Science.gov

Sample records for immunodominant viral epitopes

  1. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses.

    PubMed

    Bihl, Florian; Frahm, Nicole; Di Giammarino, Loriana; Sidney, John; John, Mina; Yusim, Karina; Woodberry, Tonia; Sango, Kaori; Hewitt, Hannah S; Henry, Leah; Linde, Caitlyn H; Chisholm, John V; Zaman, Tauheed M; Pae, Eunice; Mallal, Simon; Walker, Bruce D; Sette, Alessandro; Korber, Bette T; Heckerman, David; Brander, Christian

    2006-04-01

    Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.

  2. Woodchuck hepatitis virus core gene deletions and proliferative responses of peripheral blood mononuclear cells stimulated by an immunodominant epitope: a viral immune escape in the woodchuck model of chronic hepatitis B?

    PubMed

    Taffon, Stefania; Kondili, Loreta A; Giuseppetti, Roberto; Ciccaglione, Anna Rita; Pulimanti, Barbara; Attili, Adolfo F; Rapicetta, Maria; D'Ugo, Emilio

    2015-04-01

    Marmota monax and its natural infection by woodchuck hepatitis virus (WHV) could be used as a predictive model for evaluating mechanisms of viral persistence during chronic hepatitis B virus (HBV) infection. The aim of this study was to investigate the presence of viral variants in the core gene of chronically WHV-infected woodchucks that showed two different patterns of peripheral blood mononuclear cells' (PBMCs') responses after stimulation with a specific WHV core peptide. Sequences' analysis of the WHV core region from eight WHV chronically infected woodchucks have been performed after in vitro stimulation with an immunodominant epitope of the WHV core protein (amino acids [aa] 96-110). Following this stimulation, positive PBMC responses at each point of follow-up were observed for four animals (group A), and weak immune responses at one or a few points of follow-up were observed for the remaining four animals (group B). The WHV core gene sequences contained amino acid deletions (aa 84-126, aa 84-113) in three of four group A animals and in none of group B animals. In the group A animals, the same deletions were observed in liver specimens and in two of four tumor specimens. Hepatocellular carcinoma (HCC) was diagnosed in all group A animals and in one group B animal. In conclusion, internal deletions in the core region correlated with a sustained PBMC response to the immunogenic peptide (96-110) of the core protein. A possible role of this relationship in hepatocarcinogenesis could be hypothesized; however, this needs to be investigated in patients with chronic HBV infection. The evaluation of virus-specific T-cell responses and T-cell epitopes that are possibly related to the mechanisms of viral evasion should be further investigated in order to design combined antiviral and immune approaches to control chronic HBV infection. PMID:25666197

  3. Characterization of Immunodominant BK Polyomavirus 9mer Epitope T Cell Responses

    PubMed Central

    Cioni, M.; Leboeuf, C.; Comoli, P.; Ginevri, F.

    2016-01-01

    Uncontrolled BK polyomavirus (BKPyV) replication in kidney transplant recipients (KTRs) causes polyomavirus‐associated nephropathy and allograft loss. Reducing immunosuppression is associated with clearing viremia and nephropathy and increasing BKPyV‐specific T cell responses in most patients; however, current immunoassays have limited sensitivity, target mostly CD4+ T cells, and largely fail to predict onset and clearance of BKPyV replication. To characterize BKPyV‐specific CD8+ T cells, bioinformatics were used to predict 9mer epitopes in the early viral gene region (EVGR) presented by 14 common HLAs in Europe and North America. Thirty‐nine EVGR epitopes were experimentally confirmed by interferon‐γ enzyme‐linked immunospot assays in at least 30% of BKPyV IgG–seropositive healthy participants. Most 9mers clustered in domains, and some were presented by more than one HLA class I, as typically seen for immunodominant epitopes. Specific T cell binding using MHC class I streptamers was demonstrated for 21 of 39 (54%) epitopes. In a prospective cohort of 118 pediatric KTRs, 19 patients protected or recovering from BKPyV viremia were experimentally tested, and 13 epitopes were validated. Single HLA mismatches were not associated with viremia, suggesting that failing immune control likely involves multiple factors including maintenance immunosuppression. Combining BKPyV load and T cell assays using immunodominant epitopes may help in evaluating risk and reducing immunosuppression and may lead to safe adoptive T cell transfer. PMID:26663765

  4. Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement

    PubMed Central

    2012-01-01

    Background Dengue viruses (DENV) are the most important arboviruses of humans and cause significant disease. Infection with DENV elicits antibody responses to the envelope glycoprotein, predominantly against immunodominant, cross-reactive, weakly-neutralizing epitopes. These weakly-neutralizing antibodies are implicated in enhancing infection via Fcγ receptor bearing cells and can lead to increased viral loads that are associated with severe disease. Here we describe results from the development and testing of cross-reactivity reduced DENV-2 DNA vaccine candidates that contain substitutions in immunodominant B cell epitopes of the fusion peptide and domain III of the envelope protein. Results Cross-reactivity reduced and wild-type vaccine candidates were similarly immunogenic in outbred mice and elicited high levels of neutralizing antibody, however mice immunized with cross-reactivity reduced vaccines produced significantly reduced levels of immunodominant cross-reactive antibodies. Sera from mice immunized with wild-type, fusion peptide-, or domain III- substitution containing vaccines enhanced heterologous DENV infection in vitro, unlike sera from mice immunized with a vaccine containing a combination of both fusion peptide and domain III substitutions. Passive transfer of immune sera from mice immunized with fusion peptide and domain III substitutions also reduced the development of severe DENV disease in AG129 mice when compared to mice receiving wild type immune sera. Conclusions Reducing cross-reactivity in the envelope glycoprotein of DENV may be an approach to improve the quality of the anti-DENV immune response. PMID:22709350

  5. Cross‐reactivity of hepatitis C virus specific vaccine‐induced T cells at immunodominant epitopes

    PubMed Central

    Kelly, Christabel; Swadling, Leo; Brown, Anthony; Capone, Stefania; Folgori, Antonella; Salio, Mariolina; Klenerman, Paul

    2014-01-01

    Viral diversity is a challenge to the development of a hepatitis C virus (HCV) vaccine. Following vaccination of humans with adenoviral vectors, we determined the capacity of T cells to target common viral variants at immundominant epitopes ex vivo. We identified two major variants for epitopes NS31073 and NS31446, and multiple variants for epitope NS31406 that occurred in >5% of genotype 1 and 3 sequences at a population level. Cross‐reactivity of vaccine‐induced T cells was determined using variant peptides in IFN‐γ ELISPOT assays. Vaccine‐induced T cells targeted approximately 90% of NS31073 genotype 1 sequences and 50% of NS31446 genotype 1 and 3 sequences. For NS31406, 62% of subtype‐1b sequences were targeted. Next, we assessed whether an in vitro priming system, using dendritic cells and T cells from healthy donors, could identify a variant of NS31406 that was maximally cross‐reactive. In vitro priming assays showed that of those tested the NS31406 vaccine variant was the most immunogenic. T cells primed with genotype 1 variants from subtype 1a or 1b were broadly cross‐reactive with other variants from the same subtype. We conclude that immunization with candidate HCV adenoviral vaccines generates cross‐reactive T cells at immunodominant epitopes. The degree of cross‐reactivity varies between epitopes and may be HCV‐subtype specific. PMID:25263407

  6. Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication but play an important role in viral pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is the largest protein of the virus. Besides its crucial role in viral replication, recent studies indicated its involvement in modulating host immunity. In this study, each of the six identified immu...

  7. Immunodominant West Nile Virus T Cell Epitopes Are Fewer in Number and Fashionably Late.

    PubMed

    Kaabinejadian, Saghar; McMurtrey, Curtis P; Kim, Sojung; Jain, Rinki; Bardet, Wilfried; Schafer, Fredda B; Davenport, Jason L; Martin, Aaron D; Diamond, Michael S; Weidanz, Jon A; Hansen, Ted H; Hildebrand, William H

    2016-05-15

    Class I HLA molecules mark infected cells for immune targeting by presenting pathogen-encoded peptides on the cell surface. Characterization of viral peptides unique to infected cells is important for understanding CD8(+) T cell responses and for the development of T cell-based immunotherapies. Having previously reported a series of West Nile virus (WNV) epitopes that are naturally presented by HLA-A*02:01, in this study we generated TCR mimic (TCRm) mAbs to three of these peptide/HLA complexes-the immunodominant SVG9 (E protein), the subdominant SLF9 (NS4B protein), and the immunorecessive YTM9 (NS3 protein)-and used these TCRm mAbs to stain WNV-infected cell lines and primary APCs. TCRm staining of WNV-infected cells demonstrated that the immunorecessive YTM9 appeared several hours earlier and at 5- to 10-fold greater density than the more immunogenic SLF9 and SVG9 ligands, respectively. Moreover, staining following inhibition of the TAP demonstrated that all three viral ligands were presented in a TAP-dependent manner despite originating from different cellular compartments. To our knowledge, this study represents the first use of TCRm mAbs to define the kinetics and magnitude of HLA presentation for a series of epitopes encoded by one virus, and the results depict a pattern whereby individual epitopes differ considerably in abundance and availability. The observations that immunodominant ligands can be found at lower levels and at later time points after infection suggest that a reevaluation of the factors that combine to shape T cell reactivity may be warranted. PMID:27183642

  8. The presence of prolines in the flanking region of an immunodominant HIV‐2 gag epitope influences the quality and quantity of the epitope generated

    PubMed Central

    Leligdowicz, Aleksandra; Kramer, Holger B.; Onyango, Clayton; Cotten, Matthew; Wright, Cynthia; Whittle, Hilton C.; McMichael, Andrew; Dong, Tao; Kessler, Benedikt M.; Rowland‐Jones, Sarah L.

    2015-01-01

    Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load. PMID:26018465

  9. Localization of immunodominant epitopes within the "a" determinant of hepatitis B surface antigen using monoclonal antibodies.

    PubMed

    Golsaz-Shirazi, Forough; Mohammadi, Hamed; Amiri, Mohammad Mehdi; Khoshnoodi, Jalal; Kardar, Gholam Ali; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2016-10-01

    The common "a" determinant is the major immunodominant region of hepatitis B surface antigen (HBsAg) shared by all serotypes and genotypes of hepatitis B virus (HBV). Antibodies against this region are thought to confer protection against HBV and are essential for viral clearance. Mutations within the "a" determinant may lead to conformational changes in this region, which can affect the binding of neutralizing antibodies. There is an increasing concern about identification and control of mutant viruses which is possible by comprehensive structural investigation of the epitopes located within this region. Anti-HBs monoclonal antibodies (mAbs) against different epitopes of HBsAg are a promising tool to meet this goal. In the present study, 19 anti-HBs mAbs were employed to map epitopes localized within the "a" determinant, using a panel of recombinant mutant HBsAgs. The topology of the epitopes was analyzed by competitive enzyme-linked immunosorbent assay (ELISA). Our results indicate that all of the mAbs seem to recognize epitopes within or in the vicinity of the "a" determinant of HBsAg. Different patterns of binding with mutant forms were observed with different mAbs. Amino acid substitutions at positions 123, 126, 129, 144, and 145 dramatically reduced the reactivity of antibodies with HBsAg. The T123N mutation had the largest impact on antibody binding to HBsAg. The reactivity pattern of our panel of mAbs with mutant forms of HBsAg could have important clinical implications for immunoscreening, diagnosis of HBV infection, design of a new generation of recombinant HB vaccines, and immunoprophylaxis of HBV infection as an alternative to therapy with hepatitis B immune globulin (HBIG). PMID:27439498

  10. Structure of viral B-cell epitopes.

    PubMed

    Van Regenmortel, M H

    1990-01-01

    Four categories of viral epitopes can be distinguished that have been designated cryptotopes, neotopes, metatopes and neutralization epitopes. Specific examples of each epitope type are presented and the methods used for locating their positions in viral proteins are described. The epitopes of four well-characterized viruses, namely poliovirus, foot-and-mouth disease virus, influenza virus and tobacco mosaic virus are briefly described.

  11. Rapid Identification of Novel Immunodominant Proteins and Characterization of a Specific Linear Epitope of Campylobacter jejuni

    PubMed Central

    Hoppe, Sebastian; Bier, Frank F.; Nickisch-Rosenegk, Markus v.

    2013-01-01

    Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium’s pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify

  12. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni.

    PubMed

    Hoppe, Sebastian; Bier, Frank F; von Nickisch-Rosenegk, Markus; Nickisch-Rosenegk, Markus V

    2013-01-01

    Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify the

  13. The conformational specificity of viral epitopes.

    PubMed

    Van Regenmortel, M H

    1992-12-15

    Four types of antigenic sites found in viruses are discussed: cryptotopes, neotopes, metatopes and neutralization epitopes. The role played by conformation on the specificity of viral epitopes is illustrated in the case of tobacco mosaic virus and influenza virus. It appears that mechanisms reminiscent of induced fit contribute to the recognition of viral epitopes by antibodies.

  14. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape

    PubMed Central

    Liu, Michael K.P.; Hawkins, Natalie; Ritchie, Adam J.; Ganusov, Vitaly V.; Whale, Victoria; Brackenridge, Simon; Li, Hui; Pavlicek, Jeffrey W.; Cai, Fangping; Rose-Abrahams, Melissa; Treurnicht, Florette; Hraber, Peter; Riou, Catherine; Gray, Clive; Ferrari, Guido; Tanner, Rachel; Ping, Li-Hua; Anderson, Jeffrey A.; Swanstrom, Ronald; B, CHAVI Core; Cohen, Myron; Karim, Salim S. Abdool; Haynes, Barton; Borrow, Persephone; Perelson, Alan S.; Shaw, George M.; Hahn, Beatrice H.; Williamson, Carolyn; Korber, Bette T.; Gao, Feng; Self, Steve; McMichael, Andrew; Goonetilleke, Nilu

    2012-01-01

    HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell–mediated in vivo control of HIV-1. Primary HIV-1–specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or “vertical” immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance. PMID:23221345

  15. Structure-Guided Design of an Anti-dengue Antibody Directed to a Non-immunodominant Epitope.

    PubMed

    Robinson, Luke N; Tharakaraman, Kannan; Rowley, Kirk J; Costa, Vivian V; Chan, Kuan Rong; Wong, Yee Hwa; Ong, Li Ching; Tan, Hwee Cheng; Koch, Tyree; Cain, David; Kirloskar, Rama; Viswanathan, Karthik; Liew, Chong Wai; Tissire, Hamid; Ramakrishnan, Boopathy; Myette, James R; Babcock, Gregory J; Sasisekharan, V; Alonso, Sylvie; Chen, Jianzhu; Lescar, Julien; Shriver, Zachary; Ooi, Eng Eong; Sasisekharan, Ram

    2015-07-30

    Dengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods. To demonstrate an alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, but functionally relevant, epitope in domain III of the E protein, and engineered by structure-guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess therapeutic relevance of Ab513, activity against important human clinical features of dengue was investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce the public health burden from dengue. PMID:26189681

  16. Structure-Guided Design of an Anti-dengue Antibody Directed to a Non-immunodominant Epitope.

    PubMed

    Robinson, Luke N; Tharakaraman, Kannan; Rowley, Kirk J; Costa, Vivian V; Chan, Kuan Rong; Wong, Yee Hwa; Ong, Li Ching; Tan, Hwee Cheng; Koch, Tyree; Cain, David; Kirloskar, Rama; Viswanathan, Karthik; Liew, Chong Wai; Tissire, Hamid; Ramakrishnan, Boopathy; Myette, James R; Babcock, Gregory J; Sasisekharan, V; Alonso, Sylvie; Chen, Jianzhu; Lescar, Julien; Shriver, Zachary; Ooi, Eng Eong; Sasisekharan, Ram

    2015-07-30

    Dengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods. To demonstrate an alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, but functionally relevant, epitope in domain III of the E protein, and engineered by structure-guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess therapeutic relevance of Ab513, activity against important human clinical features of dengue was investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce the public health burden from dengue.

  17. p185, an Immunodominant Epitope, Is an Autoantigen Mimotope*

    PubMed Central

    Kumar, Sanjeev; Hinks, John A.; Maman, Joseph; Ravirajan, Chelliah T.; Pearl, Laurence H.; Isenberg, David A.

    2011-01-01

    An immunodominant peptide (p185(378–394)) derived from the c-erbB2 gene product, was recognized by an anti-DNA antibody, B3, and importantly by two classical DNA-binding proteins, Tgo polymerase and Pa-UDG. These reactivities were inhibited by DNA, confirming that the peptide mimicked DNA. BALB/c mice immunized with p185(378–394) developed significant titers of IgG anti-dsDNA antibodies. Screening of 39 human lupus sera revealed that 5% of these sera possessed reactivity toward p185(378–394). Representative mouse and human sera with anti-p185(378–394) reactivity bound intact p185, and this binding was inhibited by dsDNA. This is the first demonstration of a naturally occurring autoantigen mimotope. The present study identifies a potential antigenic stimulus that might trigger systemic lupus erythematosus in a subset of patients. PMID:21566138

  18. p185, an immunodominant epitope, is an autoantigen mimotope.

    PubMed

    Kumar, Sanjeev; Hinks, John A; Maman, Joseph; Ravirajan, Chelliah T; Pearl, Laurence H; Isenberg, David A

    2011-07-22

    An immunodominant peptide (p185(378-394)) derived from the c-erbB2 gene product, was recognized by an anti-DNA antibody, B3, and importantly by two classical DNA-binding proteins, Tgo polymerase and Pa-UDG. These reactivities were inhibited by DNA, confirming that the peptide mimicked DNA. BALB/c mice immunized with p185(378-394) developed significant titers of IgG anti-dsDNA antibodies. Screening of 39 human lupus sera revealed that 5% of these sera possessed reactivity toward p185(378-394). Representative mouse and human sera with anti-p185(378-394) reactivity bound intact p185, and this binding was inhibited by dsDNA. This is the first demonstration of a naturally occurring autoantigen mimotope. The present study identifies a potential antigenic stimulus that might trigger systemic lupus erythematosus in a subset of patients. PMID:21566138

  19. Immunodominant viral peptides as determinants of cross-reactivity in the immune system--Can we develop wide spectrum viral vaccines?

    PubMed

    Vieira, G F; Chies, J A B

    2005-01-01

    When we look back to Edward Jenner vaccination of a young man in 1796, we cannot help thinking that he was both lucky and crazy. Crazy because he decided to test in a human being a hypothesis based mainly in the traditional belief that people who had acquired cowpox from the udders of a cow were thereafter resistant to smallpox, a quite devastating disease, and lucky because (even considering that he did not know this at that time) he succeeded to induce protection against a pathogen through the induction of an immune response directed against a different agent. Not only was he able to protect the young man but he took the first step towards the development of a vast new field, vaccination. It is acceptable to say that Jenner was lucky because he succeeded in promoting protection against smallpox using a cowpox virus and this induction of protection in a cross-reactive way is believed to be quite rare. Nevertheless, more and more examples of cross-reactive immune responses are being described and we are beginning to admit that cross-reactivity is far more common and important than we used to think. Here we review cross-reactivity in the immune system and the plasticity of T cell recognition. Based on the existence of T cell receptor promiscuous recognition and cross-recognition of conserved viral immunodominant epitopes, we propose two approaches to develop wide spectrum viral vaccines. The first one is based on the identification, characterization, and cloning of immunodominant viral epitopes able to stimulate responses against different viruses. The produced peptides could then be purified and serve as a basis for vaccine therapies. A second strategy is based on the identification of conserved patterns in immunodominant viral peptides and the production of synthetic peptides containing the amino acid residues necessary for MHC anchoring and TCR contact. Although we are still far from a complete knowledge of the cross-reactivity phenomenon in the immune system

  20. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5

    PubMed Central

    Xia, Lin; Xian, Yangfei; Wang, Daning; Chen, Yuanzhi; Huang, Xiaofen; Bi, Xingjian; Yu, Hai; Fu, Zheng; Liu, Xinlin; Li, Shaowei; An, Zhiqiang; Luo, Wenxin; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr135 and Val141 on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection. PMID:26750243

  1. Defining Species-Specific Immunodominant B Cell Epitopes for Molecular Serology of Chlamydia Species

    PubMed Central

    Rahman, K. Shamsur; Chowdhury, Erfan U.; Poudel, Anil; Ruettger, Anke; Sachse, Konrad

    2015-01-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. PMID:25761461

  2. Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species.

    PubMed

    Rahman, K Shamsur; Chowdhury, Erfan U; Poudel, Anil; Ruettger, Anke; Sachse, Konrad; Kaltenboeck, Bernhard

    2015-05-01

    Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens.

  3. IMMUNODOMINANT EPITOPE AND PROPERTIES OF PYROGLUTAMATE-MODIFIED Aβ-SPECIFIC ANTIBODIES PRODUCED IN RABBITS

    PubMed Central

    Acero, G.; Manoutcharian, K.; Vasilevko, V.; Munguia, M.E.; Govezensky, T.; Coronas, G.; Luz-Madrigal, A.; Cribbs, DH.; Gevorkian, G.

    2009-01-01

    N-truncated and N-modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer’s disease (AD) and Down’s syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Aβ is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full-length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant Ntruncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 3 (AβN3(pE)). We demonstrated that AβN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AβN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AβN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AβN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides. PMID:19545911

  4. Immunodominant epitope and properties of pyroglutamate-modified Abeta-specific antibodies produced in rabbits.

    PubMed

    Acero, G; Manoutcharian, K; Vasilevko, V; Munguia, M E; Govezensky, T; Coronas, G; Luz-Madrigal, A; Cribbs, D H; Gevorkian, G

    2009-08-18

    N-truncated and N-modified forms of amyloid beta (Abeta) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Abeta is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant N-truncated/modified Abeta peptide bearing amino-terminal pyroglutamate at position 3 (AbetaN3(pE)). We demonstrated that AbetaN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AbetaN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AbetaN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AbetaN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Abeta, which is absent in N-amino truncated peptides.

  5. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection

    PubMed Central

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine. PMID:26895191

  6. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection.

    PubMed

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine. PMID:26895191

  7. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes

    PubMed Central

    Xiang, Sue D.; Gao, Qian; Wilson, Kirsty L.; Heyerick, Arne; Plebanski, Magdalena

    2015-01-01

    Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses. PMID:26529027

  8. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes.

    PubMed

    Xiang, Sue D; Gao, Qian; Wilson, Kirsty L; Heyerick, Arne; Plebanski, Magdalena

    2015-01-01

    Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional "mix-in" pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111-142. However, delivery of hSp17111-142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111-142, from an immuno-dominant region 134-142 aa for CpG, to region 121-138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses. PMID:26529027

  9. Identification of neutralization and diagnostic epitopes on PIM, the polymorphic immunodominant molecule of Theileria parva.

    PubMed Central

    Toye, P; Nyanjui, J; Goddeeris, B; Musoke, A J

    1996-01-01

    The polymorphic immunodominant molecule (PIM) of Theileria parva is expressed by the schizont and sporozoite stages of the parasite. We have recently cloned the cDNA encoding the PIM antigen from two stocks of the parasite: the cattle-derived T. parva (Muguga) stock and a buffalo-derived stock. The cDNAs were used in transient-transfection assays to assess the reactivity of the antigen with monoclonal antibodies (MAb) previously raised against schizont-infected cells and used for parasite strain identification. We demonstrate that 19 of the 25 MAb are specific for PIM. Antibody reactivities with deletion mutants of a fusion protein containing PIM and Pepscan analysis of the Muguga version of the molecule with 13 of the MAb indicate that there are at least 10 different epitopes throughout the molecule. None of the MAb react with a tetrapeptide repeat present in the central region of the molecule, probably because of an inability of BALB/c mice to produce antibodies to this repeat. In contrast, sera from infected cattle react strongly with the repeat region, suggesting that this region alone may be useful as a diagnostic reagent. Previous studies showed that MAb to PIM inhibit sporozoite infectivity of bovine lymphocytes in vitro, which suggests that the antigen may be useful in immunizing cattle against T. parva infection. Pepscan analysis revealed that sera from infected cattle reacted with peptides recognized by the neutralizing MAb, as did sera from cattle inoculated with a PIM-containing recombinant protein. The latter sera did not, however, neutralize sporozoite infectivity in vitro. These results will be useful in exploiting the strain identification, diagnostic, and immunizing potentials of this family of antigens. PMID:8613398

  10. Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes.

    PubMed

    Sen, Moon; Kopper, Randall; Pons, Laurent; Abraham, Edathara C; Burks, A Wesley; Bannon, Gary A

    2002-07-15

    Hypersensitivity to peanuts is a reaction mediated by IgE Abs in response to several peanut protein allergens. Among these allergenic proteins, Ara h 2 is one of the most commonly recognized allergens. Ara h 2 is a 17-kDa protein that has eight cysteine residues that could form up to four disulfide bonds. Circular dichroism studies showed substantial changes in the secondary and tertiary structures of the reduced Ara h 2 as compared with the native protein. Upon treatment with trypsin, chymotrypsin, or pepsin, a number of relatively large fragments are produced that are resistant to further enzymatic digestion. These resistant Ara h 2 peptide fragments contain intact IgE-binding epitopes and several potential enzyme cut sites that are protected from the enzymes by the compact structure of the protein. The enzyme-treated allergen remains essentially intact despite the action of proteases until the fragments are dissociated when the disulfide linkages are reduced. Amino acid sequence analysis of the resistant protein fragments indicates that they contain most of the immunodominant IgE-binding epitopes. These results provide a link between allergen structure and the immunodominant IgE-binding epitopes within a population of food-allergic individuals.

  11. Molecular dynamics at the receptor level of immunodominant myelin oligodendrocyte glycoprotein 35-55 epitope implicated in multiple sclerosis.

    PubMed

    Yannakakis, Mary Patricia; Tzoupis, Haralambos; Michailidou, Elena; Mantzourani, Efthimia; Simal, Carmen; Tselios, Theodore

    2016-07-01

    Multiple Sclerosis (MS) is a common autoimmune disease whereby myelin is destroyed by the immune system. The disease is triggered by the stimulation of encephalitogenic T-cells via the formation of a trimolecular complex between the Human Leukocyte Antigen (HLA), an immunodominant epitope of myelin proteins and T-cell Receptor (TCR). Myelin Oligodendrocyte Glycoprotein (MOG) is located on the external surface of myelin and has been implicated in MS induction. The immunodominant 35-55 epitope of MOG is widely used for in vivo biological evaluation and immunological studies that are related with chronic Experimental Autoimmune Encephalomyelitis (EAE, animal model of MS), inflammatory diseases and MS. In this report, Molecular Dynamics (MD) simulations were used to explore the interactions of MOG35-55 at the receptor level. A detailed mapping of the developed interactions during the creation of the trimolecular complex is reported. This is the first attempt to gain an understanding of the molecular recognition of the MOG35-55 epitope by the HLA and TCR receptors. During the formation of the trimolecular complex, the residues Arg(41) and Arg(46) of MOG35-55 have been confirmed to serve as TCR anchors while Tyr(40) interacts with HLA. The present structural findings indicate that the Arg at positions 41 and 46 is a key residue for the stimulation of the encephalitogenic T-cells. PMID:27388119

  12. Plant-based production of two chimeric monoclonal IgG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide.

    PubMed

    Levinson, Kara J; Giffen, Samantha R; Pauly, Michael H; Kim, Do H; Bohorov, Ognian; Bohorova, Natasha; Whaley, Kevin J; Zeitlin, Larry; Mantis, Nicholas J

    2015-07-01

    We have produced and characterized two chimeric human IgG1 monoclonal antibodies that bind different immunodominant epitopes on Vibrio cholerae lipopolysaccharide (LPS). MAb 2D6 IgG1 recognizes Ogawa O-polysaccharide antigen, while mAb ZAC-3 IgG1 recognizes core/lipid A moiety of Ogawa and Inaba LPS. Both antibodies were expressed using a Nicotiana benthamiana-based rapid antibody-manufacturing platform (RAMP) and evaluated in vitro for activities associated with immunity to V. cholerae, including vibriocidal activity, bacterial agglutination and motility arrest.

  13. Computational Prediction of Immunodominant Epitopes on Outer Membrane Protein (Omp) H of Pasteurella multocida Toward Designing of a Peptide Vaccine.

    PubMed

    Ganguly, Bhaskar

    2016-01-01

    Contemporary vaccine design necessitates discrimination between the immunogenic and non-immunogenic components within a pathogen. To successfully target a humoral immune response, the vaccine antigen should contain not only B-cell epitopes but abounding Th-cell agretopes and MHC-II binding regions as well. No single computational method is available that allows the identification of such regions on antigens with good reliability. A consensus approach based on several prediction methods can be adopted to overcome this problem.Targeting the outer membrane protein (Omp) H as a candidate, a comprehensive work flow is described for the computational identification of immunodominant epitopes toward the designing of a peptide vaccine against Pasteurella multocida. PMID:27076289

  14. A novel T-cell receptor mimic defines dendritic cells that present an immunodominant West Nile virus epitope in mice.

    PubMed

    Kim, Sojung; Pinto, Amelia K; Myers, Nancy B; Hawkins, Oriana; Doll, Krysten; Kaabinejadian, Saghar; Netland, Jason; Bevan, Michael J; Weidanz, Jon A; Hildebrand, William H; Diamond, Michael S; Hansen, Ted H

    2014-07-01

    We used a newly generated T-cell receptor mimic monoclonal antibody (TCRm MAb) that recognizes a known nonself immunodominant peptide epitope from West Nile virus (WNV) NS4B protein to investigate epitope presentation after virus infection in C57BL/6 mice. Previous studies suggested that peptides of different length, either SSVWNATTAI (10-mer) or SSVWNATTA (9-mer) in complex with class I MHC antigen H-2D(b) , were immunodominant after WNV infection. Our data establish that both peptides are presented on the cell surface after WNV infection and that CD8(+) T cells can detect 10- and 9-mer length variants similarly. This result varies from the idea that a given T-cell receptor (TCR) prefers a single peptide length bound to its cognate class I MHC. In separate WNV infection studies with the TCRm MAb, we show that in vivo the 10-mer was presented on the surface of uninfected and infected CD8α(+) CD11c(+) dendritic cells, which suggests the use of direct and cross-presentation pathways. In contrast, CD11b(+) CD11c(-) cells bound the TCRm MAb only when they were infected. Our study demonstrates that TCR recognition of peptides is not limited to certain peptide lengths and that TCRm MAbs can be used to dissect the cell-type specific mechanisms of antigen presentation in vivo. PMID:24723377

  15. CD8(+) T cell cross-reactivity profiles and HIV-1 immune escape towards an HLA-B35-restricted immunodominant Nef epitope.

    PubMed

    Motozono, Chihiro; Miles, John J; Hasan, Zafrul; Gatanaga, Hiroyuki; Meribe, Stanley C; Price, David A; Oka, Shinichi; Sewell, Andrew K; Ueno, Takamasa

    2013-01-01

    Antigen cross-reactivity is an inbuilt feature of the T cell compartment. However, little is known about the flexibility of T cell recognition in the context of genetically variable pathogens such as HIV-1. In this study, we used a combinatorial library containing 24 billion octamer peptides to characterize the cross-reactivity profiles of CD8(+) T cells specific for the immunodominant HIV-1 subtype B Nef epitope VY8 (VPLRPMTY) presented by HLA-B(*)35∶01. In conjunction, we examined naturally occurring antigenic variations within the VY8 epitope. Sequence analysis of plasma viral RNA isolated from 336 HIV-1-infected individuals revealed variability at position (P) 3 and P8 of VY8; Phe at P8, but not Val at P3, was identified as an HLA-B(*)35∶01-associated polymorphism. VY8-specific T cells generated from several different HIV-1-infected patients showed unique and clonotype-dependent cross-reactivity footprints. Nonetheless, all T cells recognized both the index Leu and mutant Val at P3 equally well. In contrast, competitive titration assays revealed that the Tyr to Phe substitution at P8 reduced T cell recognition by 50-130 fold despite intact peptide binding to HLA-B(*)35∶01. These findings explain the preferential selection of Phe at the C-terminus of VY8 in HLA-B(*)35∶01(+) individuals and demonstrate that HIV-1 can exploit the limitations of T cell recognition in vivo.

  16. Comprehensive Mapping of Common Immunodominant Epitopes in the West Nile Virus Nonstructural Protein 1 Recognized by Avian Antibody Responses

    PubMed Central

    Sun, Encheng; Zhao, Jing; Liu, Nihong; Yang, Tao; Xu, Qingyuan; Qin, Yongli; Bu, Zhigao; Yang, Yinhui; Lunt, Ross A.; Wang, Linfa; Wu, Donglai

    2012-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines

  17. Identification of the Immunodominant Epitope Region in Phospholipase A2 Receptor-Mediating Autoantibody Binding in Idiopathic Membranous Nephropathy

    PubMed Central

    Kao, Liyo; Lam, Vinson; Waldman, Meryl; Glassock, Richard J.

    2015-01-01

    Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Recent clinical studies established that >70% of patients with idiopathic (also called primary) MN (IMN) possess circulating autoantibodies targeting the M-type phospholipase A2 receptor-1 (PLA2R) on the surface of glomerular visceral epithelial cells (podocytes). In situ, these autoantibodies trigger the formation of immune complexes, which are hypothesized to cause enhanced glomerular permeability to plasma proteins. Indeed, the level of autoantibody in circulation correlates with the severity of proteinuria in patients. The autoantibody only recognizes the nonreduced form of PLA2R, suggesting that disulfide bonds determine the antigenic epitope conformation. Here, we identified the immunodominant epitope region in PLA2R by probing isolated truncated PLA2R extracellular domains with sera from patients with IMN that contain anti-PLA2R autoantibodies. Patient sera specifically recognized a protein complex consisting of the cysteine-rich (CysR), fibronectin-like type II (FnII), and C-type lectin-like domain 1 (CTLD1) domains of PLA2R only under nonreducing conditions. Moreover, absence of either the CysR or CTLD1 domain prevented autoantibody recognition of the remaining domains. Additional analysis suggested that this three-domain complex contains at least one disulfide bond required for conformational configuration and autoantibody binding. Notably, the three-domain complex completely blocked the reactivity of autoantibodies from patient sera with the full-length PLA2R, and the reactivity of patient sera with the three-domain complex on immunoblots equaled the reactivity with full-length PLA2R. These results indicate that the immunodominant epitope in PLA2R is exclusively located in the CysR-FnII-CTLD1 region. PMID:25205735

  18. Identification of the immunodominant epitope region in phospholipase A2 receptor-mediating autoantibody binding in idiopathic membranous nephropathy.

    PubMed

    Kao, Liyo; Lam, Vinson; Waldman, Meryl; Glassock, Richard J; Zhu, Quansheng

    2015-02-01

    Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Recent clinical studies established that >70% of patients with idiopathic (also called primary) MN (IMN) possess circulating autoantibodies targeting the M-type phospholipase A2 receptor-1 (PLA2R) on the surface of glomerular visceral epithelial cells (podocytes). In situ, these autoantibodies trigger the formation of immune complexes, which are hypothesized to cause enhanced glomerular permeability to plasma proteins. Indeed, the level of autoantibody in circulation correlates with the severity of proteinuria in patients. The autoantibody only recognizes the nonreduced form of PLA2R, suggesting that disulfide bonds determine the antigenic epitope conformation. Here, we identified the immunodominant epitope region in PLA2R by probing isolated truncated PLA2R extracellular domains with sera from patients with IMN that contain anti-PLA2R autoantibodies. Patient sera specifically recognized a protein complex consisting of the cysteine-rich (CysR), fibronectin-like type II (FnII), and C-type lectin-like domain 1 (CTLD1) domains of PLA2R only under nonreducing conditions. Moreover, absence of either the CysR or CTLD1 domain prevented autoantibody recognition of the remaining domains. Additional analysis suggested that this three-domain complex contains at least one disulfide bond required for conformational configuration and autoantibody binding. Notably, the three-domain complex completely blocked the reactivity of autoantibodies from patient sera with the full-length PLA2R, and the reactivity of patient sera with the three-domain complex on immunoblots equaled the reactivity with full-length PLA2R. These results indicate that the immunodominant epitope in PLA2R is exclusively located in the CysR-FnII-CTLD1 region.

  19. Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance.

    PubMed

    Holtappels, Rafaela; Lemmermann, Niels A W; Podlech, Jürgen; Ebert, Stefan; Reddehase, Matthias J

    2016-01-01

    Successful reconstitution of cytomegalovirus (CMV)-specific CD8(+) T cells by hematopoietic cell transplantation (HCT) gives a favorable prognosis for the control of CMV reactivation and prevention of CMV disease after hematoablative therapy of hematopoietic malignancies. In the transient immunocompromised state after HCT, pre-emptive cytoimmunotherapy with viral epitope-specific effector or memory CD8(+) T cells is a promising option to speed up antiviral control. Despite high-coding capacity of CMVs and a broad CD8(+) T-cell response on the population level, which reflects polymorphism in major histocompatibility complex class-I (MHC-I) glycoproteins, the response in terms of quantity of CD8(+) T cells in any individual is directed against a limited set of CMV-encoded epitopes selected for presentation by the private repertoire of MHC-I molecules. Such epitopes are known as "immunodominant" epitopes (IDEs). Besides host immunogenetics, genetic variance in CMV strains harbored as latent viruses by an individual HCT recipient can also determine the set of IDEs, which complicates a "personalized immunotherapy." It is, therefore, an important question if IDE-specific CD8(+) T-cell reconstitution after HCT is critical or dispensable for antiviral control. As viruses with targeted mutations of IDEs cannot be experimentally tested in HCT patients, we employed the well-established mouse model of HCT. Notably, control of murine CMV (mCMV) after HCT was comparably efficient for IDE-deletion mutant mCMV-Δ4IDE and the corresponding IDE-expressing revertant virus mCMV-Δ4IDE-rev. Thus, antigenicity-loss mutations in IDEs do not result in loss-of-function of a polyclonal CD8(+) T-cell population. Although IDE deletion was not associated with global changes in the response to non-IDE epitopes, the collective of non-IDE-specific CD8(+) T-cells infiltrates infected tissue and confines infection within nodular inflammatory foci. We conclude from the model, and predict also for

  20. Identification of immunodominant epitopes of alpha-gliadin in HLA-DQ8 transgenic mice following oral immunization.

    PubMed

    Senger, Stefania; Maurano, Francesco; Mazzeo, Maria F; Gaita, Marcello; Fierro, Olga; David, Chella S; Troncone, Riccardo; Auricchio, Salvatore; Siciliano, Rosa A; Rossi, Mauro

    2005-12-15

    Celiac disease, triggered by wheat gliadin and related prolamins from barley and rye, is characterized by a strong association with HLA-DQ2 and HLA-DQ8 genes. Gliadin is a mixture of many proteins that makes difficult the identification of major immunodominant epitopes. To address this issue, we expressed in Escherichia coli a recombinant alpha-gliadin (r-alpha-gliadin) showing the most conserved sequence among the fraction of alpha-gliadins. HLA-DQ8 mice, on a gluten-free diet, were intragastrically immunized with a chymotryptic digest of r-alpha-gliadin along with cholera toxin as adjuvant. Spleen and mesenteric lymph node T cell responses were analyzed for in vitro proliferative assay using a panel of synthetic peptides encompassing the entire sequence of r-alpha-gliadin. Two immunodominant epitopes corresponding to peptide p13 (aa 120-139) and p23 (aa 220-239) were identified. The response was restricted to DQ and mediated by CD4+ T cells. In vitro tissue transglutaminase deamidation of both peptides did not increase the response; furthermore, tissue transglutaminase catalyzed extensive deamidation in vitro along the entire r-alpha-gliadin molecule, but failed to elicit new immunogenic determinants. Surprisingly, the analysis of the cytokine profile showed that both deamidated and native peptides induced preferentially IFN-gamma secretion, despite the use of cholera toxin, a mucosal adjuvant that normally induces a Th2 response to bystander Ags. Taken together, these data suggest that, in this model of gluten hypersensitivity, deamidation is not a prerequisite for the initiation of gluten responses.

  1. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein

    PubMed Central

    Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.

    2016-01-01

    Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063

  2. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein.

    PubMed

    Hicar, Mark D; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U; Kalams, Spyros A; Doranz, Benjamin J; Spearman, Paul; Crowe, James E

    2016-01-01

    Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063

  3. Newcastle Disease Virus (NDV) Marker Vaccine: an Immunodominant Epitope on the Nucleoprotein Gene of NDV Can Be Deleted or Replaced by a Foreign Epitope

    PubMed Central

    Mebatsion, Teshome; Koolen, Marck J. M.; de Vaan, Leonie T. C.; de Haas, Niels; Braber, Marian; Römer-Oberdörfer, Angela; van den Elzen, Paul; van der Marel, Pieter

    2002-01-01

    The nucleoprotein (NP) of Newcastle disease virus (NDV) functions primarily to encapsidate the virus genome for the purpose of RNA transcription, replication, and packaging. This conserved multifunctional protein is also efficient in inducing NDV-specific antibody in chickens. Here, we localized a conserved B-cell immunodominant epitope (IDE) spanning residues 447 to 455 and successfully generated a recombinant NDV lacking the IDE by reverse genetics. Despite deletion of NP residues 443 to 460 encompassing the NP-IDE, the mutant NDV propagated in embryonated specific-pathogen-free chicken eggs to a level comparable to that of the parent virus. In addition, a B-cell epitope of the S2 glycoprotein of murine hepatitis virus (MHV) was inserted in-frame to replace the NP-IDE. Recombinant viruses properly expressing the introduced MHV epitope were successfully generated, demonstrating that the NP-IDE not only is dispensable for virus replication but also can be replaced by foreign sequences. Chickens immunized with the hybrid recombinants produced specific antibodies against the S2 glycoprotein of MHV and completely lacked antibodies directed against the NP-IDE. These marked-NDV recombinants, in conjunction with a diagnostic test, enable serological differentiation of vaccinated animals from infected animals and may be useful tools in ND eradication programs. The identification of a mutation-permissive region on the NP gene allows a rational approach to the insertion of protective epitopes and may be relevant for the design of NDV-based cross-protective marker vaccines. PMID:12239288

  4. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates.

    PubMed

    Wang, Qidi; Zhang, Lianfeng; Kuwahara, Kazuhiko; Li, Li; Liu, Zijie; Li, Taisheng; Zhu, Hua; Liu, Jiangning; Xu, Yanfeng; Xie, Jing; Morioka, Hiroshi; Sakaguchi, Nobuo; Qin, Chuan; Liu, Gang

    2016-05-13

    Severe acute respiratory syndrome (SARS) is caused by a coronavirus (SARS-CoV) and has the potential to threaten global public health and socioeconomic stability. Evidence of antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro and in non-human primates clouds the prospects for a safe vaccine. Using antibodies from SARS patients, we identified and characterized SARS-CoV B-cell peptide epitopes with disparate functions. In rhesus macaques, the spike glycoprotein peptides S471-503, S604-625, and S1164-1191 elicited antibodies that efficiently prevented infection in non-human primates. In contrast, peptide S597-603 induced antibodies that enhanced infection both in vitro and in non-human primates by using an epitope sequence-dependent (ESD) mechanism. This peptide exhibited a high level of serological reactivity (64%), which resulted from the additive responses of two tandem epitopes (S597-603 and S604-625) and a long-term human B-cell memory response with antisera from convalescent SARS patients. Thus, peptide-based vaccines against SARS-CoV could be engineered to avoid ADE via elimination of the S597-603 epitope. We provide herein an alternative strategy to prepare a safe and effective vaccine for ADE of viral infection by identifying and eliminating epitope sequence-dependent enhancement of viral infection. PMID:27627203

  5. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates.

    PubMed

    Wang, Qidi; Zhang, Lianfeng; Kuwahara, Kazuhiko; Li, Li; Liu, Zijie; Li, Taisheng; Zhu, Hua; Liu, Jiangning; Xu, Yanfeng; Xie, Jing; Morioka, Hiroshi; Sakaguchi, Nobuo; Qin, Chuan; Liu, Gang

    2016-05-13

    Severe acute respiratory syndrome (SARS) is caused by a coronavirus (SARS-CoV) and has the potential to threaten global public health and socioeconomic stability. Evidence of antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro and in non-human primates clouds the prospects for a safe vaccine. Using antibodies from SARS patients, we identified and characterized SARS-CoV B-cell peptide epitopes with disparate functions. In rhesus macaques, the spike glycoprotein peptides S471-503, S604-625, and S1164-1191 elicited antibodies that efficiently prevented infection in non-human primates. In contrast, peptide S597-603 induced antibodies that enhanced infection both in vitro and in non-human primates by using an epitope sequence-dependent (ESD) mechanism. This peptide exhibited a high level of serological reactivity (64%), which resulted from the additive responses of two tandem epitopes (S597-603 and S604-625) and a long-term human B-cell memory response with antisera from convalescent SARS patients. Thus, peptide-based vaccines against SARS-CoV could be engineered to avoid ADE via elimination of the S597-603 epitope. We provide herein an alternative strategy to prepare a safe and effective vaccine for ADE of viral infection by identifying and eliminating epitope sequence-dependent enhancement of viral infection.

  6. Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance

    PubMed Central

    van Beek, Josine; Hoppes, Rieuwert; Jacobi, Ronald H. J.; Hendriks, Marion; Kapteijn, Kim; Ouwerkerk, Casper; Rodenko, Boris; Ovaa, Huib; de Jonge, Jørgen

    2016-01-01

    T cells are essential players in the defense against infection. By targeting the MHC class I antigen-presenting pathway with peptide-based vaccines, antigen-specific T cells can be induced. However, low immunogenicity of peptides poses a challenge. Here, we set out to increase immunogenicity of influenza-specific CD8+ T cell epitopes. By substituting amino acids in wild type sequences with non-proteogenic amino acids, affinity for MHC can be increased, which may ultimately enhance cytotoxic CD8+ T cell responses. Since preventive vaccines against viruses should induce a broad immune response, we used this method to optimize influenza-specific epitopes of varying dominance. For this purpose, HLA-A*0201 epitopes GILGFVFTL, FMYSDFHFI and NMLSTVLGV were selected in order of decreasing MHC-affinity and dominance. For all epitopes, we designed chemically enhanced altered peptide ligands (CPLs) that exhibited greater binding affinity than their WT counterparts; even binding scores of the high affinity GILGFVFTL epitope could be improved. When HLA-A*0201 transgenic mice were vaccinated with selected CPLs, at least 2 out of 4 CPLs of each epitope showed an increase in IFN-γ responses of splenocytes. Moreover, modification of the low affinity epitope NMLSTVLGV led to an increase in the number of mice that responded. By optimizing three additional influenza epitopes specific for HLA-A*0301, we show that this strategy can be extended to other alleles. Thus, enhancing binding affinity of peptides provides a valuable tool to improve the immunogenicity and range of preventive T cell-targeted peptide vaccines. PMID:27333291

  7. Identification of an immunodominant epitope in glycoproteins B and G of herpes simplex viruses (HSVs) using synthetic peptides as antigens in assay of antibodies to HSV in herpes simplex encephalitis patients.

    PubMed

    Bhullar, S S; Chandak, N H; Baheti, N N; Purohit, H J; Taori, G M; Daginawala, H F; Kashyap, R S

    2014-01-01

    Herpes simplex encephalitis (HSE) is a severe viral infection of the central nervous system (CNS). Assay of antibody response is widely used in diagnostics of HSE. The aim of this study was to identify an immunodominant epitope determining the antibody response to herpes simplex viruses (HSVs) in cerebrospinal fluid (CSF) of HSE patients. The synthetic peptides that resembled type-common as well as type-specific domains of glycoproteins B (gB) and G (gG) of these viruses were evaluated for binding with IgM and IgG antibodies in CSF samples from HSE and non-HSE patients in ELISA. The QLHDLRF peptide, derived from gB of HSV was found to be an immunodominant epitope in the IgM and IgG antibody response. The patients with confirmed and suspected HSE showed in ELISA against this peptide 26% and 23% positivities for IgM, 43% and 37% positivities for IgG and 17% and 15% for both IgM and IgG antibodies, respectively. The total positivities of 86% and 75% for both IgM and IgG antibodies were obtained in the patients with confirmed and suspected HSE, respectively. These results demonstrate that a synthetic peptide-based diagnostics of HSE can be an efficient and easily accessible alternative. This is the first report describing the use of synthetic peptides derived from HSVs in diagnostics of HSE using patientsʹ CSF samples.

  8. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    SciTech Connect

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W

    2008-04-29

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  9. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    SciTech Connect

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W

    2012-04-17

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  10. Mimicry of viral epitopes with retro-inverso peptides of increased stability.

    PubMed

    Benkirane, N; Guichard, G; Briand, J P; Muller, S; Brown, F; Van Regenmortel, M H

    1996-01-01

    Two major limitations to the use of peptides as synthetic vaccines are their poor immunogenicity and low antigenic cross-reactivity with the epitopes of virus particles. Recently it has been shown that retro-inverso peptides corresponding to an immunodominant epitope of foot-and-mouth disease virus (FMDV) are able to mimic the structure and antigenic activity of natural L-peptides [1]. A series of L- and retro-inverso peptides of the loop 141-159 of the VP1 protein of FMDV has been synthesized. Antibodies to these peptides were produced by injecting rabbits with peptides covalently coupled to small unilamellar liposomes containing monophosphoryl lipid A as adjuvant. The retro-inverso peptides led to higher serum antibody titres which appeared earlier after the start of immunization and lasted longer than those found with L-peptides. Antibodies to retro-inverso peptides cross-reacted strongly with L-peptides and with virus particles, while guinea pig antisera to VP1 protein and virions cross-reacted strongly with the retro-inverso peptides. In view of their increased stability compared to natural L-peptides, retro-inverso peptidomimetics have considerable potential as synthetic viral vaccines. PMID:8854029

  11. Identification of a Novel Immunodominant HLA-B*07: 02-restricted Adenoviral Peptide Epitope and Its Potential in Adoptive Transfer Immunotherapy.

    PubMed

    Günther, Patrick S; Peper, Janet K; Faist, Benjamin; Kayser, Simone; Hartl, Lena; Feuchtinger, Tobias; Jahn, Gerhard; Neuenhahn, Michael; Busch, Dirk H; Stevanović, Stefan; Dennehy, Kevin M

    2015-09-01

    Adenovirus infections of immunocompromised patients, particularly following allogeneic hematopoietic stem cell transplantation, are associated with morbidity and mortality. Immunotherapy by adoptive transfer of hexon-specific and penton-specific T cells has been successfully applied, but many approaches are impeded by the low number of HLA class I-restricted adenoviral peptide epitopes described to date. We use a novel method to identify naturally presented adenoviral peptide epitopes from infected human cells, ectopically expressing defined HLA, using peptide elution and liquid chromatography-mass spectrometry analysis. We show that the previously described HLA-A*01:01-restricted peptide epitope LTDLGQNLLY from hexon protein is naturally presented, and demonstrate the functionality of LTDLGQNLLY-specific T cells. We further identify a novel immunodominant HLA-B*07:02-restricted peptide epitope VPATGRTLVL from protein 13.6 K, and demonstrate the high proliferative, cytotoxic, and IFN-γ-producing capacity of peptide-specific T cells. Lastly, LTDLGQNLLY-specific T cells can be detected ex vivo following adoptive transfer therapy, and LTDLGQNLLY-specific and VPATGRTLVL-specific T cells have memory phenotypes ex vivo. Given their proliferative and cytotoxic capacity, such epitope-specific T cells are promising candidates for adoptive T-cell transfer therapy of adenovirus infection.

  12. Fine Epitope Mapping of the Central Immunodominant Region of Nucleoprotein from Crimean-Congo Hemorrhagic Fever Virus (CCHFV)

    PubMed Central

    Liu, Dongliang; Li, Yang; Zhao, Jing; Deng, Fei; Duan, Xiaomei; Kou, Chun; Wu, Ting; Li, Yijie; Wang, Yongxing; Ma, Ji; Yang, Jianhua; Hu, Zhihong; Zhang, Fuchun; Zhang, Yujiang; Sun, Surong

    2014-01-01

    Crimean-Congo hemorrhagic fever (CCHF), a severe viral disease known to have occurred in over 30 countries and distinct regions, is caused by the tick-borne CCHF virus (CCHFV). Nucleocapsid protein (NP), which is encoded by the S gene, is the primary antigen detectable in infected cells. The goal of the present study was to map the minimal motifs of B-cell epitopes (BCEs) on NP. Five precise BCEs (E1, 247FDEAKK252; E2a, 254VEAL257; E2b, 258NGYLNKH264; E3, 267EVDKA271; and E4, 274DSMITN279) identified through the use of rabbit antiserum, and one BCE (E5, 258NGYL261) recognized using a mouse monoclonal antibody, were confirmed to be within the central region of NP and were partially represented among the predicted epitopes. Notably, the five BCEs identified using the rabbit sera were able to react with positive serum mixtures from five sheep which had been infected naturally with CCHFV. The multiple sequence alignment (MSA) revealed high conservation of the identified BCEs among ten CCHFV strains from different areas. Interestingly, the identified BCEs with only one residue variation can apparently be recognized by the positive sera of sheep naturally infected with CCHFV. Computer-generated three-dimensional structural models indicated that all the antigenic motifs are located on the surface of the NP stalk domain. This report represents the first identification and mapping of the minimal BCEs of CCHFV-NP along with an analysis of their primary and structural properties. Our identification of the minimal linear BCEs of CCHFV-NP may provide fundamental data for developing rapid diagnostic reagents and illuminating the pathogenic mechanism of CCHFV. PMID:25365026

  13. Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease.

    PubMed

    Christophersen, Asbjørn; Risnes, Louise F; Bergseng, Elin; Lundin, Knut E A; Sollid, Ludvig M; Qiao, Shuo-Wang

    2016-03-15

    Celiac disease (CD) is an HLA-associated disorder characterized by a harmful T cell response to dietary gluten. It is not understood why most individuals who carry CD-associated HLA molecules, such as HLA-DQ2.5, do not develop CD despite continuous gluten exposure. In this study, we have used tetramers of HLA-DQ2.5 bound with immunodominant gluten epitopes to explore whether HLA-DQ2.5(+) healthy individuals mount a specific CD4(+) T cell response to gluten. We found that gluten tetramer-binding memory cells were rare in blood of healthy individuals. These cells showed lower tetramer-binding intensity and no signs of biased TCR usage compared with gluten tetramer-binding memory T cells from patients. After sorting and in vitro expansion, only 18% of the tetramer-binding memory cells from healthy subjects versus 79% in CD patients were gluten-reactive upon tetramer restaining. Further, T cell clones of tetramer-sorted memory cells of healthy individuals showed lower gluten-specific proliferative responses compared with those of CD patients, indicating that tetramer-binding memory cells in healthy control subjects may be cross-reactive T cells. In duodenal biopsy specimens of healthy control subjects, CD4(+) T cells were determined not to be gluten reactive. Finally, gluten tetramer-binding cells of healthy individuals did not coexpress regulatory T cell markers (Foxp3(+) CD25(+)) and cultured T cell clones did not express a cytokine profile that indicated immune-dampening properties. The results demonstrate that healthy HLA-DQ2.5(+) individuals do not mount a T cell response to immunodominant gluten epitopes of CD.

  14. IGHV1-69-encoded antibodies expressed in chronic lymphocytic leukemia react with malondialdehyde-acetaldehyde adduct, an immunodominant oxidation-specific epitope.

    PubMed

    Que, Xuchu; Widhopf, George F; Amir, Shahzada; Hartvigsen, Karsten; Hansen, Lotte F; Woelkers, Douglas; Tsimikas, Sotirios; Binder, Christoph J; Kipps, Thomas J; Witztum, Joseph L

    2013-01-01

    The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde-acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library, and a derived Fab with the same HCDR3 rearrangement displayed identical MAA-binding properties. These data support the concept that OSE (MAA-epitopes), which are ubiquitous products of inflammation, may play a role in clonal selection and expansion of CLL B cells. PMID:23840319

  15. Comprehensive mapping of common immunodominant epitopes in the eastern equine encephalitis virus E2 protein recognized by avian antibody responses.

    PubMed

    Sun, Encheng; Zhao, Jing; Sun, Liang; Xu, Qingyuan; Yang, Tao; Qin, Yongli; Wang, Wenshi; Wei, Peng; Sun, Jing; Wu, Donglai

    2013-01-01

    Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb) response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211-226 and 331-352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11-26, 30-45 and 151-166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein. PMID:23922704

  16. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes.

    PubMed

    Connelley, Timothy K; Li, Xiaoying; MacHugh, Niall; Colau, Didier; Graham, Simon P; van der Bruggen, Pierre; Taracha, Evans L; Gill, Andy; Morrison, William Ivan

    2016-10-01

    Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.

  17. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes.

    PubMed

    Connelley, Timothy K; Li, Xiaoying; MacHugh, Niall; Colau, Didier; Graham, Simon P; van der Bruggen, Pierre; Taracha, Evans L; Gill, Andy; Morrison, William Ivan

    2016-10-01

    Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant. PMID:27317384

  18. Unravelling viral camouflage: approaches to the study and characterization of conformational epitopes.

    PubMed

    Augustin, T; Cehlar, O; Skrabana, R; Majerova, P; Hanes, J

    2015-06-01

    Antibodies are broadly used in clinical and basic research. Many of monoclonal antibodies are successfully adopted for therapeutic and diagnostic targeting of viral pathogens. Efficacy of antiviral neutralizing or protective antibodies depends on their ability to recognize epitopes interfering with viral infection. However, viruses are able to incessantly change their antigenic determinants to escape surveillance of humoral immune system and therefore the successful antiviral therapies require continuous development. Characterization of interactions of antibodies with prevalently conformational viral epitopes is important for understanding antibody mode of action and can help to identify conserved regions that may be exploited in designing new vaccines and virus neutralizing antibodies. In this article, we are reviewing techniques in use for characterization of conformational epitopes of monoclonal antibodies with focus on viruses.

  19. Unravelling viral camouflage: approaches to the study and characterization of conformational epitopes.

    PubMed

    Augustin, T; Cehlar, O; Skrabana, R; Majerova, P; Hanes, J

    2015-06-01

    Antibodies are broadly used in clinical and basic research. Many of monoclonal antibodies are successfully adopted for therapeutic and diagnostic targeting of viral pathogens. Efficacy of antiviral neutralizing or protective antibodies depends on their ability to recognize epitopes interfering with viral infection. However, viruses are able to incessantly change their antigenic determinants to escape surveillance of humoral immune system and therefore the successful antiviral therapies require continuous development. Characterization of interactions of antibodies with prevalently conformational viral epitopes is important for understanding antibody mode of action and can help to identify conserved regions that may be exploited in designing new vaccines and virus neutralizing antibodies. In this article, we are reviewing techniques in use for characterization of conformational epitopes of monoclonal antibodies with focus on viruses. PMID:26104327

  20. Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid β peptide

    PubMed Central

    Robert, Remy; Lefranc, Marie-Paule; Ghochikyan, Anahit; Agadjanyan, Michael G.; Cribbs, David H.; Van Nostrand, William E.; Wark, Kim L.; Dolezal, Olan

    2011-01-01

    Over the last decade, the potential of antibodies as therapeutic strategies to treat Alzheimer’s disease (AD) has been growing, based on successful experimental and clinical trials in transgenic mice. Despite, undesirable side effects in humans using an active immunization approach, immunotherapy still remains one of the most promising treatments for AD. In this study, we analyzed the V genes of twelve independently isolated monoclonal antibodies raised against the N-terminal immunodominant epitope of the amyloid β peptide (Aβ or A beta). Surprisingly, we found a high and unusual level of restriction in the VH/VL pairing of these antibodies. Moreover, these antibodies mostly differ in their heavy chain complementary determining region 3 (HCDR3) and the residues in the antibodies which contact Aβ are already present in the germline V-genes. Based on these observations and or co-crystal structures of antibodies with Aβ, the aim of the current study was to better understand the role of antibody V-domains, HCDR3 regions, key contact residue (H58) and germline encoded residues in Aβ recognition. For that purpose, we designed and produced a range of recombinant Fab constructs. All the Fabs were tested and compared by surface plasmon resonance on Aβ1–16, Aβ1–42 high molecular weight and Aβ1–42 low molecular weight soluble oligomers. Although all the Fabs recognized the Aβ1–16 peptide and the Aβ1–42 high molecular weight soluble oligomers, they did not bind the Aβ1–42 low molecular weight soluble oligomers. Furthermore, we demonstrated that: (1) an aromatic residue at position H58 in the antibody is essential in the recognition of Aβ and (2) Fabs based on germline V-genes bind to Aβ monomers with a low affinity. These findings may have important implications in designing more effective therapeutic antibodies against Aβ. PMID:20970857

  1. Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains

    PubMed Central

    Chuang, Gwo-Yu; Acharya, Priyamvada; Schmidt, Stephen D.; Yang, Yongping; Louder, Mark K.; Zhou, Tongqing; Kwon, Young Do; Pancera, Marie; Bailer, Robert T.; Doria-Rose, Nicole A.; Nussenzweig, Michel C.; Mascola, John R.; Kwong, Peter D.

    2013-01-01

    Delineation of antibody epitopes at the residue level is key to understanding antigen resistance mutations, designing epitope-specific probes for antibody isolation, and developing epitope-based vaccines. Ideally, epitope residues are determined in the context of the atomic-level structure of the antibody-antigen complex, though structure determination may in many cases be impractical. Here we describe an efficient computational method to predict antibody-specific HIV-1 envelope (Env) epitopes at the residue level, based on neutralization panels of diverse viral strains. The method primarily utilizes neutralization potency data over a set of diverse viral strains representing the antigen, and enhanced accuracy could be achieved by incorporating information from the unbound structure of the antigen. The method was evaluated on 19 HIV-1 Env antibodies with neutralization panels comprising 181 diverse viral strains and with available antibody-antigen complex structures. Prediction accuracy was shown to improve significantly over random selection, with an average of greater-than-8-fold enrichment of true positives at the 0.05 false-positive rate level. The method was used to prospectively predict epitope residues for two HIV-1 antibodies, 8ANC131 and 8ANC195, for which we experimentally validated the predictions. The method is inherently applicable to antigens that exhibit sequence diversity, and its accuracy was found to correlate inversely with sequence conservation of the epitope. Together the results show how knowledge inherent to a neutralization panel and unbound antigen structure can be utilized for residue-level prediction of antibody epitopes. PMID:23843642

  2. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes.

    PubMed Central

    Wucherpfennig, K W; Catz, I; Hausmann, S; Strominger, J L; Steinman, L; Warren, K G

    1997-01-01

    Myelin basic protein (MBP) may be an important autoantigen in multiple sclerosis (MS), with the MBP(82-100) region being immunodominant for T cells and autoantibodies. The structural requirements for autoantibody recognition were compared to those previously defined for MBP-specific T cell clones. MBP autoantibodies were affinity-purified from central nervous system lesions of 11/12 postmortem cases studied. The MBP(83-97) peptide was immunodominant in all 11 cases since it inhibited autoantibody binding to MBP > 95%. Residues contributing to autoantibody binding were located in a 10-amino acid segment (V86-T95) that also contained the MHC/T cell receptor contact residues of the T cell epitope. In the epitope center, the same residues were important for antibody binding and T cell recognition. Based on the antibody-binding motif, microbial peptides were identified that were bound by purified autoantibodies. Autoantibody binding of microbial peptides required sequence identity at four or five contiguous residues in the epitope center. Microbial peptides previously found to activate T cell clones did not have such obvious homology to MBP since sequence identity was not required at MHC contacts. The similar fine specificity of B cells and T cells may be useful for tolerance induction to MBP in MS. PMID:9276728

  3. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice.

    PubMed

    Su, Chunxia; Duan, Xiangguo; Wang, Xiuqing; Wang, Chen; Cao, Rubing; Zhou, Bin; Chen, Puyan

    2007-10-01

    Mycobacterium tuberculosis heat shock protein70 (HSP70) is a major antigen with both chaperone and cytokine functions. It has been used as an adjuvant to induce or potentiate humoral and cellular immunity, both in the form of a mixture with peptide antigens, and as a fusion protein. We have evaluated the effects of HSP70 on foot and mouth virus (FMDV) subunit vaccines. FMDV VP1, and a synthetic multi-epitope FMDV (EG), and VP1-HSP70 and EG-HSP70 fusion proteins were all heterologously expressed in the yeast Pichia pastoris, and used as antigen in mice. The recombinant VP1 and EG alone was able to induce both humoral and marginal cell-mediated immune responses, while the HSP70 fusions markedly enhanced both the humoral and cell-mediated immune responses. The most prominent immune responses arose from vaccination with the EG-HSP70 fusion product. Both fusion protein-induced Th1-like cytokine (IFN-gamma) and Th2-like cytokine (IL-4) were identified.

  4. Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening.

    PubMed

    Han, Jin-Hee; Li, Jian; Wang, Bo; Lee, Seong-Kyun; Nyunt, Myat Htut; Na, Sunghun; Park, Jeong-Hyun; Han, Eun-Taek

    2015-08-01

    Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (> 326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

  5. Viral Epitopes and Monoclonal Antibodies: Isolation of Blocking Antibodies that Inhibit Virus Neutralization

    NASA Astrophysics Data System (ADS)

    Massey, Richard J.; Schochetman, Gerald

    1981-07-01

    The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.

  6. Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance

    PubMed Central

    Holtappels, Rafaela; Lemmermann, Niels A. W.; Podlech, Jürgen; Ebert, Stefan; Reddehase, Matthias J.

    2016-01-01

    Successful reconstitution of cytomegalovirus (CMV)-specific CD8+ T cells by hematopoietic cell transplantation (HCT) gives a favorable prognosis for the control of CMV reactivation and prevention of CMV disease after hematoablative therapy of hematopoietic malignancies. In the transient immunocompromised state after HCT, pre-emptive cytoimmunotherapy with viral epitope-specific effector or memory CD8+ T cells is a promising option to speed up antiviral control. Despite high-coding capacity of CMVs and a broad CD8+ T-cell response on the population level, which reflects polymorphism in major histocompatibility complex class-I (MHC-I) glycoproteins, the response in terms of quantity of CD8+ T cells in any individual is directed against a limited set of CMV-encoded epitopes selected for presentation by the private repertoire of MHC-I molecules. Such epitopes are known as “immunodominant” epitopes (IDEs). Besides host immunogenetics, genetic variance in CMV strains harbored as latent viruses by an individual HCT recipient can also determine the set of IDEs, which complicates a “personalized immunotherapy.” It is, therefore, an important question if IDE-specific CD8+ T-cell reconstitution after HCT is critical or dispensable for antiviral control. As viruses with targeted mutations of IDEs cannot be experimentally tested in HCT patients, we employed the well-established mouse model of HCT. Notably, control of murine CMV (mCMV) after HCT was comparably efficient for IDE-deletion mutant mCMV-Δ4IDE and the corresponding IDE-expressing revertant virus mCMV-Δ4IDE-rev. Thus, antigenicity-loss mutations in IDEs do not result in loss-of-function of a polyclonal CD8+ T-cell population. Although IDE deletion was not associated with global changes in the response to non-IDE epitopes, the collective of non-IDE-specific CD8+ T-cells infiltrates infected tissue and confines infection within nodular inflammatory foci. We conclude from the model, and predict also for human

  7. NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences.

    PubMed

    Chuang, Gwo-Yu; Liou, David; Kwong, Peter D; Georgiev, Ivelin S

    2014-07-01

    Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep. PMID:24782517

  8. NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences.

    PubMed

    Chuang, Gwo-Yu; Liou, David; Kwong, Peter D; Georgiev, Ivelin S

    2014-07-01

    Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep.

  9. Retention of viral infectivity after extensive mutation of the highly conserved immunodominant domain of the feline immunodeficiency virus envelope.

    PubMed Central

    Pancino, G; Sonigo, P

    1997-01-01

    In lentiviruses, including human immunodeficiency virus and feline immunodeficiency virus (FIV), the principal immunodominant domain (PID) of the transmembrane glycoprotein elicits a strong humoral response in infected hosts. The PID is marked by the presence of two cysteines that delimit a sequence, composed of five to seven amino acids in different lentiviruses, which is highly conserved among isolates of the same lentiviral species. While the conservation of the sequence suggests the presence of functional constraints, the conservation of the immunodominance among divergent lentiviruses raises the hypothesis of a selective advantage for the infecting virus conferred by the host humoral response against this domain. We and others have previously shown that an appropriate structure of the PID is required for the production of a functional envelope. In the present work, we analyzed virological functions and immune reactivity of the envelope after random mutagenesis of the PID of FIV. We obtained nine mutant envelopes which were correctly processed and retained fusogenic ability. Mutation of the two C-terminal residues of the PID sequence between the cysteines in a molecular clone of FIV abolished infectivity. In contrast, three molecular clones containing extensive mutations in the four N-terminal amino acids were infectious. However, the mutations affected PID reactivity with sera from infected cats. Our results suggest that functional constraints, although existent, are not sufficient to account for PID sequence conservation. Such conservation may also result from positive selection by anti-PID antibodies which enhance infection. PMID:9151822

  10. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses

    PubMed Central

    Shorter, Shayla K.; Schnell, Frederick J.; McMaster, Sean R.; Pinelli, David F.; Andargachew, Rakieb; Evavold, Brian D.

    2016-01-01

    T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant. PMID:26915099

  11. Loss of Anti-Viral Immunity by Infection with a Virus Encoding a Cross-Reactive Pathogenic Epitope

    PubMed Central

    Chen, Alex T.; Cornberg, Markus; Gras, Stephanie; Guillonneau, Carole; Rossjohn, Jamie; Trees, Andrew; Emonet, Sebastien; de la Torre, Juan C.; Welsh, Raymond M.; Selin, Liisa K.

    2012-01-01

    T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus. Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP205–212 CD8 T cell epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally immunodominant PV NP38–45 -specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that compromise protective immunity by impairing more protective T cell responses. PMID:22536152

  12. Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire.

    PubMed Central

    Muraro, P A; Vergelli, M; Kalbus, M; Banks, D E; Nagle, J W; Tranquill, L R; Nepom, G T; Biddison, W E; McFarland, H F; Martin, R

    1997-01-01

    The pathogenesis of multiple sclerosis (MS) is currently ascribed in part to a T cell-mediated process targeting myelin components. The T cell response to one candidate autoantigen, myelin basic protein (MBP), in the context of HLA-DR15Dw2, has been previously studied in detail. However, the characteristics of cellular immunity in the context of other MS-associated HLA-DR haplotypes are scarcely known. MBP-specific T cell lines (TCL) were generated from HLA-DR4 (B1*0401)-positive MS subjects. Out of 275 MBP-specific TCL, 178 (64. 7%) specifically recognized region MBP(111-129), predominantly in the context of DRB1*0401. The major T cell epitope for MBP recognition corresponded to residues MBP(116-123). These TCL expressed disparate profiles of cytokine secretion and cytotoxicity. T cell receptor analysis, on the other hand, revealed a strikingly limited heterogeneity of rearrangements. In contrast to MBP(81-99), which binds with high affinity to HLA-DR15 and is recognized by a diverse T cell repertoire, MBP(111-129) binds weakly to DRB1*0401, suggesting that only high affinity T cell receptors might be able to efficiently engage such unstable MHC/peptide complexes, thus accounting for the T cell receptor restriction we observed. This study provides new insight about MBP recognition and proposes an alternative mechanism for immunodominance of self-antigen T cell epitopes in humans. PMID:9218510

  13. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    SciTech Connect

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  14. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.

    PubMed

    Kanai, Ryuta; Kar, Kalipada; Anthony, Karen; Gould, L Hannah; Ledizet, Michel; Fikrig, Erol; Marasco, Wayne A; Koski, Raymond A; Modis, Yorgo

    2006-11-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  15. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis

    PubMed Central

    1995-01-01

    Cytotoxic T lymphocytes (CTL) are thought to contribute to viral clearance and liver cell injury during hepatitis B virus (HBV) infection. Using a strategy involving the in vitro stimulation of peripheral blood mononuclear cells (PBMC) with HBV-derived synthetic peptides containing HLA-A2.1, -A31, and -Aw68 binding motifs, we have previously described CTL responses to several epitopes within the HBV nucleocapsid and envelope antigens in patients with acute hepatitis. In this study we define six HLA-A2-restricted CTL epitopes located in the highly conserved reverse transcriptase and RNase H domains of the viral polymerase protein, and we show that the CTL response to polymerase is polyclonal, multispecific, and mediated by CD8+ T cells in patients with acute viral hepatitis, but that it is not detectable in patients with chronic HBV infection or uninfected healthy blood donors. Importantly, the peptide-activated CTL recognize target cells that express endogenously synthesized polymerase protein, suggesting that these peptides represent naturally processed viral epitopes. DNA sequence analysis of the viruses in patients who did not respond to peptide stimulation indicated that CTL nonresponsiveness was not due to infection by viral variants that differed in sequences from the synthetic peptides. CTL specific for one of the epitopes were unable to recognize several naturally occurring viral variants, except at high peptide concentration, underlining the HBV subtype specificity of this response. Furthermore, CTL responses against polymerase, core, and envelope epitopes were detectable for more than a year after complete clinical recovery and seroconversion, reflecting either the persistence of trace amounts of virus or the presence of long lived memory CTL in the absence of viral antigen. Finally, we demonstrated that wild type viral DNA and RNA can persist indefinitely, in trace quantities, in the serum and PBMC after complete clinical and serological recovery

  16. Role of Lipoylation of the Immunodominant Epitope of Pyruvate Dehydrogenase Complex: Toward a Peptide-Based Diagnostic Assay for Primary Biliary Cirrhosis.

    PubMed

    Pacini, Giulia; Carotenuto, Alfonso; Rentier, Cedric; Nuti, Francesca; Real-Fernandez, Feliciana; Brancaccio, Diego; Sabatino, Giuseppina; Larregola, Maud; Peroni, Elisa; Migliorini, Paola; Novellino, Ettore; Battezzati, Pier Maria; Selmi, Carlo; Papini, Anna Maria; Rovero, Paolo

    2015-08-27

    Primary biliary cirrhosis is an immune-mediated chronic liver disease whose diagnosis relies on the detection of serum antimitochondrial antibodies directed against a complex set of proteins, among which pyruvate dehydrogenase complex is considered the main autoantigen. We studied the immunological role of the lipoyl domain of this protein using synthetic lipoylated peptides, showing that the lipoyl chain chirality does not affect autoantibody recognition and, most importantly, confirming that both lipoylated and unlipoylated peptides are able to recognize specific autoantibodies in patients sera. In fact, 74% of patients sera recognize at least one of the tested peptides but very few positive sera recognized exclusively the lipoylated peptide, suggesting that the lipoamide moiety plays a marginal role within the autoreactive epitope. These results are supported by a conformational analysis showing that the lipoyl moiety of pyruvate dehydrogenase complex appears to be involved in hydrophobic interactions, which may limit its exposition and thus its contribution to the complex antigenic epitope. A preliminary analysis of the specificity of the two most active peptides indicates that they could be part of a panel of synthetic antigens collectively able to mimic in a simple immunoenzymatic assay the complex positivity pattern detected in immunofluorescence. PMID:26214254

  17. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  18. Mechanisms of HIV protein degradation into epitopes: implications for vaccine design.

    PubMed

    Rucevic, Marijana; Boucau, Julie; Dinter, Jens; Kourjian, Georgio; Le Gall, Sylvie

    2014-08-21

    The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.

  19. Structural Characterization of Viral Epitopes Recognized by Broadly Cross-Reactive Antibodies

    PubMed Central

    Lee, Peter S.; Wilson, Ian A.

    2015-01-01

    Influenza hemagglutinin (HA) is the major surface glycoprotein on influenza viruses and mediates viral attachment and subsequent fusion with host cells. The HA is the major target of the immune response, but due to its high level of variability, as evidenced by substantial antigenic diversity, it had been historically considered to elicit only a narrow, strain-specific antibody response. However, a recent explosion in the discovery of broadly neutralizing antibodies (bnAbs) to influenza virus has identified two major supersites of vulnerability on the HA through structural characterization of HA-antibody complexes. These commonly targeted epitopes are involved with receptor binding as well as the fusion machinery and, hence, are functionally conserved and less prone to mutation. These bnAbs can neutralize viruses by blocking infection or the spread of infection by preventing progeny release. Structural analyses of these bnAbs show they exhibit striking similarities and trends in recognition of the HA and use recurring recognition motifs, despite substantial differences in their germline genes. This information can be utilized in design of novel therapeutics as well as in immunogens for improved vaccines with greater breadth and efficacy. PMID:25037260

  20. Detection of Aichi virus with antibody targeting of conserved viral protein 1 epitope.

    PubMed

    Chen, Yao-Shen; Chen, Bao-Chen; Lin, You-Sheng; Chang, Jenn-Tzong; Huang, Tsi-Shu; Chen, Jih-Jung; Chang, Tsung-Hsien

    2013-10-01

    Aichi virus (AiV) is an emerging single-stranded, positive-sense, non-enveloped RNA virus in the Picornaviridae that causes acute gastroenteritis in humans. The first case of AiV infection in Taiwan was diagnosed in a human neonate with enterovirus-associated symptoms; the virus was successfully isolated and propagated. To establish a method to detect AiV, we analyzed the antigen epitope and generated a polyclonal antibody against AiV viral protein 1 (VP1). This peptide-purified anti-AiV VP1 antibody showed high specificity against AiV VP1 without cross-reaction to nine other tested strains of Picornaviruses. The anti-AiV VP1 antibody was used in immunofluorescence analysis, immunoblotting, and enzyme-linked immunosorbent assay to elucidate the cell tropism and replication kinetics of AiV. Use of the anti-AiV VP1 antibody also revealed AiV infection restriction with interferon type I and polyI/C antiviral treatment. The AiV infection and detection system may provide an in vitro platform for AiV virology study.

  1. Characterization and purification of recombinant bovine viral diarrhea virus particles with epitope-tagged envelope proteins.

    PubMed

    Wegelt, Anne; Reimann, Ilona; Granzow, Harald; Beer, Martin

    2011-06-01

    Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. The lipid membrane of the virions is supposed to contain the three glycosylated envelope proteins E(rns), E1 and E2, but detailed studies of virus assembly are complicated because no efficient purification method for pestiviruses has been described so far. In this study, we generated infectious BVDV with N-terminally FLAG-tagged E(rns) or E2 proteins, respectively. The expression of the epitope-tagged E(rns) and E2 proteins could be shown by immunofluorescence and Western blot experiments. Furthermore, an affinity tag purification protocol for the isolation and concentration of infectious BVDV was established. In the preparation with a titre of 10(8.75) TCID(50) ml(-1), spherical particles with a diameter of 43-58 nm (mean diameter: 48 nm) could be detected by negative staining electron microscopy, and immunogold labelling located both E(rns) and E2 proteins at the virus membrane.

  2. Delineation of a neutralizing subregion within the immunodominant epitope (GH loop) of foot-and-mouth disease virus VP1 which does not contain the RGD motif.

    PubMed

    Brown, F; Benkirane, N; Limal, D; Halimi, H; Newman, J F; Van Regenmortel, M H; Briand, J P; Muller, S

    1999-08-20

    The major immunogenic site of foot-and-mouth disease virus (FMDV) is contained in a disordered loop comprising residues 134-158 of capsid protein VP1, located on the surface of the viral particle. Peptides corresponding to this sequence generally elicit protective levels of neutralizing antibodies in guinea pigs. In some instances, however, the level of neutralizing antibodies is low although the level of antibodies against the peptide, determined by ELISA, is as high as that in the sera with high neutralizing antibody titres. In an attempt to ascertain the reason for this difference, we have synthesized on a cellulose membrane 10 overlapping decapeptides, offset by one residue, covering the segment 141-159 of VP1 of two viruses belonging to serotypes A12 and O1, and tested them with guinea pig antisera raised against peptide 141-159, VP1 and FMDV particles (SPOTscan method). With type A, some peptides which were strongly positive with highly neutralizing antisera did not include the RGD triplet located at residues 145-147. In contrast, antisera with low neutralization titres reacted only with decapeptides which included the RGD motif. Moreover, peptide 147-156 coupled to keyhole limpet haemocyanin, but not peptide 141-149 coupled to the same carrier, elicited high levels of neutralizing antibodies in guinea pigs. In the case of serotype O, highly neutralizing antisera to virus reacted in ELISA with peptides 141-150 (containing the RGD motif) and 135-144 (located upstream from the RGD motif). The results suggest that the RGD triplet is not an indispensable constituent of peptides able to elicit a neutralizing antibody response against the virus. PMID:10501234

  3. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1.

    PubMed

    Sanjuán, Rafael; Nebot, Miguel R; Peris, Joan B; Alcamí, José

    2013-01-01

    The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4(+) helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive.

  4. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages

    PubMed Central

    Machkovech, Heather M.; Bedford, Trevor; Suchard, Marc A.

    2015-01-01

    ABSTRACT Numerous experimental studies have demonstrated that CD8+ T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8+ T cells. Here we use a novel computational approach to test for selection in CD8+ T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8+ T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8+ T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8+ T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8+ T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  5. Suppression of Immunodominant Antitumor and Antiviral CD8+ T Cell Responses by Indoleamine 2,3-Dioxygenase

    PubMed Central

    Atef Yekta, Maryam; Szabo, Peter A.; Garg, Nitan; Schell, Todd D.; Jevnikar, Anthony M.; Sharif, Shayan; Singh, Bhagirath; Haeryfar, S. M. Mansour

    2014-01-01

    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme known to suppress antitumor CD8+ T cells (TCD8). The role of IDO in regulation of antiviral TCD8 responses is far less clear. In addition, whether IDO controls both immunodominant and subdominant TCD8 is not fully understood. This is an important question because the dominance status of tumor- and virus-specific TCD8 may determine their significance in protective immunity and in vaccine design. We evaluated the magnitude and breadth of cross-primed TCD8 responses to simian virus 40 (SV40) large T antigen as well as primary and recall TCD8 responses to influenza A virus (IAV) in the absence or presence of IDO. IDO−/− mice and wild-type mice treated with 1-methyl-D-tryptophan, a pharmacological inhibitor of IDO, exhibited augmented responses to immunodominant epitopes encoded by T antigen and IAV. IDO-mediated suppression of these responses was independent of CD4+CD25+FoxP3+ regulatory T cells, which remained numerically and functionally intact in IDO−/− mice. Treatment with L-kynurenine failed to inhibit TCD8 responses, indicating that tryptophan metabolites are not responsible for the suppressive effect of IDO in our models. Immunodominant T antigen-specific TCD8 from IDO−/− mice showed increased Ki-67 expression, suggesting that they may have acquired a more vigorous proliferative capacity in vivo. In conclusion, IDO suppresses immunodominant TCD8 responses to tumor and viral antigens. Our work also demonstrates that systemic primary and recall TCD8 responses to IAV are controlled by IDO. Inhibition of IDO thus represents an attractive adjuvant strategy in boosting anticancer and antiviral TCD8 targeting highly immunogenic antigens. PMID:24587363

  6. Display of the Viral Epitopes on Lactococcus lactis: A Model for Food Grade Vaccine against EV71.

    PubMed

    Varma, Nadimpalli Ravi S; Toosa, Haryanti; Foo, Hooi Ling; Alitheen, Noorjahan Banu Mohamed; Nor Shamsudin, Mariana; Arbab, Ali S; Yusoff, Khatijah; Abdul Rahim, Raha

    2013-01-01

    In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle.

  7. Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity.

    PubMed

    Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R; Motz, R Geoffrey; Sullivan, Nicole L; O'Shea, Kelly; Pozzi, Nicola; Gohara, David W; Blase, Jennifer R; Di Cera, Enrico; Hoft, Daniel F

    2016-09-01

    Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T

  8. Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity

    PubMed Central

    Vasconcelos, Jose R.; Motz, R. Geoffrey; Sullivan, Nicole L.; Gohara, David W.; Blase, Jennifer R.; Di Cera, Enrico; Hoft, Daniel F.

    2016-01-01

    Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T

  9. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis.

    PubMed

    Jin, Jing; Liss, Nathan M; Chen, Dong-Hua; Liao, Maofu; Fox, Julie M; Shimak, Raeann M; Fong, Rachel H; Chafets, Daniel; Bakkour, Sonia; Keating, Sheila; Fomin, Marina E; Muench, Marcus O; Sherman, Michael B; Doranz, Benjamin J; Diamond, Michael S; Simmons, Graham

    2015-12-22

    We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV) infection. Potently neutralizing antibodies (NAbs) blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G) at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value. PMID:26686638

  10. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis.

    PubMed

    Jin, Jing; Liss, Nathan M; Chen, Dong-Hua; Liao, Maofu; Fox, Julie M; Shimak, Raeann M; Fong, Rachel H; Chafets, Daniel; Bakkour, Sonia; Keating, Sheila; Fomin, Marina E; Muench, Marcus O; Sherman, Michael B; Doranz, Benjamin J; Diamond, Michael S; Simmons, Graham

    2015-12-22

    We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV) infection. Potently neutralizing antibodies (NAbs) blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G) at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.

  11. A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B.

    PubMed

    Becerra-Artiles, Aniuska; Dominguez-Amorocho, Omar; Stern, Lawrence J; Calvo-Calle, J Mauricio

    2015-01-01

    Most of humanity is chronically infected with human herpesvirus 6 (HHV-6), with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48) and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune response to HHV-6

  12. Acute Viral Escape Selectively Impairs Nef-Mediated Major Histocompatibility Complex Class I Downmodulation and Increases Susceptibility to Antiviral T Cells.

    PubMed

    Weiler, Andrea M; Das, Arpita; Akinyosoye, Oluwasayo; Cui, Sherry; O'Connor, Shelby L; Scheef, Elizabeth A; Reed, Jason S; Panganiban, Antonito T; Sacha, Jonah B; Rakasz, Eva G; Friedrich, Thomas C; Maness, Nicholas J

    2016-02-01

    Nef-specific CD8(+) T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165-173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef's major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication. PMID:26637459

  13. Acute Viral Escape Selectively Impairs Nef-Mediated Major Histocompatibility Complex Class I Downmodulation and Increases Susceptibility to Antiviral T Cells.

    PubMed

    Weiler, Andrea M; Das, Arpita; Akinyosoye, Oluwasayo; Cui, Sherry; O'Connor, Shelby L; Scheef, Elizabeth A; Reed, Jason S; Panganiban, Antonito T; Sacha, Jonah B; Rakasz, Eva G; Friedrich, Thomas C; Maness, Nicholas J

    2015-12-04

    Nef-specific CD8(+) T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165-173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef's major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication.

  14. Acute Viral Escape Selectively Impairs Nef-Mediated Major Histocompatibility Complex Class I Downmodulation and Increases Susceptibility to Antiviral T Cells

    PubMed Central

    Weiler, Andrea M.; Das, Arpita; Akinyosoye, Oluwasayo; Cui, Sherry; O'Connor, Shelby L.; Scheef, Elizabeth A.; Reed, Jason S.; Panganiban, Antonito T.; Sacha, Jonah B.; Rakasz, Eva G.; Friedrich, Thomas C.

    2015-01-01

    Nef-specific CD8+ T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165–173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef's major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication. PMID:26637459

  15. Physical detection of influenza A epitopes identifies a stealth subset on human lung epithelium evading natural CD8 immunity.

    PubMed

    Keskin, Derin B; Reinhold, Bruce B; Zhang, Guang Lan; Ivanov, Alexander R; Karger, Barry L; Reinherz, Ellis L

    2015-02-17

    Vaccines eliciting immunity against influenza A viruses (IAVs) are currently antibody-based with hemagglutinin-directed antibody titer the only universally accepted immune correlate of protection. To investigate the disconnection between observed CD8 T-cell responses and immunity to IAV, we used a Poisson liquid chromatography data-independent acquisition MS method to physically detect PR8/34 (H1N1), X31 (H3N2), and Victoria/75 (H3N2) epitopes bound to HLA-A*02:01 on human epithelial cells following in vitro infection. Among 32 PR8 peptides (8-10mers) with predicted IC50 < 60 nM, 9 were present, whereas 23 were absent. At 18 h postinfection, epitope copies per cell varied from a low of 0.5 for M13-11 to a high of >500 for M1(58-66) with PA, HA, PB1, PB2, and NA epitopes also detected. However, aside from M1(58-66), natural CD8 memory responses against conserved presented epitopes were either absent or only weakly observed by blood Elispot. Moreover, the functional avidities of the immunodominant M1(58-66)/HLA-A*02:01-specific T cells were so poor as to be unable to effectively recognize infected human epithelium. Analysis of T-cell responses to primary PR8 infection in HLA-A*02:01 transgenic B6 mice underscores the poor avidity of T cells recognizing M1(58-66). By maintaining high levels of surface expression of this epitope on epithelial and dendritic cells, the virus exploits the combination of immunodominance and functional inadequacy to evade HLA-A*02:01-restricted T-cell immunity. A rational approach to CD8 vaccines must characterize processing and presentation of pathogen-derived epitopes as well as resultant immune responses. Correspondingly, vaccines may be directed against "stealth" epitopes, overriding viral chicanery.

  16. B cell epitopes within VP1 of type O foot-and-mouth disease virus for detection of viral antibodies.

    PubMed

    Gao, Shan-dian; Du, Jun-zheng; Chang, Hui-yun; Cong, Guo-zheng; Shao, Jun-Jun; Lin, Tong; Song, Shuai; Xie, Qing-ge

    2010-02-01

    In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141-160 (epitope1), tandem repeat 200-213 (epitope2 (+2)) and the combination of two epitopes (epitope1-2) was genetically cloned into the prokaryotic expression vector pP(RO)ExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins. PMID:20960280

  17. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance.

    PubMed

    York, Ian A; Brehm, Michael A; Zendzian, Sophia; Towne, Charles F; Rock, Kenneth L

    2006-06-13

    CD8(+) T cells respond to short peptides bound to MHC class I molecules. Although most antigenic proteins contain many sequences that could bind to MHC class I, few of these peptides actually stimulate CD8(+) T cell responses. Moreover, the T cell responses that are generated often follow a very reproducible hierarchy to different peptides for reasons that are poorly understood. We find that the loss of a single enzyme, endoplasmic reticulum aminopeptidase 1 (ERAP1), in the antigen-processing pathway results in a marked shift in the hierarchy of immunodominance in viral infections, even when the responding T cells have the same T cell receptor repertoire. In mice, ERAP1 is the major enzyme that trims precursor peptides in the endoplasmic reticulum and, in this process, can generate or destroy antigenic peptides. Consequently, when ERAP1 is lost, the immune response to some viral peptides is reduced, to others increased, and to yet others unchanged. Therefore, many epitopes must be initially generated as precursors that are normally trimmed by ERAP1 before binding to MHC class I, whereas others are normally degraded by ERAP1 to lengths that are too short to bind to MHC class I. Moreover, peptide trimming and the resulting abundance of peptide-MHC complexes are dominant factors in establishing immunodominance.

  18. Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site

    PubMed Central

    Smith, Scott A.; Nivarthi, Usha K.; de Alwis, Ruklanthi; Kose, Nurgun; Sapparapu, Gopal; Bombardi, Robin; Kahle, Kristen M.; Pfaff, Jennifer M.; Lieberman, Sherri; Doranz, Benjamin J.

    2015-01-01

    ABSTRACT The proposed antibody-dependent enhancement (ADE) mechanism for severe dengue virus (DENV) disease suggests that non-neutralizing serotype cross-reactive antibodies generated during a primary infection facilitate entry into Fc receptor bearing cells during secondary infection, resulting in enhanced viral replication and severe disease. One group of cross-reactive antibodies that contributes considerably to this serum profile target the premembrane (prM) protein. We report here the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) obtained from subjects following primary DENV serotype 1, 2, or 3 or secondary natural DENV infections or following primary DENV serotype 1 live attenuated virus vaccination to determine the antigenic landscape on the prM protein that is recognized by human antibodies. We isolated 25 prM-reactive human MAbs, encoded by diverse antibody-variable genes. Competition-binding studies revealed that all of the antibodies bound to a single major antigenic site on prM. Alanine scanning-based shotgun mutagenesis epitope mapping studies revealed diverse patterns of fine specificity of various clones, suggesting that different antibodies use varied binding poses to recognize several overlapping epitopes within the immunodominant site. Several of the antibodies interacted with epitopes on both prM and E protein residues. Despite the diverse genetic origins of the antibodies and differences in the fine specificity of their epitopes, each of these prM-reactive antibodies was capable of enhancing the DENV infection of Fc receptor-bearing cells. IMPORTANCE Antibodies may play a critical role in the pathogenesis of enhanced DENV infection and disease during secondary infections. A substantial proportion of enhancing antibodies generated in response to natural dengue infection are directed toward the prM protein. The fine specificity of human prM antibodies is not understood. Here, we isolated a panel of dengue pr

  19. Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection.

    PubMed

    Meiring, Hugo D; Soethout, Ernst C; Poelen, Martien C M; Mooibroek, Dennis; Hoogerbrugge, Ronald; Timmermans, Hans; Boog, Claire J; Heck, Albert J R; de Jong, Ad P J M; van Els, Cécile A C M

    2006-05-01

    Identification of peptides presented in major histocompatibility complex (MHC) class I molecules after viral infection is of strategic importance for vaccine development. Until recently, mass spectrometric identification of virus-induced peptides was based on comparative analysis of peptide pools isolated from uninfected and virus-infected cells. Here we report on a powerful strategy aiming at the rapid, unambiguous identification of naturally processed MHC class I-associated peptides, which are induced by viral infection. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues (i.e. residues of the peptide that have amino acid side chains that bind into pockets lining the peptide-binding groove of the MHC class I molecule) for the human leukocyte antigen allele of interest. Subsequently these cells are mixed with an equal number of non-infected cells, which are cultured in normal medium. Finally peptides are acid-eluted from immunoprecipitated MHC molecules and subjected to two-dimensional nanoscale LC-MS analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules. Using this approach we identified novel measles virus and respiratory syncytial virus epitopes as well as infection-induced self-peptides in several cell types, showing that SITE is a unique and versatile method for unequivocal identification of disease-related MHC class I epitopes.

  20. Putative phage-display epitopes of the porcine epidemic diarrhea virus S1 protein and their anti-viral activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine epidemic diarrhea virus (PEDV) is a pathogen of swine that causes severe diarrhea and dehydration resulting in substantial morbidity and mortality in newborn piglets. Phage display is a technique with wide application, in particular, the identification of key antigen epitopes for the develop...

  1. Long-Term Immunity to Trypanosoma cruzi in the Absence of Immunodominant trans-Sialidase-Specific CD8+ T Cells.

    PubMed

    Rosenberg, Charles S; Zhang, Weibo; Bustamante, Juan M; Tarleton, Rick L

    2016-09-01

    Trypanosoma cruzi infection drives the expansion of remarkably focused CD8(+) T cell responses targeting epitopes encoded by variant trans-sialidase (TS) genes. Infection of C57BL/6 mice with T. cruzi results in up to 40% of all CD8(+) T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clear T. cruzi infection and subsequently develop chronic disease. One possible reason for the failure to cure T. cruzi infection is that immunodomination by these TS-specific T cells may interfere with alternative CD8(+) T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlled T. cruzi infection and developed effector CD8(+) T cells that maintained an activated phenotype. Memory CD8(+) T cells from drug-cured TSKB-transgenic mice rapidly responded to secondary T. cruzi infection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8(+) T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to control T. cruzi infection. These data also indicate that the relative position of an epitope within a CD8(+) immunodominance hierarchy does not predict its importance in pathogen control.

  2. Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction.

    PubMed

    Rahman, Kh Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard

    2016-07-01

    X-ray crystallography has shown that an antibody paratope typically binds 15-22 amino acids (aa) of an epitope, of which 2-5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6-11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7-12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16-30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences.

  3. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability.

    PubMed

    Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P; Takeda, Makoto

    2016-01-01

    Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564

  4. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability

    PubMed Central

    Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P.; Takeda, Makoto

    2016-01-01

    Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564

  5. Extent of systemic spread determines CD8+ T cell immunodominance for laboratory strains, smallpox vaccines and zoonotic isolates of vaccinia virus1

    PubMed Central

    Flesch, Inge E.A.; Hollett, Natasha A.; Wong, Yik Chun; Quinan, Bárbara Resende; Howard, Debbie; da Fonseca, Flávio G.; Tscharke, David C.

    2015-01-01

    CD8+ T cells that recognize virus-derived peptides presented on MHC class I (pMHC) are vital anti-viral effectors. The pMHC presented by any given virus vary greatly in immunogenicity allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. Here we show across a range of vaccinia virus (VACV) strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic VACV that occurred in Brazil. PMID:26195812

  6. The two-faced T cell epitope: examining the host-microbe interface with JanusMatrix.

    PubMed

    Moise, Leonard; Gutierrez, Andres H; Bailey-Kellogg, Chris; Terry, Frances; Leng, Qibin; Abdel Hady, Karim M; VerBerkmoes, Nathan C; Sztein, Marcelo B; Losikoff, Phyllis T; Martin, William D; Rothman, Alan L; De Groot, Anne S

    2013-07-01

    Advances in the field of T cell immunology have contributed to the understanding that cross-reactivity is an intrinsic characteristic of the T cell receptor (TCR), and that each TCR can potentially interact with many different T cell epitopes. To better define the potential for TCR cross-reactivity between epitopes derived from the human genome, the human microbiome, and human pathogens, we developed a new immunoinformatics tool, JanusMatrix, that represents an extension of the validated T cell epitope mapping tool, EpiMatrix. Initial explorations, summarized in this synopsis, have uncovered what appear to be important differences in the TCR cross-reactivity of selected regulatory and effector T cell epitopes with other epitopes in the human genome, human microbiome, and selected human pathogens. In addition to exploring the T cell epitope relationships between human self, commensal and pathogen, JanusMatrix may also be useful to explore some aspects of heterologous immunity and to examine T cell epitope relatedness between pathogens to which humans are exposed (Dengue serotypes, or HCV and Influenza, for example). In Hand-Foot-Mouth disease (HFMD) for example, extensive enterovirus and human microbiome cross-reactivity (and limited cross-reactivity with the human genome) seemingly predicts immunodominance. In contrast, more extensive cross-reactivity with proteins contained in the human genome as compared to the human microbiome was observed for selected Treg epitopes. While it may be impossible to predict all immune response influences, the availability of sequence data from the human genome, the human microbiome, and an array of human pathogens and vaccines has made computationally-driven exploration of the effects of T cell epitope cross-reactivity now possible. This is the first description of JanusMatrix, an algorithm that assesses TCR cross-reactivity that may contribute to a means of predicting the phenotype of T cells responding to selected T cell epitopes

  7. Immunodominant CD4+ T-Cell Responses to Influenza A Virus in Healthy Individuals Focus on Matrix 1 and Nucleoprotein

    PubMed Central

    Chen, Li; Zanker, Damien; Xiao, Kun; Wu, Chao; Zou, Quanming

    2014-01-01

    ABSTRACT Antigen-specific CD4+ T cells are essential for effective virus-specific host responses, with recent human challenge studies (in volunteers) establishing their importance for influenza A virus (IAV)-specific immunity. However, while many IAV CD4+ T cell epitopes have been identified, few are known to stimulate immunodominant CD4+ T cell responses. Moreover, much remains unclear concerning the major antigen(s) responded to by the human CD4+ T cells and the extents and magnitudes of these responses. We initiated a systematic screen of immunodominant CD4+ T cell responses to IAV in healthy individuals. Using in vitro expanded-multispecificity IAV-specific T cell lines and individual IAV protein antigens produced by recombinant vaccinia viruses, we found that the internal matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of CD4+ T cell responses. Ten epitopes derived from M1 and NP were definitively characterized. Furthermore, epitope sequence conservation analysis established that immunodominance correlated with an increased frequency of mutations, reflecting the fact that these prominent epitopes are under greater selective pressure. Such evidence that particular CD4+ T cells are important for protection/recovery is of value for the development of novel IAV vaccines and for our understanding of different profiles of susceptibility to these major pathogens. IMPORTANCE Influenza virus causes half a million deaths annually. CD4+ T cell responses have been shown to be important for protection against influenza and for recovery. CD4+ T cell responses are also critical for efficient CD8+ T cell response and antibody response. As immunodominant T cells generally play a more important role, characterizing these immunodominant responses is critical for influenza vaccine development. We show here that the internal matrix protein 1 (M1) and nucleoprotein (NP), rather than the surface proteins reported previously, are the immunodominant

  8. Immunodominant HIV-Specific CD8+ T-Cell Responses Are Common to Blood and Gastrointestinal Mucosa, and Gag-Specific Responses Dominate in Rectal Mucosa of HIV Controllers▿

    PubMed Central

    Ferre, April L.; Lemongello, Donna; Hunt, Peter W.; Morris, Megan M.; Garcia, Juan Carlos; Pollard, Richard B.; Yee, Hal F.; Martin, Jeffrey N.; Deeks, Steven G.; Shacklett, Barbara L.

    2010-01-01

    Previous studies have suggested that polyfunctional mucosal CD8+ T-cell responses may be a correlate of protection in HIV controllers. Mucosal T-cell breadth and/or specificity may also contribute to defining protective responses. In this study, rectal CD8+ T-cell responses to HIV Gag, Env, and Nef were mapped at the peptide level in four subject groups: elite controllers (n = 16; viral load [VL], <75 copies/ml), viremic controllers (n = 14; VL, 75 to 2,000 copies/ml), noncontrollers (n = 14; VL, >10,000 copies/ml), and antiretroviral-drug-treated subjects (n = 8; VL, <75 copies/ml). In all subject groups, immunodominant CD8+ T-cell responses were generally shared by blood and mucosa, although there were exceptions. In HIV controllers, responses to HLA-B27- and HLA-B57-restricted epitopes were common to both tissues, and their magnitude (in spot-forming cells [SFC] per million) was significantly greater than those of responses restricted by other alleles. Furthermore, peptides recognized by T cells in both blood and rectal mucosa, termed “concordant,” elicited higher median numbers of SFC than discordant responses. In magnitude as well as breadth, HIV Gag-specific responses, particularly those targeting p24 and p7, dominated in controllers. Responses in noncontrollers were more evenly distributed among epitopes in Gag, Env, and Nef. Viremic controllers showed significantly broader mucosal Gag-specific responses than other groups. Taken together, these findings demonstrate that (i) Gag-specific responses dominate in mucosal tissues of HIV controllers; (ii) there is extensive overlap between CD8+ T cells in blood and mucosal tissues, with responses to immunodominant epitopes generally shared by both sites; and (iii) mucosal T-cell response breadth alone cannot account for immune control. PMID:20668079

  9. Cross-reactive human B cell and T cell epitopes between influenza A and B viruses

    PubMed Central

    2013-01-01

    Influenza A and B viruses form different genera, which were originally distinguished by antigenic differences in their nucleoproteins and matrix 1 proteins. Cross-protection between these two genera has not been observed in animal experiments, which is consistent with the low homology in viral proteins common to both viruses except for one of three polymerase proteins, polymerase basic 1 (PB1). Recently, however, antibody and CD4+ T cell epitopes conserved between the two genera were identified in humans. A protective antibody epitope was located in the stalk region of the surface glycoprotein, hemagglutinin, and a CD4+ T cell epitope was located in the fusion peptide of the hemagglutinin. The fusion peptide was also found to contain antibody epitopes in humans and animals. A short stretch of well-conserved peptide was also identified in the other surface glycoprotein, neuraminidase, and antibodies binding to this peptide were generated by peptide immunization in rabbits. Although PB1, the only protein which has relatively high overall sequence homology between influenza A and B viruses, is not considered an immunodominant protein in the T cell responses to influenza A virus infection, amino acid sequence comparisons show that a considerable number of previously identified T cell epitopes in the PB1 of influenza A viruses are conserved in the PB1 of influenza B viruses. These data indicate that B and T cell cross-reactivity exists between influenza A and B viruses, which may have modulatory effects on the disease process and recovery. Although the antibody titers and the specific T cell frequencies induced by natural infection or standard vaccination may not be high enough to provide cross protection in humans, it might be possible to develop immunization strategies to induce these cross-reactive responses more efficiently. PMID:23886073

  10. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased.

  11. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. PMID:26474845

  12. A novel linear neutralizing epitope of hepatitis E virus.

    PubMed

    Tang, Zi-Min; Tang, Ming; Zhao, Min; Wen, Gui-Ping; Yang, Fan; Cai, Wei; Wang, Si-Ling; Zheng, Zi-Zheng; Xia, Ning-Shao

    2015-07-01

    Hepatitis E virus (HEV) is a serious public health problem that causes acute hepatitis in humans and is primarily transmitted through fecal and oral routes. The major anti-HEV antibody responses are against conformational epitopes located in a.a. 459-606 of HEV pORF2. All reported neutralization epitopes are present on the dimer domain constructed by this peptide. While looking for a neutralizing monoclonal antibody (MAb)-recognized linear epitope, we found a novel neutralizing linear epitope (L2) located in a.a. 423-437 of pORF2. Moreover, epitope L2 is proved non-immunodominant in the HEV-infection process. Using the hepatitis B virus core protein (HBc) as a carrier to display this novel linear epitope, we show herein that this epitope could induce a neutralizing antibody response against HEV in mice and could protect rhesus monkeys from HEV infection. Collectively, our results showed a novel non-immunodominant linear neutralizing epitope of hepatitis E virus, which provided additional insight of HEV vaccine. PMID:26051517

  13. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma

    PubMed Central

    Capasso, Cristian; Hirvinen, Mari; Garofalo, Mariangela; Romaniuk, Dmitrii; Kuryk, Lukasz; Sarvela, Teea; Vitale, Andrea; Antopolsky, Maxim; Magarkar, Aniket; Viitala, Tapani; Suutari, Teemu; Bunker, Alex; Yliperttula, Marjo; Urtti, Arto; Cerullo, Vincenzo

    2016-01-01

    ABSTRACT The stimulation of the immune system using oncolytic adenoviruses (OAds) has attracted significant interest and several studies suggested that OAds immunogenicity might be important for their efficacy. Therefore, we developed a versatile and rapid system to adsorb tumor-specific major histocompatibility complex class I (MHC-I) peptides onto the viral surface to drive the immune response toward the tumor epitopes. By studying the model epitope SIINFEKL, we demonstrated that the peptide-coated OAd (PeptiCRAd) retains its infectivity and the cross presentation of the modified-exogenous epitope on MHC-I is not hindered. We then showed that the SIINFEKL-targeting PeptiCRAd achieves a superior antitumor efficacy and increases the percentage of antitumor CD8+ T cells and mature epitope-specific dendritic cells in vivo. PeptiCRAds loaded with clinically relevant tumor epitopes derived from tyrosinase-related protein 2 (TRP-2) and human gp100 could reduce the growth of primary-treated tumors and secondary-untreated melanomas, promoting the expansion of antigen-specific T-cell populations. Finally, we tested PeptiCRAd in humanized mice bearing human melanomas. In this model, a PeptiCRAd targeting the human melanoma-associated antigen A1 (MAGE-A1) and expressing granulocyte and macrophage colony-stimulating factor (GM-CSF) was able to eradicate established tumors and increased the human MAGE-A1-specific CD8+ T cell population. Herein, we show that the immunogenicity of OAds plays a key role in their efficacy and it can be exploited to direct the immune response system toward exogenous tumor epitopes. This versatile and rapid system overcomes the immunodominance of the virus and elicits a tumor-specific immune response, making PeptiCRAd a promising approach for clinical testing. PMID:27141389

  14. Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice

    PubMed Central

    Duan, Susu; Meliopoulos, Victoria A.; McClaren, Jennifer L.; Guo, Xi-Zhi J.; Sanders, Catherine J.; Smallwood, Heather S.; Webby, Richard J.; Schultz-Cherry, Stacey L.; Doherty, Peter C.; Thomas, Paul G.

    2015-01-01

    The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent KbPB1703, DbPA224, and DbNP366 epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines. PMID:25668410

  15. Function and Potentials of M. tuberculosis Epitopes

    PubMed Central

    Ivanyi, Juraj

    2014-01-01

    Study of the function of epitopes of Mycobacterium tuberculosis antigens contributed significantly toward better understanding of the immunopathogenesis and to efforts for improving infection and disease control. Characterization of genetically permissively presented immunodominant epitopes has implications for the evolution of the host–parasite relationship, development of immunodiagnostic tests, and subunit prophylactic vaccines. Knowledge of the determinants of cross-sensitization, relevant to other pathogenic or environmental mycobacteria and to host constituents has advanced. Epitope-defined IFNγ assay kits became established for the specific detection of infection with tubercle bacilli both in humans and cattle. The CD4 T-cell epitope repertoire was found to be more narrow in patients with active disease than in latently infected subjects. However, differential diagnosis of active TB could not be made reliably merely on the basis of epitope recognition. The mechanisms by which HLA polymorphism can influence the development of multibacillary tuberculosis (TB) need further analysis of epitopes, recognized by Th2 helper cells for B-cell responses. Future vaccine development would benefit from better definition of protective epitopes and from improved construction and formulation of subunits with enhanced immunogenicity. Epitope-defined serology, due to its operational advantages is suitable for active case finding in selected high disease incidence populations, aiming for an early detection of infectious cases and hence for reducing the transmission of infection. The existing knowledge of HLA class I binding epitopes could be the basis for the construction of T-cell receptor-like ligands for immunotherapeutic application. Continued analysis of the functions of mycobacterial epitopes, recognized by T cells and antibodies, remains a fertile avenue in TB research. PMID:24715888

  16. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets

    PubMed Central

    Rosendahl Huber, S. K.; Camps, M. G. M.; Jacobi, R. H. J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J.

    2015-01-01

    Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks. PMID:26046664

  17. Universal influenza DNA vaccine encoding conserved CD4+ T cell epitopes protects against lethal viral challenge in HLA-DR transgenic mice

    PubMed Central

    Alexander, Jeff; Bilsel, Pamuk; del Guercio, Marie-France; Stewart, Stephani; Marinkovic-Petrovic, Aleksandra; Southwood, Scott; Crimi, Claire; Vang, Lo; Walker, Les; Ishioka, Glenn; Chitnis, Vivek; Sette, Alessandro; Assarsson, Erika; Hannaman, Drew; Botten, Jason; Newman, Mark J

    2009-01-01

    The goal of the present study was to design a vaccine that would provide universal protection against infection of humans with diverse influenza A viruses. Accordingly, protein sequences from influenza A virus strains currently in circulation (H1N1, H3N2), agents of past pandemics (H1N1, H2N2, H3N2) and zoonotic infections of man (H1N1, H5N1, H7N2, H7N3, H7N7, H9N2) were evaluated for the presence of amino acid sequences, motifs, that are predicted to mediate peptide epitope binding with high affinity to the most frequent HLA-DR allelic products. Peptides conserved among diverse influenza strains were then synthesized, evaluated for binding to purified HLA-DR molecules and for their capacity to induce influenza-specific immune recall responses using human donor peripheral blood mononuclear cells (PBMC). Accordingly, 20 epitopes were selected for further investigation based on their conservancy among diverse influenza strains, predicted population coverage in diverse ethnic groups and capacity to recall influenza-specific responses. A DNA plasmid encoding the epitopes was constructed using amino acid spacers between epitopes to promote optimum processing and presentation. Immunogenicity of the DNA vaccine was measured using HLA-DR4 transgenic mice and the TriGrid™ in vivo electroporation device. Vaccination resulted in peptide-specific immune responses, augmented HA-specific antibody responses and protection of HLA-DR4 transgenic mice from lethal PR8 influenza virus challenge. These studies demonstrate the utility of this vaccine format and the contribution of CD4+ T cell responses to protection against influenza infection. PMID:19895924

  18. Ovine and murine T cell epitopes from the non-structural protein 1 (NS1) of bluetongue virus serotype 8 (BTV-8) are shared among viral serotypes

    PubMed Central

    2014-01-01

    Bluetongue virus (BTV) is a non-enveloped dsRNA virus that causes a haemorrhagic disease mainly in sheep. It is an economically important Orbivirus of the Reoviridae family. In order to estimate the importance of T cell responses during BTV infection, it is essential to identify the epitopes targeted by the immune system. In the present work, we selected potential T cell epitopes (3 MHC-class II-binding and 8 MHC-class I binding peptides) for the C57BL/6 mouse strain from the BTV-8 non-structural protein NS1, using H2b-binding predictive algorithms. Peptide binding assays confirmed all MHC-class I predicted peptides bound MHC-class I molecules. The immunogenicity of these 11 predicted peptides was then determined using splenocytes from BTV-8-inoculated C57BL/6 mice. Four MHC-class I binding peptides elicited specific IFN-γ production and generated cytotoxic T lymphocytes (CTL) in BTV-8 infected mice. CTL specific for 2 of these peptides were also able to recognise target cells infected with different BTV serotypes. Similarly, using a combination of IFN-γ ELISPOT, intracellular cytokine staining and proliferation assays, two MHC-class II peptides were identified as CD4+ T cell epitopes in BTV-8 infected mice. Importantly, two peptides were also consistently immunogenic in sheep infected with BTV-8 using IFN-γ ELISPOT assays. Both of these peptides stimulated CD4+ T cells that cross-reacted with other BTV serotypes. The characterisation of these T cell epitopes can help develop vaccines protecting against a broad spectrum of BTV serotypes and differentiate infected from vaccinated animals. PMID:24621015

  19. Identification of Immunodominant Peptides from Gnathostoma binucleatum

    PubMed Central

    Campista-León, Samuel; Delgado-Vargas, Francisco; Landa, Abraham; Willms, Kaethe; López-Moreno, Hector Samuel; Mendoza-Hernández, Guillermo; Ríos-Sicairos, Julian; Bojórquez-Contreras, Ángel Noel; Díaz-Camacho, Sylvia Páz

    2012-01-01

    Gnathostomiasis is now recognized as a zoonosis with a worldwide distribution. In the Americas, it is caused by the third-stage larvae of Gnathostoma binucleatum and in Asia mainly by G. spinigerum. The availability and preparation of specific antigens are among the main obstacles for developing reliable immunodiagnostic tests. In this study, six immunodominant peptides were identified and characterized from G. binucleatum, somatic antigens (AgS: 24, 32, and 40 kDa) and excretory-secretory antigens (AgES: 42, 44, and 56 kDa) by two-dimensional immunoblot analysis. Among those immunodominant peptides, two AgS spots were characterized by mass spectrometric analysis (32 kDa; pI 6.3 and 6.5) and identified as type 1 galectins. In accordance with this finding, a fraction of AgS exhibited affinity to lactose and displayed a 100% specificity and sensitivity for the diagnosis of human gnathostomiasis. PMID:22949520

  20. Soluble Human Cytomegalovirus gH/gL/pUL128-131 Pentameric Complex, but Not gH/gL, Inhibits Viral Entry to Epithelial Cells and Presents Dominant Native Neutralizing Epitopes.

    PubMed

    Loughney, John W; Rustandi, Richard R; Wang, Dai; Troutman, Matthew C; Dick, Lawrence W; Li, Guanghua; Liu, Zhong; Li, Fengsheng; Freed, Daniel C; Price, Colleen E; Hoang, Van M; Culp, Timothy D; DePhillips, Pete A; Fu, Tong-Ming; Ha, Sha

    2015-06-26

    Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.

  1. Protection against Lethal Enterovirus 71 Challenge in Mice by a Recombinant Vaccine Candidate Containing a Broadly Cross-Neutralizing Epitope within the VP2 EF Loop

    PubMed Central

    Xu, Longfa; He, Delei; Li, Zhiqun; Zheng, Jun; Yang, Lisheng; Yu, Miao; Yu, Hai; Chen, Yixin; Que, Yuqiong; Shih, James Wai Kuo; Liu, Gang; Zhang, Jun; Zhao, Qinjian; Cheng, Tong; Xia, Ningshao

    2014-01-01

    Human enterovirus 71 (EV71) is the main causative agent of hand, foot, and mouth disease (HFMD) and is associated with several severe neurological complications in the Asia-Pacific region. Here, we evaluated that while passive transfer of neutralizing monoclonal antibody (nMAb) against the VP2 protein protect against lethal EV71 infection in BALB/c mice. Protective nMAb were mapped to residues 141-155 of VP2 by peptide ELISA. High-resolution structural analysis showed that the epitope is part of the VP2 EF loop, which is the “puff” region that forms the “southern rim” of the canyon. Moreover, a three-dimensional structural characterization for the puff region with prior neutralizing epitopes and receptor-binding sites that can serve to inform vaccine strategies. Interestingly, using hepatitis B virus core protein (HBc) as a carrier, we demonstrated that the cross-neutralizing EV71 antibodies were induced, and the VP2 epitope immunized mice serum also conferred 100% in vivo passive protection. The mechanism of in vivo protection conferred by VP2 nMAb is in part attributed to the in vitro neutralizing titer and ability to bind authentic viral particles. Importantly, the anti-VP2(aa141-155) antibodies could inhibit the binding of human serum to EV71 virions showed that the VP2 epitope is immunodominant. Collectively, our results suggest that a broad-spectrum vaccine strategy targeting the high-affinity epitope of VP2 EF loop may elicits effective immune responses against EV71 infection. PMID:24669278

  2. In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine.

    PubMed

    Sagar, Divya; Masih, Shet; Schell, Todd; Jacobson, Steven; Comber, Joseph D; Philip, Ramila; Wigdahl, Brian; Jain, Pooja; Khan, Zafar K

    2014-05-30

    Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund's adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses.

  3. Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes.

    PubMed

    Steckbeck, Jonathan D; Sun, Chengqun; Sturgeon, Timothy J; Montelaro, Ronald C

    2010-01-01

    The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the "intracytoplasmic domain" based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical "Kennedy epitope" (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned.

  4. A Panel of Artificial APCs Expressing Prevalent HLA Alleles Permits Generation of Cytotoxic T Cells Specific for Both Dominant and Subdominant Viral Epitopes for Adoptive Therapy1

    PubMed Central

    Hasan, Aisha N.; Kollen, Wouter J.; Trivedi, Deepa; Selvakumar, Annamalai; Dupont, Bo; Sadelain, Michel; O'Reilly, Richard J.

    2009-01-01

    Adoptive transfer of virus-specific T cells can treat infections complicating allogeneic hematopoietic cell transplants. However, autologous antigen-presenting cells (APCs) are often limited in supply. Here, we describe a panel of artificial APCs (AAPCs) consisting of murine 3T3 cells transduced to express human B7.1, ICAM-1 and LFA-3 that each stably express one of a series of 6 common HLA class I alleles. In comparative analyses, T cells sensitized with AAPCs expressing a shared HLA allele or autologous APCs loaded with a pool of 15-mers spanning the sequence of CMVpp65 produced similar yields of HLA-restricted CMVpp65 specific T cells; significantly higher yields could be achieved by sensitization with AAPCs transduced to express the CMVpp65 protein. T cells generated were CD8+, IFNγ+ and exhibited HLA-restricted CMVpp65 specific cytotoxicity. T cells sensitized with either peptide-loaded or transduced AAPCs recognized epitopes presented by each HLA allele known to be immunogenic in man. Sensitization with AAPCs also permitted expansion of IFNγ+ cytotoxic effector cells against subdominant epitopes that were either absent or in low frequencies in T cells sensitized with autologous APCs. This replenishable panel of AAPCs can be used for immediate sensitization and expansion of virus-specific T cells of desired HLA restriction for adoptive immunotherapy. It may be of particular value for recipients of transplants from HLA disparate donors. PMID:19635907

  5. Interaction between duck hepatitis B virus and a 170-kilodalton cellular protein is mediated through a neutralizing epitope of the pre-S region and occurs during viral infection.

    PubMed Central

    Tong, S; Li, J; Wands, J R

    1995-01-01

    Identification of cell surface viral binding proteins is important for understanding viral attachment and internalization. We have fused the pre-S domain of the duck hepatitis B virus (DHBV) large envelope protein to glutathione S-transferase and demonstrated a 170-kDa binding protein (p170) in [35S]methionine-labeled duck hepatocyte lysates. This glycoprotein was found abundantly in all extrahepatic tissues infectible with DHBV and in some noninfectible tissues, though it is not secreted into the blood. The interaction of pre-S fusion protein with p170 was competitively inhibited by wild-type DHBV in a dose-dependent manner. In addition, infection of hepatocytes with DHBV blocked the binding of pre-S fusion protein to p170, which suggests a biological role for p170 during natural infection. The p170 binding site was mapped to a conserved sequence of 16 amino acid residues (positions 87 to 102) by using 24 pre-S deletion mutants; this binding domain coincides with a major virus-neutralizing antibody epitope. Furthermore, site-directed mutagenesis revealed that an arginine residue at position 97 is critical for p170 binding. p170 was purified by a combination of ion-exchange and affinity chromatographies, and four peptide sequences were obtained. Two peptides showed significant similarities to human and animal carboxypeptides H, M, and N. Taken together, these results raise the possibility that the p170 binding protein is important during the replication cycle of DHBV. PMID:7474130

  6. CD4+ T Cells Targeting Dominant and Cryptic Epitopes from Bacillus anthracis Lethal Factor.

    PubMed

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K Y; Musson, Julie A; Moore, Stephen J; Gallagher, Theresa; Baillie, Les; Williamson, Ethel D; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2015-01-01

    Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA

  7. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6

    PubMed Central

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-01-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  8. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    PubMed

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate. PMID:26179420

  9. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6.

    PubMed

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-08-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  10. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    PubMed

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate.

  11. Hierarchy among multiple H-2b-restricted cytotoxic T-lymphocyte epitopes within simian virus 40 T antigen.

    PubMed Central

    Mylin, L M; Bonneau, R H; Lippolis, J D; Tevethia, S S

    1995-01-01

    labile or are present at the cell surface at reduced levels. Our results suggest that processing and presentation of epitope V is not dramatically altered (reduced) by the presence of immunodominant CTL epitopes in T antigen and that the immunorecessive nature of epitope V is not determined by amino acids which flank its native location within simian virus 40 T antigen. PMID:7474076

  12. Availability of a diversely avid CD8+ T cell repertoire specific for the subdominant HLA-A2-restricted HIV-1 Gag p2419-27 epitope.

    PubMed

    Schaubert, Keri L; Price, David A; Frahm, Nicole; Li, Jinzhu; Ng, Hwee L; Joseph, Aviva; Paul, Elyse; Majumder, Biswanath; Ayyavoo, Velpandi; Gostick, Emma; Adams, Sharon; Marincola, Francesco M; Sewell, Andrew K; Altfeld, Marcus; Brenchley, Jason M; Douek, Daniel C; Yang, Otto O; Brander, Christian; Goldstein, Harris; Kan-Mitchell, June

    2007-06-15

    HLA-A2-restricted CTL responses to immunodominant HIV-1 epitopes do not appear to be very effective in the control of viral replication in vivo. In this study, we studied human CD8+ T cell responses to the subdominant HLA-A2-restricted epitope TV9 (Gag p24(19-27), TLNAWVKVV) to explore the possibility of increasing its immune recognition. We confirmed in a cohort of 313 patients, infected by clade B or clade C viruses, that TV9 is rarely recognized. Of interest, the functional sensitivity of the TV9 response can be relatively high. The potential T cell repertoires for TV9 and the characteristics of constituent clonotypes were assessed by ex vivo priming of circulating CD8+ T cells from healthy seronegative donors. TV9-specific CTLs capable of suppressing viral replication in vitro were readily generated, suggesting that the cognate T cell repertoire is not limiting. However, these cultures contained multiple discrete populations with a range of binding avidities for the TV9 tetramer and correspondingly distinct functional dependencies on the CD8 coreceptor. The lack of dominant clonotypes was not affected by the stage of maturation of the priming dendritic cells. Cultures primed by dendritic cells transduced to present endogenous TV9 were also incapable of clonal maturation. Thus, a diffuse TCR repertoire appeared to be an intrinsic characteristic of TV9-specific responses. These data indicate that subdominance is not a function of poor immunogenicity, cognate TCR repertoire availability, or the potential avidity properties thereof, but rather suggest that useful responses to this epitope are suppressed by competing CD8+ T cell populations during HIV-1 infection.

  13. Epitope-specific tolerance induction with an engineered immunoglobulin.

    PubMed Central

    Zambidis, E T; Scott, D W

    1996-01-01

    Isologous and heterologous immunoglobulins have been shown to be extremely effective as tolerogenic carriers for nearly 30 years. The efficacy of these proteins is due in part to their long half-life in vivo, as well as their ability to crosslink surface IgM with Fc receptors. The concept of using IgG as a carrier molecule to induce unresponsiveness in the adult immune system has been exploited for simple haptens, such as nucleosides, as well as for peptides. To further evaluate the in vivo potential of these molecules for inducing tolerance to a defined epitope, we have engineered a fusion protein of mouse IgG1 with the immunodominant epitope 12-26 from bacteriophage lambda cI repressor protein. This 15-mer, which contains both a B-cell and T-cell epitope, has been fused in-frame to the N terminus of a mouse heavy chain IgG1 construct, thus creating a "genetic hapten-carrier" system. We describe a novel in vitro and in vivo experimental system for studying the feasibility of engineered tolerogens, consisting of a recombinant flagellin challenge antigen and a murine IgG1 tolerogen, both expressing the lambda repressor epitope 12-26. Herein, we show that peptide-grafted IgG molecules injected i.v., or expressed by transfected, autologous B cells, can efficiently modulate the cellular and humoral immune responses to immunodominant epitopes. This model displays the feasibility of "tailor-designing" immune responses to whole antigens by selecting epitopes for either tolerance or immunity. Images Fig. 1 Fig. 5 PMID:8643522

  14. Recognition of core-derived epitopes from a novel HBV-targeted immunotherapeutic by T-cells from patients infected by different viral genotypes.

    PubMed

    Godon, Ophelie; Evlachev, Alexei; Bourgine, Maryline; Meritet, Jean-François; Martin, Perrine; Inchauspe, Genevieve; Michel, Marie-Louise

    2015-08-26

    Hepatitis B virus (HBV) infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular carcinoma. Current therapies based on nucleos(t)ide analogs or pegylated-interferon-α lead to control of viral replication in most patients but rarely achieve cure. A potential strategy to control chronic hepatitis B is to restore or induce functional anti-HBV T-cell immune responses using HBV-specific immunotherapeutics. However, viral diversity is a challenge to the development of this class of products as HBV genotypes display a sequence diversity of up to 8%. We have developed a novel HBV-targeted immunotherapeutic, TG1050, based on a non-replicative Adenovirus vector encoding a unique and large fusion protein composed of multiple antigenic regions derived from a HBV genotype D sequence. Using peripheral blood mononuclear cells from 23 patients chronically infected by five distinct genotypes (gt A, B, C, D and E) and various sets of peptides encompassing conserved versus divergent regions of HBV core we have measured ability of TG1050 genotype D core-derived peptides to be recognized by T-cells from patients infected by various genotypes. Overall, PBMCs from 78% of genotype B or C- and 100% genotype A or E-infected patients lead to detection of HBV core-specific T-cells recognizing genotype D antigenic domains located both in conserved and variable regions. This proof-of-concept study supports the clinical development of TG1050 in large patient populations independently of infecting genotypes.

  15. Specificities of human CD4+ T cell responses to an inactivated flavivirus vaccine and infection: correlation with structure and epitope prediction.

    PubMed

    Schwaiger, Julia; Aberle, Judith H; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav; Heinz, Franz X

    2014-07-01

    Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4(+) T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4(+) T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4(+) T cell epitopes. Importance: Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  16. Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective Antibodies Induced by Vaccination against Smallpox

    PubMed Central

    Kaever, Thomas; Matho, Michael H.; Meng, Xiangzhi; Crickard, Lindsay; Schlossman, Andrew; Xiang, Yan; Crotty, Shane; Peters, Bjoern

    2016-01-01

    ABSTRACT Vaccinia virus (VACV) A27 is a target for viral neutralization and part of the Dryvax smallpox vaccine. A27 is one of the three glycosaminoglycan (GAG) adhesion molecules and binds to heparan sulfate. To understand the function of anti-A27 antibodies, especially their protective capacity and their interaction with A27, we generated and subsequently characterized 7 murine monoclonal antibodies (MAbs), which fell into 4 distinct epitope groups (groups I to IV). The MAbs in three groups (groups I, III, and IV) bound to linear peptides, while the MAbs in group II bound only to VACV lysate and recombinant A27, suggesting that they recognized a conformational and discontinuous epitope. Only group I antibodies neutralized the mature virion in a complement-dependent manner and protected against VACV challenge, while a group II MAb partially protected against VACV challenge but did not neutralize the mature virion. The epitope for group I MAbs was mapped to a region adjacent to the GAG binding site, a finding which suggests that group I MAbs could potentially interfere with the cellular adhesion of A27. We further determined the crystal structure of the neutralizing group I MAb 1G6, as well as the nonneutralizing group IV MAb 8E3, bound to the corresponding linear epitope-containing peptides. Both the light and the heavy chains of the antibodies are important in binding to their antigens. For both antibodies, the L1 loop seems to dominate the overall polar interactions with the antigen, while for MAb 8E3, the light chain generally appears to make more contacts with the antigen. IMPORTANCE Vaccinia virus is a powerful model to study antibody responses upon vaccination, since its use as the smallpox vaccine led to the eradication of one of the world's greatest killers. The immunodominant antigens that elicit the protective antibodies are known, yet for many of these antigens, little information about their precise interaction with antibodies is available. In an

  17. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones.

    PubMed Central

    Meinl, E; Weber, F; Drexler, K; Morelle, C; Ott, M; Saruhan-Direskeneli, G; Goebels, N; Ertl, B; Jechart, G; Giegerich, G

    1993-01-01

    The human T cell response to the myelin basic protein (MBP) has been studied with respect to T cell receptor (TCR) usage, HLA class II restriction elements, and epitope specificity using a total of 215 long-term MBP-specific T cell lines (TCL) isolated from the peripheral blood of 13 patients with multiple sclerosis (MS) and 10 healthy donors. In most donors, the anti-MBP response was exceedingly heterogeneous. Using a panel of overlapping synthetic peptides spanning the entire length of human MBP, at least 26 epitopes recognized by human TCL could be distinguished. The MBP domain most commonly recognized was sequence 80-105 (31% of MS TCL, and 24% of control TCL). Sequence 29-48 was recognized more frequently by control-derived TCL (24%) than by TCL from MS patients (5%). The MBP epitopes were recognized in the context of DRB1 *0101, DRB5*0101, DRB1*1501, DRB1*0301, DRB1*0401, DRB1*1402, and DRB3*0102, as demonstrated using a panel of DR gene-transfected L cells. The TCR gene usage was also heterogeneous. V beta 5.2, a peptide of which is currently being used in a clinical trial for treatment of MS patients, was expressed by only one of our TCL. However, within this complex pattern of MBP-specific T cell responses, a minority of MS patients were found to exhibit a more restricted response with respect to their TCL epitope specificity. In these patients 75-87% of the TCL responded to a single, patient-specific cluster of immunodominant T cell epitopes located within a small (20-amino acid) domain of MBP. These nested clusters of immunodominant epitopes were noted within the amino acids 80-105, 108-131, and 131-153. The T cell response to the immunodominant epitopes was not monoclonal, but heterogeneous, with respect to fine specificity, TCR usage, and even HLA restriction. In one patient (H.K.), this restricted epitope profile remained stable for > 2 yr. The TCR beta chain sequences of TCL specific for the immunodominant region of HK are consistent with an

  18. Identification of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodeficiency virus type 1 Nef protein.

    PubMed

    Culmann-Penciolelli, B; Lamhamedi-Cherradi, S; Couillin, I; Guegan, N; Levy, J P; Guillet, J G; Gomard, E

    1994-11-01

    Peripheral blood mononuclear cells from a large number of human immunodeficiency virus (HIV)-seropositive donors were used to analyze the CD8+ T-cell response to each part of the Nef protein of HIV-1/LAI. This report identifies an immunodominant region (amino acids 73 to 144) in the Nef protein that was recognized by 97% of the NEF responder donors. This peptide sequence was dissected into four epitopic regions (amino acids 73 to 82, 83 to 97, 113 to 128, and 126 to 144), each of which was recognized under different HLA class I restrictions. Short overlapping peptides were used to sensitive the target cells for cytolysis and so to determine if these epitopic regions were multirestricted. Each region was found to contain several epitopes recognized with different HLA molecules. Thus, the central region of the Nef protein, a regulatory protein expressed early in HIV-infected cells, is rich in epitopic sequences which are found to be similar in many infected individuals and which can be recognized in association with at least ten HLA class I molecules. Their implications for the vaccination of humans with peptide sequences are discussed.

  19. Circulating anti-Tax cytotoxic T lymphocytes from human T-cell leukemia virus type I-infected people, with and without tropical spastic paraparesis, recognize multiple epitopes simultaneously.

    PubMed Central

    Parker, C E; Nightingale, S; Taylor, G P; Weber, J; Bangham, C R

    1994-01-01

    CD8+ T cells were freshly isolated from a human T-cell leukemia virus type I (HTLV-I)-infected patient with tropical spastic paraparesis. These cells, which were specific for HTLV-I Tax, simultaneously recognized a minimum of five, and possibly as many as seven, distinct peptide epitopes within the protein. A further Tax epitope was recognized after a short period of culture without exogenous peptide stimulation. All but one of these epitopes were clustered in the N-terminal third of Tax, and one of the epitopes was clearly immunodominant on two separate occasions of testing. Recognition of the immunodominant epitope was restricted by human leukocyte antigen (HLA) B15, and recognition of all the others was by HLA A2. Similar patterns of cytotoxic T lymphocyte recognition of the HLA A2-restricted Tax peptides in two healthy HTLV-I-seropositive individuals, each of whom carried the HLA A2 allele, were observed. PMID:7512153

  20. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection.

    PubMed

    Zhao, Zhuo; Sun, He-Qiang; Wei, Shan-Shan; Li, Bin; Feng, Qiang; Zhu, Jiang; Zeng, Hao; Zou, Quan-Ming; Wu, Chao

    2015-01-01

    No vaccine against methicillin-resistant Staphylococcus aureus (MRSA) has been currently approved for use in humans. Staphylococcus enterotoxin B (SEB) is one of the most potent MRSA exotoxins. In the present study, we evaluated the efficacy and immunologic mechanisms of an SEB multiple B-cell epitope vaccine against MRSA infection. Synthetic overlapping peptide ELISA identified three novel B-cell immunodominant SEB epitopes (in addition to those previously known): SEB31-48, SEB133-150, and SEB193-210. Six B-cell immunodominant epitopes (amino acid residues 31-48, 97-114, 133-150, 193-210, 205-222, and 247-261) were sufficient to induce robust IgG1/IgG2b-specific protective responses against MRSA infection. Therefore, we constructed a recombinant MRSA SEB-specific multiple B-cell epitope vaccine Polypeptides by combining the six SEB immunodominant epitopes and demonstrated its ability to induce a robust SEB-specific IgG1 response to MRSA, as well as a Th2-directing isotype response. Moreover, Polypeptides-induced antisera stimulated synergetic opsonophagocytosis killing of MRSA. Most importantly, Polypeptides was more effective at clearing the bacteria in MRSA-infected mice than the whole SEB antigen, and was able to successfully protect mice from infection by various clinical MRSA isolates. Altogether, these results support further evaluation of the SEB multiple B-cell epitope-vaccine to address MRSA infection in humans.

  1. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection

    PubMed Central

    Zhao, Zhuo; Sun, He-Qiang; Wei, Shan-Shan; Li, Bin; Feng, Qiang; Zhu, Jiang; Zeng, Hao; Zou, Quan-Ming; Wu, Chao

    2015-01-01

    No vaccine against methicillin-resistant Staphylococcus aureus (MRSA) has been currently approved for use in humans. Staphylococcus enterotoxin B (SEB) is one of the most potent MRSA exotoxins. In the present study, we evaluated the efficacy and immunologic mechanisms of an SEB multiple B-cell epitope vaccine against MRSA infection. Synthetic overlapping peptide ELISA identified three novel B-cell immunodominant SEB epitopes (in addition to those previously known): SEB31–48, SEB133–150, and SEB193–210. Six B-cell immunodominant epitopes (amino acid residues 31–48, 97–114, 133–150, 193–210, 205–222, and 247–261) were sufficient to induce robust IgG1/IgG2b-specific protective responses against MRSA infection. Therefore, we constructed a recombinant MRSA SEB-specific multiple B-cell epitope vaccine Polypeptides by combining the six SEB immunodominant epitopes and demonstrated its ability to induce a robust SEB-specific IgG1 response to MRSA, as well as a Th2-directing isotype response. Moreover, Polypeptides-induced antisera stimulated synergetic opsonophagocytosis killing of MRSA. Most importantly, Polypeptides was more effective at clearing the bacteria in MRSA-infected mice than the whole SEB antigen, and was able to successfully protect mice from infection by various clinical MRSA isolates. Altogether, these results support further evaluation of the SEB multiple B-cell epitope-vaccine to address MRSA infection in humans. PMID:26201558

  2. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis

    PubMed Central

    Schwenzer, Anja; Jiang, Xia; Mikuls, Ted R; Payne, Jeffrey B; Sayles, Harlan R; Quirke, Anne-Marie; Kessler, Benedikt M; Fischer, Roman; Venables, Patrick J; Lundberg, Karin; Midwood, Kim S

    2016-01-01

    Objectives We investigated whether citrullinated tenascin-C (cTNC), an extracellular matrix protein expressed at high levels in the joints of patients with rheumatoid arthritis (RA), is a target for the autoantibodies in RA. Methods Citrullinated sites were mapped by mass spectrometry in the fibrinogen-like globe (FBG) domain of tenascin-C treated with peptidylarginine deiminases (PAD) 2 and 4. Antibodies to cyclic peptides containing citrullinated sites were screened in sera from patients with RA by ELISA. Potential cross-reactivity with well-established anticitrullinated protein antibody (ACPA) epitopes was tested by inhibition assays. The autoantibody response to one immunodominant cTNC peptide was then analysed in 101 pre-RA sera (median 7 years before onset) and two large independent RA cohorts. Results Nine arginine residues within FBG were citrullinated by PAD2 and PAD4. Two immunodominant peptides cTNC1 (VFLRRKNG-cit-ENFYQNW) and cTNC5 (EHSIQFAEMKL-cit-PSNF-cit-NLEG-cit-cit-KR) were identified. Antibodies to both showed limited cross-reactivity with ACPA epitopes from α-enolase, vimentin and fibrinogen, and no reactivity with citrullinated fibrinogen peptides sharing sequence homology with FBG. cTNC5 antibodies were detected in 18% of pre-RA sera, and in 47% of 1985 Swedish patients with RA and 51% of 287 North American patients with RA. The specificity was 98% compared with 160 healthy controls and 330 patients with osteoarthritis. Conclusions There are multiple citrullination sites in the FBG domain of tenascin-C. Among these, one epitope is recognised by autoantibodies that are detected years before disease onset, and which may serve as a useful biomarker to identify ACPA-positive patients with high sensitivity and specificity in established disease. PMID:26659718

  3. Induction of memory cytotoxic T cells to influenza A virus and subsequent viral clearance is not modulated by PB1-F2-dependent inflammasome activation

    PubMed Central

    Lee, Patricia (Hoi Yee); Bird, Nicola; MacKenzie-Kludas, Charley; Mansell, Ashley; Kedzierska, Katherine; Brown, Lorena; McAuley, Julie

    2016-01-01

    Expression of the viral virulence protein PB1-F2 during infection has been linked to NLRP3 inflammasome complex activation in macrophages and induction of early inflammatory events enhancing immunopathology during influenza disease. We sought to determine whether PB1-F2-specific NLRP3 inflammasome activation influenced the magnitude and/or robustness of the CD8+ T-cell responses specific for conserved viral antigens and subsequent virus elimination. Using murine heterosubtypic viral infection models, we showed that mice infected with virus unable to produce PB1-F2 protein showed no deficit in the overall magnitude and functional memory responses of CD8+ T cells established during the effector phase compared with those infected with wild-type PB1-F2-expressing virus and were equally capable of mounting robust recall responses. These data indicate that while expression of PB1-F2 protein can induce inflammatory events, the capacity to generate memory CD8+ T cells specific for immunodominant viral epitopes remains uncompromised. PMID:26667784

  4. A novel monoclonal antibody to a defined peptide epitope in MUC16.

    PubMed

    Marcos-Silva, Lara; Ricardo, Sara; Chen, Kowa; Blixt, Ola; Arigi, Emma; Pereira, Daniela; Høgdall, Estrid; Mandel, Ulla; Bennett, Eric P; Vakhrushev, Sergey Y; David, Leonor; Clausen, Henrik

    2015-11-01

    The MUC16 mucin is overexpressed and aberrantly glycosylated in ovarian carcinomas. Immunodetection of circulating MUC16 is one of the most used cancer biomarker assays, but existing antibodies to MUC16 fail to distinguish normal and aberrant cancer glycoforms. Although all antibodies react with the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of potent MUC16 immunity. Here, we developed a MUC16 vaccine based on a 1.7TR (264 aa) expressed in Escherichia coli and in vitro enzymatically glycosylated to generate the aberrant cancer-associated glycoform Tn. This vaccine elicited a potent serum IgG response in mice and we identified two major immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry of ovarian benign and cancer lesions, 5E11 showed similar reactivity as traditional MUC16 antibodies, suggesting that the epitope is not efficiently glycosylated. The study provides a vaccine design and immunodominant MUC16 TR epitopes. PMID:26201951

  5. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a StepRank scheme.

    PubMed

    Bi, Jianjun; Song, Rengang; Yang, Huilan; Li, Bingling; Fan, Jianyong; Liu, Zhongrong; Long, Chaoqin

    2011-01-01

    Identification of immunodominant epitopes is the first step in the rational design of peptide vaccines aimed at T-cell immunity. To date, however, it is yet a great challenge for accurately predicting the potent epitope peptides from a pool of large-scale candidates with an efficient manner. In this study, a method that we named StepRank has been developed for the reliable and rapid prediction of binding capabilities/affinities between proteins and genome-wide peptides. In this procedure, instead of single strategy used in most traditional epitope identification algorithms, four steps with different purposes and thus different computational demands are employed in turn to screen the large-scale peptide candidates that are normally generated from, for example, pathogenic genome. The steps 1 and 2 aim at qualitative exclusion of typical nonbinders by using empirical rule and linear statistical approach, while the steps 3 and 4 focus on quantitative examination and prediction of the interaction energy profile and binding affinity of peptide to target protein via quantitative structure-activity relationship (QSAR) and structure-based free energy analysis. We exemplify this method through its application to binding predictions of the peptide segments derived from the 76 known open-reading frames (ORFs) of herpes simplex virus type 1 (HSV-1) genome with or without affinity to human major histocompatibility complex class I (MHC I) molecule HLA-A*0201, and find that the predictive results are well compatible with the classical anchor residue theory and perfectly match for the extended motif pattern of MHC I-binding peptides. The putative epitopes are further confirmed by comparisons with 11 experimentally measured HLA-A*0201-restrcited peptides from the HSV-1 glycoproteins D and K. We expect that this well-designed scheme can be applied in the computational screening of other viral genomes as well. PMID:21072852

  6. The context of gene expression defines the immunodominance hierarchy of cytomegalovirus antigens.

    PubMed

    Dekhtiarenko, Iryna; Jarvis, Michael A; Ruzsics, Zsolt; Čičin-Šain, Luka

    2013-04-01

    Natural immunity to CMV dominates the CD4 and CD8 memory compartments of the CMV-seropositive host. This property has been recently exploited for experimental CMV-based vaccine vector strategies, and it has shown promise in animal models of AIDS and Ebola disease. Although it is generally agreed that CMV-based vaccine vectors may induce highly protective and persistent memory T cells, the influence of the gene expression context on Ag-specific T cell memory responses and immune protection induced by CMV vectors is not known. Using murine CMV (MCMV) recombinants expressing a single CD8 T cell epitope from HSV-1 fused to different MCMV genes, we show that magnitude and kinetics of T cell responses induced by CMV are dependent on the gene expression of CMV Ags. Interestingly, the kinetics of the immune response to the HSV-1 epitope was paralleled by a reciprocal depression of immune responses to endogenous MCMV Ags. Infection with a recombinant MCMV inducing a vigorous initial immune response to the recombinant peptide resulted in a depressed early response to endogenous MCMV Ag. Another recombinant virus, which induced a slowly developing "inflationary" T cell response to the HSV-1 peptide, induced weaker long-term responses to endogenous CMV Ags. Importantly, both mutants were able to protect mice from a challenge with HSV-1, mediating strong sterilizing immunity. Our data suggest that the context of gene expression markedly influences the T cell immunodominance hierarchy of CMV Ags, but the immune protection against HSV-1 does not require inflationary CD8 responses against the recombinant CMV-expressed epitope. PMID:23460738

  7. Proof of principle for epitope-focused vaccine design.

    PubMed

    Correia, Bruno E; Bates, John T; Loomis, Rebecca J; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J; Stevens, Eric; Schroeter, Alexandria; Chen, Man; Macpherson, Skye; Serra, Andreia M; Adachi, Yumiko; Holmes, Margaret A; Li, Yuxing; Klevit, Rachel E; Graham, Barney S; Wyatt, Richard T; Baker, David; Strong, Roland K; Crowe, James E; Johnson, Philip R; Schief, William R

    2014-03-13

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  8. Proof of principle for epitope-focused vaccine design

    PubMed Central

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Christopher; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-01-01

    Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza. PMID:24499818

  9. Proof of principle for epitope-focused vaccine design

    NASA Astrophysics Data System (ADS)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  10. Antibody responses to an immunodominant nonstructural 1 synthetic peptide in patients with dengue fever and dengue hemorrhagic fever.

    PubMed

    Huang, J H; Wey, J J; Sun, Y C; Chin, C; Chien, L J; Wu, Y C

    1999-01-01

    Two flaviviruses, dengue (DEN) virus and Japanese encephalitis (JE) virus, are important because of their global distribution and the frequency of epidemics in tropical and subtropical areas. To study the B-cell epitopes of nonstructural 1 (NS1) glycoprotein and anti-NS1 antibody response in DEN infection, a series of 15-mer synthetic peptides from the predicted B-cell linear epitopes of DEN-2 NS1 protein were prepared. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze antibody responses to these peptides from sera of both DEN and JE patients. One peptide derived from DEN-2 NS1, D2 NS1-P1 (amino acids 1-15), was identified as the immunodominant epitope that reacted with sera from dengue fever (DF) patients but not JE patients. The isotype of D2 NS1-P1-specific antibodies was mainly immunoglobulin M (IgM) in all sera that tested positive. A specificity study demonstrated that sera from all four DEN types reacted with D2 NS1-P1. A dynamics study showed that specific antibodies to this peptide could be detected as early as 2 days after the onset of symptoms. We observed significant anti-D2 NS1-P1 antibody responses in 45% of patients with primary and secondary infections with DF or with dengue hemorrhagic fever. This is the first report demonstrating that significant anti-DEN NS1 antibodies can be induced in the sera of patients with primary DEN infection.

  11. Optimal viral immune surveillance evasion strategies.

    PubMed

    Agranovich, Alexandra; Vider-Shalit, Tal; Louzoun, Yoram

    2011-12-01

    Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number.

  12. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens

    PubMed Central

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De la Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto

    2002-01-01

    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development. PMID:12065487

  13. Vaccination of macaques with long-standing SIVmac251 infection lowers the viral set point after cessation of antiretroviral therapy.

    PubMed

    Tryniszewska, Elzbieta; Nacsa, Janos; Lewis, Mark G; Silvera, Peter; Montefiori, David; Venzon, David; Hel, Zdenek; Parks, Robyn Washington; Moniuszko, Marcin; Tartaglia, Jim; Smith, Kendall A; Franchini, Genoveffa

    2002-11-01

    A cohort of rhesus macaques with long-standing SIVmac251 infection (> or =5 mo) was treated with continuous antiretroviral therapy (ART). A group of eight macaques was vaccinated with or without simultaneous administration of low dose IL-2 with the highly attenuated poxvirus vector (NYVAC) vaccine candidate expressing the SIVmac structural gag-pol-env (gpe) genes and a novel chimeric fusion protein derived from the rev-tat-nef (rtn) regulatory genes. Control groups consisted of mock-vaccinated macaques or animals treated only with IL-2. Vaccination significantly expanded both virus-specific CD4(+) and CD8(+) T cell responses, and IL-2 further increased the vaccine-induced response to an immunodominant Gag epitope. Following antiretroviral treatment interruption, the viral set point was significantly lower in vaccinated than in control macaques for at least 4 consecutive mo, and viral containment was inversely correlated with vaccine-induced, virus-specific CD4(+) and CD8(+) T cell responses. These data provide the proof of concept that therapeutic vaccination before cessation of ART may be a feasible approach in the clinical management of HIV-1 infection.

  14. Self-adjuvanting synthetic antitumor vaccines from MUC1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid.

    PubMed

    Cai, Hui; Chen, Mei-Sha; Sun, Zhan-Yi; Zhao, Yu-Fen; Kunz, Horst; Li, Yan-Mei

    2013-06-01

    The T-helper epitope peptide P30 (green in the scheme) from tetanus toxoid was used as the immunostimulant in MUC1 glycopeptide antitumor vaccines and apparently also acts as a built-in adjuvant. P30-conjugated glycopeptide vaccines containing three glycans in the immunodominant motifs PDTRP and GSTAP induced much stronger immune responses and complement dependent cytotoxicity mediated killing of tumor cells when applied in plain PBS solution without complete Freund's adjuvant.

  15. Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity.

    PubMed

    Burks, A W; Shin, D; Cockrell, G; Stanley, J S; Helm, R M; Bannon, G A

    1997-04-15

    Peanut allergy is a significant health problem because of the prevelance and potential severity of the allergic reaction. Serum IgE from patients with documented peanut hypersensitivity reactions and overlapping peptides were used to identify the IgE-binding epitopes on the major peanut allergen, Ara h 1. At least twenty-three different linear IgE-binding epitopes, located throughout the length of the Ara h 1 protein, were identified. All of the epitopes were 6-10 amino acids in length, but there was no obvious sequence motif shared by all peptides. Four of the peptides appeared to be immunodominant IgE-binding epitopes in that they were recognized by serum from more than 80% of the patients tested and bound more IgE than any of the other Ara h 1 epitopes. Mutational analysis of the immunodominant epitopes revealed that single amino acid changes within these peptides had dramatic effects on IgE-binding characteristics. The identification and determination of the IgE-binding capabilities of core amino acids in epitopes on the Ara h 1 protein will make it possible to address the pathophysiologic and immunologic mechanisms regarding peanut hypersensitivity reactions specifically and food hypersensitivity in general.

  16. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones

    PubMed Central

    1994-01-01

    Immunodominant T cell epitopes of myelin basic protein (MBP) may be target antigens for major histocompatibility complex class II- restricted, autoreactive T cells in multiple sclerosis (MS). Since susceptibility to MS is associated with the DR2 haplotype, the binding and presentation of the immunodominant MBP(84-102) peptide by DR2 antigens were examined. The immunodominant MBP(84-102) peptide was found to bind with high affinity to DRB1*1501 and DRB5*0101 molecules of the disease-associated DR2 haplotype. Overlapping but distinct peptide segments were critical for binding to these molecules; hydrophobic residues (Val189 and Phe92) in the MBP(88-95) segment were critical for peptide binding to DRB1*1501 molecules, whereas hydrophobic and charged residues (Phe92, Lys93) in the MBP(89-101/102) sequence contributed to DRB5*0101 binding. The different registers for peptide binding made different peptide side chains available for interaction with the T cell receptor. Although the peptide was bound with high affinity by both DRB1 and DRB5 molecules, only DRB1 (DRB1*1501 and 1602) but not DRB5 molecules served as restriction elements for a panel of T cell clones generated from two MS patients suggesting that the complex of MBP(84-102) and DRB1 molecules is more immunogenic for MBP reactive T cells. The minimal MBP peptide epitope for several T cell clones and the residues important for binding to DRB1*1501 molecules and for T cell stimulation have been defined. PMID:7505801

  17. Activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs) by human dendritic cells infected with an attenuated influenza A virus expressing a CTL epitope derived from the HER-2/neu proto-oncogene.

    PubMed

    Efferson, Clay L; Schickli, Jeanne; Ko, Byung Kyum; Kawano, Kouichiro; Mouzi, Sara; Palese, Peter; García-Sastre, Adolfo; Ioannides, Constantin G

    2003-07-01

    The development of cancer vaccines requires approaches to induce expansion and functional differentiation of tumor antigen-specific cytotoxic T lymphocyte (CTL) effectors which posses cytolytic capability and produce cytokines. Efficient induction of such cells is hindered by the poor immunogenicity of tumor antigens and by the poor transduction efficiency of dendritic cells (DCs) with current nonreplicating vectors. We have investigated the use of influenza A virus, a potent viral inducer of CTLs, as a vector expressing the immunodominant HER-2 CTL epitope KIF (E75). For this purpose, an attenuated influenza A/PR8/34 virus with a truncated nonstructural (NS1) gene was generated containing the E75 epitope in its neuraminidase protein (KIF-NS virus). Stimulation of peripheral blood mononuclear cells from healthy donors and of tumor-associated lymphocytes from ovarian and breast cancer patients with DCs infected with KIF-NS virus (KIF-NS DC) induced CTLs that specifically recognized the peptide KIF and HER-2-expressing tumors in cytotoxicity assays and secreted gamma interferon (IFN-gamma) and interleukin-2 at recall with peptide. Priming with KIF-NS DCs increased the number of E75(+) CD45RO(+) cells by more than 10-fold compared to nonstimulated cells. In addition, KIF-NS virus induced high levels of IFN-alpha in DCs. This is the first report demonstrating induction of human epitope-specific CTLs against a tumor-associated antigen with a live attenuated recombinant influenza virus vector. Such vectors may provide a novel approach for tumor antigen delivery, lymphocyte activation, and differentiation in human cancer vaccine development.

  18. Phenotype and Hierarchy of Two Transgenic T Cell Lines Targeting the Respiratory Syncytial Virus KdM282-90 Epitope Is Transfer Dose-Dependent.

    PubMed

    Morabito, Kaitlyn M; Erez, Noam; Graham, Barney S; Ruckwardt, Tracy J

    2016-01-01

    In this study, we compared two lines of transgenic CD8+ T cells specific for the same KdM282-90 epitope of respiratory syncytial virus in the CB6F1 hybrid mouse model. Here we found that these two transgenic lines had similar in vivo abilities to control viral load after respiratory syncytial virus infection using adoptive transfer. Transfer of the TRBV13-2 line resulted in higher levels of IL-6 and MIP1-α in the lung than TRBV13-1 transfer. Interestingly, when large numbers of cells were co-transferred, the lines formed a hierarchy, with TRBV13-2 being immunodominant over TRBV13-1 in the mediastinal lymph node despite no identifiable difference in proliferation or apoptosis between the lines. This hierarchy was not established when lower cell numbers were transferred. The phenotype and frequency of proliferating cells were also cell transfer dose-dependent with higher percentages of CD127loCD62LloKLRG1lo and proliferating cells present when lower numbers of cells were transferred. These results illustrate the importance of cell number in adoptive transfer experiments and its influence on the phenotype and hierarchy of the subsequent T cell response. PMID:26752171

  19. Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine.

    PubMed

    Liao, Yu-Chieh; Lin, Hsin-Hung; Lin, Chieh-Hua; Chung, Wen-Bin

    2013-01-01

    Classical swine fever (CSF), foot-and-mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are the primary diseases affecting the pig industry globally. Vaccine induced CD8(+) T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL) epitopes, it is an exceedingly costly and cumbersome approach. Alternatively, computational predictions have been proven to be of satisfactory accuracy and are easily performed. Such a method enables the systematic identification of genome-wide CTL epitopes by incorporating epitope prediction tools in analyzing large numbers of viral sequences. In this study, we have implemented an integrated bioinformatics pipeline for the identification of CTL epitopes of swine viruses including the CSF virus (CSFV), FMD virus (FMDV) and PRRS virus (PRRSV) and assembled these epitopes on a web resource to facilitate vaccine design. Identification of epitopes for cross protections to different subtypes of virus are also reported in this study and may be useful for the development of a universal vaccine against such viral infections among the swine population. The CTL epitopes identified in this study have been evaluated in silico and possibly provide more and wider protection in compared to traditional single-reference vaccine design. The web resource is free and open to all users through http://sb.nhri.org.tw/ICES. PMID:24358361

  20. Thymic selection and adaptability of cytotoxic T lymphocyte responses in transgenic mice expressing a viral protein in the thymus

    PubMed Central

    1994-01-01

    Upon primary challenge with lymphocytic choriomeningitis virus (LCMV), H-2d (BALB/cByJ) mice mount a cytotoxic T lymphocyte (CTL) response to a single immunodominant domain of the viral nucleoprotein (NP) but no detectable response to the viral glycoprotein (GP). To manipulate this CTL response, the viral NP gene was expressed in the thymus and peripheral T lymphocytes using the murine Thy1.2 promoter. As a result, such Thy1.2-NP (H-2d) transgenic (tg) mice deleted their high-affinity anti-LCMV-NP CTL, but generated equal numbers of lower-affinity NP CTL. Further, they made an alternative anti-LCMV-GP CTL response that is not normally found in non-tg mice indicating a hierarchial control of the CTL response. Unlike the H-2d mice, H-2b (C57Bl/6J) mice normally mount a CTL response to both LCMV-GP and -NP. When the LCMV-NP was expressed using the Thy1.2 promoter in these H-2b mice, the LCMV-NP-specific CTL response was completely aborted and no CTL to new, alternative viral epitopes were generated. Dilutions of H-2b or H-2d NP peptides indicated that 3-4 logs less H-2b NP peptide was required to sensitize syngeneic target cells for CTL-specific lysis, suggesting that the differing affinities of H-2b and H-2d major histocompatibility complex molecules for their peptides likely account for the total removal of NP CTL in the H-2b mice but only partial removal in H-2d mice made to express thymic NP. Thymic grafting experiments done with thymi from newborn Thy1.2-NP tg mice show that selection processes studied in this model are of central (thymic) origin and are not caused by Thy1.2- positive LCMV-NP-expressing T lymphocytes in the periphery. PMID:7525843

  1. Characterization of T-cell response to woodchuck hepatitis virus core protein and protection of woodchucks from infection by immunization with peptides containing a T-cell epitope.

    PubMed Central

    Menne, S; Maschke, J; Tolle, T K; Lu, M; Roggendorf, M

    1997-01-01

    Specific activation of T cells appears to be a prerequisite for viral clearance during hepatitis B virus (HBV) infection. The T-cell response to HBV core protein is essential in determining an acute or chronic outcome of HBV infection, but how this immune response contributes to the course of infection remains unclear. This is due to results obtained from humans, which are restricted to phenomenological observations occurring during the clinical onset after HBV infection. Thus, a useful animal model is needed. Characterization of the T-cell response to the core protein (WHcAg) of woodchuck hepatitis virus (WHV) in woodchucks contributes to the understanding of these mechanisms. Therefore, we investigated the response of woodchuck peripheral blood mononuclear cells (PBMCs) to WHcAg and WHcAg-derived peptides, using our 5-bromo-2'-deoxyuridine assay. We demonstrated WHcAg-specific proliferation of PBMCs and nylon wool-nonadherent cells from acutely WHV-infected woodchucks. Using a cross-reacting anti-human T-cell (CD3) antiserum, we identified nonadherent cells as woodchuck T cells. T-cell epitope mapping with overlapping peptides, covering the entire WHcAg, revealed T-cell responses of acutely WHV-infected woodchucks to peptide1-20, peptide100-119, and peptide112-131. Detailed epitope analysis in the WHcAg region from amino acids 97 to 140 showed that T cells especially recognized peptide97-110. Establishment of polyclonal T-cell lines with WHcAg or peptide97-110 revealed reciprocal stimulation by peptide97-110 or WHcAg, respectively. We vaccinated woodchucks with peptide97-110 or WHcAg to prove the importance of this immunodominant T-cell epitope. All woodchucks immunized with peptide97-110 or WHcAg were protected. Our results show that the cellular immune response to WHcAg or to one T-cell epitope protects woodchucks from WHV infection. PMID:8985324

  2. B Epitope Multiplicity and B/T Epitope Orientation Influence Immunogenicity of Foot-and-Mouth Disease Peptide Vaccines

    PubMed Central

    Blanco, Esther; Cubillos, Carolina; Moreno, Noelia; Bárcena, Juan; de la Torre, Beatriz G.; Andreu, David

    2013-01-01

    Synthetic peptides incorporating protective B- and T-cell epitopes are candidates for new safer foot-and-mouth disease (FMD) vaccines. We have reported that dendrimeric peptides including four copies of a B-cell epitope (VP1 136 to 154) linked to a T-cell epitope (3A 21 to 35) of FMD virus (FMDV) elicit potent B- and T-cell specific responses and confer protection to viral challenge, while juxtaposition of these epitopes in a linear peptide induces less efficient responses. To assess the relevance of B-cell epitope multivalency, dendrimers bearing two (B2T) or four (B4T) copies of the B-cell epitope from type O FMDV (a widespread circulating serotype) were tested in CD1 mice and showed that multivalency is advantageous over simple B-T-epitope juxtaposition, resulting in efficient induction of neutralizing antibodies and optimal release of IFNγ. Interestingly, the bivalent B2T construction elicited similar or even better B- and T-cell specific responses than tetravalent B4T. In addition, the presence of the T-cell epitope and its orientation were shown to be critical for the immunogenicity of the linear juxtaposed monovalent peptides analyzed in parallel. Taken together, our results provide useful insights for a more accurate design of FMD subunit vaccines. PMID:24454475

  3. T cell epitope-based allergy vaccines.

    PubMed

    Larché, Mark

    2011-01-01

    Specific immunotherapy (SIT) with extracts containing intact allergen molecules is clinically efficacious, but associated with frequent adverse events related to the allergic sensitization of the patient. As a result, treatment is initiated in an incremental dose fashion which ultimately achieves a plateau (maintenance dose) that may be continued for several years. Reduction of allergic adverse events may allow safer and more rapid treatment Thus, many groups have developed and evaluated strategies to reduce allergenicity whilst maintaining immunogenicity, the latter being required to achieve specific modulation of the immune response. Peptide immunotherapy can be used to target T and/or B cells in an antigen-specific manner. To date, only approaches that target T cells have been clinically evaluated. Short, synthetic peptides representing immunodominant T cell epitopes of major allergens are able to modulate allergen-specific T cell responses in the absence of IgE cross linking and activation of effector cells. Here we review clinical and mechanistic studies associated with peptide immunotherapy targeting allergy to cats or to bee venom. 

  4. Tracking of Peptide-Specific CD4+ T-Cell Responses after an Acute Resolving Viral Infection: a Study of Parvovirus B19▿

    PubMed Central

    Kasprowicz, Victoria; Isa, Adiba; Tolfvenstam, Thomas; Jeffery, Katie; Bowness, Paul; Klenerman, Paul

    2006-01-01

    The evolution of peptide-specific CD4+ T-cell responses to acute viral infections of humans is poorly understood. We analyzed the response to parvovirus B19 (B19), a ubiquitous and clinically significant pathogen with a compact and conserved genome. The magnitude and breadth of the CD4+ T-cell response to the two B19 capsid proteins were investigated using a set of overlapping peptides and gamma interferon-specific enzyme-linked immunospot assays of peripheral blood mononuclear cells (PBMCs) from a cohort of acutely infected individuals who presented with acute arthropathy. These were compared to those for a cohort of B19-specific immunoglobulin M-negative (IgM−), IgG+ remotely infected individuals. Both cohorts of individuals were found to make broad CD4+ responses. However, while the responses following acute infection were detectable ex vivo, responses in remotely infected individuals were only detected after culture. One epitope (LASEESAFYVLEHSSFQLLG) was consistently targeted by both acutely (10/12) and remotely (6/7) infected individuals. This epitope was DRB1*1501 restricted, and a major histocompatibility complex peptide tetramer stained PBMCs from acutely infected individuals in the range of 0.003 to 0.042% of CD4+ T cells. Tetramer-positive populations were initially CD62Llo; unlike the case for B19-specific CD8+ T-cell responses, however, CD62L was reexpressed at later times, as responses remained stable or declined slowly. This first identification of B19 CD4+ T-cell epitopes, including a key immunodominant peptide, provides the tools to investigate the breadth, frequency, and functions of cellular responses to this virus in a range of specific clinical settings and gives an important reference point for analysis of peptide-specific CD4+ T cells during acute and persistent virus infections of humans. PMID:16943301

  5. Epitope Specificity Delimits the Functional Capabilities of Vaccine-Induced CD8 T Cell Populations

    PubMed Central

    Hill, Brenna J.; Darrah, Patricia A.; Ende, Zachary; Ambrozak, David R.; Quinn, Kylie M.; Darko, Sam; Gostick, Emma; Wooldridge, Linda; van den Berg, Hugo A.; Venturi, Vanessa; Larsen, Martin; Davenport, Miles P.; Seder, Robert A.

    2014-01-01

    Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2Kd epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2Dd epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2Dd specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner. PMID:25348625

  6. Common antiviral cytotoxic t-lymphocyte epitope for diverse arenaviruses.

    PubMed

    Oldstone, M B; Lewicki, H; Homann, D; Nguyen, C; Julien, S; Gairin, J E

    2001-07-01

    Members of the Arenaviridae family have been isolated from mammalian hosts in disparate geographic locations, leading to their grouping as Old World types (i.e., lymphocytic choriomeningitis virus [LCMV], Lassa fever virus [LFV], Mopeia virus, and Mobala virus) and New World types (i.e., Junin, Machupo, Tacaribe, and Sabia viruses) (C. J. Peters, M. J. Buchmeier, P. E. Rollin, and T. G. Ksiazek, p. 1521-1551, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996; P. J. Southern, p. 1505-1519, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996). Several types in both groups-LFV, Junin, Machupo, and Sabia viruses-cause severe and often lethal human diseases. By sequence comparison, we noted that eight Old World and New World arenaviruses share several amino acids with the nucleoprotein (NP) that consists of amino acids (aa) 118 to 126 (NP 118-126) (RPQASGVYM) of LCMV that comprise the immunodominant cytotoxic T-lymphocyte (CTL) epitope for H-2(d) mice (32). This L(d)-restricted epitope constituted >97% of the total bulk CTLs produced in the specific antiviral or clonal responses of H-2(d) BALB mice. NP 118-126 of the Old World arenaviruses LFV, Mopeia virus, and LCMV and the New World arenavirus Sabia virus bound at high affinity to L(d). The primary H-2(d) CTL anti-LCMV response as well as that of a CTL clone responsive to LCMV NP 118-126 recognized target cells coated with NP 118-126 peptides derived from LCMV, LFV, and Mopeia virus but not Sabia virus, indicating that a common functional NP epitope exists among Old World arenaviruses. Use of site-specific amino acid exchanges in the NP CTL epitope among these arenaviruses identified amino acids involved in major histocompatibility complex binding and CTL recognition.

  7. Induction of Protective Anti-CTL Epitope Responses against HER-2-Positive Breast Cancer Based on Multivalent T7 Phage Nanoparticles

    PubMed Central

    Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram

    2012-01-01

    We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2kd-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines. PMID:23166703

  8. Cloning and characterization of a 150 kDa microsphere antigen of Theileria parva that is immunologically cross-reactive with the polymorphic immunodominant molecule (PIM).

    PubMed

    Skilton, R A; Bishop, R P; Wells, C W; Spooner, P R; Gobright, E; Nkonge, C; Musoke, A J; Macklin, M; Iams, K P

    1998-10-01

    To identify the genes encoding novel immunodominant antigens of Theileria parva a lambda gt11 library of piroplasm genomic DNA was immunoscreened with bovine recovery serum and a gene encoding a 150 kDa antigen (p150) was identified. The predicted polypeptide contains an N-terminal secretory signal sequence and a proline-rich region of repeated amino acid motifs. The repeat region is polymorphic between stocks of T. parva in both copy number and sequence, and analysis of the repeat region from 10 stocks of T. parva revealed 5 p150 variants. A monoclonal antibody (mAb) against the T. parva polymorphic immunodominant molecule (PIM) cross-reacted with the recombinant p150. The p150 has sequence homology with a PIM peptide sequence containing the anti-PIM mAb epitope. Immunoelectron microscopy demonstrated that the p150 antigen, like PIM, is located in the microspheres of the sporozoites and is exocytosed following sporozoite invasion of the host lymphocyte. By immunoelectron microscopy p150 was subsequently transiently detectable on the sporozoite surface and in the lymphocyte cytosol. Immunoblotting showed that p150 is also expressed by the schizont stage, but at much lower levels compared to the sporozoite. These results suggest a major role for p150 in the early events of host-sporozoite interaction. PMID:9820853

  9. Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes.

    PubMed

    de Taeye, Steven W; Ozorowski, Gabriel; Torrents de la Peña, Alba; Guttman, Miklos; Julien, Jean-Philippe; van den Kerkhof, Tom L G M; Burger, Judith A; Pritchard, Laura K; Pugach, Pavel; Yasmeen, Anila; Crampton, Jordan; Hu, Joyce; Bontjer, Ilja; Torres, Jonathan L; Arendt, Heather; DeStefano, Joanne; Koff, Wayne C; Schuitemaker, Hanneke; Eggink, Dirk; Berkhout, Ben; Dean, Hansi; LaBranche, Celia; Crotty, Shane; Crispin, Max; Montefiori, David C; Klasse, P J; Lee, Kelly K; Moore, John P; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W

    2015-12-17

    The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs. PMID:26687358

  10. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.

    PubMed

    McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D

    2011-06-24

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.

  11. Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus

    SciTech Connect

    McLellan, Jason S.; Correia, Bruno E.; Chen, Man; Yang, Yongping; Graham, Barney S.; Schief, William R.; Kwong, Peter D.

    2012-06-28

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.

  12. Molecular Determinants of T Cell Epitope Recognition to the Common Timothy Grass Allergen

    PubMed Central

    Oseroff, Carla; Sidney, John; Kotturi, Maya F.; Kolla, Ravi; Alam, Rafeul; Broide, David H.; Wasserman, Stephen I.; Weiskopf, Daniela; McKinney, Denise M.; Chung, Jo L.; Petersen, Arnd; Grey, Howard; Peters, Bjoern; Sette, Alessandro

    2012-01-01

    We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-γ, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-γ, IL-10, and IL-17 production. PMID:20554959

  13. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice.

    PubMed

    Jiang, Liping; Fan, Rongjun; Sun, Shiyang; Fan, Peihu; Su, Weiheng; Zhou, Yan; Gao, Feng; Xu, Fei; Kong, Wei; Jiang, Chunlai

    2015-11-27

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.

  14. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice.

    PubMed

    Jiang, Liping; Fan, Rongjun; Sun, Shiyang; Fan, Peihu; Su, Weiheng; Zhou, Yan; Gao, Feng; Xu, Fei; Kong, Wei; Jiang, Chunlai

    2015-11-27

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71. PMID:26529072

  15. Sequence variation of cytotoxic T cell epitopes in different isolates of Epstein-Barr virus.

    PubMed

    Apolloni, A; Moss, D; Stumm, R; Burrows, S; Suhrbier, A; Misko, I; Schmidt, C; Sculley, T

    1992-01-01

    Previous results have identified two distinct cytotoxic T lymphocyte (CTL) epitopes encoded by Epstein-Barr virus (EBV), TETA (ORF BLRF3/BERF1 residues 329-353) and EENL (ORF BERF3/BERF4 residues 290-309). Measurement of the specificities of CTL clones (TETA-specific clone 13 and EENL-specific clone 7) directed against these epitopes indicated that the EENL epitope is conserved in all strains of EBV tested while the TETA epitope varied between individual virus strains. Sequencing of the DNA regions encoding these two CTL epitopes in different EBV isolates confirmed these interpretations and demonstrated that different TETA epitope sequences were encoded by B-type EBV strains and by the B95-8 isolate of EBV compared to the other A-type EBV strains. Titration of synthetic variants of the TETA epitope revealed that the epitope encoded by B95-8 was 15-fold less efficient as a T cell epitope than the sequence encoded by other A-type viral strains while the TETA variant encoded by the B-type strains displayed essentially no activity as a T cell epitope.

  16. Vaccines Targeting the Cancer Testis Antigen SSX-2 Elicit HLA-A2 Epitope-Specific Cytolytic T Cells

    PubMed Central

    Smith, Heath A.; McNeel, Douglas G.

    2011-01-01

    The cancer-testis antigen SSX-2 is a potentially attractive target for tumor immunotherapy based upon its tissue-restricted expression to germline cells and its frequent expression in malignancies. The goal of the current study was to evaluate a genetic vaccine encoding SSX-2 to prioritize HLA-A2-specific epitopes and determine if a DNA vaccine can elicit SSX-2-specific cytolytic T lymphocytes (CTL) capable of lysing prostate cancer cells. HLA-A2-restricted epitopes were identified based on their in vitro binding affinity for HLA-A2 and by the ability of a genetic vaccine to elicit peptide-specific CTL in A2/DR1 (HLA-A2.1+/HLA-DR1+/H-2 class I-/class II-knockout) transgenic mice. We found that SSX-2 peptides p41-49 (KASEKIFYV) and p103-111 (RLQGISPKI) had high affinity for HLA-A2 and were immunogenic in vivo, however peptide p103-111 was immunodominant with robust peptide-specific immune responses elicited in mice vaccinated with a plasmid DNA vaccine encoding SSX-2. Furthermore, p103-111-specific CTL were able to lyse an HLA-A2+ prostate cancer cell line. The immunodominance of this epitope was found not to be due to a putative HLA-DR1 epitope (p98-112) flanking p103-111. Finally, we demonstrated that SSX-2 epitope-specific CTL could be detected and cultured from the peripheral blood of HLA-A2+ prostate cancer patients, notably patients with advanced prostate cancer. Overall, we conclude that SSX-2 peptide p103-111 is an immunodominant HLA-A2-restricted epitope, and epitope-specific CD8+ T cells can be detected in patients with prostate cancer, suggesting that tolerance to SSX-2 can be circumvented in vivo. Together, these findings suggest that SSX-2 may be a relevant target antigen for prostate cancer vaccine approaches. PMID:21904219

  17. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells.

    PubMed

    Smith, Heath A; McNeel, Douglas G

    2011-10-01

    The cancer-testis antigen synovial sarcoma X breakpoint-2 (SSX-2) is a potentially attractive target for tumor immunotherapy based upon its tissue-restricted expression to germline cells and its frequent expression in malignancies. The goal of this study was to evaluate genetic vaccine encoding SSX-2 to prioritize human leukocyte antigen (HLA)-A2-specific epitopes and determine if a DNA vaccine can elicit SSX-2-specific cytotoxic T lymphocytes (CTLs) capable of lysing prostate cancer cells. HLA-A2-restricted epitopes were identified based on their in vitro binding affinity for HLA-A2 and by the ability of a genetic vaccine to elicit peptide-specific CTL in A2/DR1 (HLA-A2.1+/HLA-DR1+/H-2 class I-/class II-knockout) transgenic mice. We found that SSX-2 peptides p41-49 (KASEKIFYV) and p103-111 (RLQGISPKI) had high affinity for HLA-A2 and were immunogenic in vivo; however, peptide p103-111 was immunodominant with robust peptide-specific immune responses elicited in mice vaccinated with a plasmid DNA vaccine encoding SSX-2. Furthermore, p103-111-specific CTLs were able to lyse an HLA-A2+ prostate cancer cell line. The immunodominance of this epitope was found not to be due to a putative HLA-DR1 epitope (p98-112) flanking p103-111. Finally, we demonstrated that SSX-2 epitope-specific CTLs could be detected and cultured from the peripheral blood of HLA-A2+ prostate cancer patients, notably patients with advanced prostate cancer. Overall, we conclude that SSX-2 peptide p103-111 is an immunodominant HLA-A2-restricted epitope, and epitope-specific CD8 T cells can be detected in patients with prostate cancer, suggesting that tolerance to SSX-2 can be circumvented in vivo. Together, these findings suggest that SSX-2 may be a relevant target antigen for prostate cancer vaccine approaches. PMID:21904219

  18. Finding epitopes with computers.

    PubMed

    Malito, Enrico; Rappuoli, Rino

    2013-10-24

    The goal of structural vaccinology is to enable the design and engineering of improved antigens. In a recent issue of Chemistry & Biology, Gourlay and colleagues provided evidence that structure-based computational methods allow prediction of B cell epitopes, a crucial step for antigen selection and optimization in vaccine development.

  19. Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes

    PubMed Central

    Lindesmith, Lisa C.; Costantini, Verónica; Swanstrom, Jesica; Debbink, Kari; Donaldson, Eric F.; Vinjé, Jan

    2013-01-01

    The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance. PMID:23269783

  20. Specific immunotherapy modifies allergen-specific CD4+ T cell responses in an epitope-dependent manner

    PubMed Central

    Wambre, Erik; DeLong, Jonathan H.; James, Eddie A.; Torres-Chinn, Nadia; Pfützner, Wolfgang; Möbs, Christian; Durham, Stephen R.; Till, Stephen J.; Robinson, David; Kwok, William W.

    2014-01-01

    Background Understanding the mechanisms by which the immune system induces and controls allergic inflammation at the T cell epitope level is critical for the design of new allergy vaccine strategies. Objective To characterize allergen-specific T cell responses linked with allergy or peripheral tolerance and to determine how CD4+ T cell responses to individual allergen-derived epitopes change over allergen-specific immunotherapy (ASIT). Methods Timothy grass pollen (TGP) allergy was used as a model for studying grass pollen allergies. The breadth, magnitude, epitope hierarchy and phenotype of the DR04:01-restricted TGP-specific T cell responses in ten grass pollen allergic, five non-atopic and six allergy vaccine-treated individuals was determined using an ex vivo pMHCII-tetramer approach. Results CD4+ T cells in allergic individuals are directed to a broad range of TGP epitopes characterized by defined immunodominance hierarchy patterns and with distinct functional profiles that depend on the epitope recognized. Epitopes that are restricted specifically to either TH2 or TH1/TR1 responses were identified. ASIT was associated with preferential deletion of allergen-specific TH2 cells and without significant change in frequency of TH1/TR1 cells. Conclusions Preferential allergen-specific TH2-cells deletion after repeated high doses antigen stimulation can be another independent mechanism to restore tolerance to allergen during immunotherapy. PMID:24373351

  1. Broad spectrum assessment of the epitope fluctuation--Immunogenicity hypothesis.

    PubMed

    Grosch, Jason S; Yang, Jing; Shen, Alice; Sereda, Yuriy V; Ortoleva, Peter J

    2015-11-01

    Prediction of immunogenicity is a substantial barrier in vaccine design. Here, a molecular dynamics approach to assessing the immunogenicity of nanoparticles based on structure is presented. Molecular properties of epitopes on nonenveloped viral particles are quantified via a set of metrics. One such metric, epitope fluctuation (and implied flexibility), is shown to be inversely correlated with immunogenicity for each of a broad spectrum of nonenveloped viruses. The molecular metrics and experimentally determined immunogenicities for these viruses are archived in the open-source vaccine computer-aided design database. Results indicate the promise of computer-aided vaccine design to bring greater efficiency to traditional lab-based vaccine discovery approaches.

  2. Reduction of human anti-tetanus toxoid antibody in hu-PBL-SCID mice by immunodominant peptides of tetanus toxoid

    PubMed Central

    Jackson, D J; Elson, C J; Kumpel, B M

    2004-01-01

    Immunotherapy of murine autoimmune and allergic diseases by administration of peptides corresponding to the dominant T cell epitope is a reality. However, problems remain in applying this therapy to reduce antibody responses in humans. To overcome these difficulties, a preclinical system was developed to test the effect of immunodominant peptides from a common antigen, tetanus toxoid (TT), on the long-term human anti-TT response. Individuals whose T cells proliferated against dominant TT peptides were identified. Peripheral blood leucocytes (PBL) from these donors were injected intraperitoneally (i.p.) into mice with severe combined immunodeficiency (SCID) that had been depleted of murine natural killer (NK) cells (hu-PBL-SCID mice). Peptides or PBS were injected i.p. before a further injection of PBL and immunization with TT. The concentration of human IgG and anti-TT in murine plasma was followed for 10 weeks. The total IgG was similar in both groups. By contrast, there was a statistically significant reduction in IgG anti-TT from eight weeks onwards. It is considered that the hu-PBL-SCID model system may provide a means by which the efficacy of peptide immunotherapy for reduction of pathological antibodies in humans can be examined. PMID:15270840

  3. Deletion of naïve T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance.

    PubMed

    Hess, Sabrina M; Young, Ellen F; Miller, Keith R; Vincent, Benjamin G; Buntzman, Adam S; Collins, Edward J; Frelinger, Jeffrey A; Hess, Paul R

    2013-12-01

    Alloreactive T-cell responses directed against minor histocompatibility (H) antigens, which arise from diverse genetic disparities between donor and recipient outside the MHC, are an important cause of rejection of MHC-matched grafts. Because clinically significant responses appear to be directed at only a few antigens, the selective deletion of naïve T cells recognizing donor-specific, immunodominant minor H antigens in recipients before transplantation may be a useful tolerogenic strategy. We have previously demonstrated that peptide-MHC class I tetramers coupled to a toxin can efficiently eliminate specific TCR-transgenic T cells in vivo. Here, using the minor histocompatibility antigen HY as a model, we investigated whether toxic tetramers could inhibit the subsequent priming of the two H2-D(b)-restricted, immunodominant T-cell responses by deleting precursor CTL. Immunization of female mice with male bone marrow elicited robust CTL activity against the Uty and Smcy epitopes, with Uty constituting the major response. As hypothesized, toxic tetramer administration prior to immunization increased survival of cognate peptide-pulsed cells in an in vivo CTL assay, and reduced the frequency of corresponding T cells. However, tetramer-mediated decreases in either T-cell population magnified CTL responses against the non-targeted epitope, suggesting that D(b)-Uty(+) and D(b)-Smcy(+) T cells compete for a limited common resource during priming. Toxic tetramers conceivably could be used in combination to dissect manipulate CD8(+) T-cell immunodominance hierarchies, and to prevent the induction of donor-specific, minor H antigen CTL responses in allotransplantation.

  4. Deletion of naïve T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance

    PubMed Central

    Hess, Sabrina M.; Young, Ellen F.; Miller, Keith R.; Vincent, Benjamin G.; Buntzman, Adam S.; Collins, Edward J.; Frelinger, Jeffrey A.; Hess, Paul R.

    2013-01-01

    Alloreactive T-cell responses directed against minor histocompatibility (H) antigens, which arise from diverse genetic disparities between donor and recipient outside the MHC, are an important cause of rejection of MHC-matched grafts. Because clinically significant responses appear to be directed at only a few antigens, the selective deletion of naïve T cells recognizing donor-specific, immunodominant minor H antigens in recipients before transplantation may be a useful tolerogenic strategy. We have previously demonstrated that peptide-MHC class I tetramers coupled to a toxin can efficiently eliminate specific TCR-transgenic T cells in vivo. Here, using the minor histocompatibility antigen HY as a model, we investigated whether toxic tetramers could inhibit the subsequent priming of the two H2-Db-restricted, immunodominant T-cell responses by deleting precursor CTL. Immunization of female mice with male bone marrow elicited robust CTL activity against the Uty and Smcy epitopes, with Uty constituting the major response. As hypothesized, toxic tetramer administration prior to immunization increased survival of cognate peptide-pulsed cells in an in vivo CTL assay, and reduced the frequency of corresponding T cells. However, tetramer-mediated decreases in either T-cell population magnified CTL responses against the non-targeted epitope, suggesting that Db-Uty+ and Db-Smcy+ T cells compete for a limited common resource during priming. Toxic tetramers conceivably could be used in combination to dissect or manipulate CD8+ T-cell immunodominance hierarchies, and to prevent the induction of donor-specific, minor H antigen CTL responses in allotransplantation. PMID:24161680

  5. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently.

    PubMed

    Turnbull, Emma L; Lopes, A Ross; Jones, Nicola A; Cornforth, David; Newton, Phillipa; Aldam, Diana; Pellegrino, Pierre; Turner, Jo; Williams, Ian; Wilson, Craig M; Goepfert, Paul A; Maini, Mala K; Borrow, Persephone

    2006-05-15

    The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design.

  6. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently.

    PubMed

    Turnbull, Emma L; Lopes, A Ross; Jones, Nicola A; Cornforth, David; Newton, Phillipa; Aldam, Diana; Pellegrino, Pierre; Turner, Jo; Williams, Ian; Wilson, Craig M; Goepfert, Paul A; Maini, Mala K; Borrow, Persephone

    2006-05-15

    The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design. PMID:16670322

  7. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens.

    PubMed

    Xu, Qingqing; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2015-12-01

    The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J.

  8. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  9. Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression.

    PubMed

    Kakizawa, Shigeyuki; Oshima, Kenro; Ishii, Yoshiko; Hoshi, Ayaka; Maejima, Kensaku; Jung, Hee-Young; Yamaji, Yasuyuki; Namba, Shigetou

    2009-04-01

    Phytoplasmas are plant pathogenic bacteria that cause devastating yield losses in diverse crops worldwide. Although the understanding of the pathogen biology is important in agriculture, the inability to culture phytoplasmas has hindered their full characterization. Previous studies demonstrated that immunodominant membrane proteins could be classified into three types, immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp), and they are nonhomologous to each other. Here, cloning and sequencing of imp-containing genomic fragments were performed for several groups of phytoplasma including the aster yellows and rice yellow dwarf groups, for which an imp sequence has not previously been reported. Sequence comparison analysis revealed that Imps are highly variable among phytoplasmas, and clear positive selection was observed in several Imps, suggesting that Imp has important roles in host-phytoplasma interactions. As onion yellows (OY) phytoplasma was known to have Amp as the immunodominant membrane protein, the protein accumulation level of Imp in planta was measured compared with that of Amp. The resulting accumulation of Imp was calculated as approximately one-tenth that of Amp, being consistent with the immunodominant property of Amp in OY. It is suggested that an ancestral type of immunodominant membrane protein could be Imp, and subsequently the expression level of Amp or IdpA is increased in several phytoplasma groups. PMID:19222574

  10. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines.

    PubMed

    Morozova, O V; Sashina, T A; Fomina, S G; Novikova, N A

    2015-07-01

    Two live, attenuated rotavirus A (RVA) vaccines, Rotarix and RotaTeq, have been successfully introduced into national immunization programs worldwide. The parent strains of both vaccines were obtained more than 30 years ago. Nonetheless, only very limited data are available on the molecular similarity of the vaccine strains and their genetic relationships to the wild-type strains circulating within the territory of Russian Federation. In this study, we have determined the nucleotide sequences of the genes encoding the viral proteins VP7 and VP4 (the globular domain VP8*) of vaccine strains and natural isolates of rotaviruses in Nizhny Novgorod, Russia. The VP7 and VP4 proteins contain antigenic sites that are the main targets of neutralizing antibodies. Phylogenetic analysis based on VP4 and VP7 showed that the majority of the natural RVA isolates from Nizhny Novgorod and the vaccine strains belong to different clusters. Four amino acids within the VP7 antigenic sites were common in both the wild-type and vaccine strains. The largest number of amino acid differences was found between the vaccine strain Rotarix and the Nizhny Novgorod G2 strains (19 residues out of 29). From 3 to 5 amino acid differences per strain were identified in the antigenic sites of VP4 (domain VP8*) between wild-type strains and the vaccine RotaTeq, and 6-8 substitutions were found when they were compared with the vaccine strain Rotarix. For the first time, immunodominant T-cell epitopes of VP7 were analyzed, and differences in the sequences between the vaccine and the wild-type strains were found. The accumulation of amino acid substitutions in the VP7 and VP4 antigenic sites may potentially reduce the immune protection of vaccinated children from wild-type strains of rotavirus.

  11. The Ankylosing Spondylitis-Associated HLA-B*2705 Presents a B*0702-Restricted EBV Epitope and Sustains the Clonal Amplification of Cytotoxic T Cells in Patients

    PubMed Central

    Tedeschi, Valentina; Vitulano, Carolina; Cauli, Alberto; Paladini, Fabiana; Piga, Matteo; Mathieu, Alessandro; Sorrentino, Rosa; Fiorillo, Maria Teresa

    2016-01-01

    HLA-B*27 is strongly associated with an inflammatory autoimmune disorder, the Ankylosing Spondylitis (AS) and plays a protective role in viral infections. The two aspects might be linked. In this work, we compared in B*2705/B*07 positive patients with AS, the CD8+ T cell responses to two immunodominant EBV-derived epitopes restricted for either the HLA-B*27 (pEBNA3C) or the HLA-B*07 (pEBNA3A). We have unexpectedly found that the HLA-B*07-restricted EBNA3A peptide is presented by both the B*0702 and the B*2705 but not by the non AS-associated B*2709, that differs from the AS-associated B*2705 for a single amino acid in the peptide-binding groove (His116Asp). We then analyzed 38 B*2705-positive/B*07-negative (31 AS-patients and 7 healthy donors) and 8 B*2709-positive/B*07-negative subjects. EBNA3A-specific CD8+ T lymphocytes were present in 55.3% of the HLA-B*2705 but in none of the B*2709 donors (p = 0.0049). TCR β-chain analysis identified common TCRBV and TCRBJ gene segments and shared CDR3β sequences in pEBNA3A-responsive CTLs of B*2705 carriers, suggesting the existence of a shared TCR repertoire for recognition of the uncanonical B*2705/pEBNA3A complex. These data highlight the plasticity of the AS-associated HLA-B*2705, which presents peptides with suboptimal binding motifs, possibly contributing both to its enhanced capacity to protect against pathogens and to predispose to autoimmunity. PMID:27254288

  12. Identification and characterization of a linearized B-cell epitope on the pr protein of dengue virus.

    PubMed

    Song, Ke-Yu; Zhao, Hui; Li, Shi-Hua; Li, Xiao-Feng; Deng, Yong-Qiang; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Jiang, Zhen-You; Zhang, Fu-Chun; Qin, E-De; Qin, Cheng-Feng

    2013-07-01

    The four serotypes of dengue virus (DENV) represent one of the major mosquito-borne pathogens globally; so far no vaccine or specific antiviral is available. During virion maturation, the pr protein is cleaved from its precursor form the prM protein on the surface of immature DENV by host protease. Recent findings have demonstrated that the pr protein not only played critical roles in virion assembly and maturation, but was also involved in antibody-dependent enhancement of DENV infection. However, the B-cell epitopes on the pr protein of DENV have not been well characterized. In this study, a set of 11 partially overlapping peptides spanning the entire pr protein of DENV-2 were fused with glutathione S-transferase and expressed in Escherichia coli. ELISA screening with murine hyperimmune antiserum against immature DENV identified the P8 peptide (⁵⁷KQNEPEDIDCWCNST⁷¹) in the pr protein as the major immunodominant epitope. Fine mapping by truncated protein assays confirmed the 8-e peptide ⁵⁷KQNEPEDI⁶⁴ was the smallest unit capable of antibody binding. Importantly, the 8-e epitope reacted with sera from dengue fever patients. Site-directed mutagenesis revealed the asparagine residue at position 59 was important for epitope recognition. The 8-e epitope coincided well with the B-cell epitopes predicted by Immune Epitope Database analysis, and 3D structural modelling mapped the 8-e peptide on the surface of prM-E heterodimers. Overall, our findings characterized a linearized B-cell epitope on the pr protein of DENV, which will help to understand the life cycle of DENV and pathogenesis of dengue infections in human.

  13. Evaluation of conformational epitopes on thyroid peroxidase by antipeptide antibody binding and mutagenesis

    PubMed Central

    GORA, M; GARDAS, A; WIKTOROWICZ, W; HOBBY, P; WATSON, P F; WEETMAN, A P; SUTTON, B J; BANGA, J P

    2004-01-01

    Autoantibodies to thyroid peroxidase (TPO) recognize predominantly conformational epitopes, which are restricted to two distinct determinants, termed immunodominant domain region (IDR) A and B. These dominant determinants reside in the region with structural homology to myeloperoxidase (MPO)-like domain and may extend into the adjacent complement control protein (CCP) domain. We have explored the location of these determinants on the MPO-like domain of the structural model of TPO, by identifying exposed hydrophilic loops that are potential candidates for the autoantigenic sites, generating rabbit antipeptide antisera, and competing with well characterized murine monoclonal antibodies (mabs) specific for these two IDRs. We recently defined the location of IDR-B, and here report our findings on the location of IDR-A and its relationship to IDR-B, defined with a new panel of 15 antipeptide antisera. Moreover, in combination with single amino acid replacements by in vitro mutagenesis, we have defined the limits of the IDR-B region on the TPO model. The combination of antisera to peptides P12 (aa 549–563), P14 (aa 599–617) and P18 (aa 210–225) inhibited the binding of the mab specific for IDR-A (mab 2) by 75. The same combination inhibited the binding of autoantibodies to native TPO from 67 to 94% (mean 81·5%) at autoantibody levels of 5 IU. Fabs prepared from the antipeptide IgG and pooled in this combination were also effective in competition assays, thus defining the epitopes more precisely. IDR-A was found to lie immediately adjacent to IDR-B and thus the two immunodominant epitopes form an extended patch on the surface of TPO. Finally, by single amino acid mutagenesis, we show that IDR-B extends to residue N642, thus further localizing the boundary of this autoantigenic region on the structural model. PMID:15030525

  14. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326

    PubMed Central

    Luthra, Amit; Anand, Arvind; Hawley, Kelly L.; LeDoyt, Morgan; La Vake, Carson J.; Caimano, Melissa J.; Cruz, Adriana R.; Salazar, Juan C.

    2015-01-01

    ABSTRACT We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593 → Gln593) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog

  15. Genetic modification removes an immunodominant allergen from soybean.

    PubMed

    Herman, Eliot M; Helm, Ricki M; Jung, Rudolf; Kinney, Anthony J

    2003-05-01

    The increasing use of soybean (Glycine max) products in processed foods poses a potential threat to soybean-sensitive food-allergic individuals. In vitro assays on soybean seed proteins with sera from soybean-sensitive individuals have immunoglobulin E reactivity to abundant storage proteins and a few less-abundant seed proteins. One of these low abundance proteins, Gly m Bd 30 K, also referred to as P34, is in fact a major (i.e. immunodominant) soybean allergen. Although a member of the papain protease superfamily, Gly m Bd 30 K has a glycine in the conserved catalytic cysteine position found in all other cysteine proteases. Transgene-induced gene silencing was used to prevent the accumulation of Gly m Bd 30 K protein in soybean seeds. The Gly m Bd 30 K-silenced plants and their seeds lacked any compositional, developmental, structural, or ultrastructural phenotypic differences when compared with control plants. Proteomic analysis of extracts from transgenic seed detected the suppression of Gly m Bd 30 K-related peptides but no other significant changes in polypeptide pattern. The lack of a collateral alteration of any other seed protein in the Gly m Bd 30 K-silenced seeds supports the presumption that the protein does not have a role in seed protein processing and maturation. These data provide evidence for substantial equivalence of composition of transgenic and non-transgenic seed eliminating one of the dominant allergens of soybean seeds. PMID:12746509

  16. A mutation in the alpha 3 domain of Db that abrogates CD8 binding does not affect presentation of an immunodominant H-Y peptide.

    PubMed Central

    Dutz, J P; Teh, S J; Killeen, N; Teh, H S

    1995-01-01

    The peptidic nature of the male (H-Y) antigen, a model minor histocompatibility antigen in H-2b mice, has recently been demonstrated. In this study we show that the H-Y peptide, which is recognized by PM-1, a Db-restricted cytotoxic T-lymphocyte (CTL) clone, is absent in male H-2d spleen cells but present in male H-2d spleen cells that also express a transgenic Db molecule under its endogenous promoter. This result indicates that both the H-Y and the Db gene products are essential and sufficient for production of the Db-restricted H-Y peptide. By comparing the ability of the PM-1 clone and bulk CTL generated in a secondary mixed lymphocyte culture to recognize H-Y peptidic material eluted from affinity-purified Db molecules and separated by reversed-phase high-performance liquid chromatography (HPLC), we provide evidence that there is an immunodominant H-Y epitope that is presented by the Db molecule. Furthermore, the presentation of this epitope is not affected by a mutation in the alpha 3 domain of Db (asp227 to lys227), which abrogates CD8 binding, since similar amounts of H-Y peptide were eluted from affinity-purified wild-type or mutant Db molecules. However, the generation of the H-Y epitope is dependent on the presence of beta 2-microglobulin, since it is absent in male H-2b mice that lack a functional beta 2-microglobulin gene. The implications of these findings on T-cell development are discussed. PMID:7543449

  17. Computational prediction of neutralization epitopes targeted by human anti-V3 HIV monoclonal antibodies.

    PubMed

    Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy

    2014-01-01

    The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design.

  18. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding.

    PubMed

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R; Wilson, Ian A; Law, Mansun; Zhu, Jiang

    2015-08-04

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a "scaffolding meta-server" to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a "multivalent scaffolding" approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

  19. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    NASA Astrophysics Data System (ADS)

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-08-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

  20. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    PubMed Central

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-01-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314–324) and E2 (residues 412–423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo. PMID:26238798

  1. Computational Prediction of Neutralization Epitopes Targeted by Human Anti-V3 HIV Monoclonal Antibodies

    PubMed Central

    Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V.; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy

    2014-01-01

    The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design. PMID:24587168

  2. Computational prediction of neutralization epitopes targeted by human anti-V3 HIV monoclonal antibodies.

    PubMed

    Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy

    2014-01-01

    The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design. PMID:24587168

  3. Viral pneumonia.

    PubMed

    Greenberg, S B

    1991-09-01

    Viral pneumonias are common in infants and young children but rare in adults. Respiratory syncytial virus (RSV) and para-influenza viruses are the most frequent viral pathogens in infants and children. Influenza virus types A and B account for over one half of viral pneumonias in adults. Immunocompromised hosts are susceptible to pneumonias caused by cytomegalovirus (CMV) and other herpesviruses, as well as rubeola and adenovirus. Diagnosis of viral pneumonia depends on appropriate viral cultures and acute and convalescent sera for specific antibodies. Superinfection with bacteria is common in adults. Anti-viral therapy is available for several respiratory viruses. Ribavirin, amantadine/rimantadine, interferon alpha, and acyclovir are antiviral drugs that may be of benefit in treatment and prophylaxis. Prevention of viral pneumonia will depend upon improved viral immunization practices.

  4. Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes.

    PubMed

    Hewitson, James P; Filbey, Kara J; Grainger, John R; Dowle, Adam A; Pearson, Mark; Murray, Janice; Harcus, Yvonne; Maizels, Rick M

    2011-11-01

    Heligmosomoides polygyrus is a widely used gastrointestinal helminth model of long-term chronic infection in mice, which has not been well-characterized at the antigenic level. We now identify the major targets of the murine primary Ab response as a subset of the secreted products in H. polygyrus excretory-secretory (HES) Ag. An immunodominant epitope is an O-linked glycan (named glycan A) carried on three highly expressed HES glycoproteins (venom allergen Ancylostoma-secreted protein-like [VAL]-1, -2, and -5), which stimulates only IgM Abs, is exposed on the adult worm surface, and is poorly represented in somatic parasite extracts. A second carbohydrate epitope (glycan B), present on both a non-protein high molecular mass component and a 65-kDa molecule, is widely distributed in adult somatic tissues. Whereas the high molecular mass component and 65-kDa molecules bear phosphorylcholine, the glycan B epitope itself is not phosphorylcholine. Class-switched IgG1 Abs are found to glycan B, but the dominant primary IgG1 response is to the polypeptides of VAL proteins, including also VAL-3 and VAL-4. Secondary Ab responses include the same specificities while also recognizing VAL-7. Although vaccination with HES conferred complete protection against challenge H. polygyrus infection, mAbs raised against each of the glycan epitopes and against VAL-1, VAL-2, and VAL-4 proteins were unable to do so, even though these specificities (with the exception of VAL-2) are also secreted by tissue-phase L4 larvae. The primary immune response in susceptible mice is, therefore, dominated by nonprotective Abs against a small subset of antigenic epitopes, raising the possibility that these act as decoy specificities that generate ineffective humoral immunity. PMID:21964031

  5. Allergen structures and epitopes.

    PubMed

    Meno, K H

    2011-07-01

    Human type 1 hypersensitivity diseases such as allergic rhinoconjunctivitis are characterized by allergen-specific IgE antibodies produced in allergic individuals after allergen exposure. IgE antibodies bound to receptors on the surface of effector cells trigger an allergic response by interacting with three-dimensional (conformational) epitopes on the allergen surface. Crystal structures are available for complexes of antibody specifically bound to five allergens, from birch pollen, bee venom, cockroach, cow's milk and timothy grass pollen. The details of the antibody-allergen interaction extending all the way to atomic resolution are available from such complexes. In vitro investigations using recombinant monoclonal antibodies and human basophils show that binding affinity is a key to triggering the allergic response. Continued molecular characterization of antibody-allergen interactions is paving the way for the use of recombinant allergens in allergen-specific diagnosis and immunotherapy. PMID:21668845

  6. Prediction of Antibody Epitopes.

    PubMed

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin. Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein. PMID:26424260

  7. Kinetics of HIV-1 CTL epitopes recognized by HLA I alleles in HIV-infected individuals at times near primary infection: the Provir/Latitude45 study.

    PubMed

    Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé

    2014-01-01

    In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection.

  8. Viral pneumonia

    MedlinePlus

    ... Names Pneumonia - viral; "Walking pneumonia" - viral Images Lungs Respiratory system References Lee FE, Treanor J. Viral infections. In: Mason RJ, VC Broaddus, Martin TR, et al, eds. Murray and Nadel’s Textbook of Respiratory Medicine . 5th ed. Philadelphia, PA: Saunders Elsevier; 2010: ...

  9. T-cell epitope vaccine design by immunoinformatics.

    PubMed

    Patronov, Atanas; Doytchinova, Irini

    2013-01-08

    Vaccination is generally considered to be the most effective method of preventing infectious diseases. All vaccinations work by presenting a foreign antigen to the immune system in order to evoke an immune response. The active agent of a vaccine may be intact but inactivated ('attenuated') forms of the causative pathogens (bacteria or viruses), or purified components of the pathogen that have been found to be highly immunogenic. The increased understanding of antigen recognition at molecular level has resulted in the development of rationally designed peptide vaccines. The concept of peptide vaccines is based on identification and chemical synthesis of B-cell and T-cell epitopes which are immunodominant and can induce specific immune responses. The accelerating growth of bioinformatics techniques and applications along with the substantial amount of experimental data has given rise to a new field, called immunoinformatics. Immunoinformatics is a branch of bioinformatics dealing with in silico analysis and modelling of immunological data and problems. Different sequence- and structure-based immunoinformatics methods are reviewed in the paper.

  10. [Synthesis and immunogenic properties of peptides--fragments of the immunodominant regions of the VP1 protein of the Asia-1 type of foot- and-mouth disease virus].

    PubMed

    Petrov, V N; Rybakov, S S; Petrova, O N; Chepurkin, A V; Gulenkin, V M

    1998-12-01

    Potential immunodominant epitopes were predicted on the basis of a theoretical analysis of the antigenic structure of the VP1 protein of the type Asia-1 foot-and-mouth disease virus. Peptides corresponding to the 140-153, 136-153, 132-153, 143-157, 137-157, and 193-208 fragments of the VP1 protein sequence were synthesized by the solid phase method, and the immunogenic properties of the peptides were studied on guinea pigs. The shortest peptide exhibiting the protective effect was found to correspond to the, 140-153 fragment of the VP1 sequence. The Plm-(Gly)3-(140-153)-(Gly)2-Lys(Plm)-Leu and [Ac-(140-153)-(Gly)3]8-(Lys)7-Gly synthetic constructions in combination with adjuvants provided up to 80% protection of immunized animals against infection with the foot-and-mouth disease virus.

  11. Epitope specific T-cell responses against influenza A in a healthy population.

    PubMed

    Savic, Miloje; Dembinski, Jennifer L; Kim, Yohan; Tunheim, Gro; Cox, Rebecca J; Oftung, Fredrik; Peters, Bjoern; Mjaaland, Siri

    2016-02-01

    Pre-existing human CD4(+) and CD8(+) T-cell-mediated immunity may be a useful correlate of protection against severe influenza disease. Identification and evaluation of common epitopes recognized by T cells with broad cross-reactivity is therefore important to guide universal influenza vaccine development, and to monitor immunological preparedness against pandemics. We have retrieved an optimal combination of MHC class I and class II restricted epitopes from the Immune Epitope Database (www.iedb.org), by defining a fitness score function depending on prevalence, sequence conservancy and HLA super-type coverage. Optimized libraries of CD4(+) and CD8(+) T-cell epitopes were selected from influenza antigens commonly present in seasonal and pandemic influenza strains from 1934 to 2009. These epitope pools were used to characterize human T-cell responses in healthy donors using interferon-γ ELISPOT assays. Upon stimulation, significant CD4(+) and CD8(+) T-cell responses were induced, primarily recognizing epitopes from the conserved viral core proteins. Furthermore, the CD4(+) and CD8(+) T cells were phenotypically characterized regarding functionality, cytotoxic potential and memory phenotype using flow cytometry. Optimized sets of T-cell peptide epitopes may be a useful tool to monitor the efficacy of clinical trials, the immune status of a population to predict immunological preparedness against pandemics, as well as being candidates for universal influenza vaccines.

  12. Viral infection

    PubMed Central

    Puigdomènech, Isabel; de Armas-Rillo, Laura; Machado, José-David

    2011-01-01

    Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist. PMID:21966556

  13. T cell immunodominance is dictated by the positively selecting self-peptide.

    PubMed

    Lo, Wan-Lin; Solomon, Benjamin D; Donermeyer, David L; Hsieh, Chyi-Song; Allen, Paul M

    2014-01-01

    Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.

  14. Immunodominant antigen of Actinobacillus actinomycetemcomitans Y4 in high-responder patients.

    PubMed Central

    Califano, J V; Schenkein, H A; Tew, J G

    1989-01-01

    This study was undertaken to look for characteristics of the immunodominant antigen(s) of Actinobacillus actinomycetemcomitans Y4 that might help explain the high antibody titers in periodontitis patients. Radioimmunoassays (RIA) were performed on sera from 481 patients; sera from the 32 patients with the highest anti-Y4 titers (above 128,000 RIA U/ml) were further analyzed. Y4 antigen was boiled for 45 min or treated with papain, and antibody responses were analyzed by RIA and Western blotting (immunoblotting). In addition, carbohydrate was purified from Y4 and examined by Western blotting. The results indicated that the immunodominant antigen of Y4 in high responders was stable after papain treatment or boiling for 45 min. Papain or boiling eliminated protein bands but a large diffuse band persisted on Western blots. With increasing dilutions of sera, bands on Western blots corresponding to protein antigens disappeared, while the large diffuse band resembling that of carbohydrate persisted. Partially purified Y4 carbohydrate contained the large diffuse band. Double-immunodiffusion analysis indicated that rabbit serotype b-specific antiserum and patient sera recognized the same antigen. When the carbohydrate extract was passed over a lipid A-binding column to remove lipopolysaccharide, the smear corresponding to the immunodominant antigen was still present on Western blots. The immunodominant antigen of Y4 in high-responder individuals appears to be a carbohydrate and is possibly the capsular polysaccharide. Images PMID:2496034

  15. Computational tools for epitope vaccine design and evaluation.

    PubMed

    He, Linling; Zhu, Jiang

    2015-04-01

    Rational approaches will be required to develop universal vaccines for viral pathogens such as human immunodeficiency virus, hepatitis C virus, and influenza, for which empirical approaches have failed. The main objective of a rational vaccine strategy is to design novel immunogens that are capable of inducing long-term protective immunity. In practice, this requires structure-based engineering of the target neutralizing epitopes and a quantitative readout of vaccine-induced immune responses. Therefore, computational tools that can facilitate these two areas have played increasingly important roles in rational vaccine design in recent years. Here we review the computational techniques developed for protein structure prediction and antibody repertoire analysis, and demonstrate how they can be applied to the design and evaluation of epitope vaccines.

  16. Vaccines 85: Molecular and chemical basis of resistance to parasitic, bacterial, and viral diseases

    SciTech Connect

    Lerner, R.A.; Chanock, R.M.; Brown, F.

    1985-01-01

    This book contains 70 selections. Some of the selection titles are: Structure of the Gene Encoding of Immunodominant Surface Antigen on the Sprozoite of the Human Malaria Parasite Plasmodium falciparum; Cloning and Expression in Bacteria of the Genes for Merozite-specific Antigens from the Malaria Parasite Plasmodium falciparum; A Major Surface Antigen of Plasmodium falciparum in Merozoites: Studies on the Protein and its Gene; Genetic Construction of Cholera Vaccine Prototypes; and Viral Genes, Cytotoxic T Lymphocytes and Immunity.

  17. Plant viral epitope display systems for vaccine development.

    PubMed

    Leclerc, Denis

    2014-01-01

    The 'easiest' vaccines, base on production of neutralizing antibodies, have been made. With the emergence of chronic diseases, vaccine developers have understood the importance to trigger an efficient cellular mediated immune response (CTL response) to respond to this medical need. Several options are currently in development and the utilization of plant virus as vaccine platform for the trigger of a CTL response is considered as an interesting avenue. The highly ordered structures of plant viruses are good triggers of the innate immune system, which in turn, is used to initiate an immune response to a vaccine target. It is likely that plant viruses will play an important role in the development of the vaccine of the futures even if there is still several challenges to face.

  18. Immunogens of bovine viral diarrhea virus.

    PubMed

    Bolin, S R

    1993-11-01

    Bovine viral diarrhea virus (BVDV) is a ubiquitous pathogen of cattle that induces economically important diseases affecting multiple organ systems. In the United States, over 150 biological products are licensed for control of BVDV. These products contain live or killed BVDV, and many products contain other viruses or bacteria. Potency tests for these vaccines are based on animal inoculation and serology. For live virus vaccines, titration of viral infectivity in cell culture is an accepted alternative to animal inoculation. The immunogens in a killed virus vaccine may be measured by enzyme linked immunoabsorbent assay. Immunogens of BVDV that stimulate a protective immune response have not been conclusively identified. Epitopes on a putative viral envelope glycoprotein, gp53, are involved in viral neutralization. Other viral glycoproteins, gp48 and gp25, are immunogenic but epitopes on these proteins do not stimulate production of antibodies that efficiently neutralize virus. Progress in developing meaningful in vitro assays for quantitation of BVDV immunogens awaits identification of viral proteins that stimulate a protective immunity.

  19. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available. PMID:16474042

  20. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  1. In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model.

    PubMed

    Gutiérrez, Andres H; Loving, Crystal; Moise, Leonard; Terry, Frances E; Brockmeier, Susan L; Hughes, Holly R; Martin, William D; De Groot, Anne S

    2016-01-01

    Swine influenza is a highly contagious respiratory viral infection in pigs that is responsible for significant financial losses to pig farmers annually. Current measures to protect herds from infection include: inactivated whole-virus vaccines, subunit vaccines, and alpha replicon-based vaccines. As is true for influenza vaccines for humans, these strategies do not provide broad protection against the diverse strains of influenza A virus (IAV) currently circulating in U.S. swine. Improved approaches to developing swine influenza vaccines are needed. Here, we used immunoinformatics tools to identify class I and II T cell epitopes highly conserved in seven representative strains of IAV in U.S. swine and predicted to bind to Swine Leukocyte Antigen (SLA) alleles prevalent in commercial swine. Epitope-specific interferon-gamma (IFNγ) recall responses to pooled peptides and whole virus were detected in pigs immunized with multi-epitope plasmid DNA vaccines encoding strings of class I and II putative epitopes. In a retrospective analysis of the IFNγ responses to individual peptides compared to predictions specific to the SLA alleles of cohort pigs, we evaluated the predictive performance of PigMatrix and demonstrated its ability to distinguish non-immunogenic from immunogenic peptides and to identify promiscuous class II epitopes. Overall, this study confirms the capacity of PigMatrix to predict immunogenic T cell epitopes and demonstrate its potential for use in the design of epitope-driven vaccines for swine. Additional studies that match the SLA haplotype of animals with the study epitopes will be required to evaluate the degree of immune protection conferred by epitope-driven DNA vaccines in pigs. PMID:27411061

  2. In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model

    PubMed Central

    Gutiérrez, Andres H.; Loving, Crystal; Moise, Leonard; Terry, Frances E.; Brockmeier, Susan L.; Hughes, Holly R.; Martin, William D.; De Groot, Anne S.

    2016-01-01

    Swine influenza is a highly contagious respiratory viral infection in pigs that is responsible for significant financial losses to pig farmers annually. Current measures to protect herds from infection include: inactivated whole-virus vaccines, subunit vaccines, and alpha replicon-based vaccines. As is true for influenza vaccines for humans, these strategies do not provide broad protection against the diverse strains of influenza A virus (IAV) currently circulating in U.S. swine. Improved approaches to developing swine influenza vaccines are needed. Here, we used immunoinformatics tools to identify class I and II T cell epitopes highly conserved in seven representative strains of IAV in U.S. swine and predicted to bind to Swine Leukocyte Antigen (SLA) alleles prevalent in commercial swine. Epitope-specific interferon-gamma (IFNγ) recall responses to pooled peptides and whole virus were detected in pigs immunized with multi-epitope plasmid DNA vaccines encoding strings of class I and II putative epitopes. In a retrospective analysis of the IFNγ responses to individual peptides compared to predictions specific to the SLA alleles of cohort pigs, we evaluated the predictive performance of PigMatrix and demonstrated its ability to distinguish non-immunogenic from immunogenic peptides and to identify promiscuous class II epitopes. Overall, this study confirms the capacity of PigMatrix to predict immunogenic T cell epitopes and demonstrate its potential for use in the design of epitope-driven vaccines for swine. Additional studies that match the SLA haplotype of animals with the study epitopes will be required to evaluate the degree of immune protection conferred by epitope-driven DNA vaccines in pigs. PMID:27411061

  3. Mapping of T cell epitopes of the 30-kDa {alpha} antigen of Mycobacterium bovis strain bacillus Calmette-Guerin in Purified Protein Derivative (PPD)-positive individuals

    SciTech Connect

    Silver, R.F.; Wallis, R.S.; Ellner, J.J.

    1995-05-01

    The fibronectin-binding 30-kDa {alpha} Ag is a major secretory protein of growing mycobacteria that stimulates in vitro lymphocyte blastogenesis in most healthy purified protein derivative-positive individuals, but only a minority of patients with active tuberculosis. T cell epitopes of the {alpha} Ag were assessed using blastogenic responses of PBMC from 12 healthy purified protein derivative-positive subjects to a set of synthetic peptides based on the 325-amino acid sequence of the {alpha} Ag of Mycobacterium bovis BCG. Because epitope-specific precursor cells are infrequent and randomly distributed, we used Poisson analysis to determine positive responses to 10 {mu}g/ml of each peptide in 12 replicate culture wells. Seven immunodominant regions of the {alpha} Ag were identified. Each subject responded to at least one of the two most dominant epitopes, which correspond to amino acids 131-155 and 233-257 (from N terminus). Peptides of these two epitopes induced production of IFN-{gamma} by sorted CD4{sup +} T cells. The immuno-dominant peptides may have use as components of a vaccine and as tools to study the evolution of the immune response to M. tuberculosis. The two most dominant epitopes both occur in regions of the {alpha} Ag that differ from those of the atypical pathogens M. avium and M. kansasii. In addition, the M. bovis epitope of amino acids 133-155 differs from that of M. tuberculosis by a single amino acid. It may be possible to exploit the sequence differences for development of diagnostic tests with increased specificity. 39 refs., 4 figs., 1 tab.

  4. Immune recognition of citrullinated epitopes.

    PubMed

    Nguyen, Hai; James, Eddie A

    2016-10-01

    Conversion of arginine into citrulline is a post-translational modification that is observed in normal physiological processes. However, abnormal citrullination can provoke autoimmunity by generating altered self-epitopes that are specifically targeted by autoantibodies and T cells. In this review we discuss the recognition of citrullinated antigens in human autoimmune diseases and the role that this modification plays in increasing antigenic diversity and circumventing tolerance mechanisms. Early published work demonstrated that citrullinated proteins are specifically targeted by autoantibodies in rheumatoid arthritis and that citrullinated peptides are more readily presented to T cells by arthritis-susceptible HLA class II 'shared epitope' proteins. Emerging data support the relevance of citrullinated epitopes in other autoimmune diseases, including type 1 diabetes and multiple sclerosis, whose susceptible HLA haplotypes also preferentially present citrullinated peptides. In these settings, autoimmune patients have been shown to have elevated responses to citrullinated epitopes derived from tissue-specific antigens. Contrasting evidence implicates autophagy or perforin and complement-mediated membrane attack as inducers of ectopic citrullination. In either case, the peptidyl deiminases responsible for citrullination are activated in response to inflammation or insult, providing a mechanistic link between this post-translational modification and interactions with the environment and infection. As such, it is likely that immune recognition of citrullinated epitopes also plays a role in pathogen clearance. Indeed, our recent data suggest that responses to citrullinated peptides facilitate recognition of novel influenza strains. Therefore, increased understanding of responses to citrullinated epitopes may provide important insights about the initiation of autoimmunity and recognition of heterologous viruses. PMID:27531825

  5. Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein

    PubMed Central

    Keck, Zhen-Yong; Enterlein, Sven G.; Howell, Katie A.; Vu, Hong; Shulenin, Sergey; Warfield, Kelly L.; Froude, Jeffrey W.; Araghi, Nazli; Douglas, Robin; Biggins, Julia; Lear-Rooney, Calli M.; Wirchnianski, Ariel S.; Lau, Patrick; Wang, Yong; Herbert, Andrew S.; Dye, John M.; Glass, Pamela J.; Holtsberg, Frederick W.; Foung, Steven K. H.

    2015-01-01

    ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus

  6. Recognition of multiple antibody epitopes throughout Borrelia burgdorferi p66, a candidate adhesin, in patients with early or late manifestations of Lyme disease.

    PubMed

    Ntchobo, H; Rothermel, H; Chege, W; Steere, A C; Coburn, J

    2001-03-01

    Antibody responses to p66, a candidate integrin ligand of Borrelia burgdorferi, were studied in 79 patients with early or late manifestations of Lyme disease. The central portion of p66 was previously shown to contain all of the information required for specific recognition of beta3-chain integrins, but work by others had suggested that the C-terminal portion of the protein contains a single surface-exposed, immunodominant loop. In examining antibody responses to full-length p66 and to three overlapping fragments of the protein, we found that the majority of Lyme disease patients had immunoglobulin M (IgM) and/or IgG responses to p66 and that, particularly early in the disease, epitopes throughout p66 were recognized. Among patients with later manifestations of the illness, antibody responses to the C-terminal portion of the protein were more prominent. These results demonstrate that Lyme disease patient sera recognize epitopes throughout p66.

  7. Aberrant CD8+ T-Cell Responses and Memory Differentiation upon Viral Infection of an Ataxia-Telangiectasia Mouse Model Driven by Hyper-Activated Akt and mTORC1 Signaling

    PubMed Central

    D'Souza, Anthony D.; Parish, Ian A.; McKay, Sharen E.; Kaech, Susan M.; Shadel, Gerald S.

    2011-01-01

    Immune system-related pathology is common in ataxia-telangiectasia (A-T) patients and mice that lack the protein kinase, A-T mutated (ATM). However, it has not been studied how ATM influences immune responses to a viral infection. Using the lymphocytic choriomeningitis virus (LCMV) infection model, we show that ATM−/− mice, despite having fewer naïve CD8+ T cells, effectively clear the virus. However, aberrant CD8+ T-cell responses are observed, including defective expansion and contraction, effector-to-memory differentiation, and a switch in viral-epitope immunodominance. T-cell receptor-activated, but not naïve, ATM−/− splenic CD8+ T cells have increased ribosomal protein S6 and Akt phosphorylation and do not proliferate well in response to IL-15, a cytokine important for memory T-cell development. Accordingly, pharmacological Akt or mammalian target of rapamycin complex 1 (mTORC1) inhibition during T-cell receptor activation alone rescues the IL-15 proliferation defect. Finally, rapamycin treatment during LCMV infection in vivo increases the number of memory T cells in ATM−/− mice. Altogether, these results show that CD8+ T cells lacking ATM have hyperactive Akt and mTORC1 signaling in response to T-cell receptor activation, which results in aberrant cytokine responses and memory T-cell development. We speculate that similar signaling defects contribute to the immune system pathology of A-T, and that inhibition of Akt and/or mTORC1 may be of therapeutic value. PMID:21641396

  8. Lymphocryptovirus Infection of Nonhuman Primate B Cells Converts Destructive into Productive Processing of the Pathogenic CD8 T Cell Epitope in Myelin Oligodendrocyte Glycoprotein

    PubMed Central

    Jagessar, S. Anwar; Holtman, Inge R.; Hofman, Sam; Morandi, Elena; Heijmans, Nicole; Laman, Jon D.; Gran, Bruno; Faber, Bart W.; van Kasteren, Sander I.; Eggen, Bart J. L.

    2016-01-01

    EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS. We report that B cells infected with EBV-related lymphocryptovirus (LCV) are requisite APCs for MHC-E–restricted autoaggressive effector memory CTLs specific for the immunodominant epitope 40-48 of myelin oligodendrocyte glycoprotein (MOG). These T cells drive the EAE pathogenesis to irreversible neurologic deficit. The aim of this study was to determine why LCV infection is important for this pathogenic role of B cells. Transcriptome comparison of LCV-infected B cells and CD20+ spleen cells from rhesus monkeys shows increased expression of genes encoding elements of the Ag cross-presentation machinery (i.e., of proteasome maturation protein and immunoproteasome subunits) and enhanced expression of MHC-E and of costimulatory molecules (CD70 and CD80, but not CD86). It was also shown that altered expression of endolysosomal proteases (cathepsins) mitigates the fast endolysosomal degradation of the MOG40–48 core epitope. Finally, LCV infection also induced expression of LC3-II+ cytosolic structures resembling autophagosomes, which seem to form an intracellular compartment where the MOG40–48 epitope is protected against proteolytic degradation by the endolysosomal serine protease cathepsin G. In conclusion, LCV infection induces a variety of changes in B cells that underlies the conversion of destructive processing of the immunodominant MOG40–48 epitope into productive processing and cross-presentation to strongly autoaggressive CTLs. PMID:27412414

  9. Lymphocryptovirus Infection of Nonhuman Primate B Cells Converts Destructive into Productive Processing of the Pathogenic CD8 T Cell Epitope in Myelin Oligodendrocyte Glycoprotein.

    PubMed

    Jagessar, S Anwar; Holtman, Inge R; Hofman, Sam; Morandi, Elena; Heijmans, Nicole; Laman, Jon D; Gran, Bruno; Faber, Bart W; van Kasteren, Sander I; Eggen, Bart J L; 't Hart, Bert A

    2016-08-15

    EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS. We report that B cells infected with EBV-related lymphocryptovirus (LCV) are requisite APCs for MHC-E-restricted autoaggressive effector memory CTLs specific for the immunodominant epitope 40-48 of myelin oligodendrocyte glycoprotein (MOG). These T cells drive the EAE pathogenesis to irreversible neurologic deficit. The aim of this study was to determine why LCV infection is important for this pathogenic role of B cells. Transcriptome comparison of LCV-infected B cells and CD20(+) spleen cells from rhesus monkeys shows increased expression of genes encoding elements of the Ag cross-presentation machinery (i.e., of proteasome maturation protein and immunoproteasome subunits) and enhanced expression of MHC-E and of costimulatory molecules (CD70 and CD80, but not CD86). It was also shown that altered expression of endolysosomal proteases (cathepsins) mitigates the fast endolysosomal degradation of the MOG40-48 core epitope. Finally, LCV infection also induced expression of LC3-II(+) cytosolic structures resembling autophagosomes, which seem to form an intracellular compartment where the MOG40-48 epitope is protected against proteolytic degradation by the endolysosomal serine protease cathepsin G. In conclusion, LCV infection induces a variety of changes in B cells that underlies the conversion of destructive processing of the immunodominant MOG40-48 epitope into productive processing and cross-presentation to strongly autoaggressive CTLs. PMID:27412414

  10. Viral Gastroenteritis

    MedlinePlus

    ... stomach, small intestine, and large intestine. Several different viruses can cause viral gastroenteritis, which is highly contagious ... and last for 1 to 3 days. Some viruses cause symptoms that last longer. [ Top ] What are ...

  11. Viral arthritis

    MedlinePlus

    Infectious arthritis - viral ... Ohl CA, Forster D. Infectious arthritis of native joints. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious ...

  12. Identification of Novel HLA-A2-Restricted Human Immunodeficiency Virus Type 1-Specific Cytotoxic T-Lymphocyte Epitopes Predicted by the HLA-A2 Supertype Peptide-Binding Motif

    PubMed Central

    Altfeld, Marcus A.; Livingston, Brian; Reshamwala, Neha; Nguyen, Phuong T.; Addo, Marylyn M.; Shea, Amy; Newman, Mark; Fikes, John; Sidney, John; Wentworth, Peggy; Chesnut, Robert; Eldridge, Robert L.; Rosenberg, Eric S.; Robbins, Gregory K.; Brander, Christian; Sax, Paul E.; Boswell, Steve; Flynn, Theresa; Buchbinder, Susan; Goulder, Philip J. R.; Walker, Bruce D.; Sette, Alessandro; Kalams, Spyros A.

    2001-01-01

    Virus-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of human immunodeficiency virus type 1 (HIV-1) infection and will play an important part in therapeutic and prophylactic HIV-1 vaccines. The identification of virus-specific epitopes that are efficiently recognized by CTL is the first step in the development of future vaccines. Here we describe the immunological characterization of a number of novel HIV-1-specific, HLA-A2-restricted CTL epitopes that share a high degree of conservation within HIV-1 and a strong binding to different alleles of the HLA-A2 superfamily. These novel epitopes include the first reported CTL epitope in the Vpr protein. Two of the novel epitopes were immunodominant among the HLA-A2-restricted CTL responses of individuals with acute and chronic HIV-1 infection. The novel CTL epitopes identified here should be included in future vaccines designed to induce HIV-1-specific CTL responses restricted by the HLA-A2 superfamily and will be important to assess in immunogenicity studies in infected persons and in uninfected recipients of candidate HIV-1 vaccines. PMID:11152503

  13. Viral CTL Escape Mutants Are Generated in Lymph Nodes and Subsequently Become Fixed in Plasma and Rectal Mucosa during Acute SIV Infection of Macaques

    PubMed Central

    Vanderford, Thomas H.; Bleckwehl, Chelsea; Engram, Jessica C.; Dunham, Richard M.; Klatt, Nichole R.; Feinberg, Mark B.; Garber, David A.; Betts, Michael R.; Silvestri, Guido

    2011-01-01

    SIVmac239 infection of rhesus macaques (RMs) results in AIDS despite the generation of a strong antiviral cytotoxic T lymphocyte (CTL) response, possibly due to the emergence of viral escape mutants that prevent recognition of infected cells by CTLs. To determine the anatomic origin of these SIV mutants, we longitudinally assessed the presence of CTL escape variants in two MamuA*01-restricted immunodominant epitopes (Tat-SL8 and Gag-CM9) in the plasma, PBMCs, lymph nodes (LN), and rectal biopsies (RB) of fifteen SIVmac239-infected RMs. As expected, Gag-CM9 did not exhibit signs of escape before day 84 post infection. In contrast, Tat-SL8 escape mutants were apparent in all tissues by day 14 post infection. Interestingly LNs and plasma exhibited the highest level of escape at day 14 and day 28 post infection, respectively, with the rate of escape in the RB remaining lower throughout the acute infection. The possibility that CTL escape occurs in LNs before RBs is confirmed by the observation that the specific mutants found at high frequency in LNs at day 14 post infection became dominant at day 28 post infection in plasma, PBMC, and RB. Finally, the frequency of escape mutants in plasma at day 28 post infection correlated strongly with the level Tat-SL8-specific CD8 T cells in the LN and PBMC at day 14 post infection. These results indicate that LNs represent the primary source of CTL escape mutants during the acute phase of SIVmac239 infection, suggesting that LNs are the main anatomic sites of virus replication and/or the tissues in which CTL pressure is most effective in selecting SIV escape variants. PMID:21625590

  14. The application of epitope mapping in the development of a new serological test for Helicobacter pylori infection.

    PubMed

    Burnie, J P; al-Dughaym, A

    1996-07-17

    Epitope mapping was applied to the derived amino acid sequences of the urease A and urease B genes of Helicobacter pylori. This identified 15 epitopes of which five were the most immunodominant. These were LTPKELD (Ure A), FISP, QIPTAF, EVGKVA and SIP (Ure B). Peptide 1 representing LTPKELD and peptide 2 representing EVGKVA were used to develop ELISA procedures for detecting antibody specific to H. pylori infection. The sensitivity, specificity and efficiency values for peptide 1 reactive IgM were 31.6, 92.8 and 52.5% and for peptide 1 IgG were 52.6, 35.7 and 45.4%. The corresponding values for peptide 2 IgM were 31.6, 100 and 60.6% and for peptide 2 IgG were 63.2, 71.4 and 66.6% respectively. When the tests were combined so that a positive for either peptide was counted as a positive overall the figures for IgM were 52.6, 92.8 and 69.6%. Thus epitope mapping delineated peptides against which specific IgM was produced in active H. pylori infection.

  15. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine.

    PubMed

    Yin, Ying; Zhang, Sheng; Cai, Chenguang; Zhang, Jun; Dong, Dayong; Guo, Qiang; Fu, Ling; Xu, Junjie; Chen, Wei

    2014-02-01

    Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine.

  16. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen.

    PubMed

    Blaher, B; Suphioglu, C; Knox, R B; Singh, M B; McCluskey, J; Rolland, J M

    1996-07-01

    T-cell recognition of Lol p 9, a major allergen of ryegrass pollen, was investigated by using a T-cell line and T-cell clones generated from the peripheral blood of an atopic donor. The T-cell line reacted with purified Lol p 9, as well as with crude ryegrass pollen extract, but failed to cross-react with Bermuda grass pollen extract. All of six T-cell clones generated from this line proliferated in response to Lol p 9. Epitope mapping was carried out with a panel of 34 overlapping synthetic peptides, which spanned the entire sequence of the Lol p 9 12R isoform. The T-cell line responded to two of the peptides, Lol p 9 (105-116) and Lol p 9 (193-204), whereas reactivity with one or other of these peptides was shown by five T-cell clones. These two peptides contained sequences consistent with motifs previously reported for major histocompatibility complex class II-restricted peptides. HLA antibody blocking studies showed that presentation of peptide Lol p 9 (105-116) to one T-cell clone was HLA-DR-restricted; this clone expressed a T helper cell phenotype (CD3+, CD4+) and the T-cell receptor alpha beta. The identification of immunodominant T-cell epitope(s) on allergens is essential for devising safer and more effective immunotherapy strategies, which can interrupt the chain of events leading to allergic disease.

  17. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops.

    PubMed

    Fleury, Maxime J J; Nicol, Jérôme T J; Samimi, Mahtab; Arnold, Françoise; Cazal, Raphael; Ballaire, Raphaelle; Mercey, Olivier; Gonneville, Hélène; Combelas, Nicolas; Vautherot, Jean-Francois; Moreau, Thierry; Lorette, Gérard; Coursaget, Pierre; Touzé, Antoine

    2015-01-01

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops. PMID:25812141

  18. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine.

    PubMed

    Yin, Ying; Zhang, Sheng; Cai, Chenguang; Zhang, Jun; Dong, Dayong; Guo, Qiang; Fu, Ling; Xu, Junjie; Chen, Wei

    2014-02-01

    Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine. PMID:24054942

  19. Extent of Systemic Spread Determines CD8+ T Cell Immunodominance for Laboratory Strains, Smallpox Vaccines, and Zoonotic Isolates of Vaccinia Virus.

    PubMed

    Flesch, Inge E A; Hollett, Natasha A; Wong, Yik Chun; Quinan, Bárbara Resende; Howard, Debbie; da Fonseca, Flávio G; Tscharke, David C

    2015-09-01

    CD8(+) T cells that recognize virus-derived peptides presented on MHC class I are vital antiviral effectors. Such peptides presented by any given virus vary greatly in immunogenicity, allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. In this study, we show across a range of vaccinia virus strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic vaccinia virus that occurred in Brazil.

  20. Evolution of viral life-cycle in response to cytotoxic T lymphocyte-mediated immunity.

    PubMed

    Louzoun, Yoram; Ganusov, Vitaly V

    2012-10-01

    Viruses in mammals are constantly faced with the problem of elimination by the host immunity. Cytotoxic T lymphocyte (CTL) responses are thought to play a major role in the control and clearance of several viral infections in mice and humans. It is therefore expected that over evolutionary time, viruses would be forced to evolve to avoid recognition by CTLs. Indeed, a number of studies have documented the accumulation of viral variants with escape mutations. These mutations allow viruses to hide from CTL responses common in the host population. CTLs recognize viruses by short protein sequences, named epitopes, derived from viral proteins. The efficiency of viral recognition by epitope-specific CTL responses depends on the expression pattern of the proteins carrying these epitopes, and the total amount of that protein (and thus epitopes) in the cell. When a virus replicates in a cell, some viral genes are expressed early in the life cycle of the virus, while other proteins are expressed late. For example, HIV infected cells first express Rev and Tat proteins, and the Gag proteins are expressed late. Here we propose a dynamical model of the viral life cycle to study how expression level of early vs. late genes may affect viral dynamics within the host and virus transmission over the course of infection. We find that for acute and chronic viral infections lower expression of early genes than that of the late genes is expected to give selective advantage and higher transmission to viruses.

  1. The molecular relationship between antigenic domains and epitopes on hCG.

    PubMed

    Berger, Peter; Lapthorn, Adrian J

    2016-08-01

    Antigenic domains are defined to contain a limited number of neighboring epitopes recognized by antibodies (Abs) but their molecular relationship remains rather elusive. We thoroughly analyzed the antigenic surface of the important pregnancy and tumor marker human chorionic gonadotropin (hCG), a cystine knot (ck) growth factor, and set antigenic domains and epitopes in molecular relationships to each other. Antigenic domains on hCG, its free hCGα and hCGβ subunits are dependent on appropriate inherent molecular features such as molecular accessibility and protrusion indices that determine bulging structures accessible to Abs. The banana-shaped intact hCG comprises ∼7500Å(2) of antigenic surface with minimally five antigenic domains that encompass a continuum of overlapping non-linear composite epitopes, not taking into account the C-terminal peptide extension of hCGβ (hCGβCTP). Epitopes within an antigenic domain are defined by specific Abs, that bury nearly 1000Å(2) of surface accessible area on the antigen and recognize a few up to 15 amino acid (aa) residues, whereby between 2 and 5 of these provide the essential binding energy. Variability in Ab binding modes to the contact aa residues are responsible for the variation in affinity and intra- and inter-species specificity, e.g. cross-reactions with luteinizing hormone (LH). Each genetically distinct fragment antigen binding (Fab) defines its own epitope. Consequently, recognition of the same epitope by different Abs is only possible in cases of genetically identical sequences of its binding sites. Due to combinatorial V(D)J gene segment variability of heavy and light chains, Abs defining numerous epitopes within an antigenic domain can be generated by different individuals and species. Far more than hundred Abs against the immuno-dominant antigenic domains of either subunit at both ends of the hCG-molecule, the tips of peptide loops one and three (Ł1+3) protruding from the central ck, encompassing h

  2. The molecular relationship between antigenic domains and epitopes on hCG.

    PubMed

    Berger, Peter; Lapthorn, Adrian J

    2016-08-01

    Antigenic domains are defined to contain a limited number of neighboring epitopes recognized by antibodies (Abs) but their molecular relationship remains rather elusive. We thoroughly analyzed the antigenic surface of the important pregnancy and tumor marker human chorionic gonadotropin (hCG), a cystine knot (ck) growth factor, and set antigenic domains and epitopes in molecular relationships to each other. Antigenic domains on hCG, its free hCGα and hCGβ subunits are dependent on appropriate inherent molecular features such as molecular accessibility and protrusion indices that determine bulging structures accessible to Abs. The banana-shaped intact hCG comprises ∼7500Å(2) of antigenic surface with minimally five antigenic domains that encompass a continuum of overlapping non-linear composite epitopes, not taking into account the C-terminal peptide extension of hCGβ (hCGβCTP). Epitopes within an antigenic domain are defined by specific Abs, that bury nearly 1000Å(2) of surface accessible area on the antigen and recognize a few up to 15 amino acid (aa) residues, whereby between 2 and 5 of these provide the essential binding energy. Variability in Ab binding modes to the contact aa residues are responsible for the variation in affinity and intra- and inter-species specificity, e.g. cross-reactions with luteinizing hormone (LH). Each genetically distinct fragment antigen binding (Fab) defines its own epitope. Consequently, recognition of the same epitope by different Abs is only possible in cases of genetically identical sequences of its binding sites. Due to combinatorial V(D)J gene segment variability of heavy and light chains, Abs defining numerous epitopes within an antigenic domain can be generated by different individuals and species. Far more than hundred Abs against the immuno-dominant antigenic domains of either subunit at both ends of the hCG-molecule, the tips of peptide loops one and three (Ł1+3) protruding from the central ck, encompassing h

  3. Targeted identification of infection-related HLA class I-presented epitopes by stable isotope tagging of epitopes (SITE).

    PubMed

    Meiring, H D; Soethout, E C; de Jong, A P J M; van Els, C A C M

    2007-05-01

    Identification of peptides presented in human leukocyte antigen (HLA) class I molecules after viral infection is of strategic importance for immunology and vaccine development. A powerful strategy aimed at the rapid, unambiguous identification of naturally processed HLA class I-associated peptides, which are induced by viral infection, is presented here. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues for the human leukocyte antigen allele of interest. Subsequently, these cells are mixed with an equal number of noninfected cells, which are cultured in normal medium. Finally, peptides are acid-eluted from immunoprecipitated HLA molecules and subjected to two-dimensional nanoscale liquid chromatography-mass spectrometry analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules.

  4. Viral arthritis

    PubMed Central

    Marks, Michael; Marks, Jonathan L

    2016-01-01

    Acute-onset arthritis is a common clinical problem facing both the general clinician and the rheumatologist. A viral aetiology is though to be responsible for approximately 1% of all cases of acute arthritis with a wide range of causal agents recognised. The epidemiology of acute viral arthritis continues to evolve, with some aetiologies, such as rubella, becoming less common due to vaccination, while some vector-borne viruses have become more widespread. A travel history therefore forms an important part of the assessment of patients presenting with an acute arthritis. Worldwide, parvovirus B19, hepatitis B and C, HIV and the alphaviruses are among the most important causes of virally mediated arthritis. Targeted serological testing may be of value in establishing a diagnosis, and clinicians must also be aware that low-titre autoantibodies, such as rheumatoid factor and antinuclear antibody, can occur in the context of acute viral arthritis. A careful consideration of epidemiological, clinical and serological features is therefore required to guide clinicians in making diagnostic and treatment decisions. While most virally mediated arthritides are self-limiting some warrant the initiation of specific antiviral therapy. PMID:27037381

  5. A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus

    PubMed Central

    Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, Yanjin

    2016-01-01

    Hepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology. PMID:27548202

  6. A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus.

    PubMed

    Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, Yanjin

    2016-01-01

    Hepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology. PMID:27548202

  7. Crystal Structure of Insulin-Regulated Aminopeptidase with Bound Substrate Analogue Provides Insight on Antigenic Epitope Precursor Recognition and Processing.

    PubMed

    Mpakali, Anastasia; Saridakis, Emmanuel; Harlos, Karl; Zhao, Yuguang; Papakyriakou, Athanasios; Kokkala, Paraskevi; Georgiadis, Dimitris; Stratikos, Efstratios

    2015-09-15

    Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross-presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent. The N-terminal moiety of the peptide is located at the active site, positioned optimally for catalysis, whereas the C-terminal moiety of the peptide is stabilized along the extended internal cavity lodged between domains II and IV. Hydrophobic interactions and shape complementarity enhance peptide affinity beyond the catalytic site and support a limited selectivity model for antigenic peptide selection that may underlie the generation of complex immunopeptidomes.

  8. Mutant MHC class II epitopes drive therapeutic immune responses to cancer

    PubMed Central

    Kreiter, Sebastian; Vormehr, Mathias; van de Roemer, Niels; Diken, Mustafa; Löwer, Martin; Diekmann, Jan; Boegel, Sebastian; Schrörs, Barbara; Vascotto, Fulvia; Castle, John C.; Tadmor, Arbel D.; Schoenberger, Stephen P.; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient’s tumour possesses a unique set of mutations (‘the mutanome’) that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient’s individual tumour-specific mutations1. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4+ T cells. Vaccination with such CD4+ immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4+ T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope

  9. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease

    PubMed Central

    Jacek, Elzbieta; Tang, Kevin S.; Komorowski, Lars; Ajamian, Mary; Probst, Christian; Stevenson, Brian; Wormser, Gary P.; Marques, Adriana R.

    2016-01-01

    Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen’s possible immune evasion mechanisms. PMID:26718339

  10. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease.

    PubMed

    Jacek, Elzbieta; Tang, Kevin S; Komorowski, Lars; Ajamian, Mary; Probst, Christian; Stevenson, Brian; Wormser, Gary P; Marques, Adriana R; Alaedini, Armin

    2016-02-01

    Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms.

  11. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  12. Immunogenicity of polysaccharides conjugated to peptides containing T- and B-cell epitopes.

    PubMed Central

    Lett, E; Gangloff, S; Zimmermann, M; Wachsmann, D; Klein, J P

    1994-01-01

    To develop a general model of polysaccharide-peptide vaccine, we have investigated the efficiency of linear peptides derived from protein SR, and adhesin of the I/II protein antigen family of oral streptococci, to act as carriers for two T cell-independent polysaccharides: serogroup f polysaccharide from Streptococcus mutans OMZ 175 (poly f) and Saccharomyces cerevisiae mannan. Peptide 3 (YEKEPTPPTRTPDQ) and peptide 6 (TPEDPTDPTDPQDPSS), accessible on the native SR protein as demonstrated by their reactivity in enzyme-linked immunosorbent assays with rat antisera raised against protein SR, correspond to immunodominant regions of SR. Peptide 3 contains at least one B- and one T-cell epitope, as demonstrated by its ability to induce peptide- and SR-specific antibody responses without any carrier and to stimulate the proliferation of rat lymph node cells primed either with free peptide or native SR, whereas peptide 6 contains only B-cell epitope(s). Peptide 3 was then covalently coupled though reductive amination to either poly f or mannan, and peptide 6 was coupled to poly f. Subcutaneous immunizations of rats with poly f-peptide 3 or mannan-peptide 3 conjugates produced a systemic immunoglobulin M (IgM) and IgG antibody response, and the elicited antibodies reacted with free poly f or mannan, peptide 3, protein SR, and S. mutans or S. cerevisiae whole cells. Rats immunized with poly f-peptide 6 did not develop any antipeptide or anti-SR response. Furthermore, a booster immunization of animals with poly f-peptide 3 or mannan-peptide 3 conjugates induced high titers of anti-peptide 3, anti-poly f, and antimannan antibodies, which occurred quickly. The response is anamnestic for the peptide and the polysaccharides and is characterized by an Ig switch from IgM to IgG. The data presented here confirm that the presence of B- and T-cell epitopes is necessary to induce an anamnestic antipeptide response and that a peptide containing relevant B- and T-cell epitopes can act

  13. What is a B-cell epitope?

    PubMed

    Van Regenmortel, Marc H V

    2009-01-01

    The antigenicity of proteins resides in different types of antigenic determinants known as continuous and discontinuous epitopes, cryptotopes, neotopes, and mimotopes. All epitopes have fuzzy boundaries and can be identified only by their ability to bind to certain antibodies. Antigenic cross-reactivity is a common phenomenon because antibodies are always able to recognize a considerable number of related epitopes. This places severe limits to the specificity of antibodies. Antigenicity, which is the ability of an epitope to react with an antibody, must be distinguished from its immunogenicity or ability to induce antibodies in a competent vertebrate host. Failure to make this distinction partly explains why no successful peptide-based vaccines have yet been developed. Methods for predicting the epitopes of proteins are discussed and the reasons for the low success rate of epitope prediction are analyzed.

  14. Strategies to Query and Display Allergy-Derived Epitope Data from the Immune Epitope Database

    PubMed Central

    Vaughan, Kerrie; Peters, Bjoern; Larche, Mark; Pomes, Anna; Broide, David; Sette, Alessandro

    2013-01-01

    The recognition of specific epitopes on allergens by antibodies and T cells is a key element in allergic processes. Analysis of epitope data may be of interest for basic immunopathology or for potential application in diagnostics or immunotherapy. The Immune Epitope Database (IEDB) is a freely available repository of epitope data from infectious disease agents, as well as epitopes defined for allergy, autoimmunity, and transplantation. The IEDB curates the experiments associated with each epitope and thus provides a variety of different ways to search the data. This review aims to demonstrate the utility of the IEDB and its query strategies, including searching by epitope structure (peptidic/nonpeptidic), by assay methodology, by host, by the allergen itself, or by the organism from which the allergen was derived. Links to tools for visualization of 3-D structures, epitope prediction, and analyses of B and T cell reactivity by host response frequency score are also highlighted. PMID:23172234

  15. Ligand-induced Epitope Masking

    PubMed Central

    Mould, A. Paul; Askari, Janet A.; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A.; Humphries, Martin J.

    2016-01-01

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. PMID:27484800

  16. Towards in silico prediction of immunogenic epitopes.

    PubMed

    Flower, Darren R

    2003-12-01

    As torrents of new data now emerge from microbial genomics, bioinformatic prediction of immunogenic epitopes remains challenging but vital. In silico methods often produce paradoxically inconsistent results: good prediction rates on certain test sets but not others. The inherent complexity of immune presentation and recognition processes complicates epitope prediction. Two encouraging developments - data driven artificial intelligence sequence-based methods for epitope prediction and molecular modeling methods based on three-dimensional protein structures - offer hope for the future. PMID:14644141

  17. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    SciTech Connect

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; Kamin-Lewis, Roberta; Al-Darmarki, Salma; Flinko, Robin; Lovo, Elena; Wu, Xueji; Robinson, James E.; Seaman, Michael S.; Fouts, Timothy R.; Gallo, Robert C.; DeVico, Anthony L.; Lewis, George K.

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain; and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.

  18. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    DOE PAGES

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; Kamin-Lewis, Roberta; Al-Darmarki, Salma; Flinko, Robin; Lovo, Elena; Wu, Xueji; Robinson, James E.; Seaman, Michael S.; et al

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less

  19. CD8(+) T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types.

    PubMed

    Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark

    2015-01-01

    Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533

  20. Towards the knowledge-based design of universal influenza epitope ensemble vaccines

    PubMed Central

    Sheikh, Qamar M.; Gatherer, Derek; Reche, Pedro A; Flower, Darren R.

    2016-01-01

    Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly conserved and experimentally verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96 and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97 and 88% coverage of observed subtypes. Availability and Implementation: http://imed.med.ucm.es/Tools/episopt.html. Contact: d.r.flower@aston.ac.uk PMID:27402904

  1. Epitope characterization of an anti-PD-L1 antibody using orthogonal approaches.

    PubMed

    Hao, Gang; Wesolowski, John S; Jiang, Xuliang; Lauder, Scott; Sood, Vanita D

    2015-04-01

    The binding of programmed death ligand 1 protein (PD-L1) to its receptor programmed death protein 1 (PD-1) mediates immunoevasion in cancer and chronic viral infections, presenting an important target for therapeutic intervention. Several monoclonal antibodies targeting the PD-L1/PD-1 signaling axis are undergoing clinical trials; however, the epitopes of these antibodies have not been described. We have combined orthogonal approaches to localize and characterize the epitope of a monoclonal antibody directed against PD-L1 at good resolution and with high confidence. Limited proteolysis and mass spectrometry were applied to reveal that the epitope resides in the first immunoglobulin domain of PD-L1. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) was used to identify a conformational epitope comprised of discontinuous strands that fold to form a beta sheet in the native structure. This beta sheet presents an epitope surface that significantly overlaps with the PD-1 binding interface, consistent with a desired PD-1 competitive mechanism of action for the antibody. Surface plasmon resonance screening of mutant PD-L1 variants confirmed that the region identified by HDX-MS is critical for the antibody interaction and further defined specific residues contributing to the binding energy. Taken together, the results are consistent with the observed inhibitory activity of the antibody on PD-L1-mediated immune evasion. This is the first report of an epitope for any antibody targeting PD-L1 and demonstrates the power of combining orthogonal epitope mapping techniques. PMID:25664688

  2. De Novo Structural Modeling and Conserved Epitopes Prediction of Zika Virus Envelop Protein for Vaccine Development.

    PubMed

    Ashfaq, Usman Ali; Ahmed, Bilal

    2016-09-01

    Zika virus (Zika V) is a positive single-stranded RNA virus that is transmitted by mosquito bites. Zika V Envelop protein is antigenic and is involved in fusion and entry of viral particles into the cell. Till date, there is no vaccine and antiviral drug available against Zika V. Thus, there is a need to develop a vaccine against Zika V. This study was designed for the prediction of B cell and T cell epitopes that can be helpful in diagnosis and vaccine designing against this emerging threat. For this purpose, several B cell and T cell epitopes were predicted that are conserved among Zika virus genomes taken from 12 different countries. Peptides QTLTPVGRL, in case of major histocompatibility complex (MHC) class I, and IRCIGVSNRDFV, in case of MHC class II, are highly antigenic among T cell epitopes. Molecular docking was performed to study the interactions of B cell epitopes with HLA-B7. However, these predicted epitopes could play a constructive role in designing of a vaccine against Zika V.

  3. Molecular and immunological characterization and IgE epitope mapping of Pen n 18, a major allergen of Penicillium notatum.

    PubMed Central

    Yu, Chia-Jung; Chen, Yen-Ming; Su, Song-Nan; Forouhar, Farhad; Lee, Shu-Hua; Chow, Lu-Ping

    2002-01-01

    The mould genus, Penicillium, is a significant source of environmental aero-allergens. A major allergen from Penicillium notatum, Pen n 18, was identified by two-dimensional immunoblotting using monoclonal antibody G11A10, raised against the vacuolar serine protease of Penicillium citrinum, followed by matrix-assisted laser-desorption ionization-time-of-flight MS analysis of the peptide digest. Pen n 18 was then cloned and the amino acid sequence deduced from the cDNA sequence. The cDNA encoded a 494 amino acid protein, considerably larger than mature Pen n 18, the differences being due to the N- and C-terminal prosequences. The deduced amino acid sequence showed extensive similarity with those of vacuolar serine proteases from various fungi. The Pen n 18 coding sequence was expressed in Escherichia coli as a His-tagged fusion protein and purified by Ni(2+)-chelate affinity chromatography. On immunoblots, the purified recombinant protein specifically bound IgE from mould-allergic patients, and cross-inhibition assays demonstrated the presence of common IgE-binding epitopes on Pen n 18 and a major allergen of P. citrinum, Pen c 18. When mapping of the allergenic epitopes was performed, at least nine different linear IgE-binding epitopes, located throughout the Pen n 18 protein, were identified. Of these, peptide C12, located in the N-terminal region of the molecule, was recognized by serum from 75% of the patients tested and therefore appears to be an immunodominant IgE-binding epitope. PMID:11964171

  4. Characterization of Chlamydia pneumoniae species-specific proteins immunodominant in humans.

    PubMed Central

    Iijima, Y; Miyashita, N; Kishimoto, T; Kanamoto, Y; Soejima, R; Matsumoto, A

    1994-01-01

    Proteins of Chlamydia pneumoniae immunodominant in humans were characterized with the sera of 13 patients who were not likely to have been exposed to C. trachomatis or C. psittaci. The serological responses among these patients were similar on a qualitative basis, but some differences were found quantitatively. However, the serological responses of the patients who were infected with C. pneumoniae differed markedly from those of two patients who were infected with C. trachomatis and two who were infected with C. psittaci and those of mice that were transtracheally infected with C. pneumoniae. Among proteins immunodominant in the patients who were infected with C. pneumoniae, a 40-kDa major outer membrane protein was genus specific and 53-, 46-, and 43-kDa proteins were species specific in their reactions with the majority of the human sera used. A few sera reacted strongly with a 73-kDa protein genus specifically. Some proteins with weak immunogenicity exhibited species specificity. An antigenic analysis with human sera and murine monoclonal antibodies against the 53-kDa protein showed that hte antigenicities were strictly conserved among the seven strains of C. pneumoniae tested. The genus-specific 73-kDa protein was solubilized with octylglucoside. All of the species-specific immunodominant proteins were solubilized with sodium dodecyl sulfate, but the genus-specific major outer membrane protein was not. These results suggest that a serological diagnosis of C. pneumoniae infection could be achieved species specifically by comparison of the serum responses to sodium dodecyl sulfate- and octylglucoside-soluble fractions. Images PMID:8195362

  5. MHC Class I-Presented T Cell Epitopes Identified by Immunoproteomics Analysis Are Targets for a Cross Reactive Influenza-Specific T Cell Response

    PubMed Central

    Testa, James S.; Shetty, Vivekananda; Hafner, Julie; Nickens, Zacharie; Kamal, Shivali; Sinnathamby, Gomathinayagam; Philip, Ramila

    2012-01-01

    Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines. PMID:23144892

  6. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.

    PubMed

    Pratheek, B M; Suryawanshi, Amol R; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2015-04-01

    Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus, responsible for acute febrile infection. The high morbidity and socio-economic loss associated with the recent CHIKV epidemics worldwide have raised a great public health concern and emphasize the need to study the immunological basis of CHIKV infection to control the disease. MHC-I restricted CD8(+) T cell response represent one of the major anti-viral immune responses. Accordingly, it is essential to have a detailed understanding towards CHIKV specific MHC-I restricted immunogenic epitopes for anti-viral CD8(+) CTL immunogenicity. In the present study, a computational approach was used to predict the conserved MHC-I epitopes for mouse haplotypes (H2-Db and H2-Dd) and some alleles of the major HLA-I supertypes (HLA-A2, -A3, -A24, -B7, -B15) of all CHIKV proteins. Further, an in-depth computational analysis was carried out to validate the selected epitopes for their nature of conservation in different global CHIKV isolates to assess their binding affinities to the appropriate site of respective MHC-I molecules and to predict anti-CHIKV CD8(+) CTL immunogenicity. Our analyses resulted in fifteen highly conserved epitopes for H2-Db and H2-Dd and fifty epitopes for different HLA-I supertypes. Out of these, the MHC-I epitopes VLLPNVHTL and MTPERVTRL were found to have highest predictable CTL immunogenicities and least binding energies for H2-Db and H2-Dd, whereas, for HLA-I, the epitope FLTLFVNTL was with the highest population coverage, CTL immunogenicity and least binding energy. Hence, our study has identified MHC-I restricted epitopes that may help in the advancement of MHC-I restricted epitope based anti-CHIKV immune responses against this infection and this will be useful towards the development of epitope based anti-CHIKV immunotherapy in the future. However, further experimental investigations for cross validation and evaluation are warranted to establish the ability of epitopes to induce CD8(+) T cell

  7. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.

    PubMed

    Pratheek, B M; Suryawanshi, Amol R; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2015-04-01

    Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus, responsible for acute febrile infection. The high morbidity and socio-economic loss associated with the recent CHIKV epidemics worldwide have raised a great public health concern and emphasize the need to study the immunological basis of CHIKV infection to control the disease. MHC-I restricted CD8(+) T cell response represent one of the major anti-viral immune responses. Accordingly, it is essential to have a detailed understanding towards CHIKV specific MHC-I restricted immunogenic epitopes for anti-viral CD8(+) CTL immunogenicity. In the present study, a computational approach was used to predict the conserved MHC-I epitopes for mouse haplotypes (H2-Db and H2-Dd) and some alleles of the major HLA-I supertypes (HLA-A2, -A3, -A24, -B7, -B15) of all CHIKV proteins. Further, an in-depth computational analysis was carried out to validate the selected epitopes for their nature of conservation in different global CHIKV isolates to assess their binding affinities to the appropriate site of respective MHC-I molecules and to predict anti-CHIKV CD8(+) CTL immunogenicity. Our analyses resulted in fifteen highly conserved epitopes for H2-Db and H2-Dd and fifty epitopes for different HLA-I supertypes. Out of these, the MHC-I epitopes VLLPNVHTL and MTPERVTRL were found to have highest predictable CTL immunogenicities and least binding energies for H2-Db and H2-Dd, whereas, for HLA-I, the epitope FLTLFVNTL was with the highest population coverage, CTL immunogenicity and least binding energy. Hence, our study has identified MHC-I restricted epitopes that may help in the advancement of MHC-I restricted epitope based anti-CHIKV immune responses against this infection and this will be useful towards the development of epitope based anti-CHIKV immunotherapy in the future. However, further experimental investigations for cross validation and evaluation are warranted to establish the ability of epitopes to induce CD8(+) T cell

  8. Ingestion of oats and barley in patients with celiac disease mobilizes cross-reactive T cells activated by avenin peptides and immuno-dominant hordein peptides.

    PubMed

    Hardy, Melinda Y; Tye-Din, Jason A; Stewart, Jessica A; Schmitz, Frederike; Dudek, Nadine L; Hanchapola, Iresha; Purcell, Anthony W; Anderson, Robert P

    2015-01-01

    Celiac disease (CD) is a common CD4(+) T cell mediated enteropathy driven by gluten in wheat, rye, and barley. Whilst clinical feeding studies generally support the safety of oats ingestion in CD, the avenin protein from oats can stimulate intestinal gluten-reactive T cells isolated from some CD patients in vitro. Our objective was to establish whether ingestion of oats or other grains toxic in CD stimulate an avenin-specific T cell response in vivo. We fed participants a meal of oats (100 g/day over 3 days) to measure the in vivo polyclonal avenin-specific T cell responses to peptides contained within comprehensive avenin peptide libraries in 73 HLA-DQ2.5(+) CD patients. Grain cross-reactivity was investigated using oral challenge with wheat, barley, and rye. Avenin-specific responses were observed in 6/73 HLA-DQ2.5(+) CD patients (8%), against four closely related peptides. Oral barley challenge efficiently induced cross-reactive avenin/hordein-specific T cells in most CD patients, whereas wheat or rye challenge did not. In vitro, immunogenic avenin peptides were susceptible to digestive endopeptidases and showed weak HLA-DQ2.5 binding stability. Our findings indicate that CD patients possess T cells capable of responding to immuno-dominant hordein epitopes and homologous avenin peptides ex vivo, but the frequency and consistency of these T cells in blood is substantially higher after oral challenge with barley compared to oats. The low rates of T cell activation after a substantial oats challenge (100 g/d) suggests that doses of oats commonly consumed are insufficient to cause clinical relapse, and supports the safety of oats demonstrated in long-term feeding studies.

  9. Construction and immunological evaluation of truncated hepatitis B core particles carrying HBsAg amino acids 119–152 in the major immunodominant region (MIR)

    SciTech Connect

    Su, Qiudong; Yi, Yao; Guo, Minzhuo; Qiu, Feng; Jia, Zhiyuan; Lu, Xuexin; Meng, Qingling; Bi, Shengli

    2013-09-13

    Highlights: •The conformational HBV neutralization antigen domain was successfully displayed on the surface of truncated HBc particles. •Appropriate dialysis procedures to support the renaturing environment for the protein refolding. •Efficient purification procedures to obtain high purity and icosahedral particles of mosaic HBV antigen. •Strong immune responses not only including neutralization antibody response but also Th1 cell response were induced in mice. -- Abstract: Hepatitis B capsid protein expressed in Escherichia coli can reassemble into icosahedral particles, which could strongly enhance the immunogenicity of foreign epitopes, especially those inserted into its major immunodominant region. Herein, we inserted the entire ‘α’ antigenic determinant amino acids (aa) 119–152 of HBsAg into the truncated HBc (aa 1–144), between Asp{sup 78} and Pro{sup 79}. Prokaryotic expression showed that the mosaic HBc was mainly in the form of inclusion bodies. After denaturation with urea, it was dialyzed progressively for protein renaturation. We observed that before and after renaturation, mosaic HBc was antigenic as determined by HBsAg ELISA and a lot of viruslike particles were observed after renaturation. Thus, we further purified the mosaic viruslike particles by (NH{sub 4}){sub 2}SO{sub 4} precipitation, DEAE chromatography, and Sepharose 4FF chromatography. Negative staining electron microscopy demonstrated the morphology of the viruslike particles. Immunization of Balb/c mice with mosaic particles induced the production of anti-HBs antibody and Th1 cell immune response supported by ELISPOT and CD4/CD8 proportions assay. In conclusion, we constructed mosaic hepatitis core particles displaying the entire ‘α’ antigenic determinant on the surface and laid a foundation for researching therapeutic hepatits B vaccines.

  10. Epitope topography controls bioactivity in supramolecular nanofibers

    PubMed Central

    Sur, Shantanu; Tantakitti, Faifan; Matson, John B.; Stupp, Samuel I.

    2015-01-01

    Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties. PMID:25745558

  11. Delineation of immunodominant and cytadherence segment(s) of Mycoplasma pneumoniae P1 gene

    PubMed Central

    2014-01-01

    Background Adhesion of Mycoplasma pneumoniae (M. pneumoniae) to host epithelial cells requires several adhesin proteins like P1, P30 and P116. Among these proteins, P1 protein has been inedited as one of the major adhesin and immunogenic protein present on the attachment organelle of M. pneumoniae. In the present study, we scanned the entire sequence of M. pneumoniae P1 protein to identify the immunodominant and cytadherence region(s). M. pneumoniae P1 gene was synthesized in four segments replacing all the UGA codons to UGG codons. Each of the four purified P1 protein fragment was analyzed for its immunogenicity with anti-M. pneumoniae M129 antibodies (Pab M129) and sera of M. pneumoniae infected patients by western blotting and ELISA. Antibodies were produced against all the P1 protein fragments and these antibodies were used for M. pneumoniae adhesion, M. pneumoniae adhesion inhibition and M. pneumoniae surface exposure assays using HEp-2 cells lines. Results Our results show that the immunodominant regions are distributed throughout the entire length of P1 protein, while only the N- and C- terminal region(s) of P1 protein are surface exposed and block cytadhesion to HEp-2 cells, while antibodies to two middle fragments failed to block cytadhesion. Conclusions These results have important implications in designing strategies to block the attachment of M. pneumoniae to epithelial cells, thus preventing the development of atypical pneumonia. PMID:24774062

  12. Efficient generation and rapid isolation via stoplight recombination of Herpes simplex viruses expressing model antigenic and immunological epitopes.

    PubMed

    Sanchez, Rebecca L; Ramsay, Alistair J; Foster, Timothy P

    2012-01-01

    Generation and isolation of recombinant herpesviruses by traditional homologous recombination methods can be a tedious, time-consuming process. Therefore, a novel stoplight recombination selection method was developed that facilitated rapid identification and purification of recombinant viruses expressing fusions of immunological epitopes with EGFP. This "traffic-light" approach provided a visual indication of the presence and purity of recombinant HSV-1 isolates by producing three identifying signals: (1) red fluorescence indicates non-recombinant viruses that should be avoided; (2) yellow fluorescence indicates cells co-infected with non-recombinant and recombinant viruses that are chosen with caution; (3) green fluorescence indicates pure recombinant isolates and to proceed with preparation of viral stocks. Adaptability of this system was demonstrated by creating three recombinant viruses that expressed model immunological epitopes. Diagnostic PCR established that the fluorescent stoplight indicators were effective at differentiating between the presence of background virus contamination and pure recombinant viruses specifying immunological epitopes. This enabled isolation of pure recombinant viral stocks that exhibited wildtype-like viral replication and cell-to-cell spread following three rounds of plaque purification. Expression of specific immunological epitopes was confirmed by western analysis, and the utility of these viruses for examining host immune responses to HSV-1 was determined by a functional T cell assay.

  13. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    SciTech Connect

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell

    2009-05-21

    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  14. Monoclonal antibodies against human immunodeficiency virus type 1 integrase: epitope mapping and differential effects on integrase activities in vitro.

    PubMed Central

    Nilsen, B M; Haugan, I R; Berg, K; Olsen, L; Brown, P O; Helland, D E

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the integration of viral DNA into the host chromosome, an essential step in retroviral replication. As a tool to study the structure and function of this enzyme, monoclonal antibodies (MAbs) against HIV-1 IN were produced. Epitope mapping demonstrated that the 17 MAbs obtained could be divided into seven different groups, and the selection of MAbs representing these groups were tested for their effect on in vitro activities of IN. Four groups of MAbs recognized epitopes within the region of amino acids (aa) 1 to 16, 17 to 38, or 42 to 55 in and around the conserved HHCC motif near the N terminus of IN. MAbs binding to these epitopes inhibited end processing and DNA joining and either stimulated or had little effect on disintegration and reintegration activities of IN. Two MAbs binding to epitopes within the region of aa 56 to 102 in the central core or aa 186 to 250 in the C-terminal half of the protein showed only minor effects on the in vitro activities of IN. Three Mabs which recognized on epitope within the region of aa262 to 271 of HIV-1 IN cross-reacted with HIV-2 IN. MAbs binding to this epitope clearly inhibited end processing and DNA joining and stimulated or had little effect on disintegration. In contrast to the N-terminal-specific MAbs, these C-terminal-specific MAbs abolished reintegration activity of IN. PMID:8627677

  15. Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

    PubMed Central

    Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi

    2016-01-01

    ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit

  16. Identification of the major allergenic epitopes of Eriocheir sinensis roe hemocyanin: A novel tool for food allergy diagnoses.

    PubMed

    Zhang, Yingying; Zhu, Lina; Li, Shaoshen; Zhang, Jiayi; She, Tiantian; Yan, Juanjuan; Bian, Ying; Li, Huiqiang

    2016-06-01

    Crab meat and roe are highly nutritious delicacies in China. While extensive research has been conducted for allergens derived from crab-meat, data relevant to the allergenic potential of crab roe derived proteins, of which hemocyanin is a principal contender, are almost entirely absent. Using bioinformatics prediction and IgE-binding assays, the three principal immunodominant epitopes of hemocyanin were identified and then combined as a single recombinant fusion protein (rHc). This together with the full-length recombinant protein (Hc) were expressed in Escherichia coli and subsequently identified by SDS-PAGE and immunoblotting. Ninety-five percent of our patients were found to carry rHc-specific IgE antibodies by ELISA. Dot-blot inhibition, together with ELISA inhibition studies, showed that pre-incubation of patient sera with the recombinant epitope protein could inhibit26% to 63% (mean: 50%) of IgE binding to immobilized, full-length Hc and the dose-response curve represents as a sigmoid shape. The recombinant protein (rHc) represents a versatile biologic tool with which to diagnose and investigate therapies for E. sinensis allergy. PMID:27208437

  17. Identification and characterization of CD4⁺ T-cell epitopes on GapC protein of Streptococcus dysgalactiae.

    PubMed

    Yao, Di; Zhang, Hua; Wang, Xintong; Yu, Simiao; Wei, Yuhua; Liu, Wei; Wang, Jiannan; Chen, Xiaoting; Zhang, Zhenghai; Sun, Hunan; Yu, Liquan; Ma, Jinzhu; Tong, Chunyu; Song, Baifen; Cui, Yudong

    2016-02-01

    The GapC protein is highly conserved surface dehydrogenase among Streptococcus dysgalactiae (S. dysgalactiae) and is shown to be involved in bacterial virulence. Immunization of GapC protein can induce specific CD4(+) T-cell immune responses and protect against S. dysgalactiae infection. However, there are no studies to identify immunodominant CD4(+) T-cell epitopes on GapC protein. In this study, in silico MHC affinity measurement method was firstly used to predict potential CD4(+) T-cell epitopes on GapC protein. Six predictive 15-mer peptides were synthesized and two novel GapC CD4(+) T-cell epitopes, GapC63-77 and GapC96-110, were for the first time identified using CD4(+) T-cells obtained from GapC-immunized BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice spleen based on cell proliferation and cytokines response. The results showed that peptides containing 63-77 and 96-110 induced significant antigen-specific CD4(+) T-cells proliferation response in vivo. At the same time, high levels of IFN-γ and IL-17A, as well as moderate levels of IL-10 and IL-4 were detected in CD4(+) T-cells isolated from both GapC and peptide-immunized mice in vivo, suggesting that GapC63-77 and GapC96-110 preferentially elicited polarized Th1/Th17-type responses. The characterization of GapC CD4(+) T-cell epitopes not only helps us understand its protective immunity, but also contributes to design effective T-cell epitope-based vaccine against S. dysgalactiae infection.

  18. Characterization of immunologic properties of a second HLA-A2 epitope from a granule protease in CML patients and HLA-A2 transgenic mice

    PubMed Central

    Lacey, Simon F.; La Rosa, Corinna; Kaltcheva, Teodora; Srivastava, Tumul; Seidel, Aprille; Zhou, Wendi; Rawal, Ravindra; Hagen, Katharine; Krishnan, Aparna; Longmate, Jeff; Andersson, Helen A.; St. John, Lisa; Bhatia, Ravi; Pullarkat, Vinod; Forman, Stephen J.; Cooper, Laurence J. N.; Molldrem, Jeffrey

    2011-01-01

    The serine proteases, neutrophil elastase (HNE) and proteinase 3 (PR3), are aberrantly expressed in human myeloid leukemias. T-cell responses to these proteins have been correlated with remission in patients with chronic myeloid leukemia (CML). Human PR3/HNE-specific CD8+ T cells predominantly recognize a nonameric HLA-A2–restricted T-cell epitope called PR1 which is conserved in both Ags. However, CML patients have CD8+ T cells in peripheral blood recognizing an additional HLA-A2 epitope termed PR2. To assess immunologic properties of these Ags, novel recombinant vaccinia viruses (rVV) expressing PR3 and HNE were evaluated in HLA-A2 transgenic (Tg) mice (HHDII). Immunization of HHDII mice with rVV-PR3 elicited a robust PR3-specific CD8+ T-cell response dominated by recognition of PR2, with minimal recognition of the PR1 epitope. This result was unexpected, because the PR2 peptide has been reported to bind poorly to HLA. To account for these findings, we proposed that HHDII mice negatively selected PR1-specific T cells because of the presence of this epitope within murine PR3 and HNE, leading to immunodominance of PR2-specific responses. PR2-specific splenocytes are cytotoxic to targets expressing naturally processed PR3, though PR1-specific splenocytes are not. We conclude that PR2 represents a functional T-cell epitope recognized in mice and human leukemia patients. These studies are registered at www.clinicaltrials.gov as NCT00716911. PMID:21719601

  19. Immunochemical identification of Brucella abortus lipopolysaccharide epitopes.

    PubMed Central

    Rojas, N; Freer, E; Weintraub, A; Ramirez, M; Lind, S; Moreno, E

    1994-01-01

    Sera from Brucella abortus-infected and -vaccinated bovines recognized four lipopolysaccharide (LPS) determinants: two in the O-polysaccharide (A and C), one in the core oligosaccharide from rough Brucella LPS (R), and one in lipid A (LA). From 46 different hybridomas secreting monoclonal antibodies (MAbs) against various LPS moieties, 9 different specificities were identified. Two epitopes, A and C/Y, were present in the O-polysaccharide. Two epitopes were found in the core oligosaccharide (R1 and R2) of rough Brucella LPS. MAbs against R1 and R2 epitopes reacted against LPS from different rough Brucella species; however, MAbs directed to the R2 epitope also reacted against enterobacterial LPS from deep rough mutants. Three epitopes (LA1, LA2, and LA3) were located in the lipid A backbone. Different sets of MAbs recognized two epitopes in the lipid A-associated outer membrane protein (LAOmp3-1 and LAOmp3-2). LPS preparations from smooth brucellae had small amounts of rough-type LPS. Although LPS from rough brucellae did not show smooth-type LPS in western blots (immunoblots), two hybridomas generated from mice immunized with rough B. abortus produced antibodies against smooth B. abortus LPS. Results are discussed in relation to the structure and function of B. abortus LPS and to previous findings on the epitopic density of the molecule. Images PMID:7496947

  20. Proteome-wide screening reveals immunodominance in the CD8 T cell response against classical swine fever virus with antigen-specificity dependent on MHC class I haplotype expression.

    PubMed

    Franzoni, Giulia; Kurkure, Nitin V; Essler, Sabine E; Pedrera, Miriam; Everett, Helen E; Bodman-Smith, Kikki B; Crooke, Helen R; Graham, Simon P

    2013-01-01

    Vaccination with live attenuated classical swine fever virus (CSFV) vaccines induces a rapid onset of protection which has been associated with virus-specific CD8 T cell IFN-γ responses. In this study, we assessed the specificity of this response, by screening a peptide library spanning the CSFV C-strain vaccine polyprotein to identify and characterise CD8 T cell epitopes. Synthetic peptides were pooled to represent each of the 12 CSFV proteins and used to stimulate PBMC from four pigs rendered immune to CSFV by C-strain vaccination and subsequently challenged with the virulent Brescia strain. Significant IFN-γ expression by CD8 T cells, assessed by flow cytometry, was induced by peptide pools representing the core, E2, NS2, NS3 and NS5A proteins. Dissection of these antigenic peptide pools indicated that, in each instance, a single discrete antigenic peptide or pair of overlapping peptides was responsible for the IFN-γ induction. Screening and titration of antigenic peptides or truncated derivatives identified the following antigenic regions: core₂₄₁₋₂₅₅ PESRKKLEKALLAWA and NS3₁₉₀₂₋₁₉₁₂ VEYSFIFLDEY, or minimal length antigenic peptides: E2₉₉₆₋₁₀₀₃ YEPRDSYF, NS2₁₂₂₃₋₁₂₃₀ STVTGIFL and NS5A₃₀₇₀₋₃₀₇₈ RVDNALLKF. The epitopes are highly conserved across CSFV strains and variable sequence divergence was observed with related pestiviruses. Characterisation of epitope-specific CD8 T cells revealed evidence of cytotoxicity, as determined by CD107a mobilisation, and a significant proportion expressed TNF-α in addition to IFN-γ. Finally, the variability in the antigen-specificity of these immunodominant CD8 T cell responses was confirmed to be associated with expression of distinct MHC class I haplotypes. Moreover, recognition of NS₁₂₂₃₋₁₂₃₀ STVTGIFL and NS3₁₉₀₂₋₁₉₁₂ VEYSFIFLDEY by a larger group of C-strain vaccinated animals showed that these peptides

  1. Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population

    PubMed Central

    Mishto, Michele; Bellavista, Elena; Ligorio, Claudia; Textoris-Taube, Kathrin; Santoro, Aurelia; Giordano, Mara; D'Alfonso, Sandra; Listì, Florinda; Nacmias, Benedetta; Cellini, Elena; Leone, Maurizio; Grimaldi, Luigi M.E.; Fenoglio, Chiara; Esposito, Federica; Martinelli-Boneschi, Filippo; Galimberti, Daniela; Scarpini, Elio; Seifert, Ulrike; Amato, Maria Pia; Caruso, Calogero; Foschini, Maria P.; Kloetzel, Peter M.; Franceschi, Claudio

    2010-01-01

    Background Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and regulation of autoreactive CD8+ T cells in Multiple Sclerosis. Methodology/Principal Findings Immunoproteasomes and PA28-αβ regulator are present in MS affected brain area and accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons, endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262 Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2 codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111–119. Conclusion/Significance The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLA-A*02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of immunoproteasome in the MS pathogenesis. PMID:20174631

  2. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  3. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization. PMID:25375337

  4. The Use of the Immune Epitope Database to Study Autoimmune Epitope Data Related to Alopecia Areata.

    PubMed

    Sette, Alessandro; Paul, Sinu; Vaughan, Kerrie; Peters, Bjoern

    2015-11-01

    The Immune Epitope Database (IEDB) is a repository of published epitope data for infectious diseases, allergy, transplantation and autoimmunity. Herein we provide an introduction to the IEDB search interface, focusing on data related to autoimmune diseases, including alopecia areata (AA). We demonstrate how common questions related can be answered, such as how to search for specific autoantigens, epitope sequences, response types (B- and/or T-cell assays), or host, as well as how to search for epitopes of known major histocompatibility complex restriction and for data related to a specific disease. Our survey of the data found that while as a whole Autoimmunity-specific records represent a significant portion (∼30%); epitopes reported for AA are remarkably few, just 23 epitopes from six antigens. This reveals a significant knowledge gap for AA, and suggests that additional mapping of epitopes and identification of novel AA-associated autoantigens is warranted. Citing recently published examples, we show how bioinformatic, proteomic, and technological advances make it now increasingly feasible to identify epitopes and novel antigens in human disease. The goal herein was to increase awareness of the IEDB as a free resource for the scientific community and to demonstrate its use in finding (existing) and analyzing (prediction) epitope data. PMID:26551944

  5. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis.

    PubMed

    Irrgang, A; Weise, C; Murugaiyan, J; Roesler, U

    2015-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  6. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    SciTech Connect

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A.

    2012-07-25

    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  7. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    PubMed Central

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Charles L.; Cooper, Max D.; Wilson, Ian A.

    2012-01-01

    Summary Variable Lymphocyte Receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin-fold based T- and B-cell receptors, lymphocyte-like cells of jawless fish express VLRs (A, B or C) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA, C) in function. Here we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores. PMID:22405006

  8. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis

    PubMed Central

    Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U.

    2014-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  9. Enhancement of viral escape in HIV-1 Nef by STEP vaccination

    PubMed Central

    Park, Sung Yong; Mack, Wendy J.; Lee, Ha Y.

    2016-01-01

    Objective: Properly priming cytotoxic T-lymphocyte (CTL) responses is an important task in HIV-1 vaccination. However, the STEP trial showed no efficacy even though the vaccine elicited HIV-specific CTL responses. Our study is to investigate whether or not the STEP vaccine enhanced viral escape in infected volunteers. Methods: The signature of viral escape, the presence of multiple escape variants, could be falsely represented by the existence of multiple founder viruses. Therefore, we use a mathematical model to designate STEP study patients with infections from a single founder virus. We then conduct permutation tests on each of 9988 Gag, Pol, and Nef overlapping peptides to identify epitopes with significant differences in diversity between the vaccine and placebo groups using previously published STEP trial sequence data. Results: We identify signatures of vaccine-enhanced viral escape within HIV-1 Nef from the STEP trial. Vaccine-treated patients showed a greater level of epitope diversity in one of the immunodomiant epitopes, EVGFPVRPQVPL (Nef65–76), compared with placebo-treated patients (P = 0.0038). In the other three Nef epitopes, there is a marginally significant difference in the epitope diversity between the vaccine and placebo group (P < 0.1). This greater epitope diversity was neither due to any difference in infection duration nor overall nef gene diversity between the two groups, suggesting that the increase in viral escape was likely mediated by vaccine-induced T-cell responses. Conclusion: Viral escape in Nef is elevated preferentially in STEP vaccine-treated individuals, suggesting that vaccination primarily modulated initial CTL responses. Our observations provide important insights into improving vaccine-primed first immune control. PMID:27427874

  10. Influence of High Hydrostatic Pressure on Epitope Mapping of Tobacco Mosaic Virus Coat Protein

    PubMed Central

    Bonafe, Carlos Francisco Sampaio; Arns, Clarice Weis

    2014-01-01

    Abstract In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP. PMID:24605789

  11. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses.

    PubMed

    Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony; Pazgier, Marzena; Haynes, Barton F; Ferrari, Guido

    2013-07-01

    Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC. PMID:24191939

  12. Viral Parkinsonism

    PubMed Central

    Jang, Haeman; Boltz, David A.; Webster, Robert G.; Smeyne, Richard Jay

    2015-01-01

    Parkinson's disease is a debilitating neurological disorder characterized that affects 1-2% of the adult population over 55 years of age. For the vast majority of cases, the etiology of this disorder is unknown, although it is generally accepted that there is a genetic susceptibility to any number of environmental agents. One such agent may be viruses. It has been shown that numerous viruses can enter the nervous system, i.e. they are neurotropic, and induce a number of encephalopathies. One of the secondary consequences of these encephalopathies can be parkinsonism, that is both transient as well as permanent. One of the most highlighted and controversial cases of viral parkinsonism is that which followed the 1918 influenza outbreak and the subsequent induction of von Economo's encephalopathy. In this review, we discuss the neurological sequelae of infection by influenza virus as well as that of other viruses known to induce parkinsonism including Coxsackie, Japanese encephalitis B, St. Louis, West Nile and HIV viruses. PMID:18760350

  13. Viral evolution

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2012-01-01

    Explaining the origin of viruses remains an important challenge for evolutionary biology. Previous explanatory frameworks described viruses as founders of cellular life, as parasitic reductive products of ancient cellular organisms or as escapees of modern genomes. Each of these frameworks endow viruses with distinct molecular, cellular, dynamic and emergent properties that carry broad and important implications for many disciplines, including biology, ecology and epidemiology. In a recent genome-wide structural phylogenomic analysis, we have shown that large-to-medium-sized viruses coevolved with cellular ancestors and have chosen the evolutionary reductive route. Here we interpret these results and provide a parsimonious hypothesis for the origin of viruses that is supported by molecular data and objective evolutionary bioinformatic approaches. Results suggest two important phases in the evolution of viruses: (1) origin from primordial cells and coexistence with cellular ancestors, and (2) prolonged pressure of genome reduction and relatively late adaptation to the parasitic lifestyle once virions and diversified cellular life took over the planet. Under this evolutionary model, new viral lineages can evolve from existing cellular parasites and enhance the diversity of the world’s virosphere. PMID:23550145

  14. Identification and Analysis of Immunodominant Antigens for ELISA-Based Detection of Theileria annulata.

    PubMed

    Bilgic, Huseyin Bilgin; Karagenc, Tulin; Bakırcı, Serkan; Shiels, Brian; Tait, Andrew; Kinnaird, Jane; Eren, Hasan; Weir, William

    2016-01-01

    Tropical or Mediterranean theileriosis, caused by the protozoan parasite Theileria annulata, remains an economically important bovine disease in North Africa, Southern Europe, India, the Middle East and Asia. The disease affects mainly exotic cattle and imposes serious constraints upon livestock production and breed improvement programmes. While microscopic and molecular methods exist which are capable of detecting T. annulata during acute infection, the identification of animals in the carrier state is more challenging. Serological tests, which detect antibodies that react against parasite-encoded antigens, should ideally have the potential to identify carrier animals with very high levels of sensitivity and specificity. However, assays developed to date have suffered from a lack of sensitivity and/or specificity and it is, therefore, necessary to identify novel parasite antigens, which can be developed for this purpose. In the present study, genes encoding predicted antigens were bioinformatically identified in the T. annulata genome. These proteins, together with a panel of previously described antigens, were assessed by western blot analysis for immunoreactivity, and this revealed that four novel candidates and five previously described antigens were recognised by immune bovine serum. Using a combination of immunoprecipitation and mass spectrophotometric analysis, an immunodominant protein (encoded by TA15705) was identified as Ta9, a previously defined T cell antigen. Western blotting revealed another of the five proteins in the Ta9 family, TA15710, also to be an immunodominant protein. However, validation by Enzyme-Linked Immunosorbent Assay indicated that due to either allelic polymorphism or differential immune responses of individual hosts, none of the novel candidates can be considered ideal for routine detection of T. annulata-infected/carrier animals. PMID:27270235

  15. Identification and Analysis of Immunodominant Antigens for ELISA-Based Detection of Theileria annulata

    PubMed Central

    Bakırcı, Serkan; Tait, Andrew; Kinnaird, Jane; Eren, Hasan

    2016-01-01

    Tropical or Mediterranean theileriosis, caused by the protozoan parasite Theileria annulata, remains an economically important bovine disease in North Africa, Southern Europe, India, the Middle East and Asia. The disease affects mainly exotic cattle and imposes serious constraints upon livestock production and breed improvement programmes. While microscopic and molecular methods exist which are capable of detecting T. annulata during acute infection, the identification of animals in the carrier state is more challenging. Serological tests, which detect antibodies that react against parasite-encoded antigens, should ideally have the potential to identify carrier animals with very high levels of sensitivity and specificity. However, assays developed to date have suffered from a lack of sensitivity and/or specificity and it is, therefore, necessary to identify novel parasite antigens, which can be developed for this purpose. In the present study, genes encoding predicted antigens were bioinformatically identified in the T. annulata genome. These proteins, together with a panel of previously described antigens, were assessed by western blot analysis for immunoreactivity, and this revealed that four novel candidates and five previously described antigens were recognised by immune bovine serum. Using a combination of immunoprecipitation and mass spectrophotometric analysis, an immunodominant protein (encoded by TA15705) was identified as Ta9, a previously defined T cell antigen. Western blotting revealed another of the five proteins in the Ta9 family, TA15710, also to be an immunodominant protein. However, validation by Enzyme-Linked Immunosorbent Assay indicated that due to either allelic polymorphism or differential immune responses of individual hosts, none of the novel candidates can be considered ideal for routine detection of T. annulata-infected/carrier animals. PMID:27270235

  16. Identification of protective linear B-cell epitopes on the subolesin/akirin orthologues of Ornithodoros spp. soft ticks.

    PubMed

    Manzano-Román, Raúl; Díaz-Martín, Verónica; Oleaga, Ana; Pérez-Sánchez, Ricardo

    2015-02-18

    Subolesin/akirin is a protective antigen that is highly conserved across hematophagous vector species and is therefore potentially useful for the development of a universal vaccine for vector control, including soft ticks. Recent results have shown that in Ornithodoros erraticus and O. moubata soft ticks, RNAi-mediated subolesin gene knockdown inhibits tick oviposition and fertility by more than 90%; however, vaccination with recombinant subolesins resulted in remarkably low protective efficacies (5-24.5% reduction in oviposition). Here we report that vaccination with subolesin recombinants induces non-protective antibodies mainly directed against immunodominant linear B-cell epitopes located on highly structured regions of the subolesin protein, probably unrelated to its biological activity, while leaving the unstructured/disordered regions unrecognized. Accordingly, for a new vaccine trial we designed four synthetic peptides (OE1, OE2, OM1 and OM2) from the unrecognized/disordered regions of the Ornithodoros subolesin sequences and coupled them to keyhole limpet haemocyanin (KLH). These KLH-peptide conjugates induced the synthesis of antibodies that recognized linear B-cell epitopes located on the unstructured loops of the subolesin protein and provided up to 70.1% and 83.1% vaccine efficacies in O. erraticus and O. moubata, respectively. These results show that the protective effect of subolesin-based vaccines is highly dependent on the particular epitope recognized by antibodies on the subolesin sequence and strongly suggest that the biological activity of subolesin is exerted through its unstructured regions. The results reported here contribute to our understanding of the mechanism of protection of subolesin-based vaccines and reveal novel protective peptides that could be included among the array of candidate antigens useful for developing anti-vector vaccines based on subolesin/akirin. PMID:25597941

  17. CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1*1501 mice

    PubMed Central

    Steinitz, Katharina N.; van Helden, Pauline M.; Binder, Brigitte; Wraith, David C.; Unterthurner, Sabine; Hermann, Corinna; Schuster, Maria; Ahmad, Rafi U.; Weiller, Markus; Lubich, Christian; de la Rosa, Maurus; Schwarz, Hans Peter; Reipert, Birgit M.

    2014-01-01

    Today it is generally accepted that B cells require cognate interactions with CD4+ T cells to develop high-affinity antibodies against proteins. CD4+ T cells recognize peptides (epitopes) presented by MHC class II molecules that are expressed on antigen-presenting cells. Structural features of both the MHC class II molecule and the peptide determine the specificity of CD4+ T cells that can bind to the MHC class II-peptide complex. We used a new humanized hemophilic mouse model to identify FVIII peptides presented by HLA-DRB1*1501. This model carries a knock-out of all murine MHC class II molecules and expresses a chimeric murine-human MHC class II complex that contains the peptide-binding sites of the human HLA-DRB1*1501. When mice were treated with human FVIII, the proportion of mice that developed antibodies depended on the application route of FVIII and the activation state of the innate immune system. We identified 8 FVIII peptide regions that contained CD4+ T-cell epitopes presented by HLA-DRB1*1501 to CD4+ T cells during immune responses against FVIII. CD4+ T-cell responses after intravenous and subcutaneous application of FVIII involved the same immunodominant FVIII epitopes. Interestingly, most of the 8 peptide regions contained promiscuous epitopes that bound to several different HLA-DR proteins in in vitro binding assays. PMID:22394599

  18. Sculpting the Immunological Response against Viral Disease: Statistical Mechanics and Network Theory

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Deem, Michael

    2007-03-01

    The twin challenges of immunodominance and heterologous immunity have hampered discovery of an effective vaccine against all four dengue viruses. Here we develop a generalized NK, or spin glass, theory of T cell original antigenic sin and immunodominance. The theory we develop predicts dengue vaccine clinical trial data well. From the insights that we gain by this theory, we propose two new ideas for design of epitope-based T cell vaccines against dengue. The H5N1 strain of avian influenza first appeared in Hong Kong in 1997. Since then, it has spread to at least eight other Asian countries, Romania, and Russia, and it is widely expected to enter the rest of Europe through migratory birds. Various countries around the world have started to create stockpiles of avian influenza vaccines. However, since the avian influenza is mutating, how many and which strains should be stockpiled? Here we use a combination of statistical physics and network theory to simulate the bird flu transmission and evolution. From the insights that we gain by the theory, we propose new strategies to improve the vaccine efficacy.

  19. Rapid screening and identification of dominant B cell epitopes of HBV surface antigen by quantum dot-based fluorescence polarization assay

    NASA Astrophysics Data System (ADS)

    Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang

    2013-03-01

    A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.

  20. Viral hepatitis*

    PubMed Central

    Deinhardt, F.; Gust, I. D.

    1982-01-01

    Three forms of viral hepatitis can be recognized: hepatitis A, hepatitis B, and hepatitis non-A, non-B. Hepatitis A is caused by a picornavirus, is transmitted by the faceal—oral route, does not become chronic, and no chronic virus carriers exist. The virus can be grown in cell cultures, and killed as well as live attenuated virus vaccines are under development. Hepatitis B is caused by an enveloped virus containing a circular, double-stranded form of DNA. The disease is transmitted parenterally through inoculation of blood or blood products containing virus or through close personal contact with a virus-positive person. Hepatitis B becomes chronic in a certain number of cases and can lead to cirrhosis and primary liver cell carcinoma. The blood and certain body secretions of individuals with a persistent or chronic infection may remain infectious for many years. The hepatitis B virus cannot be grown in cell cultures but the entire genome has been sequenced and cloned in bacterial and eukaryotic cells. An inactivated virus vaccine has been prepared from hepatitis B surface antigen present in the plasma of hepatitis B virus carriers and further vaccines are under development. The agents of hepatitis non-A, non-B have not been identified. It is possible to distinguish between a predominantly parenterally transmitted and an orally transmitted form of hepatitis non-A, non-B. The latter is reported to be caused by a picornavirus that does not, however, have any antigenic relationship with hepatitis A virus. PMID:6817933

  1. Toxoplasma gondii-Derived Synthetic Peptides Containing B- and T-Cell Epitopes from GRA2 Protein Are Able to Enhance Mice Survival in a Model of Experimental Toxoplasmosis

    PubMed Central

    Bastos, Luciana M.; Macêdo, Arlindo G.; Silva, Murilo V.; Santiago, Fernanda M.; Ramos, Eliezer L. P.; Santos, Fabiana A. A.; Pirovani, Carlos P.; Goulart, Luiz R.; Mineo, Tiago W. P.; Mineo, José R.

    2016-01-01

    Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii. PMID:27313992

  2. Toxoplasma gondii-Derived Synthetic Peptides Containing B- and T-Cell Epitopes from GRA2 Protein Are Able to Enhance Mice Survival in a Model of Experimental Toxoplasmosis.

    PubMed

    Bastos, Luciana M; Macêdo, Arlindo G; Silva, Murilo V; Santiago, Fernanda M; Ramos, Eliezer L P; Santos, Fabiana A A; Pirovani, Carlos P; Goulart, Luiz R; Mineo, Tiago W P; Mineo, José R

    2016-01-01

    Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii. PMID:27313992

  3. Development of Global Consensus of Dengue Virus Envelope Glycoprotein for Epitopes Based Vaccine Design.

    PubMed

    Hussain, Mazhar; Idrees, Muhammad; Afzal, Samia

    2015-01-01

    Dengue virus (DENV) is the member of Flaviviridae and causative agent of Dengue Haemorrhagic Fever and Dengue Shock Syndrome. Every year, around 70% of the world population is at risk, due to epidemic episodes orchestrated by one or more of its serotypes. So, a tetravalent DENV vaccine is needed which may induce the immune response against all four DENV serotypes. In this study, B-cell and T-cell epitopes have been predicted from the DENV envelope glycoprotein (Eg) using a consensus based approach in complement with the physico-chemical property (PCP) conservancy analysis. Through DENV-Eg analysis, a total of 7 PCP conserved, water soluble, in vitro and in vivo stable epitopes were predicted which may induce the B-cell and T-cell mediated anti-viral immune response.

  4. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes

    PubMed Central

    1994-01-01

    The hepatitis B virus (HBV) nucleocapsid antigen (HBcAg) was investigated as a carrier moiety for the immunodominant circumsporozoite (CS) protein repeat epitopes of Plasmodium falciparum and the rodent malaria agent P. berghei. For this purpose hybrid genes coding for [NANP]4 (C75CS2) or [DP4NPN]2 (C75CS1) as internal inserts in HBcAg (between amino acids 75 and 81) were constructed and expressed in recombinant Salmonella typhimurium. The resulting hybrid HBcAg-CS polypeptides purified from S. typhimurium were particulate and displayed CS and HBc antigenicity, however, the HBc antigenicity was reduced compared to native recombinant HBcAg. Immunization of several mouse strains with HBcAg-CS1 and HBcAg-CS2 particles resulted in high titer, P.berghei- or P.falciparum-specific anti-CS antibodies representing all murine immunoglobulin G isotypes. The possible influence of carrier-specific immunosuppression was examined, and preexisting immunity to HBcAg did not significantly affect the immunogenicity of the CS epitopes within HBcAg-CS1 particles. Similarly, the choice of adjuvant did not significantly alter the immunogenicity of HBcAg-CS hybrid particles. Immunization in complete or incomplete Freund's adjuvant or alum resulted in equivalent anti-HBc and anti-CS humoral responses. Examination of T cell recognition of HBcAg-CS particles revealed that HBcAg-specific T cells were universally primed and CS-specific T cells were primed if the insert contained a CS-specific T cell recognition site. This indicates that the internal site in HBcAg is permissive for the inclusion of heterologous pathogen-specific T as well as B cell epitopes. Most importantly, 90 and 100% of BALB/c mice immunized with HBcAg-CS1 particles were protected against a P. berghei challenge infection in two independent experiments. Therefore, hybrid HBcAg-CS particles may represent a useful approach for future malaria vaccine development. PMID:7520465

  5. Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein.

    PubMed

    Brander, C; O'Connor, P; Suscovich, T; Jones, N G; Lee, Y; Kedes, D; Ganem, D; Martin, J; Osmond, D; Southwood, S; Sette, A; Walker, B D; Scadden, D T

    2001-07-15

    Cytotoxic T lymphocytes (CTL) recognize and kill virus-infected cells and contribute to immunologic control of viral replication. For many herpesviruses (e.g., Epstein-Barr and cytomegalovirus), virus-specific CTL responses can be readily detected in infected persons, but CTL responses against Kaposi's sarcoma-associated herpesvirus (KSHV) appear to be weak and remain poorly characterized. Using a human leukocyte antigen (HLA) binding motif-based epitope prediction algorithm, we identified 37 HLA-A*0201 binding peptides from 8 KSHV open-reading frames (ORFs). After in vitro stimulation of peripheral blood mononuclear cells from KSHV-infected persons, CTL responses against 1 peptide in the KSHV kaposin protein (ORF K12) were detected in 2 HLA-A*0201-positive subjects. The optimal CTL epitope was identified by HLA restriction analysis and peptide titration assays. These data describe a latent phase viral gene product targeted by CTL that may be relevant for KSHV immunopathogenesis.

  6. Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein.

    PubMed

    Nadugala, Mahesha N; Premaratne, Prasad H; Goonasekara, Charitha L

    2016-01-01

    B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48-55), epitope number 4 of E protein at amino acids 48-55, EP9/E (165-182), EP11/E (218-233), EP20/E (322-349), EP21/E (326-353), EP23/E (356-365), and EP25/E (380-386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30-41) located in domain-I and EP26/E (393-409), EP27/E (416-435), EP28/E (417-430) located in the stem region of E protein, and EP8/prM (93-112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16-21), EP5/E (62-123), EP6/E (63-89), EP19/E (310-329), and EP24/E (371-402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes. PMID:27688753

  7. Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein

    PubMed Central

    Nadugala, Mahesha N.

    2016-01-01

    B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48–55), epitope number 4 of E protein at amino acids 48–55, EP9/E (165–182), EP11/E (218–233), EP20/E (322–349), EP21/E (326–353), EP23/E (356–365), and EP25/E (380–386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30–41) located in domain-I and EP26/E (393–409), EP27/E (416–435), EP28/E (417–430) located in the stem region of E protein, and EP8/prM (93–112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16–21), EP5/E (62–123), EP6/E (63–89), EP19/E (310–329), and EP24/E (371–402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes. PMID:27688753

  8. Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein

    PubMed Central

    Nadugala, Mahesha N.

    2016-01-01

    B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48–55), epitope number 4 of E protein at amino acids 48–55, EP9/E (165–182), EP11/E (218–233), EP20/E (322–349), EP21/E (326–353), EP23/E (356–365), and EP25/E (380–386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30–41) located in domain-I and EP26/E (393–409), EP27/E (416–435), EP28/E (417–430) located in the stem region of E protein, and EP8/prM (93–112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16–21), EP5/E (62–123), EP6/E (63–89), EP19/E (310–329), and EP24/E (371–402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes.

  9. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames

    PubMed Central

    1996-01-01

    An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204

  10. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    PubMed

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.

  11. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses

    PubMed Central

    Moreno, Noelia; Mena, Ignacio; Angulo, Iván; Gómez, Yolanda; Crisci, Elisa; Montoya, María; Castón, José R.; Blanco, Esther; Bárcena, Juan

    2016-01-01

    Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge. PMID:27549017

  12. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses.

    PubMed

    Moreno, Noelia; Mena, Ignacio; Angulo, Iván; Gómez, Yolanda; Crisci, Elisa; Montoya, María; Castón, José R; Blanco, Esther; Bárcena, Juan

    2016-01-01

    Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge. PMID:27549017

  13. Identification of a novel Aleutian mink disease virus B-cell epitope using a monoclonal antibody against VP2 protein.

    PubMed

    Yi, Li; Cheng, Yuening; Zhang, Miao; Cao, Zhigang; Tong, Mingwei; Cheng, Shipeng; Yan, Xijun

    2016-09-01

    Aleutian mink disease virus (AMDV) is a parvovirus that causes an immune complex-mediated disease in minks. Capsid protein VP2 is a major structural viral protein and can be used to diagnose AMDV. In this study, a specific monoclonal antibody, 1M13, was produced against the AMDV VP2 protein (amino acids 291-502). A linear VP2-protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to be enzyme-linked immunosorbent assay (ELISA) analysis. The results indicated that (386)HLQQNFSTRYIYD(398) was the minimal linear epitope that could be recognized by mAb 1M13. ELISA assays revealed that mink anti-AMDV sera could also recognize the minimal linear epitope. Sequence alignments demonstrated that the linear epitope is highly conserved among AMDV strains except (386)H and is less conserved among Raccoon dog amdovirus, Gray fox amdovirus, Red fox amdovirus, Bat parvovirus and Mink enteritis parvovirus. Taken together, the generation of this VP2-specific mAb with a defined linear peptide epitope may have potential applications in the development of suitable diagnostic techniques for AMDV. PMID:27354304

  14. Ara h 2: crystal structure and IgE binding distinguish two sub-populations of peanut allergic patients by epitope diversity

    PubMed Central

    Mueller, Geoffrey A.; Gosavi, Rajendrakumar A.; Pomés, Anna; Wünschmann, Sabina; Moon, Andrea F.; London, Robert E.; Pedersen, Lars C.

    2010-01-01

    Background Peanut allergy affects 1% of the population and causes the most fatal food-related anaphylactic reactions. The protein Ara h 2 is the most potent peanut allergen recognized by 80–90% of peanut allergic patients. Methods The crystal structure of the major peanut allergen Ara h 2 was determined for the first time at 2.7 Å resolution using a customized MBP-fusion system. IgE antibody binding to the MBP fusion construct versus the natural allergen was compared by ELISA using sera from peanut allergic patients. Results The structure of Ara h 2 is a five helix bundle held together by four disulfide bonds and related to the prolamin protein superfamily. The fold is most similar to other amylase and trypsin inhibitors. The MBP-Ara h 2 fusion construct was positively recognized by IgE from 76% of allergic patients (25/33). Two populations of patients could be identified. Sub-population 1 (n=14) showed an excellent correlation of IgE antibody binding to natural versus recombinant Ara h 2. Sub-population 2 (n=15) showed significantly reduced IgE binding to the MBP fusion protein. Interestingly, about 20% of the IgE binding in sub-population 2 could be recovered by increasing the distance between MBP and Ara h 2 in a second construct. Discussion The reduced IgE binding to the MBP-Ara h 2 of sub-population 2 indicates that the MBP molecule protects an immunodominant epitope region near the first helix of Ara h 2. Residues involved in the epitope(s) are suggested by the crystal structure. The MBP-Ara h 2 fusion constructs will be useful to further elucidate the relevance of certain epitopes to peanut allergy. PMID:21255036

  15. HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence.

    PubMed

    Wang, Yuge; Kapoor, Pratibha; Parks, Robert; Silva-Sanchez, Aaron; Alam, S Munir; Verkoczy, Laurent; Liao, Hua-Xin; Zhuang, Yingxin; Burrows, Peter; Levinson, Michael; Elgavish, Ada; Cui, Xiangqin; Haynes, Barton F; Schroeder, Harry

    2016-02-01

    Complementarity Determining Region 3 of the immunoglobulin (Ig) H chain (CDR-H3) lies at the center of the antigen-binding site where it often plays a decisive role in antigen recognition and binding. Amino acids encoded by the diversity (DH) gene segment are the main component of CDR-H3. Each DH has the potential to rearrange into one of six DH reading frames (RFs), each of which exhibits a characteristic amino acid hydrophobicity signature that has been conserved among jawed vertebrates by natural selection. A preference for use of RF1 promotes the incorporation of tyrosine into CDR-H3 while suppressing the inclusion of hydrophobic or charged amino acids. To test the hypothesis that these evolutionary constraints on DH sequence influence epitope recognition, we used mice with a single DH that has been altered to preferentially use RF2 or inverted RF1. B cells in these mice produce a CDR-H3 repertoire that is enriched for valine or arginine in place of tyrosine. We serially immunized this panel of mice with gp140 from HIV-1 JR-FL isolate and then used enzyme-linked immunosorbent assay (ELISA) or peptide microarray to assess antibody binding to key or overlapping HIV-1 envelope epitopes. By ELISA, serum reactivity to key epitopes varied by DH sequence. By microarray, sera with Ig CDR-H3s enriched for arginine bound to linear peptides with a greater range of hydrophobicity but had a lower intensity of binding than sera containing Ig CDR-H3s enriched for tyrosine or valine. We conclude that patterns of epitope recognition and binding can be heavily influenced by DH germ line sequence. This may help explain why antibodies in HIV-infected patients must undergo extensive somatic mutation in order to bind to specific viral epitopes and achieve neutralization. PMID:26687685

  16. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  17. [Viral superantigens].

    PubMed

    Us, Dürdal

    2016-07-01

    , expression of endogenous SAgs leads to thymic deletion of responding T cells (bearing Vβ6-9+ TCR) due to self-tolerance induction during the fetal life, and protects the host against future exogenous MMTV infections. The SAg of rabies virus is the N protein found in nucleocapsid structure and stimulates Vβ8+TCR-bearing T cells. The SAg-induced polyclonal activation of T cells leads to turn-off the specific immune response, to enhance the immunopathogenesis and facilitates viral transmission from the initial site of infection (the muscle tissue) to the nerve endings. In case of EBV-associated SAg that activates Vβ13+TCR-bearing T cells, it was detected that the SAg activity was not encoded by EBV itself, but instead was due to the transactivation of HERV-K18 by EBV latent membrane proteins, whose env gene encodes the SAg (Sutkowski, et al. 2001). It has been denoted that EBV-induced SAg expression plays a role in the long-term persistence and latency of virus in memory B cells, in the development of autoimmune diseases and in the oncogenesis mechanisms. The proteins which are identified as SAgs of HIV are Nef and gp120. It is believed that, the massive activation of CD4+ T cells (selectively with Vβ-12+, Vβ-5.3+ and Vβ-18+ TCRs) in early stages of infection and clonal deletion, anergy and apoptosis of bystander T cells in the late stages may be due to SAg property of Nef protein, as well as the other mechanisms. However there are some studies indicating that Nef does not act as a SAg (Lapatschek, et al. 2001). HIV gp120 glycoprotein is a B-cell SAg that binds to VH3-expressing B cell receptors and causes polyclonal B cell activation. In addition, binding of gp120 to IgE on the surface of basophiles and mast cells causes activation of those cells, secretion of high level proinflammatory mediators leading to allergic reactions and tissue damage. In a recent study, the depletion (anergy or deletion) of T cell populations bearing Vβ12+, Vβ13+ and Vβ17+ TCR have been

  18. Conservation and Diversity of Influenza A H1N1 HLA-Restricted T Cell Epitope Candidates for Epitope-Based Vaccines

    PubMed Central

    Tan, Paul ThiamJoo; Heiny, A. T.; Miotto, Olivo; Salmon, Jerome; Marques, Ernesto T. A.; Lemonnier, Francois; August, J. Thomas

    2010-01-01

    Background The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated. Methodology/Principal Findings HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54) peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-γ ELISpot assay. The 54 peptides were compared to the 2007–2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes. Conclusions/Significance Seventeen (17) T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus. PMID:20090904

  19. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome.

  20. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome. PMID:26612372

  1. The Relationship between B-cell Epitope and Mimotope Sequences.

    PubMed

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint.

  2. The Relationship between B-cell Epitope and Mimotope Sequences.

    PubMed

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint. PMID:26715528

  3. Immunodominant antigens in Naegleria fowleri excretory--secretory proteins were potential pathogenic factors.

    PubMed

    Kim, Jong-Hyun; Yang, Ae-Hee; Sohn, Hae-Jin; Kim, Daesik; Song, Kyoung-Ju; Shin, Ho-Joon

    2009-11-01

    Naegleria fowleri, a ubiquitous pathogenic free-living amoeba, is the most virulent species and causes primary amoebic meningoencephalitis in laboratory animals and humans. The parasite secretes various inducing molecules as biological responses, which are thought to be involved in pathophysiological and immunological events during infection. To investigate what molecules of N. fowleri excretory-secretory proteins (ESPs) are related with amoebic pathogenicity, N. fowleri ESPs fractionated by two-dimensional electrophoresis were reacted with N. fowleri infection or immune sera. To identify immunodominant ESPs, six major protein spots were selected and analyzed by N-terminal sequencing. Finally, six proteins, 58, 40, 24, 21, 18, and 16 kDa of molecular weight, were partially cloned and matched with reference proteins as follow: 58 kDa of exendin-3 precursor, 40 kDa of secretory lipase, 24 kDa of cathepsin B-like proteases and cysteine protease, 21 kDa of cathepsin B, 18 kDa of peroxiredoxin, and 16 kDa of thrombin receptor, respectively. These results suggest that N. fowleri ESPs contained important proteins, which may play an important role in the pathogenicity of N. fowleri.

  4. The immunodominant 90-kilodalton protein is localized on the terminal tip structure of Mycoplasma pneumoniae.

    PubMed Central

    Franzoso, G; Hu, P C; Meloni, G A; Barile, M F

    1993-01-01

    Immunoblot analysis of convalescent-phase sera of experimentally infected chimpanzees or monoclonal antibodies (MAbs) specific to the 90- and 40-kDa proteins of Mycoplasma pneumoniae indicated that both proteins were present in cytadsorbing, pathogenic strains PI-1428, M129, and FH but absent in noncytadsorbing, nonpathogenic strain M129-B176. Adsorption of convalescent-phase chimpanzee sera with virulent strain PI-1428 removed reactivity, whereas adsorption with avirulent strain M129-B176 did not remove reactivity to these two proteins. By using proteolysis and specific MAbs, we demonstrated that the 90- and 40-kDa proteins were surface exposed. Immunoelectron microscopy employing specific MAbs showed that the 90-kDa protein is localized on the terminal tip attachment apparatus. However, the MAb specific for the 40-kDa protein failed to indicate a similar localization. Nevertheless, these data, taken together, indicate that the immunodominant 90- and 40-kDa proteins are surface exposed, are localized on the terminal tip apparatus, and might be involved in the attachment mechanism. Images PMID:8454358

  5. An immunodominant 90-kilodalton Aspergillus fumigatus antigen is the subunit of a catalase.

    PubMed Central

    López-Medrano, R; Ovejero, M C; Calera, J A; Puente, P; Leal, F

    1995-01-01

    We have identified, purified, and characterized structurally and functionally a 90-kDa immunodominant antigen associated with the water-soluble fraction of Aspergillus fumigatus. This antigen is recognized by 90.3% of serum samples from patients with aspergilloma and should be considered either by itself or better in combination with other purified antigens as a candidate for developing a standardized immunoassay for the detection of aspergilloma. p90 is a glycoprotein containing at least two two N-linked sugar chains of 2 and 5 kDa, respectively, which are not necessary for its reactivity with aspergilloma serum samples. Using specific anti-p90 rabbit serum, we have demonstrated that under native conditions, p90 exists in oligomeric form and has associated catalase activity. This activity is resistant to extreme temperatures (> 60 degrees C), reducing agents (40 mM dithiothreitol), high concentrations of denaturing agents such as 8 M urea and 8% sodium dodecyl sulfate, and treatments with ethanol-chloroform-water (5:3:10 [vol/vol]) mixtures. PMID:7591135

  6. Evaluation of the use of non-pathogenic porcine circovirus type 1 as a vaccine delivery virus vector to express antigenic epitopes of porcine reproductive and respiratory syndrome virus.

    PubMed

    Piñeyro, Pablo E; Kenney, Scott P; Giménez-Lirola, Luis G; Opriessnig, Tanja; Tian, Debin; Heffron, C Lynn; Meng, Xiang-Jin

    2016-02-01

    We previously demonstrated that the C-terminus of the capsid gene of porcine circovirus type 2 (PCV2) is an immune reactive epitope displayed on the surface of virions. Insertion of foreign epitope tags in the C-terminus produced infectious virions that elicited humoral immune responses against both PCV2 capsid and the inserted epitope tags, whereas mutation in the N terminus impaired viral replication. Since the non-pathogenic porcine circovirus type 1 (PCV1) shares similar genomic organization and significant sequence identity with pathogenic PCV2, in this study we evaluated whether PCV1 can serve as a vaccine delivery virus vector. Four different antigenic determinants of porcine reproductive and respiratory syndrome virus (PRRSV) were inserted in the C-terminus of the PCV1 capsid gene, the infectivity and immunogenicity of the resulting viruses are determined. We showed that an insertion of 12 (PRRSV-GP2 epitope II, PRRSV-GP3 epitope I, and PRRSV-GP5 epitope I), and 14 (PRRSV-GP5 epitope IV) amino acid residues did not affect PCV1 replication. We successfully rescued and characterized four chimeric PCV1 viruses expressing PRRSV linear antigenic determinants (GP2 epitope II: aa 40-51, ASPSHVGWWSFA; GP3 epitope I: aa 61-72, QAAAEAYEPGRS; GP5 epitope I: aa 35-46, SSSNLQLIYNLT; and GP5 epitope IV: aa 187-200, TPVTRVSAEQWGRP). We demonstrated that all chimeric viruses were stable and infectious in vitro and three chimeric viruses were infectious in vivo. An immunogenicity study in pigs revealed that PCV1-VR2385EPI chimeric viruses elicited neutralizing antibodies against PRRSV-VR2385. The results have important implications for further evaluating PCV1 as a potential vaccine delivery vector. PMID:26555162

  7. Mapping of T cell epitopes of the major fraction of rye grass using peripheral blood mononuclear cells from atopics and non-atopics. II. Isoallergen clone 5A of Lolium perenne group I (Lol p I).

    PubMed

    Bungy, G A; Rodda, S; Roitt, I; Brostoff, J

    1994-09-01

    Rye grass is the major cause of hay fever which currently affects 20% of the population. Lolium perenne group I (Lol p I) is a glycoprotein of 240 amino acid residues, representing the main allergen of rye grass. We have used peripheral blood mononuclear cells (PBMC) from controls and subjects allergic to rye grass and cultured them with L. perenne extract (LPE) and Lol p I and measured lymphocyte activation using thymidine incorporation. Patients were further studied against the 115 overlapping peptides of the iso-allergen clone 5A of Lol p I to see whether the 4 amino acid residue differences between clone 1A and clone 5A affect the T cell epitope and thus, lymphocyte activation. There are 24 peptide differences between isoallergen clone 1A and clone 5A occurring in pools 4, 13, 16 and 19 each one of which could be an immunodominant epitope. The PBMC from all allergic patients studied showed a strong proliferative response to LPE and Lol p I. Five immunogenic peptide pools, pool 6, 15, 16, 17 and 19 of the isoallergen clone 5A were also identified. Most of these pools are in the C-terminal region of Lol p I. Out of 20 pools tested in vitro 1 pool (pool-17) induced PBMC proliferation in five out of six patients who were not restricted to an HLA class II DR gene product. However, three out of the six subjects responded to various other peptide pools in addition to the immunodominant pool. In spite of the amino acid differences between the two clones, pool 17 still remains the immunodominant T cell epitope. Control subjects showed only weak responses to LPE and no detectable response to either Lol p I or peptide pools. From within the most active pool we have defined two peptides of the isoallergen clone 5A (identical in sequence with clone 1A) which stimulate lymphocytes from rye grass-sensitive patients in vitro. Previous studies with the two continuous sequences (193WGAVWRIDTPDK204 and 195AVWRIDTPDKLT206) tested in vivo by intradermal skin testing have shown

  8. Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus.

    PubMed

    Liang, Weifeng; Zhou, Guohui; Liu, Wenming; Yang, Baolin; Li, Chaosi; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Yu, Li

    2016-10-01

    Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, a series of outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope have the potential to provide protective immunity against diverse subtypes of FMDV serotype A and to protect against future pandemics. In this study, we produced an A serotype FMDV-specific monoclonal antibody (MAb) against the viral capsid protein VP1, designated 9A9, that potently neutralized FMDV A/JLYS/CHA/2014 with a 50 % neutralization titer (NT50) of 4,096. GST-fusion proteins expressing truncated peptides of VP1 were subjected to Western blot analysis using MAb 9A9, and it was found that the peptide (143)RGDLGPLAARL(153) of VP1 was the minimal epitope for MAb 9A9 binding. Western blot analysis also revealed that the epitope peptide could be recognized by positive sera from serotype A FMDV-infected pigs and cattle. Subsequent alanine-scanning mutagenesis analysis revealed that residues Gly(147) and Leu(149) of the 9A9-recognized epitope are crucial for MAb 9A9 binding. Furthermore, under immunological pressure selected by MAb 9A9, a single amino acid residue replacement (L149P) occurred in a viral neutralization-escape mutant, which verified the location of a critical residue of this epitope at Leu(149). Importantly, the epitope (143)RGDLGPLAARL(153) was highly conserved among different topotypes of serotype A FMDV strains in sequence alignment analysis. Thus, the results of this study could have application potential in the development of epitope-based vaccines and a suitable MAb-based diagnostic method for detection of type A FMDV as well as quantitation of antibodies against FMDV serotype A. PMID:27422396

  9. Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a VH3-30-Encoded Heterosubtypic Antibody

    PubMed Central

    Wyrzucki, Arkadiusz; Dreyfus, Cyrille; Kohler, Ines; Steck, Marco

    2014-01-01

    ABSTRACT A human monoclonal heterosubtypic antibody, MAb 3.1, with its heavy chain encoded by VH3-30, was isolated using phage display with immobilized hemagglutinin (HA) from influenza virus A/Japan/305/1957(H2N2) as the target. Antibody 3.1 potently neutralizes influenza viruses from the H1a clade (i.e., H1, H2, H5, H6) but has little neutralizing activity against the H1b clade. Its crystal structure in complex with HA from a pandemic H1N1 influenza virus, A/South Carolina/1/1918(H1N1), revealed that like other heterosubtypic anti-influenza virus antibodies, MAb 3.1 contacts a hydrophobic groove in the HA stem, primarily using its heavy chain. However, in contrast to the closely related monoclonal antibody (Mab) FI6 that relies heavily on HCDR3 for binding, MAb 3.1 utilizes residues from HCDR1, HCDR3, and framework region 3 (FR3). Interestingly, HCDR1 of MAb 3.1 adopts an α-helical conformation and engages in hydrophobic interactions with the HA very similar to those of the de novo in silico-designed and affinity-matured synthetic protein HB36.3. These findings improve our understanding of the molecular requirements for binding to the conserved epitope in the stem of the HA protein and, therefore, aid the development of more universal influenza vaccines targeting these epitopes. IMPORTANCE Influenza viruses rapidly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by acquiring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by immunization or infection protect only against the immunizing or closely related strains. Here, we describe a novel monoclonal antibody that recognizes the conserved heterosubtypic epitope in the stem of influenza A virus hemagglutinin. This antibody, referred to as MAb 3.1, recognizes its epitope in a manner that resembles recognition of a similar epitope by the de novo in silico-designed and affinity-matured synthetic

  10. Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection.

    PubMed

    Garcia-Knight, Miguel A; Slyker, Jennifer; Payne, Barbara Lohman; Pond, Sergei L Kosakovsky; de Silva, Thushan I; Chohan, Bhavna; Khasimwa, Brian; Mbori-Ngacha, Dorothy; John-Stewart, Grace; Rowland-Jones, Sarah L; Esbjörnsson, Joakim

    2016-01-01

    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines. PMID:27403940

  11. Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    PubMed Central

    Garcia-Knight, Miguel A.; Slyker, Jennifer; Payne, Barbara Lohman; Pond, Sergei L. Kosakovsky; de Silva, Thushan I.; Chohan, Bhavna; Khasimwa, Brian; Mbori-Ngacha, Dorothy; John-Stewart, Grace; Rowland-Jones, Sarah L.; Esbjörnsson, Joakim

    2016-01-01

    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines. PMID:27403940

  12. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome.

    PubMed

    Xu, George J; Kula, Tomasz; Xu, Qikai; Li, Mamie Z; Vernon, Suzanne D; Ndung'u, Thumbi; Ruxrungtham, Kiat; Sanchez, Jorge; Brander, Christian; Chung, Raymond T; O'Connor, Kevin C; Walker, Bruce; Larman, H Benjamin; Elledge, Stephen J

    2015-06-01

    The human virome plays important roles in health and immunity. However, current methods for detecting viral infections and antiviral responses have limited throughput and coverage. Here, we present VirScan, a high-throughput method to comprehensively analyze antiviral antibodies using immunoprecipitation and massively parallel DNA sequencing of a bacteriophage library displaying proteome-wide peptides from all human viruses. We assayed over 10(8) antibody-peptide interactions in 569 humans across four continents, nearly doubling the number of previously established viral epitopes. We detected antibodies to an average of 10 viral species per person and 84 species in at least two individuals. Although rates of specific virus exposure were heterogeneous across populations, antibody responses targeted strongly conserved "public epitopes" for each virus, suggesting that they may elicit highly similar antibodies. VirScan is a powerful approach for studying interactions between the virome and the immune system. PMID:26045439

  13. Characterization of C-strain “Riems” TAV-epitope escape variants obtained through selective antibody pressure in cell culture

    PubMed Central

    2012-01-01

    Classical swine fever virus (CSFV) C-strain “Riems” escape variants generated under selective antibody pressure with monoclonal antibodies and a peptide-specific antiserum in cell culture were investigated. Candidates with up to three amino acid exchanges in the immunodominant and highly conserved linear TAV-epitope of the E2-glycoprotein, and additional mutations in the envelope proteins ERNS and E1, were characterized both in vitro and in vivo. It was further demonstrated, that intramuscular immunization of weaner pigs with variants selected after a series of passages elicited full protection against lethal CSFV challenge infection. These novel CSFV C-strain variants with exchanges in the TAV-epitope present potential marker vaccine candidates. The DIVA (differentiating infected from vaccinated animals) principle was tested for those variants using commercially available E2 antibody detection ELISA. Moreover, direct virus differentiation is possible using a real-time RT-PCR system specific for the new C-strain virus escape variants or using differential immunofluorescence staining. PMID:22515281

  14. Recognition of Multiple Antibody Epitopes throughout Borrelia burgdorferi p66, a Candidate Adhesin, in Patients with Early or Late Manifestations of Lyme Disease

    PubMed Central

    Ntchobo, Hyacinthe; Rothermel, Holly; Chege, Wambui; Steere, Allen C.; Coburn, Jenifer

    2001-01-01

    Antibody responses to p66, a candidate integrin ligand of Borrelia burgdorferi, were studied in 79 patients with early or late manifestations of Lyme disease. The central portion of p66 was previously shown to contain all of the information required for specific recognition of β3-chain integrins, but work by others had suggested that the C-terminal portion of the protein contains a single surface-exposed, immunodominant loop. In examining antibody responses to full-length p66 and to three overlapping fragments of the protein, we found that the majority of Lyme disease patients had immunoglobulin M (IgM) and/or IgG responses to p66 and that, particularly early in the disease, epitopes throughout p66 were recognized. Among patients with later manifestations of the illness, antibody responses to the C-terminal portion of the protein were more prominent. These results demonstrate that Lyme disease patient sera recognize epitopes throughout p66. PMID:11179382

  15. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials

    PubMed Central

    Fiore-Gartland, Andrew; Manso, Bryce A.; Friedrich, David P.; Gabriel, Erin E.; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C.; Frahm, Nicole; Gilbert, Peter B.; McElrath, M. Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  16. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials.

    PubMed

    Fiore-Gartland, Andrew; Manso, Bryce A; Friedrich, David P; Gabriel, Erin E; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C; Frahm, Nicole; Gilbert, Peter B; McElrath, M Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7-30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  17. Epitope specificity of rabbit immunoglobulin G (IgG) elicited by pneumococcal type 23F synthetic oligosaccharide- and native polysaccharide-protein conjugate vaccines: comparison with human anti-polysaccharide 23F IgG.

    PubMed Central

    Alonso de Velasco, E; Verheul, A F; van Steijn, A M; Dekker, H A; Feldman, R G; Fernández, I M; Kamerling, J P; Vliegenthart, J F; Verhoef, J; Snippe, H

    1994-01-01

    Streptococcus pneumoniae type 23F capsular polysaccharide (PS23F) consitss of a repeating glycerol-phosphorylated branched tetrasaccharide. The immunogenicities of the following related antigens were investigated: (i) a synthetic trisaccharide comprising the backbone of one repeating unit, (ii) a synthetic tetrasaccharide comprising the complete repeating unit, and (iii) native PS23F (all three conjugated to keyhole limpet hemocyanin [KLH]) and (iv) formalin-killed S. pneumoniae 23F. All antigens except the trisaccharide-KLH conjugate induced relatively high anti-PS23F antibody levels in rabbits. The epitope specificity of such antibodies was then studied by means of an inhibition immunoassay. The alpha(1-->2)-linked L-rhamnose branch was shown to be immunodominant for immunoglobulin G (IgG) induced by tetrasaccharide-KLH, PS23F-KLH, and killed S. pneumoniae 23F: in most sera L-rhamnose totally inhibited the binding of IgG to PS23F. Thus, there appears to be no major difference in epitope specificity between IgG induced by tetrasaccharide-KLH and that induced by antigens containing the polymeric form of PS23F. Human anti-PS23F IgG (either vaccine induced or naturally acquired) had a different epitope specificity: none of the inhibitors used, including L-rhamnose and tetrasaccharide-KLH, exhibited substantial inhibition. These observations suggest that the epitope recognized by human IgG on PS23F is larger than the epitope recognized by rabbit IgG. Both human and rabbit antisera efficiently opsonized type 23F pneumococci, as measured in a phagocytosis assay using human polymorphonuclear leukocytes. PMID:7509318

  18. A modified TMV-based vector facilitates the expression of longer foreign epitopes in tobacco.

    PubMed

    Jiang, Lubin; Li, Qiaoli; Li, Mangmang; Zhou, Zhiai; Wu, Ligang; Fan, Jihua; Zhang, Qingqi; Zhu, Huihui; Xu, Zhengkai

    2006-01-12

    Based upon a mutant isolated from tobacco infected with a recombinant tobacco mosaic virus (TMV), a new TMV-based vector was developed in which four to six C-terminal amino acid residues were deleted from the viral coat protein (CP) subunit. The new vector was quite similar to the original TMV-based vector, which all expressed a well characterized epitope peptide F11 (P(142)-A(152)) of VP1 from foot-and-mouth disease virus (FMDV) serotype O in tobacco, in the infectivity, yield of the virus particles and more importantly protective activity of F11 in guinea pigs and swine against the FMDV. Furthermore, the capacity of the length of foreign peptide encoded by this new vector was much improved to successfully express a peptide F25 containing two fused epitopes F14 (R(200)-L(213)) and F11 of FMDV VP1, which was failed using the original vector in tobacco. Although animal assays indicated that such expressed F25 was not as efficient as F11 in the immunity, possibly due to lack of a spacer arm between the two fused epitopes, the new TMV-based vector may meet the requirement of expressing longer foreign peptides for different vaccines and other medicines. PMID:16337317

  19. Delivery of a foreign epitope by sharing amino acid residues with the carrier matrix.

    PubMed

    Cheong, Wan-Shoo; Drummer, Heidi Edelgard; Netter, Hans-Jürgen

    2009-06-01

    A broad range of structural viral proteins has the ability to assemble into virus-like particles (VLPs). Under the condition that modified subunits are still competent to assemble into VLPs, they are epitope delivery platforms suitable for vaccination purposes. The insertion of foreign sequences can be detrimental for the formation of chimeric VLPs as a result of misfolded subunit proteins. Hence, a strategy was adopted to screen for locations allowing the use of shared residues between the wildtype subunit sequence and the foreign insert. The insertion of a cysteine-containing sequence of hepatitis C virus (HCV) envelope protein 2 (E2) without adding an additional cysteine residue retained the ability of recombinant small hepatitis B surface antigen (HBsAg-S) to form secretion competent VLPs. A cysteine residue shared by the insert and the template protein avoided the formation of non-native disulfide bonds, and allowed the formation of VLPs. The chimeric HBsAg-S VLPs were similar to wildtype VLPs in density exposing the inserted foreign epitope and being immunogenic. Overall, the use of shared sequences between the insert and the subunit will facilitate the design of chimeric VLPs carrying multiple epitopes.

  20. Dengue virus specific dual HLA binding T cell epitopes induce CD8+ T cell responses in seropositive individuals

    PubMed Central

    Comber, Joseph D; Karabudak, Aykan; Huang, Xiaofang; Piazza, Paolo A; Marques, Ernesto T A; Philip, Ramila

    2015-01-01

    Dengue virus infects an estimated 300 million people each year and even more are at risk of becoming infected as the virus continues to spread into new areas. Despite the increase in viral prevalence, no anti-viral medications or vaccines are approved for treating or preventing infection. CD8+ T cell responses play a major role in viral clearance. Therefore, effective vaccines that induce a broad, multi-functional T cell response with substantial cross-reactivity between all virus serotypes can have major impacts on reducing infection rates and infection related complications. Here, we took an immunoproteomic approach to identify novel MHC class I restricted T cell epitopes presented by dengue virus infected cells, representing the natural and authentic targets of the T cell response. Using this approach we identified 4 novel MHC-I restricted epitopes: 2 with the binding motif for HLA-A24 molecules and 2 with both HLA-A2 and HLA-A24 binding motifs. These peptides were able to activate CD8+ T cell responses in both healthy, seronegative individuals and in seropositive individuals who have previously been infected with dengue virus. Importantly, the dual binding epitopes activated pre-existing T cell precursors in PBMCs obtained from both HLA-A2+ and HLA-A24+ seropositive individuals. Together, the data indicate that these epitopes are immunologically relevant T cell activating peptides presented on infected cells during a natural infection and therefore may serve as candidate antigens for the development of effective multi-serotype specific dengue virus vaccines. PMID:25668665

  1. Dengue virus specific dual HLA binding T cell epitopes induce CD8+ T cell responses in seropositive individuals.

    PubMed

    Comber, Joseph D; Karabudak, Aykan; Huang, Xiaofang; Piazza, Paolo A; Marques, Ernesto T A; Philip, Ramila

    2014-01-01

    Dengue virus infects an estimated 300 million people each year and even more are at risk of becoming infected as the virus continues to spread into new areas. Despite the increase in viral prevalence, no anti-viral medications or vaccines are approved for treating or preventing infection. CD8+ T cell responses play a major role in viral clearance. Therefore, effective vaccines that induce a broad, multi-functional T cell response with substantial cross-reactivity between all virus serotypes can have major impacts on reducing infection rates and infection related complications. Here, we took an immunoproteomic approach to identify novel MHC class I restricted T cell epitopes presented by dengue virus infected cells, representing the natural and authentic targets of the T cell response. Using this approach we identified 4 novel MHC-I restricted epitopes: 2 with the binding motif for HLA-A24 molecules and 2 with both HLA-A2 and HLA-A24 binding motifs. These peptides were able to activate CD8+ T cell responses in both healthy, seronegative individuals and in seropositive individuals who have previously been infected with dengue virus. Importantly, the dual binding epitopes activated pre-existing T cell precursors in PBMCs obtained from both HLA-A2+ and HLA-A24+ seropositive individuals. Together, the data indicate that these epitopes are immunologically relevant T cell activating peptides presented on infected cells during a natural infection and therefore may serve as candidate antigens for the development of effective multi-serotype specific dengue virus vaccines. PMID:25668665

  2. Genetic mapping of a highly variable norovirus GII.4 blockade epitope: potential role in escape from human herd immunity.

    PubMed

    Debbink, Kari; Donaldson, Eric F; Lindesmith, Lisa C; Baric, Ralph S

    2012-01-01

    Noroviruses account for 96% of viral gastroenteritis cases worldwide, with GII.4 strains responsible >80% of norovirus outbreaks. Histo-blood group antigens (HBGAs) are norovirus binding ligands, and antigenic and preferential HBGA binding profiles vary over time as new GII.4 strains emerge. The capsid P2 subdomain facilitates HBGA binding, contains neutralizing antibody epitopes, and likely evolves in response to herd immunity. To identify amino acids regulating HBGA binding and antigenic differences over time, we created chimeric virus-like particles (VLPs) between the GII.4-1987 and GII.4-2006 strains by exchanging amino acids in putative epitopes and characterized their antigenic and HBGA binding profiles using anti-GII.4-1987 and -2006 mouse monoclonal antibodies (MAbs) and polyclonal sera, 1988 outbreak human sera, and synthetic HBGAs. The exchange of amino acids 393 to 395 between GII.4-1987 and GII.4-2006 resulted in altered synthetic HBGA binding compared to parental strains. Introduction of GII.4-1987 residues 294, 297 to 298, 368, and 372 (epitope A) into GII.4-2006 resulted in reactivity with three anti-GII.4-1987 MAbs and reduced reactivity with four anti-GII.4-2006 MAbs. The three anti-GII.4-1987 MAbs also blocked chimeric VLP-HBGA interaction, while an anti-GII.4-2006 blocking antibody did not, indicating that epitope A amino acids comprise a potential neutralizing epitope for GII.4-1987 and GII.4-2006. We also tested GII.4-1987-immunized mouse polyclonal sera and 1988 outbreak human sera for the ability to block chimeric VLP-HBGA interaction and found that epitope A amino acids contribute significantly to the GII.4-1987 blockade response. Our data provide insights that help explain the emergence of new GII.4 epidemic strains over time, may aid development of norovirus therapeutics, and may help predict the emergence of future epidemic strains.

  3. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes.

    PubMed

    Sukupolvi-Petty, Soila; Austin, S Kyle; Purtha, Whitney E; Oliphant, Theodore; Nybakken, Grant E; Schlesinger, Jacob J; Roehrig, John T; Gromowski, Gregory D; Barrett, Alan D; Fremont, Daved H; Diamond, Michael S

    2007-12-01

    Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.

  4. Epitope mapping of the Brucella melitensis BP26 immunogenic protein: usefulness for diagnosis of sheep brucellosis.

    PubMed

    Seco-Mediavilla, Patricia; Verger, Jean-Michel; Grayon, Maggy; Cloeckaert, Axel; Marín, Clara M; Zygmunt, Michel S; Fernández-Lago, Luis; Vizcaíno, Nieves

    2003-07-01

    Sequencing of bp26, the gene encoding the Brucella sp. immunogenic BP26 periplasmic protein, was performed in the reference strains of Brucella abortus, B. suis, and B. ovis. The three bp26 sequences were almost identical to that published for B. melitensis 16M bp26, and only minor nucleotide substitutions, without modifying the amino acid sequence, were observed between species. The bp26 genes of the seven B. abortus biovar reference strains and B. abortus S19 and RB51 vaccine strains were also sequenced. Again, only minor differences were found. Surprisingly, the bp26 nucleotide sequence for B. abortus S19 was almost identical to that found for B. melitensis 16M and differed from the sequence described previously by others (O. L. Rossetti, A. I. Arese, M. L. Boschiroli, and S. L. Cravero, J. Clin. Microbiol. 34:165-169, 1996) for the same B. abortus strain. The epitope mapping of BP26, performed by using a panel of monoclonal antibodies and recombinant DNA techniques, allowed the identification of an immunodominant region of the protein interesting for the diagnosis of B. melitensis and B. ovis infection in sheep. A recombinant fusion protein containing this region of BP26 reacted indeed, in Western blotting, as the entire recombinant BP26 against sera from B. melitensis- or B. ovis-infected sheep while it avoided false-positive reactions observed with sera from Brucella-free sheep when using the entire recombinant BP26. Thus, use of this recombinant fusion protein instead the entire recombinant BP26 could improve the specific serological diagnosis of B. melitensis or B. ovis infection in sheep.

  5. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    PubMed Central

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  6. Human humoral responses to antigens of Mycobacterium tuberculosis: immunodominance of high-molecular-mass antigens.

    PubMed Central

    Laal, S; Samanich, K M; Sonnenberg, M G; Zolla-Pazner, S; Phadtare, J M; Belisle, J T

    1997-01-01

    The selection of antigens of Mycobacterium tuberculosis for most studies of humoral responses in tuberculosis patients has been restricted to molecules that were either immunodominant in immunized animals or amenable to biochemical purification rather than those that were reactive with the human immune system. Delineation of antigens that elicit humoral responses during the natural course of disease progression in humans has been hindered by the presence of cross-reactive antibodies to conserved regions on ubiquitous prokaryotic antigens in sera from healthy individuals and tuberculosis patients. The levels of cross-reactive antibodies in the sera were reduced by preadsorption with Escherichia coli lysates, prior to studying their reactivity against a large panel of M. tuberculosis antigens to which the human immune system may be exposed during natural infection and disease. Thus, reactivity against pools of secreted, cellular, and cell wall-associated antigens of M. tuberculosis was assessed by an enzyme-linked immunosorbent assay (ELISA). Initial results suggested that the secreted protein preparation contained antigens most frequently recognized by the humoral responses of pulmonary tuberculosis patients. The culture filtrate proteins were subsequently size fractionated by preparative polyacrylamide gel electrophoresis, characterized by reaction with murine monoclonal antibodies to known antigens of M. tuberculosis by an ELISA, and assessed for reactivity with tuberculous and nontuberculous sera. Results show that a secreted antigen of 88 kDa elicits a strong antibody response in a high percentage of patients with pulmonary tuberculosis. This and other antigens identified on the basis of their reactivity with patient sera may prove useful for developing serodiagnosis for tuberculosis. PMID:9008280

  7. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  8. Characterization of the gene encoding the polymorphic immunodominant molecule, a neutralizing antigen of Theileria parva

    SciTech Connect

    Toye, P.G.; Metzelaar, M.J.; Wijngaard, P.L.J.

    1995-08-01

    Theileria parva, a tick-transmitted protozoan parasite related to Plasmodium spp., causes the disease East Coast fever, an acute and usually fatal lymphoproliferative disorder of cattle in Africa. Previous studies using sera from cattle that have survived infection identified a polymorphic immunodominant molecule (PIM) that is expressed by both the infective sporozoite stage of the parasite and the intracellular schizont. Here we show that mAb specific for the PIM Ag can inhibit sporozoite invasion of lymphocytes in vitro. A cDNA clone encoding the PIM Ag of the T. parva (Muguga) stock was obtained by using these mAb in a novel eukaryotic expression cloning system that allows isolation of cDNA encoding cytoplasmic or surface Ags. To establish the molecular basis of the polymorphism of PIM, the cDNA of the PIM Ag from a buffalo-derived T. parva stock was isolated and its sequence was compared with that of the cattle-derived Muguga PIM. The two cDNAs showed considerable identity in both the 5{prime} and 3{prime} regions, but there was substantial sequence divergence in the central regions. Several types of repeated sequences were identified in the variant regions. In the Muguga form of the molecule, there were five tandem repeats of the tetrapeptide, QPEP, that were shown, by transfection of a deleted version of the PIM gene, not to react with several anti-PIM mAbs. By isolating and sequencing the genomic version of the gene, we identified two small introns in the 3{prime} region of the gene. Finally, we showed that polyclonal rat Abs against recombinant PIM neutralize sporozoite infectivity in vitro, suggesting that the PIM Ag should be evaluated for its capacity to immunize cattle against East Coast Fever.

  9. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis.

    PubMed

    Kempsell, Karen E; Kidd, Stephen P; Lewandowski, Kuiama; Elmore, Michael J; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis "infectome." These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  10. Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8+ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection

    PubMed Central

    Tully, Damien C.; Cruz, Michael A.; Power, Karen A.; Veloso de Santana, Marlon G.; Bean, David J.; Ogilvie, Colin B.; Gadgil, Rujuta; Lima, Noemia S.; Magnani, Diogo M.; Ejima, Keisuke; Allison, David B.; Piatak, Michael; Altman, John D.; Parks, Christopher L.; Rakasz, Eva G.; Capuano, Saverio; Galler, Ricardo; Bonaldo, Myrna C.; Lifson, Jeffrey D.; Allen, Todd M.; Watkins, David I.

    2015-01-01

    ABSTRACT Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed “elite controllers” [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08+ animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08+ macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8+ T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8+ T-cell response would facilitate the development of elite control in Mamu-B*08+ animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08+ animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8+ T cells. These vaccine-induced effector memory CD8+ T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8+ T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08+ macaques. IMPORTANCE Since elite control of chronic-phase viremia is a classic

  11. Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles

    PubMed Central

    Joyner, Amanda S.; Willis, Jordan R.; Crowe, James E.; Aiken, Christopher

    2011-01-01

    To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER. PMID:21931551

  12. Production, Characterization, and Epitope Mapping of Monoclonal Antibodies Against Different Subtypes of Rabbit Hemorrhagic Disease Virus (RHDV)

    PubMed Central

    Kong, Desheng; Liu, Jiasen; Jiang, Qian; Yu, Zuo; Hu, Xiaoliang; Guo, Dongchun; Huang, Qianqian; Jiao, Meihui; Qu, Liandong

    2016-01-01

    In 2010, a new rabbit hemorrhagic disease virus (RHDV) variant, designated RHDV2, was identified for the first time in Italy. Studies have shown that RHDV2 differs from RHDV1 (traditional RHDV) in terms of its antigenic profile and genetic characteristics. The VP60 protein of RHDV is a structural protein that plays important roles in viral replication, assembly, and immunogenicity. In this study, we immunized BALB/c mice with recombinant VP60 proteins from different RHDV subtypes. After three rounds of subcloning, type-specific positive hybridoma clones of RHDV1 and RHDV2 were further identified by an enzyme-linked immunosorbent assay, Western blotting, and an indirect immunofluorescence assay. Finally, three monoclonal antibodies (MAbs) (1D6, 1H2, and 3F2) that only recognize RHDV1, and four MAbs (1G2, 2C1, 3B7, and 5D6) that only recognize RHDV2 were identified. The epitopes recognized by these MAbs were mapped by Western blotting. Sequence analysis showed that the epitope sequences recognized by 1D6, 1H2, and 3F2 are highly conserved (98%) among RHDV1 strains, whereas the epitope sequences recognized by 1G2, 2C1, 3B7, and 5D6 are 100% conserved among RHDV2 strains. The high conservation of the epitope sequence showed that the screened MAbs were type-specific, and that they could distinguish different RHDV subtypes. PMID:26878800

  13. Identification of a linear B-cell epitope on the avian leukosis virus P27 protein using monoclonal antibodies.

    PubMed

    Li, Xiaofei; Qin, Liting; Zhu, Haibo; Sun, Yingjun; Cui, Xuezhi; Gao, Yadong; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2016-10-01

    Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can induce various clinical tumors. The capsid protein P27 is the group-specific antigen of ALV and has many viral antigen sites that are easy to detect. In this study, we produced a monoclonal antibody (mAb), 3A9, that is specific for the P27 protein. A series of partially overlapping peptides were screened to define (181)PPSAR(185) as the minimal linear epitope recognized by mAb 3A9. The identified epitope could be recognized by chicken anti-ALV and mouse anti-ALV P27 sera. The epitope was highly conserved among a number of ALV-A, ALV-B and ALV-J strains. MAb 3A9 might be a valuable tool for the development of new immunodiagnostic approaches for ALV, and the defined linear epitope might help further our understanding of the antigenic structure of the P27 protein. PMID:27438076

  14. Construction of a bovine enterovirus-based vector expressing a foot-and-mouth disease virus epitope.

    PubMed

    Chu, Jia-Qi; Lee, Yeo-Joo; Park, Jeong-Nam; Kim, Su-Mi; Lee, Kwang-Nyeong; Ko, Young-Joon; Lee, Hyang-Sim; Cho, In-Soo; Kim, Byounghan; Park, Jong-Hyeon

    2013-04-01

    A recombinant infectious bovine enterovirus (BEV) vector was constructed to express a foot-and-mouth disease virus (FMDV) capsid protein (VP1) epitope. Sequences encoding the VP1 epitope (amino acid residues 141-160) of FMDV (vaccine strain O1/Manisa/Turkey/69) were inserted into pBLUBEV at the VP1/2A junction. The growth characteristics of the parental virus and viruses derived from recombinant plasmids (pBLUBEV, pBLUBEV-Manisa-epi) were determined by plaque assay and one-step growth curve analysis. There were no significant differences in the growth kinetics and plaque morphologies between transfectant viruses and their parental virus. The expressed VP1 epitope was detected successfully by using indirect immunofluorescence assay with a polyclonal antibody against the FMDV VP1 epitope from Madin Darby bovine kidney (MDBK) cells infected with BEV-Manisa-epi transfectant virus. This study demonstrated a novel alternative live viral vector that may be utilized as a candidate vaccine vector for veterinary applications.

  15. Construction of a bovine enterovirus-based vector expressing a foot-and-mouth disease virus epitope.

    PubMed

    Chu, Jia-Qi; Lee, Yeo-Joo; Park, Jeong-Nam; Kim, Su-Mi; Lee, Kwang-Nyeong; Ko, Young-Joon; Lee, Hyang-Sim; Cho, In-Soo; Kim, Byounghan; Park, Jong-Hyeon

    2013-04-01

    A recombinant infectious bovine enterovirus (BEV) vector was constructed to express a foot-and-mouth disease virus (FMDV) capsid protein (VP1) epitope. Sequences encoding the VP1 epitope (amino acid residues 141-160) of FMDV (vaccine strain O1/Manisa/Turkey/69) were inserted into pBLUBEV at the VP1/2A junction. The growth characteristics of the parental virus and viruses derived from recombinant plasmids (pBLUBEV, pBLUBEV-Manisa-epi) were determined by plaque assay and one-step growth curve analysis. There were no significant differences in the growth kinetics and plaque morphologies between transfectant viruses and their parental virus. The expressed VP1 epitope was detected successfully by using indirect immunofluorescence assay with a polyclonal antibody against the FMDV VP1 epitope from Madin Darby bovine kidney (MDBK) cells infected with BEV-Manisa-epi transfectant virus. This study demonstrated a novel alternative live viral vector that may be utilized as a candidate vaccine vector for veterinary applications. PMID:23391822

  16. Globular Head-Displayed Conserved Influenza H1 Hemagglutinin Stalk Epitopes Confer Protection against Heterologous H1N1 Virus

    PubMed Central

    Klausberger, Miriam; Tscheliessnig, Rupert; Neff, Silke; Nachbagauer, Raffael; Wohlbold, Teddy John; Wilde, Monika; Palmberger, Dieter; Krammer, Florian; Jungbauer, Alois; Grabherr, Reingard

    2016-01-01

    Significant genetic variability in the head region of the influenza A hemagglutinin, the main target of current vaccines, makes it challenging to develop a long-lived seasonal influenza prophylaxis. Vaccines based on the conserved hemagglutinin stalk domain might provide broader cross-reactive immunity. However, this region of the hemagglutinin is immunosubdominant to the head region. Peptide-based vaccines have gained much interest as they allow the immune system to focus on relevant but less immunogenic epitopes. We developed a novel influenza A hemagglutinin-based display platform for H1 hemagglutinin stalk peptides that we identified in an epitope mapping assay using human immune sera and synthetic HA peptides. Flow cytometry and competition assays suggest that the identified stalk sequences do not recapitulate the epitopes of already described broadly neutralizing stalk antibodies. Vaccine constructs displaying 25-mer stalk sequences provided up to 75% protection from lethal heterologous virus challenge in BALB/c mice and induced antibody responses against the H1 hemagglutinin. The developed platform based on a vaccine antigen has the potential to be either used as stand-alone or as prime-vaccine in combination with conventional seasonal or pandemic vaccines for the amplification of stalk-based cross-reactive immunity in humans or as platform to evaluate the relevance of viral peptides/epitopes for protection against influenza virus infection. PMID:27088239

  17. Conservation Analysis of Dengue Virus T-cell Epitope-Based Vaccine Candidates Using Peptide Block Entropy

    PubMed Central

    Olsen, Lars Rønn; Zhang, Guang Lan; Keskin, Derin B.; Reinherz, Ellis L.; Brusic, Vladimir

    2011-01-01

    Broad coverage of the pathogen population is particularly important when designing CD8+ T-cell epitope vaccines against viral pathogens. Traditional approaches are based on combinations of highly conserved T-cell epitopes. Peptide block entropy analysis is a novel approach for assembling sets of broadly covering antigens. Since T-cell epitopes are recognized as peptides rather than individual residues, this method is based on calculating the information content of blocks of peptides from a multiple sequence alignment of homologous proteins rather than using the information content of individual residues. The block entropy analysis provides broad coverage of variant antigens. We applied the block entropy analysis method to the proteomes of the four serotypes of dengue virus (DENV) and found 1,551 blocks of 9-mer peptides, which cover 99% of available sequences with five or fewer unique peptides. In contrast, the benchmark study by Khan et al. (2008) resulted in 165 conserved 9-mer peptides. Many of the conserved blocks are located consecutively in the proteins. Connecting these blocks resulted in 78 conserved regions. Of the 1551 blocks of 9-mer peptides 110 comprised predicted HLA binder sets. In total, 457 subunit peptides that encompass the diversity of all sequenced DENV strains of which 333 are T-cell epitope candidates. PMID:22566858

  18. Globular Head-Displayed Conserved Influenza H1 Hemagglutinin Stalk Epitopes Confer Protection against Heterologous H1N1 Virus.

    PubMed

    Klausberger, Miriam; Tscheliessnig, Rupert; Neff, Silke; Nachbagauer, Raffael; Wohlbold, Teddy John; Wilde, Monika; Palmberger, Dieter; Krammer, Florian; Jungbauer, Alois; Grabherr, Reingard

    2016-01-01

    Significant genetic variability in the head region of the influenza A hemagglutinin, the main target of current vaccines, makes it challenging to develop a long-lived seasonal influenza prophylaxis. Vaccines based on the conserved hemagglutinin stalk domain might provide broader cross-reactive immunity. However, this region of the hemagglutinin is immunosubdominant to the head region. Peptide-based vaccines have gained much interest as they allow the immune system to focus on relevant but less immunogenic epitopes. We developed a novel influenza A hemagglutinin-based display platform for H1 hemagglutinin stalk peptides that we identified in an epitope mapping assay using human immune sera and synthetic HA peptides. Flow cytometry and competition assays suggest that the identified stalk sequences do not recapitulate the epitopes of already described broadly neutralizing stalk antibodies. Vaccine constructs displaying 25-mer stalk sequences provided up to 75% protection from lethal heterologous virus challenge in BALB/c mice and induced antibody responses against the H1 hemagglutinin. The developed platform based on a vaccine antigen has the potential to be either used as stand-alone or as prime-vaccine in combination with conventional seasonal or pandemic vaccines for the amplification of stalk-based cross-reactive immunity in humans or as platform to evaluate the relevance of viral peptides/epitopes for protection against influenza virus infection. PMID:27088239

  19. Multiple HLA Epitopes Contribute to Type 1 Diabetes Susceptibility

    PubMed Central

    Roark, Christina L.; Anderson, Kirsten M.; Simon, Lucas J.; Schuyler, Ronald P.; Aubrey, Michael T.; Freed, Brian M.

    2014-01-01

    Disease susceptibility for type 1 diabetes is strongly associated with the inheritance of specific HLA alleles. However, conventional allele frequency analysis can miss HLA associations because many alleles are rare. In addition, disparate alleles that have similar peptide-binding sites, or shared epitopes, can be missed. To identify the HLA shared epitopes associated with diabetes, we analyzed high-resolution genotyping for class I and class II loci. The HLA epitopes most strongly associated with susceptibility for disease were DQB1 A57, DQA1 V76, DRB1 H13, and DRB1 K71, whereas DPB1 YD9,57, HLA-B C67, and HLA-C YY9,116 were more weakly associated. The HLA epitopes strongly associated with resistance were DQB1 D57, DQA1 Y80, DRB1 R13, and DRB1 A71. A dominant resistance phenotype was observed for individuals bearing a protective HLA epitope, even in the presence of a susceptibility epitope. In addition, an earlier age of disease onset correlated with significantly greater numbers of susceptibility epitopes and fewer resistance epitopes (P < 0.0001). The prevalence of both DQ and DR susceptibility epitopes was higher in patients than in control subjects and was not exclusively a result of linkage disequilibrium, suggesting that multiple HLA epitopes may work together to increase the risk of developing diabetes. PMID:24357703

  20. Epitope mapping of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in a mouse model of multiple sclerosis: microwave-assisted synthesis of the peptide antigens and ELISA screening.

    PubMed

    Pacini, Giulia; Ieronymaki, Matthaia; Nuti, Francesca; Sabatino, Giuseppina; Larregola, Maud; Aharoni, Rina; Papini, Anna Maria; Rovero, Paolo

    2016-01-01

    The role of pathologic auto-antibodies against myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is a highly controversial matter. As the use of animal models may enable to unravel the molecular mechanisms of the human disorder, numerous studies on multiple sclerosis are carried out using experimental autoimmune encephalomyelitis (EAE). In particular, the most extensively used EAE model is obtained by immunizing C57BL/6 mice with the immunodominant peptide MOG(35-55). In this scenario, we analyzed the anti-MOG antibody response in this model using the recombinant refolded extracellular domain of the protein, MOG(1-117). To assess the presence of a B-cell intramolecular epitope spreading mechanism, we tested also five synthetic peptides mapping the 1-117 sequence of MOG, including MOG(35-55). For this purpose, we cloned, expressed in Escherichia coli and on-column refolded MOG(1-117), and we applied an optimized microwave-assisted solid-phase synthetic strategy to obtain the designed peptide sequences. Subsequently, we set up a solid-phase immunoenzymatic assay testing both naïve and EAE mice sera and using MOG protein and peptides as antigenic probes. The results obtained disclose an intense IgG antibody response against both the recombinant protein and the immunizing peptide, while no response was observed against the other synthetic fragments, thus excluding the presence of an intramolecular epitope spreading mechanism. Furthermore, as the properly refolded recombinant probe is able to bind antibodies with greater efficiency compared with MOG(35-55), we hypothesize the presence of both linear and conformational epitopes on MOG(35-55) sequence. PMID:26663200

  1. Influence of the maillard reaction on the allergenicity of rAra h 2, a recombinant major allergen from peanut (Arachis hypogaea), its major epitopes, and peanut agglutinin.

    PubMed

    Gruber, Patrick; Becker, Wolf-Meinhard; Hofmann, Thomas

    2005-03-23

    The influence of thermal processing and nonenzymatic browning reactions on the IgE-binding activity of rAra h 2 was studied and compared to findings recently reported for the allergen's natural counterpart. ELISA experiments as well as inhibition assays revealed that thermal treatment of rAra h 2 in the presence of reactive carbohydrates and carbohydrate breakdown products induces a strong increase of the IgE-binding activity, thus collaborating with the data reported for the natural protein isolated from peanuts. To localize the Ara h 2 sequences responsible for the formation of highly IgE-affine glycation sites, model peptides have been synthesized mimicking sequences which contain possible targets for glycation as well as the immunodominant epitopes. Immunological evaluation of these peptides heated in the absence or presence of reducing sugars and carbonyls, respectively, revealed that neither the two lysine residues of Ara h 2 nor its N-terminus are involved in the formation of IgE-affine structures by Maillard reaction. Also, the cysteine-containing major epitope 3 (aa 27-36) was found to lose its IgE-binding capacity upon heating. By contrast, the overlapping major epitopes 6 and 7, which do not contain any lysine or arginine moieties, showed a distinct higher level of IgE binding when subjected to Maillard reaction, thus giving the first evidence that nonbasic amino acids might be accessible for nonenzymatic glycation reactions and that these posttranslational modifications might induce increased IgE binding of the glycated Ara h 2. Analogous experiments were performed with peanut agglutinin, considered in the literature as a minor allergen. ELISA experiments revealed that the majority of tested sera samples from peanut-sensitive patients showed a high level of IgE binding to the lectin even after heat treatment. In contradiction to published data, nonenzymatic browning reactions seem to deteriorate the IgE affinity of the lectin. PMID:15769170

  2. Identification and immunogenic potential of B cell epitopes of outer membrane protein OmpF of Aeromonas hydrophila in translational fusion with a carrier protein.

    PubMed

    Sharma, Mahima; Dixit, Aparna

    2015-08-01

    Aeromonas hydrophila, a ubiquitous and virulent bacterial pathogen, affects a variety of fishes, including Labeo rohita. Existing treatment strategies comprise antibiotic therapies and attenuated bacterial strain-based vaccines. No functional subunit vaccine has been available until now. Given their key role in determining pathogenicity, outer membrane proteins have been successfully explored as potential vaccine candidates. We have devised a direct strategy for eliminating non-specific responses by selectively aiming the immune response against specific immunodominant epitopes of the outer membrane protein F (OmpF) of A. hydrophila (AhOmpF). Five putative epitopes of AhOmpF predicted in silico were genetically conjugated with heat labile enterotoxin chain B of E. coli (LTB). Recombinant fusion proteins expressed in E. coli were purified from solubilized inclusion bodies and refolded. The fusion protein retained GM1 ganglioside receptor binding activity of LTB, indicating proper folding. Four of the five fusion proteins were found to be highly immunogenic. Of the four proteins, antisera against the fusion protein (anti-rEpiF1) harboring 66-80 amino acid residues of the OmpF gave maximum cross-reactivity with the targeted rOmpF in enzyme-linked immunosorbent assay (ELISA) and was able to recognize both fusion partners-rOmpF and rLTB-in Western blot. Antibody isotyping of the antisera and cytokine array analysis of the culture supernatants of splenocytes from sensitized mice manifested a mixed Th1/Th2 immune response with a bias toward Th2. Anti-rEpiF1 antibodies were able to bind to the cell membrane of live A. hydrophila cells and agglutinate them. Our results thus suggest that the OmpF epitope (66-80) in fusion with a carrier protein is a promising vaccine candidate against A. hydrophila.

  3. Neo-epitopes are required for immunogenicity of the La/SS-B nuclear antigen in the context of late apoptotic cells

    PubMed Central

    Pan, Z-J; Davis, K; Maier, S; Bachmann, M P; Kim-Howard, X R; Keech, C; Gordon, T P; McCluskey, J; Farris, A D

    2006-01-01

    Mechanisms responsible for the induction of anti-nuclear autoantibodies (ANA) following exposure of the immune system to an excess of apoptotic cells are incompletely understood. In this study, the immunogenicity of late apoptotic cells expressing heterologous or syngeneic forms of La/SS-B was investigated following subcutaneous administration to A/J mice, a non-autoimmune strain in which the La antigenic system is well understood. Immunization of A/J mice with late apoptotic thymocytes taken from mice transgenic (Tg) for the human La (hLa) nuclear antigen resulted in the production of IgG ANA specific for human and mouse forms of La in the absence of foreign adjuvants. Preparations of phenotypically healthy cells expressing heterologous hLa were also immunogenic. However, hLa Tg late apoptotic cells accelerated and enhanced the apparent heterologous healthy cell-induced anti-La humoral response, while non-Tg late apoptotic cells did not. Subcutaneous administration of late apoptotic cells was insufficient to break existing tolerance to the hLa antigen in hLa Tg mice or to the endogenous mouse La (mLa) antigen in A/J mice immunized with syngeneic thymocytes, indicating a requirement for the presence of heterologous epitopes for anti-La ANA production. Lymph node dendritic cells (DC) but not B cells isolated from non-Tg mice injected with hLa Tg late apoptotic cells presented immunodominant T helper cell epitopes of hLa. These studies support a model in which the generation of neo-T cell epitopes is required for loss of tolerance to nuclear proteins after exposure of the healthy immune system to an excess of cells in late stages of apoptosis. PMID:16412047

  4. Determination of epitopes by mass spectrometry.

    PubMed

    Hager-Braun, Christine; Tomer, Kenneth B

    2004-01-01

    As a response to an infection, the immune system produces antibodies. The determination of the antigenic structure recognized by the antibody through epitope mapping provides information about the interaction between antigen and antibody for the diagnosis of a disease on a molecular level, for characterizing the pathogenesis of the infectious material, and for the development of interfering drugs or preventative vaccines. Here we present the determination of the fine structure of the linear epitope located on the gp41 protein of the human immunodeficiency virus recognized by the monoclonal antibody 2F5. In this approach we coupled the antigen SOSgp140 to the antibody 2F5, which was covalently linked to an Fc-specific antibody immobilized on cyanogen bromide (CNBr)-activated Sepharose beads. Digestion of the antigen with endoproteinase LysC resulted in an affinity-bound peptide whose fine structure was characterized by digestion with carboxypeptidase Y and aminopeptidase M. All steps of this method were monitored by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). The epitope recognized by 2F5 was identified to be the 16-mer peptide with the sequence NEQELLELDKWASLWN.

  5. Caspr2 autoantibodies target multiple epitopes

    PubMed Central

    Olsen, Abby L.; Lai, Yongjie; Dalmau, Josep; Scherer, Steven S.

    2015-01-01

    Objective: To better understand the mechanisms of autoantibodies to the axonal protein contactin-associated protein-like 2 (Caspr2) by studying their target epitopes. Methods: A plasmid for expressing Caspr2 was modified so that the various extracellular subdomains were deleted individually and in groups. Cultured cells were transfected to express these constructs and assayed by immunofluorescence staining with a commercial Caspr2 antibody and a panel of patient sera known to react with Caspr2. Western blotting was also performed. The role of glycosylation in immunogenicity was tested with tunicamycin and PNGase F treatment. Results: Patient antibodies bound to the extracellular domain of Caspr2. Neither native protein structure nor glycosylation was required for immunoreactivity. Caspr2 constructs with single or multidomain deletions were expressed on the plasma membrane. All deletion constructs were recognized by patients' sera, although reactivity was significantly reduced with deletion of the discoidin-like subdomain and strongly reduced or abolished with larger deletions of multiple N-terminal subdomains. Caspr2 with all subdomains deleted except the discoidin-like domain was still recognized by the antibodies. Conclusion: Caspr2 autoantibodies recognize multiple target epitopes in the extracellular domain of Caspr2, including one in the discoidin-like domain. Reactivity for some epitopes is not dependent on glycosylation or native protein structure. PMID:26185774

  6. Generation of antiserum to specific epitopes.

    PubMed

    Marchion, D C; Manning, D S; Shafer, W M; Judd, R C

    1996-12-01

    The ability to prevent disease by immunization with subunit vaccines that incorporate specific epitopes was demonstrated by DiMarchi et al. (1), who used a synthetic peptide to protect cattle against foot-and-mouth disease. However, generation of antibody to peptide antigens is often difficult owing to the small molecular mass and limited chemical complexity. We tested the hypothesis that recombinant DNA and synthetic peptide techniques would make it possible to stimulate vigorous immune responses to specific epitopes of an outer membrane protein of Neisseria gonorrhoeae. The MtrC AP1 sequence from the invariant MtrC gonococcal lipoprotein was genetically fused to maltose binding protein. The resultant fusion protein was used as the primary immunogen to stimulate MtrC AP1-specific antiserum. To enhance antibody production specific to MtrC AP1, boosting immunizations were performed with synthetic MtrC AP1 sequence contained in a multiple antigenic peptide system immunogen. The MtrC AP1-specific antiserum strongly recognized the MtrC protein on Western blots and appeared to bind native MtrC protein in situ. The generation of antibody in this fashion provides the technology to produce antibody to defined epitopes of any protein, including those found in the gonococcal outer membrane. The ability of those antibodies to inhibit bacterial growth or to activate complement protein can then be tested.

  7. Computational approach for predicting the conserved B-cell epitopes of hemagglutinin H7 subtype influenza virus

    PubMed Central

    Wang, Xiangyu; Sun, Qi; Ye, Zhonghua; Hua, Ying; Shao, Na; Du, Yanli; Zhang, Qiwei; Wan, Chengsong

    2016-01-01

    An avian-origin influenza H7N9 virus epidemic occurred in China in 2013–2014, in which >422 infected people suffered from pneumonia, respiratory distress syndrome and septic shock. H7N9 viruses belong to the H7 subtype of avian-origin influenza viruses (AIV-H7). Hemagglutinin (HA) is a vital membrane protein of AIV that has an important role in host recognition and infection. The epitopes of HA are significant determinants of the regularity of epidemic and viral mutation and recombination mechanisms. The present study aimed to predict the conserved B-cell epitopes of AIV-H7 HA using a bioinformatics approach, including the three most effective epitope prediction softwares available online: Artificial Neural Network based B-cell Epitope Prediction (ABCpred), B-cell Epitope Prediction (BepiPred) and Linear B-cell Epitope Prediction (LBtope). A total of 24 strains of Euro-Asiatic AIV-H7 that had been associated with a serious poultry pandemic or had infected humans in the past 30 years were selected to identify the conserved regions of HA. Sequences were obtained from the National Center for Biotechnology Information and Global Initiative on Sharing Avian Influenza Data databases. Using a combination of software prediction and sequence comparisons, the conserved epitopes of AIV-H7 were predicted and clarified. A total of five conserved epitopes [amino acids (aa) 37–52, 131–142, 215–234, 465–484 and 487–505] with a suitable length, high antigenicity and minimal variation were predicted and confirmed. Each obtained a score of >0.80 in ABCpred, 60% in LBtope and a level of 0.35 in Bepipred. In addition, a representative amino acid change (glutamine235-to-leucine235) in the HA protein of the 2013 AIV-H7N9 was discovered. The strategy adopted in the present study may have profound implications on the rapid diagnosis and control of infectious disease caused by H7N9 viruses, as well as by other virulent viruses, such as the Ebola virus. PMID:27703505

  8. The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance

    PubMed Central

    Macher, Bruce A.; Galili, Uri

    2008-01-01

    In 1985, we reported that a naturally occurring human antibody (anti-Gal), produced as the most abundant antibody (1% of immunoglobulins) throughout the life of all individuals, recognizes a carbohydrate epitope Galα1-3Galβ1-4GlcNAc-R (the α-gal epitope). Since that time, an extensive literature has developed on discoveries related to the α-gal epitope and the anti-Gal antibody, including the barrier they form in xenotransplantation and their reciprocity in mammalian evolution. This review covers these topics and new avenues of clinical importance related to this (α-gal epitope/anti-Gal) unique antigen/antibody system in improving the efficacy of viral vaccines and in immunotherapy against cancer. PMID:18047841

  9. Viral Entry into Cells

    NASA Astrophysics Data System (ADS)

    D'Orsogna, Maria R.

    2010-09-01

    Successful viral infection of a healthy cell requires complex host-pathogen interactions. In this talk we focus on the dynamics specific to the HIV virus entering a eucaryotic cell. We model viral entry as a stochastic engagement of receptors and coreceptors on the cell surface. We also consider the transport of virus material to the cell nucleus by coupling microtubular motion to the concurrent biochemical transformations that render the viral material competent for nuclear entry. We discuss both mathematical and biological consequences of our model, such as the formulation of an effective integrodifferential boundary condition embodying a memory kernel and optimal timing in maximizing viral probabilities.

  10. A Unique and Conserved Neutralization Epitope in H5N1 Influenza Viruses Identified by an Antibody against the A/Goose/Guangdong/1/96 Hemagglutinin

    PubMed Central

    Zhu, Xueyong; Guo, Yong-Hui; Jiang, Tao; Wang, Ya-Di; Chan, Kwok-Hung; Li, Xiao-Feng; Yu, Wenli; McBride, Ryan; Paulson, James C.; Yuen, Kwok-Yung; Qin, Cheng-Feng

    2013-01-01

    Despite substantial efforts to control and contain H5N1 influenza viruses, bird flu viruses continue to spread and evolve. Neutralizing antibodies against conserved epitopes on the viral hemagglutinin (HA) could confer immunity to the diverse H5N1 virus strains and provide information for effective vaccine design. Here, we report the characterization of a broadly neutralizing murine monoclonal antibody, H5M9, to most H5N1 clades and subclades that was elicited by immunization with viral HA of A/Goose/Guangdong/1/96 (H5N1), the immediate precursor of the current dominant strains of H5N1 viruses. The crystal structures of the Fab′ fragment of H5M9 in complexes with H5 HAs of A/Vietnam/1203/2004 and A/Goose/Guangdong/1/96 reveal a conserved epitope in the HA1 vestigial esterase subdomain that is some distance from the receptor binding site and partially overlaps antigenic site C of H3 HA. Further epitope characterization by selection of escape mutants and epitope mapping by flow cytometry analysis of site-directed mutagenesis of HA with a yeast cell surface display identified four residues that are critical for H5M9 binding. D53, Y274, E83a, and N276 are all conserved in H5N1 HAs and are not in H5 epitopes identified by other mouse or human antibodies. Antibody H5M9 is effective in protection of H5N1 virus both prophylactically and therapeutically and appears to neutralize by blocking both virus receptor binding and postattachment steps. Thus, the H5M9 epitope identified here should provide valuable insights into H5N1 vaccine design and improvement, as well as antibody-based therapies for treatment of H5N1 infection. PMID:24049169

  11. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants.

    PubMed

    Li, Min; Wang, Xin; Cao, Lu; Lin, Zhijie; Wei, Minxi; Fang, Mujin; Li, Shaowei; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian

    2016-08-17

    Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples. PMID:27426626

  12. Vascular endothelial cells have impaired capacity to present immunodominant, antigenic peptides: a mechanism of cell type-specific immune escape.

    PubMed

    Kummer, Marco; Lev, Avital; Reiter, Yoram; Biedermann, Barbara C

    2005-02-15

    Vascular endothelial cells (EC) are an exposed target tissue in the course of CTL-mediated alloimmune diseases such as graft-vs-host disease (GVHD) or solid organ transplant rejection. The outcome of an interaction between CTL and target cells is determined by the amount of Ag presented and the costimulatory signals delivered by the target cells. We compared human EC with leukocytes and epithelial cells as targets for peptide-specific, MHC class I-restricted CTL clones. EC were poor targets for immunodominant CTL. Both endogenously processed antigenic proteins and exogenously added antigenic peptides are presented at 50- to 5000-fold lower levels on EC compared with any other target cell analyzed. This quantitative difference fully explained the poor CTL-mediated killing of EC. There was no evidence that lack of costimulation would contribute significantly to this cell type-specific difference in CTL activation. An HLA-A2-specific CTL clone that killed a broad selection of HLA A2-positive target cells equally well, killed EC less efficiently. Our data suggest that EC present a different Ag repertoire compared with other cell types. By this mechanism, these cells may escape an attack by effector CTL, which have been educated by professional APCs and are specific for immunodominant antigenic peptides. PMID:15699122

  13. Patr-A and B, the orthologues of HLA-A and B, present hepatitis C virus epitopes to CD8+ cytotoxic T cells from two chronically infected chimpanzees

    PubMed Central

    1996-01-01

    Common chimpanzees (Pan troglodytes) infected with hepatitis C virus (HCV) show a disease progression similar to that observed for human patients. Although most infected animals develop a chronic hepatitis, virus persistence is associated with an ongoing immune response, for which the beneficial or detrimental effects are uncertain. Lines of virus-specific cytotoxic CD8+ T lymphocytes (CTL) have been previously established from liver biopsies of two common chimpanzees chronically infected with HCV-1. The viral epitopes recognized by six lines of CTL have been defined using synthetic peptides and shown to consist of 8 to 9-residue peptides derived from various viral proteins. Five of the epitopes derive from sequences that vary among strains of HCV. The majority of the corresponding variant epitopes from different HCV strains were either recognized less efficiently or not at all by the CTL, suggesting their response may have limited potential for controlling replication of HCV variants. Complementary DNAs encoding class I alleles of the two common chimpanzees, Patr-A, -B, and -C were cloned, sequenced, and transfected individually into a class I- deficient human cell line. Analysis of peptide presentation by the class I transfectants to CTL identified the Patr class I allotypes that present the six epitopes defined here and an additional epitope defined previously. The assignment of epitopes to class I allotypes based upon analysis of the transfected cells correlates precisely with the segregation of antigen-presenting function within a panel of common chimpanzee cell lines and the expression of class I heavy chains as defined by isoelectric focusing. Five of the HCV-1 epitopes are presented by Patr-B allotypes, two epitopes are presented by a Patr-A allotype, and none is presented by Patr-C allotypes. PMID:8666933

  14. Immunoinformatics prediction of linear epitopes from Taenia solium TSOL18

    PubMed Central

    Zimic, Mirko; Gutiérrez, Andrés Hazaet; Gilman, Robert Hugh; López, César; Quiliano, Miguel; Evangelista, Wilfredo; Gonzales, Armando; García, Héctor Hugo; Sheen, Patricia

    2011-01-01

    Cysticercosis is a public health problem in several developing countries. The oncosphere protein TSOL18 is the most immunogenic and protective antigen ever reported against porcine cysticercosis, although no specific epitope has been identified to account for these properties. Recent evidence suggests that protection might be associated with conformational epitopes. Linear epitopes from TSOL18 were computationally predicted and evaluated for immunogenicity and protection against porcine cysticercosis. A synthetic peptide was designed based on predicted linear B cell and T cell epitopes that are exposed on the surface of the theoretically modeled structure of TSOL18. Three surface epitopes from TSOL18 were predicted as immunogenic. A peptide comprising a linear arrangement of these epitopes was chemically synthesized. The capacity of the synthetic peptide to protect pigs against an oral challenge with Taenia solium proglottids was tested in a vaccine trial. The synthetic peptide was able to produce IgG antibodies in pigs and was associated to a reduction of the number of cysts, although was not able to provide complete protection, defined as the complete absence of cysts in necropsy. This study demonstrated that B cell and T cell predicted epitopes from TSOL18 were not able to completely protect pigs against an oral challenge with Taenia solium proglottids. Therefore, other linear epitopes or eventually conformational epitopes may be responsible for the protection conferred by TSOL18. PMID:21738328

  15. CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization.

    PubMed

    Platt, Rebecca J; Khodai, Tansi; Townend, Tim J; Bright, Helen H; Cockle, Paul; Perez-Tosar, Luis; Webster, Rob; Champion, Brian; Hickling, Timothy P; Mirza, Fareed

    2013-01-01

    CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings. PMID:24709642

  16. Using patient serum to epitope map soybean glycinins reveals common epitopes shared with many legumes and tree nuts.

    PubMed

    Saeed, Hanaa; Gagnon, Christine; Cober, Elroy; Gleddie, Steve

    2016-02-01

    Soybean consumption is increasing in many Western diets; however, recent reviews suggest that the prevalence of soy allergy can be as high as 0.5% for the general population and up to 13% for children. The immunoglobulin-E (IgE) binding of sera from six soy-sensitive adult human subjects to soybean proteins separated by 2D gel electrophoresis was studied. Synthetic peptide sets spanning the mature glycinin subunit A2 and A3 primary sequences were used to map the IgE-binding regions. Putative epitopes identified in this study were also localized on glycinin hexamer models using bioinformatics software. We identified linear IgE-binding epitopes of the major storage protein Gly m 6 by screening individual soy-sensitive patient sera. These epitopes were then further analysed by 3D in silico model localization and compared to other plant storage protein epitopes. Web-based software applications were also used to study the ability to accurately predict epitopes with mixed results. A total of nine putative IgE-binding epitopes were identified in the glycinin A3 (A3.1-A3.3) and A2 (A2.1-A2.6) subunits. Most patients' sera IgE bound to only one or two epitopes, except for one patient's serum which bound to four different A2 epitopes. Two epitopes (A3.2 and A2.4) overlapped with a previously identified epitope hot spot of 11S globulins from other plant species. Most epitopes were predicted to be exposed on the surface of the 3D model of the glycinin hexamer. Amino acid sequence alignments of soybean acidic glycinins and other plant globulins revealed one dominant epitope hot spot among the four reported hot spots. This study may be helpful for future development of soy allergy immunotherapy and diagnosis.

  17. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    SciTech Connect

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger

    2009-09-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  18. Generation of Monoclonal Antibodies against Dengue Virus Type 4 and Identification of Enhancing Epitopes on Envelope Protein.

    PubMed

    Tang, Chung-Tao; Liao, Mei-Ying; Chiu, Chien-Yu; Shen, Wen-Fan; Chiu, Chiung-Yi; Cheng, Ping-Chang; Chang, Gwong-Jen J; Wu, Han-Chung

    2015-01-01

    The four serotypes of dengue virus (DENV1-4) pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE). Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodies in the pathogenesis of dengue, we generated a panel of 16 new monoclonal antibodies (mAbs) against DENV4. Using plaque reduction neutralization test (PRNT), we examined the neutralizing activity of these mAbs. Furthermore, we used the in vitro and in vivo ADE assay to evaluate the enhancement of DENV infection by mAbs. The results indicate that the cross-reactive and poorly neutralizing mAbs, DD11-4 and DD18-5, strongly enhance DENV1-4 infection of K562 cells and increase mortality in AG129 mice. The epitope residues of these enhancing mAbs were identified using virus-like particle (VLP) mutants. W212 and E26 are the epitope residues of DD11-4 and DD18-5, respectively. In conclusion, we generated and characterized 16 new mAbs against DENV4. DD11-4 and D18-5 possessed non-neutralizing activities and enhanced viral infection. Moreover, we identified the epitope residues of enhancing mAbs on envelope protein. These results may provide useful information for development of safe dengue vaccine. PMID:26309127

  19. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens.

    PubMed

    Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong

    2016-02-01

    Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA. PMID:26612210

  20. Exosomes in Viral Disease.

    PubMed

    Anderson, Monique R; Kashanchi, Fatah; Jacobson, Steven

    2016-07-01

    Viruses have evolved many mechanisms by which to evade and subvert the immune system to ensure survival and persistence. However, for each method undertaken by the immune system for pathogen removal, there is a counteracting mechanism utilized by pathogens. The new and emerging role of microvesicles in immune intercellular communication and function is no different. Viruses across many different families have evolved to insert viral components in exosomes, a subtype of microvesicle, with many varying downstream effects. When assessed cumulatively, viral antigens in exosomes increase persistence through cloaking viral genomes, decoying the immune system, and even by increasing viral infection in uninfected cells. Exosomes therefore represent a source of viral antigen that can be used as a biomarker for disease and targeted for therapy in the control and eradication of these disorders. With the rise in the persistence of new and reemerging viruses like Ebola and Zika, exploring the role of exosomes become more important than ever. PMID:27324390

  1. Viral Disease Networks?

    NASA Astrophysics Data System (ADS)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  2. Mutant canine oral papillomavirus L1 capsid proteins which form virus-like particles but lack native conformational epitopes.

    PubMed

    Chen, Y; Ghim, S J; Jenson, A B; Schlegel, R

    1998-09-01

    Recently, the L1 capsid protein of canine oral papillomavirus (COPV) has been used as an effective systemic vaccine that prevents viral infections of the oral mucosa. The efficacy of this vaccine is critically dependent upon native L1 conformation and, when purified from Sf9 insect cells, the L1 protein not only displays type-specific, conformation-dependent epitopes but it also assembles spontaneously into virus-like particles (VLPs). To determine whether VLP formation was coupled to the expression of conformation-dependent epitopes, we generated a series of N- and C-terminal L1 deletion mutants and evaluated their ability to form VLPs (by electron microscopy) and to react with conformation-dependent antibodies (by immunofluorescence microscopy). We found that (a) deletion of the 26 C-terminal residues generated a mutant protein which formed VLPs efficiently and folded correctly both in the cytoplasm and in the nucleus; (b) further truncation of the L1 C terminus (67 amino acids) resulted in a capsid protein which formed VLPs but which failed to express conformational epitopes; (c) deletion of the first 25 N-terminal amino acids also abolished expression of conformational epitopes (without altering VLP formation) but the native conformation of this deletion mutant could be restored by the addition of the human papillomavirus type 11 N terminus. These results demonstrate that VLP formation and conformational epitope expression can be dissociated and that the L1 N terminus has a critical role in protein folding. In addition, it appears that correct L1 protein folding is not dependent upon the nucleoplasmic environment. PMID:9747722

  3. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses

    PubMed Central

    Grandea, Andres G.; Olsen, Ole A.; Cox, Thomas C.; Renshaw, Mark; Hammond, Philip W.; Chan-Hui, Po-Ying; Mitcham, Jennifer L.; Cieplak, Witold; Stewart, Shaun M.; Grantham, Michael L.; Pekosz, Andrew; Kiso, Maki; Shinya, Kyoko; Hatta, Masato; Kawaoka, Yoshihiro; Moyle, Matthew

    2010-01-01

    Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG+ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. PMID:20615945

  4. Influenza virus vaccine expressing fusion and attachment protein epitopes of respiratory syncytial virus induces protective antibodies in BALB/c mice.

    PubMed

    Bian, Chengrong; Liu, Shuzhen; Liu, Na; Zhang, Guangzhou; Xing, Li; Song, Yingwei; Duan, Yueqiang; Gu, Hongjing; Zhou, Ya; Zhang, Peirui; Li, Zhiwei; Zhang, Keming; Wang, Zhaohai; Zhang, Shaogeng; Wang, Xiliang; Yang, Penghui

    2014-04-01

    Respiratory syncytial virus (RSV) is an important viral pathogen that causes life-threatening respiratory infections in both infants and the elderly; no vaccines are at present available. In this report, we examined the use of influenza virus as a vehicle for production of an experimental RSV vaccine. We used reverse genetics to generate a recombinant influenza A virus with epitopes from the RSV fusion (F) and attachment (G) proteins (rFlu/RSV/F+G) in the influenza virus nonstructural (NS1) protein gene. Expression of RSV F+G epitope proteins was confirmed by Western blotting, and no changes in viral morphology were evident following examination by electron microscopy. BALB/c mice immunized intranasally with rFlu/RSV/F+G showed viral-specific antibody responses against both influenza and RSV. Total IgG, IgG1, IgG2a and IgA were measured in mice immunized with rFlu/RSV/F+G, revealing robust cellular and mucosal immune responses. Furthermore, we found that rFlu/RSV/F+G conferred protection against subsequent influenza and RSV challenges, showing significant decreases in viral replication and obvious attenuation of histopathological changes associated with viral infections. These findings suggest that rFlu/RSV/F+G is a promising vaccine candidate, which should be further assessed using cotton rat and primate models. PMID:24509239

  5. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  6. Autoantibody recognition mechanisms of p53 epitopes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal "tumor suppressor" is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  7. Fine mapping of epitopes by intradomain Kd/Dd recombinants

    PubMed Central

    1987-01-01

    11 intradomain recombinants between H-2Kd and H-2Dd were produced using an original technique based on in vivo recombination in Escherichia coli. After transfection into mouse L cells, all these recombinants were expressed at high levels on the cell surface. The specificities of 77 mAbs were examined on these cell lines. mAbs could be organized in 12 groups. In each group, a small number of amino acids participating in the recognized epitope(s) were identified. In a few instances, noncontinuous epitopes comprising amino acids belonging to different domains of the antigen were found. The data thus obtained are compatible with those produced in previous exon-shuffling experiments, but permit a much more precise definition of recognized epitope(s). PMID:2439641

  8. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets

    PubMed Central

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Mark Tompkins, S; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape. PMID:24492306

  9. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets.

    PubMed

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.

  10. Lymphocyte proliferation in response to immunodominant antigens of Brucella abortus 2308 and RB51 in strain 2308-infected cattle.

    PubMed

    Stevens, M G; Olsen, S C; Cheville, N F

    1994-10-01

    Lymphocyte proliferation in response to proteins from the Brucella abortus strain 2308 (S2308) and the lipopolysaccharide (LPS) O-antigen-deficient mutant of S2308, strain RB51 (SRB51), was measured in S2308-infected cattle following abortion. Supramammary and superficial cervical lymph node lymphocytes from infected cattle proliferated most when incubated with 27- to 18-kDa proteins of S2308 or SRB51. Proteins of SRB51, which contained no LPS O antigens, induced lymphocyte proliferation similar to that induced by S2308 proteins, which contained LPS O antigens. These results indicate that 27- to 18-kDa proteins, but not LPS O antigens, of S2308 and SRB51 are immunodominant in S2308-infected cattle as assessed by lymphocyte proliferation assays.

  11. Classification epitopes in groups based on their protein family

    PubMed Central

    2015-01-01

    Background The humoral immune system response is based on the interaction between antibodies and antigens for the clearance of pathogens and foreign molecules. The interaction between these proteins occurs at specific positions known as antigenic determinants or B-cell epitopes. The experimental identification of epitopes is costly and time consuming. Therefore the use of in silico methods, to help discover new epitopes, is an appealing alternative due the importance of biomedical applications such as vaccine design, disease diagnostic, anti-venoms and immune-therapeutics. However, the performance of predictions is not optimal been around 70% of accuracy. Further research could increase our understanding of the biochemical and structural properties that characterize a B-cell epitope. Results We investigated the possibility of linear epitopes from the same protein family to share common properties. This hypothesis led us to analyze physico-chemical (PCP) and predicted secondary structure (PSS) features of a curated dataset of epitope sequences available in the literature belonging to two different groups of antigens (metalloproteinases and neurotoxins). We discovered statistically significant parameters with data mining techniques which allow us to distinguish neurotoxin from metalloproteinase and these two from random sequences. After a five cross fold validation we found that PCP based models obtained area under the curve values (AUC) and accuracy above 0.9 for regression, decision tree and support vector machine. Conclusions We demonstrated that antigen's family can be inferred from properties within a single group of linear epitopes (metalloproteinases or neurotoxins). Also we discovered the characteristics that represent these two epitope groups including their similarities and differences with random peptides and their respective amino acid sequence. These findings open new perspectives to improve epitope prediction by considering the specific antigen

  12. Bioinformatics analysis of the epitope regions for norovirus capsid protein

    PubMed Central

    2013-01-01

    Background Norovirus is the major cause of nonbacterial epidemic gastroenteritis, being highly prevalent in both developing and developed countries. Despite of the available monoclonal antibodies (MAbs) for different sub-genogroups, a comprehensive epitope analysis based on various bioinformatics technology is highly desired for future potential antibody development in clinical diagonosis and treatment. Methods A total of 18 full-length human norovirus capsid protein sequences were downloaded from GenBank. Protein modeling was performed with program Modeller 9.9. The modeled 3D structures of capsid protein of norovirus were submitted to the protein antigen spatial epitope prediction webserver (SEPPA) for predicting the possible spatial epitopes with the default threshold. The results were processed using the Biosoftware. Results Compared with GI, we found that the GII genogroup had four deletions and two special insertions in the VP1 region. The predicted conformational epitope regions mainly concentrated on N-terminal (1~96), Middle Part (298~305, 355~375) and C-terminal (560~570). We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. Conclusions The predicted conformational epitope regions of norovirus VP1 mainly concentrated on N-terminal, Middle Part and C-terminal. We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. The overlapping with experimental epitopes indicates the important role of latest computational technologies. With the fast development of computational immunology tools, the bioinformatics pipeline will be more and more critical to vaccine design. PMID:23514273

  13. Identification of a Novel 74-Kilodalton Immunodominant Antigen of Pythium insidiosum Recognized by Sera from Human Patients with Pythiosis

    PubMed Central

    Krajaejun, Theerapong; Kunakorn, Mongkol; Pracharktam, Rungnapa; Chongtrakool, Piriyaporn; Sathapatayavongs, Boonmee; Chaiprasert, Angkana; Vanittanakom, Nongnuch; Chindamporn, Ariya; Mootsikapun, Piroon

    2006-01-01

    The oomycetous, fungus-like, aquatic organism Pythium insidiosum is the etiologic agent of pythiosis, a life-threatening infectious disease of humans and animals that has been increasingly reported from tropical, subtropical, and temperate countries. Human pythiosis is endemic in Thailand, and most patients present with arteritis, leading to limb amputation and/or death, or cornea ulcer, leading to enucleation. Diagnosis of pythiosis is time-consuming and difficult. Radical surgery is the main treatment for pythiosis because conventional antifungal drugs are ineffective. The aims of this study were to evaluate the use of Western blotting for diagnosis of human pythiosis, to identify specific immunodominant antigens of P. insidiosum, and to increase understanding of humoral immune responses against the pathogen. We performed Western blot analysis on 16 P. insidiosum isolates using 12 pythiosis serum samples. These specimens were derived from human patients with pythiosis who had different forms of infection and lived in different geographic areas throughout Thailand. We have identified a 74-kDa immunodominant antigen in all P. insidiosum isolates tested. The 74-kDa antigen was also recognized by sera from all patients with pythiosis but not by control sera from healthy individuals, patients with thalassemia, and patients with various infectious diseases, indicating that Western blot analysis could facilitate diagnosis of pythiosis. Therefore, the 74-kDa antigen is a potential target for developing rapid serodiagnostic tests as well as a therapeutic vaccine for pythiosis. These advances could lead to early diagnosis and effective treatment, crucial factors for better prognosis for patients with pythiosis. PMID:16672392

  14. Viral infections during pregnancy.

    PubMed

    Silasi, Michelle; Cardenas, Ingrid; Kwon, Ja-Young; Racicot, Karen; Aldo, Paula; Mor, Gil

    2015-03-01

    Viral infections during pregnancy have long been considered benign conditions with a few notable exceptions, such as herpes virus. The recent Ebola outbreak and other viral epidemics and pandemics show how pregnant women suffer worse outcomes (such as preterm labor and adverse fetal outcomes) than the general population and non-pregnant women. New knowledge about the ways the maternal-fetal interface and placenta interact with the maternal immune system may explain these findings. Once thought to be 'immunosuppressed', the pregnant woman actually undergoes an immunological transformation, where the immune system is necessary to promote and support the pregnancy and growing fetus. When this protection is breached, as in a viral infection, this security is weakened and infection with other microorganisms can then propagate and lead to outcomes, such as preterm labor. In this manuscript, we review the major viral infections relevant to pregnancy and offer potential mechanisms for the associated adverse pregnancy outcomes. PMID:25582523

  15. Viral Hemorrhagic Fevers

    MedlinePlus

    ... Related Links About VSPB (Viral Special Pathogens Branch) File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  16. VIRAL INFECTIONS DURING PREGNANCY

    PubMed Central

    Silasi, Michelle; Cardenas, Ingrid; Racicot, Karen; Kwon, Ja-Young; Aldo, Paula; Mor, Gil

    2015-01-01

    Viral infections during pregnancy have long been considered benign conditions with a few notable exceptions, such as herpes virus. The recent Ebola outbreak and other viral epidemics and pandemics show how pregnant women suffer worse outcomes (such as preterm labor and adverse fetal outcomes) than the general population and non-pregnant women. New knowledge about the ways the maternal-fetal interface and placenta interact with the maternal immune system may explain these findings. Once thought to be “immunosuppressed”, the pregnant woman actually undergoes an immunological transformation, where the immune system is necessary to promote and support the pregnancy and growing fetus. When this protection is breached, as in a viral infection, this security is weakened and infection with other microorganisms can then propagate and lead to outcomes, such as preterm labor. In this manuscript, we review the major viral infections relevant to pregnancy, and offer potential mechanisms for the associated adverse pregnancy outcomes. PMID:25582523

  17. HIV and Viral Hepatitis

    MedlinePlus

    ... prevalent among blacks as among whites. Viral Hepatitis Transmission People can be infected with the three most ... risk for HAV. • • New data suggest that sexual transmission of HCV among MSM with HIV occurs more ...

  18. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  19. An Epitope-Substituted DNA Vaccine Improves Safety and Immunogenicity against Dengue Virus Type 2.

    PubMed

    Tang, Chung-Tao; Li, Pi-Chun; Liu, I-Ju; Liao, Mei-Ying; Chiu, Chiung-Yi; Chao, Day-Yu; Wu, Han-Chung

    2015-01-01

    Dengue virus (DENV), a global disease, is divided into four serotypes (DENV1-4). Cross-reactive and non-neutralizing antibodies against envelope (E) protein of DENV bind to the Fcγ receptors (FcγR) of cells, and thereby exacerbate viral infection by heterologous serotypes via antibody-dependent enhancement (ADE). Identification and modification of enhancing epitopes may mitigate enhancement of DENV infection. In this study, we characterized the cross-reactive DB21-6 and DB39-2 monoclonal antibodies (mAbs) against domain I-II of DENV; these antibodies poorly neutralized and potently enhanced DENV infection both in vitro and in vivo. In addition, two enhancing mAbs, DB21-6 and DB39-2, were observed to compete with sera antibodies from patients infected with dengue. The epitopes of these enhancing mAbs were identified using phage display, structural prediction, and mapping of virus-like particle (VLP) mutants. N8, R9, V12, and E13 are the reactive residues of DB21-6, while N8, R9, and E13 are the reactive residues of DB39-2. N8 substitution tends to maintain VLP secretion, and decreases the binding activity of DB21-6 and DB39-2. The immunized sera from N8 substitution (N8R) DNA vaccine exerted greater neutralizing and protective activity than wild-type (WT)-immunized sera, both in vitro and in vivo. Furthermore, treatment with N8R-immunized sera reduced the enhancement of mortality in AG129 mice. These results support identification and substitution of enhancing epitope as a novel strategy for developing safe dengue vaccines. PMID:26135599

  20. Conserved epitopes of influenza A virus inducing protective immunity and their prospects for universal vaccine development.

    PubMed

    Staneková, Zuzana; Varečková, Eva

    2010-11-30

    Influenza A viruses belong to the best studied viruses, however no effective prevention against influenza infection has been developed. The emerging of still new escape variants of influenza A viruses causing epidemics and periodic worldwide pandemics represents a threat for human population. Therefore, current, hot task of influenza virus research is to look for a way how to get us closer to a universal vaccine. Combination of chosen conserved antigens inducing cross-protective antibody response with epitopes activating also cross-protective cytotoxic T-cells would offer an attractive strategy for improving protection against drift variants of seasonal influenza viruses and reduces the impact of future pandemic strains. Antigenically conserved fusion-active subunit of hemagglutinin (HA2 gp) and ectodomain of matrix protein 2 (eM2) are promising candidates for preparation of broadly protective HA2- or eM2-based vaccine that may aid in pandemic preparedness. Overall protective effect could be achieved by contribution of epitopes recognized by cytotoxic T-lymphocytes (CTL) that have been studied extensively to reach much broader control of influenza infection. In this review we present the state-of-art in this field. We describe known adaptive immune mechanisms mediated by influenza specific B- and T-cells involved in the anti-influenza immune defense together with the contribution of innate immunity. We discuss the mechanisms of neutralization of influenza infection mediated by antibodies, the role of CTL in viral elimination and new approaches to develop epitope based vaccine inducing cross-protective influenza virus-specific immune response.

  1. NCBI viral genomes resource.

    PubMed

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  2. Immigration and viral hepatitis.

    PubMed

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants. PMID:25962882

  3. Immigration and viral hepatitis.

    PubMed

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants.

  4. Proximal glycans outside of the epitopes regulate the presentation of HIV-1 envelope gp120 helper epitopes1

    PubMed Central

    Li, Hualin; Xu, Chong-Feng; Blais, Steven; Wan, Qi; Zhang, Hui-Tang; Landry, Samuel J.; Hioe, Catarina E.

    2010-01-01

    Glycosylation of HIV-1 envelope gp120 determines not only the proper structure, but also the immune responses against this antigen. While glycans may be part of specific epitopes or shield other epitopes from T cells and antibodies, this study provides evidence for a different immunomodulatory function of glycans associated with gp120 residues N230 and N448. These glycans are required for efficient MHC class II-restricted presentation of nearby CD4 T-cell epitopes, even though they are not part of the epitopes. The glycans do not affect CD4 T cell recognition of more distant epitopes, and are not essential for the proper folding and function of gp120. Data on CD4 T-cell recognition of N448 mutants combined with proteolysis analyses and surface electrostatic potential calculation around residue N448 support the notion that N448-glycan near the epitope's C-terminus renders the site to be surface accessible and allows its efficient processing. In contrast, the N230-glycan contributes to the nearby epitope presentation at a step other than the proteolytic processing of the epitope. Hence, N-glycans can determine CD4 T-cell recognition of nearby gp120 epitopes by regulating the different steps in the MHC class II processing and presentation pathway after APCs acquire the intact gp120 antigen exogenously. Modifications of amino acids bearing glycans at the C termini of gp120 helper epitopes may prove to be a useful strategy for enhancing the immunogenicity of HIV-1 envelope gp120. PMID:19414790

  5. Epitope engineering and molecular metrics of immunogenicity: a computational approach to VLP-based vaccine design.

    PubMed

    Joshi, Harshad; Lewis, Kristen; Singharoy, Abhishek; Ortoleva, Peter J

    2013-10-01

    Developing antiviral vaccines is increasingly challenging due to associated time and cost of production as well as emerging drug-resistant strains. A computer-aided vaccine design strategy is presented that could greatly accelerate the discovery process and yield vaccines with high immunogenicity and thermal stability. Our strategy is based on foreign viral epitopes engineered onto well-established virus-like particles (VLPs) and demonstrates that such constructs present similar affinity for antibodies as does a native virus. This binding affinity serves as one molecular metric of immunogenicity. As a demonstration, we engineered a preS1 epitope of hepatitis B virus (HBV) onto the EF loop of human papillomavirus VLP (HPV-VLP). HBV-associated HzKR127 antibody displayed binding affinity for this structure at distances and strengths similar to those for the complex of the antibody with the full HBV (PDBID: 2EH8). This antibody binding affinity assessment, along with other molecular immunogenicity metrics, could be a key component of a computer-aided vaccine design strategy.

  6. Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein

    PubMed Central

    Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul

    2010-01-01

    Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579

  7. Ex vivo detection of adenovirus specific CD4{sup +} T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of T{sub HELPER} cells following stem cell transplantation

    SciTech Connect

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.; Lang, Peter; Handgretinger, Rupert

    2010-02-20

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4{sup +} T-cell responses against the Hexon-protein, but the frequency of specific T{sub HELPER} cells is extremely low or not detectable ex vivo and preference for different CD4{sup +} T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4{sup +}-responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highly conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4{sup +}-proliferation in >50% of individuals, confirmed by intracellular IFN-gamma detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4{sup +} T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4{sup +} T cells for adoptive T-cell transfer against HAdV-infection post SCT.

  8. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential.

    PubMed

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.

  9. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  10. Recognition of Linear B-Cell Epitope of Betanodavirus Coat Protein by RG-M18 Neutralizing mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV) Infection

    PubMed Central

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Cheng, Chao-An; Chang, Chi-Yao

    2015-01-01

    Betanodavirus is a causative agent of viral nervous necrosis syndrome in many important aquaculture marine fish larvae, resulting in high global mortality. The coat protein of Betanodavirus is the sole structural protein, and it can assemble the virion particle by itself. In this study, we used a high-titer neutralizing mAB, RG-M18, to identify the linear B-cell epitope on the viral coat protein. By mapping a series of recombinant proteins generated using the E. coli PET expression system, we demonstrated that the linear epitope recognized by RG-M18 is located at the C-terminus of the coat protein, between amino acid residues 195 and 338. To define the minimal epitope region, a set of overlapping peptides were synthesized and evaluated for RG-M18 binding. Such analysis identified the 195VNVSVLCR202 motif as the minimal epitope. Comparative analysis of Alanine scanning mutagenesis with dot-blotting and ELISA revealed that Valine197, Valine199, and Cysteine201 are critical for antibody binding. Substitution of Leucine200 in the RGNNV, BFNNV, and TPNNV genotypes with Methionine200 (thereby simulating the SJNNV genotype) did not affect binding affinity, implying that RG-M18 can recognize all genotypes of Betanodaviruses. In competition experiments, synthetic multiple antigen peptides of this epitope dramatically suppressed giant grouper nervous necrosis virus (GGNNV) propagation in grouper brain cells. The data provide new insights into the protective mechanism of this neutralizing mAB, with broader implications for Betanodavirus vaccinology and antiviral peptide drug development. PMID:25938761

  11. Bypass of carrier-induced epitope-specific suppression using a T-helper epitope.

    PubMed Central

    Sad, S; Rao, K; Arora, R; Talwar, G P; Raghupathy, R

    1992-01-01

    A gonadotropin-releasing hormone (GnRH)-based vaccine is being developed as a method for non-surgical immunotherapy as immunization with this vaccine results in atrophy of the prostate. This vaccine, a conjugate of GnRH and diphtheria toxoid (DT), provides a unique hapten-carrier system for investigating the influence of carrier presensitization on antibody responses to self haptens. In a recent communication we showed that preimmunization with carriers diphtheria toxoid and tetanus toxoid results in a strain-dependent inhibition of anti-GnRH responses in mice and that T cells from carrier-presensitized mice are responsible for anti-haptenic suppression. In the present report we describe a strategy for bypassing DT-induced epitopic suppression using a T-helper epitope from DT. PMID:1383134

  12. Sequential Bottlenecks Drive Viral Evolution in Early Acute Hepatitis C Virus Infection

    PubMed Central

    McElroy, Kerensa; Gaudieri, Silvana; Pham, Son T.; Chopra, Abha; Cameron, Barbara; Maher, Lisa; Dore, Gregory J.; White, Peter A.; Lloyd, Andrew R.

    2011-01-01

    Hepatitis C is a pandemic human RNA virus, which commonly causes chronic infection and liver disease. The characterization of viral populations that successfully initiate infection, and also those that drive progression to chronicity is instrumental for understanding pathogenesis and vaccine design. A comprehensive and longitudinal analysis of the viral population was conducted in four subjects followed from very early acute infection to resolution of disease outcome. By means of next generation sequencing (NGS) and standard cloning/Sanger sequencing, genetic diversity and viral variants were quantified over the course of the infection at frequencies as low as 0.1%. Phylogenetic analysis of reassembled viral variants revealed acute infection was dominated by two sequential bottleneck events, irrespective of subsequent chronicity or clearance. The first bottleneck was associated with transmission, with one to two viral variants successfully establishing infection. The second occurred approximately 100 days post-infection, and was characterized by a decline in viral diversity. In the two subjects who developed chronic infection, this second bottleneck was followed by the emergence of a new viral population, which evolved from the founder variants via a selective sweep with fixation in a small number of mutated sites. The diversity at sites with non-synonymous mutation was higher in predicted cytotoxic T cell epitopes, suggesting immune-driven evolution. These results provide the first detailed analysis of early within-host evolution of HCV, indicating strong selective forces limit viral evolution in the acute phase of infection. PMID:21912520

  13. Dissecting antibodies with regards to linear and conformational epitopes.

    PubMed

    Forsström, Björn; Axnäs, Barbara Bisławska; Rockberg, Johan; Danielsson, Hanna; Bohlin, Anna; Uhlen, Mathias

    2015-01-01

    An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets. PMID:25816293

  14. Monoclonal antibodies that define neutralizing epitopes of pertussis toxin: conformational dependence and epitope mapping.

    PubMed Central

    Lang, A B; Ganss, M T; Cryz, S J

    1989-01-01

    The epitope specificities of 13 hybridomas secreting monoclonal antibodies (MAbs) specific for pertussis toxin (PT) is described. Hybridoma lines were derived by the fusion of spleen cells from mice immunized with native PT, Formalin-detoxified PT, or isolated PT subunits (S1 to S5) with the myeloma line X63-Ag8.653. Five MAbs showed a toxin-neutralizing ability, which was demonstrated by use of a Chinese hamster ovary cell assay system and by a NAD glycohydrolase assay. All five toxin-neutralizing MAbs demonstrated high specificities for and reactivities with native PT but were unable to bind to denatured PT. One MAb was able to neutralize the enzymatic activity of PT. The other four neutralizing MAbs inhibited the binding of PT or PT subunits to the surface of Chinese hamster ovary cells, as shown by an immunofluorescence assay. All neutralizing MAbs reacted with purified S2-S4 or S3-S4 dimers but not with S4 alone. Three MAbs which recognized a common epitope shared by S2 and S3 (which are about 70% homologous at the DNA level) and one MAb which recognized S4 were not neutralizing. Isolated S2-S4 and S3-S4 dimers bound to Chinese hamster ovary cells. These results indicate that the majority of critical epitopes which elicit neutralizing antibody are conformation dependent. Images PMID:2474500

  15. Fc receptors in antibody-dependent enhancement of viral infections.

    PubMed

    Taylor, Adam; Foo, Suan-Sin; Bruzzone, Roberto; Dinh, Luan Vu; King, Nicholas J C; Mahalingam, Suresh

    2015-11-01

    Sensitization of the humoral immune response to invading viruses and production of antiviral antibodies forms part of the host antiviral repertoire. Paradoxically, for a number of viral pathogens, under certain conditions, antibodies provide an attractive means of enhanced virus entry and replication in a number of cell types. Known as antibody-dependent enhancement (ADE) of infection, the phenomenon occurs when virus-antibody immunocomplexes interact with cells bearing complement or Fc receptors, promoting internalization of the virus and increasing infection. Frequently associated with exacerbation of viral disease, ADE of infection presents a major obstacle to the prevention of viral disease by vaccination and is thought to be partly responsible for the adverse effects of novel antiviral therapeutics such as intravenous immunoglobulins. There is a growing body of work examining the intracellular signaling pathways and epitopes responsible for mediating ADE, with a view to aiding rational design of antiviral strategies. With in vitro studies also confirming ADE as a feature of infection for a growing number of viruses, challenges remain in understanding the multilayered molecular mechanisms of ADE and its effect on viral pathogenesis. PMID:26497532

  16. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine.

    PubMed

    Kuo, Tiffany; Wang, Christine; Badakhshan, Tina; Chilukuri, Sravya; BenMohamed, Lbachir

    2014-11-28

    Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects.

  17. Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation

    PubMed Central

    Schellens, Ingrid M.; Meiring, Hugo D.; Hoof, Ilka; Spijkers, Sanne N.; Poelen, Martien C. M.; van Gaans-van den Brink, Jacqueline A. M.; Costa, Ana I.; Vennema, Harry; Keşmir, Can; van Baarle, Debbie; van Els, Cécile A. C. M.

    2015-01-01

    Immunity to infections with measles virus (MV) can involve vigorous human leukocyte antigen (HLA) class I-restricted CD8+ cytotoxic T cell (CTL) responses. MV, albeit regarded monotypic, is known to undergo molecular evolution across its RNA genome. To address which regions of the MV proteome are eligible for recognition by CD8+ CTLs and how different HLA class I loci contribute to the epitope display, we interrogated the naturally processed and presented MV peptidome extracted from cell lines expressing in total a broad panel of 16 different common HLA-A, -B, and -C molecules. The repertoire and abundance of MV peptides were bona fide identified by nanoHPLC–MS/MS. ­Eighty-nine MV peptides were discovered and assignment to an HLA-A, -B, or -C allele, based on HLA-peptide affinity prediction, was in most cases successful. Length variation and presentation by multiple HLA class I molecules was common in the MV peptidome. More than twice as many unique MV epitopes were found to be restricted by HLA-B than by HLA-A, while MV peptides with supra-abundant expression rates (>5,000 cc) were rather associated with HLA-A and HLA-C. In total, 59 regions across the whole MV proteome were identified as targeted by HLA class I. Sequence coverage by epitopes was highest for internal proteins transcribed from the MV-P/V/C and -M genes and for hemagglutinin. At the genome level, the majority of the HLA class I-selected MV epitopes represented codons having a higher non-synonymous mutation rate than silent mutation rate, as established by comparison of a set of 58 unique full length MV genomes. Interestingly, more molecular variation was seen for the epitopes expressed at rates ≥1,000 cc. These data for the first time indicate that HLA class I broadly samples the MV proteome and that CTL pressure may contribute to the genomic evolution of MV. PMID:26579122

  18. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors.

    PubMed

    Szomolay, Barbara; Liu, Jie; Brown, Paul E; Miles, John J; Clement, Mathew; Llewellyn-Lacey, Sian; Dolton, Garry; Ekeruche-Makinde, Julia; Lissina, Anya; Schauenburg, Andrea J; Sewell, Andrew K; Burrows, Scott R; Roederer, Mario; Price, David A; Wooldridge, Linda; van den Berg, Hugo A

    2016-07-01

    Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8(+) T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8(+) T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8(+) T-cell clones are highly focused on their index peptide sequence and that 'CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8(+) T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases.

  19. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors

    PubMed Central

    Szomolay, Barbara; Liu, Jie; Brown, Paul E; Miles, John J; Clement, Mathew; Llewellyn-Lacey, Sian; Dolton, Garry; Ekeruche-Makinde, Julia; Lissina, Anya; Schauenburg, Andrea J; Sewell, Andrew K; Burrows, Scott R; Roederer, Mario; Price, David A; Wooldridge, Linda; van den Berg, Hugo A

    2016-01-01

    Evidence indicates that autoimmunity can be triggered by virus-specific CD8+ T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8+ T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8+ T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8+ T-cell clones are highly focused on their index peptide sequence and that ‘CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8+ T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases. PMID:26846725

  20. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors.

    PubMed

    Szomolay, Barbara; Liu, Jie; Brown, Paul E; Miles, John J; Clement, Mathew; Llewellyn-Lacey, Sian; Dolton, Garry; Ekeruche-Makinde, Julia; Lissina, Anya; Schauenburg, Andrea J; Sewell, Andrew K; Burrows, Scott R; Roederer, Mario; Price, David A; Wooldridge, Linda; van den Berg, Hugo A

    2016-07-01

    Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8(+) T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8(+) T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8(+) T-cell clones are highly focused on their index peptide sequence and that 'CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8(+) T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases. PMID:26846725

  1. Humoral response against host-mimetic homologous epitopes of Mycobacterium avium subsp. paratuberculosis in Japanese multiple sclerosis patients

    PubMed Central

    Cossu, Davide; Yokoyama, Kazumasa; Sechi, Leonardo Antonio; Otsubo, Shigeru; Tomizawa, Yuji; Momotani, Eiichi; Hattori, Nobutaka

    2016-01-01

    Several works have demonstrated the existence of a link between Mycobacterium avium subsp. paratuberculosis (MAP) and MS in Italy. In this study, we analyzed the serology of MAP in a Japanese population while looking at several markers of MAP. Fifty MS patients, 12 clinically isolated syndrome (CIS) patients, 30 other neurological disorders (OND) patients, and 50 healthy controls (HCs) were tested using ELISA for the presence of IgG antibodies toward immunodominant epitopes MAP_0106c121-132, homologues MBP85-98, homologues IRF5424-432, MAP_402718-32, and MAP_2694295-303. MAP-positive patients were also analyzed in relation to their clinical/demographic characteristics. Amongst all peptides, only antibodies against MAP_2694295-303 were more prevalent in MS patients (30%), as compared to OND patients (3%) (p = 0.009; area under roc curve (AUC) = 0.61) and HCs (2%) (p = 0.0004; AUC = 0.65) and in CIS patients (25%) compared to HCs (p = 0.023; AUC = 0.55). Logistic regression analysis showed a higher frequency of anti-MAP_2694295-303 antibodies in the sera of oligoclonal bands positive MS patients (p = 0.2; OR = 2, 95%CI: 0.55–7.7). These findings support the view that MAP could act as a risk factor or a triggering agent of MS in some Japanese patients with a genetic susceptibility to the mycobacterium. PMID:27356622

  2. Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells.

    PubMed

    Held, Gerhard; Neumann, Frank; Sturm, Christine; Kaestner, Lars; Dauth, Nina; de Bruijn, Diederik R; Renner, Christoph; Lipp, Peter; Pfreundschuh, Michael

    2008-10-15

    SSX2 is a member of the family of cancer/testis antigens. The SSX2 derived peptide SSX2(103-111) has been shown to be presented to cytotoxic T-lymphocytes (CTL) by Major-Histocompatibility (MHC) Class-I complexes after endogenous processing, more precisely by the allele HLA-A*0201. The HLA-A*0201- and SSX2-positive melanoma cell line SK-Mel-37 but not Me275 had been shown to elicit reactivity in SSX2(103-111) specific cytotoxic T-lymphocytes. To analyze the correlation between SSX2(103-111) presentation and T-cell stimulation, we intended to visualize presentation of SSX2(103-111) in these melanoma cell lines. Fab-antibodies were established from a human phage library with specificity for SSX2(103-111)/HLA-A*0201 complexes (but non-reactive with HLA-A*0201 or SSX2(103-111) alone) and used to visualize the presentation of SSX2(103-111) in the context of HLA-A*0201 by fluorescence microscopy. Presentation of SSX2(103-111) the context of HLA-A*0201 was demonstrated for the majority of SK-Mel-37, but for only a small fraction (<1%) of Me275 as indicated by a clear membrane-staining pattern in fluorescence microscopy. The presentation of SSX2(103-111) on SK-Mel37 and Me275, but not the expression of the SSX2 protein correlated with the capability of these cells to stimulate cells of an SSX2(103-111)-specific T-cell clone. MHC-peptide specific antibodies are a valuable tool for the analysis of antigenic peptides in the context of MHC-I molecules and for the structural definition of immunodominant epitopes. PMID:18688854

  3. New salivary anti-haemostatics containing protective epitopes from Ornithodoros moubata ticks: Assessment of their individual and combined vaccine efficacy.

    PubMed

    Díaz-Martín, Verónica; Manzano-Román, Raúl; Oleaga, Ana; Pérez-Sánchez, Ricardo

    2015-09-15

    Ornithodoros moubata is the main vector of the pathogens causing African swine fever and human relapsing fever in Africa. The development of an efficient vaccine against this tick would facilitate its control and the prevention of the diseases it transmits to a considerable extent. Previous efforts to identify vaccine target candidates led us to the discovery of novel salivary proteins that probably act as anti-haemostatics at the host-tick interface, including a secreted phospholipase A2 (PLA2), a 7DB-like protein (7DB-like), a riboprotein 60S L10 (RP-60S), an apyrase (APY), and a new platelet aggregation inhibitor peptide, designated mougrin (MOU). In this work, the corresponding recombinant proteins were expressed in Escherichia coli and their individual vaccine efficacy was tested in rabbit vaccination trials. All of them, except the less immunogenic RP-60S, induced strong humoral responses that reduced tick feeding and survival, providing vaccine efficacies of 44.2%, 43.2% and 27.2%, 19.9% and 17.3% for PLA2, APY, MOU, RP-60S and 7DB-like, respectively. In the case of the more protective recombinant antigens (PLA2, APY and MOU), the immunodominant protective linear B-cell epitopes were identified and their combined vaccine efficacy was tested in a second vaccine trial using different adjuvants. In comparison with the best efficacy of individual antigens, the multicomponent vaccine increased vaccine efficacy by 13.6%, indicating additive protective effects rather than a synergistic effect. Tick saliva inoculated during natural tick-host contacts had a boosting effect on vaccinated animals, increasing specific antibody levels and protection. PMID:26293586

  4. CD8+ T-cell receptor bias and immundominance in HIV-1 infection

    PubMed Central

    Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Harndahl, Mikkel; Stryhn, Anette; Carlson, Jonathan; Koofhethile, Catherine; Gerritsen, Bram; Kesmir, Can; Chen, Fabian; Riddell, Lynn; Luzzi, Graz; Leslie, Alasdair; Walker, Bruce D.; Ndung'u, Thumbi; Buus, Søren; Price, David A.; Goulder, Philip J.

    2015-01-01

    Immunodominance describes a phenomenon whereby the immune system consistently targets only a fraction of the available antigen pool derived from a given pathogen. In the case of CD8+ T-cells, these constrained epitope targeting patterns are linked to human leukocyte antigen (HLA) class-I expression and determine disease progression. Despite the biological importance of these predetermined response hierarchies, however, little is known about the factors that control immunodominance in vivo. In this study, we conducted an extensive analysis of CD8+ T-cell responses restricted by a single HLA class-I molecule to evaluate the mechanisms that contribute to epitope targeting frequency and antiviral efficacy in HIV-1 infection. A clear immunodominance hierarchy was observed across 20 different epitopes restricted by HLA-B*42:01, which is highly prevalent in populations of African origin. Moreover, in line with previous studies, Gag-specific responses and targeting breadth were associated with lower viral load set-points. However, peptide-HLA-B*42:01 binding affinity and stability were not significantly linked with targeting frequencies. Instead, immunodominance correlated with epitope-specific usage of public TCRs, defined as amino acid residue-identical TRB sequences that occur in multiple individuals. Collectively, these results provide the first insights into a potential link between shared TCR recruitment, immunodominance and antiviral efficacy in a major human infection. PMID:25911754

  5. Nosocomial viral respiratory infections.

    PubMed

    Graman, P S; Hall, C B

    1989-12-01

    Nosocomial infections with respiratory tract viruses, particularly influenza and respiratory syncytial viruses, account for the majority of serious nosocomial viral disease. Chronically ill, immunocompromised, elderly, and very young hosts are especially vulnerable to potentially life-threatening involvement of the lower respiratory tract. Effective preventive strategies are based upon early accurate viral diagnosis and an appreciation of the epidemiology and mechanisms of transmission for each viral agent. Influenza viruses spread via airborne dispersion of small particle aerosols, resulting in explosive outbreaks; control measures emphasize immunization and chemoprophylaxis of susceptible patients and personnel, and isolation of those already infected. Transmission of respiratory syncytial virus, in contrast, seems to require closer contact, with virus passed on hands, fomites, or in large droplets inoculated into the eyes and nose at close range. Strategies for control of nosocomial respiratory syncytial virus are designed to interrupt hand carriage and inoculation of virus onto mucous membranes.

  6. Viral hepatitis: Indian scenario.

    PubMed

    Satsangi, Sandeep; Chawla, Yogesh K

    2016-07-01

    Viral hepatitis is a cause for major health care burden in India and is now equated as a threat comparable to the "big three" communicable diseases - HIV/AIDS, malaria and tuberculosis. Hepatitis A virus and Hepatitis E virus are predominantly enterically transmitted pathogens and are responsible to cause both sporadic infections and epidemics of acute viral hepatitis. Hepatitis B virus and Hepatitis C virus are predominantly spread via parenteral route and are notorious to cause chronic hepatitis which can lead to grave complications including cirrhosis of liver and hepatocellular carcinoma. Around 400 million people all over the world suffer from chronic hepatitis and the Asia-Pacific region constitutes the epicentre of this epidemic. The present article would aim to cover the basic virologic aspects of these viruses and highlight the present scenario of viral hepatitis in India. PMID:27546957

  7. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  8. Viral vaccines: selected topics.

    PubMed

    Kańtoch, M

    1996-01-01

    Significant role of viruses in pathology, their dominating position in etiology of infectious diseases point at the special position of active prophylactic procedures based on vaccination. The real role and value of viral vaccines of classic and modern generations, the limitation of immune potency in suppression of defence mechanisms, some problems of immunization against virus vertical transmission are presented in the paper. The reader may find tables which cumulate selected but significant patterns of viral vaccines and vaccinations, and selected papers devoted to topics discussed. PMID:9017153

  9. Viral meningitis and encephalitis.

    PubMed

    Tuppeny, Misti

    2013-09-01

    Meningitis is an inflammation of the meninges, whereas encephalitis is inflammation of the parenchymal brain tissue. The single distinguishing element between the 2 diagnoses is the altered state of consciousness, focal deficits, and seizures found in encephalitis. Consequently meningoencephalitis is a term used when both findings are present in the patient. Viral meningitis is not necessarily reported as it is often underdiagnosed, whereas encephalitis cases are on the increase in various areas of North America. Improved imaging and viral diagnostics, as well as enhanced neurocritical care management, have improved patient outcomes to date.

  10. Viral infections in pigeons.

    PubMed

    Marlier, D; Vindevogel, H

    2006-07-01

    This review provides a current update on the major viral diseases of the domestic pigeon (Columba livia domestica), based on scientific reports and clinical experience. Paramyxovirus 1, adenovirus, rotavirus, herpesvirus 1, poxvirus and circovirus infections are described according to common clinical signs and target tissues. Since pigeons are sometimes treated as if they were poultry, the review also summarises the common viral infections of poultry for which pigeons are considered resistant. It is hoped that the review will provide a useful reference for veterinarians and others and offer advice on the diagnosis, treatment and prevention of the major infectious diseases of pigeons.

  11. Failure of Viral Shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Bruinsma, Robijn F.; Michel, Jean-Philippe; Knobler, Charles M.; Ivanovska, Irena L.; Schmidt, Christoph F.; Wuite, Gijs J. L.

    2006-12-01

    We report a combined theoretical and experimental study of the structural failure of viral shells under mechanical stress. We find that discontinuities in the force-indentation curve associated with failure should appear when the so-called Föppl von Kármán (FvK) number exceeds a critical value. A nanoindentation study of a viral shell subject to a soft-mode instability, where the stiffness of the shell decreases with increasing pH, confirms the predicted onset of failure as a function of the FvK number.

  12. Dengue viral infection.

    PubMed

    Sarin, Y K; Singh, S; Singh, T

    1998-02-01

    Dengue viral infection produces a spectrum of disease. For example, mild dengue disease is characterized by biphasic fever, myalgia, arthralgia, leukopenia, and lymphadenopathy, while dengue hemorrhagic fever is an often fatal disease characterized by hemorrhages and shock syndrome. The disease, especially in its severe form, is seen more often among children than among adults. With focus upon India, dengue's etiology, epidemiology, pathology, pathogenesis of dengue hemorrhagic fever, clinical manifestations of both the mild and severe forms of dengue viral infection, diagnosis, differential diagnosis, treatment, prevention, and prognosis are discussed.

  13. Emerging viral infections.

    PubMed

    Bale, James F

    2012-09-01

    Unique disorders appear episodically in human populations and cause life-threatening systemic or neurological disease. Historical examples of such disorders include von Economo encephalitis, a disorder of presumed viral etiology; acquired immune deficiency syndrome, caused by the human immunodeficiency virus; and severe acute respiratory syndrome, caused by a member of the coronavirus family. This article describes the factors that contribute to the emergence of infectious diseases and focuses on selected recent examples of emerging viral infections that can affect the nervous system of infants, children, and adolescents.

  14. Viral apoptotic mimicry.

    PubMed

    Amara, Ali; Mercer, Jason

    2015-08-01

    As opportunistic pathogens, viruses have evolved many elegant strategies to manipulate host cells for infectious entry and replication. Viral apoptotic mimicry, defined by the exposure of phosphatidylserine - a marker for apoptosis - on the pathogen surface, is emerging as a common theme used by enveloped viruses to promote infection. Focusing on the four best described examples (vaccinia virus, dengue virus, Ebola virus and pseudotyped lentivirus), we summarize our current understanding of apoptotic mimicry as a mechanism for virus entry, binding and immune evasion. We also describe recent examples of non-enveloped viruses that use this mimicry strategy, and discuss future directions and how viral apoptotic mimicry could be targeted therapeutically.

  15. Structural and biophysical analysis of sero-specific immune responses using epitope grafted Dengue ED3 mutants.

    PubMed

    Kulkarni, Manjiri R; Islam, Monirul M; Numoto, Nobutaka; Elahi, Montasir; Mahib, Mamunur R; Ito, Nobutoshi; Kuroda, Yutaka

    2015-10-01

    Dengue fever is a re-emerging tropical disease and its severe form is caused by cross-reactivity between its four serotypes (DEN1, DEN2, DEN3 and DEN4). The third domain of the viral envelope protein (ED3) contains the two major putative epitopes and is a highly suitable model protein for examining the molecular determinants of a virus' sero-specificity. Here we examine d the sero-specificity and cross-reactivity of the immune response against DEN3 and DEN4 ED3 using six epitope grafted ED3 variants where the surface-exposed epitope residues from DEN3 ED3 were switched to those of DEN4 ED3 and vice versa. We prepared anti-DEN3 and anti-DEN4 ED3 serum by immunizing Swiss albino mice and measured their reactivities against all six grafted mutants. As expected, both sera exhibited strong reactivity against its own serotype's ED3, and little cross-reactivity against their counterpart serotype's ED3s. E2 played a major role in the sero-specificity of anti-DEN3 serum, whereas E1 was important for DEN4 ED3's sero-specificity. Next, the reactivity patterns corroborated our working hypothesis that sero-specificity could be transferred by grafting the surface exposed epitope residues from one serotype to the other. To analyze the above results from a structural viewpoint, we determined the crystal structure of a DEN4 ED3 variant, where E2 was grafted from DEN3 ED3, at 2.78Å resolution and modeled the structures of the five remaining grafted variants by assuming that the overall backbone remained unchanged. The examination of the electrostatic and molecular surfaces of the variants suggested some further rationale for the sero-specificity of the immune responses.

  16. Early Gag Immunodominance of the HIV-Specific T-Cell Response during Acute/Early Infection Is Associated with Higher CD8+ T-Cell Antiviral Activity and Correlates with Preservation of the CD4+ T-Cell Compartment

    PubMed Central

    Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena

    2013-01-01

    The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666

  17. Benchmarking B cell epitope prediction: underperformance of existing methods.

    PubMed

    Blythe, Martin J; Flower, Darren R

    2005-01-01

    Sequence profiling is used routinely to predict the location of B-cell epitopes. In the postgenomic era, the need for reliable epitope prediction is clear. We assessed 484 amino acid propensity scales in combination with ranges of plotting parameters to examine exhaustively the correlation of peaks and epitope location within 50 proteins mapped for polyclonal responses. After examining more than 10(6) combinations, we found that even the best set of scales and parameters performed only marginally better than random. Our results confirm the null hypothesis: Single-scale amino acid propensity profiles cannot be used to predict epitope location reliably. The implication for studies using such methods is obvious. PMID:15576553

  18. Stabilizing Exposure of Conserved Epitopes by Structure Guided Insertion of Disulfide Bond in HIV-1 Envelope Glycoprotein

    PubMed Central

    Sarkar, Pampi; Labranche, Celia; Go, Eden P.; Clark, Daniel F.; Sun, Yide; Nandi, Avishek; Hartog, Karin; Desaire, Heather; Montefiori, David; Carfi, Andrea; Srivastava, Indresh K.; Barnett, Susan W.

    2013-01-01

    Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules. PMID:24146829

  19. CD4 T cell epitope specificity determines follicular versus non-follicular helper differentiation in the polyclonal response to influenza infection or vaccination

    PubMed Central

    Knowlden, Zackery A. G.; Sant, Andrea J.

    2016-01-01

    Follicular helper T cells (Tfh) are essential for B cell production of high-affinity, class-switched antibodies. Much interest in Tfh development focuses on the priming environment of CD4 T cells. Here we explored the role that peptide specificity plays in the partitioning of the polyclonal CD4 T cell repertoire between Tfh and NonTfh lineages during the response to influenza. Surprisingly, we found that CD4 T cells specific for different epitopes exhibited distinct tendencies to segregate into Tfh or NonTfh. To alter the microenvironment and abundance, viral antigens were introduced as purified recombinant proteins in adjuvant as native proteins. Also, the most prototypical epitopes were expressed in a completely foreign protein. In many cases, the epitope-specific response patterns of Tfh vs. NonTfh persisted. The functional TcR avidity of only a subset of epitope-specific cells correlated with the tendency to drive a Tfh response. Thus, we conclude that in a polyclonal CD4 T cell repertoire, features of TcR-peptide:MHC class II complex have a strong deterministic influence on the ability of CD4 T cells to become a Tfh or a NonTfh. Our data is most consistent with at least 2 checkpoints of Tfh selection that include both TcR affinity and B cell presentation. PMID:27329272

  20. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Hu, Hongxing; Voss, Jarrod; Zhang, Guoliang; Buchy, Philippi; Zuo, Teng; Wang, Lulan; Wang, Feng; Zhou, Fan; Wang, Guiqing; Tsai, Cheguo; Calder, Lesley; Gamblin, Steve J; Zhang, Linqi; Deubel, Vincent; Zhou, Boping; Skehel, John J; Zhou, Paul

    2012-03-01

    Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains. PMID:22238297

  1. Single-assay combination of Epstein-Barr Virus (EBV) EBNA1- and viral capsid antigen-p18-derived synthetic peptides for measuring anti-EBV immunoglobulin G (IgG) and IgA antibody levels in sera from nasopharyngeal carcinoma patients: options for field screening.

    PubMed

    Fachiroh, J; Paramita, D K; Hariwiyanto, B; Harijadi, A; Dahlia, H L; Indrasari, S R; Kusumo, H; Zeng, Y S; Schouten, T; Mubarika, S; Middeldorp, J M

    2006-04-01

    Assessment of immunoglobulin A (IgA) antibody responses to various Epstein-Barr virus (EBV) antigen complexes, usually involving multiple serological assays, is important for the early diagnosis of nasopharyngeal carcinoma (NPC). Through combination of two synthetic peptides representing immunodominant epitopes of EBNA1 and viral capsid antigen (VCA)-p18 we developed a one-step sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of EBV reactive IgG and IgA antibodies in NPC patients (EBV IgG/IgA ELISA). Sera were obtained from healthy donors (n = 367), non-NPC head and neck cancer patients (n = 43), and biopsy-proven NPC patients (n = 296) of Indonesian and Chinese origin. Higher values of optical density at 450 nm for EBV IgG were observed in NPC patients compared to the healthy EBV carriers, but the large overlap limits its use for NPC diagnosis. Using either EBNA1 or VCA-p18 peptides alone IgA ELISA correctly identified 88.5% and 79.8% of Indonesian NPC patients, with specificities of 80.1% and 70.9%, whereas combined single-well coating with both peptides yielded sensitivity and specificity values of 90.1 and 85.4%, respectively. The positive and negative predictive values (PPV and NPV, respectively) for the combined EBNA1 plus VCA EBV IgA ELISA were 78.7% and 93.9%, respectively. In the Indonesia panel, the level of EBV IgA reactivity was not associated with NPC tumor size, lymph node involvement, and metastasis stage, sex, and age group. In the China panel the sensitivity/specificity values were 86.2/92.0% (EBNA1 IgA) and 84.1/90.3% (VCA-p18 IgA) for single-peptide assays and 95.1/90.6% for the combined VCA plus EBNA1 IgA ELISA, with a PPV and an NPV for the combined EBV IgA ELISA of 95.6 and 89.3%, respectively. Virtually all NPC patients had abnormal anti-EBV IgG diversity patterns as determined by immunoblot analysis. On the other hand, healthy EBV carriers with positive EBV IgA ELISA result showed normal IgG diversity patterns

  2. Immunodominant Dengue Virus-Specific CD8+ T Cell Responses Are Associated with a Memory PD-1+ Phenotype

    PubMed Central

    de Alwis, Ruklanthi; Bangs, Derek J.; Angelo, Michael A.; Cerpas, Cristhiam; Fernando, Anira; Sidney, John; Peters, Bjoern; Gresh, Lionel; Balmaseda, Angel; de Silva, Aruna D.; Harris, Eva; Sette, Alessandro

    2016-01-01

    ABSTRACT Dengue disease is a large public health problem that mainly afflicts tropical and subtropical regions. Understanding of the correlates of protection against dengue virus (DENV) is poor and hinders the development of a successful human vaccine. The present study aims to define DENV-specific CD8+ T cell responses in general and those of HLA alleles associated with dominant responses in particular. In human blood donors in Nicaragua, we observed a striking dominance of HLA B-restricted responses in general and of the allele B*35:01 in particular. Comparing these patterns to those in the general population of Sri Lanka, we found a strong correlation between restriction of the HLA allele and the breadth and magnitude of CD8+ T cell responses, suggesting that HLA genes profoundly influence the nature of responses. The majority of gamma interferon (IFN-γ) responses were associated with effector memory phenotypes, which were also detected in non-B*35:01-expressing T cells. However, only the B*35:01 DENV-specific T cells were associated with marked expression of the programmed death 1 protein (PD-1). These cells did not coexpress other inhibitory receptors and were able to proliferate in response to DENV-specific stimulation. Thus, the expression of particular HLA class I alleles is a defining characteristic influencing the magnitude and breadth of CD8 responses, and a distinct, highly differentiated phenotype is specifically associated with dominant CD8+ T cells. These results are of relevance for both vaccine design and the identification of robust correlates of protection in natural immunity. IMPORTANCE Dengue is an increasingly significant public health problem as its mosquito vectors spread over greater areas; no vaccines against the virus have yet been approved. An important step toward vaccine development is defining protective immune responses; toward that end, we here characterize the phenotype of the immunodominant T cell responses. These DENV-reactive T

  3. Strategic Use of Epitope Matching to Improve Outcomes.

    PubMed

    Wiebe, Chris; Nickerson, Peter

    2016-10-01

    Understanding the events leading to allorecognition and the subsequent effector pathways engaged is key for the development of strategies to prolong graft survival. Optimizing patient outcomes will require 2 major advancements: (1) minimizing premature death with a functioning graft in the patients with stable graft function, and (2) maximizing graft survival by avoiding the aforementioned allorecognition. This necessitates personalized immunosuppression to avoid known metabolic side effects, risk for infection, and malignancy, while holding the alloimmune system in check. Since the beginning of transplant a key strategy to achieve this goal is to minimize HLA mismatching between donor and recipient. What has not evolved is any refinement in our evaluation of HLA relatedness between donor and recipient when HLA mismatch exists. Donor-recipient HLA mismatch at the amino acid level can now be determined. These mismatches serve as potential epitopes for de novo donor specific antibody development and correlate with late rejection and graft loss. It is in this context that HLA epitope analysis is considered as a strategy to permit safe immunosuppression minimization to improve patient outcomes through: (1) improved allocation schemes that favor donor-recipient pairs with a low HLA epitope mismatch load (especially at the class II loci) or avoiding specific epitope mismatches known to be highly immunogenic and (2) immunosuppressive minimization in patients with low epitope mismatch loads or without highly immunogenic epitope mismatches.

  4. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    PubMed

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates.

  5. BIOMARKERS OF VIRAL EXPOSURE

    EPA Science Inventory

    Viral and protozoan pathogens associated with raw sludge can cause encephalitis, gastroenteritis, hepatitis, myocarditis, and a number of other diseases. Raw sludge that has been treated to reduce these pathogens can be used for land application according to the regulations spec...

  6. Viral Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Gleckler, A.; Butterfield, M. C.

    2012-09-01

    Viral SSA takes advantage of the amateur astronomy community to provide an extremely low-cost and geographically-diverse network of optical SSA sites. In the spirit of programs such as DARPA's Grand Challenge and the National Weather Service's program of providing amateur meteorologists with weather stations linked to a central professional meteorological facility, we form a cooperative bond with a willing community of technically-minded individuals. We term this program "viral" because we will qualify an initial set of astronomers for SSA operation and then use word of mouth in the astronomy community, as well as an outreach program, to pull in new observers. The use of modern remote controlled telescopes allows the incorporation of certified amateur, university, and commercial telescope systems. The availability of the local Viral SSA member for troubleshooting eliminates most significant costs of operating a large network. In this talk, we discuss the key concepts of Viral SSA and the route to a network of 100+ sites in a three year or less timeframe.

  7. Leafhopper viral pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four newly discovered viral pathogens in leafhopper vectors of Pierce’s disease of grapes, have been shown to replicate in sharpshooter leafhoppers; the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, and Oncometopia nigricans (Hemiptera: Cicadellidae). The viruses were classified as memb...

  8. Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes

    PubMed Central

    Hasan, Noor Haliza; Ignjatovic, Jagoda; Tarigan, Simson; Peaston, Anne; Hemmatzadeh, Farhid

    2016-01-01

    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development. PMID:27362795

  9. The C Terminus of the Core β-Ladder Domain in Japanese Encephalitis Virus Nonstructural Protein 1 Is Flexible for Accommodation of Heterologous Epitope Fusion

    PubMed Central

    Yen, Li-Chen; Liao, Jia-Teh; Lee, Hwei-Jen; Chou, Wei-Yuan; Chen, Chun-Wei; Lin, Yi-Ling

    2015-01-01

    , despite having retained the brain replication ability observed in wild-type JEV. Mother dams immunized with recombinant JEV expressing EV71 epitope-NS1 fused proteins elicited neutralizing antibodies that protected the newborn mice against lethal EV71 challenge. Together, our results implied a potential application of JEV NS1 as a viral carrier protein to express a heterologous epitope to stimulate dual/multiple protective immunity concurrently against several pathogens. PMID:26559836

  10. Identification, characterization, and synthesis of peptide epitopes and a recombinant six-epitope protein for Trichomonas vaginalis serodiagnosis

    PubMed Central

    Alderete, JF; Neace, Calvin J

    2013-01-01

    There is a need for a rapid, accurate serodiagnostic test useful for both women and men infected by Trichomonas vaginalis, which causes the number one sexually transmitted infection (STI). Women and men exposed to T. vaginalis make serum antibody to fructose-1,6-bisphosphate aldolase (ALD), α-enolase (ENO), and glyceraldehyde-3-phosphate dehydrogenase (GAP). We identified, by epitope mapping, the common and distinct epitopes of each protein detected by the sera of women patients with trichomonosis and by the sera of men highly seropositive to the immunogenic protein α-actinin (positive control sera). We analyzed the amino acid sequences to determine the extent of identity of the epitopes of each protein with other proteins in the databanks. This approach identified epitopes unique to T. vaginalis, indicating these peptide-epitopes as possible targets for a serodiagnostic test. Individual or combinations of 15-mer peptide epitopes with low to no identity with other proteins were reactive with positive control sera from both women and men but were unreactive with negative control sera. These analyses permitted the synthesis of a recombinant His6 fusion protein of 111 amino acids with an Mr of ~13.4 kDa, which consisted of 15-mer peptides of two distinct epitopes each for ALD, ENO, and GAP. This recombinant protein was purified by affinity chromatography. This composite protein was detected by enzyme-linked immunosorbent assay (ELISA), dot blots, and immunoblots, using positive control sera from women and men. These data indicate that it is possible to identify epitopes and that either singly, in combination, or as a composite protein represent targets for a point-of-care serodiagnostic test for T. vaginalis. PMID:27471691