation with lipopolysaccharides (LPS), the level of interleukin (IL)-10 produced by Alum- induced macrophages was higher than the level of IL-10 produced by CFA-induced macrophages. In contrast, the level of tumor necrosis factor-alpha (TNF-α) produced by CFA-induced macrophages was higher than Alum-induced macrophages. The cDNA microarray confirmed previous results and suggest immunoglobulin-like type 2 receptor alpha (Pilra) as a new marker for M1, macrophage galactose N-acetylgalactosamine-specific lectin 2 (Mgl2) as M2 macrophages marker.
Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C
2010-01-01
Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947
NASA Astrophysics Data System (ADS)
Meng, Xianhong; Shi, Xiaoli; Kong, Jie; Luan, Sheng; Luo, Kun; Cao, Baoxiang; Liu, Ning; Lu, Xia; Li, Xupeng; Deng, Kangyu; Cao, Jiawang; Zhang, Yingxue; Zhang, Hengheng
2017-10-01
To elucidate the molecular response of shrimp hepatopancreas to white spot syndrome virus (WSSV) infection, microarray was applied to investigate the differentially expressed genes in the hepatopancreas of `Huanghai No. 2' ( Fenneropenaeus chinensis). A total of 59137 unigenes were designed onto a custom-made 60K Agilent chip. After infection, the gene expression profiles in the hepatopancreas of the shrimp with a lower viral load at early (48-96 h), peak (168-192 h) and late (264-288 h) infection phases were analyzed. Of 18704 differentially expressed genes, 6412 were annotated. In total, 5453 differentially expressed genes (1916 annotated) expressed at all three phases, and most of the annotated were either up- or down-regulated continuously. These genes function diversely in, for example, immune response, cytoskeletal system, signal transduction, stress resistance, protein synthesis and processing, metabolism among others. Some of the immune-related genes, including antilipopolysaccharide factor, Kazal-type proteinase inhibitor, C-type lectin and serine protease encoding genes, were up-regulated after WSSV infection. These genes have been reported to be involved in the anti-WSSV responses. The expression of genes related to the cytoskeletal system, including β-actin and myosin but without tubulin genes, were down-regulated after WSSV infection. Astakine was found for the first time in the WSSV-infected F. chinensis. To further confirm the expression of differentially expressed genes, quantitative real-time PCR was performed to test the expression of eight randomly selected genes and verified the reliability and accuracy of the microarray expression analysis. The data will provide valuable information to understanding the immune mechanism of shrimp's response to WSSV.
Loose, David S.; Gottipati, Koteswara R.; Natarajan, Kartiga; Mitchell, Courtney T.
2016-01-01
The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells. PMID:26884459
Ohse, Takamoto; Ota, Tatsuru; Kieran, Niamh; Godson, Catherine; Yamada, Koei; Tanaka, Tetsuhiro; Fujita, Toshiro; Nangaku, Masaomi
2004-04-01
Immune complex deposition is associated with the accumulation of neutrophils, which play an important role in the various immune-mediated diseases. A novel anti-inflammatory agent, the lipoxin A (LXA) analogue (15-epi-16-(FPhO)-LXA-Me)), a stable synthetic analogue of aspirin-triggered 15-epi-lipoxin A4 (ATLa), was used in experimental anti-glomerular basement membrane (GBM) antibody nephritis in mice. ATLa was administered before the induction of the disease, and 2 h later, the animals were killed. ATLa reduced the infiltrating neutrophils and nitrotyrosine staining in glomeruli. Subsequent changes of gene expression in the early phase were evaluated, and 5674 genes were present under the basal conditions in kidneys from normal mice; 54 upregulated genes and 25 downregulated genes were detected in anti-GBM nephritis. Eighteen of these upregulated genes were those induced by IFN-gamma. Real-time quantitative PCR analysis confirmed the results of the microarrays. To investigate a role of IFN-gamma in neutrophil infiltration, anti-GBM nephritis was induced in IFN-gamma knockout mice. The number of infiltrating neutrophils in these mice did not differ from those in wild-type mice. Also examined were CD11b expression on neutrophils from mice treated with ATLa by flow cytometry, but suppression of this adhesion molecule was not observed. Neutrophil infiltration was successfully inhibited by ATLa in the early phase of murine anti-GBM nephritis. Microarray analysis detected the change of mRNA expression in anti-GBM nephritis and demonstrated amelioration of various genes by ATLa, which may provide a clue to the development of novel therapeutic approaches in immune renal injury.
Trumbić, Željka; Bekaert, Michaël; Taggart, John B; Bron, James E; Gharbi, Karim; Mladineo, Ivona
2015-11-25
The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.
Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight
Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila
2011-01-01
Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297
Yu, Hualong; Hong, Shufang; Yang, Xibei; Ni, Jun; Dan, Yuanyuan; Qin, Bin
2013-01-01
DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.
See what you eat--broad GMO screening with microarrays.
von Götz, Franz
2010-03-01
Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip GMO (Eppendorf, Germany; http://www.eppendorf-biochip.com), which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative.
Genome Consortium for Active Teaching: Meeting the Goals of BIO2010
Ledbetter, Mary Lee S.; Hoopes, Laura L.M.; Eckdahl, Todd T.; Heyer, Laurie J.; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail
2007-01-01
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students. PMID:17548873
Genome Consortium for Active Teaching: meeting the goals of BIO2010.
Campbell, A Malcolm; Ledbetter, Mary Lee S; Hoopes, Laura L M; Eckdahl, Todd T; Heyer, Laurie J; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail
2007-01-01
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students.
Reverse phase protein microarrays: fluorometric and colorimetric detection.
Gallagher, Rosa I; Silvestri, Alessandra; Petricoin, Emanuel F; Liotta, Lance A; Espina, Virginia
2011-01-01
The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.
Quantifying protein-protein interactions in high throughput using protein domain microarrays.
Kaushansky, Alexis; Allen, John E; Gordus, Andrew; Stiffler, Michael A; Karp, Ethan S; Chang, Bryan H; MacBeath, Gavin
2010-04-01
Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.
Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris
2016-01-01
Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that it is an independent circadian rhythm-competent equivalence group poised to signal its environment, defend against maternal immune rejection, and begin the rapid commitment events of early embryogenesis. PMID:26493868
Sequencing, annotation, and characterization of the influenza ferret infectome.
León, Alberto J; Banner, David; Xu, Luoling; Ran, Longsi; Peng, Zhiyu; Yi, Kang; Chen, Chao; Xu, Fengping; Huang, Jinrong; Zhao, Zhen; Lin, Zhen; Huang, Stephen H S; Fang, Yuan; Kelvin, Alyson A; Ross, Ted M; Farooqui, Amber; Kelvin, David J
2013-02-01
Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.
2010-01-01
mortality rate for Chronic Q fever to less than 1% [1, 4, 5]. Chronic infections may cause life-threatening endocarditis but may not show apparent...Houpikian, P., Tissot Dupont, H., Riss, J. M. et a/., Treatment of a fever endocarditis : comparison of 2 regimens containing doxycycline and ofloxacin...fever endocarditis . J. Infect. Dis. 1998, 178, 278-281. [7) Yu, X., Raoult, D., Serotyping Coxiella burnetii isolates from acute and chronic a fever
Feng, Yuandong; Shen, Ying; Chen, Hongli; Wang, Xiaman; Zhang, Ru; Peng, Yue; Lei, Xiaoru; Liu, Tian; Liu, Jing; Gu, Liufang; Wang, Fangxia; Yang, Yun; Bai, Ju; Wang, Jianli; Zhao, Wanhong; He, Aili
2018-02-01
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in acute myeloid leukemia (AML), we analyzed the expression profile of lncRNAs and mRNAs in AML. Five pairs of AML patients and iron deficiency anemia (IDA) controls were screened by microarray. Through coexpression analysis, differently expressed transcripts were divided into modules, and lncRNAs were functionally annotated. We further analyzed the clinical significance of crucial lncRNAs from modules in public data. Finally, the expression of three lncRNAs, RP11-222K16.2, AC092580.4, and RP11-305O.6, were validated in newly diagnosed AML, AML relapse, and IDA patient groups by quantitative RT-PCR, which may be associated with AML patients' overall survival. Further analysis showed that RP11-222K16.2 might affect the differentiation of natural killer cells, and promote the immunized evasion of AML by regulating Eomesodermin expression. Analysis of this study revealed that dysregulated lncRNAs and mRNAs in AML vs IDA controls could affect the immune system and hematopoietic cell differentiation. The biological functions of those lncRNAs need to be further validated. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells
Liao, Yunfei; Chen, Lulu; Feng, Yong; Shen, Jacson; Gao, Yan; Cote, Gregory; Choy, Edwin; Harmon, David; Mankin, Henry; Hornicek, Francis; Duan, Zhenfeng
2017-01-01
Programmed cell death ligand 1 (PD-L1) is a transmembrane protein that is expressed on tumor cells that suppresses the T cell-mediated immune response. Therapies targeting the PD-L1 pathway promote anti-tumor immunity and have shown promising results in some types of cancers. However, the functional and therapeutic roles of PD-L1 in osteosarcoma remain largely unknown. In this study, we found that PD-L1 protein was expressed in osteosarcoma cell lines and tissue microarray of patient tumors. Tissue microarray immunohistochemistry analysis showed that the overall and five-year survival rates of patients with high levels of PD-L1 expression were significantly shorter than patients with low levels. High levels of PD-L1 expression were also associated with metastasis in osteosarcoma patients. Furthermore, we applied the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system to target PD-L1 gene at the DNA level in osteosarcoma cell lines. We found that the expression of PD-L1 could be efficiently disrupted by CRISPR/Cas9 system and PD-L1 knockdown increased drug sensitivities for doxorubicin and paclitaxel. These results suggest that PD-L1 is an independent prognostic factor in osteosarcoma and that PD-L1 knockout by CRISPR/Cas9 may be a therapeutic approach for the treatment of osteosarcoma. PMID:28415820
Hepatic gene expression patterns following trauma-hemorrhage: effect of posttreatment with estrogen.
Yu, Huang-Ping; Pang, See-Tong; Chaudry, Irshad H
2013-01-01
The aim of this study was to examine the role of estrogen on hepatic gene expression profiles at an early time point following trauma-hemorrhage in rats. Groups of injured and sham controls receiving estrogen or vehicle were killed 2 h after injury and resuscitation, and liver tissue was harvested. Complementary RNA was synthesized from each RNA sample and hybridized to microarrays. A large number of genes were differentially expressed at the 2-h time point in injured animals with or without estrogen treatment. The upregulation or downregulation of a cohort of 14 of these genes was validated by reverse transcription-polymerase chain reaction. This large-scale microarray analysis shows that at the 2-h time point, there is marked alteration in hepatic gene expression following trauma-hemorrhage. However, estrogen treatment attenuated these changes in injured animals. Pathway analysis demonstrated predominant changes in the expression of genes involved in metabolism, immunity, and apoptosis. Upregulation of low-density lipoprotein receptor, protein phosphatase 1, regulatory subunit 3C, ring-finger protein 11, pyroglutamyl-peptidase I, bactericidal/permeability-increasing protein, integrin, αD, BCL2-like 11, leukemia inhibitory factor receptor, ATPase, Cu transporting, α polypeptide, and Mk1 protein was found in estrogen-treated trauma-hemorrhaged animals. Thus, estrogen produces hepatoprotection following trauma-hemorrhage likely via antiapoptosis and improving/restoring metabolism and immunity pathways.
Calduch-Giner, Josep A.; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume
2016-01-01
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts. PMID:27610085
Qi, Yong; Xiong, Xiaolu; Wang, Xile; Duan, Changsong; Jia, Yinjun; Jiao, Jun; Gong, Wenping; Wen, Bohai
2013-01-01
Background Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. Methods R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA). Results Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. Conclusions Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease. PMID:23894656
Calduch-Giner, Josep A; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume
2016-01-01
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells.
Liao, Yunfei; Chen, Lulu; Feng, Yong; Shen, Jacson; Gao, Yan; Cote, Gregory; Choy, Edwin; Harmon, David; Mankin, Henry; Hornicek, Francis; Duan, Zhenfeng
2017-05-02
Programmed cell death ligand 1 (PD-L1) is a transmembrane protein that is expressed on tumor cells that suppresses the T cell-mediated immune response. Therapies targeting the PD-L1 pathway promote anti-tumor immunity and have shown promising results in some types of cancers. However, the functional and therapeutic roles of PD-L1 in osteosarcoma remain largely unknown. In this study, we found that PD-L1 protein was expressed in osteosarcoma cell lines and tissue microarray of patient tumors. Tissue microarray immunohistochemistry analysis showed that the overall and five-year survival rates of patients with high levels of PD-L1 expression were significantly shorter than patients with low levels. High levels of PD-L1 expression were also associated with metastasis in osteosarcoma patients. Furthermore, we applied the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system to target PD-L1 gene at the DNA level in osteosarcoma cell lines. We found that the expression of PD-L1 could be efficiently disrupted by CRISPR/Cas9 system and PD-L1 knockdown increased drug sensitivities for doxorubicin and paclitaxel. These results suggest that PD-L1 is an independent prognostic factor in osteosarcoma and that PD-L1 knockout by CRISPR/Cas9 may be a therapeutic approach for the treatment of osteosarcoma.
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-01-01
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068
Zhong, Huaqing; Hu, Xinran; Janowski, Andrew B; Storch, Gregory A; Su, Liyun; Cao, Lingfeng; Yu, Jinsheng; Xu, Jin
2017-12-19
Epstein-Barr virus (EBV) is a common human pathogen that infects over 95% of the population worldwide. In the present study, the whole transcriptome microarray data were generated from peripheral blood mononuclear cells from Chinese children with acute infectious mononucleosis (AIM) and chronic active EBV infection (CAEBV) that were also compared with a publicly available microarray dataset from a study of American college students with AIM. Our study characterized for the first time a broad spectrum of molecular signatures in AIM and CAEBV. The key findings from the transcriptome profiling were validated with qPCR and flow cytometry assays. The most important finding in our study is the discovery of predominant γδ TCR expression and γδ T cell expansion in AIM. This finding, in combination with the striking up-regulation of CD3, CD8 and CD94, suggests that CD8+ T cells and CD94+ NK cells may play a major role in AIM. Moreover, the unique up-regulation of CD64A/B and its significant correlation with the monocyte marker CD14 was observed in CAEBV and that implies an important role of monocytes in CAEBV. In conclusion, our study reveals major cell types (particularly γδ T cells) in the host cellular immune response against AIM and CAEBV.
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-02-03
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.
Roufas, Constantinos; Chasiotis, Dimitrios; Makris, Anestis; Efstathiades, Christodoulos; Dimopoulos, Christos; Zaravinos, Apostolos
2018-01-01
Recently, immune-checkpoint blockade has shown striking clinical results in different cancer patients. However, a significant inter-individual and inter-tumor variability exists among different cancers. The expression of the toxins granzyme A (GZMA) and perforin 1 (PRF1), secreted by effector cytotoxic T cells and natural killer (NK) cells, were recently used as a denominator of the intratumoral immune cytolytic activity (CYT). These levels are significantly elevated upon CD8+ T-cell activation as well as during a productive clinical response against immune-checkpoint blockade therapies. Still, it is not completely understood how different tumors induce and adapt to immune responses. Here, we calculated the CYT across different cancer types and focused on differences between primary and metastatic tumors. Using data from 10,355, primary tumor resection samples and 2,787 normal samples that we extracted from The Cancer Genome Atlas and Genotype-Tissue Expression project databases, we screened the variation of CYT across 32 different cancer types and 28 different normal tissue types. We correlated the cytolytic levels in each cancer type with the corresponding patient group's overall survival, the expression of several immune-checkpoint molecules, as well as with the load of tumor-infiltrating lymphocytes (TILs), and tumor-associated neutrophils (TANs) in these tumors. We found diverse levels of CYT across different cancer types, with highest levels in kidney, lung, and cervical cancers, and lowest levels in glioma, adrenocortical carcinoma (ACC), and uveal melanoma. GZMA protein was either lowly expressed or absent in at least half of these tumors; whereas PRF1 protein was not detected in almost any of the different tumor types, analyzing tissue microarrays from 20 different tumor types. CYT was significantly higher in metastatic skin melanoma and correlated significantly to the TIL load. In TCGA-ACC, skin melanoma, and bladder cancer, CYT was associated with an improved patient outcome and high levels of both GZMA and PRF1 synergistically affected patient survival in these cancers. In bladder, breast, colon, esophageal, kidney, ovarian, pancreatic, testicular, and thyroid cancers, high CYT was accompanied by upregulation of at least one immune-checkpoint molecule, indicating that similar to melanoma and prostate cancer, immune responses in cytolytic-high tumors elicit immune suppression in the tumor microenvironment. Overall, our data highlight the existence of diverse levels of CYT across different cancer types and suggest that along with the existence of complicated associations among various tumor-infiltrated immune cells, it is capable to promote or inhibit the establishment of a permissive tumor microenvironment, depending on the cancer type. High levels of immunosuppression seem to exist in several tumor types.
Molecular and clinical characterization of IDH associated immune signature in lower-grade gliomas.
Qian, Zenghui; Li, Yiming; Fan, Xing; Zhang, Chuanbao; Wang, Yinyan; Jiang, Tao; Liu, Xing
2018-01-01
Background : Mutations in isocitrate dehydrogenase (IDH) affect the development and prognosis of gliomas. We investigated the role of IDH mutations in the regulation of immune phenotype in lower-grade gliomas (LGGs). Method and patients : A total of 1,008 cases with clinical and IDH mutation data from five cohorts were enrolled. Samples with RNA sequencing data from the Chinese Glioma Genome Atlas (CGGA) were used as training set, whereas RNA data from the Cancer Genome Atlas, Repository for Molecular Brain Neoplasia, GSE16011, and CGGA microarray databases were used for validation. R language tools and bioinformatics analysis were used for gene signature construction and biological function annotation. Results : We found that IDH mutations caused down-regulation of local immune response as among 332 immune system-related genes, 196(59.0%) were differentially expressed according to IDH mutation status. Nearly 70% of those differentially expressed genes exhibited prognostic value in LGGs. An immune response-based gene signature was constructed that distinguished cases with high- or low-risk of unfavorable prognosis and remained an independent prognostic factor in multivariate analyses in both training and validation cohorts. Samples from high-risk cases exhibited elevated expression of genes involved in immune response and NF-κB pathway activation. Furthermore, we found a strong correlation between the risk score and T cells, macrophage-related immune response, and expression of several prominent immune checkpoints. Conclusion : Our results indicated that mutant IDH is highly associated with the regulation of the immune microenvironment in LGGs. The observed immune system gene signature, which was sensitive to IDH mutation status, efficiently predicted patient survival.
Transcriptome profiles in sarcoidosis and their potential role in disease prediction.
Schupp, Jonas C; Vukmirovic, Milica; Kaminski, Naftali; Prasse, Antje
2017-09-01
Sarcoidosis is a systemic disease defined by the presence of nonnecrotizing granuloma in the absence of any known cause. Although the heterogeneity of sarcoidosis is well characterized clinically, the transcriptome of sarcoidosis and underlying molecular mechanisms are not. The signal of all transcripts, small and long noncoding RNAs, can be detected using microarrays or RNA-Sequencing. Analyzing the transcriptome of tissues that are directly affected by granulomas is of great importance to understand biology of the disease and may be predictive of disease and treatment outcome. Multiple genome wide expression studies performed on sarcoidosis affected tissues were published in the last 11 years. Published studies focused on differences in gene expression between sarcoidosis vs. control tissues, stable vs. progressive sarcoidosis, as well as sarcoidosis vs. other diseases. Strikingly, all these transcriptomics data confirm the key role of TH1 immune response in sarcoidosis and particularly of interferon-γ (IFN-γ) and type I IFN-driven signaling pathways. The steps toward transcriptomics of sarcoidosis in precision medicine highlight the potentials of this approach. Large prospective follow-up studies are required to identify signatures predictive of disease progression and outcome.
NASA Astrophysics Data System (ADS)
Bilek, Marcela M. M.
2014-08-01
Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.
Constitutional downregulation of SEMA5A expression in autism.
Melin, M; Carlsson, B; Anckarsater, H; Rastam, M; Betancur, C; Isaksson, A; Gillberg, C; Dahl, N
2006-01-01
There is strong evidence for the importance of genetic factors in idiopathic autism. The results from independent twin and family studies suggest that the disorder is caused by the action of several genes, possibly acting epistatically. We have used cDNA microarray technology for the identification of constitutional changes in the gene expression profile associated with idiopathic autism. Samples were obtained and analyzed from 6 affected subjects belonging to multiplex autism families and from 6 healthy controls. We assessed the expression levels for approximately 7,700 genes by cDNA microarrays using mRNA derived from Epstein-Barr virus-transformed B lymphocytes. The microarray data were analyzed in order to identify up- or downregulation of specific genes. A common pattern with nine downregulated genes was identified among samples derived from individuals with autism when compared to controls. Four of these nine genes encode proteins involved in biological processes associated with brain function or the immune system, and are consequently considered as candidates for genes associated with autism. Quantitative real-time PCR confirms the downregulation of the gene encoding SEMA5A, a protein involved in axonal guidance. Epstein-Barr virus should be considered as a possible source for altered expression, but our consistent results make us suggest SEMA5A as a candidate gene in the etiology of idiopathic autism.
Constitutional downregulation of SEMA5A expression in autism
Melin, Malin; Carlsson, Birgit; Anckarsäter, Henrik; Rastam, Maria; Betancur, Catalina; Isaksson, Anders; Gillberg, Christopher; Dahl, Niklas
2006-01-01
There is strong evidence for the importance of genetic factors in idiopathic autism. The results from independent twin and family studies suggest that the disorder is caused by the action of several genes, possibly acting epistatically. We have used cDNA microarray technology for the identification of constitutional changes in the gene expression profile associated with idiopathic autism. Samples were obtained and analyzed from six affected subjects belonging to multiplex autism families and from six healthy controls. We assessed the expression levels for approximately 7,700 genes by cDNA microarrays using mRNA derived from Epstein Barr virus (EBV)-transformed B-lymphocytes. The microarray data was analyzed in order to identify up- or down-regulation of specific genes. A common pattern with nine down-regulated genes was identified among samples derived from individuals with autism when compared to controls. Four of these nine genes encode proteins involved in biological processes associated with brain function or the immune system, and are consequently considered as candidates for genes associated with autism. Quantitative realtime PCR confirms the down-regulation of the gene encoding SEMA5A, a protein involved in axonal guidance. EBV should be considered as a possible source for altered expression but our consistent results make us suggest SEMA5A a candidate gene in the etiology of idiopathic autism. PMID:17028446
de Greeff, Astrid; Zadoks, Ruth; Ruuls, Lisette; Toussaint, Mathilda; Nguyen, Thi Kim Anh; Downing, Alison; Rebel, Johanna; Stockhofe-Zurwieden, Norbert; Smith, Hilde
2013-06-01
Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in response to Strep. uberis was compared between infected and control quarters in 3 animals. All quarters (n=16) were sampled at 16 different locations. Microarray data showed that 239 genes were differentially expressed between infected and control quarters. No differences in gene expression were observed between the different locations. Microarray data were confirmed for several genes using quantitative PCR analysis. Genes differentially expressed due to early Strep. uberis mastitis represented several stages of the process of infection: (1) pathogen recognition; (2) chemoattraction of neutrophils; (3) tissue repair mechanisms; and (4) bactericidal activity. Three different pathogen recognition genes were induced: ficolins, lipopolysaccharide binding protein, and toll-like receptor 2. Calgranulins were found to be the most strongly upregulated genes during early inflammation. By histology and immunohistochemistry, we demonstrated that changes in gene expression in response to Strep. uberis were induced both in infiltrating somatic milk cells and in mammary epithelial cells, demonstrating that the latter cell type plays a role in milk production as well as immune responsiveness. Given the rapid development of inflammation or mastitis after infection, early diagnosis of (Strep. uberis) mastitis is required for prevention of disease and spread of the pathogen. Insight into host responses could help to design immunomodulatory therapies to dampen inflammation after (early) diagnosis of Strep. uberis mastitis. Future research should focus on development of these early diagnostics and immunomodulatory components for mastitis treatment. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Brummelman, Jolanda; van der Maas, Larissa; Tilstra, Wichard; Pennings, Jeroen L. A.; Han, Wanda G. H.; van Els, Cécile A. C. M.; van Riet, Elly; Kersten, Gideon F. A.; Metz, Bernard
2016-01-01
Effective immunity against Bordetella pertussis is currently under discussion following the stacking evidence of pertussis resurgence in the vaccinated population. Natural immunity is more effective than vaccine-induced immunity indicating that knowledge on infection-induced responses may contribute to improve vaccination strategies. We applied a systems biology approach comprising microarray, flow cytometry and multiplex immunoassays to unravel the molecular and cellular signatures in unprotected mice and protected mice with infection-induced immunity, around a B. pertussis challenge. Pre-existing systemic memory Th1/Th17 cells, memory B-cells, and mucosal IgA specific for Ptx, Vag8, Fim2/3 were detected in the protected mice 56 days after an experimental infection. In addition, pre-existing high activity and reactivation of pulmonary innate cells such as alveolar macrophages, M-cells and goblet cells was detected. The pro-inflammatory responses in the lungs and serum, and neutrophil recruitment in the spleen upon an infectious challenge of unprotected mice were absent in protected mice. Instead, fast pulmonary immune responses in protected mice led to efficient bacterial clearance and harbored potential new gene markers that contribute to immunity against B. pertussis. These responses comprised of innate makers, such as Clca3, Retlna, Glycam1, Gp2, and Umod, next to adaptive markers, such as CCR6+ B-cells, CCR6+ Th17 cells and CXCR6+ T-cells as demonstrated by transcriptome analysis. In conclusion, besides effective Th1/Th17 and mucosal IgA responses, the primary infection-induced immunity benefits from activation of pulmonary resident innate immune cells, achieved by local pathogen-recognition. These molecular signatures of primary infection-induced immunity provided potential markers to improve vaccine-induced immunity against B. pertussis. PMID:27711188
Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile
Fahrer, Aude M.; Konigshofer, Yves; Kerr, Elizabeth M.; Ghandour, Ghassan; Mack, David H.; Davis, Mark M.; Chien, Yueh-hsiu
2001-01-01
γδ T lymphocytes in the intestinal intraepithelial layer (γδ IELs) are thought to contribute to immune competence, but their actual function remains poorly understood. Here we used DNA microarrays to study the gene expression profile of γδ IELs in a Yersinia infection system to better define their roles. To validate this approach, mesenteric lymph node CD8+ αβ T cells were similarly analyzed. The transcription profiles show that, whereas lymph node CD8+ αβ T cells must be activated to become cytotoxic effectors, γδ IELs are constitutively activated and appear to use different signaling cascades. Our data suggest that γδ IELs may respond efficiently to a broad range of pathological situations irrespective of their diverse T cell antigen receptor repertoire. γδ IELs may modulate local immune responses and participate in intestinal lipid metabolism, cholesterol homeostasis, and physiology. This study provides a strong basis for further investigations of the roles of these cells as well as mucosal immune defense in general. PMID:11526237
Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne
2005-04-15
The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.
Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto
2015-01-01
During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.
An immune-related lncRNA signature for patients with anaplastic gliomas.
Wang, Wen; Zhao, Zheng; Yang, Fan; Wang, Haoyuan; Wu, Fan; Liang, Tingyu; Yan, Xiaoyan; Li, Jiye; Lan, Qing; Wang, Jiangfei; Zhao, Jizong
2018-01-01
We investigated immune-related long non-coding RNAs (lncRNAs) that may be exploited as potential therapeutic targets in anaplastic gliomas. We obtained 572 lncRNAs and 317 immune genes from the Chinese Glioma Genome Atlas microarray and constructed immune-related lncRNAs co-expression networks to identify immune-related lncRNAs. Two additional datasets (GSE16011, REMBRANDT) were used for validation. Gene set enrichment analysis and principal component analysis were used for functional annotation. Immune-lncRNAs co-expression networks were constructed. Nine immune-related lncRNAs (SNHG8, PGM5-AS1, ST20-AS1, LINC00937, AGAP2-AS1, MIR155HG, TUG1, MAPKAPK5-AS1, and HCG18) signature was identified in patients with anaplastic gliomas. Patients in the low-risk group showed longer overall survival (OS) and progression-free survival than those in the high-risk group (P < 0.0001; P < 0.0001). Additionally, patients in the high-risk group displayed no-deletion of chromosomal arms 1p and/or 19q, isocitrate dehydrogenase wild-type, classical and mesenchymal TCGA subtype, G3 CGGA subtype, and lower Karnofsky performance score (KPS). Moreover, the signature was an independent factor and was significantly associated with the OS (P = 0.000, hazard ratio (HR) = 1.434). These findings were further validated in two additional datasets (GSE16011, REMBRANDT). Low-risk and high-risk groups displayed different immune status based on principal components analysis. Our results showed that the nine immune-related lncRNAs signature has prognostic value for anaplastic gliomas.
Nair, Sethu C; Pattaradilokrat, Sittiporn; Zilversmit, Martine M; Dommer, Jennifer; Nagarajan, Vijayaraj; Stephens, Melissa T; Xiao, Wenming; Tan, John C; Su, Xin-Zhuan
2014-01-01
The rodent malaria parasite Plasmodium yoelii is an important model for studying malaria immunity and pathogenesis. One approach for studying malaria disease phenotypes is genetic mapping, which requires typing a large number of genetic markers from multiple parasite strains and/or progeny from genetic crosses. Hundreds of microsatellite (MS) markers have been developed to genotype the P. yoelii genome; however, typing a large number of MS markers can be labor intensive, time consuming, and expensive. Thus, development of high-throughput genotyping tools such as DNA microarrays that enable rapid and accurate large-scale genotyping of the malaria parasite will be highly desirable. In this study, we sequenced the genomes of two P. yoelii strains (33X and N67) and obtained a large number of single nucleotide polymorphisms (SNPs). Based on the SNPs obtained, we designed sets of oligonucleotide probes to develop a microarray that could interrogate ∼11,000 SNPs across the 14 chromosomes of the parasite in a single hybridization. Results from hybridizations of DNA samples of five P. yoelii strains or cloned lines (17XNL, YM, 33X, N67 and N67C) and two progeny from a genetic cross (N67×17XNL) to the microarray showed that the array had a high call rate (∼97%) and accuracy (99.9%) in calling SNPs, providing a simple and reliable tool for typing the P. yoelii genome. Our data show that the P. yoelii genome is highly polymorphic, although isogenic pairs of parasites were also detected. Additionally, our results indicate that the 33X parasite is a progeny of 17XNL (or YM) and an unknown parasite. The highly accurate and reliable microarray developed in this study will greatly facilitate our ability to study the genetic basis of important traits and the disease it causes. Published by Elsevier B.V.
Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben
2009-12-08
Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms.
Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott
2010-04-01
An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.
2010-01-01
Background The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. Results In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. Conclusion High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data. PMID:20122245
Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong
2010-01-18
The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.
Lee, Dong Sook; Kim, Young Cheon; Kwon, Sun Jae; Ryu, Choong-Min; Park, Ohkmae K.
2017-01-01
Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and overexpressing (CRK36OE) plants were prepared. CRK36OE plants exhibited increased hypersensitive cell death and ROS burst in response to avirulent pathogens. Treatment with a typical pathogen-associated molecular pattern, flg22, markedly induced pattern-triggered immune responses, notably stomatal defense, in CRK36OE plants. The immune responses were weakened in crk36 plants. Protein-protein interaction assays revealed the in vivo association of CRK36, FLS2, and BIK1. CRK36 enhanced flg22-triggered BIK1 phosphorylation, which showed defects with Cys mutations in the DUF26 motifs of CRK36. Disruption of BIK1 and RbohD/RbohF genes further impaired CRK36-mediated stomatal defense. We propose that CRK36, together with BIK1 and NADPH oxidases, may form a positive activation loop that enhances ROS burst and leads to the promotion of stomatal immunity. PMID:29163585
Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.
2015-01-01
The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554
Sebbane, Florent; Lemaître, Nadine; Sturdevant, Daniel E; Rebeil, Roberto; Virtaneva, Kimmo; Porcella, Stephen F; Hinnebusch, B Joseph
2006-08-01
Yersinia pestis causes bubonic plague, characterized by an enlarged, painful lymph node, termed a bubo, that develops after bacterial dissemination from a fleabite site. In susceptible animals, the bacteria rapidly escape containment in the lymph node, spread systemically through the blood, and produce fatal sepsis. The fulminant progression of disease has been largely ascribed to the ability of Y. pestis to avoid phagocytosis and exposure to antimicrobial effectors of innate immunity. In vivo microarray analysis of Y. pestis gene expression, however, revealed an adaptive response to nitric oxide (NO)-derived reactive nitrogen species and to iron limitation in the extracellular environment of the bubo. Polymorphonuclear neutrophils recruited to the infected lymph node expressed abundant inducible NO synthase, and several Y. pestis homologs of genes involved in the protective response to reactive nitrogen species were up-regulated in the bubo. Mutation of one of these genes, which encodes the Hmp flavohemoglobin that detoxifies NO, attenuated virulence. Thus, the ability of Y. pestis to destroy immune cells and remain extracellular in the bubo appears to limit exposure to some but not all innate immune effectors. High NO levels induced during plague may also influence the developing adaptive immune response and contribute to septic shock.
Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K; Vitalone, Matthew J; Chen, Rong; Butte, Atul J; Salvatierra, Oscar; Sarwal, Minnie M
2011-12-01
The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy.
Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong
2015-08-18
p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection.
Transcriptomic Response of Porcine PBMCs to Vaccination with Tetanus Toxoid as a Model Antigen
Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus
2013-01-01
The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes. PMID:23536793
Transcriptomic response of porcine PBMCs to vaccination with tetanus toxoid as a model antigen.
Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus
2013-01-01
The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes.
Immune Response in Microgravity: Genetic Basis and Countermeasure Development Implications
NASA Technical Reports Server (NTRS)
Risin, Diana; Ward, Nancy E.; Risin, Semyon A.; Pellis, Neal R.
2006-01-01
Impairment of the immunity in astronauts and cosmonauts even in shortterm flights is a recognized risk. Longterm orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Studies in true and modeled microgravity (MG) have demonstrated that MG directly affects numerous lymphocyte functions. The purpose of this study was to screen for genes involved in lymphocytes response to modeled microgravity (MMG) that could explain the functional and structural changes observed earlier. The microgravity-induced changes in gene expression were analyzed by microarray DNA chip technology. CD3and IL2activated Tcells were cultured in 1g (static) and modeled microgravity (NASA Rotating Wall Vessel bioreactor) conditions for 24 hours. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Microarray experiments were performed utilizing Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes. To decrease the biological variation and aid in detecting microgravity-associated changes, experiments were performed in triplicate using cells obtained from three different donors. Exposure to modeled microgravity resulted in alteration of 89 genes, 10 of which were upregulated and 79 down-regulated. Altered genes were categorized by their function, structural role and by association with metabolic and regulatory pathways. A large proportion was found to be involved in fundamental cellular processes: signal transduction, DNA repair, apoptosis, and multiple metabolic pathways. There was a group of genes directly related to immune and inflammatory responses (IL7R, granulysin, proteasome activator subunit 2, peroxiredoxin 4, HLADRA, lymphocyte antigen 75, IL18R and DOCK2 genes). Among these genes only one (IL7R) was upregulated, the rest were downregulated. The upregulation of the IL7 receptor gene was confirmed by RT PCR. Three genes with altered expression were identified in the apoptosis related group (Granzyme B, APO2 ligand and Beta3endonexin). All of them were downregulated. Gene expression changes in MG might appear pivotal in identifying potential molecular targets for countermeasure development. (Supported by NRA OLMSA02 and NSCORT NAG54072 grants).
Higashiyama, Hiroyuki; Billin, Andrew N; Okamoto, Yuji; Kinoshita, Mine; Asano, Satoshi
2007-05-01
Peroxisome proliferator-activated receptor-delta (PPAR-delta) is known as a transcription factor involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in several tissues, such as skeletal muscle, liver and adipose tissues. In this study, to elucidate systemic physiological functions of PPAR-delta, we examined the tissue distribution and localization of PPAR-delta in adult mouse tissues using tissue microarray (TMA)-based immunohistochemistry. PPAR-delta positive signals were observed on variety of tissues/cells in multiple systems including cardiovascular, urinary, respiratory, digestive, endocrine, nervous, hematopoietic, immune, musculoskeletal, sensory and reproductive organ systems. In these organs, PPAR-delta immunoreactivity was generally localized on the nucleus, although cytoplasmic localization was observed on several cell types including neurons in the nervous system and cells of the islet of Langerhans. These expression profiling data implicate various physiological roles of PPAR-delta in multiple organ systems. TMA-based immunohistochemistry enables to profile comprehensive protein localization and distribution in a high-throughput manner.
New insights about host response to smallpox using microarray data.
Esteves, Gustavo H; Simoes, Ana C Q; Souza, Estevao; Dias, Rodrigo A; Ospina, Raydonal; Venancio, Thiago M
2007-08-24
Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.
PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.
Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping
2016-12-01
Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.
Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A
2013-04-01
Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.
2009-01-01
Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays) representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration) in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level. PMID:20003209
Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin
2015-01-01
Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977
Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin
2015-01-01
Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.
Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan
2015-01-01
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.
Rondini, Elizabeth A; Bennink, Maurice R
2012-01-01
We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.
The Role of the Immune Response in the Pathogenesis of Thyroid Eye Disease: A Reassessment
Rosenbaum, James T.; Choi, Dongseok; Wong, Amanda; Wilson, David J.; Grossniklaus, Hans E.; Harrington, Christina A.; Dailey, Roger A.; Ng, John D.; Steele, Eric A.; Czyz, Craig N.; Foster, Jill A.; Tse, David; Alabiad, Chris; Dubovy, Sander; Parekh, Prashant K.; Harris, Gerald J.; Kazim, Michael; Patel, Payal J.; White, Valerie A.; Dolman, Peter J.; Edward, Deepak P.; Alkatan, Hind M.; al Hussain, Hailah; Selva, Dinesh; Yeatts, R. Patrick; Korn, Bobby S.; Kikkawa, Don O.; Stauffer, Patrick; Planck, Stephen R.
2015-01-01
Background Although thyroid eye disease is a common complication of Graves’ disease, the pathogenesis of the orbital disease is poorly understood. Most authorities implicate the immune response as an important causal factor. We sought to clarify pathogenesis by using gene expression microarray. Methods An international consortium of ocular pathologists and orbital surgeons contributed formalin fixed orbital biopsies. RNA was extracted from orbital tissue from 20 healthy controls, 25 patients with thyroid eye disease (TED), 25 patients with nonspecific orbital inflammation (NSOI), 7 patients with sarcoidosis and 6 patients with granulomatosis with polyangiitis (GPA). Tissue was divided into a discovery set and a validation set. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays which include 54,000 probe sets. Results Principal component analysis showed that gene expression from tissue from patients with TED more closely resembled gene expression from healthy control tissue in comparison to gene expression characteristic of sarcoidosis, NSOI, or granulomatosis with polyangiitis. Unsupervised cluster dendrograms further indicated the similarity between TED and healthy controls. Heat maps based on gene expression for cytokines, chemokines, or their receptors showed that these inflammatory markers were associated with NSOI, sarcoidosis, or GPA much more frequently than with TED. Conclusion This is the first study to compare gene expression in TED to gene expression associated with other causes of exophthalmos. The juxtaposition shows that inflammatory markers are far less characteristic of TED relative to other orbital inflammatory diseases. PMID:26371757
Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium
Munoz-Erazo, Luis; Natoli, Ricardo; Provis, Jan Marie; Madigan, Michelle Catherine
2012-01-01
Purpose To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Methods Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differential expression of genes using Affymetrix microarray. Quantitative real-time PCR analysis of 23 genes was used to validate the microarray results. Results Functional annotation clustering of the microarray data showed that gene clusters involved in immune and antiviral responses ranked highly, involving genes such as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 10 (CXCL10), and toll like receptor 3 (TLR3). In conjunction with the quantitative real-time PCR analysis, other novel genes regulated by WNV infection included indoleamine 2,3-dioxygenase (IDO1), genes involved in the transforming growth factor–β pathway (bone morphogenetic protein and activin membrane-bound inhibitor homolog [BAMBI] and activating transcription factor 3 [ATF3]), and genes involved in apoptosis (tumor necrosis factor receptor superfamily, member 10d [TNFRSF10D]). WNV-infected RPE did not produce any interferon-γ, suggesting that IDO1 is induced by other soluble factors, by the virus alone, or both. Conclusions Low-level WNV infection of hRPE cells induced expression of genes that are typically associated with the host cell response to virus infection. We also identified other genes, including IDO1 and BAMBI, that may influence the RPE and therefore outer blood-retinal barrier integrity during ocular infection and inflammation, or are associated with degeneration, as seen for example in aging. PMID:22509103
Carmona, Santiago J.; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C.; Campetella, Oscar; Buscaglia, Carlos A.; Agüero, Fernán
2015-01-01
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. PMID:25922409
Carmona, Santiago J; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C; Campetella, Oscar; Buscaglia, Carlos A; Agüero, Fernán
2015-07-01
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15 mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15 mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼ threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
The overall focus of this chapter will be the application of functional genomic approaches for the study of the imprinted gene family in swine. While there are varied definitions of “functional genomics” in general they focus on the application of genomic approaches such as DNA microarrays, single n...
Parasite-specific immune response in adult Drosophila melanogaster: a genomic study
Roxström-Lindquist, Katarina; Terenius, Olle; Faye, Ingrid
2004-01-01
Insects of the order Diptera are vectors for parasitic diseases such as malaria, sleeping sickness and leishmania. In the search for genes encoding proteins involved in the antiparasitic response, we have used the protozoan parasite Octosporea muscaedomesticae for oral infections of adult Drosophila melanogaster. To identify parasite-specific response molecules, other flies were exposed to virus, bacteria or fungi in parallel. Analysis of gene expression patterns after 24 h of microbial challenge, using Affymetrix oligonucleotide microarrays, revealed a high degree of microbe specificity. Many serine proteases, key intermediates in the induction of insect immune responses, were uniquely expressed following infection of the different organisms. Several lysozyme genes were induced in response to Octosporea infection, while in other treatments they were not induced or downregulated. This suggests that lysozymes are important in antiparasitic defence. PMID:14749722
Microarray characterization of gene expression changes in blood during acute ethanol exposure
2013-01-01
Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607
Mickum, Megan L; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W Evan; Wilkins, Patricia P; Van Die, Irma; Smith, David F; Nyame, A Kwame; Cummings, Richard D; Rivera-Marrero, Carlos A
2016-05-01
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mickum, Megan L.; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W. Evan; Wilkins, Patricia P.; Van Die, Irma; Smith, David F.; Nyame, A. Kwame
2016-01-01
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. PMID:26883596
2010-01-01
Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections. PMID:20663125
Bioinformatics and Microarray Data Analysis on the Cloud.
Calabrese, Barbara; Cannataro, Mario
2016-01-01
High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.
Harvey, Benjamin Simeon; Ji, Soo-Yeon
2017-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.
Statistical issues in signal extraction from microarrays
NASA Astrophysics Data System (ADS)
Bergemann, Tracy; Quiaoit, Filemon; Delrow, Jeffrey J.; Zhao, Lue Ping
2001-06-01
Microarray technologies are increasingly used in biomedical research to study genome-wide expression profiles in the post genomic era. Their popularity is largely due to their high throughput and economical affordability. For example, microarrays have been applied to studies of cell cycle, regulatory circuitry, cancer cell lines, tumor tissues, and drug discoveries. One obstacle facing the continued success of applying microarray technologies, however, is the random variaton present on microarrays: within signal spots, between spots and among chips. In addition, signals extracted by available software packages seem to vary significantly. Despite a variety of software packages, it appears that there are two major approaches to signal extraction. One approach is to focus on the identification of signal regions and hence estimation of signal levels above background levels. The other approach is to use the distribution of intensity values as a way of identifying relevant signals. Building upon both approaches, the objective of our work is to develop a method that is statistically rigorous and also efficient and robust. Statistical issues to be considered here include: (1) how to refine grid alignment so that the overall variation is minimized, (2) how to estimate the signal levels relative to the local background levels as well as the variance of this estimate, and (3) how to integrate red and green channel signals so that the ratio of interest is stable, simultaneously relaxing distributional assumptions.
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu
2009-01-01
Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors. PMID:19698124
PUFA diets alter the microRNA expression profiles in an inflammation rat model.
Zheng, Zheng; Ge, Yinlin; Zhang, Jinyu; Xue, Meilan; Li, Quan; Lin, Dongliang; Ma, Wenhui
2015-06-01
Omega‑3 and ‑6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA‑regulated inflammatory processes. Here, we established PUFA diet‑induced autoimmune‑prone (AP) and autoimmune‑averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno‑miR‑19b‑3p, ‑146b‑5p and ‑183‑5p expression were validated using stem‑loop reverse transcription‑quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA‑regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA‑regulated inflammatory pathways included the Toll‑like receptor (TLR), T cell receptor (TCR), NOD‑like receptor (NLR), RIG‑I‑like receptor (RLR), mitogen‑activated protein kinase (MAPK) and the transforming growth factor‑β (TGF‑β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet‑induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA‑regulated miRNAs in immune homeostasis.
Hou, Yixuan; Sun, Yan; Wang, Liyang; Luo, Haojun; Peng, Huimin; Liu, Manran
2013-01-01
Background The extensional signals in cross-talk between stromal cells and tumor cells generated from extracellular matrix molecules, soluble factor, and cell-cell adhesion complexes cooperate at the extra- and intracellular level in the tumor microenvironment. CAFs are the primary type of stromal cells in the tumor microenvironment and play a pivotal role in tumorigenesis and development. Hitherto, there is hardly any systematic analysis of the intrinsic relationship between CAFs function and its abnormal signaling pathway. The extreme complexity of CAFs’ features and their role in tumor development are needed to be further investigated. Methodology/Principal Findings We primary cultured CAFs and NFs from early stages of breast cancer tissue and identified them using their biomarker by immunohistochemistry for Fibronectin, α-SMA and FAP. Microarray was applied to analyze gene expression profiles of human breast CAFs and the paired NFs. The Up-regulated genes classified by Gene Ontology, signal pathways enriched by DAVID pathway analysis. Abnormal signaling pathways in breast cancer CAFs are involved in cell cycle, cell adhesion, signal transduction and protein transport being reported in CAFs derived from other tumors. Significantly, the altered ATM signaling pathway, a set of cell cycle regulated signaling, and immune associated signaling are identified to be changed in CAFs. Conclusions/Significance CAFs have the vigorous ability of proliferation and potential of invasion and migration comparing with NFs. CAFs could promote breast cancer cell invasion under co-culture conditions through up-regulated CCL18 and CXCL12. Consistently with its biologic behavior, the gene expression profiling analyzed by microarray shows that some of key signaling pathways, such as cell cycle, cell adhesion, and secreting factors play an important role in CAFs. The altered ATM signaling pathway is abnormally active in the early stage of breast cancer. The set of immune associated signaling may be involved in tumor cell immune evasion. PMID:23577100
The Role of IDO in Muc1 Targeted Immunotherapy
2013-06-01
the immune system activation, such as S100A8 , S100A9, Fc receptors, MHC Class II molecules and even arginase were significantly up-regulated...protein analysis of CCN1 revealed that it was not significantly changed between 10 groups (Figure 26A). Also although S100A8 and S100A9 were...highly altered in our RNA microarray data, protein levels of S100A8 and S100A9 were highly variable within our tumors and thus an exact correlation to
Lin, Che; Lin, Chin-Nan; Wang, Yu-Chao; Liu, Fang-Yu; Chuang, Yung-Jen; Lan, Chung-Yu; Hsieh, Wen-Ping; Chen, Bor-Sen
2014-10-24
The immune system is a key biological system present in vertebrates. Exposure to pathogens elicits various defensive immune mechanisms that protect the host from potential threats and harmful substances derived from pathogens such as parasites, bacteria, and viruses. The complex immune system of humans and many other vertebrates can be divided into two major categories: the innate and the adaptive immune systems. At present, analysis of the complex interactions between the two subsystems that regulate host defense and inflammatory responses remains challenging. Based on time-course microarray data following primary and secondary infection of zebrafish by Candida albicans, we constructed two intracellular protein-protein interaction (PPI) networks for primary and secondary responses of the host. 57 proteins and 341 PPIs were identified for primary infection while 90 proteins and 385 PPIs were identified for secondary infection. There were 20 proteins in common while 37 and 70 proteins specific to primary and secondary infection. By inspecting the hub proteins of each network and comparing significant changes in the number of linkages between the two PPI networks, we identified TGF-β signaling and apoptosis as two of the main functional modules involved in primary and secondary infection. Our initial in silico analyses pave the way for further investigation into the interesting roles played by the TGF-β signaling pathway and apoptosis in innate and adaptive immunity in zebrafish. Such insights could lead to therapeutic advances and improved drug design in the continual battle against infectious diseases.
Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue.
Reynés, Bàrbara; van Schothorst, Evert M; García-Ruiz, Estefanía; Keijer, Jaap; Palou, Andreu; Oliver, Paula
2017-05-03
Perivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.
Customizing microarrays for neuroscience drug discovery.
Girgenti, Matthew J; Newton, Samuel S
2007-08-01
Microarray-based gene profiling has become the centerpiece of gene expression studies in the biological sciences. The ability to now interrogate the entire genome using a single chip demonstrates the progress in technology and instrumentation that has been made over the last two decades. Although this unbiased approach provides researchers with an immense quantity of data, obtaining meaningful insight is not possible without intensive data analysis and processing. Custom developed arrays have emerged as a viable and attractive alternative that can take advantage of this robust technology and tailor it to suit the needs and requirements of individual investigations. The ability to simplify data analysis, reduce noise and carefully optimize experimental conditions makes it a suitable tool that can be effectively utilized in neuroscience drug discovery efforts. Furthermore, incorporating recent advancements in fine focusing gene profiling to include specific cellular phenotypes can help resolve the complex cellular heterogeneity of the brain. This review surveys the use of microarray technology in neuroscience paying special attention to customized arrays and their potential in drug discovery. Novel applications of microarrays and ancillary techniques, such as laser microdissection, FAC sorting and RNA amplification, have also been discussed. The notion that a hypothesis-driven approach can be integrated into drug development programs is highlighted.
Differences of RNA Expression in the Tendon According to Anatomic Outcomes in Rotator Cuff Repair.
Ahn, Jin-Ok; Chung, Jin-Young; Kim, Do Hoon; Im, Wooseok; Kim, Sae Hoon
2017-11-01
Despite increased understanding of the pathophysiology of rotator cuff tears and the evolution of rotator cuff repair, healing failure remains a substantial problem. The critical roles played by biological factors have been emphasized, but little is known of the implications of gene expression profile differences at the time of repair. To document the relationship between the perioperative gene expression of healed and unhealed rotator cuffs by RNA microarray analysis. Case-control study; Level of evidence, 3. Superior (supraspinatus involvement) and posterosuperior (supraspinatus and infraspinatus involvement) tears were included in the study. Samples of rotator cuff tendons were prospectively collected during rotator cuff surgery. Three samples were harvested at the tendon ends of tears from the anterior, middle (apex), and posterior parts using an arthroscopic punch. Seven patients with an unhealed rotator cuff were matched one-to-one with patients with a healed rotator cuff by sex, age, tear size, and fatty degeneration of rotator cuff muscles. mRNA microarray analysis was used to identify genetic differences between healed and unhealed rotator cuff tendons. Gene ontology and gene association files were obtained from the Gene Ontology Consortium, and the Gene Ontology system in DAVID was used to identify enhanced biological processes. Microarray analyses identified 262 genes that were differentially expressed by at least 1.5-fold between the healed and unhealed groups. Overall, in the healed group, 103 genes were significantly downregulated, and 159 were significantly upregulated. DAVID Functional Annotation Cluster analysis showed that in the healed group, the genes most upregulated were related to the G protein-coupled receptor protein signaling pathway and to the neurological system. On the other hand, the genes most downregulated were related to immune and inflammatory responses. BMP5 was the gene most upregulated in the healed group, and the majority of downregulated genes were involved in the immune/inflammatory response. The downregulation of inflammatory response genes and the upregulation of cell differentiation genes in torn rotator cuffs at the time of surgery are related to rotator cuff healing. These results provide useful baseline information for future biological studies on rotator cuff healing.
Wide screening of phage-displayed libraries identifies immune targets in planta.
Rioja, Cristina; Van Wees, Saskia C; Charlton, Keith A; Pieterse, Corné M J; Lorenzo, Oscar; García-Sánchez, Susana
2013-01-01
Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2 × 10(7) different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.
Hatogai, Ken; Kitano, Shigehisa; Fujii, Satoshi; Kojima, Takashi; Daiko, Hiroyuki; Nomura, Shogo; Yoshino, Takayuki; Ohtsu, Atsushi; Takiguchi, Yuichi; Doi, Toshihiko; Ochiai, Atsushi
2016-01-01
Immunotherapy with anti-PD-1 antibody preliminarily showed promising efficacy for treating esophageal squamous cell carcinoma (ESCC). Herein, we used tissue microarrays and immunohistochemically analyzed PD-L1 and various tumor infiltrating immune cells (TIICs) in specimens from 196 ESCC patients who had undergone curative resection without preoperative therapy. PD-L1 expressions in tumor cells (TCs) and TIICs, as well as infiltration of lymphocytes (CD4+, CD8+, FOXP3+, and PD- 1+) and macrophages (CD68+ and CD204+), were evaluated. PD-L1 was expressed in TCs of 18.4% and in TIICs of 83.3% of these patients. PD-L1 expressions in TCs and TIICs were associated with significant infiltration of various TIIC types, especially CD8+ cells. PD-L1 expressions in both TCs and TIICs were significantly associated with favorable overall survival, and combining their levels enhanced prognostic accuracy. Prognostic impacts of PD-L1 expressions in TCs and TIICs, abundant PD-1+ cell infiltration, a high CD8+/FOXP3+ ratio, and the CD8+/CD204+ ratio remained significant after adjusting for clinicopathological factors. In conclusion, PD-L1 expression reflects anti-tumor immunity, and PD-1/PD-L1 expression and the ratio of infiltrating effector to immune suppressor cells have prognostic value. Therapeutic strategies inhibiting the PD-1/PD-L1 signal and immune suppressor cells are anticipated in ESCC patients. PMID:27322149
CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.
Jain, Shweta; Chodisetti, Sathi Babu; Agrewala, Javed N
2011-01-01
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.
SARS-CoV Regulates Immune Function-Related Gene Expression in Human Monocytic Cells
Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang
2012-01-01
Abstract Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS. PMID:22876772
SARS-CoV regulates immune function-related gene expression in human monocytic cells.
Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A
2012-08-01
Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.
The potential mechanism of Bursal-derived BPP-II on the antibody production and avian pre-B cell.
Feng, Xiuli; Cao, Ruibing; Zhou, Bin; Liu, Qingtao; Liu, Ke; Liu, Xiaodong; Zhang, Yuanpeng; Gu, Jinyan; Miao, Denian; Chen, Puyan
2013-03-01
The bursa of Fabricius is critical for the normal development of the B lymphocytes responsible for antibody production. However, the mechanism of the bursal-derived bioactive factor on B cell development is little reported. In this paper, chicks were immunized with BPP-II and AIV vaccine or AIV antigen, and antibody and IL-4 production were detected. The results showed that BPP-II played strongly inducing roles on the humoral immune responses. To investigate the gene expression at transcriptional level, avian pre-B lymphocyte DT40 cells were treated with BPP-II, and were analyzed with the gene microarray. The results proved that BPP-II treatment regulated 11 pathways, in which homologous recombination is a vital mechanism which is involved in antibody Ig gene conversion and diversification during B cell development. These results suggested Bursal-derived biological active factor BPP-II might be involved in the antibody production processes and B cell development, which is vital to the humoral central immune organ, the bursa of Fabricius. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regan, Jennifer C.; Brandão, Ana S.; Leitão, Alexandre B.; Mantas Dias, Ângela Raquel; Sucena, Élio; Jacinto, António; Zaidman-Rémy, Anna
2013-01-01
Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells. PMID:24204269
Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U
2014-12-01
Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Several immune escape patterns in non-Hodgkin's lymphomas
Laurent, Camille; Charmpi, Konstantina; Gravelle, Pauline; Tosolini, Marie; Franchet, Camille; Ysebaert, Loïc; Brousset, Pierre; Bidaut, Alexandre; Ycart, Bernard; Fournié, Jean-Jacques
2015-01-01
Follicular Lymphomas (FL) and diffuse large B cell lymphomas (DLBCL) must evolve some immune escape strategy to develop from lymphoid organs, but their immune evasion pathways remain poorly characterized. We investigated this issue by transcriptome data mining and immunohistochemistry (IHC) of FL and DLBCL lymphoma biopsies. A set of genes involved in cancer immune-evasion pathways (Immune Escape Gene Set, IEGS) was defined and the distribution of the expression levels of these genes was compared in FL, DLBCL and normal B cell transcriptomes downloaded from the GEO database. The whole IEGS was significantly upregulated in all the lymphoma samples but not in B cells or other control tissues, as shown by the overexpression of the PD-1, PD-L1, PD-L2 and LAG3 genes. Tissue microarray immunostainings for PD-1, PD-L1, PD-L2 and LAG3 proteins on additional biopsies from 27 FL and 27 DLBCL patients confirmed the expression of these proteins. The immune infiltrates were more abundant in FL than DLBCL samples, and the microenvironment of FL comprised higher rates of PD-1+ lymphocytes. Further, DLBCL tumor cells comprised a higher proportion of PD-1+, PD-L1+, PD-L2+ and LAG3+ lymphoma cells than the FL tumor cells, confirming that DLBCL mount immune escape strategies distinct from FL. In addition, some cases of DLBCL had tumor cells co-expressing both PD-1, PD-L1 and PD-L2. Among the DLBCLs, the activated B cell (ABC) subtype comprised more PD-L1+ and PD-L2+ lymphoma cells than the GC subtype. Thus, we infer that FL and DLBCL evolved several pathways of immune escape. PMID:26405585
Grigoryev, Yevgeniy A.; Kurian, Sunil M.; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L.; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M.; Kantor, Aaron B.; Marsh, Christopher; Salomon, Daniel R.
2010-01-01
A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO+CD62L− effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant. PMID:20976225
Grigoryev, Yevgeniy A; Kurian, Sunil M; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M; Kantor, Aaron B; Marsh, Christopher; Salomon, Daniel R
2010-10-14
A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+)CD62L(-) effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.
Lakhashe, Samir K; Byrareddy, Siddappa N; Zhou, Mingkui; Bachler, Barbara C; Hemashettar, Girish; Hu, Shiu-Lok; Villinger, Francois; Else, James G; Stock, Shannon; Lee, Sandra J; Vargas-Inchaustegui, Diego A; Cofano, Egidio Brocca; Robert-Guroff, Marjorie; Johnson, Welkin E; Polonis, Victoria R; Forthal, Donald N; Loret, Erwann P; Rasmussen, Robert A; Ruprecht, Ruth M
2014-11-12
We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.
Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A
2017-08-07
High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Workflows for microarray data processing in the Kepler environment.
Stropp, Thomas; McPhillips, Timothy; Ludäscher, Bertram; Bieda, Mark
2012-05-17
Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Valentini, Davide; Ferrara, Giovanni; Advani, Reza; Hallander, Hans O; Maeurer, Markus J
2015-07-01
Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies ('the reactome') induced by whooping cough and B. pertussis (Bp) vaccines from a case-control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349-355). Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n=10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n=3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p<0.05), DTPa2 and DT (p<0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in epitope signature responses and may help to guide rational vaccine development by the objective description of a clinically relevant immune response that confers protection against infectious pathogens.
Shen, Jie; Park, Hyeon-soo; Xia, Yong-mei; Kim, Gon-sup; Cui, Steve W
2014-03-15
Medicinal mushroom polysaccharides such as Ganoderma lucidum polysaccharides (GLPs) have been commonly hypothesized to suppress tumor cells proliferation through immune effects. To verify this hypothesis through investigating comprehensive miRNA expression in polysaccharide treated cancer cells, an anticancer mycelia GLP was employed to disclose miRNA differential expression of human hepatocarcinoma cells (HepG2), by using a miRNA microarray assay based on Sanger miR-Base Release 16. The experiment and the analysis result indicates that among the 61 differential expressed miRNAs (p ≤ 0.01), 17 of them were regulated significantly. GLP can inhibit HepG2 cells directly through regulation of hepatocarcinoma genes. A newly found miR-3131 exhibited the strongest upregulation (92-folds, Log2 = 6.53, p = 0.000016). The miRNAs responded synergistically in both hepatocarcinoma and immune-related aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Panax Notoginseng Saponin Controls IL-17 Expression in Helper T Cells
Wei, Jia-Ru; Wen, Xiaofeng; Bible, Paul W.; Li, Zhiyu; Nussenblatt, Robert B.
2017-01-01
Abstract Purpose: Panax Notoginseng, a traditional Chinese medicine, is known as an anti-inflammatory herb. However, the molecular mechanism by which it controls helper T cell mediated immune responses is largely unknown. Methods: Naive CD4+ T cells isolated from healthy donors, patients with Behcet's disease, and C57BL/6 mice were polarized into Th1, Th17, and Treg cells. Proliferation and cytokine expression were measured in these cells with the presence or absence of Panax Notoginseng saponins (PNS). Genomewide expression profiles of Th1, Th17, and Treg cells were assessed using Affymetrix microarray analysis. Results: We found that PNS control the proliferation and differentiation of Th17 cells by globally downregulating the expression of inflammatory cytokines and cell cycle genes. Conclusions: These findings demonstrated that PNS function as an anti-inflammatory agent through directly targeting Th17 cell mediated immune response. PMID:28051353
Molina, Douglas M.; Finney, Olivia C.; Arevalo-Herrera, Myriam; Herrera, Socrates; Felgner, Philip L.; Gardner, Malcolm J.; Liang, Xiaowu; Wang, Ruobing
2012-01-01
The development of pre-erythrocytic Plasmodium vivax vaccines is hindered by the lack of in vitro culture systems or experimental rodent models. To help bypass these roadblocks, we exploited the fact that naturally exposed Fy− individuals who lack the Duffy blood antigen (Fy) receptor are less likely to develop blood-stage infections; therefore, they preferentially develop immune responses to pre-erythrocytic–stage parasites, whereas Fy+ individuals experience both liver- and blood-stage infections and develop immune responses to both pre-erythrocytic and erythrocytic parasites. We screened 60 endemic sera from P. vivax-exposed Fy+ or Fy− donors against a protein microarray containing 91 P. vivax proteins with P. falciparum orthologs that were up-regulated in sporozoites. Antibodies against 10 P. vivax antigens were identified in sera from P. vivax-exposed individuals but not unexposed controls. This technology has promising implications in the discovery of potential vaccine candidates against P. vivax malaria. PMID:22826492
Makwana, Pooja; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Ponnuvel, Kangayam M; Trivedy, Kanika
2017-02-01
Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro-oxidative reactions and activation of anti-oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione-S-transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro- and anti-oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology. © 2017 Wiley Periodicals, Inc.
Construction and application of a bovine immune-endocrine cDNA microarray.
Tao, Wenjing; Mallard, Bonnie; Karrow, Niel; Bridle, Byram
2004-09-01
A variety of commercial DNA arrays specific for humans and rodents are widely available; however, microarrays containing well-characterized genes to study pathway-specific gene expression are not as accessible for domestic animals, such as cattle, sheep and pigs. Therefore, a small-scale application-targeted bovine immune-endocrine cDNA array was developed to evaluate genetic pathways involved in the immune-endocrine axis of cattle during periods of altered homeostasis provoked by physiological or environmental stressors, such as infection, vaccination or disease. For this purpose, 167 cDNA sequences corresponding to immune, endocrine and inflammatory response genes were collected and categorized. Positive controls included 5 housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, ribosomal protein L19, beta-actin, beta2-microglobulin) and bovine genomic DNA. Negative controls were a bacterial gene (Rhodococcus equi 17-kDa virulence-associated protein) and a partial sequence of the plasmid pACYC177. In addition, RNA extracted from un-stimulated, as well as superantigen (Staphylococcus aureus enterotoxin-A, S. aureus Cowan Pansorbin Cells) and mitogen-stimulated (LPS, ConA) bovine blood leukocytes was mixed, reverse transcribed and PCR amplified using gene-specific primers. The endocrine-associated genes were amplified from cDNA derived from un-stimulated bovine hypothalamus, pituitary, adrenal and thyroid gland tissues. The array was constructed in 4 repeating grids of 180 duplicated spots by coupling the PCR amplified 213-630 bp gene fragments onto poly-l-lysine coated glass slides. The bovine immune-endocrine arrays were standardized and preliminary gene expression profiles generated using Cy3 and Cy5 labelled cDNA from un-stimulated and ConA (5 microg/ml) stimulated PBMC of 4 healthy Holstein cows (2-4 replicate arrays/cow) in a time course study. Mononuclear cell-derived cytokine and chemokine (IL-2, IL-1alpha, TNFalpha, IFN-gamma, TGFbeta-1, MCP-1, MCP-2 and MIP-3alpha) mRNA exhibited a repeatable and consistently low expression in un-stimulated cells and at least a two-fold increased expression following 6 and 24 h ConA stimulation as compared to 0 h un-stimulated controls. In contrast, expression of antigen presenting molecules, MHC-DR, MHC-DQ and MHC-DY, were consistently at least two-fold lower following 6 and 24 h ConA stimulation. The only endocrine gene with differential expression following ConA stimulation was prolactin. Additionally, due to the high level of genetic homology between ovine, swine and bovine genes, RNA similarly acquired from sheep and pigs was evaluated and similar gene expression patterns were noted. These data demonstrate that this application-targeted array containing a set of well characterized genes can be used to determine the relative gene expression corresponding to immune-endocrine responses of cattle and related species, sheep and pigs.
Allantaz-Frager, Florence; Turrel-Davin, Fanny; Venet, Fabienne; Monnin, Cécile; De Saint Jean, Amélie; Barbalat, Véronique; Cerrato, Elisabeth; Pachot, Alexandre; Lepape, Alain; Monneret, Guillaume
2013-01-01
The rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET), a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-γ). These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1) were differentially expressed in septic patients’ blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-γ. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six new transcripts that could be used for the identification of septic patients eligible for IFNg therapy. Along with the previously identified markers TNFa, IL10 and HLA-DRA, the potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy. PMID:23874546
Allantaz-Frager, Florence; Turrel-Davin, Fanny; Venet, Fabienne; Monnin, Cécile; De Saint Jean, Amélie; Barbalat, Véronique; Cerrato, Elisabeth; Pachot, Alexandre; Lepape, Alain; Monneret, Guillaume
2013-01-01
The rapid development in septic patients of features of marked immunosuppression associated with increased risk of nosocomial infections and mortality represents the rational for the initiation of immune targeted treatments in sepsis. However, as there is no clinical sign of immune dysfunctions, the current challenge is to develop biomarkers that will help clinicians identify the patients that would benefit from immunotherapy and monitor its efficacy. Using an in vitro model of endotoxin tolerance (ET), a pivotal feature of sepsis-induced immunosuppression in monocytes, we identified using gene expression profiling by microarray a panel of transcripts associated with the development of ET which expression was restored after immunostimulation with interferon-gamma (IFN-γ). These results were confirmed by qRT-PCR. Importantly, this short-list of markers was further evaluated in patients. Of these transcripts, six (TNFAIP6, FCN1, CXCL10, GBP1, CXCL5 and PID1) were differentially expressed in septic patients' blood compared to healthy blood upon ex vivo LPS stimulation and were restored by IFN-γ. In this study, by combining a microarray approach in an in vitro model and a validation in clinical samples, we identified a panel of six new transcripts that could be used for the identification of septic patients eligible for IFNg therapy. Along with the previously identified markers TNFa, IL10 and HLA-DRA, the potential value of these markers should now be evaluated in a larger cohort of patients. Upon favorable results, they could serve as stratification tools prior to immunostimulatory treatment and to monitor drug efficacy.
Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina
2017-07-06
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.
Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie
2017-01-01
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it. PMID:28684682
Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.
Stergiopoulos, Konstantinos; Cabrero, Pablo; Davies, Shireen-Anne; Dow, Julian A T
2009-03-03
To regulate their internal environments, organisms must adapt to varying ion levels in their diet. Adult Drosophila were exposed to dietary salt stress, and their physiological, survival, and gene expression responses monitored. Insects continued to feed on NaCl-elevated diet, although levels >4% wt/vol ultimately proved fatal. Affymetrix microarray analysis of flies fed on diet containing elevated NaCl showed a phased response: the earliest response was widespread upregulation of immune genes, followed by upregulation of carbohydrate metabolism as the immune response was downregulated, then finally a switch to amino acid catabolism and inhibition of genes associated with the reproductive axis. Significantly, the online transcriptomic resource FlyAtlas reports that most of the modulated genes are predominantly expressed in hindgut or Malpighian (renal) tubule, implicating these excretory tissues as the major responders to salt stress. Three genes were selected for further study: the SLC5 symporter CG2196, the GLUT transporter CG6484, and the transcription factor sugarbabe (previously implicated in starvation and stress responses). Expression profiles predicted by microarray were validated by quantitative PCR (qPCR); expression was mapped to the alimentary canal by in situ hybridization. CG2196::eYFP overexpression constructs were localized to the basolateral membrane of the Malpighian (renal) tubules, and RNAi against CG2196 improved survival on high-salt diet, even when driven specifically to just principal cells of the Malpighian tubule, confirming both this tissue and this transporter as major determinants of survival upon salt stress. Accordingly, CG2196 was renamed salty dog (salt).
Shi, Haitao; Wei, Yunxie; He, Chaozu
2016-03-01
Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.
Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N
2016-06-01
Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.
New insights about host response to smallpox using microarray data
Esteves, Gustavo H; Simoes, Ana CQ; Souza, Estevao; Dias, Rodrigo A; Ospina, Raydonal; Venancio, Thiago M
2007-01-01
Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems. PMID:17718913
Blesson, Chellakkan Selvanesan; Sahlin, Lena
2012-09-25
Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Sato, Mayumi; Tokuji, Yoshihiko; Yoneyama, Shozo; Fujii-Akiyama, Kyoko; Kinoshita, Mikio; Ohnishi, Masao
2011-10-12
To compare and estimate the effects of dietary intake of three kinds of mushrooms (Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus), mice were fed a diet containing 10-14% of each mushroom for 4 weeks. Triacylglycerol in the liver and plasma decreased and plasma cholesterol increased in the P. ostreatus-fed group compared with those in the control group. Cholesterol in the liver was lower in the G. frondosa-fed group than in the control group, but no changes were found in the H. marmoreus-fed group. DNA microarray analysis of the liver revealed differences of gene expression patterns among mushrooms. Ctp1a and Fabp families were upregulated in the P. ostreatus-fed group, which were considered to promote lipid transport and β-oxidation. In the G. frondosa-fed group, not only the gene involved in signal transduction of innate immunity via TLR3 and interferon but also virus resistance genes, such as Mx1, Rsad2, and Oas1, were upregulated.
Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.
2015-01-01
Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031
Wumkes, M L; van der Velden, A M T; de Bruin, E; Meerveld-Eggink, A; Koopmans, M P G; Rimmelzwaan, G F; Rijkers, G T; Biesma, D H
2017-03-01
Patients treated with chemotherapy have an impaired response to influenza virus vaccination compared to healthy controls. Little is known about the broadness of the antibody response in these patients. Breast cancer patients on FEC (5-fluorouracil, epirubicin and cyclophosphamide) chemotherapy regimens were vaccinated with influenza virus vaccine. Sera were obtained before and three weeks after vaccination. In addition to the determination of virus-specific antibody titres by hemagglutination inhibition assay, the broadness of the response was assessed by the use of a protein microarray and baseline titres were compared with an age-matched reference group. We included 38 breast cancer patients and found a wide variety in serum antibody response after vaccination. Patients with a history of influenza vaccination had higher pre-vaccination titres, which were comparable to the reference group. Increasing number of cycles of chemotherapy did not have a negative effect on influenza array antibody levels, nor on the HI antibody response. Overall there was a broad serum antibody response to the influenza virus vaccine in patients treated with chemotherapy for breast cancer. Copyright © 2017. Published by Elsevier Ltd.
Oligo Design: a computer program for development of probes for oligonucleotide microarrays.
Herold, Keith E; Rasooly, Avraham
2003-12-01
Oligonucleotide microarrays have demonstrated potential for the analysis of gene expression, genotyping, and mutational analysis. Our work focuses primarily on the detection and identification of bacteria based on known short sequences of DNA. Oligo Design, the software described here, automates several design aspects that enable the improved selection of oligonucleotides for use with microarrays for these applications. Two major features of the program are: (i) a tiling algorithm for the design of short overlapping temperature-matched oligonucleotides of variable length, which are useful for the analysis of single nucleotide polymorphisms and (ii) a set of tools for the analysis of multiple alignments of gene families and related short DNA sequences, which allow for the identification of conserved DNA sequences for PCR primer selection and variable DNA sequences for the selection of unique probes for identification. Note that the program does not address the full genome perspective but, instead, is focused on the genetic analysis of short segments of DNA. The program is Internet-enabled and includes a built-in browser and the automated ability to download sequences from GenBank by specifying the GI number. The program also includes several utilities, including audio recital of a DNA sequence (useful for verifying sequences against a written document), a random sequence generator that provides insight into the relationship between melting temperature and GC content, and a PCR calculator.
2010-01-01
Introduction Various multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy. Methods An unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naïve HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naïve HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs. Results A novel set of 14 prognostic gene candidates was identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis identified 8 genes within the HRneg/Tneg signature as being functionally linked to immune/inflammatory chemokine regulation. Conclusions A multigene HRneg/Tneg signature linked to immune/inflammatory cytokine regulation was identified from pooled expression microarray data and shown to be superior to other reported gene signatures in predicting the metastatic outcome of early stage and conservatively managed HRneg and Tneg breast cancer. Further validation of this prognostic signature may lead to new therapeutic insights and spare many newly diagnosed breast cancer patients the need for aggressive adjuvant chemotherapy. PMID:20946665
Pardo, Belén G; Fernández, Carlos; Millán, Adrián; Bouza, Carmen; Vázquez-López, Araceli; Vera, Manuel; Alvarez-Dios, José A; Calaza, Manuel; Gómez-Tato, Antonio; Vázquez, María; Cabaleiro, Santiago; Magariños, Beatriz; Lemos, Manuel L; Leiro, José M; Martínez, Paulino
2008-01-01
Background The turbot (Scophthalmus maximus; Scophthalmidae; Pleuronectiformes) is a flatfish species of great relevance for marine aquaculture in Europe. In contrast to other cultured flatfish, very few genomic resources are available in this species. Aeromonas salmonicida and Philasterides dicentrarchi are two pathogens that affect turbot culture causing serious economic losses to the turbot industry. Little is known about the molecular mechanisms for disease resistance and host-pathogen interactions in this species. In this work, thousands of ESTs for functional genomic studies and potential markers linked to ESTs for mapping (microsatellites and single nucleotide polymorphisms (SNPs)) are provided. This information enabled us to obtain a preliminary view of regulated genes in response to these pathogens and it constitutes the basis for subsequent and more accurate microarray analysis. Results A total of 12584 cDNAs partially sequenced from three different cDNA libraries of turbot (Scophthalmus maximus) infected with Aeromonas salmonicida, Philasterides dicentrarchi and from healthy fish were analyzed. Three immune-relevant tissues (liver, spleen and head kidney) were sampled at several time points in the infection process for library construction. The sequences were processed into 9256 high-quality sequences, which constituted the source for the turbot EST database. Clustering and assembly of these sequences, revealed 3482 different putative transcripts, 1073 contigs and 2409 singletons. BLAST searches with public databases detected significant similarity (e-value ≤ 1e-5) in 1766 (50.7%) sequences and 816 of them (23.4%) could be functionally annotated. Two hundred three of these genes (24.9%), encoding for defence/immune-related proteins, were mostly identified for the first time in turbot. Some ESTs showed significant differences in the number of transcripts when comparing the three libraries, suggesting regulation in response to these pathogens. A total of 191 microsatellites, with 104 having sufficient flanking sequences for primer design, and 1158 putative SNPs were identified from these EST resources in turbot. Conclusion A collection of 9256 high-quality ESTs was generated representing 3482 unique turbot sequences. A large proportion of defence/immune-related genes were identified, many of them regulated in response to specific pathogens. Putative microsatellites and SNPs were identified. These genome resources constitute the basis to develop a microarray for functional genomics studies and marker validation for genetic linkage and QTL analysis in turbot. PMID:18817567
Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro
2007-05-01
Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.
Kumar, A; Vijayakumar, P; Gandhale, P N; Ranaware, P B; Kumar, H; Kulkarni, D D; Raut, A A; Mishra, A
The differences in the influenza viral pathogenesis observed between different pathogenic strains are associated with distinct properties of virus strains and the host immune responses. In order to determine the differences in the duck immune response against two different pathogenic strains, we studied genome-wide host immune gene response of ducks infected with A/duck/India/02CA10/2011 and A/duck/Tripura/103597/2008 H5N1 viruses using custom-designed microarray. A/duck/India/02CA10/2011 is highly pathogenic virus (HP) to ducks, whereas A/duck/Tripura/103597/2008 is a low pathogenic (LP) virus strain. Comparative lung tissue transcriptome analysis of differentially expressed genes revealed that 686 genes were commonly expressed, 880 and 1556 genes are expressed uniquely to infection with HP and LP virus, respectively. The up-regulation of chemokines (CCL4 and CXCR4) and IFN-stimulated genes (IFITM2, STAT3, TGFB1 and TGFB3) was observed in the lung tissues of ducks infected with HP virus. The up-regulation of other immune genes (IL17, OAS, SOCS3, MHC I and MHC II) was observed in both infection conditions. The expression of important antiviral immune genes MX, IFIT5, IFITM5, ISG12, β-defensins, RSAD2, EIF2AK2, TRIM23 and SLC16A3 was observed in LP virus infection, but not in HP virus infection. Several immune-related gene ontology terms and pathways activated by both the viruses were qualitatively similar but quantitatively different. Based on these findings, the differences in the host immune response might explain a part of the difference observed in the viral pathogenesis of high and low pathogenic influenza strains in ducks.
Zhai, Yuan; Shen, Xiu-da; Hancock, Wayne W; Gao, Feng; Qiao, Bo; Lassman, Charles; Belperio, John A; Strieter, Robert M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W
2006-05-15
Ischemia-reperfusion injury (IRI), an innate immune-dominated inflammatory response, develops in the absence of exogenous Ags. The recently highlighted role of T cells in IRI raises a question as to how T lymphocytes interact with the innate immune system and function with no Ag stimulation. This study dissected the mechanism of innate immune-induced T cell recruitment and activation in rat syngeneic orthotopic liver transplantation (OLT) model. Liver IRI was induced after cold storage (24-36 h) at 4 degrees C in University of Wisconsin solution. Gene products contributing to IRI were identified by cDNA microarray at 4-h posttransplant. IRI triggered increased intrahepatic expression of CXCL10, along with CXCL9 and 11. The significance of CXCR3 ligand induction was documented by the ability of neutralizing anti-CXCR3 Ab treatment to ameliorate hepatocellular damage and improve 14-day survival of 30-h cold-stored OLTs (95 vs 40% in controls; p < 0.01). Immunohistology analysis confirmed reduced CXCR3+ and CD4+ T cell infiltration in OLTs after treatment. Interestingly, anti-CXCR3 Ab did not suppress innate immune activation in the liver, as evidenced by increased levels of IL-1beta, IL-6, inducible NO synthase, and multiple neutrophil/monokine-targeted chemokine programs. In conclusion, this study demonstrates a novel mechanism of T cell recruitment and function in the absence of exogenous Ag stimulation. By documenting that the execution of innate immune function requires CXCR3+CD4+ T cells, it highlights the critical role of CXCR3 chemokine biology for the continuum of innate to adaptive immunity in the pathophysiology of liver IRI.
Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J.; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L
2011-01-01
Objectives Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. Materials and Methods A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Results and Conclusion Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR+CD44v6+FABP5+Keratin+ and HPV−). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to 7 previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. PMID:21719345
Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L
2011-09-01
Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression, and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR(+)CD44v6(+)FABP5(+)Keratin(+) and HPV(-)). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to seven previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jensen, Michael L.; Thymann, Thomas; Cilieborg, Malene S.; Lykke, Mikkel; Mølbak, Lars; Jensen, Bent B.; Schmidt, Mette; Kelly, Denise; Mulder, Imke; Burrin, Douglas G.
2013-01-01
Preterm birth, bacterial colonization, and formula feeding predispose to necrotizing enterocolitis (NEC). Antibiotics are commonly administered to prevent sepsis in preterm infants, but it is not known whether this affects intestinal immunity and NEC resistance. We hypothesized that broad-spectrum antibiotic treatment improves NEC resistance and intestinal structure, function, and immunity in neonates. Caesarean-delivered preterm pigs were fed 3 days of parenteral nutrition followed by 2 days of enteral formula. Immediately after birth, they were assigned to receive either antibiotics (oral and parenteral doses of gentamycin, ampicillin, and metronidazole, ANTI, n = 11) or saline in the control group (CON, n = 13), given twice daily. NEC lesions and intestinal structure, function, microbiology, and immunity markers were recorded. None of the ANTI but 85% of the CON pigs developed NEC lesions by day 5 (0/11 vs. 11/13, P < 0.05). ANTI pigs had higher intestinal villi (+60%), digestive enzyme activities (+53–73%), and goblet cell densities (+110%) and lower myeloperoxidase (−51%) and colonic microbial density (105 vs. 1010 colony-forming units, all P < 0.05). Microarray transcriptomics showed strong downregulation of genes related to inflammation and innate immune response to microbiota and marked upregulation of genes related to amino acid metabolism, in particular threonine, glucose transport systems, and cell cycle in 5-day-old ANTI pigs. In a follow-up experiment, 5 days of antibiotics prevented NEC at least until day 10. Neonatal prophylactic antibiotics effectively reduced gut bacterial load, prevented NEC, intestinal atrophy, dysfunction, and inflammation and enhanced expression of genes related to gut metabolism and immunity in preterm pigs. PMID:24157972
Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array
Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna
2014-01-01
Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348
Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array.
Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna
2014-11-13
Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r² = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r² = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.
Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.
Aznar, Aude; Chen, Nicolas W G; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia
2014-04-01
Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H₂O₂ staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity.
Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W
Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia
2014-01-01
Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001
Park, Soomin; Baek, Seung-Hun; Cho, Sang-Nae; Jang, Young-Saeng; Kim, Ahreum; Choi, In-Hong
2017-01-01
There is a substantial need for biomarkers to distinguish latent stage from active Mycobacterium tuberculosis infections, for predicting disease progression. To induce the reactivation of tuberculosis, we present a new experimental animal model modified based on the previous model established by our group. In the new model, the reactivation of tuberculosis is induced without administration of immunosuppressive agents, which might disturb immune responses. To identify the immunological status of the persistent and chronic stages, we analyzed immunological genes in lung tissues from mice infected with M. tuberculosis . Gene expression was screened using cDNA microarray analysis and confirmed by quantitative RT-PCR. Based on the cDNA microarray results, 11 candidate cytokines genes, which were obviously up-regulated during the chronic stage compared with those during the persistent stage, were selected and clustered into three groups: (1) chemokine genes, except those of monocyte chemoattractant proteins (MCPs; CXCL9, CXCL10, CXCL11, CCL5, CCL19); (2) MCP genes (CCL2, CCL7, CCL8, CCL12); and (3) TNF and IFN-γ genes. Results from the cDNA microarray and quantitative RT-PCR analyses revealed that the mRNA expression of the selected cytokine genes was significantly higher in lung tissues of the chronic stage than of the persistent stage. Three chemokines (CCL5, CCL19, and CXCL9) and three MCPs (CCL7, CCL2, and CCL12) were noticeably increased in the chronic stage compared with the persistent stage by cDNA microarray ( p < 0.01, except CCL12) or RT-PCR ( p < 0.01). Therefore, these six significantly increased cytokines in lung tissue from the mouse tuberculosis model might be candidates for biomarkers to distinguish the two disease stages. This information can be combined with already reported potential biomarkers to construct a network of more efficient tuberculosis markers.
Brenna, Øystein; Furnes, Marianne W.; Drozdov, Ignat; van Beelen Granlund, Atle; Flatberg, Arnar; Sandvik, Arne K.; Zwiggelaar, Rosalie T. M.; Mårvik, Ronald; Nordrum, Ivar S.; Kidd, Mark; Gustafsson, Björn I.
2013-01-01
Background Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different time points after colitis induction, and 3) compare rat and human IBD mucosal transcriptomic data to evaluate whether TNBS-colitis is an appropriate model of IBD. Methodology/Principal Findings Five female Sprague Daley rats received TNBS diluted in 50% ethanol (18 mg/0.6 ml) rectally. The rats underwent colonoscopy with biopsy at different time points. RNA was extracted from rat biopsies and microarray was performed. PCR and in situ hybridization (ISH) were done for validation of microarray results. Rat microarray profiles were compared to human IBD expression profiles (25 ulcerative colitis Endoscopic score demonstrated mild to moderate colitis after three and seven days, but declined after twelve days. Histologic changes corresponded with the endoscopic appearance. Over-represented Gene Ontology Biological Processes included: Cell Adhesion, Immune Response, Lipid Metabolic Process, and Tissue Regeneration. IL-1α, IL-1β, TLR2, TLR4, PRNP were all significantly up-regulated, while PPARγ was significantly down-regulated. Among genes with highest fold change (FC) were SPINK4, LBP, ADA, RETNLB and IL-1α. The highest concordance in differential expression between TNBS and IBD transcriptomes was three days after colitis induction. ISH and PCR results corresponded with the microarray data. The most concordantly expressed biologically relevant pathways included TNF signaling, Cell junction organization, and Interleukin-1 processing. Conclusions/Significance Endoscopy with biopsies in TNBS-colitis is useful to follow temporal changes of inflammation visually and histologically, and to acquire tissue for gene expression analyses. TNBS-colitis is an appropriate model to study specific biological processes in IBD. PMID:23382912
Rim, Kyung Taek; Park, Kun Koo; Sung, Jae Hyuck; Chung, Yong Hyun; Han, Jeong Hee; Cho, Key Seung; Kim, Kwang Jong; Yu, Il Je
2004-06-01
Welders with radiographic pneumoconiosis abnormalities have shown a gradual clearing of the X-ray identified effects following removal from exposure. In some cases, the pulmonary fibrosis associated with welding fumes appears in a more severe form in welders. Accordingly, for the early detection of welding-fume-exposure-induced pulmonary fibrosis, the gene expression profiles of peripheral mononuclear cells from rats exposed to welding fumes were studied using suppression-subtractive hybridization (SSH) and a cDNA microarray. As such, Sprague-Dawley rats were exposed to a stainless steel arc welding fume for 2 h/day in an inhalation chamber with a 1107.5 +/- 2.6 mg/m3 concentration of total suspended particulate (TSP) for 30 days. Thereafter, the total RNA was extracted from the peripheral blood mononuclear cells, the cDNA synthesized from the total RNA using the SMART PCR cDNA method, and SSH performed to select the welding-fume-exposure-regulated genes. The cDNAs identified by the SSH were then cloned into a plasmid miniprep, sequenced and the sequences analysed using the NCBI BLAST programme. In the SSH cloned cDNA microarray analysis, five genes were found to increase their expression by 1.9-fold or more, including Rgs 14, which plays an important function in cellular signal transduction pathways; meanwhile 36 genes remained the same and 30 genes decreased their expression by more than 59%, including genes associated with the immune response, transcription factors and tyrosine kinases. Among the 5200 genes analysed, 256 genes (5.1%) were found to increase their gene expression, while 742 genes (15%) decreased their gene expression in response to the welding-fume exposure when tested using a commercial 5.0k DNA microarray. Therefore, unlike exposure to other toxic substances, prolonged welding-fume exposure was found to substantially downregulate many genes.
Pap, Domonkos; Sziksz, Erna; Kiss, Zoltán; Rokonay, Réka; Veres-Székely, Apor; Lippai, Rita; Takács, István Márton; Kis, Éva; Fekete, Andrea; Reusz, György; Szabó, Attila J; Vannay, Adam
2017-01-01
Congenital obstructive nephropathy (CON) is the main cause of pediatric chronic kidney diseases leading to renal fibrosis. High morbidity and limited treatment opportunities of CON urge the better understanding of the underlying molecular mechanisms. To identify the differentially expressed genes, microarray analysis was performed on the kidney samples of neonatal rats underwent unilateral ureteral obstruction (UUO). Microarray results were then validated by real-time RT-PCR and bioinformatics analysis was carried out to identify the relevant genes, functional groups and pathways involved in the pathomechanism of CON. Renal expression of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 were evaluated by real-time RT-PCR, flow cytometry and immunohistochemical analysis. Effect of the main profibrotic factors on the expression of MMP-12 and IL-24 was investigated on HK-2 and HEK-293 cell lines. Finally, the effect of IL-24 treatment on the expression of pro-inflammatory cytokines and MMPs were tested in vitro. Microarray analysis revealed 880 transcripts showing >2.0-fold change following UUO, enriched mainly in immune response related processes. The most up-regulated genes were MMPs and members of IL-20 cytokine subfamily, including MMP-3, MMP-7, MMP-12, IL-19 and IL-24. We found that while TGF-β treatment inhibits the expression of MMP-12 and IL-24, H2O2 or PDGF-B treatment induce the epithelial expression of MMP-12. We demonstrated that IL-24 treatment decreases the expression of IL-6 and MMP-3 in the renal epithelial cells. This study provides an extensive view of UUO induced changes in the gene expression profile of the developing kidney and describes novel molecules, which may play significant role in the pathomechanism of CON. © 2017 The Author(s)Published by S. Karger AG, Basel.
Progress and Focus of the National Childhood Immunization Campaign.
ERIC Educational Resources Information Center
Paskert, Catherine J.
1983-01-01
A nationwide campaign to improve and maintain immunization levels for selected preventable childhood diseases was instituted in 1977, and another program, whose goal was to eliminate indigenous measles by 1982, was instituted in 1978. Immunization levels have improved so much that attention is now focused on ways to maintain these high levels.…
G-Protein Coupled Receptors: Surface Display and Biosensor Technology
NASA Astrophysics Data System (ADS)
McMurchie, Edward; Leifert, Wayne
Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.
van Haaften, Rachel I M; Luceri, Cristina; van Erk, Arie; Evelo, Chris T A
2009-06-01
Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.
2014-01-01
Background Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. Results In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. Conclusions This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally. PMID:24739361
Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.
Tong, Dong Ling; Schierz, Amanda C
2011-09-01
Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, Duk Kyung; Lillehoj, Hyun S; Lee, Sung Hyen; Jang, Seung I; Lillehoj, Erik P; Bravo, David
2013-10-01
The effects of dietary supplementation with an organic extract of Curcuma longa on systemic and local immune responses to experimental Eimeria maxima and Eimeria tenella infections were evaluated in commercial broiler chickens. Dietary supplementation with C. longa enhanced coccidiosis resistance as demonstrated by increased BW gains, reduced fecal oocyst shedding, and decreased gut lesions compared with infected birds fed a nonsupplemented control diet. The chickens fed C. longa-supplemented diet showed enhanced systemic humoral immunity, as assessed by greater levels of serum antibodies to an Eimeria microneme protein, MIC2, and enhanced cellular immunity, as measured by concanavalin A-induced spleen cell proliferation, compared with controls. At the intestinal level, genome-wide gene expression profiling by microarray hybridization identified 601 differentially expressed transcripts (287 upregulated, 314 downregulated) in gut lymphocytes of C. longa-fed chickens compared with nonsupplemented controls. Based on the known functions of the corresponding mammalian genes, the C. longa-induced intestinal transcriptome was mostly associated with genes mediating anti-inflammatory effects. Taken together, these results suggest that dietary C. longa could be used to attenuate Eimeria-induced, inflammation-mediated gut damage in commercial poultry production.
Usadel, Björn; Nagel, Axel; Steinhauser, Dirk; Gibon, Yves; Bläsing, Oliver E; Redestig, Henning; Sreenivasulu, Nese; Krall, Leonard; Hannah, Matthew A; Poree, Fabien; Fernie, Alisdair R; Stitt, Mark
2006-12-18
Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/. PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.
Duan, Jun; Wang, Genhong; Wang, Lingyan; Li, Youshan; Xiang, Zhonghuai; Xia, Qingyou
2012-01-01
In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein. PMID:22348050
Analysis of gene expression profile microarray data in complex regional pain syndrome.
Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing
2017-09-01
The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.
Gianni, Luca; Zambetti, Milvia; Clark, Kim; Baker, Joffre; Cronin, Maureen; Wu, Jenny; Mariani, Gabriella; Rodriguez, Jaime; Carcangiu, Marialuisa; Watson, Drew; Valagussa, Pinuccia; Rouzier, Roman; Symmans, W Fraser; Ross, Jeffrey S; Hortobagyi, Gabriel N; Pusztai, Lajos; Shak, Steven
2005-10-10
We sought to identify gene expression markers that predict the likelihood of chemotherapy response. We also tested whether chemotherapy response is correlated with the 21-gene Recurrence Score assay that quantifies recurrence risk. Patients with locally advanced breast cancer received neoadjuvant paclitaxel and doxorubicin. RNA was extracted from the pretreatment formalin-fixed paraffin-embedded core biopsies. The expression of 384 genes was quantified using reverse transcriptase polymerase chain reaction and correlated with pathologic complete response (pCR). The performance of genes predicting for pCR was tested in patients from an independent neoadjuvant study where gene expression was obtained using DNA microarrays. Of 89 assessable patients (mean age, 49.9 years; mean tumor size, 6.4 cm), 11 (12%) had a pCR. Eighty-six genes correlated with pCR (unadjusted P < .05); pCR was more likely with higher expression of proliferation-related genes and immune-related genes, and with lower expression of estrogen receptor (ER) -related genes. In 82 independent patients treated with neoadjuvant paclitaxel and doxorubicin, DNA microarray data were available for 79 of the 86 genes. In univariate analysis, 24 genes correlated with pCR with P < .05 (false discovery, four genes) and 32 genes showed correlation with P < .1 (false discovery, eight genes). The Recurrence Score was positively associated with the likelihood of pCR (P = .005), suggesting that the patients who are at greatest recurrence risk are more likely to have chemotherapy benefit. Quantitative expression of ER-related genes, proliferation genes, and immune-related genes are strong predictors of pCR in women with locally advanced breast cancer receiving neoadjuvant anthracyclines and paclitaxel.
Kim, Duk Kyung; Lillehoj, Hyun; Min, Wongi; Kim, Chul Hong; Park, Myeong Seon; Hong, Yeong Ho; Lillehoj, Erik P.
2011-01-01
Relative expression levels of immune- and non-immune-related mRNAs in chicken intestinal intraepithelial lymphocytes experimentally infected with Eimeria acervulina, E. maxima, or E. tenella were measured using a 10K cDNA microarray. Based on a cutoff of >2.0-fold differential expression compared with uninfected controls, relatively equal numbers of transcripts were altered by the three Eimeria infections at 1, 2, and 3 days post-primary infection. By contrast, E. tenella elicited the greatest number of altered transcripts at 4, 5, and 6 days post-primary infection, and at all time points following secondary infection. When analyzed on the basis of up- or down-regulated transcript levels over the entire 6 day infection periods, approximately equal numbers of up-regulated transcripts were detected following E. tenella primary (1,469) and secondary (1,459) infections, with a greater number of down-regulated mRNAs following secondary (1,063) vs. primary (890) infection. On the contrary, relatively few mRNA were modulated following primary infection with E. acervulina (35 up, 160 down) or E. maxima (65 up, 148 down) compared with secondary infection (E. acervulina, 1,142 up, 1,289 down; E. maxima, 368 up, 1,349 down). With all three coccidia, biological pathway analysis identified the altered transcripts as belonging to the categories of “Disease and Disorder” and “Physiological System Development and Function”. Sixteen intracellular signaling pathways were identified from the differentially expressed transcripts following Eimeria infection, with the greatest significance observed following E. acervulina infection. Taken together, this new information will expand our understanding of host-pathogen interactions in avian coccidiosis and contribute to the development of novel disease control strategies. PMID:22140460
Bayer, D K; Martinez, C A; Sorte, H S; Forbes, L R; Demmler-Harrison, G J; Hanson, I C; Pearson, N M; Noroski, L M; Zaki, S R; Bellini, W J; Leduc, M S; Yang, Y; Eng, C M; Patel, A; Rodningen, O K; Muzny, D M; Gibbs, R A; Campbell, I M; Shaw, C A; Baker, M W; Zhang, V; Lupski, J R; Orange, J S; Seeborg, F O; Stray-Pedersen, A
2014-01-01
In areas without newborn screening for severe combined immunodeficiency (SCID), disease-defining infections may lead to diagnosis, and in some cases, may not be identified prior to the first year of life. We describe a female infant who presented with disseminated vaccine-acquired varicella (VZV) and vaccine-acquired rubella infections at 13 months of age. Immunological evaluations demonstrated neutropenia, isolated CD4 lymphocytopenia, the presence of CD8+ T cells, poor lymphocyte proliferation, hypergammaglobulinaemia and poor specific antibody production to VZV infection and routine immunizations. A combination of whole exome sequencing and custom-designed chromosomal microarray with exon coverage of primary immunodeficiency genes detected compound heterozygous mutations (one single nucleotide variant and one intragenic copy number variant involving one exon) within the IL7R gene. Mosaicism for wild-type allele (20–30%) was detected in pretransplant blood and buccal DNA and maternal engraftment (5–10%) demonstrated in pretransplant blood DNA. This may be responsible for the patient's unusual immunological phenotype compared to classical interleukin (IL)-7Rα deficiency. Disseminated VZV was controlled with anti-viral and immune-based therapy, and umbilical cord blood stem cell transplantation was successful. Retrospectively performed T cell receptor excision circle (TREC) analyses completed on neonatal Guthrie cards identified absent TREC. This case emphasizes the danger of live viral vaccination in severe combined immunodeficiency (SCID) patients and the importance of newborn screening to identify patients prior to high-risk exposures. It also illustrates the value of aggressive pathogen identification and treatment, the influence newborn screening can have on morbidity and mortality and the significant impact of newer genomic diagnostic tools in identifying the underlying genetic aetiology for SCID patients. PMID:25046553
Krieg, S A; Fan, X; Hong, Y; Sang, Q-X; Giaccia, A; Westphal, L M; Lathi, R B; Krieg, A J; Nayak, N R
2012-09-01
Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombaert, Nooemi; Lison, Dominique; Van Hummelen, Paul
Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profilemore » of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNF{alpha}), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.« less
Child Indicators: Immunization of Young Children.
ERIC Educational Resources Information Center
Lewit, Eugene M.; Mullahy, John
1994-01-01
Focuses on the immunization status of children aged 19 to 35 months. Recommended immunizations are described and contrasted with the actual status of immunization. In response to unacceptably low levels of immunization among very young children, the government is aiming at 90% immunization by the year 2000. (SLD)
LITERATURE REVIEW OF MOLECULAR METHODS FOR SIMULTANEOUS DETECTION OF PATHOGENS IN WATER
This literature search is a review of molecular technologies (qPCR, microarray, microfluidics and lab-on-a-chip) for simultaneous detection of multiple waterborne pathogens in order to understand the state of the technology. The search content focuses on: pathogen detection witho...
Chakraborty, Subhra; Randall, Arlo; Vickers, Tim J; Molina, Doug; Harro, Clayton D; DeNearing, Barbara; Brubaker, Jessica; Sack, David A; Bourgeois, A Louis; Felgner, Philip L; Liang, Xiaowu; Mani, Sachin; Wenzel, Heather; Townsend, R Reid; Gilmore, Petra E; Darsley, Michael J; Rasko, David A; Fleckenstein, James M
2018-05-24
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. ETEC vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Antibody lymphocyte supernatants (ALS) and sera from 20 naïve human volunteers challenged with ETEC strain H10407 and from 10 volunteers re-challenged 4-6 weeks later with the same strain (9 of whom were completely protected on re-challenge) were tested against ETEC proteome microarrays containing 957 antigens. ETEC challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E. coli antigens including YghJ, flagellin (FliC), and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Collectively, studies reported here suggest that immune responses following ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.
Immune effects of dietary anethole on Eimeria acervulina infection.
Kim, Duk Kyung; Lillehoj, Hyun S; Lee, Sung Hyen; Jang, Seung Ik; Park, Myeong Seon; Min, Wongi; Lillehoj, Erik P; Bravo, David
2013-10-01
The effects of anethole on in vitro and in vivo parameters of chicken immunity during experimental avian coccidiosis were evaluated. Anethole reduced the viability of invasive Eimeria acervulina sporozoites after 2 or 4 h of treatment in vitro by 45 and 42%, respectively, and stimulated 6.0-fold greater chicken spleen cell proliferation compared with controls. Broiler chickens continuously fed from hatch with an anethole-supplemented diet and orally challenged with live E. acervulina oocysts showed enhanced BW gain, decreased fecal oocyst excretion, and greater E. acervulina profilin antibody responses compared with infected chickens given an unsupplemented standard diet. The levels of transcripts encoding the immune mediators IL6, IL8, IL10, and tumor necrosis factor ligand superfamily member 15 (TNFSF15) in intestinal lymphocytes were increased in E. acervulina-infected chickens fed the anethole-containing diet compared with untreated controls. Global gene expression analysis by microarray hybridization identified 1,810 transcripts (677 upregulated, 1,133 downregulated) whose levels were significantly altered in intestinal lymphocytes of anethole-fed birds compared with unsupplemented controls. From this transcriptome, 576 corresponding genes were identified. The most significant biological function associated with these genes was "Inflammatory Response" in the "Disease and Disorders" category. This new information documents the immunologic and genomic changes that occur in chickens following anethole dietary supplementation that may be relevant to host protective immune response to avian coccidiosis.
Drosophila melanogaster mounts a unique immune response to the Rhabdovirus sigma virus.
Tsai, C W; McGraw, E A; Ammar, E-D; Dietzgen, R G; Hogenhout, S A
2008-05-01
Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations.
Drosophila melanogaster Mounts a Unique Immune Response to the Rhabdovirus Sigma virus▿
Tsai, C. W.; McGraw, E. A.; Ammar, E.-D.; Dietzgen, R. G.; Hogenhout, S. A.
2008-01-01
Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations. PMID:18378641
Chen, Huamin; Xue, Li; Chintamanani, Satya; Germain, Hugo; Lin, Huiqiong; Cui, Haitao; Cai, Run; Zuo, Jianru; Tang, Xiaoyan; Li, Xin; Guo, Hongwei; Zhou, Jian-Min
2009-08-01
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.
Bauer, Michael; Giamarellos-Bourboulis, Evangelos J; Kortgen, Andreas; Möller, Eva; Felsmann, Karen; Cavaillon, Jean Marc; Guntinas-Lichius, Orlando; Rutschmann, Olivier; Ruryk, Andriy; Kohl, Matthias; Wlotzka, Britta; Rußwurm, Stefan; Marshall, John C; Reinhart, Konrad
2016-04-01
Development of a dysregulated immune response discriminates sepsis from uncomplicated infection. Currently used biomarkers fail to describe simultaneously occurring pro- and anti-inflammatory responses potentially amenable to therapy. Marker candidates were screened by microarray and, after transfer to a platform allowing point-of-care testing, validated in a confirmation set of 246 medical and surgical patients. We identified up-regulated pathways reflecting innate effector mechanisms, while down-regulated pathways related to adaptive lymphocyte functions. A panel of markers composed of three up- (Toll-like receptor 5; Protectin; Clusterin) and 4 down-regulated transcripts (Fibrinogen-like 2; Interleukin-7 receptor; Major histocompatibility complex class II, DP alpha1; Carboxypeptidase, vitellogenic-like) described the magnitude of immune alterations. The created gene expression score was significantly greater in patients with definite as well as with possible/probable infection than with no infection (median (Q25/Q75): 80 (60/101)) and 81 (58/97 vs. 49 (27/66), AUC-ROC=0.812 (95%-CI 0.755-0.869), p<0.0001). Down-regulated lymphocyte markers were associated with prognosis with good sensitivity but limited specificity. Quantifying systemic inflammation by assessment of both pro- and anti-inflammatory innate and adaptive immune responses provides a novel option to identify patients-at-risk and may facilitate immune interventions in sepsis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.
2006-01-01
The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.
Jørgensen, Silje F; Reims, Henrik M; Frydenlund, Didrik; Holm, Kristian; Paulsen, Vemund; Michelsen, Annika E; Jørgensen, Kristin K; Osnes, Liv T; Bratlie, Jorunn; Eide, Tor J; Dahl, Christen P; Holter, Ellen; Tronstad, Rune R; Hanevik, Kurt; Brattbakk, Hans-Richard; Kaveh, Fatemeh; Fiskerstrand, Torunn; Kran, Anne-Marte B; Ueland, Thor; Karlsen, Tom H; Aukrust, Pål; Lundin, Knut E A; Fevang, Børre
2016-10-01
The objective of this study was to study the prevalence of gastrointestinal (GI) symptoms and histopathology in patients with common variable immunodeficiency (CVID) as well as linking the findings to GI infections and markers of systemic immune activation. In this cross-sectional study, we addressed GI symptoms in 103 patients and GI histopathological findings in 53 patients who underwent upper and lower endoscopic examination. The most frequent histopathological findings were linked to GI symptoms, B-cell phenotype, and markers of systemic immune activation (soluble (s)CD14, sCD25, and sCD163). Microarray analysis compared "celiac-like disease" in CVID to celiac disease. Screening for selected bacterial and viral infections in fecal samples and gut mucosal biopsies was performed. The main findings of this study were as follows: most common GI symptoms were bloating (34%), pain (30%), and diarrhea (26%). The most frequent histopathological findings were increased intraepithelial lymphocytes in the descending part of the duodenum, i.e., "celiac-like disease" (46% of patients), decreased numbers of plasma cells in GI tract mucosa (62%), and lymphoid hyperplasia (38%), none of which were associated with GI symptoms. Reduced plasma cells in GI mucosa were associated with B-cell phenotypic characteristics of CVID, and increased serum levels of sCD14 (P=0.025), sCD25 (P=0.01), and sCD163 (P=0.04). Microarray analyses distinguished between CVID patients with "celiac-like disease" and celiac disease. Positive tests for bacterial and viral infections were scarce both in fecal samples and gut mucosal biopsies, including PCR test for norovirus in biopsy specimens (0 positive tests). In conclusion, GI pathology is common in CVID, but does not necessarily cause symptoms. However, reduced plasma cells in GI mucosa were linked to systemic immune activation, "celiac-like disease" in CVID and true celiac disease appear to be different disease entities, as assessed by gene expression, and infections (including norovirus) are rarely a cause of the CVID enteropathy.
Bengtsson, Henrik; Hössjer, Ola
2006-03-01
Low-level processing and normalization of microarray data are most important steps in microarray analysis, which have profound impact on downstream analysis. Multiple methods have been suggested to date, but it is not clear which is the best. It is therefore important to further study the different normalization methods in detail and the nature of microarray data in general. A methodological study of affine models for gene expression data is carried out. Focus is on two-channel comparative studies, but the findings generalize also to single- and multi-channel data. The discussion applies to spotted as well as in-situ synthesized microarray data. Existing normalization methods such as curve-fit ("lowess") normalization, parallel and perpendicular translation normalization, and quantile normalization, but also dye-swap normalization are revisited in the light of the affine model and their strengths and weaknesses are investigated in this context. As a direct result from this study, we propose a robust non-parametric multi-dimensional affine normalization method, which can be applied to any number of microarrays with any number of channels either individually or all at once. A high-quality cDNA microarray data set with spike-in controls is used to demonstrate the power of the affine model and the proposed normalization method. We find that an affine model can explain non-linear intensity-dependent systematic effects in observed log-ratios. Affine normalization removes such artifacts for non-differentially expressed genes and assures that symmetry between negative and positive log-ratios is obtained, which is fundamental when identifying differentially expressed genes. In addition, affine normalization makes the empirical distributions in different channels more equal, which is the purpose of quantile normalization, and may also explain why dye-swap normalization works or fails. All methods are made available in the aroma package, which is a platform-independent package for R.
Parham, Fred; Portier, Christopher J.; Chang, Xiaoqing; Mevissen, Meike
2016-01-01
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders. PMID:27656641
Peripheral inflammation is associated with remote global gene expression changes in the brain
2014-01-01
Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is indicative of peripherally triggered, interferon-mediated CNS inflammation. Similar models of sterile inflammation and lipoteichoic-acid-induced systemic inflammation did not share the capacity to trigger ISG induction in the brain. Conclusions These data highlight ISG induction in the brain as being a consequence of a TLR-induced type I interferon response. As considerable evidence links type I interferons to psychiatric disorders, we hypothesize that interferon production in the brain could represent an important mechanism, linking peripheral TLR-induced inflammation with behavioural changes. PMID:24708794
Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave
2012-01-01
Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease resistance and fitness without considering the effects of age-related development. PMID:23300441
Gene Discovery in Bladder Cancer Progression using cDNA Microarrays
Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos
2003-01-01
To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971
Graubner, Felix R.; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R.; Boos, Alois
2017-01-01
Abstract In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. PMID:28651344
Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S
2008-01-01
Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination. PMID:19114004
Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S
2008-12-29
Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1alpha and EF-2. Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.
A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.
Chen, Shu-Hwa; Kuo, Wen-Yu; Su, Sheng-Yao; Chung, Wei-Chun; Ho, Jen-Ming; Lu, Henry Horng-Shing; Lin, Chung-Yen
2018-05-08
A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types. Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods. Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .
Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu
2014-05-01
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.
Cheng, Chun-Huai; Leung, Albert Y; Chen, Chin-Fu
2010-01-01
Lingzhi (ganoderma) is an important woody mushroom that is known for its medicinal benefits in China since ancient times. The mode of action in humans is still not clear. Using microarray technology, we have compared the ethanol extracts of two different lingzhi (red lingzhi, G. lucidum; and purple lingzhi, G. sinense) for their effects on gene expression profile in human monocytic cells. Our results suggest that at best approximately 25% of target genes are common to the two lingzhi: functionally ranging from cell development, negative regulation of cellular process, and cellular protein metabolic process to signal transduction and transcription. The pathways mediated by purple lingzhi focus on inflammation and immune response, whereas red lingzhi modestly increases levels of expression for genes involved in macromolecule metabolism. Furthermore, our ethanolic extracts of both red and purple lingzhi do not inhibit monocytic cell growth. The extract of red lingzhi does not have significant effect on the genes in the nuclear factor kappa B (NFkappaB) pathway (an important inflammation pathway), whereas the extract of purple lingzhi can increase multiple key genes in the NFkappaB pathway. Altogether, our results suggest that the common mode of action for lingzhi is complex; and different species of Ganoderma can modulate different pathways in human cells.
Elevation of Autoantibody in Patients with Ischemic Stroke.
Yoshida, Yoichi; Hiwasa, Takaki; Machida, Toshio; Kobayashi, Eiichi; Mine, Seiichiro; Matsushima, Jun; Takiguchi, Masaki; Iwadate, Yasuo
2018-05-31
Recent clinical research has revealed a significant correlation between atherosclerosis, one of the primary etiologies of ischemic stroke, and the immune system. Assuming that "disease-specific autoantibodies are produced in the sera of patients with ischemic stroke," we investigated multiple arteriosclerosis-related antibodies using the serological identification of antigens by recombinant cDNA expression cloning (SEREX), an established method for identifying antigenic proteins. We either screened a human aortic endothelial cell cDNA library or conducted protein array screening using the sera from patients with ischemic stroke, such as carotid artery stenosis or transient ischemic attack (TIA). Next, we measured serum antibody levels using amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) in patient/healthy donor (HD) cohorts and identified several antigens, the antibody levels of which were significantly higher in patients with ischemic stroke than in HDs. This review introduced the method of identifying antigens by the SEREX and protein microarray and summarized antigenic proteins. In particular, it focused on anti-replication protein A2 antibody and anti-programmed cell death 11 antibody, which are significantly related to atherosclerotic plaque and ischemic brain tissue, respectively, and proposed the mechanism of elevated autoantibody levels against them. Furthermore, this review suggests a possibility of clinical application as an atherosclerotic disease diagnostic marker for TIA or cerebral infarction.
López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Álvarez-Sánchez, Elizbeth; Marchat, Laurence A.
2012-01-01
Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer. PMID:22312244
Staphylococcus aureus genomics and the impact of horizontal gene transfer.
Lindsay, Jodi A
2014-03-01
Whole genome sequencing and microarrays have revealed the population structure of Staphylococcus aureus, and identified epidemiological shifts, transmission routes, and adaptation of major clones. S. aureus genomes are highly diverse. This is partly due to a population structure of conserved lineages, each with unique combinations of genes encoding surface proteins, regulators, immune evasion and virulence pathways. Even more variable are the mobile genetic elements (MGE), which encode key proteins for antibiotic resistance, virulence and host-adaptation. MGEs can transfer at high frequency between isolates of the same lineage by horizontal gene transfer (HGT). There is increasing evidence that HGT is key to bacterial adaptation and success. Recent studies have shed light on new mechanisms of DNA transfer such as transformation, the identification of receptors for transduction, on integration of DNA pathways, mechanisms blocking transfer including CRISPR and new restriction systems, strategies for evasion of restriction barriers, as well as factors influencing MGE selection and stability. These studies have also lead to new tools enabling construction of genetically modified clinical S. aureus isolates. This review will focus on HGT mechanisms and their importance in shaping the evolution of new clones adapted to antibiotic resistance, healthcare, communities and livestock. Copyright © 2013 Elsevier GmbH. All rights reserved.
Molecular Signatures of Nicotinoid-Pathogen Synergy in the Termite Gut
Sen, Ruchira; Raychoudhury, Rhitoban; Cai, Yunpeng; Sun, Yijun; Lietze, Verena-Ulrike; Peterson, Brittany F.; Scharf, Michael E.; Boucias, Drion G.
2015-01-01
Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies. PMID:25837376
Genome Consortium for Active Teaching: Meeting the Goals of BIO2010
ERIC Educational Resources Information Center
Campbell, A. Malcolm; Ledbetter, Mary Lee S.; Hoopes, Laura L. M.; Eckdahl, Todd T.; Heyer, Laurie J.; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail
2007-01-01
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable…
Cloud-scale genomic signals processing classification analysis for gene expression microarray data.
Harvey, Benjamin; Soo-Yeon Ji
2014-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring inference though analysis of DNA/mRNA sequence data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological inference by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale classification analysis of microarray data using Wavelet thresholding in a Cloud environment to identify significantly expressed features. This paper proposes a novel methodology that uses Wavelet based Denoising to initialize a threshold for determination of significantly expressed genes for classification. Additionally, this research was implemented and encompassed within cloud-based distributed processing environment. The utilization of Cloud computing and Wavelet thresholding was used for the classification 14 tumor classes from the Global Cancer Map (GCM). The results proved to be more accurate than using a predefined p-value for differential expression classification. This novel methodology analyzed Wavelet based threshold features of gene expression in a Cloud environment, furthermore classifying the expression of samples by analyzing gene patterns, which inform us of biological processes. Moreover, enabling researchers to face the present and forthcoming challenges that may arise in the analysis of data in functional genomics of large microarray datasets.
van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J
2017-02-01
Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.
Development of an electro-responsive platform for the controlled transfection of mammalian cells
NASA Astrophysics Data System (ADS)
Hook, Andrew L.; Thissen, Helmut W.; Hayes, Jason P.; Voelcker, Nicolas H.
2005-02-01
The recent development of living microarrays as novel tools for the analysis of gene expression in an in-situ environment promises to unravel gene function within living organisms. In order to significantly enhance microarray performance, we are working towards electro-responsive DNA transfection chips. This study focuses on the control of DNA adsorption and desorption by appropriate surface modification of highly doped p++ silicon. Silicon was modified by plasma polymerisation of allylamine (ALAPP), a non-toxic surface that sustains cell growth. Subsequent high surface density grafting of poly(ethylene oxide) formed a layer resistant to biomolecule adsorption and cell attachment. Spatially controlled excimer laser ablation of the surface produced micron resolution patterns of re-exposed plasma polymer whilst the rest of the surface remained non-fouling. We observed electro-stimulated preferential adsorption of DNA to the ALAPP surface and subsequent desorption by the application of a negative bias. Cell culture experiments with HEK 293 cells demonstrated efficient and controlled transfection of cells using the expression of green fluorescent protein as a reporter. Thus, these chemically patterned surfaces are promising platforms for use as living microarrays.
Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro
2007-01-01
Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent’s non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent’s method is not suitable for ROKU. PMID:19936074
Estimation of gene induction enables a relevance-based ranking of gene sets.
Bartholomé, Kilian; Kreutz, Clemens; Timmer, Jens
2009-07-01
In order to handle and interpret the vast amounts of data produced by microarray experiments, the analysis of sets of genes with a common biological functionality has been shown to be advantageous compared to single gene analyses. Some statistical methods have been proposed to analyse the differential gene expression of gene sets in microarray experiments. However, most of these methods either require threshhold values to be chosen for the analysis, or they need some reference set for the determination of significance. We present a method that estimates the number of differentially expressed genes in a gene set without requiring a threshold value for significance of genes. The method is self-contained (i.e., it does not require a reference set for comparison). In contrast to other methods which are focused on significance, our approach emphasizes the relevance of the regulation of gene sets. The presented method measures the degree of regulation of a gene set and is a useful tool to compare the induction of different gene sets and place the results of microarray experiments into the biological context. An R-package is available.
Genes Involved in the Balance between Neuronal Survival and Death during Inflammation
Glezer, Isaias; Chernomoretz, Ariel; David, Samuel; Plante, Marie-Michèle; Rivest, Serge
2007-01-01
Glucocorticoids are potent regulators of the innate immune response, and alteration in this inhibitory feedback has detrimental consequences for the neural tissue. This study profiled and investigated functionally candidate genes mediating this switch between cell survival and death during an acute inflammatory reaction subsequent to the absence of glucocorticoid signaling. Oligonucleotide microarray analysis revealed that following lipopolysaccharide (LPS) intracerebral administration at striatum level, more modulated genes presented transcription impairment than exacerbation upon glucocorticoid receptor blockage. Among impaired genes we identified ceruloplasmin (Cp), which plays a key role in iron metabolism and is implicated in a neurodegenative disease. Microglial and endothelial induction of Cp is a natural neuroprotective mechanism during inflammation, because Cp-deficient mice exhibited increased iron accumulation and demyelination when exposed to LPS and neurovascular reactivity to pneumococcal meningitis. This study has identified genes that can play a critical role in programming the innate immune response, helping to clarify the mechanisms leading to protection or damage during inflammatory conditions in the CNS. PMID:17375196
Wang, Chien-Yu; Chiao, Ming-Tsang; Yen, Po-Jen; Huang, Wei-Chou; Hou, Chia-Chung; Chien, Shih-Chang; Yeh, Kuo-Chen; Yang, Wen-Ching; Shyur, Lie-Fen; Yang, Ning-Sun
2006-12-01
Echinacea spp. are popularly used as an herbal medicine or food supplement for enhancing the immune system. This study shows that plant extracts from root [R] and stem plus leaf [S+L] tissues of E. purpurea exhibit opposite (enhancing vs inhibitory) modulatory effects on the expression of the CD83 marker in human dendritic cells (DCs), which are known as professional antigen-presenting cells. We developed a function-targeted DNA microarray system to characterize the effects of phytocompounds on human DCs. Down-regulation of mRNA expression of specific chemokines (e.g., CCL3 and CCL8) and their receptors (e.g., CCR1 and CCR9) was observed in [S+L]-treated DCs. Other chemokines and regulatory molecules (e.g., CCL4 and CCL2) involved in the c-Jun pathway were found to be up-regulated in [R]-treated DCs. This study, for the first time, demonstrates that E. purpurea extracts can modulate DC differentiation and expression of specific immune-related genes in DCs.
Ruiz-Riol, M; Berdnik, D; Llano, A; Mothe, B; Gálvez, C; Pérez-Álvarez, S; Oriol-Tordera, B; Olvera, A; Silva-Arrieta, S; Meulbroek, M; Pujol, F; Coll, J; Martinez-Picado, J; Ganoza, C; Sanchez, J; Gómez, G; Wyss-Coray, T; Brander, C
2017-08-15
Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (>50,000) or low (<10,000 HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia ( P < 0.0001) and are positively correlated with proviral HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/β-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor ( IL27RA ) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells communicate with each other by secreting signaling proteins, and the blood is a key conduit for transporting such factors. Investigating the communication factors promoting effective immune responses and having potentially antiviral functions against HIV using a novel focused omics approach ("communicome") has the potential to significantly improve our knowledge of effective host immunity and accelerate the HIV cure agenda. Including 140 subjects with variable viral loads and measuring the plasma levels of >600 soluble proteins, our data highlight the importance of Th17 cells and Wnt/β-catenin signaling in HIV control and especially identify the IL-27/IL-27 receptor subunit alpha (IL-27RA) axis as a predictor of plasma viral load and proviral copy number in the peripheral blood. These data may provide important guidance to therapeutic approaches in the HIV cure agenda. Copyright © 2017 Ruiz-Riol et al.
So, Alexander
2008-01-01
Understanding how uric acid crystals provoke inflammation is crucial to improving our management of acute gout. It is well known that urate crystals stimulate monocytes and macrophages to elaborate inflammatory cytokines, but the tissue response of the synovium is less well understood. Microarray analysis of mRNA expression by these lining cells may help to delineate the genes that are modulated. Employing a murine air-pouch model, a number of genes expressed by innate immune cells were found to be rapidly upregulated by monosodium urate crystals. These findings provide new research avenues to investigate the physiopathology of gouty inflammation, and may eventually lead to new therapeutic targets in acute gout.
Klein, Hans-Ulrich; Ruckert, Christian; Kohlmann, Alexander; Bullinger, Lars; Thiede, Christian; Haferlach, Torsten; Dugas, Martin
2009-12-15
Multiple gene expression signatures derived from microarray experiments have been published in the field of leukemia research. A comparison of these signatures with results from new experiments is useful for verification as well as for interpretation of the results obtained. Currently, the percentage of overlapping genes is frequently used to compare published gene signatures against a signature derived from a new experiment. However, it has been shown that the percentage of overlapping genes is of limited use for comparing two experiments due to the variability of gene signatures caused by different array platforms or assay-specific influencing parameters. Here, we present a robust approach for a systematic and quantitative comparison of published gene expression signatures with an exemplary query dataset. A database storing 138 leukemia-related published gene signatures was designed. Each gene signature was manually annotated with terms according to a leukemia-specific taxonomy. Two analysis steps are implemented to compare a new microarray dataset with the results from previous experiments stored and curated in the database. First, the global test method is applied to assess gene signatures and to constitute a ranking among them. In a subsequent analysis step, the focus is shifted from single gene signatures to chromosomal aberrations or molecular mutations as modeled in the taxonomy. Potentially interesting disease characteristics are detected based on the ranking of gene signatures associated with these aberrations stored in the database. Two example analyses are presented. An implementation of the approach is freely available as web-based application. The presented approach helps researchers to systematically integrate the knowledge derived from numerous microarray experiments into the analysis of a new dataset. By means of example leukemia datasets we demonstrate that this approach detects related experiments as well as related molecular mutations and may help to interpret new microarray data.
Giancarlo, R; Scaturro, D; Utro, F
2015-02-01
The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T
2014-12-01
Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).
Identification of novel target genes involved in Indian Fanconi anemia patients using microarray.
Shyamsunder, Pavithra; Ganesh, Kripa S; Vidyasekar, Prasanna; Mohan, Sheila; Verma, Rama Shanker
2013-12-01
Fanconi anemia (FA) is a genetic disorder characterized by progressive bone marrow failure and a predisposition to cancers. Mutations have been documented in 15 FA genes that participate in the FA-BRCA DNA repair pathway, a fundamental pathway in the development of the disease and the presentation of its characteristic symptoms. Certain symptoms such as oxygen sensitivity, hematological abnormalities and impaired immunity suggest that FA proteins could participate in or independently control other pathways as well. In this study, we identified 9 DNA repair genes that were down regulated in a genome wide analysis of 6 Indian Fanconi anemia patients. Functional clustering of a total of 233 dysregulated genes identified key biological processes that included regulation of transcription, DNA repair, cell cycle and chromosomal organization. Microarray data revealed the down regulation of ATXN3, ARID4A and ETS-1, which were validated by RTPCR in a subsequent sample set of 9 Indian FA patients. Here we report for the first time a gene expression profile of Fanconi anemia patients from the Indian population and a pool of genes that might aid in the acquisition and progression of the FA phenotype. © 2013 Elsevier B.V. All rights reserved.
Natesan, Mohan; Jensen, Stig M; Keasey, Sarah L; Kamata, Teddy; Kuehne, Ana I; Stonier, Spencer W; Lutwama, Julius Julian; Lobel, Leslie; Dye, John M; Ulrich, Robert G
2016-08-01
A detailed understanding of serological immune responses to Ebola and Marburg virus infections will facilitate the development of effective diagnostic methods, therapeutics, and vaccines. We examined antibodies from Ebola or Marburg survivors 1 to 14 years after recovery from disease, by using a microarray that displayed recombinant nucleoprotein (NP), viral protein 40 (VP40), envelope glycoprotein (GP), and inactivated whole virions from six species of filoviruses. All three outbreak cohorts exhibited significant antibody responses to antigens from the original infecting species and a pattern of additional filoviruses that varied by outbreak. NP was the most cross-reactive antigen, while GP was the most specific. Antibodies from survivors of infections by Marburg marburgvirus (MARV) species were least cross-reactive, while those from survivors of infections by Sudan virus (SUDV) species exhibited the highest cross-reactivity. Based on results revealed by the protein microarray, persistent levels of antibodies to GP, NP, and VP40 were maintained for up to 14 years after infection, and survival of infection caused by one species imparted cross-reactive antibody responses to other filoviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Excessive innate immune response and mutant D222G/N in severe A (H1N1) pandemic influenza.
Berdal, Jan-Erik; Mollnes, Tom E; Wæhre, Torgun; Olstad, Ole K; Halvorsen, Bente; Ueland, Thor; Laake, Jon H; Furuseth, May T; Maagaard, Anne; Kjekshus, Harald; Aukrust, Pål; Jonassen, Christine M
2011-10-01
Explore the role of viral factors and immune response in patients with severe pandemic pdmH1N1 illness without significant co-morbidity. Seven patients with pdmH1N1 influenza, bilateral chest X-rays infiltrates, requiring mechanical ventilator support were consecutively recruited. Seven age- and gender-matched healthy individuals served as controls. Four patients were viremic, two with the mutant D222G/N pdmH1N1.Microarray analyses of peripheral blood leukocytes suggested a marked granulocytes activation, but no up-regulation of inflammatory cytokine mRNA. Patients with severe pdmH1NI had a marked systemic complement activation, and in contrast to the lack of cytokine mRNA up-regulation in blood leukocytes, plasma levels of a broad range of inflammatory mediators, including IP-10, and mediators involved in pulmonary remodelling were markedly elevated. Patients with mutant virus had particularly high IP-10 levels, and the most pronounced complement activation. In severe pdmH1N1, viremia was common and the D222G/N mutant was found in half of the viremic patients. Host immune response was characterized by strong activation of the innate immune system, including complement and granulocytes activation, increased serum levels of inflammation and pulmonary remodelling markers, possibly contributing to the observed tissue damage. However, few patients were included and further studies are needed to characterize the immune response in severe pdmH1N1 infection. Copyright © 2011 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity
2010-01-01
Background Activation of Toll-like receptors (TLRs) is widely accepted as an essential event for defence against infection. Many TLRs utilize a common signalling pathway that relies on activation of the kinase IRAK4 and the transcription factor NFκB for the rapid expression of immunity genes. Methods 21 K DNA microarray technology was used to evaluate LPS-induced (TLR4) gene responses in blood monocytes from a child with an IRAK4-deficiency. In vitro responsiveness to LPS was confirmed by real-time PCR and ELISA and compared to the clinical predisposition of the child and IRAK4-deficient mice to Gram negative infection. Results We demonstrated that the vast majority of LPS-responsive genes in IRAK4-deficient monocytes were greatly suppressed, an observation that is consistent with the described role for IRAK4 as an essential component of TLR4 signalling. The severely impaired response to LPS, however, is inconsistent with a remarkably low incidence of Gram negative infections observed in this child and other children with IRAK4-deficiency. This unpredicted clinical phenotype was validated by demonstrating that IRAK4-deficient mice had a similar resistance to infection with Gram negative S. typhimurium as wildtype mice. A number of immunity genes, such as chemokines, were expressed at normal levels in human IRAK4-deficient monocytes, indicating that particular IRAK4-independent elements within the repertoire of TLR4-induced responses are expressed. Conclusions Sufficient defence to Gram negative immunity does not require IRAK4 or a robust, 'classic' inflammatory and immune response. PMID:20105294
TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.
Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V
2016-06-01
Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens
Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.
2015-01-01
SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212
Junger, Henrik H; Schlitt, Hans J; Geissler, Edward K; Fichtner-Feigl, Stefan; Brunner, Stefan M
2017-11-01
This study aimed to elucidate the impact of epithelial regenerative responses and immune cell infiltration on biliary complications after liver transplantation. Bile duct (BD) damage after cold storage was quantified by a BD damage score and correlated with patient outcome in 41 patients. Bacterial infiltration was determined by fluorescence in situ hybridization (FISH). BD samples were analyzed by immunohistochemistry for E-cadherin, cytokeratin, CD56, CD14, CD4, CD8, and double-immunofluorescence for cytokine production and by messenger RNA (mRNA) microarray. Increased mRNA levels of adherens junctions (P < 0.01) were detected in damaged BDs from patients without complications compared with damaged BDs from patients with biliary complications. Immunohistochemistry showed increased expression of E-cadherin and cytokeratin in BDs without biliary complications (P = 0.03; P = 0.047). FISH analysis demonstrated translocation of bacteria in BDs. However, mRNA analysis suggested an enhanced immune response in BDs without biliary complications (P < 0.01). Regarding immune cell infiltration, CD4 + and CD8 + cells were significantly increased in patients without complications compared with those with complications (P = 0.02; P = 0.01). In conclusion, following BD damage during cold storage, we hypothesize that the functional regenerative capacity of biliary epithelium and enhanced local adaptive immune cell infiltration are crucial for BD recovery. Such molecular immunological BD analyses therefore could help to predict biliary complications in cases of "major" epithelial damage after cold storage.Liver Transplantation 23 1422-1432 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Innate immunity in the control of HIV/AIDS: recent advances and open questions.
Ploquin, Mickaël J-Y; Jacquelin, Béatrice; Jochems, Simon P; Barré-Sinoussi, Françoise; Müller-Trutwin, Michaela C
2012-06-19
From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.
Stoll, Matthew L
2011-01-01
The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarize evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions. PMID:21269576
Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa
2017-05-01
The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.
The extent to which humans and wildlife are exposed to toxicants is an important focus of environmental research. This work has been directed toward the development of molecular indicators diagnostic for exposure to various stressors in freshwater fish. Research includes the di...
USDA-ARS?s Scientific Manuscript database
The viral pathogens, human norovirus (NoV) and hepatitis A virus (HAV), are significant contributors of foodborne associated outbreaks. To develop a typing tool for foodborne viruses, a focused, low-density DNA microarray was developed in conjunction with a rapid and high-throughput fluorescent meth...
Conazoles are a class of azole fungicides widely used both pharmaceutically and agriculturally. This study focused on four conazoles that exhibit a range of cancer and non-cancer effects, to ascertain if any neurotoxic effects are present and to identify possible common and uniqu...
Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne
2014-01-01
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.
The FDA's Experience with Emerging Genomics Technologies-Past, Present, and Future.
Xu, Joshua; Thakkar, Shraddha; Gong, Binsheng; Tong, Weida
2016-07-01
The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics Data Submission (VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the FDA has led an international consortium of regulatory agencies, academia, pharmaceutical companies, and genomics platform providers, which was named MicroArray Quality Control Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, and data interpretation. Three projects have been completed so far assessing these genomics technologies: gene expression microarrays, whole genome genotyping arrays, and whole transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for fit-for-purpose application of these new data streams in regulatory environments, and the solutions have been made available to the public through peer-reviewed publications. The latest MAQC project is also called the SEquencing Quality Control (SEQC) project focused on next-generation sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that relative gene expression can be measured accurately and reliably across laboratories and RNA-seq platforms. Besides prediction performance comparable to microarrays in clinical settings and safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole genome sequencing and targeted sequencing.
The FDA’s Experience with Emerging Genomics Technologies—Past, Present, and Future
Xu, Joshua; Thakkar, Shraddha; Gong, Binsheng; Tong, Weida
2016-01-01
The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics Data Submission (VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the FDA has led an international consortium of regulatory agencies, academia, pharmaceutical companies, and genomics platform providers, which was named MicroArray Quality Control Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, and data interpretation. Three projects have been completed so far assessing these genomics technologies: gene expression microarrays, whole genome genotyping arrays, and whole transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for fit-for-purpose application of these new data streams in regulatory environments, and the solutions have been made available to the public through peer-reviewed publications. The latest MAQC project is also called the SEquencing Quality Control (SEQC) project focused on next-generation sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that relative gene expression can be measured accurately and reliably across laboratories and RNA-seq platforms. Besides prediction performance comparable to microarrays in clinical settings and safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole genome sequencing and targeted sequencing. PMID:27116022
Electrosonic ejector microarray for drug and gene delivery.
Zarnitsyn, Vladimir G; Meacham, J Mark; Varady, Mark J; Hao, Chunhai; Degertekin, F Levent; Fedorov, Andrei G
2008-04-01
We report on development and experimental characterization of a novel cell manipulation device-the electrosonic ejector microarray-which establishes a pathway for drug and/or gene delivery with control of biophysical action on the length scale of an individual cell. The device comprises a piezoelectric transducer for ultrasound wave generation, a reservoir for storing the sample mixture and a set of acoustic horn structures that form a nozzle array for focused application of mechanical energy. The nozzles are micromachined in silicon or plastic using simple and economical batch fabrication processes. When the device is driven at a particular resonant frequency of the acoustic horn structures, the sample mixture of cells and desired transfection agents/molecules suspended in culture medium is ejected from orifices located at the nozzle tips. During sample ejection, focused mechanical forces (pressure and shear) are generated on a microsecond time scale (dictated by nozzle size/geometry and ejection velocity) resulting in identical "active" microenvironments for each ejected cell. This process enables a number of cellular bioeffects, from uptake of small molecules and gene delivery/transfection to cell lysis. Specifically, we demonstrate successful calcein uptake and transfection of DNA plasmid encoding green fluorescent protein (GFP) into human malignant glioma cells (cell line LN443) using electrosonic microarrays with 36, 45 and 50 mum diameter nozzle orifices and operating at ultrasound frequencies between 0.91 and 0.98 MHz. Our results suggest that efficacy and the extent of bioeffects are mainly controlled by nozzle orifice size and the localized intensity of the applied acoustic field.
NASA Astrophysics Data System (ADS)
Ward, Nancy E.; Pellis, Neal R.; Risin, Diana; Risin, Semyon A.; Liu, Wenbin
2006-09-01
Space flights result in remarkable effects on various physiological systems, including a decline in cellular immune functions. Previous studies have shown that exposure to microgravity, both true and modeled, can cause significant changes in numerous lymphocyte functions. The purpose of this study was to search for microgravity-sensitive genes, and specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response. The experiments were performed on anti-CD3 and IL-2 activated human T cells. To model microgravity conditions we have utilized the NASA rotating wall vessel bioreactor. Control lymphocytes were cultured in static 1g conditions. To assess gene expression we used DNA microarray chip technology. We had shown that multiple genes (approximately 3-8% of tested genes) respond to microgravity conditions by 1.5 and more fold change in expression. There is a significant variability in the response. However, a certain reproducible pattern in gene response could be identified. Among the genes showing reproducible changes in expression in modeled microgravity, several genes involved in apoptosis as well as in immune response were identified. These are IL-7 receptor, Granzyme B, Beta-3-endonexin, Apo2 ligand and STAT1. Possible functional consequences of these changes are discussed.
Gómez, Marta; Moles, Laura; Espinosa-Martos, Irene; Bustos, Gerardo; de Vos, Willem M.; Rodríguez, Juan M.; Fuentes, Susana
2017-01-01
An abnormal colonization pattern of the preterm gut may affect immune maturation and exert a long-term influence on the intestinal bacterial composition and host health. However, follow-up studies assessing the evolution of the fecal microbiota of infants that were born preterm are very scarce. In this work, the bacterial compositions of fecal samples, obtained from sixteen 2-year-old infants were evaluated using a phylogenetic microarray; subsequently, the results were compared with those obtained in a previous study from samples of meconium and feces collected from the same infants while they stayed in the neonatal intensive care unit (NICU). In parallel, the concentration of a wide range of cytokines, chemokines, growth factors and immunoglobulins were determined in meconium and fecal samples. Globally, a higher bacterial diversity and a lower interindividual variability were observed in 2-year-olds’ feces, when compared to the samples obtained during their first days of life. Hospital-associated fecal bacteria, that were dominant during the NICU stay, seemed to be replaced, two years later, by genera, which are usually predominant in the healthy adult microbiome. The immune profile of the meconium and fecal samples differed, depending on the sampling time, showing different immune maturation statuses of the gut. PMID:29186903
Yen, Judy Y; Garamszegi, Sara; Geisbert, Joan B; Rubins, Kathleen H; Geisbert, Thomas W; Honko, Anna; Xia, Yu; Connor, John H; Hensley, Lisa E
2011-11-01
The mechanisms of Ebola (EBOV) pathogenesis are only partially understood, but the dysregulation of normal host immune responses (including destruction of lymphocytes, increases in circulating cytokine levels, and development of coagulation abnormalities) is thought to play a major role. Accumulating evidence suggests that much of the observed pathology is not the direct result of virus-induced structural damage but rather is due to the release of soluble immune mediators from EBOV-infected cells. It is therefore essential to understand how the candidate therapeutic may be interrupting the disease process and/or targeting the infectious agent. To identify genetic signatures that are correlates of protection, we used a DNA microarray-based approach to compare the host genome-wide responses of EBOV-infected nonhuman primates (NHPs) responding to candidate therapeutics. We observed that, although the overall circulating immune response was similar in the presence and absence of coagulation inhibitors, surviving NHPs clustered together. Noticeable differences in coagulation-associated genes appeared to correlate with survival, which revealed a subset of distinctly differentially expressed genes, including chemokine ligand 8 (CCL8/MCP-2), that may provide possible targets for early-stage diagnostics or future therapeutics. These analyses will assist us in understanding the pathogenic mechanisms of EBOV infection and in identifying improved therapeutic strategies.
Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.
Duann, Pu; Lianos, Elias A
2011-10-01
Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.
Encinas, Paloma; Rodriguez-Milla, Miguel A; Novoa, Beatriz; Estepa, Amparo; Figueras, Antonio; Coll, Julio
2010-09-27
Despite rhabdoviral infections being one of the best known fish diseases, the gene expression changes induced at the surface tissues after the natural route of infection (infection-by-immersion) have not been described yet. This work describes the differential infected versus non-infected expression of proteins and immune-related transcripts in fins and organs of zebrafish Danio rerio shortly after infection-by-immersion with viral haemorrhagic septicemia virus (VHSV). Two-dimensional differential gel electrophoresis detected variations on the protein levels of the enzymes of the glycolytic pathway and cytoskeleton components but it detected very few immune-related proteins. Differential expression of immune-related gene transcripts estimated by quantitative polymerase chain reaction arrays and hybridization to oligo microarrays showed that while more transcripts increased in fins than in organs (spleen, head kidney and liver), more transcripts decreased in organs than in fins. Increased differential transcript levels in fins detected by both arrays corresponded to previously described infection-related genes such as complement components (c3b, c8 and c9) or class I histocompatibility antigens (mhc1) and to newly described genes such as secreted immunoglobulin domain (sid4), macrophage stimulating factor (mst1) and a cluster differentiation antigen (cd36). The genes described would contribute to the knowledge of the earliest molecular events occurring in the fish surfaces at the beginning of natural rhabdoviral infections and/or might be new candidates to be tested as adjuvants for fish vaccines.
Song, Ki-Duk; Dowd, Scott E; Lee, Hak-Kyo; Kim, Sung Woo
2013-03-01
Seventy-two pigs at 34.4 kg body weight (BW) were allotted to two treatments with six replicates/treatment and six pigs/pen: the CON (negative control, no added selenium (Se)) and the OS (0.36 mg/kg added selenium from selenium-enriched yeast). Pigs were fed until 130 kg BW. The CON diet contained 0.18 mg/kg indigenous Se whereas the OS diet contained 0.54 mg/kg Se. Blood samples were collected at 130 kg BW and further processed for microarray analysis, prepared with 885 genes related to immune function of pigs. Among those, 28 genes related to improved immune status and innate immunity were up-regulated (P < 0.05) in leukocytes from Se-fed pigs and those include major histocompatibility class I (> 1.66), arginase I (> 1.27), integrin beta-1-subunit (> 1.20), toll like receptor 2 (> 1.12) and double-stranded RNA-dependent protein kinase. However, 24 genes including tissue factor (< 4.70), serum amyloid A-2 protein (< 3.11) and p27Kip1 (< 1.42) were down-regulated (P < 0.05) in leukocytes from Se-fed pigs. Expression of four selected genes was validated using quantitative PCR (qPCR) showing significant correlation between mircroarray analysis and qPCR analysis. This study indicates that a long- term dietary supplementation (0.3%) of organic Se improves the expression of genes that are related to enhanced immunity of pigs. © 2012 Japanese Society of Animal Science.
Graubner, Felix R; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R; Boos, Alois; Kowalewski, Mariusz P
2017-08-01
In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.
2010-01-01
Background As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Methods Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Results Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. Conclusions In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment. PMID:20409345
Xie, Shuwu; Zhu, Yan; Ma, Li; Lu, Yingying; Zhou, Jieyun; Gui, Youlun; Cao, Lin
2010-04-22
As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment.
Hecker, Michael; Fitzner, Brit; Wendt, Matthias; Lorenz, Peter; Flechtner, Kristin; Steinbeck, Felix; Schröder, Ina; Thiesen, Hans-Jürgen; Zettl, Uwe Klaus
2016-01-01
Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g. MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (p values <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392–411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS. PMID:26831522
Shui, Irene; Kennedy, Allison; Wooten, Karen; Schwartz, Benjamin; Gust, Deborah
2005-01-01
OBJECTIVE: To examine the vaccine safety concerns of African-American mothers who, despite concerns, have their children immunized. METHODS: Six focus groups of Atlanta-area African-American mothers who were very concerned about vaccine safety but whose children were fully vaccinated were conducted. RESULTS: Major factors influencing participants' concerns about immunizations included: lack of information and mistrust of the medical community and government. Factors that convinced parents to have their child immunized despite their concerns included social norms and/or laws supporting immunization and fear of the consequences of not immunizing. Suggestions given to reduce concerns included improving available information that addressed their concerns and provider-patient communication. CONCLUSIONS: Addressing mothers' concerns about immunization is important both from an ethical perspective, in assuring that they are fully informed of the risks and benefits of immunizations, as well as from a practical one, in reducing the possibility that they will decide not to immunize their child. Changes in the childhood immunization process should be made to reduce parental concern about vaccine safety. Some changes that may be considered include improved provider communication about immunizations and additional tailored information about the necessity and safety of vaccines. PMID:15926642
Transcriptomic profile of host response in mouse brain after exposure to plant toxin abrin.
Bhaskar, A S Bala; Gupta, Nimesh; Rao, P V Lakshmana
2012-09-04
Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data. This is the first report on host-gene response using whole genome microarray in an animal model after abrin exposure. The data generated provides leads for developing suitable medical counter measures against abrin poisoning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
2010-01-01
Background The zebra mussel (Dreissena polymorpha) has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. Results In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A), current velocity (Factor B), dissolved oxygen (Factor C), and byssogenesis status (Factor D). Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR). The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. Conclusions The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment. PMID:20509938
Switching benchmarks in cancer of unknown primary: from autopsy to microarray.
Pentheroudakis, George; Golfinopoulos, Vassilios; Pavlidis, Nicholas
2007-09-01
Cancer of unknown primary (CUP) is associated with unknown biology and dismal prognosis. Information on the primary site of origin is scant and has never been analysed. We systematically reviewed all published evidence on the CUP primary site identified by two different approaches, either autopsy or microarray gene expression profiling. Published reports on identification of CUP primary site by autopsy or microarray-based multigene expression platforms were retrieved and analysed for year of publication, primary site, patient age, gender, histology, rate of primary identification, manifestations and metastatic deposits, microarray chip technology, training and validation sets, mathematical modelling, classification accuracy and number of classifying genes. From 1944 to 2000, a total of 884 CUP patients (66% males) underwent autopsy in 12 studies after presenting with metastatic or systemic symptoms and succumbing to their disease. A primary was identified in 644 (73%) of them, mostly in the lung (27%), pancreas (24%), hepatobiliary tree (8%), kidneys (8%), bowel, genital system and stomach, as a small focus of adenocarcinoma or poorly differentiated carcinoma. An unpredictable systemic dissemination was evident with high frequency of lung (46%), nodal (35%), bone (17%), brain (16%) and uncommon (18%) deposits. Between the 1944-1980 and the 1980-2000 series, female representation increased, 'undetermined neoplasm' diagnosis became rarer, pancreatic primaries were found less often while colonic ones were identified more frequently. Four studies using microarray technology profiled more than 500 CUP cases using classifier set of genes (ranging from 10 to 495) and reported strikingly dissimilar frequencies of assigned primary sites (lung 11.5%, pancreas 12.5%, bowel 12%, breast 15%, hepatobiliary tree 8%, kidneys 6%, genital system 9%, bladder 5%) in 75-90% of the cases. Evolution in medical imaging technology, diet and lifestyle habits probably account for changing epidemiology of CUP primaries in autopsies. Discrepant assignment of primary sites by microarrays may be due to the presence of 'sanctuary sites' in autopsies, molecular misclassification and the postulated presence of a pro-metastatic genetic signature. In view of the absence of patient therapeutic or prognostic benefit with primary identification, gene expression profiling should be re-orientated towards unraveling the complex pathophysiology of metastases.
2012-01-01
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin Lymphoma comprising of greater than 30% of adult non-Hodgkin Lymphomas. DLBCL represents a diverse set of lymphomas, defined as diffuse proliferation of large B lymphoid cells. Numerous cytogenetic studies including karyotypes and fluorescent in situ hybridization (FISH), as well as morphological, biological, clinical, microarray and sequencing technologies have attempted to categorize DLBCL into morphological variants, molecular and immunophenotypic subgroups, as well as distinct disease entities. Despite such efforts, most lymphoma remains undistinguishable and falls into DLBCL, not otherwise specified (DLBCL-NOS). The advent of microarray-based studies (chromosome, RNA, gene expression, etc) has provided a plethora of high-resolution data that could potentially facilitate the finer classification of DLBCL. This review covers the microarray data currently published for DLBCL. We will focus on these types of data; 1) array based CGH; 2) classical CGH; and 3) gene expression profiling studies. The aims of this review were three-fold: (1) to catalog chromosome loci that are present in at least 20% or more of distinct DLBCL subtypes; a detailed list of gains and losses for different subtypes was generated in a table form to illustrate specific chromosome loci affected in selected subtypes; (2) to determine common and distinct copy number alterations among the different subtypes and based on this information, characteristic and similar chromosome loci for the different subtypes were depicted in two separate chromosome ideograms; and, (3) to list re-classified subtypes and those that remained indistinguishable after review of the microarray data. To the best of our knowledge, this is the first effort to compile and review available literatures on microarray analysis data and their practical utility in classifying DLBCL subtypes. Although conventional cytogenetic methods such as Karyotypes and FISH have played a major role in classification schemes of lymphomas, better classification models are clearly needed to further understanding the biology, disease outcome and therapeutic management of DLBCL. In summary, microarray data reviewed here can provide better subtype specific classifications models for DLBCL. PMID:22967872
DuBois, Debra C; Piel, William H; Jusko, William J
2008-01-01
High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest. PMID:15212590
Jin, Ping; Li, Shengjie; Sun, Lianjie; Lv, Caiyun; Ma, Fei
2017-09-01
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via regulating expressions of target genes at post-transcriptional level. Amphioxus, as modern survivor of an ancient chordate lineage, is a model organism for comparative genomics study. However, miRNAs involved in regulating immune responses in Branchiostoma belcheri are largely unclear. Here, we systematically investigated the microRNAs (miRNAs) involved in regulating immune responses in the cephalochordate amphioxus (Branchiostoma belcheri) through next-generation deep sequencing of amphioxus samples infected with Vibrio parahemolyticus. We identified 198 novel amphioxus miRNAs, consisting of 12 conserved miRNAs, 33 candidate star miRNAs and 153 potential amphioxus-specific-miRNAs. Using microarray profiling, 14 miRNAs were differentially expressed post infection, suggesting they are immune-related miRNAs. Eight miRNAs (bbe-miR-92a-3p, bbe-miR-92c-3p, bbe-miR-210-5p, bbe-miR-22-3p, bbe-miR-1∼bbe-miR-133 and bbe-miR-217∼bbe-miR-216 clusters) were significantly increased at 12 h post-infection, while bbe-miR-2072-5p was downregulated at 6 h and 12 h. Three miRNAs, bbe-miR-1-3p, bbe-miR-22-3p and bbe-miR-92a-3p, were confirmed to be involved in immune responses to infection by qRT-PCR. Our findings further clarify important regulatory roles of miRNAs in the innate immune response to bacterial infection in amphioxus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Broderick, Gordon; Ben-Hamo, Rotem; Vashishtha, Saurabh; Efroni, Sol; Nathanson, Lubov; Barnes, Zachary; Fletcher, Mary Ann; Klimas, Nancy
2013-02-01
Though potentially linked to the basic physiology of stress response we still have no clear understanding of Gulf War Illness (GWI), a debilitating illness presenting with a complex constellation of immune, endocrine and neurological symptoms. Here we compared male GWI (n=20) with healthy veterans (n=22) and subjects with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) (n=7). Blood was drawn during a Graded eXercise Test (GXT) prior to exercise, at peak effort (VO2 max) and 4-h post exercise. Affymetrix HG U133 plus 2.0 microarray gene expression profiling in peripheral blood mononuclear cells (PBMCs) was used to estimate activation of over 500 documented pathways. This was cast against ELISA-based measurement of 16 cytokines in plasma and flow cytometric assessment of lymphocyte populations and cytotoxicity. A 2-way ANOVA corrected for multiple comparisons (q statistic <0.05) indicated significant increases in neuroendocrine-immune signaling and inflammatory activity in GWI, with decreased apoptotic signaling. Conversely, cell cycle progression and immune signaling were broadly subdued in CFS. Partial correlation networks linking pathways with symptom severity via changes in immune cell abundance, function and signaling were constructed. Central to these were changes in IL-10 and CD2+ cell abundance and their link to two pathway clusters. The first consisted of pathways supporting neuronal development and migration whereas the second was related to androgen-mediated activation of NF-κB. These exploratory results suggest an over-expression of known exercise response mechanisms as well as illness-specific changes that may involve an overlapping stress-potentiated neuro-inflammatory response. Copyright © 2012 Elsevier Inc. All rights reserved.
Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K
2017-03-01
In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transcriptome profiling indicating canine parvovirus type 2a as a potential immune activator.
Fan, Xu-Xu; Gao, Yuan; Shu, Long; Wei, Yan-Quan; Yao, Xue-Ping; Cao, Sui-Zhong; Peng, Guang-Neng; Liu, Xiang-Tao; Sun, Shi-Qi
2016-12-01
Canine parvovirus type 2a (CPV-2a) is a variant of CPV-2, which is a highly contagious pathogen causing severe gastroenteritis and death in young dogs. However, how CPV-2 participates in cell regulation and immune response remains unknown. In this study, persistently infected MDCK cells were generated through culture passage of the CPV-2a-infected cells for ten generations. Our study showed that CPV-2a induces cell proliferation arrest and cell morphology alternation before the fourth generation, whereas, the cell morphology returns to normal after five times of passages. PCR detection of viral VP2 gene demonstrated that CPV-2a proliferate with cell passage. An immunofluorescence assay revealed that CPV-2a particles were mainly located in the cell nuclei of MDCK cell. Then transcriptome microarray revealed that gene expression pattern of MDCK with CPV-2a persistent infection is distinct compared with normal cells. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genome pathway analysis demonstrated that CPV-2a infection induces a series of membrane-associated genes expression, including many MHC protein or MHC-related complexes. These genes are closely related to signaling pathways of virus-host interaction, including antigen processing and presentation pathway, intestinal immune network, graft-versus-host disease, and RIG-I-like helicases signaling pathway. In contrast, the suppressed genes mediated by CPV-2a showed low enrichment in any category, and were only involved in pathways linking to synthesis and metabolism of amino acids, which was confirmed by qPCR analysis. Our studies indicated that CPV-2a is a natural immune activator and has the capacity to activate host immune responses, which could be used for the development of antiviral strategy and biomaterial for medicine.
Mannala, Gopala K.; Izar, Benjamin; Rupp, Oliver; Schultze, Tilman; Goesmann, Alexander; Chakraborty, Trinad; Hain, Torsten
2017-01-01
microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates. PMID:29312175
Wood, Oliver; Woo, Jeongmin; Seumois, Gregory; Savelyeva, Natalia; McCann, Katy J; Singh, Divya; Jones, Terry; Peel, Lailah; Breen, Michael S; Ward, Matthew; Garrido Martin, Eva; Sanchez-Elsner, Tilman; Thomas, Gareth; Vijayanand, Pandurangan; Woelk, Christopher H; King, Emma; Ottensmeier, Christian
2016-08-30
Human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) has a better prognosis than it's HPV negative (HPV(-)) counterpart. This may be due to the higher numbers of tumor-infiltrating lymphocytes (TILs) in HPV positive (HPV(+)) tumors. RNA-Sequencing (RNA-Seq) was used to evaluate whether the differences in clinical behaviour simply reflect a numerical difference in TILs or whether there is a fundamental behavioural difference between TILs in these two settings. Thirty-nine HNSCC tumors were scored for TIL density by immunohistochemistry. After the removal of 16 TILlow tumors, RNA-Seq analysis was performed on 23 TILhigh/med tumors (HPV(+) n=10 and HPV(-) n=13). Using EdgeR, differentially expressed genes (DEG) were identified. Immune subset analysis was performed using Functional Analysis of Individual RNA-Seq/ Microarray Expression (FAIME) and immune gene RNA transcript count analysis. In total, 1,634 DEGs were identified, with a dominant immune signature observed in HPV(+) tumors. After normalizing the expression profiles to account for differences in B- and T-cell number, 437 significantly DEGs remained. A B-cell associated signature distinguished HPV(+) from HPV(-) tumors, and included the DEGs CD200, GGA2, ADAM28, STAG3, SPIB, VCAM1, BCL2 and ICOSLG; the immune signal relative to T-cells was qualitatively similar between TILs of both tumor cohorts. Our findings were validated and confirmed in two independent cohorts using TCGA data and tumor-infiltrating B-cells from additional HPV(+) HNSCC patients. A B-cell associated signal segregated tumors relative to HPV status. Our data suggests that the role of B-cells in the adaptive immune response to HPV(+) HNSCC requires re-assessment.
McKallip, Robert J; Nagarkatti, Mitzi; Nagarkatti, Prakash S
2005-03-15
In the current study, we tested the central hypothesis that exposure to Delta-9-tetrahydrocannabinol (Delta9-THC), the major psychoactive component in marijuana, can lead to enhanced growth of tumors that express low to undetectable levels of cannabinoid receptors by specifically suppressing the antitumor immune response. We demonstrated that the human breast cancer cell lines MCF-7 and MDA-MB-231 and the mouse mammary carcinoma 4T1 express low to undetectable levels of cannabinoid receptors, CB1 and CB2, and that these cells are resistant to Delta9-THC-induced cytotoxicity. Furthermore, exposure of mice to Delta9-THC led to significantly elevated 4T1 tumor growth and metastasis due to inhibition of the specific antitumor immune response in vivo. The suppression of the antitumor immune response was mediated primarily through CB2 as opposed to CB1. Furthermore, exposure to Delta9-THC led to increased production of IL-4 and IL-10, suggesting that Delta9-THC exposure may specifically suppress the cell-mediated Th1 response by enhancing Th2-associated cytokines. This possibility was further supported by microarray data demonstrating the up-regulation of a number of Th2-related genes and the down-regulation of a number of Th1-related genes following exposure to Delta9-THC. Finally, injection of anti-IL-4 and anti-IL-10 mAbs led to a partial reversal of the Delta9-THC-induced suppression of the immune response to 4T1. Such findings suggest that marijuana exposure either recreationally or medicinally may increase the susceptibility to and/or incidence of breast cancer as well as other cancers that do not express cannabinoid receptors and are resistant to Delta9-THC-induced apoptosis.
Jasinski-Bergner, Simon; Stoehr, Christine; Bukur, Juergen; Massa, Chiara; Braun, Juliane; Hüttelmaier, Stefan; Spath, Verena; Wartenberg, Roland; Legal, Wolfgang; Taubert, Helge; Wach, Sven; Wullich, Bernd; Hartmann, Arndt; Seliger, Barbara
2015-06-01
In human tumors of distinct origin including renal cell carcinoma (RCC), the non-classical human leukocyte antigen G (HLA-G) is frequently expressed, thereby inhibiting the cytotoxic activity of T and natural killer (NK) cells. Recent studies demonstrated a strong post-transcriptional gene regulation of the HLA-G by miR-152, -148A, -148B and -133A. Standard methods were applied to characterize the expression and function of HLA-G, HLA-G-regulatory microRNAs (miRs) and the immune cell infiltration in 453 RCC lesions using a tissue microarray and five RCC cell lines linking these results to clinical parameters. Direct interactions with HLA-G regulatory miRs and the HLA-G 3' untranslated region (UTR) were detected and the affinities of these different miRs to the HLA-G 3'-UTR compared. qPCR analyses and immunohistochemical staining revealed an inverse expression of miR-148A and -133A with the HLA-G protein in situ and in vitro . Stable miR overexpression caused a downregulation of HLA-G protein enhancing the NK and LAK cell-mediated cytotoxicity in in vitro CD107a activation assays revealing a HLA-G-dependent cytotoxic activity of immune effector cells. A significant higher frequency of CD3 + /CD8 + T cell lymphocytes, but no differences in the activation markers CD69, CD25 or in the presence of CD56 + , FoxP3 + and CD4 + immune cells were detected in HLA-G + compared to HLA-G - RCC lesions. This could be associated with higher WHO grade, but not with a disease-specific survival. These data suggest a miR-mediated control of HLA-G expression in RCC, which is associated with a distinct pattern of immune cell infiltration.
Hartman, Zachary C; Appledorn, Daniel M; Amalfitano, Andrea
2008-03-01
Extensively characterized, modified, and employed for a variety of purposes, adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility (i.e., Ad-based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad-based vaccines are regarded as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane-bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray-based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well as highlight areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications.
Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea
2013-01-01
Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698
Savelyeva, Natalia; McCann, Katy J.; Singh, Divya; Jones, Terry; Peel, Lailah; Breen, Michael S.; Ward, Matthew; Martin, Eva Garrido
2016-01-01
Human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) has a better prognosis than it's HPV negative (HPV(−)) counterpart. This may be due to the higher numbers of tumor-infiltrating lymphocytes (TILs) in HPV positive (HPV(+)) tumors. RNA-Sequencing (RNA-Seq) was used to evaluate whether the differences in clinical behaviour simply reflect a numerical difference in TILs or whether there is a fundamental behavioural difference between TILs in these two settings. Thirty-nine HNSCC tumors were scored for TIL density by immunohistochemistry. After the removal of 16 TILlow tumors, RNA-Seq analysis was performed on 23 TILhigh/med tumors (HPV(+) n=10 and HPV(−) n=13). Using EdgeR, differentially expressed genes (DEG) were identified. Immune subset analysis was performed using Functional Analysis of Individual RNA-Seq/ Microarray Expression (FAIME) and immune gene RNA transcript count analysis. In total, 1,634 DEGs were identified, with a dominant immune signature observed in HPV(+) tumors. After normalizing the expression profiles to account for differences in B- and T-cell number, 437 significantly DEGs remained. A B-cell associated signature distinguished HPV(+) from HPV(−) tumors, and included the DEGs CD200, GGA2, ADAM28, STAG3, SPIB, VCAM1, BCL2 and ICOSLG; the immune signal relative to T-cells was qualitatively similar between TILs of both tumor cohorts. Our findings were validated and confirmed in two independent cohorts using TCGA data and tumor-infiltrating B-cells from additional HPV(+) HNSCC patients. A B-cell associated signal segregated tumors relative to HPV status. Our data suggests that the role of B-cells in the adaptive immune response to HPV(+) HNSCC requires re-assessment. PMID:27462861
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Mujawar, Liyakat Hamid; Maan, Abid Aslam; Khan, Muhammad Kashif Iqbal; Norde, Willem; van Amerongen, Aart
2013-04-02
The main focus of our research was to study the distribution of inkjet printed biomolecules in porous nitrocellulose membrane pads of different brands. We produced microarrays of fluorophore-labeled IgG and bovine serum albumin (BSA) on FAST, Unisart, and Oncyte-Avid slides and compared the spot morphology of the inkjet printed biomolecules. The distribution of these biomolecules within the spot embedded in the nitrocellulose membrane was analyzed by confocal laser scanning microscopy in the "Z" stack mode. By applying a "concentric ring" format, the distribution profile of the fluorescence intensity in each horizontal slice was measured and represented in a graphical color-coded way. Furthermore, a one-step diagnostic antibody assay was performed with a primary antibody, double-labeled amplicons, and fluorophore-labeled streptavidin in order to study the functionality and distribution of the immune complex in the nitrocellulose membrane slides. Under the conditions applied, the spot morphology and distribution of the primary labeled biomolecules was nonhomogenous and doughnut-like on the FAST and Unisart nitrocellulose slides, whereas a better spot morphology with more homogeneously distributed biomolecules was observed on the Oncyte-Avid slide. Similar morphologies and distribution patterns were observed when the diagnostic one-step nucleic acid microarray immunoassay was performed on these nitrocellulose slides. We also investigated possible reasons for the differences in the observed spot morphology by monitoring the dynamic behavior of a liquid droplet on and in these nitrocellulose slides. Using high speed cameras, we analyzed the wettability and fluid flow dynamics of a droplet on the various nitrocellulose substrates. The spreading of the liquid droplet was comparable for the FAST and Unisart slides but different, i.e., slower, for the Oncyte-Avid slide. The results of the spreading of the droplet and the penetration behavior of the liquid in the nitrocellulose membrane may (partly) explain the distribution of the biomolecules in the different slides. To our knowledge, this is the first time that fluid dynamics in diagnostic membranes have been analyzed by the use of high-speed cameras.
Islam, Md. Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Aqter Rony, Sharmin; Tesfaye, Dawit; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Neuhoff, Christiane
2017-01-01
The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy. PMID:28278192
PARTNERSHIPS TO IMPROVE IMMUNOTOXICITY TESTING
Research in ITB is focused on the effects that chemicals/environmental contaminants have on modulation of the immune system. Immune modulation may result in suppressed immune function, while exposure to certain contaminants may result in hypersensitivity reactions (e.g., asthma ...
A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines.
Acharya, Abhinav P; Clare-Salzler, Michael J; Keselowsky, Benjamin G
2009-09-01
Immunogenomic approaches combined with advances in adjuvant immunology are guiding progress toward rational design of vaccines. Furthermore, drug delivery platforms (e.g., synthetic particles) are demonstrating promise for increasing vaccine efficacy. Currently there are scores of known antigenic epitopes and adjuvants, and numerous synthetic delivery systems accessible for formulation of vaccines for various applications. However, the lack of an efficient means to test immune cell responses to the abundant combinations available represents a significant blockade on the development of new vaccines. In order to overcome this barrier, we report fabrication of a new class of microarray consisting of antigen/adjuvant-loadable poly(D,L lactide-co-glycolide) microparticles (PLGA MPs), identified as a promising carrier for immunotherapeutics, which are co-localized with dendritic cells (DCs), key regulators of the immune system and prime targets for vaccines. The intention is to utilize this high-throughput platform to optimize particle-based vaccines designed to target DCs in vivo for immune system-related disorders, such as autoimmune diseases, cancer and infection. Fabrication of DC/MP arrays leverages the use of standard contact printing miniarraying equipment in conjunction with surface modification to achieve co-localization of particles/cells on isolated islands while providing background non-adhesive surfaces to prevent off-island cell migration. We optimized MP overspotting pin diameter, accounting for alignment error, to allow construction of large, high-fidelity arrays. Reproducible, quantitative delivery of as few as 16+/-2 MPs per spot was demonstrated and two-component MP dosing arrays were constructed, achieving MP delivery which was independent of formulation, with minimal cross-contamination. Furthermore, quantification of spotted, surface-adsorbed MP degradation was demonstrated, potentially useful for optimizing MP release properties. Finally, we demonstrate DC co-localization with PLGA MPs on isolated islands and that DCs do not migrate between islands for up to 24 h. Using this platform, we intend to analyze modulation of DC function by providing multi-parameter combinatorial cues in the form of proteins, peptides and other immuno-modulatory molecules encapsulated in or tethered on MPs. Critically, the miniaturization attained enables high-throughput investigation of rare cell populations by reducing the requirement for cells and reagents by many-fold, facilitating advances in personalized vaccines which target DCs in vivo.
Importing MAGE-ML format microarray data into BioConductor.
Durinck, Steffen; Allemeersch, Joke; Carey, Vincent J; Moreau, Yves; De Moor, Bart
2004-12-12
The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. http://www.bioconductor.org. Open Source.
IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE
Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.
2010-01-01
Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258
Gene expression and the biological phenotype of papillary thyroid carcinomas.
Delys, L; Detours, V; Franc, B; Thomas, G; Bogdanova, T; Tronko, M; Libert, F; Dumont, J E; Maenhaut, C
2007-12-13
The purpose of this paper is to correlate the molecular phenotype of papillary thyroid carcinoma (PTC) to their biological pathology. We hybridized 26 PTC on microarrays and showed that nearly 44% of the transcriptome was regulated in these tumors. We then combined our data set with two published PTC microarray studies to produce a platform- and study-independent list of PTC-associated genes. We further confirmed the mRNA regulation of 15 genes from this list by quantitative reverse transcription-PCR. Analysis of this list with statistical tools led to several conclusions: (1) there is a change in cell population with an increased expression of genes involved in the immune response, reflecting lymphocyte infiltration in the tumor compared to the normal tissue. (2) The c-jun N-terminal kinase pathway is activated by overexpression of its components. (3) The activation of ERKK1/2 by genetic alterations is supplemented by activation of the epidermal growth factor but not of the insulin-like growth factor signaling pathway. (4) There is a downregulation of immediate early genes. (5) We observed an overexpression of many proteases in accordance with tumor remodeling, and suggested a probable role of S100 proteins and annexin A2 in this process. (6) Numerous overexpressed genes favor the hypothesis of a collective migration mode of tumor cells.
Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma.
Kong, Qian; Li, Wen-Jing; Huang, Hua-Rong; Zhong, Ying-Qiang; Fang, Jian-Pei
2015-05-01
Asthma is a common childhood disease with strong genetic components. This study compared whole-genome expression differences between asthmatic young children and healthy controls to identify gene signatures of childhood asthma. Total RNA extracted from peripheral blood mononuclear cells (PBMC) was subjected to microarray analysis. QRT-PCR was performed to verify the microarray results. Classification and functional characterization of differential genes were illustrated by hierarchical clustering and gene ontology analysis. Multiple logistic regression (MLR) analysis, receiver operating characteristic (ROC) curve analysis, and discriminate power were used to scan asthma-specific diagnostic markers. For fold-change>2 and p < 0.05, there were 758 named differential genes. The results of QRT-PCR confirmed successfully the array data. Hierarchical clustering divided 29 highly possible genes into seven categories and the genes in the same cluster were likely to possess similar expression patterns or functions. Gene ontology analysis presented that differential genes primarily enriched in immune response, response to stress or stimulus, and regulation of apoptosis in biological process. MLR and ROC curve analysis revealed that the combination of ADAM33, Smad7, and LIGHT possessed excellent discriminating power. The combination of ADAM33, Smad7, and LIGHT would be a reliable and useful childhood asthma model for prediction and diagnosis.
Clinical Efficacy and Immune Regulation With Peanut Oral Immunotherapy
Jones, Stacie M.; Pons, Laurent; Roberts, Joseph L.; Scurlock, Amy M.; Perry, Tamara T.; Kulis, Mike; Shreffler, Wayne G.; Steele, Pamela; Henry, Karen A.; Adair, Margaret; Francis, James M.; Durham, Stephen; Vickery, Brian P.; Zhong, Xiaoping; Burks, A. Wesley
2009-01-01
Background Oral immunotherapy (OIT) has been thought to induce clinical desensitization to allergenic foods, but trials coupling the clinical response and immunologic effects of peanut OIT have not been reported. Objective The study objective was to investigate the clinical efficacy and immunologic changes associated with OIT. Methods Peanut-allergic children underwent an OIT protocol including initial day escalation, build-up, and maintenance phases, and then oral food challenge. Clinical response and immunologic changes were evaluated. Results Of 29 subjects who completed the protocol, 27 ingested 3.9 g peanut protein during food challenge. Most symptoms noted during OIT resolved spontaneously or with antihistamines. By 6 months, titrated skin prick tests and activation of basophils significantly declined. Peanut-specific IgE decreased by 12–18 months, while IgG4 increased significantly. Serum factors inhibited IgE–peanut complex formation in an IgE-facilitated allergen binding assay. Secretion of IL-10, IL-5, IFN-γ, and TNF-α from PBMCs increased over 6–12 months. Peanut-specific FoxP3 T cells increased until 12 months and then decreased thereafter. Additionally, T cell microarrays showed downregulation of genes in apoptotic pathways. Conclusion OIT induces clinical desensitization to peanut, with significant longer term humoral and cellular changes. Microarray data suggest a novel role for apoptosis in OIT. PMID:19577283
Okomo-Adhiambo, Margaret; Beattie, Craig; Rink, Anette
2006-01-01
Toxoplasma gondii induces the expression of proinflammatory cytokines, reorganizes organelles, scavenges nutrients, and inhibits apoptosis in infected host cells. We used a cDNA microarray of 420 annotated porcine expressed sequence tags to analyze the molecular basis of these changes at eight time points over a 72-hour period in porcine kidney epithelial (PK13) cells infected with T. gondii. A total of 401 genes with Cy3 and Cy5 spot intensities of ≥500 were selected for analysis, of which 263 (65.6%) were induced ≥2-fold (expression ratio, ≥2.0; P ≤ 0.05 [t test]) over at least one time point and 48 (12%) were significantly down-regulated. At least 12 functional categories of genes were modulated (up- or down-regulated) by T. gondii. The majority of induced genes were clustered as transcription, signal transduction, host immune response, nutrient metabolism, and apoptosis related. The expression of selected genes altered by T. gondii was validated by quantitative real-time reverse transcription-PCR. These results suggest that significant changes in gene expression occur in response to T. gondii infection in PK13 cells, facilitating further analysis of host-pathogen interactions in toxoplasmosis in a secondary host. PMID:16790800
Marcatili, Paolo; Nielsen, Martin W; Sicheritz-Pontén, Thomas; Jensen, Tim K; Schafer-Nielsen, Claus; Boye, Mette; Nielsen, Morten; Klitgaard, Kirstine
2016-12-01
Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported the assumption that treponemes were the major DD pathogens but also indicated the active involvement of other phyla (primarily Bacteroidetes). Bacterial genes involved in chemotaxis, flagellar synthesis and protection against oxidative and acidic stress were among the major factors defining the disease. The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host's capacity to mount an efficient immune response and maintain immunological memory towards DD. The common antigenic markers identified here using a high-density peptide microarray address this issue and may be useful for future preventive measures against DD.
Ferrara, Giovanni; Valentini, Davide; Rao, Martin; Wahlström, Jan; Grunewald, Johan; Larsson, Lars-Olof; Brighenti, Susanna; Dodoo, Ernest; Zumla, Alimuddin; Maeurer, Markus
2017-03-01
Sarcoidosis is considered an idiopathic granulomatous disease, although similar immunological and clinical features with tuberculosis (TB) suggest mycobacterial involvement in its pathogenesis. High-content peptide microarrays (HCPM) may help to decipher mycobacteria-specific antibody reactivity in sarcoidosis. Serum samples from patients with sarcoidosis, Löfgren's syndrome, and TB, as well as from healthy individuals (12/group), were tested on HCPM containing 5964 individual peptides spanning 154 Mycobacterium tuberculosis proteins displayed as 15-amino acid stretches. Inclusion/exclusion and significance analyses were performed according to published methods. Each study group recognized 68-78% M. tuberculosis peptides at least once. M. tuberculosis epitope recognition by sarcoidosis patient sera was 42.7%, and by TB patient sera was 39.1%. Seven and 16 peptides were recognized in 9/12 (75%) and 8/12 (67%) sarcoidosis patient sera but not in TB patient sera, respectively. Nine (75%) and eight (67%) out of twelve TB patient sera, respectively recognized M. tuberculosis peptides that were not recognized in sarcoidosis patient sera. Specific IgG recognition patterns for M. tuberculosis antigens in sarcoidosis patients re-affirm mycobacterial involvement in sarcoidosis, providing biologically relevant targets for future studies pertaining to diagnostics and immunotherapy. Copyright © 2017. Published by Elsevier Ltd.
Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance
Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.
2014-01-01
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294
Lin, Chih-Kung; Ting, Chun-Chieh; Tsai, Wen-Chiuan; Chen, Yuan-Wu; Hueng, Dueng-Yuan
2016-01-01
Decoy receptor 3 (DcR3) functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor family. It is highly expressed in many tumors and its expression can be regulated by the MAPK/ERK signaling pathway and ERK is a vital member of this pathway. Toll-like receptor 4 (TLR4) is expressed on immune cells. Increased TLR4 expression has been associated with various types of cancers. The study was conducted to investigate the expression of DcR3, ERK1/2, and TLR4 in astrocytomas and evaluate if they are validating markers for discriminating glioblastoma from anaplastic astrocytoma in limited surgical specimen. Expression of DcR3, ERK1/2, and TLR4 was determined by immunohistochemical staining of tissue microarray from 48 paraffin-embedded tissues. A binary logistic regression method was used to generate functions that discriminate between anaplastic astrocytomas and glioblastomas. The expression of TLR4 and DcR3 was significantly higher in glioblastomas than in anaplastic astrocytomas. DcR3 could discriminate anaplastic astrocytomas from glioblastomas with high sensitivity (93.8%), specificity (90%), and accuracy (92.3%). Our results suggest that DcR3 may be a useful marker for discriminating anaplastic astrocytomas from glioblastomas.
Immune intervention in type 1 diabetes.
Michels, Aaron W; Eisenbarth, George S
2011-06-01
Type 1 diabetes (T1D) is a chronic autoimmune disease that results in the specific immune destruction of insulin producing beta cells. Currently there is no cure for T1D and treatment for the disease consists of lifelong administration of insulin. Immunotherapies aimed at preventing beta cell destruction in T1D patients with residual c-peptide or in individuals developing T1D are being evaluated. Networks of researchers such as TrialNet and the Immune Tolerance Network in the U.S. and similar networks in Europe have been established to evaluate such immunotherapies. This review focuses on immune intervention for the prevention and amelioration of human T1D with a focus on potential immune suppressive, antigen specific and environmental therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microbiota and Mucosal Immunity in Amphibians
Colombo, Bruno M.; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas
2015-01-01
We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota. PMID:25821449
Guo, Chuanyu; Cui, Huachun; Ni, Songwei; Yan, Yang; Qin, Qiwei
2015-10-01
microRNAs (miRNAs) are an evolutionarily conserved class of non-coding RNA molecules that participate in various biological processes. Employment of high-throughput screening strategies greatly prompts the investigation and profiling of miRNAs in diverse species. In recent years, grouper (Epinephelus spp.) aquaculture was severely affected by iridoviral diseases. However, knowledge regarding the host immune responses to viral infection, especially the miRNA-mediated immune regulatory roles, is rather limited. In this study, by employing Solexa deep sequencing approach, we identified 116 grouper miRNAs from grouper spleen-derived cells (GS). As expected, these miRNAs shared high sequence similarity with miRNAs identified in zebrafish (Danio rerio), pufferfish (Fugu rubripes), and other higher vertebrates. In the process of Singapore grouper iridovirus (SGIV) infection, 45 and 43 miRNAs with altered expression (>1.5-fold) were identified by miRNA microarray assays in grouper spleen tissues and GS cells, respectively. Furthermore, target prediction revealed 189 putative targets of these grouper miRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasticity for axolotl lens regeneration is associated with age‐related changes in gene expression
Sousounis, Konstantinos; Athippozhy, Antony T.; Voss, S. Randal
2014-01-01
Abstract Mexican axolotls lose potential for lens regeneration 2 weeks after hatching. We used microarrays to identify differently expressed genes before and after this critical time, using RNA isolated from iris. Over 3700 genes were identified as differentially expressed in response to lentectomy between young (7 days post‐hatching) and old (3 months post‐hatching) axolotl larvae. Strikingly, many of the genes were only expressed in the early or late iris. Genes that were highly expressed in young iris significantly enriched electron transport chain, transcription, metabolism, and cell cycle gene ontologies, all of which are associated with lens regeneration. In contrast, genes associated with cellular differentiation and tissue maturation were uniquely expressed in old iris. Many of these expression differences strongly suggest that young and old iris samples were collected before and after the spleen became developmentally competent to produce and secrete cells with humoral and innate immunity functions. Our study establishes the axolotl as a powerful model to investigate age‐related cellular differentiation and immune system ontogeny within the context of tissue regeneration. PMID:27499863
Guardado, Pedro; Olivera, Anlys; Rusch, Heather L; Roy, Michael; Martin, Christiana; Lejbman, Natasha; Lee, Hwyunhwa; Gill, Jessica M
2016-03-01
Whole transcriptome analysis provides an unbiased examination of biological activity, and likely, unique insight into the mechanisms underlying posttraumatic stress disorder (PTSD) and comorbid depression and traumatic brain injury. This study compared gene-expression profiles in military personnel with PTSD (n=28) and matched controls without PTSD (n=27) using HG-U133 Plus 2.0 microarrays (Affymetrix), which contain 54,675 probe sets representing more than 38,500 genes. Analysis of expression profiles revealed 203 differentially expressed genes in PTSD, of which 72% were upregulated. Using Partek Genomics Suite 6.6, differentially expressed transcription clusters were filtered based on a selection criterion of ≥1.5 relative fold change at a false discovery rate of ≤5%. Ingenuity Pathway Analysis (Qiagen) of the differentially expressed genes indicated a dysregulation of genes associated with the innate immune, neuroendocrine, and NF-κB systems. These findings provide novel insights that may lead to new pharmaceutical agents for PTSD treatments and help mitigate mental and physical comorbidity risk. Copyright © 2016. Published by Elsevier Ltd.
Identifying biologically relevant putative mechanisms in a given phenotype comparison
Hanoudi, Samer; Donato, Michele; Draghici, Sorin
2017-01-01
A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights. PMID:28486531
Differential DNA methylation and lymphocyte proportions in a Costa Rican high longevity region.
McEwen, Lisa M; Morin, Alexander M; Edgar, Rachel D; MacIsaac, Julia L; Jones, Meaghan J; Dow, William H; Rosero-Bixby, Luis; Kobor, Michael S; Rehkopf, David H
2017-01-01
The Nicoya Peninsula in Costa Rica has one of the highest old-age life expectancies in the world, but the underlying biological mechanisms of this longevity are not well understood. As DNA methylation is hypothesized to be a component of biological aging, we focused on this malleable epigenetic mark to determine its association with current residence in Nicoya versus elsewhere in Costa Rica. Examining a population's unique DNA methylation pattern allows us to differentiate hallmarks of longevity from individual stochastic variation. These differences may be characteristic of a combination of social, biological, and environmental contexts. In a cross-sectional subsample of the Costa Rican Longevity and Healthy Aging Study, we compared whole blood DNA methylation profiles of residents from Nicoya ( n = 48) and non-Nicoya (other Costa Rican regions, n = 47) using the Infinium HumanMethylation450 microarray. We observed a number of differences that may be markers of delayed aging, such as bioinformatically derived differential CD8+ T cell proportions. Additionally, both site- and region-specific analyses revealed DNA methylation patterns unique to Nicoyans. We also observed lower overall variability in DNA methylation in the Nicoyan population, another hallmark of younger biological age. Nicoyans represent an interesting group of individuals who may possess unique immune cell proportions as well as distinct differences in their epigenome, at the level of DNA methylation.
The Changes of Gene Expression on Human Hair during Long-Spaceflight
NASA Astrophysics Data System (ADS)
Terada, Masahiro; Mukai, Chiaki; Ishioka, Noriaki; Majima, Hideyuki J.; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Higashibata, Akira; Ohshima, Hiroshi; Sudoh, Masamichi; Minamisawa, Susumu
Hair has many advantages as the experimental sample. In a hair follicle, hair matrix cells actively divide and these active changes sensitively reflect physical condition on human body. The hair shaft records the metabolic conditions of mineral elements in our body. From human hairs, we can detect physiological informations about the human health. Therefore, we focused on using hair root analysis to understand the effects of spaceflight on astronauts. In 2009, we started a research program focusing on the analysis of astronauts’ hairs to examine the effects of long-term spaceflight on the gene expression in the human body. We want to get basic information to invent the effectivly diagnostic methods to detect the health situations of astronauts during space flight by analyzing human hair. We extracted RNA form the collected samples. Then, these extracted RNA was amplified. Amplified RNA was processed and hybridized to the Whole Human Genome (4×44K) Oligo Microarray (Agilent Technologies) according to the manufacturer’s protocol. Slide scanning was performed using the Agilent DNA Microarray Scanner. Scanning data were normalized with Agilent’s Feature Extraction software. Data preprocessing and analysis were performed using GeneSpring software 11.0.1. Next, Synthesis of cDNA (1 mg) was carried out using the PrimeScript RT reagent Kit (TaKaRa Bio) following the manufacturer’s instructions. The qRT-PCR experiment was performed with SYBR Premix Ex Taq (TaKaRa Bio) using the 7500 Real-Time PCR system (Applied Biosystems). We detected the changes of some gene expressions during spaceflight from both microarray and qRT-PCR data. These genes seems to be related with the hair proliferation. We believe that these results will lead to the discovery of the important factor effected during space flight on the hair.
Current understanding of interactions between nanoparticles and the immune system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrovolskaia, Marina A., E-mail: marina@mail.nih.
2016-05-15
The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guidemore » safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.« less
Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu
2012-06-08
Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.
Pereiro, Patricia; Balseiro, Pablo; Romero, Alejandro; Dios, Sonia; Forn-Cuni, Gabriel; Fuste, Berta; Planas, Josep V.; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio
2012-01-01
Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an enormous variety of sequences belonging to genes involved in the defense mechanisms. PMID:22629298
Hutton, John J; Jegga, Anil G; Kong, Sue; Gupta, Ashima; Ebert, Catherine; Williams, Sarah; Katz, Jonathan D; Aronow, Bruce J
2004-01-01
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions. PMID:15504237
Gain in Brain Immunity in the Oldest-Old Differentiates Cognitively Normal from Demented Individuals
Katsel, Pavel; Tan, Weilun; Haroutunian, Vahram
2009-01-01
Background Recent findings suggest that Alzheimer's disease (AD) neuropathological features (neuritic plaques and NFTs) are not strongly associated with dementia in extreme old (over 90 years of age) and compel a search for neurobiological indices of dementia in this rapidly growing segment of the elderly population. We sought to characterize transcriptional and protein profiles of dementia in the oldest-old. Methods and Findings Gene and protein expression changes relative to non-demented age-matched controls were assessed by two microarray platforms, qPCR and Western blot in different regions of the brains of oldest-old and younger old persons who died at mild or severe stages of dementia. Our results indicate that: i) consistent with recent neuropathological findings, gene expression changes associated with cognitive impairment in oldest-old persons are distinct from those in cognitively impaired youngest-old persons; ii) transcripts affected in young-old subjects with dementia participate in biological pathways related to synaptic function and neurotransmission while transcripts affected in oldest-old subjects with dementia are associated with immune/inflammatory function; iii) upregulation of immune response genes in cognitively intact oldest-old subjects and their subsequent downregulation in dementia suggests a potential protective role of the brain immune-associated system against dementia in the oldest-old; iv) consistent with gene expression profiles, protein expression of several selected genes associated with the inflammatory/immune system in inferior temporal cortex is significantly increased in cognitively intact oldest-old persons relative to cognitively intact young-old persons, but impaired in cognitively compromised oldest-old persons relative to cognitively intact oldest-old controls. Conclusions These results suggest that disruption of the robust immune homeostasis that is characteristic of oldest-old individuals who avoided dementia may be directly associated with dementia in the oldest-old and contrast with the synaptic and neurotransmitter system failures that typify dementia in younger old persons. PMID:19865478
Human Innate Immune Responses to Hexamethylene Diisocyanate (HDI) and HDI-Albumin Conjugates
Wisnewski, Adam V.; Liu, Qing; Liu, Jian; Redlich, Carrie A.
2011-01-01
Background Isocyanates, a leading cause of occupational asthma, are known to induce adaptive immune responses; however, innate immune responses, which generally precede and regulate adaptive immunity, remain largely uncharacterized. Objective Identify and characterize cellular, molecular and systemic innate immune responses induced by hexamethylene diisocyanate (HDI). Methods Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with HDI-albumin conjugates or control antigen, and changes in phenotype, gene, and protein expression were characterized by flow cytometry, microarray, Western blot and ELISA. Cell uptake of isocyanate was visualized microscopically using HDI-albumin conjugates prepared with fluorescently-labeled albumin. In vivo, human HDI exposure was performed via specific inhalation challenge, and subsequent changes in PBMCs and serum proteins were measured by flow cytometry and ELISA. Genotypes were determined by PCR. Results Human monocytes take-up HDI-albumin conjugates and undergo marked changes in morphology and gene/protein expression in vitro. The most significant (p 0.007 – 0.05) changes in mircoarray gene expression were noted in lysosomal genes, especially peptidases and proton pumps involved in antigen processing. Chemokines that regulate monocyte/macrophage trafficking (MIF, MCP-1), and pattern recognition receptors that bind chitin (chitinases) and oxidized low-density lipoprotein (CD68) were also increased following isocyanate-albumin exposure. In vivo, HDI exposed subjects exhibited an acute increase in the percentage of PBMCs with the same HDI-albumin responsive phenotype characterized in vitro (HLA-DR+/CD11c+ with altered light scatter properties). An exposure-dependent decrease (46±11%; p<0.015) in serum concentrations of chitinase-3-like-1 was also observed, in individuals that lack the major (type 1) human chitinase (due to genetic polymorphism), but not in individuals possessing at least one functional chitinase-1 allele. Conclusions Previously unrecognized innate immune responses to HDI and HDI-albumin conjugates could influence the clinical spectrum of exposure reactions. PMID:18498542
Reyes-López, Felipe E; Romeo, Jose S; Vallejos-Vidal, Eva; Reyes-Cerpa, Sebastián; Sandino, Ana M; Tort, Lluis; Mackenzie, Simon; Imarai, Mónica
2015-11-01
This study aims to identify at the expression level the immune-related genes associated with IPN-susceptible and resistant phenotypes in Atlantic salmon full-sibling families. We have analyzed thirty full-sibling families infected by immersion with IPNV and then classified as resistant or susceptible using a multivariate survival analysis based on a gamma-Cox frailty model and the Kaplan-Meier mortality curves. In four families within each group head kidneys were pooled for real-time PCR and one-color salmon-specific oligonucleotide microarray (21K) analysis at day 1 and 5 post-infection. Transcripts involved in innate response (IL-6, IFN-α), antigen presentation (HSP-70, HSP-90, MHC-I), TH1 response (IL-12, IFN-γ, CRFB6), immunosuppression (IL-10, TGF-β1) and leukocyte activation and migration (CCL-19, CD18) showed a differential expression pattern between both phenotypes, except in IL-6. In susceptible families, except for IFN-γ, the expressions dropped to basal values at day 5 post-infection. In resistant families, unlike susceptible families, levels remained high or increased (except for IL-6) at day 5. Transcriptomic analysis showed that both families have a clear differential expression pattern, resulting in a marked down-regulation in immune related genes involved in innate response, complement system, antigen recognition and activation of immune response in IPN-resistant. Down-regulation of genes, mainly related to tissue differentiation and protein degradation metabolism, was also observed in resistant families. We have identified an immune-related gene patterns associated with susceptibility and resistance to IPNV infection of Atlantic salmon. This suggests that a limited immune response is associated with resistant fish phenotype to IPNV challenge while a highly inflammatory but short response is associated with susceptibility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Purcell, Maureen K.; Marjara, Inderjit Singh; Batts, William; Kurath, Gael; Hansen, John D.
2010-01-01
There are three main genetic lineages or genogroups of Infectious hematopoietic necrosis virus (IHNV) in N. America. Strains representing the M genogroup are more virulent in rainbow trout relative to the U genogroup. In this study, we used microarray analysis to evaluate potential mechanisms responsible for host-specific virulence in rainbow trout that were given intraperitoneal injections of buffer or a representative M or U type virus strain. Reverse transcriptase quantitative PCR (RT-qPCR) was used to assess viral load and gene expression of select immune genes. Viral load was significantly higher in trout infected with the M virus starting at 24 h post-infection (p.i.) and continuing until 72 h p.i. Microarray analysis of the 48 h time point revealed 153 up-regulated and 248 down-regulated features in response to M virus infection but only 62 up-regulated and 49 down-regulated features following U virus infection. Translation and transcription features were among the most frequent down-regulated features in response to M virus infection and may be associated with the host cell shutoff phenomenon. A greater host cell shutoff response by the M virus may facilitate subversion of the host cell transcriptional machinery and enhance viral replication, suggesting the M virus may be better optimized to manipulate the rainbow trout transcriptional and translational machinery. Anti-viral associated features were the most commonly up-regulated features. A common set of features were up-regulated in both the M and U infection groups, but were induced to a higher magnitude in the M infection group. Gene expression of the anti-viral genes Mx-1 and Vig-1 was correlated but not entirely dependent on viral load in the anterior kidney. Slower replication of the U virus may allow the host more time to induce protective anti-viral immune mechanisms.
Genetic deletion of Cxcl14 in mice alters uterine NK cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qichen; Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049; Chen, Hua
2013-06-14
Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the populationmore » expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.« less
den Reijer, Paul Martijn; Lemmens-den Toom, Nicole; Kant, Samantha; Snijders, Susan V.; Boelens, Hélène; Tavakol, Mehri; Verkaik, Nelianne J.; van Belkum, Alex; Verbrugh, Henri A.; van Wamel, Willem J. B.
2013-01-01
Attempts to develop an efficient anti-staphylococcal vaccine in humans have so far been unsuccessful. Therefore, more knowledge of the antigens that are expressed by Staphylococcus aureus in human blood and induce an immune response in patients is required. In this study we further characterize the serial levels of IgG and IgA antibodies against 56 staphylococcal antigens in multiple serum samples of 21 patients with a S. aureus bacteremia, compare peak IgG levels between patients and 30 non-infected controls, and analyze the expression of 3626 genes by two genetically distinct isolates in human blood. The serum antibody levels were measured using a bead-based flow cytometry technique (xMAP®, Luminex corporation). Gene expression levels were analyzed using a microarray (BµG@s microarray). The initial levels and time taken to reach peak IgG and IgA antibody levels were heterogeneous in bacteremia patients. The antigen SA0688 was associated with the highest median initial-to-peak antibody fold-increase for IgG (5.05-fold) and the second highest increase for IgA (2.07-fold). Peak IgG levels against 27 antigens, including the antigen SA0688, were significantly elevated in bacteremia patients versus controls (P≤0.05). Expression of diverse genes, including SA0688, was ubiquitously high in both isolates at all time points during incubation in blood. However, only a limited number of genes were specifically up- or downregulated in both isolates when cultured in blood, compared to the start of incubation in blood or during incubation in BHI broth. In conclusion, most staphylococcal antigens tested in this study, including many known virulence factors, do not induce uniform increases in the antibody levels in bacteremia patients. In addition, the expression of these antigens by S. aureus is not significantly altered by incubation in human blood over time. One immunogenic and ubiquitously expressed antigen is the putative iron-regulated ABC transporter SA0688. PMID:23308212
Szatmári, Ágnes; Zvara, Ágnes; Móricz, Ágnes M.; Besenyei, Eszter; Szabó, Erika; Ott, Péter G.; Puskás, László G.; Bozsó, Zoltán
2014-01-01
Background Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease. Methodology/Principal Findings Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI - as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI. Conclusions/Significance We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI. PMID:25101956
Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas.
Lee, Gui Se Ra; Joe, Yoon Seong; Kim, Sa Jin; Shin, Jong Chul
2010-10-01
To investigate cytokine- and oxidation-related genes for preeclampsia using DNA microarray analysis. Placentas were collected from 13 normal pregnancies and 13 patients with preeclampsia. Gene expression was studied using DNA microarray. Among significantly expressed genes, we focused on genes associated with cytokines and oxidation, and the results were confirmed using quantitative real time-polymerase chain reaction (QRT-PCR). 415 genes out of 30,940 genes were altered by > or =2-fold in the microarray analysis. 121 up-regulated genes and 294 down-regulated genes were found to be in preeclamptic placenta. Six cytokine-related genes and 5 oxidation-related genes were found from among the 121 up-regulated genes. The cytokine-related genes studied included oncostatin M (OSM), fms-related tyrosine kinase (FLT1) and vascular endothelial growth factor A (VEGFA), and the oxidation-related genes studied included spermine oxidase (SMOX), l cytochrome P450, family 26, subfamily A, polypeptide 1 (CYP26A1), acetate dehydrogenase A (LDHA). These six genes were also significantly higher in placentas from patients with preeclampsia than in those from women with normal pregnancies. The placental tissue of patients with preeclampsia showed significantly higher mRNA expression of these six genes than the normal group, using QRT-PCR. DNA microarray analysis is one of the great methods for simultaneously detecting the functionally associated genes of preeclampsia. The cytokine-related genes such as OSM, FLT1 and VEGFA, and the oxidation-related genes such as LDHA, CYP26A1 and SMOX might prove to be the starting point in the elucidation of the pathogenesis of preeclampsia.
Identifying novel glioma associated pathways based on systems biology level meta-analysis.
Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong
2013-01-01
With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.
Röschmann, K I L; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M
2011-06-01
Grass pollen allergy is one of the most common allergies worldwide and airborne allergens are the major cause of allergic rhinitis. Airway epithelial cells (AECs) are the first to encounter and respond to aeroallergens and are therefore interesting targets for the development of new therapeutics. Our understanding of the epithelial contribution to immune responses is limited as most studies focus on only a few individual genes or proteins. To describe in detail the Timothy grass pollen extract (GPE)-induced gene expression in AECs. NCI-H292 cells were exposed to GPE for 24 h, and isolated RNA and cell culture supernatants were used for microarray analysis and multiplex ELISA, respectively. Eleven thousand and seven hundred fifty-eight transcripts were affected after exposure to GPE, with 141 genes up-regulated and 121 genes down-regulated by more than threefold. The gene ontology group cell communication was among the most prominent categories. Network analysis revealed that a substantial part of regulated genes are related to the cytokines IL-6, IL-8, IL-1A, and the transcription factor FOS. After analysing significantly regulated signalling pathways, we found, among others, epidermal growth factor receptor 1, IL-1, Notch-, and Wnt-related signalling members. Unexpectedly, we found Jagged to be down-regulated and an increased release of IL-12, in line with a more Th1-biased response induced by GPE. Our data show that the stimulation of AECs with GPE results in the induction of a broad response on RNA and protein level by which they are able to affect the initiation and regulation of local immune responses. Detailed understanding of GPE-induced genes and signalling pathways will allow us to better define the pathogenesis of the allergic response and to identify new targets for treatment. © 2011 Blackwell Publishing Ltd.
Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang
2013-01-01
Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for further work on host-parasite interaction between insects and microsporidia. PMID:24386341
Wang, Wanqing; Tang, Weijiang; Ma, Tingting; Niu, De; Jin, Jing Bo; Wang, Haiyang; Lin, Rongcheng
2016-01-01
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. © The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
Han, Qing; Bradshaw, Elizabeth M; Nilsson, Björn; Hafler, David A; Love, J Christopher
2010-06-07
The large diversity of cells that comprise the human immune system requires methods that can resolve the individual contributions of specific subsets to an immunological response. Microengraving is process that uses a dense, elastomeric array of microwells to generate microarrays of proteins secreted from large numbers of individual live cells (approximately 10(4)-10(5) cells/assay). In this paper, we describe an approach based on this technology to quantify the rates of secretion from single immune cells. Numerical simulations of the microengraving process indicated an operating regime between 30 min-4 h that permits quantitative analysis of the rates of secretion. Through experimental validation, we demonstrate that microengraving can provide quantitative measurements of both the frequencies and the distribution in rates of secretion for up to four cytokines simultaneously released from individual viable primary immune cells. The experimental limits of detection ranged from 0.5 to 4 molecules/s for IL-6, IL-17, IFNgamma, IL-2, and TNFalpha. These multidimensional measures resolve the number and intensities of responses by cells exposed to stimuli with greater sensitivity than single-parameter assays for cytokine release. We show that cells from different donors exhibit distinct responses based on both the frequency and magnitude of cytokine secretion when stimulated under different activating conditions. Primary T cells with specific profiles of secretion can also be recovered after microengraving for subsequent expansion in vitro. These examples demonstrate the utility of quantitative, multidimensional profiles of single cells for analyzing the diversity and dynamics of immune responses in vitro and for identifying rare cells from clinical samples.
Du, QiaoLing; Pan, YouDong; Zhang, YouHua; Zhang, HaiLong; Zheng, YaJuan; Lu, Ling; Wang, JunLei; Duan, Tao; Chen, JianFeng
2014-07-07
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10-40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.
2011-01-01
Background The present study was conducted to investigate the effects of dietary plant-derived phytonutrients, carvacrol, cinnamaldehyde and Capsicum oleoresin, on the translational regulation of genes associated with immunology, physiology and metabolism using high-throughput microarray analysis and in vivo disease challenge model of avian coccidiosis. Methods In this study, we used nutrigenomics technology to investigate the molecular and genetic mechanisms of dietary modulation of host innate immunity and metabolism by three phytonutrients. To validate their immunomodulatory effects in a disease model, young broiler chickens fed a standard diet supplemented with three phytochemicals (carvacrol, cinnamaldehyde, and Capsicum oleoresin) from one day post-hatch were orally challenged with E. acervulina. The body weight gain and fecal oocyst production were used to evaluate coccidiosis disease parameters. Results Analysis of global gene expression profiles of intestinal tissues from phytonutrient-fed birds indicated that Capsicum oleoresin induced the most gene changes compared to the control group where many of these genes were associated with those of metabolism and immunity. The most reliable network induced by dietary cinnamaldehyde treatment was related with the functions of antigen presentation, humoral immune response, and inflammatory disease. Furthermore, dietary supplementation with these phytonutrients significantly protected broiler chickens against live coccidiosis challenge infection based on body weight and parasite fecundity. Conclusions The results of this study provide clear evidence to support the idea that plant-derived phytochemicals possess immune-enhancing properties in chickens and these new findings create a new possibility to develop effective drug-free alternative strategies for disease control for poultry infectious diseases. PMID:21645315
Complex pattern of immune evasion in MSI colorectal cancer.
Ozcan, Mine; Janikovits, Jonas; von Knebel Doeberitz, Magnus; Kloor, Matthias
2018-01-01
Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.
Huerta, Mario; Munyi, Marc; Expósito, David; Querol, Enric; Cedano, Juan
2014-06-15
The microarrays performed by scientific teams grow exponentially. These microarray data could be useful for researchers around the world, but unfortunately they are underused. To fully exploit these data, it is necessary (i) to extract these data from a repository of the high-throughput gene expression data like Gene Expression Omnibus (GEO) and (ii) to make the data from different microarrays comparable with tools easy to use for scientists. We have developed these two solutions in our server, implementing a database of microarray marker genes (Marker Genes Data Base). This database contains the marker genes of all GEO microarray datasets and it is updated monthly with the new microarrays from GEO. Thus, researchers can see whether the marker genes of their microarray are marker genes in other microarrays in the database, expanding the analysis of their microarray to the rest of the public microarrays. This solution helps not only to corroborate the conclusions regarding a researcher's microarray but also to identify the phenotype of different subsets of individuals under investigation, to frame the results with microarray experiments from other species, pathologies or tissues, to search for drugs that promote the transition between the studied phenotypes, to detect undesirable side effects of the treatment applied, etc. Thus, the researcher can quickly add relevant information to his/her studies from all of the previous analyses performed in other studies as long as they have been deposited in public repositories. Marker-gene database tool: http://ibb.uab.es/mgdb © The Author 2014. Published by Oxford University Press.
2008 Microarray Research Group (MARG Survey): Sensing the State of Microarray Technology
Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution and transformation, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. Th...
Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity
Keasey, Sarah L.; Pugh, Christine L.; Jensen, Stig M. R.; Smith, Jessica L.; Hontz, Robert D.; Durbin, Anna P.; Dudley, Dawn M.; O'Connor, David H.
2017-01-01
ABSTRACT Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics. PMID:28228395
Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity.
Keasey, Sarah L; Pugh, Christine L; Jensen, Stig M R; Smith, Jessica L; Hontz, Robert D; Durbin, Anna P; Dudley, Dawn M; O'Connor, David H; Ulrich, Robert G
2017-04-01
Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics. Copyright © 2017 American Society for Microbiology.
Sun, Yaping; Iyer, Matthew; McEachin, Richard; Zhao, Meng; Wu, Yi-Mi; Cao, Xuhong; Oravecz-Wilson, Katherine; Zajac, Cynthia; Mathewson, Nathan; Wu, Shin-Rong Julia; Rossi, Corinne; Toubai, Tomomi; Qin, Zhaohui S.; Chinnaiya, Arul M.; Reddy, Pavan
2016-01-01
STAT3 is a master transcriptional regulator that plays an important role in the induction of both immune activation and immune tolerance in dendritic cells (DCs). The transcriptional targets of STAT3 in promoting DC activation are becoming increasingly understood; however, the mechanisms underpinning its role in causing DC suppression remain largely unknown. To determine the functional gene targets of STAT3, we compared the genome-wide binding of STAT3 using ChIP-seq coupled with gene expression microarrays to determine STAT3-dependent gene regulation in DCs after histone deacetylase (HDAC) inhibition. HDAC inhibition boosted the ability of STAT3 to bind to distinct DNA targets and regulate gene expression. Among the top 500 STAT3 binding sites, the frequency of canonical motifs was significantly higher than that of non-canonical motifs. Functional analysis revealed that after treatment with an HDAC inhibitor, the upregulated STAT3 target genes were those that were primarily the negative regulators of pro-inflammatory cytokines and those in the IL-10 signaling pathway. The downregulated STAT3-dependent targets were those involved in immune effector processes and antigen processing/presentation. The expression and functional relevance of these genes were validated. Specifically, functional studies confirmed that the upregulation of IL-10Ra by STAT3 contributed to the suppressive function of DCs following HDAC inhibition. PMID:27866206
Lotze, Michael T; Wang, Ena; Marincola, Francesco M; Hanna, Nabil; Bugelski, Peter J; Burns, Christine A; Coukos, George; Damle, Nitin; Godfrey, Tony E; Howell, W Martin; Panelli, Monica C; Perricone, Michael A; Petricoin, Emanuel F; Sauter, Guido; Scheibenbogen, Carmen; Shivers, Steven C; Taylor, D Lansing; Weinstein, John N; Whiteside, Theresa L
2005-01-01
The current excitement about molecular targeted therapies has driven much of the recent dialog in cancer diagnosis and treatment. Particularly in the biologic therapy of cancer, identifiable antigenic T-cell targets restricted by MHC molecules and the related novel stress molecules such as MICA/B and Letal allow a degree of precision previously unknown in cancer therapy. We have previously held workshops on immunologic monitoring and angiogenesis monitoring. This workshop was designed to discuss the state of the art in identification of biomarkers and surrogates of tumor in patients with cancer, with particular emphasis on assays within the blood and tumor. We distinguish this from immunologic monitoring in the sense that it is primarily a measure of the tumor burden as opposed to the immune response to it. Recommendations for intensive investigation and targeted funding to enable such strategies were developed in seven areas: genomic analysis; detection of molecular markers in peripheral blood and lymph node by tumor capture and RT-PCR; serum, plasma, and tumor proteomics; immune polymorphisms; high content screening using flow and imaging cytometry; immunohistochemistry and tissue microarrays; and assessment of immune infiltrate and necrosis in tumors. Concrete recommendations for current application and enabling further development in cancer biometrics are summarized. This will allow a more informed, rapid, and accurate assessment of novel cancer therapies.
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation
Nikolaev, Alexander
2016-01-01
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074
THE ABRF-MARG MICROARRAY SURVEY 2004: TAKING THE PULSE OF THE MICROARRAY FIELD
Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. The goal of the surve...
Contributions to Statistical Problems Related to Microarray Data
ERIC Educational Resources Information Center
Hong, Feng
2009-01-01
Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…
NASA Astrophysics Data System (ADS)
Bogdanov, Valery L.; Boyce-Jacino, Michael
1999-05-01
Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.
Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex.
Ostrov, D A; Barnes, C L; Smith, L E; Binns, S; Brusko, T M; Brown, A C; Quint, P S; Litherland, S A; Roopenian, D C; Iczkowski, K A
2007-02-01
Genes at the centromeric end of the human leukocyte antigen region influence adaptive autoimmune diseases and cancer. In this study, we characterized protein expression of HKE2, a gene located in the centromeric portion of the class II region of the major histocompatibility complex encoding subunit 6 of prefoldin. Immunohistochemical analysis using an anti-HKE2 antibody indicated that HKE2 protein expression is dramatically upregulated as a consequence of activation. In a tissue microarray and in several tumors, HKE2 was overexpressed in certain cancers compared with normal counterparts. The localization of the HKE2 gene to the class II region, its cytoplasmic expression and putative protein-binding domain suggest that HKE2 may function in adaptive immunity and cancer.
Putterman, Chaim; Wu, Alan; Reiner-Benaim, Anat; Batty, D Scott; Sanz, Ignacio; Oates, Jim; Jakobi, Keren; Petri, Michelle; Safer, Pennina; Gerwien, Robert; Sorek, Rachel; Blumenstein, Yakov; Cohen, Irun R
2016-02-01
We describe here the development, verification and validation of the SLE-key(®) rule-out test for a definitive rule-out of a diagnosis of systemic lupus erythematosus (SLE). The test uses the proprietary iCHIP(®) micro-array technology platform (Fattal et al., 2010) to identify discriminating patterns of circulating autoantibodies among SLE patients compared with self-declared healthy individuals. Given the challenges associated with the diagnosis of SLE and the healthcare costs of delayed diagnosis and misdiagnosis, a definitive rule-out test can provide significant clinical benefits to patients and potentially major cost savings to healthcare systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemiluminescence microarrays in analytical chemistry: a critical review.
Seidel, Michael; Niessner, Reinhard
2014-09-01
Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.
Dolled-Filhart, Marisa P; Gustavson, Mark D
2012-11-01
Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.
Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.
2014-01-01
Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal individuals. In addition, comparative analysis of biomarkers in PBMCs from asymptomatic or healed visceral leishmaniasis individuals in response to vaccine candidates including live attenuated parasites may provide clues about determinants of protective immunity and be helpful in shaping the final Leishmania vaccine formulation in the clinical trials. PMID:24904589
Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L
2014-01-01
Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal individuals. In addition, comparative analysis of biomarkers in PBMCs from asymptomatic or healed visceral leishmaniasis individuals in response to vaccine candidates including live attenuated parasites may provide clues about determinants of protective immunity and be helpful in shaping the final Leishmania vaccine formulation in the clinical trials.
Weinkopff, Tiffany; de Oliveira, Camila I.; de Carvalho, Augusto M.; Hauyon-La Torre, Yazmin; Muniz, Aline C.; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne
2014-01-01
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes. PMID:24421912
Mallya, Apoorva; Sandhu, Hardeep; Anya, Blanche-Philomene; Yusuf, Nasir; Ntakibirora, Marcelline; Hasman, Andreas; Fahmy, Kamal; Agbor, John; Corkum, Melissa; Sumaili, Kyandindi; Siddique, Anisur Rahman; Bammeke, Jane; Braka, Fiona; Andriamihantanirina, Rija; Ziao, Antoine-Marie C.; Djumo, Clement; Yapi, Moise Desire; Sosler, Stephen; Eggers, Rudolf
2017-01-01
Abstract Nine polio areas of expertise were applied to broader immunization and mother, newborn and child health goals in ten focus countries of the Polio Eradication Endgame Strategic Plan: policy & strategy development, planning, management and oversight (accountability framework), implementation & service delivery, monitoring, communications & community engagement, disease surveillance & data analysis, technical quality & capacity building, and partnerships. Although coverage improvements depend on multiple factors and increased coverage cannot be attributed to the use of polio assets alone, 6 out of the 10 focus countries improved coverage in three doses of diphtheria tetanus pertussis containing vaccine between 2013 and 2015. Government leadership, evidence-based programming, country-driven comprehensive operational annual plans, community partnership and strong accountability systems are critical for all programs and polio eradication has illustrated these can be leveraged to increase immunization coverage and equity and enhance global health security in the focus countries. PMID:28838187
Innate immune response to Burkholderia mallei.
Saikh, Kamal U; Mott, Tiffany M
2017-06-01
Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.
On-Chip, Amplification-Free Quantification of Nucleic Acid for Point-of-Care Diagnosis
NASA Astrophysics Data System (ADS)
Yen, Tony Minghung
This dissertation demonstrates three physical device concepts to overcome limitations in point-of-care quantification of nucleic acids. Enabling sensitive, high throughput nucleic acid quantification on a chip, outside of hospital and centralized laboratory setting, is crucial for improving pathogen detection and cancer diagnosis and prognosis. Among existing platforms, microarray have the advantages of being amplification free, low instrument cost, and high throughput, but are generally less sensitive compared to sequencing and PCR assays. To bridge this performance gap, this dissertation presents theoretical and experimental progress to develop a platform nucleic acid quantification technology that is drastically more sensitive than current microarrays while compatible with microarray architecture. The first device concept explores on-chip nucleic acid enrichment by natural evaporation of nucleic acid solution droplet. Using a micro-patterned super-hydrophobic black silicon array device, evaporative enrichment is coupled with nano-liter droplet self-assembly workflow to produce a 50 aM concentration sensitivity, 6 orders of dynamic range, and rapid hybridization time at under 5 minutes. The second device concept focuses on improving target copy number sensitivity, instead of concentration sensitivity. A comprehensive microarray physical model taking into account of molecular transport, electrostatic intermolecular interactions, and reaction kinetics is considered to guide device optimization. Device pattern size and target copy number are optimized based on model prediction to achieve maximal hybridization efficiency. At a 100-mum pattern size, a quantum leap in detection limit of 570 copies is achieved using black silicon array device with self-assembled pico-liter droplet workflow. Despite its merits, evaporative enrichment on black silicon device suffers from coffee-ring effect at 100-mum pattern size, and thus not compatible with clinical patient samples. The third device concept utilizes an integrated optomechanical laser system and a Cytop microarray device to reverse coffee-ring effect during evaporative enrichment at 100-mum pattern size. This method, named "laser-induced differential evaporation" is expected to enable 570 copies detection limit for clinical samples in near future. While the work is ongoing as of the writing of this dissertation, a clear research plan is in place to implement this method on microarray platform toward clinical sample testing for disease applications and future commercialization.
Analysis of High-Throughput ELISA Microarray Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Daly, Don S.; Zangar, Richard C.
Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).
Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen
2015-01-01
The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241
Mapping of Epitopes Occurring in Bovine α(s1)-Casein Variants by Peptide Microarray Immunoassay.
Lisson, Maria; Erhardt, Georg
2016-01-01
Immunoglobulin E epitope mapping of milk proteins reveals important information about their immunologic properties. Genetic variants of αS1-casein, one of the major allergens in bovine milk, are until now not considered when discussing the allergenic potential. Here we describe the complete procedure to assess the allergenicity of αS1-casein variants B and C, which are frequent in most breeds, starting from milk with identification and purification of casein variants by isoelectric focusing (IEF) and anion-exchange chromatography, followed by in vitro gastrointestinal digestion of the casein variants, identification of the resulting peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), in silico analysis of the variant-specific peptides as allergenic epitopes, and determination of their IgE-binding properties by microarray immunoassay with cow's milk allergic human sera.
Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1-42)
NASA Astrophysics Data System (ADS)
Matsumoto, Erino; Yamauchi, Takahiro; Fukuda, Tomohiro; Miura, Yoshiko
2009-06-01
Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid β. Amyloid β peptide showed conformation transition on the saccharide-immobilization substrate into a β-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.
Pathogenesis of Recalcitrant Chronic Rhinosinusitis: The Emerging Role of Innate Immune Cells.
Kong, Il Gyu; Kim, Dae Woo
2018-04-01
Chronic rhinosinusitis (CRS) is a major part of the recalcitrant inflammatory diseases of the upper airway that needs enormous socioeconomic burden. T helper (Th) 2 type immune responses recruiting eosinophils were the most well-known immune players in CRS pathogenesis especially in western countries. By the piling up of a vast amount of researches to elucidate the pathogenic mechanism of CRS recently, heterogeneous inflammatory processes were found to be related to the phenotypes of CRS. Recently more cells other than T cells were in the focus of CRS pathogenesis, such as the epithelial cell, macrophage, innate lymphoid cells, and neutrophils. Here, we reviewed the recent research focusing on the innate immune cells related to CRS pathogenesis.
Radiation-induced effects and the immune system in cancer
Kaur, Punit; Asea, Alexzander
2012-01-01
Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903
Radiation-induced effects and the immune system in cancer.
Kaur, Punit; Asea, Alexzander
2012-01-01
Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT.
Root assays to study pattern-triggered immunity in plant-nematode interactions
USDA-ARS?s Scientific Manuscript database
Plants employ extracellular immune receptors to perceive conserved pathogen-associated molecular patterns (PAMPs), triggering the first layer of defense known as pattern-triggered immunity (PTI). The understanding of PTI is mainly based on the studies focusing on leaves. Plants are vulnerable to att...
Immunizations. Position Statement. Revised
ERIC Educational Resources Information Center
Bobo, Nichole; Garrett, Jennifer; Teskey, Carmen; Duncan, Kay; Strasser, Kathy; Burrows-Mezu, Alicia L.
2015-01-01
It is the position of the National Association of School Nurses (NASN) that immunizations are essential to primary prevention of disease from infancy through adulthood. Promotion of immunizations by the registered professional school nurse (hereinafter referred to as school nurse) is central to the public health focus of school nursing practice…
Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology
Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh
2009-01-01
Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744
Living Cell Microarrays: An Overview of Concepts
Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank
2016-01-01
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077
The cytotoxic T lymphocyte immune synapse at a glance.
Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M
2016-08-01
The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers. © 2016. Published by The Company of Biologists Ltd.
Microarray-based DNA methylation study of Ewing's sarcoma of the bone.
Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo
2014-10-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.
Microarray-based DNA methylation study of Ewing’s sarcoma of the bone
PARK, HYE-RIM; JUNG, WOON-WON; KIM, HYUN-SOOK; PARK, YONG-KOO
2014-01-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing’s sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing’s sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing’s sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing’s sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10, OSM, APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing’s sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing’s sarcoma. PMID:25202378
Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi
2013-02-01
MicroRNAs (miRNAs) are small single-stranded RNAs of 19-25 nucleotides and are important in posttranscriptional regulation of genes. Recently, the role of miRNAs in toxicity incidence is reported to be a regulator of key-stopper of gene expression, however the detailed mechanism of miRNAs is not well known yet. 6-Mercaptopurine (6-MP), the anti-leukemic and immunosuppressive drug, produced teratogenicity and pregnancy loss. We focused on the placenta to evaluate toxicity in embryo/fetal development produced by 6-MP treatment. MiRNA expression in the placenta was analyzed by miRNA microarray. Fifteen miRNAs were upregulated on GD13 and 5 miRNAs were downregulated on GD15 in 6-MP treatment rat placentas. Some miRNAs may have functions in apoptosis (miR-195, miR-21, miR-29c and miR-34a), inflammation (miR-146b), and ischemia (miR-144 and miR-451). In the maternal plasma, expression of miR-144 was significantly reduced by 6-MP treatment when examined by real-time RT-PCR. We determined toxicity-related gene expression in the rat placenta. Gene expression analysis was carried out by DNA oligo microarray using rat placenta total RNAs. Compared between predicted targets of miRNAs and microarray data in 6-MP-treated rat placenta, expressions of hormone receptor genes (estrogen receptor 1; Esr1, progesterone receptor; Pgr, and prolactin receptor; Prlr), xanthine oxidase (Xdh), Slc38a5 and Phlda2 genes were changed. The histopathologically found increase in trophoblastic giant cells and reduced placental growth by 6-MP treatment were well correlated to these gene expressions. These data suggest that some miRNAs may link to toxicological reactions in 6-MP-induced placental toxicity.
Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi
2006-07-21
Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.
Genome analysis of Legionella pneumophila strains using a mixed-genome microarray.
Euser, Sjoerd M; Nagelkerke, Nico J; Schuren, Frank; Jansen, Ruud; Den Boer, Jeroen W
2012-01-01
Legionella, the causative agent for Legionnaires' disease, is ubiquitous in both natural and man-made aquatic environments. The distribution of Legionella genotypes within clinical strains is significantly different from that found in environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental strains could help to focus on more relevant (virulent) Legionella species in control efforts. Mixed-genome microarray data can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as the Random Forest algorithm are available to process these data. Microarray analysis was performed on a collection of 222 Legionella pneumophila strains, which included patient-derived strains from notified cases in The Netherlands in the period 2002-2006 and the environmental strains that were collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental. Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the environmental strains collected within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome microarray data to discriminate between Legionella strains from different origin. The identification of these predictive genetic markers could offer the possibility to identify virulence factors within the Legionella genome, which in the future may be implemented in the daily practice of controlling Legionella in the public health environment.
Meade, Kieran G; Gormley, Eamonn; Park, Stephen D E; Fitzsimons, Tara; Rosa, Guilherme J M; Costello, Eamon; Keane, Joseph; Coussens, Paul M; MacHugh, David E
2006-09-15
Microarray analysis of messenger RNA (mRNA) abundance was used to investigate the gene expression program of peripheral blood mononuclear cells (PBMC) from cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis. An immunospecific bovine microarray platform (BOTL-4) with spot features representing 1336 genes was used for transcriptional profiling of PBMC from six M. bovis-infected cattle stimulated in vitro with bovine purified protein derivative of tuberculin (PPD-bovine). Cells were harvested at four time points (3 h, 6 h, 12 h and 24 h post-stimulation) and a split-plot design with pooled samples was used for the microarray experiment to compare gene expression between PPD-bovine stimulated PBMC and unstimulated controls for each time point. Statistical analyses of these data revealed 224 genes (approximately 17% of transcripts on the array) differentially expressed between stimulated and unstimulated PBMC across the 24 h time course (P<0.05). Of the 224 genes, 87 genes were significantly upregulated and 137 genes were significantly downregulated in M. bovis-infected PBMC stimulated with PPD-bovine across the 24 h time course. However, perturbation of the PBMC transcriptome was most apparent at time points 3 h and 12 h post-stimulation, with 81 and 84 genes differentially expressed, respectively. In addition, a more stringent statistical threshold (P<0.01) revealed 35 genes (approximately 3%) that were differentially expressed across the time course. Real-time quantitative reverse transcription PCR (qRT-PCR) of selected genes validated the microarray results and demonstrated a wide range of differentially expressed genes in PPD-bovine-, PPD-avian- and Concanavalin A (ConA) stimulated PBMC, including the interferon-gamma gene (IFNG), which was upregulated in PBMC stimulated with PPD-bovine (40-fold), PPD-avian (10-fold) and ConA (8-fold) after in vitro culture for 12 h. The pattern of expression of these genes in PPD-bovine stimulated PBMC provides the first description of an M. bovis-specific signature of infection that may provide insights into the molecular basis of the host response to infection. Although the present study was carried out with mixed PBMC cell populations, it will guide future studies to dissect immune cell-specific gene expression patterns in response to M. bovis infection.
Sforzini, Susanna; Arlt, Volker M.; Barranger, Audrey; Dallas, Lorna J.; Oliveri, Caterina; Aminot, Yann; Pacchioni, Beniamina; Millino, Caterina; Lanfranchi, Gerolamo; Readman, James W.; Moore, Michael N.; Viarengo, Aldo; Jha, Awadhesh N.
2017-01-01
Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota. PMID:28651000
ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.
ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.
Concerns regarding inhaled compounds, immune suppression and increased risk of disease have focused primarily on suppression of local immune responses in the lung and susceptibility to respiratory infections. However, a number of studies have shown that both gaseous (O3, NO2)...
Parents Questioning Immunization: Evaluation of an Intervention
ERIC Educational Resources Information Center
Gust, Deborah A.; Kennedy, Allison; Weber, Deanne; Evans, Geoff; Kong, Yuan; Salmon, Daniel
2009-01-01
Objectives: To compare attitudes of parents who filed or considered filing an exemption to school immunization requirements and/or would not have their child immunized if it were not required by law (cases) to controls. To develop and evaluate a brochure intervention for parents considering an exemption. Methods: Interviews, focus groups, mailed…
Thermodynamically optimal whole-genome tiling microarray design and validation.
Cho, Hyejin; Chou, Hui-Hsien
2016-06-13
Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.
2013-01-01
Background Chronic kidney disease (CKD) patients present a complex interaction between the innate and adaptive immune systems, in which immune activation (hypercytokinemia and acute-phase response) and immune suppression (impairment of response to infections and poor development of adaptive immunity) coexist. In this setting, circulating uremic toxins and microinflammation play a critical role. This condition, already present in the last stages of renal damage, seems to be enhanced by the contact of blood with bioincompatible extracorporeal hemodialysis (HD) devices. However, although largely described, the cellular machinery associated to the CKD- and HD-related immune-dysfunction is still poorly defined. Understanding the mechanisms behind this important complication may generate a perspective for improving patients outcome. Methods To better recognize the biological bases of the CKD-related immune dysfunction and to identify differences between CKD patients in conservative (CKD) from those in HD treatment, we used an high-throughput strategy (microarray) combined with classical bio-molecular approaches. Results Immune transcriptomic screening of peripheral blood mononuclear cells (1030 gene probe sets selected by Gene-Ontology) showed that 275 gene probe sets (corresponding to 213 genes) discriminated 9 CKD patients stage III-IV (mean ± SD of eGFR: 32.27±14.7 ml/min) from 17 HD patients (p < 0.0001, FDR = 5%). Seventy-one genes were up- and 142 down-regulated in HD patients. Functional analysis revealed, then, close biological links among the selected genes with a pivotal role of PTX3, IL-15 (up-regulated in HD) and HLA-G (down-regulated in HD). ELISA, performed on an independent testing-group [11 CKD stage III-IV (mean ± SD of eGFR: 30.26±14.89 ml/min) and 13 HD] confirmed that HLA-G, a protein with inhibition effects on several immunological cell lines including natural killers (NK), was down-expressed in HD (p = 0.04). Additionally, in the testing-group, protein levels of CX3CR1, an highly selective chemokine receptor and surface marker for cytotoxic effector lymphocytes, resulted higher expressed in HD compared to CKD (p < 0.01). Conclusion Taken together our results show, for the first time, that HD patients present a different immune-pattern compared to the un-dialyzed CKD patients. Among the selected genes, some of them encode for important biological elements involved in proliferation/activation of cytotoxic effector lymphocytes and in the immune-inflammatory cellular machinery. Additionally, this study reveals new potential diagnostic bio-markers and therapeutic targets. PMID:23663527
Solinas, Cinzia; Garaud, Soizic; De Silva, Pushpamali; Boisson, Anaïs; Van den Eynden, Gert; de Wind, Alexandre; Risso, Paolo; Rodrigues Vitória, Joel; Richard, François; Migliori, Edoardo; Noël, Grégory; Duvillier, Hugues; Craciun, Ligia; Veys, Isabelle; Awada, Ahmad; Detours, Vincent; Larsimont, Denis; Piccart-Gebhart, Martine; Willard-Gallo, Karen
2017-01-01
There is an exponentially growing interest in targeting immune checkpoint molecules in breast cancer (BC), particularly in the triple-negative subtype where unmet treatment needs remain. This study was designed to analyze the expression, localization, and prognostic role of PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM3 in primary BC. Gene expression analysis using the METABRIC microarray dataset found that all six immune checkpoint molecules are highly expressed in basal-like and HER2-enriched compared to the other BC molecular subtypes. Flow cytometric analysis of fresh tissue homogenates from untreated primary tumors show that PD-1 is principally expressed on CD4+ or CD8+ T cells and CTLA-4 is expressed on CD4+ T cells. The global proportion of PD-L1+, PD-L2+, LAG3+, and TIM3+ tumor-infiltrating lymphocytes (TIL) was low and detectable in only a small number of tumors. Immunohistochemically staining fixed tissues from the same tumors was employed to score TIL and tertiary lymphoid structures (TLS). PD-L1+, PD-L2+, LAG3+, and TIM3+ cells were detected in some TLS in a pattern that resembles secondary lymphoid organs. This observation suggests that TLS are important sites of immune activation and regulation, particularly in tumors with extensive baseline immune infiltration. Significantly improved overall survival was correlated with PD-1 expression in the HER2-enriched and PD-L1 or CTLA-4 expression in basal-like BC. PD-1 and CTLA-4 proteins were most frequently detected on TIL, which supports the correlations observed between their gene expression and improved long-term outcome in basal-like and HER2-enriched BC. PD-L1 expression by tumor or immune cells is uncommon in BC. Overall, the data presented here distinguish PD-1 as a marker of T cell activity in both the T and B cell areas of BC associated TLS. We found that immune checkpoint molecule expression parallels the extent of TIL and TLS, although there is a noteworthy amount of heterogeneity between tumors even within the same molecular subtype. These data indicate that assessing the levels of immune checkpoint molecule expression in an individual patient has important implications for the success of therapeutically targeting them in BC. PMID:29163490
Schramm, Frédéric; Kern, Aurélie; Barthel, Cathy; Nadaud, Sophie; Meyer, Nicolas
2012-01-01
In Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans). The three strains exhibited a similar profile of inflammation with strong induction of chemokines (CXCL1 and IL-8) and IL-6 cytokine mainly involved in the chemoattraction of immune cells. Molecules such as TNF-alpha and NF-κB factors, metalloproteinases (MMP-1, -3 and -12) and superoxide dismutase (SOD2), also described in inflammatory and cellular events, were up-regulated. In addition, we showed that tick salivary gland extracts induce a cytotoxic effect on fibroblasts and that OspC, essential in the transmission of Borrelia to the vertebrate host, was not responsible for the secretion of inflammatory molecules by fibroblasts. Tick saliva components could facilitate the early transmission of the disease to the site of injury creating a feeding pit. Later in the development of the disease, Borrelia would intensively multiply in the skin and further disseminate to distant organs. PMID:22768217
Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki
2017-09-01
Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.
Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey
Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori
2014-01-01
Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats. PMID:24533154
Azumi, Kaoru; Usami, Takeshi; Kamimura, Akiko; Sabau, Sorin V; Miki, Yasufumi; Fujie, Manabu; Jung, Sung-Ju; Kitamura, Shin-Ichi; Suzuki, Satoru; Yokosawa, Hideyoshi
2007-12-01
A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites.
Chuquiyauri, Raul; Molina, Douglas M.; Moss, Eli L.; Wang, Ruobing; Gardner, Malcolm J.; Brouwer, Kimberly C.; Torres, Sonia; Gilman, Robert H.; Llanos-Cuentas, Alejandro; Neafsey, Daniel E.; Felgner, Philip; Liang, Xiaowu; Vinetz, Joseph M.
2015-01-01
Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions. PMID:26149860
Sitras, V; Fenton, C; Acharya, G
2015-02-01
Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CVD and PE share same common traits in their gene expression profile indicating common pathways in their pathophysiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
List, Claudia; Qi, Weihong; Maag, Eva; Gottstein, Bruno; Müller, Norbert; Felger, Ingrid
2010-01-01
Background Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved. Methodology/Principal Findings Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus. Conclusions/Significance This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens. PMID:20689813
Petersen, David W; Kawasaki, Ernest S
2007-01-01
DNA microarray technology has become a powerful tool in the arsenal of the molecular biologist. Capitalizing on high precision robotics and the wealth of DNA sequences annotated from the genomes of a large number of organisms, the manufacture of microarrays is now possible for the average academic laboratory with the funds and motivation. Microarray production requires attention to both biological and physical resources, including DNA libraries, robotics, and qualified personnel. While the fabrication of microarrays is a very labor-intensive process, production of quality microarrays individually tailored on a project-by-project basis will help researchers shed light on future scientific questions.
Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R
2003-01-01
Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545
Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies
Ranger, Ann; Ray, Soma; Szak, Suzanne; Dearth, Andrea; Allaire, Norm; Murray, Ronald; Gardner, Rebecca; Cadavid, Diego
2017-01-01
Objective: To evaluate whether the anti-LINGO-1 antibody has immunomodulatory effects. Methods: Human peripheral blood mononuclear cells (hPBMCs), rat splenocytes, and rat CD4+ T cells were assessed to determine whether LINGO-1 was expressed and was inducible. Anti-LINGO-1 Li81 (0.1–30 μg/mL) effect on proliferation/cytokine production was assessed in purified rat CD4+ T cells and hPBMCs stimulated with antibodies to CD3 +/– CD28. In humans, the effect of 2 opicinumab (anti-LINGO-1/BIIB033; 30, 60, and 100 mg/kg) or placebo IV administrations was evaluated in RNA from blood and CSF samples taken before and after administration in phase 1 clinical trials; paired samples were assessed for differentially expressed genes by microarray. RNA from human CSF cell pellets was analyzed by quantitative real-time PCR for changes in transcripts representative of cell types, activation markers, and soluble proteins of the adaptive/innate immune systems. ELISA quantitated the levels of CXCL13 protein in human CSF supernatants. Results: LINGO-1 is not expressed in hPBMCs, rat splenocytes, or rat CD4+ T cells; LINGO-1 blockade with Li81 did not affect T-cell proliferation or cytokine production from purified rat CD4+ T cells or hPBMCs. LINGO-1 blockade with opicinumab resulted in neither significant changes in immune system gene expression in blood and CSF, nor changes in CXCL13 CSF protein levels (clinical studies). Conclusions: These data support the hypothesis that LINGO-1 blockade does not affect immune function. Classification of evidence: This study provides Class II evidence that in patients with MS, opicinumab does not have immunomodulatory effects detected by changes in immune gene transcript expression. PMID:29259995
Lotfan, Masoud; Ali, Syed Azmal; Yadav, Munna Lal; Choudhary, Suman; Jena, Manoj Kumar; Kumar, Sudarshan; Mohanty, Ashok Kumar
2018-05-15
The crosstalk between fetus and mother starts with the onset of placental attachment to the uterus. The cotyledons and caruncles are the two anatomically distinct structures that play a crucial role in this physiological communication. Using Agilent Gene Chip Genome microarray, we measured the expression profile of pregnancy cotyledons in comparison to caruncular reminiscence of the uteri in non-pregnant buffalo (Bubalus bubalis) for the detection of the early post-pregnancy rapid changes in cellular expression of mRNA transcripts. We identified a total of 497 up- and 578 down-regulated genes with <0.05 the FDR corrected p-values using 4 replicates in each group (cotyledons and caruncles) and their role in pregnancy. Deep bioinformatics analysis of data revealed the cluster of genes involved at the placentome level for various functions such as fetus attachment, transport of nutrition, and immune response. Importantly, the pathways like Hedgehog/Calcium/Wnt signalling, cell cycle regulation and immune responses regulatory functions were highly enriched by the differentially identified genes. A very highly up-regulated IL-2 specific gene showed the role of interleukin-2 signalling in the attachment of the embryo. It was observed that the genes responsible for immune response were downregulated, suggesting an immune suppressive environment which is required to adopt the semiallogeneic fetus for a successful pregnancy. To further evaluate and validate the data, we have performed qRT-PCR analysis of twenty-one genes. The present study highlights the repertoire of active transcripts in the junction of cotyledons and caruncles, which are essential for a successful onset and completion of pregnancy. Copyright © 2018 Elsevier B.V. All rights reserved.
Shin, Sangsu; Kim, Miok; Lee, Seon-Jin; Park, Kang-Seo; Lee, Chang Hoon
2017-01-01
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Transcriptome study of differential expression in schizophrenia
Sanders, Alan R.; Göring, Harald H. H.; Duan, Jubao; Drigalenko, Eugene I.; Moy, Winton; Freda, Jessica; He, Deli; Shi, Jianxin; Gejman, Pablo V.
2013-01-01
Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves’ disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia. PMID:23904455
Harvey, Stephen A. K.; Phillips, Jaclyn M.; Vicetti Miguel, Rodolfo D.; Melan, Melissa A.; Quispe Calla, Nirk E.; Hendricks, Robert L.
2013-01-01
Abstract Intravaginal (ivag) infection of mice with herpes simplex virus type 2 (HSV-2) causes genital tissue damage, quickly followed by development of fatal encephalopathy. To delineate initial host responses generated by HSV-2 infection, here oligonucleotide microarrays compared gene expression in vaginal tissue from uninfected mice and mice 1, 2, 3, 4, 5, 6, or 7 days after ivag infection with 104 pfu HSV-2. While comparison of mRNA expression in uninfected and HSV-infected vaginal tissue detected few changes during the first 2 days post infection (dpi), there were 156 genes whose expression was first significantly altered 3 dpi that remained significantly modified at all later time points examined. These 156 genes were significantly enriched in canonical pathways associated with interferon (IFN) signaling, activation of IFN elements by intracellular pattern recognition receptors, and antiviral immunity induced by cytosolic RIG-like receptors. Evaluation of this gene set with the National Center for Biotechnology Information Gene and INTERFEROME databases corroborated pathway analysis, as function of most (53%) were linked to IFN-mediated host immunity. In the final set of experiments, ivag administration of the Toll-like receptor 3 agonist polyinosinic: polycytidylic acid (poly I:C) 24 h before ivag HSV-2 infection reduced the incidence of genital pathology and encephalopathy, while these poly I:C-treated mice were subsequently protected from ocular HSV-2 challenge lethal to uninfected controls. The latter results imply that the exuberant antiviral immunity produced in our experimental model is simply formed too late to prevent viral replication and dissemination, and that poly I:C-induced formation of an antiviral state protecting against primary ivag infection also permits development of HSV-specific protective immunity. PMID:23638732
Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas
Lin, Suling J; Gagnon-Bartsch, Johann A; Tan, Iain Beehuat; Earle, Sophie; Ruff, Louise; Pettinger, Katherine; Ylstra, Bauke; van Grieken, Nicole; Rha, Sun Young; Chung, Hyun Cheol; Lee, Ju-Seog; Cheong, Jae Ho; Noh, Sung Hoon; Aoyama, Toru; Miyagi, Yohei; Tsuburaya, Akira; Yoshikawa, Takaki; Ajani, Jaffer A; Boussioutas, Alex; Yeoh, Khay Guan; Yong, Wei Peng; So, Jimmy; Lee, Jeeyun; Kang, Won Ki; Kim, Sung; Kameda, Yoichi; Arai, Tomio; zur Hausen, Axel; Speed, Terence P; Grabsch, Heike I; Tan, Patrick
2015-01-01
Objective Differences in gastric cancer (GC) clinical outcomes between patients in Asian and non-Asian countries has been historically attributed to variability in clinical management. However, recent international Phase III trials suggest that even with standardised treatments, GC outcomes differ by geography. Here, we investigated gene expression differences between Asian and non-Asian GCs, and if these molecular differences might influence clinical outcome. Design We compared gene expression profiles of 1016 GCs from six Asian and three non-Asian GC cohorts, using a two-stage meta-analysis design and a novel biostatistical method (RUV-4) to adjust for technical variation between cohorts. We further validated our findings by computerised immunohistochemical analysis on two independent tissue microarray (TMA) cohorts from Asian and non-Asian localities (n=665). Results Gene signatures differentially expressed between Asians and non-Asian GCs were related to immune function and inflammation. Non-Asian GCs were significantly enriched in signatures related to T-cell biology, including CTLA-4 signalling. Similarly, in the TMA cohorts, non-Asian GCs showed significantly higher expression of T-cell markers (CD3, CD45R0, CD8) and lower expression of the immunosuppressive T-regulatory cell marker FOXP3 compared to Asian GCs (p<0.05). Inflammatory cell markers CD66b and CD68 also exhibited significant cohort differences (p<0.05). Exploratory analyses revealed a significant relationship between tumour immunity factors, geographic locality-specific prognosis, and postchemotherapy outcomes. Conclusions Analyses of >1600 GCs suggest that Asian and non-Asian GCs exhibit distinct tumour immunity signatures related to T-cell function. These differences may influence geographical differences in clinical outcome, and the design of future trials particularly in immuno-oncology. PMID:25385008
Pearton, Marc; Pirri, Daniela; Kang, Sang-Moo; Compans, Richard W; Birchall, James C
2013-10-01
Miniaturized microneedle devices are being developed for painlessly targeting vaccines to the immune cell populations in skin. As skin immunization studies are generally restricted to animal models however, where skin architecture and immunity is greatly different to human, surprisingly little is known about the local human response to intradermal (ID) vaccines. Here surgically excised human skin is used to explore for the first time the complex molecular and cellular host responses to a candidate influenza vaccine comprising nanoparticulate virus-like-particles (VLPs), administered via conventional hypodermic injection or reduced scale microneedles. Responses at the molecular level are determined by microarray analysis (47,296 discrete transcripts) and validated by quantitative PCR (96 genes). Cellular response is probed through monitoring migration of dendritic cells in viable skin tissue. Gene expression mapping, ontological analysis, and qPCR reveal up-regulation of a host of genes responsible for key immunomodulatory processes and host viral response, including cell recruitment, activation, migration, and T cell interaction following both ID and microneedle injection of VLPs; the response from the microneedles being more subtle. Significant morphological and migratory changes to skin dendritic cells are also apparent following microneedle VLP delivery. This is the first study displaying the global, multifaceted immunological events that occur at the site of vaccine deposition in human skin and will subsequently influence the degree and nature of innate and adaptive immune responses. An increased understanding of the detailed similarities and differences in response against antigen administered via different delivery modalities will inform the development of improved vaccines and vaccine delivery systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SHIN, SANGSU; KIM, MIOK; LEE, SEON-JIN; PARK, KANG-SEO
2017-01-01
Background/Aim: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. Materials and Methods: A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. Results: TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. Conclusion: TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. PMID:28871002
Innate immune response to Burkholderia mallei
Saikh, Kamal U.; Mott, Tiffany M.
2017-01-01
Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960
Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy.
Willemze, Rose A; Luyer, Misha D; Buurman, Wim A; de Jonge, Wouter J
2015-06-01
Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies.
Tschirren, B; Råberg, L; Westerdahl, H
2011-06-01
Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Functions and Mechanisms of Sleep in Flies and Mammals
2007-02-01
serotonin receptor likely to mediate the known interaction between the serotonergic Raphe nucleus and the LC (Htr1d). We have also confirmed the prior... Chemistry . His research focuses on mass spectrometry, a technique that will augment research on the mechanisms of sleep and complement microarray gene...labeling (ICAT, ITRAQ, etc); 8) MALDI and electrospray FTMS for the identification of small molecule structure ; 9) Gas phase reactions within the FTMS
Immune system and melanoma biology: a balance between immunosurveillance and immune escape.
Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco
2017-12-01
Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.
Role of immune system in tumor progression and carcinogenesis.
Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha
2018-07-01
Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.
Intellectual property issues of immune checkpoint inhibitors
Storz, Ulrich
2016-01-01
Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763
Neuroimmunomodulation in unipolar depression: a focus on chronobiology and chronotherapeutics.
Eyre, Harris; Baune, Bernhard T
2012-10-01
The rising burden of unipolar depression along with its often related sleep disturbances, as well as increasing rates of sleep restriction in modern society, make the search for an extended understanding of the aetiology and pathophysiology of depression necessary. Accumulating evidence suggests an important role for the immune system in mediating disrupted neurobiological and chronobiological processes in depression. This review aims to provide an overview of the neuroimmunomodulatory processes involved with depression and antidepressant treatments with a special focus on chronobiology, chronotherapeutics and the emerging field of immune-circadian bi-directional crosstalk. Increasing evidence suggests that chronobiological disruption can mediate immune changes in depression, and likewise, immune processes can mediate chronobiological disruption. This may suggest a bi-directional relationship in immune-circadian crosstalk. Furthermore, given the immunomodulatory effects of antidepressants and chronotherapeutics, as well as their associated beneficial effects on circadian disturbance, we--and others--suggest that these therapeutic agents may exert their chronobiotic effects partially via the neuroimmune system. Further research is required to better elucidate the mechanisms of immune involvement in the chronobiology of depression.