Science.gov

Sample records for immunophenotypes effector cells

  1. Immunophenotypic characterization of ovine mesenchymal stem cells.

    PubMed

    Khan, Mohammad R; Chandrashekran, Anil; Smith, Roger K W; Dudhia, Jayesh

    2016-05-01

    The clinical potential of multipotent mesenchymal stem cells (MSCs) has led to the essential development of analytical tools such as antibodies against membrane-bound proteins for the immunophenotypic characterization of human and rodent cells. Such tools are frequently lacking for emerging large animal models like the sheep that have greater relevance for the study of human musculoskeletal diseases. The present study identified a set of commercial nonspecies specific monoclonal antibodies for the immunophenotypic characterization of ovine MSCs. A protocol combining the less destructive proteolytic activity of accutase and EDTA was initially developed for the detachment of cells from plastic with minimum loss of cell surface antigens. A range of commercially available antibodies against human or rodent MSC antigens were then tested in single and multistain-based assays for their cross-reactivity to bone marrow derived ovine MSCs. Antibody clones cross-reactive to ovine CD73 (96.9% ± 5.9), CD90 (99.6% ± 0.3), CD105 (99.1 ± 1.5), CD271 (97.7 ± 2.0), and MHC1 (94.0% ± 7.2) antigens were identified using previously reported CD29, CD44, and CD166 as positive controls. Multistaining analysis indicated the colocalization of these antigens on MSCs. Furthermore, antibody clones identified to cross-react against white blood cell antigens exhibited either negative (CD117 (0.1% ± 0.1)) or low (MHCII (10.5% ± 16.0); CD31 (14.6% ± 4.2), and CD45 (39.4% ± 31.8)) cross-reactivity with ovine MSCs. The validation of these antibody clones to sheep MSC antigens is essential for studies utilizing this large animal model for stem cell-based therapies. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  2. Immunophenotypic characterization of feline Langerhans cells.

    PubMed

    Saint-André Marchal, I; Dezutter-Dambuyant, C; Willett, B J; Woo, J C; Moore, P F; Magnol, J P; Schmitt, D; Marchal, T

    1997-08-01

    To carry out the characterization of feline Langerhans cells (LC), first described in 1994, we used a panel of monoclonal antibodies (MAb) known to react with human, canine and feline leukocyte membrane antigens (Ag). The immunolabeling was performed, at light microscope level, on frozen sections of feline skin and labial mucosa using an avidin-biotin-peroxidase technique, and at electron microscope level on epidermal cell suspensions using an immunogold technique. Out of the 52 MAb tested, six labeled basal or suprabasal DC cells in the frozen sections, either in epidermis or lip epithelium: MHM23 (anti-human CD18), CVS20 and vpg3 (respectively anti-canine and feline-major histocompatibility complex class II molecules), vpg5 (anti-feline leukocytes), vpg39 (anti-feline CD4) and Fel5F4 (anti-feline CD1a). These six MAb were used on suspensions, and labeled cells which showed no desmosomes or melanosomes, but contained 'zipper-like' structures similar to Birbeck granules (BG) in their cytoplasm, revealing they were LC. Consequently, feline LC are CD18-positive (CD18+), major histocompatibility complex class II-positive (Class II+), CD1a-positive (CD1a+), vpg5-positive (vg5+) and CD4-positive (CD4+). This immunophenotypic and ultrastructural characterization demonstrates that feline LC share many characteristics with their human counterparts, a fact that will allow us to study the role of feline LC in certain feline diseases such as Feline Immunodeficiency Virus (FIV) infection, since it has been shown that human LC cells are HIV-permissive, and to establish an animal model for human AIDS.

  3. Immunophenotyping of non-Hodgkin's lymphoma. Lack of correlation between immunophenotype and cell morphology.

    PubMed Central

    Schuurman, H. J.; van Baarlen, J.; Huppes, W.; Lam, B. W.; Verdonck, L. F.; van Unnik, J. A.

    1987-01-01

    The establishment of Clusters of Differentiation for T- and B-lymphoid cells during International Workshops on Human Leukocyte Differentiation Antigens prompted the authors to evaluate the immunophenotypes in 160 cases of non-Hodgkin's lymphoma (NHL). In this group, 130 were of B-lymphocyte lineage (117 by monotypic immunoglobulin expression), and 30 of T-cell lineage. In the B-NHL series the expression of immunoglobulin isotypes, B-cell maturation/differentiation antigens of CD9, CD10, CD19-24, CD37, and CD38 (OKT10), HLA-DR and peanut agglutinin binding showed no significant relationship with histopathologic diagnosis as defined by the Kiel classification. Of the T-cell markers, CD5, CD6, and CD7 showed lineage promiscuity by their presence on some B-NHL. Conversely, the authors grouped the cases according to phenotypes (either CD antigens or immunoglobulin isotypes) which occur in distinct stages of (physiologic) B-cell maturation/differentiation. Eighty-six of the 130 cases could be fitted according to CD phenotype expression. This approach did not yield a significant relationship between phenotype and individual histopathologic categories either. The staging by CD phenotype and by immunoglobulin isotype yielded different results in this respect. Most B-NHL had an intermediate stage of B-cell maturation/differentiation. In the T-NHL series most cases showed a phenotype (CD1-CD8, CD38, TdT, and peanut agglutinin binding capacity) compatible with mature T-lymphocyte characteristics. The exceptions were lymphoblastic convoluted lymphomas, which exhibited an immature immunophenotype. It is concluded that NHL in distinct histopathologic categories are heterogeneous in immunologic phenotypes, and that the immunophenotype of lymphoma cells has no evident association with that of their presumed counterparts in physiologic cell maturation/differentiation. PMID:3310650

  4. T cells from patients with Candida sepsis display a suppressive immunophenotype.

    PubMed

    Spec, Andrej; Shindo, Yuichiro; Burnham, Carey-Ann D; Wilson, Strother; Ablordeppey, Enyo A; Beiter, Evan R; Chang, Katherine; Drewry, Anne M; Hotchkiss, Richard S

    2016-01-20

    Despite appropriate therapy, Candida bloodstream infections are associated with a mortality rate of approximately 40%. In animal models, impaired immunity due to T cell exhaustion has been implicated in fungal sepsis mortality. The purpose of this study was to determine potential mechanisms of fungal-induced immunosuppression via immunophenotyping of circulating T lymphocytes from patients with microbiologically documented Candida bloodstream infections. Patients with blood cultures positive for any Candida species were studied. Non-septic critically ill patients with no evidence of bacterial or fungal infection were controls. T cells were analyzed via flow cytometry for cellular activation and for expression of positive and negative co-stimulatory molecules. Both the percentages of cells expressing particular immunophenotypic markers as well as the geometric mean fluorescence intensity (GMFI), a measure of expression of the number of receptors or ligands per cell, were quantitated. Twenty-seven patients with Candida bloodstream infections and 16 control patients were studied. Compared to control patients, CD8 T cells from patients with Candidemia had evidence of cellular activation as indicated by increased CD69 expression while CD4 T cells had decreased expression of the major positive co-stimulatory molecule CD28. CD4 and CD8 T cells from patients with Candidemia expressed markers typical of T cell exhaustion as indicated by either increased percentages of or increased MFI for programmed cell death 1 (PD-1) or its ligand (PD-L1). Circulating immune effector cells from patients with Candidemia display an immunophenotype consistent with immunosuppression as evidenced by T cell exhaustion and concomitant downregulation of positive co-stimulatory molecules. These findings may help explain why patients with fungal sepsis have a high mortality despite appropriate antifungal therapy. Development of immunoadjuvants that reverse T cell exhaustion and boost host immunity

  5. Periprosthetic breast capsules and immunophenotypes of inflammatory cells.

    PubMed

    Meza Britez, Maria Elsa; Caballero Llano, Carmelo; Chaux, Alcides

    2012-09-01

    BACKGROUND: Silicone gel-containing breast implants have been widely used for aesthetic and reconstructive mammoplasty. The development of a periprosthetic capsule is considered a local reparative process against the breast implant in which a variety of inflammatory cells may appear. Nevertheless, only few reports have evaluated the immunophenotypes of those inflammatory cells. Herein, we aim to provide more information in this regard evaluating 40 patients with breast implants. METHODS: We studied the immunophenotype of the inflammatory cells of capsular implants using antibodies against lymphocytes (CD3, CD4, CD8, CD20, CD45, and CD30) and histiocytes (CD68). Percentages of CD3 and CD20 positive cells were compared using the unpaired Student's t test. Fisher's test was also used to compare Baker grades by implant type, implant profile, and location and the presence of inflammatory cells by implant type. RESULTS: The associations between Baker grades and implant type and location were statistically nonsignificant (p = 0.42 in both cases). However, the use of low profile implants was significantly associated (p = 0.002) with a higher proportion of Baker grades 3 and 4. We found evidence of inflammation in 92.5 % of all implant capsules, with a statistically significant (p = 0.036) higher proportion in textured breast implants. T cells predominated over B cells. Textured implants elicited a more marked response to T cells than smooth implants, with a similar proportion of helper and cytotoxic T cells. Textured implants showed statistically significant higher percentages of CD3 positive cells than smooth implants. Percentages of CD20 positive cells were similar in textured and smooth implants. CONCLUSIONS: These results suggest that textured breast implants might induce a stronger local T cell immune response. Our findings could shed some light to understand the association of silicone breast implants and some cases of anaplastic large cell lymphomas

  6. [Immunophenotype in multiple myeloma cells detected by multiparameter flow cytometry].

    PubMed

    Cao, Fang-Fang; Chen, Fang; Hu, Yan-Ping; Zhang, Ji-Hong

    2012-06-01

    This study was purposed to investigate the immunophenotypic characteristics in multiple myeloma (MM) cells and their significance. Thirty three cases of MM and 12 cases of reactive plasmacytosis (as control group) were enrolled in the study. The expressions of surface antigens in MM cells were detected with flow cytometry by using direct immunofluorescent technique and gating method of CD38/SSC and were confirmed with morphologic observation of myeloma cells. The results indicated that the proportion of myeloma cells detected by morphologic examination was 6.0% - 76.0%. With CD38/SSC gating method, a cluster of CD38 bright positive cells could be detected in their scatter plot, the proportion ranged from 0.99% to 57.54%. Most phenotype of MM was 38(st+)CD138(+)CD19(-)CD56(+) (78.8%). While the expressions of CD20, CD33, CD117, HLA-DR were seen in some MM patients, the positive rates were 12.1%, 15.2%, 30.3%, 9.1%, respectively; the expression of other antigens was negative. cκ or cλ monoclonal restriction was detected in 27 cases (81.8%) of MM, both cκ and cλ in the remaining cases of MM was negative. It is concluded that detecting the immunophenotype of MM patients by flow cytometry with CD38/SSC gating method and basing on the heterogeneity of cell antigens can discriminate myeloma cells from normal plasma cells, which provides evidence for targeted therapy and prognosis evaluation.

  7. Myoepithelial cells in lobular carcinoma in situ: distribution and immunophenotype.

    PubMed

    Wang, Ying; Jindal, Sonali; Martel, Maritza; Wu, Yaping; Schedin, Pepper; Troxell, Megan

    2016-09-01

    Myoepithelial cells have important physical and paracrine roles in breast tissue development, maintenance, and tumor suppression. Recent molecular and immunohistochemical studies have demonstrated phenotypic alterations in ductal carcinoma in situ-associated myoepithelial cells. Although the relationship of lobular carcinoma in situ (LCIS) and myoepithelial cells was described in 1980, further characterization of LCIS-associated myoepithelial cells is lacking. We stained 27 breast specimens harboring abundant LCIS with antibodies to smooth muscle myosin heavy chain, smooth muscle actin, and calponin. Dual stains for E-cadherin/smooth muscle myosin heavy chain and CK7/p63 were also performed. In each case, the intensity and distribution of staining in LCIS-associated myoepithelial cells were compared with normal breast tissue on the same slide. In 78% of the cases, LCIS-associated myoepithelial cells demonstrated decreased staining intensity for one or more myoepithelial markers. The normal localization of myoepithelial cells (flat against the basement membrane, pattern N) was seen in 96% of LCIS, yet 85% of cases had areas with myoepithelial cell cytoplasm oriented perpendicular to the basement membrane (pattern P), and in 30% of cases, myoepithelial cells appeared focally admixed with LCIS cells (pattern C). This study characterizes detailed architectural and immunophenotypic alterations of LCIS-associated myoepithelial cells. The finding of variably diminished staining favors application of several myoepithelial immunostains in clinical practice. The interaction of LCIS with myoepithelial cells, especially in light of the perpendicular and central architectural arrangements, deserves further mechanistic investigation.

  8. Eight color immunophenotyping of T-, B- and NK-cell subpopulations for characterization of chronic immunodeficiencies.

    PubMed

    A, Boldt; S, Borte; S, Fricke; K, Kentouche; F, Emmrich; M, Borte; F, Kahlenberg; U, Sack

    2014-01-16

    Background: The heterogeneity of primary and secondary immunodeficiencies demands for the development of a comprehensive flow cytometric screening system, based on reference values that support a standardized immunophenotypic characterization of most lymphocyte subpopulations. Methods: Peripheral blood samples from healthy adult volunteers (n=25) were collected and split into eight panel fractions (100µl each). Subsequently, pre-mixed 8-color antibody cocktails were incubated per specific panel of whole blood to detect and differentiate cell subsets of: (i) a general lymphocyte overviews, (ii) B-cell subpopulations, (iii) CD4+ subpopulations, (iv) CD8+ subpopulations, (v) regulatory T-cells, (vi) recent thymic emigrants, (vii) NK-cell subpopulations, (viii) NK-cell activation markers. All samples were lysed, washed and measured by flow cytometry. FACS DIVA software was used for data analysis and calculation of quadrant statistics (mean values, standard error of mean, percentile ranges). Results: Whole blood staining of lymphocytes provided the analysis of: (i) CD3+, 4+, 8+, 19+, 16/56+, and activated CD4/8 cells; (ii) immature, naïve, non-switched/switched, memory, (activated) CD21(low) , transitional B-cells, plasmablasts/plasmacells; (iii and iv) naïve, central memory, effector, effector memory, TH1/TH2/TH17-like and CCR5+CD8-cells; (v) CD25+, regulatory T-cells (naïve/memory, HLA-DR+); (vi) α/β- and γ/δ-T-cells, recent thymic emigrants in CD4/CD8 cells; (vii) immature/mature CD56(bright) , CD94/NKG2D+ NK-cells; and (viii) Nkp30, 44, 46 and CD57+NK-cells. Clinical examples and quadrant statistics are provided. Conclusion: The present study represents a practical approach to standardize the immunophenotyping of most T-, B- and NK-cell subpopulations. That allows differentiating, whether abnormalities or developmental shifts observed in lymphocyte subpopulations originates either from primary or secondary immunological disturbance. © 2014 Clinical

  9. Identification and immunophenotypic characterization of normal and pathological mast cells.

    PubMed

    Morgado, José Mário; Sánchez-Muñoz, Laura; Teodósio, Cristina; Escribano, Luís

    2014-01-01

    Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 10(6) unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single-cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to study MCs from other tissues and species.

  10. [Immunophenotype characteristics in multiple myeloma cells and their significance].

    PubMed

    Sun, Ying; Fang, Mei-Yun; Liu, Yue-Jian

    2010-04-01

    This study was purposed to investigate the immunophenotype characteristics in multiple myeloma (MM) cells and their significance. The expressions of CD138, CD38, CD56, CD117, HLA-DR, CD3, CD7, CD13, CD33, CD19, CD20, CD22, CD34 in myeloma cells from 31 MM patients were detected by using CD45/SSC immunofluorescent flow cytometry and were confirmed with morphologic observation of myeloma cells. The results indicated that the proportion of myeloma cells detected by morphologic examination was 10%-68%, the proportion of myeloma cells detected by CD45/SSC gating was 9.72%-67.77%. The antigen positive expression rate in myeloma cells was as follows: CD138 61.29%, CD38 100%, CD56 46.15%, CD13 70.00%, CD33 29.03%, HLA-DR 74.19%, CD117 33.33%; the other antigen expressions were negative. It is concluded that the use of CD45/SSC gating technique can identify multiple myeloma cells. The proportion of myeloma cells gated was close to the result of morphological examination. The myeloma cells mainly express the antigens CD138, CD88, CD56, while the expressions of CD117, CD13, CD33 were seen in some MM patients. Myeloma cells don't express antigens of B- and T-lymphocytes, which suggest the heterogenicity of multiple antigens expressed by myeloma cells. However, the biological significance of antigen expression in myeloma cells is worthy to be further investigated.

  11. [Immunophenotypic characteristics of peripheral blood cells in normal elderly men].

    PubMed

    Wang, Ya-Zhe; Chang, Yan; Lu, Dan; Shi, Hong-Xia; Huang, Xiao-Jun; Liu, Yan-Rong

    2013-12-01

    This study was aimed to distinguish abnormal cells and to diagnose hematologic diseases through recognizing antigen expression pattern and percentage of peripheral blood cells in normal elderly men. Antigen expression of blast cells, granulocytes, monocytes, lymphocytes, nucleated red blood cells and plasma cells was detected by seven-color flow cytometry in a total of 88 peripheral blood samples from normal elderly men, aged median 82 years old, from 70 to 98 years. Groups were divided according to age, region and underlying diseases, and the percentages of different subgroup cells were examined to confirm whether the differences were significant or not. The results showed that the median proportion of CD34(+) blast cells in peripheral blood from normal elderly men were 0.017% (0.015%-0.020%), with high expression of HLA-DR, CD33, CD13 and CD117, low expression of myeloid antigens, such as CD15, CD11b and CD16, while lymphoid antigens were seldom positive, including CD7, CD19 and CD56. Dim-expression of CD38 was found in peripheral blood blast cells, CD38(dim)+/- cell percentage in blast cells was 61.36% ± 18.26%. In the differentiation and development of granulocytes, CD16(-), CD13(+) CD16(+) (intermediate) and CD16(+) (strong) CD13(+) cells appeared in sequence from immature to mature granulocytes, whose median proportions in nuclear cells were 0.04%, 0.30% and 61.30%, respectively. The percentages of immature monocytes, such as CD64(+) CD14(-) and HLA-DR(+) CD11b(-) cells, were from 0.00% to 0.10% and from 0.07% to 0.68%, separately. No significant differences were found between different subgroups (P > 0.05). It is concluded that the immunophenotypic characteristics and referential percentages of CD34(+) blast cells, granulocytes and monocytes with different development stages in peripheral blood from normal elderly men are recognized, which can help to discriminate abnormal cells.

  12. T-Cell Immunophenotyping Distinguishes Active From Latent Tuberculosis

    PubMed Central

    Pollock, Katrina M.; Whitworth, Hilary S.; Montamat-Sicotte, Damien J.; Grass, Lisa; Cooke, Graham S.; Kapembwa, Moses S.; Kon, Onn M.; Sampson, Robert D.; Taylor, Graham P.; Lalvani, Ajit

    2013-01-01

    Background. Changes in the phenotype and function of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4+ and CD8+ T-cell subsets in response to stage of infection may allow discrimination between active tuberculosis and latent tuberculosis infection. Methods. A prospective comparison of M. tuberculosis-specific cellular immunity in subjects with active tuberculosis and latent tuberculosis infection, with and without human immunodeficiency virus (HIV) coinfection. Polychromatic flow cytometry was used to measure CD4+ and CD8+ T-cell subset phenotype and secretion of interferon γ (IFN-γ), interleukin 2 (IL-2), and tumor necrosis factor α (TNF-α). Results. Frequencies of CD4+ and CD8+ cells secreting IFN-γ-only, TNF-α-only and dual IFN-γ/TNF-α were greater in active tuberculosis vs latent tuberculosis infection. All M. tuberculosis-specific CD4+ subsets, with the exception of IL-2-only cells, switched from central to effector memory phenotype in active tuberculosis vs latent tuberculosis infection, accompanied by a reduction in IL-7 receptor α (CD127) expression. The frequency of PPD-specific CD4+ TNF-α-only-secreting T cells with an effector phenotype accurately distinguished active tuberculosis from latent tuberculosis infection with an area under the curve of 0.99, substantially more discriminatory than measurement of function alone. Conclusions. Combined measurement of T-cell phenotype and function defines a highly discriminatory biomarker of tuberculosis disease activity. Unlocking the diagnostic and monitoring potential of this combined approach now requires validation in large-scale prospective studies. PMID:23966657

  13. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  14. The mast cell: a multifunctional effector cell.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico; Mallardi, Franco; Beltrami, Carlo Alberto

    2003-01-01

    Mast cells (MC) are recognized key cells of type I hypersensitivity reactions. Several lines of evidence, however, indicate that MC not only express critical effector functions in classic IgE-associated allergic disorders, but also play important roles in host defence against parasites, bacteria and perhaps even viruses. Indeed, it is now clear that MC can contribute to host defence in the context of either acquired or innate immune responses through the release of a myriad of pro-inflammatory and immunoregulatory molecules and the expression of a wide spectrum of surface receptors for cytokines and chemokines. Moreover, there is growing evidence that MC exert distinct nonimmunological functions, playing a relevant role in tissue homeostasis, remodeling and fibrosis as well as in the processes of tissue angiogenesis. In this review, we provide a small insight into the biology of mast cells and their potential implications in human pathology.

  15. Immunophenotypic and antigen receptor gene rearrangement analysis in T cell neoplasia.

    PubMed Central

    Knowles, D. M.

    1989-01-01

    The author reviews the immunophenotypic profiles displayed by the major clinicopathologic categories of T cell neoplasia, the immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia, and the contributions made by antigen receptor gene rearrangement analysis to the understanding of T cell neoplasia. Neoplasms belonging to distinct clinicopathologic categories of T cell neoplasia often exhibit characteristic immunophenotypic profiles. Approximately 80% of lymphoblastic lymphomas and 20% of acute lymphoblastic leukemias express phenotypes consistent with prethymic and intrathymic stages of T cell differentiation, including intranuclear terminal deoxynucleotidyl transferase. Cutaneous T cell lymphomas of mycosis fungoides type usually express pan-T cell antigens CD2, CD5, and CD3, often lack the pan-T cell antigen CD7, and usually express the mature, peripheral helper subset phenotype, CD4+ CD8-. Cutaneous T cell lymphomas of nonmycosis fungoides type and peripheral T cell lymphomas often lack one or more pan-T cell antigens and, in addition, occasionally express the anomalous CD4+ CD8+ or CD4- CD8- phenotypes. T gamma-lymphoproliferative disease is divisable into two broad categories: those cases that are CD3 antigen positive and exhibit clonal T cell receptor beta chain (TCR-beta) gene rearrangements and those cases that are CD3 antigen negative and exhibit the TCR-beta gene germline configuration. Human T cell lymphotropic virus-I (HTLV-I) associated Japanese, Carribean, and sporadic adult T cell leukemia/lymphomas usually express pan-T cell antigens, the CD4+ CD8- phenotype, and various T cell-associated activation antigens, including the interleukin-2 receptor (CD25). Immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia include, in increasing order of utility, T cell predominance, T cell subset antigen restriction, anomalous T cell subset antigen expression, and deletion of one or more pan-T cell antigens. Only in

  16. CD5-positive B-cell neoplasms of indeterminate immunophenotype: a clinicopathologic analysis of 26 cases.

    PubMed

    Asplund, Sheryl L; McKenna, Robert W; Doolittle, Jeff E; Kroft, Steven H

    2005-12-01

    The flow cytometric classification of CD5-positive small B-cell neoplasms is dependent largely on the differential expression of CD23 and FMC-7. Occasional CD5-positive neoplasms with prominent co-expression of these antigens are encountered, precluding definitive immunophenotypic classification. The authors studied the clinicopathologic features of 26 neoplasms with this indeterminate immunophenotype. Available morphologic material was reviewed and analysis of CYCLIN D1 derangement was performed in selected cases by a combination of immunohistochemical, molecular, and cytogenetic techniques. Individual neoplasms were classified based on correlation of morphologic features and results of CYCLIN D1 studies. The neoplasms were classified into five categories: chronic lymphocytic leukemia (14 cases), "favor chronic lymphocytic leukemia" (3 cases), mantle cell lymphoma (3 cases), lymphoplasmacytic lymphoma (1 case), and unclassifiable (5 cases). Three of the unclassifiable neoplasms had morphologic features of mantle cell lymphoma, but CYCLIN D1 derangement could not be demonstrated. Neither relative expression of CD23 and FMC-7 nor intensity of CD20 or surface immunoglobulin expression was helpful in final classification. The authors conclude that CD5-positive small B-cell neoplasms with an indeterminate immunophenotype are a heterogeneous group, requiring additional studies for final classification. The majority (65%) appear to be chronic lymphocytic leukemia, with most of the remaining cases either definitively mantle cell lymphoma or unclassifiable.

  17. An immunophenotypic and molecular diagnosis of composite hairy cell leukaemia and chronic lymphocytic leukaemia.

    PubMed

    Liptrot, Stuart; O' Brien, David; Langabeer, Stephen E; Quinn, Fiona; Mackarel, A Jill; Elder, Patrick; Vandenberghe, Elisabeth; Hayden, Patrick J

    2013-12-01

    Hairy cell leukaemia (HCL) and chronic lymphocytic leukaemia (CLL) are distinct clinicopathological B cell chronic lymphoproliferative disorders (B-CLPD). Both diseases have characteristic immunophenotypic and molecular features. The co-existence of two B-CLPD is perhaps more common than previously thought but a composite HCL and CLL has been rarely documented. A case is reported in which the morphology, integrated with an extensive immunophenotyping panel, and incorporation of the recently described HCL-associated BRAF V600E mutation, enabled the prompt diagnosis of composite HCL and CLL thus allowing appropriate treatment selection. This case serves to highlight the benefit of a multidisciplinary approach to the diagnosis of bi-clonal B-CLPD.

  18. Selective Immunophenotyping for Diagnosis of B-cell Neoplasms: Immunohistochemistry and Flow Cytometry Strategies and Results

    PubMed Central

    Boyd, Scott D.; Natkunam, Yasodha; Allen, John R.; Warnke, Roger A.

    2012-01-01

    Determining the immunophenotype of hematologic malignancies is now an indispensible part of diagnostic classification, and can help to guide therapy, or to predict clinical outcome. Diagnostic workup should be guided by morphologic findings and evaluate clinically important markers, but ideally should avoid the use of overly-broad panels of immunostains that can reveal incidental findings of uncertain significance and give rise to increased costs. Here, we outline our approach to diagnosis of B cell neoplasms, combining histologic and clinical data with tailored panels of immunophenotyping reagents, in the context of the 2008 World Health Organization classification. We present data from cases seen at our institution from 2004-8 using this approach, to provide a practical reference for findings seen in daily diagnostic practice. PMID:22820658

  19. Outcome of B-Cell Acute Lymphoblastic Leukemia in Brazilian Children: Immunophenotypical, Hematological, and Clinical Evaluation.

    PubMed

    Cézar, Rodrigo S; Cerqueira, Bruno A V; da Paz, Silvana de Souza; Barbosa, Cynara G; de Moura Neto, José P; Barreto, José H de S; Goncalves, Marilda de S

    2015-08-01

    The aim of this study is to investigate the clinical, hematological, and immunophenotypic characteristics of Brazilian children with B-cell acute lymphoblastic leukemia (B-ALL) to identify prognostic biomarkers of the disease. Thirty-three children newly diagnosed with B-ALL were followed between March 2004 and December 2009. Information about the demographic profile, diagnosis, immunophenotype, clinical manifestations, and disease outcome were gathered from the patients' medical records. Of the 33 patients with B-ALL, 18 were male and 15 female. Eighteen patients were classified as high risk; 13 as low risk, and 2 as true low risk. The frequencies of cluster of differentiation (CD)10, CD19, and CD20 antigens were 69.7%, 81.8%, and 18.2%, respectively. Six patients (18.2%) had aberrant expression of myeloid antigens. At diagnosis, patients immunopositive for CD20 had elevated white blood cell counts (P = 0.018) and lower platelet counts (P = 0.017). The 6-year overall survival was 67.5%± 3.47%. Our results demonstrate the distinct immunophenotypic and prognostic characteristics of patients with B-ALL, which can be related to the Brazilian racial admixture. Consequently, these results will most likely aid in the selection of additional prognostic markers and their use in monitoring the clinical manifestations and treatment response among B-ALL patients.

  20. Immunophenotypic characterization of lymphoid cell infiltrates in vitiligo

    PubMed Central

    Sanchez-Sosa, S; Aguirre-Lombardo, M; Jimenez-Brito, G; Ruiz-Argüelles, A

    2013-01-01

    The pathogenesis of vitiligo is still controversial. The purpose of this study was to gain insight into the nature of lymphoid cells infiltrating depigmented areas of skin in vitiligo. Immunochemical procedures were carried out in biopsies from 20 patients with active lesions to search for cells expressing CD1a, CD2, CD3, CD4, CD5, CD8, CD20, CD25, CD30, CD56, CD68 and CD79a. Results indicate that early lesions are infiltrated mainly by dendritic cells, whereas older lesions display significantly lower proportions of these cells and increased percentages of mature T cells. This finding might suggest that the autoimmune reactivity towards melanocyte antigens might be T cell-dependent and antigen-driven. It is possible that a non-immune offence of melanocytes is responsible for the exposure of intracellular antigens, while autoreactivity might be a secondary, self-perpetuating mechanism. PMID:23607858

  1. Immunophenotyping of immune cell populations in the raccoon (Procyon lotor).

    PubMed

    Heinrich, Franziska; Jungwirth, Nicole; Carlson, Regina; Tipold, Andrea; Böer, Michael; Scheibe, Thomas; Molnár, Viktor; von Dörnberg, Katja; Spitzbarth, Ingo; Puff, Christina; Wohlsein, Peter; Baumgärtner, Wolfgang

    2015-12-15

    The raccoon (Procyon lotor) is a highly adaptable carnivore that has rapidly conquered Europe over the last decades and represents a potential candidate as pathogen reservoir, bearing the risk for transmission of infectious agents, as zoonosis or spill-over, to other wild life and domestic animals and man. Comprehensive investigations of infectious diseases in raccoons require a detailed knowledge of the participating immune cell populations. To close this gap of knowledge, various antibodies were tested for cross-reactivity with leukocytes in lymphoid organs and peripheral blood of raccoons using immunohistochemistry and flow cytometry, respectively. Eight out of 16 antibodies, directed against CD3, CD79α, Pax-5, IgG, CD44, MHC class II, myeloid/histiocyte antigen (MAC387), and Iba-1 exhibited a specific immunoreaction with cells in distinct anatomical compartments in formalin-fixed paraffin-embedded lymphoid tissues. Flow cytometric analysis revealed that 7 out of 18 antibodies directed against CD11c, CD14, CD21, CD44, CD79α, MHC class I and II cross-reacted with peripheral blood-derived raccoon leukocytes. Summarized, the usefulness of several cross-reacting antibodies was determined for the characterization of raccoon immune cells in immunohistochemistry and flow cytometry, offering the opportunity to study the raccoon immune system under normal and diseased conditions.

  2. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML

    PubMed Central

    Warfvinge, Rebecca; Geironson, Linda; Lang, Stefan; Karlsson, Christine; Roschupkina, Teona; Stenke, Leif; Stentoft, Jesper; Olsson-Strömberg, Ulla; Hjorth-Hansen, Henrik; Mustjoki, Satu; Soneji, Shamit; Richter, Johan

    2017-01-01

    Understanding leukemia heterogeneity is critical for the development of curative treatments as the failure to eliminate therapy-persistent leukemic stem cells (LSCs) may result in disease relapse. Here we have combined high-throughput immunophenotypic screens with large-scale single-cell gene expression analysis to define the heterogeneity within the LSC population in chronic phase chronic myeloid leukemia (CML) patients at diagnosis and following conventional tyrosine kinase inhibitor (TKI) treatment. Our results reveal substantial heterogeneity within the putative LSC population in CML at diagnosis and demonstrate differences in response to subsequent TKI treatment between distinct subpopulations. Importantly, LSC subpopulations with myeloid and proliferative molecular signatures are proportionally reduced at a higher extent in response to TKI therapy compared with subfractions displaying primitive and quiescent signatures. Additionally, cell surface expression of the CML stem cell markers CD25, CD26, and IL1RAP is high in all subpopulations at diagnosis but downregulated and unevenly distributed across subpopulations in response to TKI treatment. The most TKI-insensitive cells of the LSC compartment can be captured within the CD45RA− fraction and further defined as positive for CD26 in combination with an aberrant lack of cKIT expression. Together, our results expose a considerable heterogeneity of the CML stem cell population and propose a Lin−CD34+CD38−/lowCD45RA−cKIT−CD26+ population as a potential therapeutic target for improved therapy response. PMID:28122740

  3. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML.

    PubMed

    Warfvinge, Rebecca; Geironson, Linda; Sommarin, Mikael N E; Lang, Stefan; Karlsson, Christine; Roschupkina, Teona; Stenke, Leif; Stentoft, Jesper; Olsson-Strömberg, Ulla; Hjorth-Hansen, Henrik; Mustjoki, Satu; Soneji, Shamit; Richter, Johan; Karlsson, Göran

    2017-04-27

    Understanding leukemia heterogeneity is critical for the development of curative treatments as the failure to eliminate therapy-persistent leukemic stem cells (LSCs) may result in disease relapse. Here we have combined high-throughput immunophenotypic screens with large-scale single-cell gene expression analysis to define the heterogeneity within the LSC population in chronic phase chronic myeloid leukemia (CML) patients at diagnosis and following conventional tyrosine kinase inhibitor (TKI) treatment. Our results reveal substantial heterogeneity within the putative LSC population in CML at diagnosis and demonstrate differences in response to subsequent TKI treatment between distinct subpopulations. Importantly, LSC subpopulations with myeloid and proliferative molecular signatures are proportionally reduced at a higher extent in response to TKI therapy compared with subfractions displaying primitive and quiescent signatures. Additionally, cell surface expression of the CML stem cell markers CD25, CD26, and IL1RAP is high in all subpopulations at diagnosis but downregulated and unevenly distributed across subpopulations in response to TKI treatment. The most TKI-insensitive cells of the LSC compartment can be captured within the CD45RA(-) fraction and further defined as positive for CD26 in combination with an aberrant lack of cKIT expression. Together, our results expose a considerable heterogeneity of the CML stem cell population and propose a Lin(-)CD34(+)CD38(-/low)CD45RA(-)cKIT(-)CD26(+) population as a potential therapeutic target for improved therapy response. © 2017 by The American Society of Hematology.

  4. Vortex-dislodged cells from bone marrow trephine biopsy yield satisfactory results for flow cytometric immunophenotyping.

    PubMed

    Bommannan, K; Sachdeva, M U S; Gupta, M; Bose, P; Kumar, N; Sharma, P; Naseem, S; Ahluwalia, J; Das, R; Varma, N

    2016-10-01

    A good bone marrow (BM) sample is essential in evaluating many hematologic disorders. An unsuccessful BM aspiration (BMA) procedure precludes a successful flow cytometric immunophenotyping (FCI) in most hematologic malignancies. Apart from FCI, most ancillary diagnostic techniques in hematology are less informative. We describe the feasibility of FCI in vortex-dislodged cell preparation obtained from unfixed trephine biopsy (TB) specimens. In pancytopenic patients and dry tap cases, routine diagnostic BMA and TB samples were complemented by additional trephine biopsies. These supplementary cores were immediately transferred into sterile tubes filled with phosphate-buffered saline, vortexed, and centrifuged. The cell pellet obtained was used for flow cytometric immunophenotyping. Of 7955 BMAs performed in 42 months, 34 dry tap cases were eligible for the study. Vortexing rendered a cell pellet in 94% of the cases (32 of 34), and FCI rendered a rapid diagnosis in 100% of the cases (32 of 32) where cell pellets were available. We describe an efficient procedure which could be effectively utilized in resource-limited centers and reduce the frequency of repeat BMA procedures. © 2016 John Wiley & Sons Ltd.

  5. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue

    PubMed Central

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W.; Simó, Rafael; Tinahones, Francisco J.

    2016-01-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n = 8; body mass index [BMI]: 23 ± 1 kg/m2) and obese (n = 8; BMI: 35 ± 5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor’s BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. Significance The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal

  6. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue.

    PubMed

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W; Simó, Rafael; Tinahones, Francisco J; Fernández-Veledo, Sonia; Vendrell, Joan

    2016-04-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n=8; body mass index [BMI]: 23±1 kg/m2) and obese (n=8; BMI: 35±5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor's BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal stem cells (hASCs) with

  7. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis.

    PubMed

    Ferreira, Enio; Gobbi, Helenice; Saraiva, Bruna S; Cassali, Geovanni D

    2010-02-23

    It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma) and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER), progesterone receptor (PgR), high molecular weight cytokeratin (34betaE-12), E-cadherin, Ki-67, HER-2 and P53) was perfomed. Columnar cell lesions were identified in 67 (53.1%) of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2%) were without and 26 (38.8%) with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%). Sixty (89.5%) of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors). The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34betaE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions.

  8. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry.

    PubMed

    De Schauwer, Catharina; Piepers, Sofie; Van de Walle, Gerlinde R; Demeyere, Kristel; Hoogewijs, Maarten K; Govaere, Jan L J; Braeckmans, Kevin; Van Soom, Ann; Meyer, Evelyne

    2012-04-01

    During recent years, cell-based therapies using mesenchymal stem cells (MSC) are reported in equine veterinary medicine with increasing frequency. In most cases, the isolation and in vitro differentiation of equine MSC are described, but their proper immunophenotypic characterization is rarely performed. The lack of a single marker specific for MSC and the limited availability of monoclonal antibodies (mAbs) for equine MSC in particular, strongly hamper this research. In this study, 30 commercial mAbs were screened with flow cytometry for recognizing equine epitopes using the appropriate positive controls to confirm their specificity. Cross-reactivity was found and confirmed by confocal microscopy for CD45, CD73, CD79α, CD90, CD105, MHC-II, a monocyte marker, and two clones tested for CD29 and CD44. Unfortunately, none of the evaluated CD34 clones recognized the equine epitopes on positive control endothelial cells. Subsequently, umbilical cord blood-derived undifferentiated equine MSC of the fourth passage of six horses were characterized using multicolor flow cytometry based on the selected nine-marker panel of both cell surface antigens and intracytoplasmatic proteins. In addition, appropriate positive and negative controls were included, and the viable single cell population was analyzed by excluding dead cells using 7-aminoactinomycin D. Isolated equine MSC of the fourth passage were found to be CD29, CD44, CD90 positive and CD45, CD79α, MHC-II, and a monocyte marker negative. A variable expression was found for CD73 and CD105. Successful differentiation towards the osteogenic, chondrogenic, and adipogenic lineage was used as additional validation. We suggest that this selected nine-marker panel can be used for the adequate immunophenotyping of equine MSC. Copyright © 2012 International Society for Advancement of Cytometry.

  9. Light scatter characteristics of blast cells in acute myeloid leukaemia: association with morphology and immunophenotype.

    PubMed Central

    Vidriales, M B; Orfao, A; López-Berges, M C; González, M; López-Macedo, A; García, M A; Galende, J; San Miguel, J F

    1995-01-01

    AIMS--To analyse the forward scatter/side scatter (FSC/SSC) distribution of acute myeloblastic leukaemia (AML) blast cells in order to assess whether it correlates with their morphology, immunophenotype, and clinical and biological disease characteristics. METHODS--FSC/SSC patterns were established upon taking into account the localisation of the residual T lymphocytes in the FSC/SSC dot plot as an internal biological standard. One hundred and seventy one newly diagnosed AML patients were analysed and five different FSC/SSC patterns were established. These five patterns could be grouped into two major categories taking into account the FSC/SSC distribution of normal cells in a bone marrow aspirate: immature patterns (1 and 2) and mature patterns (3, 4, and 5). These FSC/SSC patterns were correlated with different clinical and biological characteristics of AML patients. RESULTS--No significant associations were detected in relation to the clinical and haematological disease characteristics and the prognosis of these patients. By contrast there was a significant correlation between the FSC/SSC pattern of the AML blast cells and the FAB classification. An increased reactivity for the antigens associated with myeloid differentiation such as CD13, CD33, CD11b, CD15, CD14, CD4, CD56, and/or CD16 was detected among cases showing a mature FSC/SSC pattern (3, 4, and 5), both in the whole series and even within each of the FAB AML subtypes. By contrast, the reactivity for the CD34 precursor cell associated antigen was higher among those cases displaying an immature FSC/SSC pattern, this being observed even within each FAB subgroup. CONCLUSIONS--The FSC/SSC pattern distribution of AML blast cells not only provides an additional objective and reproductible system for the classification of these leukaemias but it may also represent a connection between the FAB morphological groups and the immunophenotypic classification of AML patients. Images PMID:7629293

  10. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping

    PubMed Central

    Costa, E S; Pedreira, C E; Barrena, S; Lecrevisse, Q; Flores, J; Quijano, S; Almeida, J; del Carmen García- Macias, M; Bottcher, S; Van Dongen, J J M; Orfao, A

    2010-01-01

    Immunophenotypic characterization of B-cell chronic lymphoproliferative disorders (B-CLPD) is becoming increasingly complex due to usage of progressively larger panels of reagents and a high number of World Health Organization (WHO) entities. Typically, data analysis is performed separately for each stained aliquot of a sample; subsequently, an expert interprets the overall immunophenotypic profile (IP) of neoplastic B-cells and assigns it to specific diagnostic categories. We constructed a principal component analysis (PCA)-based tool to guide immunophenotypic classification of B-CLPD. Three reference groups of immunophenotypic data files—B-cell chronic lymphocytic leukemias (B-CLL; n=10), mantle cell (MCL; n=10) and follicular lymphomas (FL; n=10)—were built. Subsequently, each of the 175 cases studied was evaluated and assigned to either one of the three reference groups or to none of them (other B-CLPD). Most cases (89%) were correctly assigned to their corresponding WHO diagnostic group with overall positive and negative predictive values of 89 and 96%, respectively. The efficiency of the PCA-based approach was particularly high among typical B-CLL, MCL and FL vs other B-CLPD cases. In summary, PCA-guided immunophenotypic classification of B-CLPD is a promising tool for standardized interpretation of tumor IP, their classification into well-defined entities and comprehensive evaluation of antibody panels. PMID:20844562

  11. Immunophenotype classification and therapeutic outcomes of Chinese primary gastrointestinal diffuse large B-cell lymphoma.

    PubMed

    Zhang, Zizhen; Shen, Yanying; Shen, Danping; Ni, Xingzhi

    2012-06-25

    Recent studies showed that diffuse large B-cell lymphoma (DLBCL) could be classified into germinal centre B cell-like (GCB) and non-germinal centre B cell-like (non-GCB) phenotypes according to CD10,Bcl-6 and MUM1 expression. But primary gastrointestinal DLBCL has rarely been studied. This study was aimed to investigate the relationship between immunophenotypic classification, therapeutic outcomes and the prognosis of patients with primary gastrointestinal DLBCL. Between 1998 and 2010, there were 151 patients studied at Shanghai Renji Hospital with a histopathological diagnosis of primary gastrointestinal DLBCL. Immunohistochemistry was performed using EnVision methods for CD10, BCL-6 and MUM1. The clinicopathologic features and follow-up data were analyzed by the Kaplan-Meier method, log-rank test and χ2 test. According to the expression of CD10, BCL-6 and MUM1, 31.8 % (48/151) of the cases belonged to the GCB subtype and 68.2 % (103/151) belonged to the non-GCB subtype. There was a significant difference of local lymph node metastasis between the GCB and non-GCB groups (P < 0.05). Patients in the GCB group had a better survival rate than those in the non-GCB group (5-year survival rate, 65.2 % vs 36.4 %, P < 0.05). In the GCB group, there was no significant difference in survival rates in patients receiving R-CHOP and CHOP therapy (P > 0.05). In the non-GCB group, the survival rate in patients treated with R-CHOP therapy was significantly longer than those treated with CHOP therapy (5-year survival rate, 62.8 % vs 30.8 %, P < 0.05). The immunophenotype classification of gastrointestinal DLBCL, which is closely related to local lymph node metastasis, is found to have prognostic significance. Immunophenotype classification is also useful in selecting the chemotherapy protocol.

  12. [Immunophenotyping and molecular genetic analysis of diffuse large B-cell lymphoma].

    PubMed

    Han, Yong-sheng; Xue, Yong-quan; Yang, Hai-yan; Zhang, Jun; Pan, Jin-lan

    2013-04-01

    To perform immunophenotyping and molecular genetic analysis for diffuse large B-cell lymphoma (DLBCL), and to explore their correlation and implication for prognosis. Immunohistochemical streptavidin peroxidase (SP) method was used to determine the expression of CD10, BCL6 and MUM1 in 59 cases of DLBCL. A Hans algorithm was used to classify DLBCL into germinal center B-cell (GCB) and non-GCB subtypes. Interphase fluorescence in situ hybridization (FISH) assay was performed on paraffin-embedded lymphoma tissue sections to detect translocations and amplifications of BCL6, BCL2 and MYC genes with dual-color break-apart BCL6 probe, dual-color dual-fusion IgH/ BCL2 probe and dual-color break-apart MYC probe, respectively. In the 59 cases of DLBCL, 28.8% (17/59) belonged to GCB subtype, and 71.2% (42/59) belonged to non-GCB subtype. The incidences of BCL6, BCL2 and MYC gene translocations were 24.1% (14/58), 1.7% (1/59) and 5.3% (3/57), respectively. The incidences of BCL6, BCL2 and MYC gene amplifications were 17.2% (10/58), 22.0% (13/59) and 21.1% (12/57), respectively. BCL6 amplification was not correlated with BCL6 translocation (P=0.424), but was correlated with amplifications of BCL2 and MYC (C=0.405 and 0.403, respectively, P <0.01). The incidence of BCL6 translocation in GCB type was higher than that in non-GCB type, and amplifications of BCL6, BCL2 or MYC were more frequently encountered in non-GCB type, though no statistical significance was detected (P=0.089 and 0.106, respectively). By univariate analysis, immunophenotyping and international prognostic index (IPI) exerted a significant effect on overall survival (OS) (P=0.047 and 0.001, respectively), but to which BCL6 translocation and amplification of the 3 genes were not related (P=0.150 and 0.444, respectively). By multivariate analysis, IPI score was the only independent prognostic factor for OS (RR =3.843, P=0.017). The GCB subtype of DLBCL is less common in the patient cohort. Common genetic

  13. Immunophenotypic and genetic characteristics of diffuse large B-cell lymphoma in Taiwan.

    PubMed

    Chang, Sheng-Tsung; Chen, Shang-Wen; Ho, Chung-Han; Kuo, Chun-Chi; Sakata, Seiji; Takeuchi, Kengo; Chuang, Shih-Sung

    2016-11-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma type. The immunophenotypic and genetic features of DLBCL in Taiwan have not been characterized. In this study, we performed immunohistochemical analysis and interphase fluorescence in situ hybridization (FISH) using tissue microarray sections to investigate a cohort of unselected DLBCL cases in a single institution in Taiwan from 1990 to 2010. Of the 153 cases investigated, CD10, bcl-6, and MUM1 were expressed in 16.3%, 71.2%, and 71.9% cases, respectively, with 27.5% (n = 42) of cases being classified as having a germinal center B-cell (GCB) origin by the Hans algorithm. By FISH analysis, 19.6%, 4.6%, 26.1%, and 3.9% cases showed rearrangement at IGH, BCL2, BCL6, and MYC loci, respectively, including three (2.0%) cases of double-hit lymphoma. As compared with the non-GCB tumors, GCB tumors more frequently expressed CD10 (p < 0.001) and bcl-6 (p = 0.001) with less frequent expression of MUM1 (p = 0.007). Moreover, GCB tumors more frequently exhibited rearrangement at the BCL2 (p = 0.024) and MYC (p = 0.038) loci than non-GCB tumors. However, there was no survival difference between these two groups. In this first series of DLBCL evaluation from Taiwan, we found that the relative frequency of GCB tumors among DLBCL was low in most East Asian countries. There is a wide range of BCL2 rearrangement rates, higher in the West and lower in East Asia. A larger and/or national study is warranted to better understand the immunophenotypic and molecular features of DLBCL in Taiwan and their respective impact on patient survival. Copyright © 2016. Published by Elsevier B.V.

  14. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells.

    PubMed

    Popa, Crina M; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.

  15. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  16. Immunophenotyping of patients with oral squamous cell carcinoma in peripheral blood and associated tumor tissue.

    PubMed

    Grimm, Martin; Feyen, Oliver; Hofmann, Heiko; Teriete, Peter; Biegner, Thorsten; Munz, Adelheid; Reinert, Siegmar

    2016-03-01

    The immune system is important for elimination of cancer cells. Tumors including oral squamous cell carcinoma (OSCC) are capable of escaping detection by host immune cells through apoptotic depletion of tumor-infiltrating lymphocytes (TILs). Circulating peripheral blood lymphocytes (PBLs) and corresponding TILs of tumor specimen were evaluated before and after curative tumor resection (n = 30) compared with PBLs of controls (n = 87). PBLs were characterized for the total number of T cells (CD3(+)), T helper cells (Th, CD3(+)/CD4(+)), regulatory T cells (Treg, CD4(+)/CD25(+)/CD127(low)), cytotoxic T cells (Tc, CD3(+)/CD8(+)), activated T cells (CD3(+)/HLA-DR(+)), and natural killer (NK) cells (CD3(-)/CD16(+)/CD56(+)). In tumor tissue, the prevalence of CD3(+), CD4(+), and CD8(+) TILs was assessed using immunohistochemistry, whereas the incidence of apoptosis was assessed using terminal deoxynucleotidyl transferase deoxyuridinetriphosphate nick-end labeling (TUNEL) assay. In PBLs of pretreated OSCC patients, a highly significant decrease in total number of T cells (p = 0.0001), Th cells (p < 0.0001), Treg cells (p < 0.0001), Tc cells (p < 0.0001), and NK cells (p = 0.0037) were found compared with controls. Decreased PBLs of OSCC patients were correlated with decreased numbers of corresponding TILs, which were associated with increased detection of apoptosis in the tumor tissue. Compared with the controls, the total number of T cells remained unchanged after surgery but the total number of NK cells significantly increased. Standardized immunophenotyping of OSCC may help to identify patients likely to benefit from cancer immunotherapy strategies and/or chemoradiation. Finally, future attempts to enhance an effective tumor-reactive immune response by immunotherapy or vaccination should be made by promoting tumor-specific Th and/or Tc cell/NK cell responses.

  17. An extranodal NK/T cell lymphoma, nasal type, with specific immunophenotypic and genotypic features.

    PubMed

    Katsaounis, Panagiotis; Alexopoulou, Alexandra; Dourakis, Spyros P; Smyrnidis, Alexandros; Marinos, Leonidas; Filiotou, Anna; Archimandritis, Athanasios J

    2008-09-01

    Extranodal NK/T cell lymphoma, 'nasal type,' is a rare clinicopathological entity in Europe. The main clinical features are nasal congestion, sore throat, dysphagia and epistaxis, due to a destructive mass involving the midline facial tissues. Pathologically, lymphoma cells exhibit angioinvasion, angiodestruction and coagulative necrosis. We report the case of a patient who presented with fever, dyspnea, nasal congestion, headache, distention of right nasal turbinates and exophytic lower leg ulcerating lesions. A CT scan of visceral scull demonstrated a filling mass of right frontal, ethmoidal and maxillary sinuses with erosion of the wall of right maxillary sinus and ventral portion of the diaphragm. A biopsy was performed in the skin lesion and showed an angioinvasive NK/T cell lymphoma CD56 negative with clonal rearrangement of the T-cell-receptor gamma gene. Up to our knowledge, this is a rare immunophenotype for NK/T-cell, 'nasal type,' lymphomas. However, the lymphoma may be classified as extranodal NK/T cell lymphoma, 'nasal type,' due to typical clinical presentation, radiologic findings and pathological characteristics of polymorphism, angioinvasion, angiodestruction and coagulative necrosis.

  18. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition.

    PubMed

    Paebst, Felicitas; Piehler, Daniel; Brehm, Walter; Heller, Sandra; Schroeck, Carmen; Tárnok, Attila; Burk, Janina

    2014-08-01

    Horses are an approved large animal model for therapies of the musculoskeletal system. Especially for tendon disease where cell-based therapy is commonly used in equine patients, the translation of achieved results to human medicine would be a great accomplishment. Immunophenotyping of equine mesenchymal stromal cells (MSCs) remains the last obstacle to meet the criteria of the International Society for Cellular Therapy (ISCT) definition of human MSCs. Therefore, the surface antigen expression of CD 29, CD 44, CD 73, CD 90, CD 105, CD 14, CD 34, CD 45, CD 79α, and MHC II in equine MSCs from adipose tissue, bone marrow, umbilical cord blood, umbilical cord tissue, and tendon tissue was analyzed using flow cytometry. Isolated cells from the different sources and donors varied in their expression pattern of MSC-defining antigens. In particular, CD 90 and 105 showed most heterogeneity. However, cells from all samples were robustly positive for CD 29 and CD 44, while being mostly negative for CD 73 and the exclusion markers CD 14, CD 34, CD 45, CD 79α and MHC II. Furthermore, it was evident that enzymes used for cell detachment after in vitro-culture affected the detection of antigen expression. These results emphasize the need of standardization of MSC isolation, culturing, and harvesting techniques. As the equine MSCs did not meet all criteria the ISCT defined for human MSCs, further investigations for a better characterization of the cell type should be conducted. © 2014 International Society for Advancement of Cytometry.

  19. [Immunophenotypes and prognosis of diffuse large B-cell lymphoma: a study of 500 cases].

    PubMed

    Luo, Dong-Lan; Liu, Yan-Hui; Zhuang, Heng-Guo; Li, Li; Xu, Fang-Ping; Zhang, Fen; Luo, Xin-Lan; Xu, Jie

    2011-04-01

    To study the immunophenotype and overall survival of diffuse large B-cell lymphoma (DLBCL) classified according to the 2008 World Health Organization classification of tumors of hematopoietic and lymphoid tissues. Five hundred cases of DLBCL were retrospectively analyzed with histologic review, immunohistochemistry, gene rearrangement study, in situ hybridization and fluorescence in situ hybridization. Follow-up data were collected. The overall survival rates of germinal center B-cell (GCB) and non-germinal center B-cell (non-GCB) subtypes, as well as those of DLBCL, not otherwise specified (NOS) and Epstein-Barr virus (EBV)-positive DLBCL of the elderly, were compared. DLBCL-NOS was the commonest subtype which accounted for 77.2% (386/500) of the cases. EBV-positive DLBCL of the elderly, primary DLBCL of central nervous system, primary mediastinal (thymic) large B-cell lymphoma and T cell/histiocyte-rich large B-cell lymphoma accounted for 9.4% (47/500), 4.4% (22/500), 2.8% (14/500) and 2.6% (13/500), respectively. 68.5% (219/320) of DLBCL-NOS belonged to non-GCB subtype. The percentage of GCB subtype and CD5-positive subtype were 28.4% (91/320) and 3.1% (10/320), respectively. Comparison of the overall survival, GCB and non-GCB immunophenotypic groups have no significant difference (P = 0.93). And the same result in which of the EBV-positive DLBCL of the elderly and DLBCL-NOS group, before and after age matched (P = 0.13 and 0.28, respectively). A double-hit lymphoma was found by FISH detection, which presenting as gray zone lymphoma in morphology. By using Hans algorithm, GCB and non-GCB subtypes show no significant difference in overall survival. EBV-positive DLBCL of the elderly and DLBCL-NOS also do not have significant difference in overall survival. Fluorescence in situ hybridization technique is helpful in identification of DLBCL with rare phenotypes.

  20. Surface-Micromachined Microfiltration Membranes for Efficient Isolation and Functional Immunophenotyping of Subpopulations of Immune Cells

    PubMed Central

    Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-01-01

    An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389

  1. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells.

    PubMed

    Chen, Weiqiang; Huang, Nien-Tsu; Oh, Boram; Lam, Raymond H W; Fan, Rong; Cornell, Timothy T; Shanley, Thomas P; Kurabayashi, Katsuo; Fu, Jianping

    2013-07-01

    An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this "bulk" assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined poly-dimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay ("AlphaLISA"), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples.

  2. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  3. The aberrancy of immunophenotype and immunoglobulin status as indicators of prognosis in B cell diffuse large cell lymphoma.

    PubMed Central

    Spier, C. M.; Grogan, T. M.; Lippman, S. M.; Slymen, D. J.; Rybski, J. A.; Miller, T. P.

    1988-01-01

    To assess the prognostic significance of the immunophenotype in diffuse large cell lymphoma (DLCL), 105 DLCL patients were studied between 1978 and 1987 using a panel of 40 monoclonal antibodies applied to frozen tissue. Eighty-three patients were found to have B cell phenotypes, and 20 patients had T cell phenotypes. Focusing on markers relevant to clinical outcome among B cell LCL showed that lack of expression of the pan B antigens Leu14 and Leu16 were correlated with decreased survival (Leu14, P = 0.01; Leu16, P = 0.06; log-rank). HLA-DR activity also showed that lack of expression of this antigen correlated with poor survival (P = 0.004, log-rank). Kappa light chain immunoglobulin lack of expression showed predictive value for decreased survival as well (P = 0.005, log-rank). Multivariate analyses of known clinically important variables and the immune phenotypes confirm that the loss of HLA-DR and B cell aberrancy are independent factors predicting a poor clinical outcome. Losing some B activation/kappa antigens appears to be a broad biologic phenomenon linking surface antigen lack of expression with decreased survival. This suggests that aberrancy of immunophenotype and immunoglobulin status are key predictors of survival in B-LCL. PMID:3140668

  4. [Analysis of cell morphology and immunophenotypic characteristics in 47 cases of multiple myeloma].

    PubMed

    Su, Xian-Du; Lin, Rong; Xu, Xiao-Lan; Chen, Xu; Zhan, Wen-Li; Zheng, Jin-Pu; Fan, Chang-Ling

    2015-02-01

    This study was to investigate the cell morphology and cell immune phenotypic characteristics in patients with multiple myeloma (MM). The flow cytometry with multiparametric direct immunofluorescence technique, and CD45/SSC and CD38(+)(+)/CD138(+) gating were used to measure cell markers CD138, CD38, CD56, CD117, CD3, CD13, CD33, CD19, CD7, CD20, CD22, CD34, CD28 in 47 MM patients. At the same time the morphology examination of bone marrow cells was performed. The suspicious myeloma cell ratio in MM patients was 9.42%-74.25% detected by flow cytometry, moreover, the myeloma cell ratio detected by morphology examination was 11.0%-80.6%, there was a good correlation between the two detection methods (r(2) = 0.54, P < 0.001). The ratio of antigen positive expression was as follows: 74.46% for CD138, 100% for CD38, 57.44% for CD56, 40.42% for CD117, 6.38% for CD13, 19.15% for CD33, 8.51% for CD20, 27.66% for CD28, 2.12% for CD22, 4.25% for CD34, 0% for CD3, 0% for CD19, 0% for CD7. CD45/SSC and CD38(+)/CD138(+) gating technique can accurately gate multiple myeloma cell sets which need analysis, the majority of myeloma cells expreses CD138, CD38, CD56 antigens. The immunophenotypic analysis combined with the cell morphology examination more contribute to the diagnosis and differential diagnosis of multiple myeloma.

  5. Immunophenotyping of putative human B1 B cells in healthy controls and common variable immunodeficiency (CVID) patients

    PubMed Central

    Suchanek, O; Sadler, R; Bateman, E A; Patel, S Y; Ferry, B L

    2012-01-01

    B1 B cells represent a unique subset of B lymphocytes distinct from conventional B2 B cells, and are important in the production of natural antibodies. A potential human homologue of murine B1 cells was defined recently as a CD20+CD27+CD43+ cell. Common variable immunodeficiency (CVID) is a group of heterogeneous conditions linked by symptomatic primary antibody failure. In this preliminary report, we examined the potential clinical utility of introducing CD20+CD27+CD43+ B1 cell immunophenotyping as a routine assay in a diagnostic clinical laboratory. Using a whole blood assay, putative B1 B cells in healthy controls and in CVID patients were measured. Peripheral blood from 33 healthy donors and 16 CVID patients were stained with relevant monoclonal antibodies and underwent flow cytometric evaluation. We established a rapid, whole blood flow cytometric assay to investigate putative human B1 B cells. Examination of CD20+CD27+CD43+ cells is complicated by CD3+CD27+CD43hi T cell contamination, even when using stringent CD20 gating. These can be excluded by gating on CD27+CD43lo–int B cells. Although proportions of CD20+CD27–CD43lo–int cells within B cells in CVID patients were decreased by 50% compared to controls (P < 0·01), this was not significant when measured as a percentage of all CD27+ B cells (P = 0·78). Immunophenotypic overlap of this subset with other innate-like B cells described recently in humans is limited. We have shown that putative B1 B cell immunophenotyping can be performed rapidly and reliably using whole blood. CD20+CD27+CD43lo–int cells may represent a distinct B1 cell subset within CD27+ B cells. CVID patients were not significantly different from healthy controls when existing CD27+ B cell deficiencies were taken into account. PMID:23121674

  6. Multiparametric profiling of non–small-cell lung cancers reveals distinct immunophenotypes

    PubMed Central

    Lizotte, Patrick H.; Ivanova, Elena V.; Awad, Mark M.; Jones, Robert E.; Keogh, Lauren; Liu, Hongye; Dries, Ruben; Herter-Sprie, Grit S.; Santos, Abigail; Feeney, Nora B.; Paweletz, Cloud P.; Kulkarni, Meghana M.; Bass, Adam J.; Rustgi, Anil K.; Yuan, Guo-Cheng; Kufe, Donald W.; Jänne, Pasi A.; Hammerman, Peter S.; Sholl, Lynette M.; Hodi, F. Stephen; Richards, William G.; Bueno, Raphael; English, Jessie M.; Bittinger, Mark A.

    2016-01-01

    BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non–small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). RESULTS. Cytometric profiling identified an immunologically “hot” cluster with abundant CD8+ T cells expressing high levels of PD-1 and TIM-3 and an immunologically “cold” cluster with lower relative abundance of CD8+ T cells and expression of inhibitory markers. The “hot” cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, approximately 20% of cases had high B cell infiltrates with a subset producing IL-10. CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr Cancer Consortium, Stand Up to Cancer Foundation, Conquer Cancer Foundation, International Association for the Study of Lung Cancer, National Cancer Institute (R01 CA205150), and the Damon Runyon Cancer Research Foundation. PMID:27699239

  7. Immunophenotyping of inflammatory cells associated with Schmallenberg virus infection of the central nervous system of ruminants.

    PubMed

    Herder, Vanessa; Hansmann, Florian; Wohlsein, Peter; Peters, Martin; Varela, Mariana; Palmarini, Massimo; Baumgärtner, Wolfgang

    2013-01-01

    Schmallenberg virus (SBV) is a recently discovered Bunyavirus associated mainly with abortions, stillbirths and malformations of the skeletal and central nervous system (CNS) in newborn ruminants. In this study, a detailed immunophenotyping of the inflammatory cells of the CNS of affected animals was carried out in order to increase our understanding of SBV pathogenesis. A total of 82 SBV-polymerase chain reaction (PCR) positive neonatal ruminants (46 sheep lambs, 34 calves and 2 goat kids) were investigated for the presence of inflammation in the brain and spinal cord. The study focused on 15 out of 82 animals (18.3%) showing inflammation in the CNS. All 15 neonates displayed lymphohistiocytic meningoencephalomyelitis affecting most frequently the mesencephalon and the parietal and temporal lobes. The majority of infiltrating cells were CD3-positive T cells, followed by CD79α-positive B cells and CD68-positive microglia/macrophages. Malformations like por- and hydranencephaly, frequently found in the temporal lobe, showed associated demyelination and axonal loss. SBV antigen was detected in 37 out of 82 (45.1%) neonatal brains by immunohistochemistry. In particular, SBV antigen was found in 93.3% (14 out of 15 ruminants) and 32.8% (22 out of 67 ruminants) of animals with and without encephalitis, respectively. Highest amounts of virus-protein expression levels were found in the temporal lobe. Our findings suggest that: (i) different brain regions display differential susceptibility to SBV infection; (ii) inflammatory cells in the CNS are found only in a minority of virus infected animals; (iii) malformations occur in association with and without inflammation in the CNS; and (iv) viral antigen is strongly associated with the presence of inflammation in naturally infected animals. Further studies are required to explore the cell tropism and pathogenesis of SBV infection in ruminants.

  8. Immunophenotyping of Inflammatory Cells Associated with Schmallenberg Virus Infection of the Central Nervous System of Ruminants

    PubMed Central

    Herder, Vanessa; Hansmann, Florian; Wohlsein, Peter; Peters, Martin; Varela, Mariana; Palmarini, Massimo; Baumgärtner, Wolfgang

    2013-01-01

    Schmallenberg virus (SBV) is a recently discovered Bunyavirus associated mainly with abortions, stillbirths and malformations of the skeletal and central nervous system (CNS) in newborn ruminants. In this study, a detailed immunophenotyping of the inflammatory cells of the CNS of affected animals was carried out in order to increase our understanding of SBV pathogenesis. A total of 82 SBV-polymerase chain reaction (PCR) positive neonatal ruminants (46 sheep lambs, 34 calves and 2 goat kids) were investigated for the presence of inflammation in the brain and spinal cord. The study focused on 15 out of 82 animals (18.3%) showing inflammation in the CNS. All 15 neonates displayed lymphohistiocytic meningoencephalomyelitis affecting most frequently the mesencephalon and the parietal and temporal lobes. The majority of infiltrating cells were CD3-positive T cells, followed by CD79α-positive B cells and CD68-positive microglia/macrophages. Malformations like por- and hydranencephaly, frequently found in the temporal lobe, showed associated demyelination and axonal loss. SBV antigen was detected in 37 out of 82 (45.1%) neonatal brains by immunohistochemistry. In particular, SBV antigen was found in 93.3% (14 out of 15 ruminants) and 32.8% (22 out of 67 ruminants) of animals with and without encephalitis, respectively. Highest amounts of virus-protein expression levels were found in the temporal lobe. Our findings suggest that: (i) different brain regions display differential susceptibility to SBV infection; (ii) inflammatory cells in the CNS are found only in a minority of virus infected animals; (iii) malformations occur in association with and without inflammation in the CNS; and (iv) viral antigen is strongly associated with the presence of inflammation in naturally infected animals. Further studies are required to explore the cell tropism and pathogenesis of SBV infection in ruminants. PMID:23667545

  9. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes.

    PubMed

    Lizotte, Patrick H; Ivanova, Elena V; Awad, Mark M; Jones, Robert E; Keogh, Lauren; Liu, Hongye; Dries, Ruben; Almonte, Christina; Herter-Sprie, Grit S; Santos, Abigail; Feeney, Nora B; Paweletz, Cloud P; Kulkarni, Meghana M; Bass, Adam J; Rustgi, Anil K; Yuan, Guo-Cheng; Kufe, Donald W; Jänne, Pasi A; Hammerman, Peter S; Sholl, Lynette M; Hodi, F Stephen; Richards, William G; Bueno, Raphael; English, Jessie M; Bittinger, Mark A; Wong, Kwok-Kin

    2016-09-08

    BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non-small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). RESULTS. Cytometric profiling identified an immunologically "hot" cluster with abundant CD8(+) T cells expressing high levels of PD-1 and TIM-3 and an immunologically "cold" cluster with lower relative abundance of CD8(+) T cells and expression of inhibitory markers. The "hot" cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the "hot" cluster. Additionally, approximately 20% of cases had high B cell infiltrates with a subset producing IL-10. CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr Cancer Consortium, Stand Up to Cancer Foundation, Conquer Cancer Foundation, International Association for the Study of Lung Cancer, National Cancer Institute (R01 CA205150), and the Damon Runyon Cancer Research Foundation.

  10. Morphological and immunophenotypical features of hairy cell leukaemia involving lymph nodes and extranodal tissues.

    PubMed

    Cortazar, Jacqueline M; DeAngelo, Daniel J; Pinkus, Geraldine S; Morgan, Elizabeth A

    2017-07-01

    Hairy cell leukaemia (HCL) is a rare B cell neoplasm that mainly affects bone marrow (BM), peripheral blood (PB) and spleen. Involvement of lymph nodes and extranodal structures is considered infrequent. Herein we describe our institutional experience of nodal (n = 10) and extranodal (n = 3) HCL during a 30-year period. Ten patients had prior evidence of HCL within the BM or PB at a median 35.8 months before nodal/extranodal diagnosis (range: <1-175 months), and HCL was diagnosed concurrently within the bone marrow of one additional patient. Nodal involvement showed distinct architectural patterns, including diffuse (62% of cases), sinusoidal (25%) and nodular (13%). Extranodal involvement was characterized as diffuse infiltration through underlying structures in all cases. Morphological features ranged from classic 'fried-egg' cytology to a plasmacytoid appearance. Nodal/extranodal disease showed an overlapping immunophenotypical profile with other small B cell lymphomas, including expression of cyclin D1 (70%), CD43 (55%), CD10 (38%) and CD5 (8%). Rates of both CD43 and CD10 reactivity were higher than described previously in leukaemic HCL, suggesting that expression may be enriched in cases with extramedullary extension. Although uncommon, HCL should be considered in the differential diagnosis of small B cell neoplasms involving nodal/extranodal sites, given the therapeutic implications. In particular, recent discoveries including detection of the BRAF(V)(600E) mutation in nearly all cases of HCL and the availability of an antibody to CD103 for use in paraffin-embedded tissues will facilitate the distinction of HCL from other small B cell lymphomas in the nodal/extranodal setting. © 2017 John Wiley & Sons Ltd.

  11. [Aproaches to immunotherapy in different immunophenotypes of cutaneous basal cell carcinoma].

    PubMed

    Petrunin, D D; Okovityĭ, S V; Kostalevskaia, A V; Suchkov, S V

    2012-01-01

    The combination of two immunomodulating agents (genferon derived from exogenous IFN-alpha2b and cycloferon, endogenous IFN inductor) was added to the complex therapy of 60 patients with different cutaneous basal cell carcinoma (CBCC) immunophenotypes. All patients underwent tumor resection, 1-3 days after surgery the patients received immunotropic therapy by focal cycloferon injections (2 ml of 12.5% solution) on days 1, 2, 4, 6, 8 and 10 post-operation with simultaneous genferon therapy via suppositoria (1 000 000 ME) twice a day for 10 days. The therapy was well-tolerated. Essential parameters of immune homeostasis were evaluated before and 3 months after immunotropic therapy. During further observation (for a mean period of 1.8 years) none of the patients displayed any signs of CBCC relapse. The immunological studies results give evidence for correction of immune disturbances characteristic for CBCC patients. This data confirm the effectiveness of immunotropic therapy for relapse prevention and immune disorders correction and allow recommending it for CBCC patients with high relapse risk.

  12. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection

    PubMed Central

    Opata, Michael M.; Stephens, Robin

    2013-01-01

    As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections, increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells, such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory T cells at early time points has masked this important decision point. This does not rule out an effect of repeated stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we

  13. Functional heterogeneity of human effector CD8+ T cells.

    PubMed

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  14. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions.

    PubMed

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin

    2015-10-13

    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.

  15. Effector and suppressor T cells in celiac disease.

    PubMed

    Mazzarella, Giuseppe

    2015-06-28

    Celiac disease (CD) is a T-cell mediated immune disease in which gliadin-derived peptides activate lamina propria effector CD4+ T cells. This activation leads to the release of cytokines, compatible with a Th1-like pattern, which play a crucial role in the pathogenesis of CD, controlling many aspects of the inflammatory immune response. Recent studies have shown that a novel subset of effector T cells, characterized by expression of high levels of IL-17A, termed Th17 cells, plays a pathogenic role in CD. While these effector T cell subsets produce proinflammatory cytokines, which cause substantial tissue injury in vivo in CD, recent studies have suggested the existence of additional CD4(+) T cell subsets with suppressor functions. These subsets include type 1 regulatory T cells and CD25(+)CD4(+) regulatory T cells, expressing the master transcription factor Foxp3, which have important implications for disease progression.

  16. Diacylglycerol Kinases in T Cell Tolerance and Effector Function

    PubMed Central

    Chen, Shelley S.; Hu, Zhiming; Zhong, Xiao-Ping

    2016-01-01

    Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation. PMID:27891502

  17. Adoptive cell therapy: genetic modification to redirect effector cell specificity.

    PubMed

    Morgan, Richard A; Dudley, Mark E; Rosenberg, Steven A

    2010-01-01

    Building on the principals that the adoptive transfer of T cells can lead to the regression of established tumors in humans, investigators are now further manipulating these cells using genetic engineering. Two decades of human gene transfer experiments have resulted in the translation of laboratory technology into robust clinical applications. The purpose of this review is to give the reader an introduction to the 2 major approaches being developed to redirect effector T-cell specificity. Primary human T cells can be engineered to express exogenous T-cell receptors or chimeric antigen receptors directed against multiple human tumor antigens. Initial clinical trial results have demonstrated that both T-cell receptor- and chimeric antigen receptor-engineered T cells can be administered to cancer patients and mediate tumor regression.

  18. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type.

    PubMed

    Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping

    2014-11-01

    To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Immunophenotyping of putative human B1 B cells in healthy controls and common variable immunodeficiency (CVID) patients.

    PubMed

    Suchanek, O; Sadler, R; Bateman, E A; Patel, S Y; Ferry, B L

    2012-12-01

    B1 B cells represent a unique subset of B lymphocytes distinct from conventional B2 B cells, and are important in the production of natural antibodies. A potential human homologue of murine B1 cells was defined recently as a CD20(+) CD27(+) CD43(+) cell. Common variable immunodeficiency (CVID) is a group of heterogeneous conditions linked by symptomatic primary antibody failure. In this preliminary report, we examined the potential clinical utility of introducing CD20(+) CD27(+) CD43(+) B1 cell immunophenotyping as a routine assay in a diagnostic clinical laboratory. Using a whole blood assay, putative B1 B cells in healthy controls and in CVID patients were measured. Peripheral blood from 33 healthy donors and 16 CVID patients were stained with relevant monoclonal antibodies and underwent flow cytometric evaluation. We established a rapid, whole blood flow cytometric assay to investigate putative human B1 B cells. Examination of CD20(+) CD27(+) CD43(+) cells is complicated by CD3(+) CD27(+) CD43(hi) T cell contamination, even when using stringent CD20 gating. These can be excluded by gating on CD27(+) CD43(lo-int) B cells. Although proportions of CD20(+)CD27(+)CD43(lo–int) cells within B cells in CVID patients were decreased by 50% compared to controls (P < 0·01), this was not significant when measured as a percentage of all CD27(+) B cells (P = 0·78) [corrected]. Immunophenotypic overlap of this subset with other innate-like B cells described recently in humans is limited. We have shown that putative B1 B cell immunophenotyping can be performed rapidly and reliably using whole blood. CD20(+) CD27(+) CD43(lo-int) cells may represent a distinct B1 cell subset within CD27(+) B cells. CVID patients were not significantly different from healthy controls when existing CD27(+) B cell deficiencies were taken into account. © 2012 The Authors Clinical and Experimental Immunology © 2012 British Society for Immunology.

  20. A 3-way collision tumor of the upper respiratory tract: a composite of 2 immunophenotypically distinct mantle cell lymphomas and a plasmacytoma.

    PubMed

    Wang, Huan-You; Karandikar, Nitin; Payne, Deborah; Maleki, Atousa; Schultz, Barbara A; Collins, Robert; McKenna, Robert W

    2008-05-01

    Composite lymphoma (CL) is composed of 2 or more morphologically and immunophenotypically distinct lymphomas in a single anatomical site. Here we report a unique CL of the upper respiratory tract in an elderly male patient. Morphologically, the lymphoma was composed of 2 distinct and well-demarcated areas consisting of monotonous small to medium-sized lymphocytes and sheets of mature-appearing plasma cells. Immunophenotyping by both flow cytometry and immunohistochemistry revealed that the small to medium-sized lymphocytes were composed of 2 distinct subpopulations sharing a CD5(+)/CD19(+)/CD20(+)/CD22(+)/CD23(-)/FMC-7(+)/cyclin D1(+) immunophenotype but with different immunoglobulin (Ig) light and heavy chain expression, consistent with 2 immunophenotypically distinct mantle cell lymphomas (MCLs); the plasma cells were composed of CD38(bright +)/CD138(+)/IgG kappa-restricted plasma cells, consistent with a plasmacytoma. Fluorescence in situ hybridization showed the t(11;14) translocation present in the lymphocyte region but absent in the plasma cell area. Ig heavy chain gene rearrangement studies on manually dissected populations showed 2 distinct patterns for the MCL and plasmacytoma. To our knowledge, this is the first report of a 3-way CL consisting of 2 immunophenotypically distinct MCLs and a plasmacytoma.

  1. Flow cytometric immunophenotyping of feline bone marrow cells and haematopoietic progenitor cells using anti-human antibodies.

    PubMed

    Araghi, Atefeh; Nassiri, Seyed Mahdi; Atyabi, Nahid; Rahbarghazi, Reza; Mohammadi, Elham

    2014-04-01

    There is a paucity of species-specific antibodies available for feline haematopoietic conditions. The purpose of this study was to broaden the panel of antibodies available for use in the immunophenotypic characterisation of feline haematopoietic cells by testing clones of anti-human monoclonal antibodies (mAbs) on normal, neoplastic and cultured feline haematopoietic progenitors to determine cross-reactivity to feline counterparts. In this study, 24 clones of anti-human mAbs were tested on normal or neoplastic feline bone marrow and peripheral blood cells. Six of these mAbs, including anti-cluster of differentiation (CD)61, anti-CD18, anti-CD14, anti-CD235a, anti-CD41 and anti-CD29, cross-reacted with normal feline bone marrow cells, whereas anti-CD33 and anti-CD117 cross-reacted with the blast cells in the bone marrow of two cats with myelodysplastic syndrome, and anti-CD71, anti-235a, anti-41 and anti-42 cross-reacted with immature erythroid cells in a cat with erythroleukaemia. In a feline immunodeficiency virus-positive cat, bone marrow cells were labelled with anti-CD33, anti-14 and anti-45. Anti-CD18, anti-CD14, anti-CD41 and anti-CD61 also reacted with the peripheral blood cells of the healthy cats. The feline haematopoietic progenitors formed colonies in the methylcellulose-based semisolid medium with significant enrichment of colony-forming unit-granulocyte, monocyte and burst-forming unit-erythroid. A panel of six anti-feline mAbs (anti-CD21-like, anti-T lymphocytes, anti-CD172a, anti-granulocyte, anti-CD45-like and anti-CD18) and eight anti-human antibodies (anti-CD71, anti-CD33, anti-CD235a, anti-CD41, anti-CD61, anti-CD117, anti-CD38 and anti-CD34) were used for the immunophenotypic characterisation of the feline bone marrow progenitors. CD45, CD33, CD235a and CD18 were expressed by the feline haematopoietic progenitor cells, with the highest expression level for CD45.

  2. Burkitt-Type Acute Lymphoblastic Leukemia With Precursor B-Cell Immunophenotype and Partial Tetrasomy of 1q

    PubMed Central

    Sato, Yuya; Kurosawa, Hidemitsu; Fukushima, Keitaro; Okuya, Mayuko; Arisaka, Osamu

    2016-01-01

    Abstract Burkitt-type acute lymphoblastic leukemia (B-ALL) is thought as a variant of Burkitt lymphoma/leukemia and derived from mature B-cell lymphoblast. B-ALL was developed in a 10-year-old girl. Two characteristics were apparent in this case. First, the lymphoblastic cells were positive for CD10, CD19, CD20, and CD22, but negative for terminal deoxynucleotidyl transferase and surface immunoglobulins, indicating a B-cell immunophenotype. The detection of t(8;14)(q24;q32) with a chromosomal analysis is required for a diagnosis of B-ALL. Second, der(1)(pter → q32.1::q32.1 → q21.1::q11 → qter) was detected, in which 1q21.1 to 1q32.1 was inverted and inserted. Finally, partial tetrasomy of 1q was also present. Because B-ALL with abnormal chromosome 1 has been reported poor outcome, the usual chemotherapy for stage 4 Burkitt lymphoma with added rituximab was administered for our patient. We report B-ALL with precursor B-cell immunophenotype and interesting partial tetrasomy of 1q. PMID:26962787

  3. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    DOE PAGES

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; ...

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  4. Application of J-Aggregate Monolayers in Silica Encapsulated SERS Nanoprobes for Immunophenotyping of B-cell Malignancies

    NASA Astrophysics Data System (ADS)

    Song, Byron

    Immunophenotyping is indispensable in studying B-cell malignancies as the cell surface markers on malignant cells provide critical information for the diagnosis, treatment decisions and prognosis of the disease. Surface Enhanced Raman Spectroscopy (SERS) nanoprobes as an alternative optical label have been explored as they may overcome limitations of fluorescent labels through their naturally sharper spectral bands and resistance to photobleaching. In this project, we demonstrate the successful labelling of lymphoma cells with rituximab-anti-CD20 functionalized silica-encapsulated J-aggregate SERS gold nanoparticles -- these particles represent the brightest of their kind thus far. Additionally, we demonstrate that the Raman signal on cells labelled with our particles is not affected by treatment with two hematological stains: hematoxylin and methylene blue; although two others: Giemsa and eosin mask the Raman spectra with intense fluorescence. These results support the potential of simultaneously using hematological stains with SERS nanoprobes for visualizing B-cells.

  5. Immunophenotypic and Clinical Differences Between the Nasal and Extranasal Subtypes of Upper Aerodigestive Tract Natural Killer/T-Cell Lymphoma

    SciTech Connect

    Liu, Qing-Feng; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Huang, Wen-Ting; Lu, Ning; Zhou, Li-Qiang; Ouyang, Han; Jin, Jing; Li, Ye-Xiong

    2014-03-15

    Purpose: To investigate, in a large cohort of patients, the immunophenotypic and clinical differences of nasal and extranasal extranodal nasal-type natural killer/T-cell lymphoma of the upper aerodigestive tract (UADT-NKTCL) and examine the relevance of the immunophenotype on the clinical behavior, prognosis, and treatment. Methods and Materials: A total of 231 patients with UADT-NKTCL were recruited. One hundred eighty-one patients had primary location in the nasal cavity (nasal UADT-NKTCL), and 50 patients had primary extranasal UADT-NKTCL. Results: Patients with extranasal UADT-NKTCL had more adverse clinical features, including advanced-stage disease, regional lymph node involvement, B symptoms, and poor performance status, than patients with nasal UADT-NKTCL. In addition, CD56 and granzyme B were less frequently expressed in extranasal UADT-NKTCL. The 5-year overall survival rate was 74.1% for the entire group and 76.0% for early-stage disease. The 5-year overall survival rate for extranasal UADT-NKTCL was similar or superior to that of nasal UADT-NKTCL for all disease stages (76.9% vs 73.4%, P=.465), stage I disease (75.9% vs 79.2%, P=.786), and stage II disease (83.3% vs 50.3%, P=.018). CD56 expression and a Ki-67 proliferation rate ≥50% predicted poorer survival for extranasal UADT-NKTCL but not for nasal UADT-NKTCL. Conclusions: Patients with nasal and extranasal UADT-NKTCL have significantly different clinical features, immunophenotypes, and prognosis. Extranasal UADT-NKTCL should be considered as a distinct subgroup apart from the most commonly diagnosed prototype of nasal UADT-NKTCL.

  6. Utility of Quantitative Flow Cytometry Immunophenotypic Analysis of CD5 Expression in Small B-cell Neoplasms

    PubMed Central

    Challagundla, Pramoda; Jorgensen, Jeffrey L.; Kanagal-Shamanna, Rashmi; Gurevich, Inga; Pierson, Diane M.; Ferrajoli, Alessandra; Reyes, Steven R.; Medeiros, L. Jeffrey; Miranda, Roberto N.

    2014-01-01

    Background The value of assessing CD5 expression in the differential diagnosis of small B-cell neoplasms is well established. Usually CD5 is assessed qualitatively. Materials and Methods We assessed CD5 expression levels by quantitative flow cytometry immunophenotyping to determine possible differences among various small B-cell neoplasms. We performed 4-color flow cytometry analysis on peripheral blood (PB) and bone marrow (BM) aspirate specimens and quantified CD5 expression in various mature small B-cell lymphomas and leukemias. We also assessed CD5 levels in PB samples of normal donors (controls). Results Cases of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma had higher levels of CD5 compared with control (benign) B-cells (p < 0.001). Cases of marginal zone lymphoma (MZL) and hairy cell leukemia (HCL) had CD5 levels similar to control B-cells (p > 0.05), while cases of follicular lymphoma (FL) and lymphoplasmacytic lymphoma (LPL) had significantly lower CD5 levels than control B-cells (p <0.05). In B-cell neoplasms, a high level of CD5 expression correlated with a homogeneous pattern of positive events whereas lower CD5 levels correlated with a heterogeneous pattern of positive events. Conclusions Using flow cytometric immunophenotypic analysis to quantify CD5 levels can aid in diagnosis. CD5 expression levels are substantially higher in CLL and mantle cell lymphoma and expression is observed in a homogeneous pattern as compared with other B-cell neoplasms that are either negative for CD5 or express this antigen at lower levels with a heterogeneous pattern of expression. However, there is some overlap in CD5 expression levels between a subset of atypical CLL and MZL cases. PMID:24978916

  7. B cells as effectors and regulators of autoimmunity.

    PubMed

    Mariño, Eliana; Grey, Shane T

    2012-08-01

    A classic understanding of the interplay between B and T cell components of the immune system that drive autoimmunity, where B cells provide an effector function, is represented by systemic lupus erythematosus (SLE), an autoimmune condition characterised by the production of auto-antibodies. In SLE, CD4+T cells provide cognate help to self-reactive B cells, which in turn produce pathogenic auto-antibodies (1). Thus, B cells act as effectors by producing auto-antibody aided by T cell help such that B and T cell interactions are unidirectional. However, this paradigm of B and T cell interactions is challenged by new clinical data demonstrating that B cell depletion is effective for T cell mediated autoimmune diseases including type I diabetes mellitus (T1D) (2), rheumatoid arthritis (3), and multiple sclerosis (4). These clinical data indicate a model whereby B cells can influence the developing autoimmune T cell response, and therefore act as effectors, in ways that extend beyond the production of autoantibody (5). In this review by largely focusing on type I diabetes we will develop a hypothesis that bi-directional B and T interactions control the course of autoimmunity.

  8. T-cell transcription factor GATA-3 is an immunophenotypic marker of acute leukemias with T-cell differentiation.

    PubMed

    Dorfman, David M; Morgan, Elizabeth A; Pelton, Ashley; Unitt, Christine

    2017-07-01

    T-cell transcription factor GATA-3, known to play a role in early T-cell development and in the development of T-cell neoplasms, is expressed at high levels in fetal and adult thymus, as well as in acute leukemias with T-cell differentiation, including T-lymphoblastic leukemia/lymphoma (22/22 cases), early T-cell precursor lymphoblastic leukemia (11/11 cases), and mixed-phenotype acute leukemia, T/myeloid (4/5 cases), but only rarely in acute myeloid leukemia/myeloid sarcoma (1/36 cases), and not in B-lymphoblastic leukemia (0/16 cases). In contrast, T-bet, the other T-cell transcription factor that controls Th1/Th2 T-cell fate, is not expressed to any significant extent in immature thymocytes or in cases of T-lymphoblastic leukemia or acute myeloid leukemia/myeloid sarcoma, but is expressed in most cases (15/16) of B-lymphoblastic leukemia and in mixed-phenotype acute leukemia, B/myeloid. GATA-3-positive acute leukemias with T-cell differentiation were also found to express proto-oncogene C-MYC, in an average of 52% of neoplastic cells, which, along with GATA-3, may contribute to leukemogenesis, as suggested by transgenic mouse models. We conclude that GATA-3 is a sensitive and specific marker for the diagnosis of acute leukemias with T-cell differentiation and may be a useful addition to the panel of immunophenotypic markers for the diagnostic evaluation of acute leukemias. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Simplified flow cytometric immunophenotyping panel for multiple myeloma, CD56/CD19/CD138(CD38)/CD45, to differentiate neoplastic myeloma cells from reactive plasma cells.

    PubMed

    Jeong, Tae-Dong; Park, Chan-Jeoung; Shim, Hyoeun; Jang, Seongsoo; Chi, Hyun-Sook; Yoon, Dok Hyun; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Suh, Cheolwon; Lee, Kyoo Hyung

    2012-12-01

    Flow cytometric immunophenotyping has been used to identify neoplastic plasma cell populations in patients with multiple myeloma (MM). Previous reports have described the use of several antigens, including CD38, CD138, CD56, CD117, CD52, CD19 and CD45, to distinguish distinct populations of plasma cells. The aim of this study was to evaluate a simplified immunophenotyping panel for MM analysis. A total of 70 patients were enrolled in the study, 62 of which were newly diagnosed with MM (untreated), whereas the remaining 8 were undergoing bone marrow assessment as part of follow-up after treatment (treated). Treated cases included 3 patients with relapse and 5 patients with persistence of MM. Multiparametric flow cytometric immunophenotyping was performed using monoclonal antibodies against CD56, CD19, CD138 (CD38), and CD45. In differential counts, plasma cells in bone marrow (BM) accounted for 3.6-93.2% of the total nucleated cell count. The positive expression rates of CD56, CD19, CD138, and CD45 in neoplastic myeloma cells were 83.9%, 0%, 98.4%, and 37.1%, respectively, among the 62 untreated cases, and 75.0%, 0%, 87.5%, and 37.5%, respectively, among the 8 treated cases. CD19 expression of neoplastic plasma cells was negative in both untreated and treated cases. The simplified immunophenotyping panel, CD56/CD19/CD138(CD38)/CD45, is useful for distinguishing neoplastic myeloma cells from reactive plasma cells in clinical practice. In addition, CD19 represents the most valuable antigen for identifying neoplastic myeloma cells in patients with MM.

  10. How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?

    PubMed Central

    Petre, Benjamin; Kamoun, Sophien

    2014-01-01

    Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens. PMID:24586116

  11. Mast cells as effectors in atherosclerosis.

    PubMed

    Bot, Ilze; Shi, Guo-Ping; Kovanen, Petri T

    2015-02-01

    The mast cell is a potent immune cell known for its functions in host defense responses and diseases, such as asthma and allergies. In the past years, accumulating evidence established the contribution of the mast cell to cardiovascular diseases as well, in particular, by its effects on atherosclerotic plaque progression and destabilization. Through its release not only of mediators, such as the mast cell-specific proteases chymase and tryptase, but also of growth factors, histamine, and chemokines, activated mast cells can have detrimental effects on its immediate surroundings in the vessel wall. This results in matrix degradation, apoptosis, and enhanced recruitment of inflammatory cells, thereby actively contributing to cardiovascular diseases. In this review, we will discuss the current knowledge on mast cell function in cardiovascular diseases and speculate on potential novel therapeutic strategies to prevent acute cardiovascular syndromes via targeting of mast cells.

  12. Mast cells as effectors in atherosclerosis

    PubMed Central

    Bot, Ilze; Shi, Guo-Ping; Kovanen, Petri T.

    2014-01-01

    The mast cell is a potent immune cell known for its functions in host defense responses and diseases such as asthma and allergies. In the past years, accumulating evidence established the contribution of the mast cell to cardiovascular diseases as well, in particular by its effects on atherosclerotic plaque progression and destabilization. Through its release of mediators, such as the mast cell-specific proteases chymase and tryptase, but also of growth factors, histamine and chemokines, activated mast cells can have detrimental effects on its immediate surroundings in the vessel wall. This results in matrix degradation, apoptosis and enhanced recruitment of inflammatory cells, thereby actively contributing to cardiovascular diseases. In this review, we will discuss the current knowledge on mast cell function in cardiovascular diseases and speculate on potential novel therapeutic strategies to prevent acute cardiovascular syndromes via targeting of mast cells. PMID:25104798

  13. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells.

    PubMed

    Opata, Michael M; Carpio, Victor H; Ibitokou, Samad A; Dillon, Brian E; Obiero, Joshua M; Stephens, Robin

    2015-06-01

    CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.

  14. Detailed immunophenotyping of B-cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection.

    PubMed

    Theunissen, Prisca M J; Sedek, Lukasz; De Haas, Valerie; Szczepanski, Tomasz; Van Der Sluijs, Alita; Mejstrikova, Ester; Nováková, Michaela; Kalina, Tomas; Lecrevisse, Quentin; Orfao, Alberto; Lankester, Arjan C; van Dongen, Jacques J M; Van Der Velden, Vincent H J

    2017-07-01

    Flow cytometric detection of minimal residual disease (MRD) in children with B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) requires immunophenotypic discrimination between residual leukaemic cells and B-cell precursors (BCPs) which regenerate during therapy intervals. In this study, EuroFlow-based 8-colour flow cytometry and innovative analysis tools were used to first characterize the immunophenotypic maturation of normal BCPs in bone marrow (BM) from healthy children, resulting in a continuous multiparametric pathway including transition stages. This pathway was subsequently used as a reference to characterize the immunophenotypic maturation of regenerating BCPs in BM from children treated for BCP-ALL. We identified pre-B-I cells that expressed low or dim CD34 levels, in contrast to the classical CD34(high) pre-B-I cell immunophenotype. These CD34(-dim) pre-B-I cells were relatively abundant in regenerating BM (11-85% within pre-B-I subset), while hardly present in healthy control BM (9-13% within pre-B-I subset; P = 0·0037). Furthermore, we showed that some of the BCP-ALL diagnosis immunophenotypes (23%) overlapped with CD34(-dim) pre-B-I cells. Our results indicate that newly identified CD34(-dim) pre-B-I cells can be mistaken for residual BCP-ALL cells, potentially resulting in false-positive MRD outcomes. Therefore, regenerating BM, in which CD34(-dim) pre-B-I cells are relatively abundant, should be used as reference frame in flow cytometric MRD measurements. © 2017 John Wiley & Sons Ltd.

  15. [Th17 cells, a novel proinflammatory effector CD4 T cell population].

    PubMed

    Leung-Theung-Long, Stéphane; Guerder, Sylvie

    2008-11-01

    After more than 20 years of hegemony, the Th1-Th2 paradigm was recently shaken by the discovery of a novel population of CD4 effector T cells, the Th17 cells. Th17 effector cells produce IL-17 and IL-22 and thus have pro-inflammatory properties notably favoring neutrophils recruitment and thus control of extracellular bacteria mainly at the epithelium surface. Th17 cells appear also as the major inducer of organ specific autoimmune pathologies such as EAE or rheumatoid arthritis, a function previously attributed to Th1 effector cells. The discovery of Th17 cells further supports the notion that effector CD4 T cells responses are diverse in vivo and that fine tuning of these different effector cells is critical to maintain tissue integrity.

  16. Interferon-inducible effector mechanisms in cell-autonomous immunity.

    PubMed

    MacMicking, John D

    2012-04-25

    Interferons (IFNs) induce the expression of hundreds of genes as part of an elaborate antimicrobial programme designed to combat infection in all nucleated cells - a process termed cell-autonomous immunity. As described in this Review, recent genomic and subgenomic analyses have begun to assign functional properties to novel IFN-inducible effector proteins that restrict bacteria, protozoa and viruses in different subcellular compartments and at different stages of the pathogen life cycle. Several newly described host defence factors also participate in canonical oxidative and autophagic pathways by spatially coordinating their activities to enhance microbial killing. Together, these IFN-induced effector networks help to confer vertebrate host resistance to a vast and complex microbial world.

  17. Clinicobiological, Immunophenotypic, and Molecular Characteristics of Monoclonal CD56−/+dim Chronic Natural Killer Cell Large Granular Lymphocytosis

    PubMed Central

    Lima, Margarida; Almeida, Julia; Montero, Andrés García; Teixeira, Maria dos Anjos; Queirós, Maria Luís; Santos, Ana Helena; Balanzategui, Ana; Estevinho, Alexandra; Algueró, Maria del Cármen; Barcena, Paloma; Fonseca, Sónia; Amorim, Maria Luís; Cabeda, José Manuel; Pinho, Luciana; Gonzalez, Marcos; Miguel, Jesus San; Justiça, Benvindo; Orfão, Alberto

    2004-01-01

    Indolent natural killer (NK) cell lymphoproliferative disorders include a heterogeneous group of patients in whom persistent expansions of mature, typically CD56+, NK cells in the absence of any clonal marker are present in the peripheral blood. In the present study we report on the clinical, hematological, immunophenotypic, serological, and molecular features of a series of 26 patients with chronic large granular NK cell lymphocytosis, whose NK cells were either CD56− or expressed very low levels of CD56 (CD56−/+dim NK cells), in the context of an aberrant activation-related mature phenotype and proved to be monoclonal using the human androgen receptor gene polymerase chain reaction-based assay. As normal CD56+ NK cells, CD56−/+dim NK cells were granzyme B+, CD3−, TCRαβ/γδ−, CD5−, CD28−, CD11a+bright, CD45RA+bright, CD122+, and CD25− and they showed variable and heterogeneous expression of both CD8 and CD57. Nevertheless, they displayed several unusual immunophenotypic features. Accordingly, besides being CD56−/+dim, they were CD11b−/+dim (heterogeneous), CD7−/+dim (heterogeneous), CD2+ (homogeneous), CD11c+bright (homogeneous), and CD38−/+dim (heterogeneous). Moreover, CD56−/+dim NK cells heterogeneously expressed HLA-DR. In that concerning the expression of killer receptors, CD56−/+dim NK cells showed bright and homogeneous CD94 expression, and dim and heterogeneous reactivity for CD161, whereas CD158a and NKB1 expression was variable. From the functional point of view, CD56−/+dim showed a typical Th1 pattern of cytokine production (interferon-γ+, tumor necrosis factor-α+). From the clinical point of view, these patients usually had an indolent clinical course, progression into a massive lymphocytosis with lung infiltration leading to death being observed in only one case. Despite this, they frequently had associated cytopenias as well as neoplastic diseases and/or viral infections. In summary, we describe a unique and

  18. Prenatal diagnosis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting.

    PubMed Central

    Zheng, Y L; Carter, N P; Price, C M; Colman, S M; Milton, P J; Hackett, G A; Greaves, M F; Ferguson-Smith, M A

    1993-01-01

    Fetal nucleated cells in the maternal circulation constitute a potential source of cells for the non-invasive prenatal diagnosis of fetal genetic abnormalities. We have investigated the use of the Magnetic Activated Cell Sorter (MACS) for enriching fetal nucleated erythrocytes. Mouse monoclonal antibodies specific for CD45 and CD32 were used to deplete leucocytes from maternal blood using MACS sorting, thus enriching for fetal nucleated erythrocytes which do not express either of these antigens. However, significant maternal contamination was present even after MACS enrichment preventing the accurate analysis of fetal cells by interphase fluorescence in situ hybridisation (FISH). To overcome this problem, we used simultaneous immunophenotyping of cells with the mouse antifetal haemoglobin antibody, UCH gamma, combined with FISH analysis using chromosome X and Y specific DNA probes. This approach enables selective FISH analysis of fetal cells within an excess of maternal cells. Furthermore, we have confirmed the potential of the method for clinical practice by a pilot prospective study of fetal sex in women referred for amniocentesis between 13 and 17 weeks of gestation. Images PMID:8133505

  19. Classification and clinical behavior of blastic plasmacytoid dendritic cell neoplasms according to their maturation-associated immunophenotypic profile

    PubMed Central

    Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus

    2015-01-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56− phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment. PMID:26056082

  20. Classification and clinical behavior of blastic plasmacytoid dendritic cell neoplasms according to their maturation-associated immunophenotypic profile.

    PubMed

    Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus; Orfao, Alberto; Almeida, Julia

    2015-08-07

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56- phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment.

  1. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential

    PubMed Central

    2014-01-01

    Introduction Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identical in vitro conditions, to compare these sources for research or an allogeneic therapy cell bank. Methods The BM-MSCs, AT-MSCs and UC-MSCs were cultured and evaluated in vitro for their osteogenic, adipogenic and chondrogenic differentiation potential. Additionally, MSCs were assessed for CD105, CD44, CD34, CD90 and MHC-II markers by flow cytometry, and MHC-II was also assessed by immunocytochemistry. To interpret the flow cytometry results, statistical analysis was performed using ANOVA. Results The harvesting and culturing procedures of BM-MSCs, AT-MSCs and UC-MSCs were feasible, with an average cell growth until the third passage of 25 days for BM-MSCs, 15 days for AT-MSCs and 26 days for UC-MSCs. MSCs from all sources were able to differentiate into osteogenic (after 10 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs), adipogenic (after 8 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs) and chondrogenic (after 21 days for BM-MSCs, AT-MSCs and UC-MSCs) lineages. MSCs showed high expression of CD105, CD44 and CD90 and low or negative expression of CD34 and MHC-II. The MHC-II was not detected by immunocytochemistry techniques in any of the MSCs studied. Conclusions The BM, AT and UC are feasible sources for harvesting equine MSCs, and their immunophenotypic and multipotency characteristics attained minimal criteria for defining MSCs. Due to the low expression of MHC-II by MSCs, all of the sources could be used in clinical trials involving allogeneic therapy

  2. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.

    PubMed

    Barberini, Danielle Jaqueta; Freitas, Natália Pereira Paiva; Magnoni, Mariana Sartori; Maia, Leandro; Listoni, Amanda Jerônimo; Heckler, Marta Cristina; Sudano, Mateus Jose; Golim, Marjorie Assis; da Cruz Landim-Alvarenga, Fernanda; Amorim, Rogério Martins

    2014-02-21

    Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identical in vitro conditions, to compare these sources for research or an allogeneic therapy cell bank. The BM-MSCs, AT-MSCs and UC-MSCs were cultured and evaluated in vitro for their osteogenic, adipogenic and chondrogenic differentiation potential. Additionally, MSCs were assessed for CD105, CD44, CD34, CD90 and MHC-II markers by flow cytometry, and MHC-II was also assessed by immunocytochemistry. To interpret the flow cytometry results, statistical analysis was performed using ANOVA. The harvesting and culturing procedures of BM-MSCs, AT-MSCs and UC-MSCs were feasible, with an average cell growth until the third passage of 25 days for BM-MSCs, 15 days for AT-MSCs and 26 days for UC-MSCs. MSCs from all sources were able to differentiate into osteogenic (after 10 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs), adipogenic (after 8 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs) and chondrogenic (after 21 days for BM-MSCs, AT-MSCs and UC-MSCs) lineages. MSCs showed high expression of CD105, CD44 and CD90 and low or negative expression of CD34 and MHC-II. The MHC-II was not detected by immunocytochemistry techniques in any of the MSCs studied. The BM, AT and UC are feasible sources for harvesting equine MSCs, and their immunophenotypic and multipotency characteristics attained minimal criteria for defining MSCs. Due to the low expression of MHC-II by MSCs, all of the sources could be used in clinical trials involving allogeneic therapy in horses. However, the BM-MSCs and AT

  3. Immunophenotypic, cytogenetic, and mutational characterization of cell lines derived from myelodysplastic syndrome patients after progression to acute myeloid leukemia.

    PubMed

    Palau, Anna; Mallo, Mar; Palomo, Laura; Rodríguez-Hernández, Ines; Diesch, Jeannine; Campos, Diana; Granada, Isabel; Juncà, Jordi; Drexler, Hans G; Solé, Francesc; Buschbeck, Marcus

    2017-03-01

    Leukemia cell lines have been widely used in the hematology field to unravel mechanistic insights and to test new therapeutic strategies. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of diseases that are characterized by ineffective hematopoiesis and frequent progress to acute myeloid leukemia (AML). A few cell lines have been established from MDS patients after progression to AML but their characterization is incomplete. Here we provide a detailed description of the immunophenotypic profile of the MDS-derived cell lines SKK-1, SKM-1, F-36P; and MOLM-13. Specifically, we analyzed a comprehensive panel of markers that are currently applied in the diagnostic routine for myeloid disorders. To provide high-resolution genetic data comprising copy number alterations and losses of heterozygosity we performed whole genome single nucleotide polymorphism-based arrays and included the cell line OHN-GM that harbors the frequent chromosome arm 5q deletion. Furthermore, we assessed the mutational status of 83 disease-relevant genes. Our results provide a resource to the MDS and AML field that allows researchers to choose the best-matching cell line for their functional studies. © 2016 Wiley Periodicals, Inc.

  4. Treatment With Lenalidomide Modulates T-Cell Immunophenotype and Cytokine Production in Patients With Chronic Lymphocytic Leukemia

    PubMed Central

    Lee, Bang-Ning; Gao, Hui; Cohen, Evan N.; Badoux, Xavier; Wierda, William G.; Estrov, Zeev; Faderl, Stefan H.; Keating, Michael J.; Ferrajoli, Alessandra; Reuben, James M.

    2015-01-01

    BACKGROUND Lenalidomide, an immunomodulatory agent, has activity in lymphoproliferative disorders. The authors, therefore, evaluated its effects on T-cell immunophenotype and cytokine production in patients with chronic lymphocytic leukemia (CLL). METHODS To study the immunomodulatory effects of lenalidomide in CLL, the authors recruited 24 patients with untreated CLL enrolled in a phase 2 clinical trial of lenalidomide and obtained peripheral blood specimens for immunologic studies consisting of enumeration of T cells and assessing their ability to synthesize cytokines after activation through T-cell receptor (TCR). RESULTS After 3 cycles of therapy, patients had a significant reduction in percentage (%) and absolute lymphocyte count (ALC) and an increase in percentage of T cells, percentage of activated CD8+ T cells producing IFN-γ, and percentage of regulatory T (TR) cells when compared with their respective levels before treatment. After 15 cycles of treatment, responder patients had significant reduction in percentage of lymphocytes and ALC, percentage of activated CD4+ T cells producing IL-2, IFN-γ, or TNF-α, and percentage of TR cells when compared with their perspective levels after 3 cycles of treatment. Furthermore, the numbers of activated CD4+ T cells producing IL-2, IFN-γ, or TNF-α, activated CD8+ T cells producing IFN-γ, and TR cells normalized to the range of healthy subjects. CONCLUSIONS Treatment with lenalidomide resulted in the normalization of functional T-cell subsets in responders, suggesting that lenalidomide may modulate cell-mediated immunity in patients with CLL. PMID:21858802

  5. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  6. Antibody Distance from the Cell Membrane Regulates Antibody Effector Mechanisms.

    PubMed

    Cleary, Kirstie L S; Chan, H T Claude; James, Sonja; Glennie, Martin J; Cragg, Mark S

    2017-05-15

    Immunotherapy using mAbs, such as rituximab, is an established means of treating hematological malignancies. Abs can elicit a number of mechanisms to delete target cells, including complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity, and Ab-dependent cellular phagocytosis. The inherent properties of the target molecule help to define which of these mechanisms are more important for efficacy. However, it is often unclear why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules was generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains to produce a panel of chimeric molecules that held the target epitope at different distances along the protein. It was shown that complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity favored a membrane-proximal epitope, whereas Ab-dependent cellular phagocytosis favored an epitope positioned further away. These findings were confirmed using reagents targeting the membrane-proximal or -distal domains of CD137 itself before investigating these properties in vivo, where a clear difference in the splenic clearance of transfected tumor cells was observed. Together, this work demonstrates how altering the position of the Ab epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms.

    PubMed

    Deslandes, Laurent; Genin, Stephane

    2014-08-01

    Effectors delivered to host cells by the Type III secretion system are essential to Ralstonia solanacearum pathogenicity, as in several other plant pathogenic bacteria. The establishment of exhaustive effector repertoires in multiple R. solanacearum strains drew a first picture of the evolutionary dynamics of the pathogen effector suites. Effector repertoires are diversified, with a core of 20-30 effectors present in most of the strains and the obtention of mutants lacking one or more effector genes revealed the functional overlap among this effector network. Recent functional studies have provided insights into the ability of single effectors to manipulate the host proteasome, elicit cell death, trigger the expression of plant genes, and/or display biochemical activities on plant protein targets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of apoptosis, proliferation status and O6-methylguanine DNA methyltransferase methylation profiles in different immunophenotypic profiles of diffuse large B-cell lymphoma.

    PubMed

    Şen Türk, Nilay; Özsan, Nazan; Caner, Vildan; Karagenç, Nedim; Düzcan, Füsun; Düzcan, Ender; Hekimgil, Mine

    2011-03-05

    Our aim was to investigate the expression of apoptosis-associated proteins (bcl-2, bcl-xl, bax, bak, bid), apoptotic index (AI) and proliferation index (PI) in germinal center B-cell-like immunophenotypic profile (GCB) and non-GCB of diffuse large B-cell lymphoma (DLBCL). The methylation status of the promoter region of O6-methylguanine-DNA yerine O6-methylguanine-DNA methyltransferase (MGMT) gene and its relation with immunophenotypic differentiation of DLBCLs were also investigated. 101 cases were classified as GCB (29 cases) or non-GCB (72 cases). Apoptosis-associated proteins and PI were determined by IHC, and TUNEL method was used to determine AI. MGMT methylation analysis was performed by real-time PCR. The PI was significantly higher in GCB compared with non-GCB (p=0.011). Percentage of cells stained with bcl-6 was positively correlated with the percentage of cells expressing bcl-2 (p=0.023), AI (p=0.006) and PI (p<0.001), while a significant negative correlation was observed with the percentage of cells expressing bax (p=0.027). The percentage of cells stained with MUM1 showed a significantly positive correlation with the percentage of cells expressing bcl-xl (p=0.003), bid (p=0.002), AI (p<0.001), and PI (p=0.001). MGMT methylation analysis was performed in 95 samples, and methylated profile was found in 31 cases (32.6%). GCB was found in 6 cases (22.2%) and non-GCB was determined in 25 cases (36.8%) out of 31 with MGMT methylated samples. There was no significant association between MGMT methylation status and immunophenotypic profiles (p=0.173). These results suggest that bcl-6 protein expression may be responsible for the high PI in GCB. Additionally, we found that apoptosis-associated proteins were not significantly associated with immunophenotypic profiles.

  9. [Utility of 8-colours multiparameter flow cytometry immunophenotyping of plasma cells for the management of monoclonal gammopathy].

    PubMed

    Gressier, Mélanie; Chaquin, Michael; Lhermitte, Ludovic; Asnafi, Vahid; Macintyre, Elizabeth; Brouzes, Chantal

    2013-01-01

    Bone marrow flow cytometric analysis is a powerful and rapid tool for evaluating aberrant plasma cell. In this study, we have examined the utility of multiparameter flow cytometry (MFC) in 52 patients with multiple myeloma (MM) and in 45 patients with monoclonal gammopathy with unknown significance (MGUS) into routine evaluation for the management of patients with plasma cell-related disorders. The plasma cells (PC) were identified by their light scatter distribution and reactivity patterns to CD138, CD38, and CD45. The combination of these parameters was helpful for identifying distinct subpopulations of PCs. Moderate to bright expression of CD56, CD20, CD24, CD28, and CD117 was detected in 67%, 26%, 13%, 27%, and 57% of MM cases and in 58%, 20%, 11%, 43% and 44% of MGUS cases, respectively. In MGUS group, the median percentage abnormal PCs/total PCs was 88% with 37 patients out of 45 (82%) with ratio <95%. The median ratio of the MM group was 98.9% and a ratio ≥ 95% was observed in 37 samples out of 44 (84%). In conclusion, MFC immunophenotyping of PCs has obvious clinical relevance in differential diagnosis between MM and others monoclonal gammopathies, identification of high-risk MGUS and smouldering MM, and minimal residual disease monitoring of MM. Our results showed that this tool can be easily applied in haematology laboratories.

  10. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    PubMed Central

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  11. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    PubMed Central

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  12. Electroporation of functional bacterial effectors into mammalian cells.

    PubMed

    Sontag, Ryan L; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R; Adkins, Joshua N; Brown, Roslyn N

    2015-01-19

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  13. Absence of Merkel cell polyomavirus in primary parotid high-grade neuroendocrine carcinomas regardless of cytokeratin 20 immunophenotype.

    PubMed

    Chernock, Rebecca D; Duncavage, Eric J; Gnepp, Douglas R; El-Mofty, Samir K; Lewis, James S

    2011-12-01

    High-grade neuroendocrine carcinoma of the salivary glands is a rare malignancy that can be difficult to distinguish from metastatic neuroendocrine (Merkel cell) carcinoma of the skin, which often occurs on the head and neck and may metastasize to lymph nodes in or adjacent to salivary glands, particularly the parotid gland. As the 2 tumors have morphologic and immunophenotypic overlap, additional diagnostic tools may be clinically useful. Merkel cell carcinoma is known to harbor Merkel cell polyomavirus in up to 80% of cases. However, the presence or absence of this virus in salivary gland neuroendocrine carcinomas has not been investigated. We evaluated 7 primary salivary gland high-grade neuroendocrine carcinomas (all from the parotid) for the virus by both immunohistochemistry (CM2B4 clone) and real-time polymerase chain reaction directed against the conserved small T antigen. Five of the tumors had small cell morphology, and 2 had large cell morphology. All were either chromogranin and/or synaptophysin positive. Four of the 5 small cell (80%) and 1 of the 2 large cell (50%) carcinomas were cytokeratin 20 positive. All but 1 case had cervical lymph node metastases at presentation. Merkel cell polyomavirus T antigen was not detected in any of the 7 tumors, either by immunohistochemistry or by polymerase chain reaction with adequate controls. These observations suggest that primary parotid high-grade neuroendocrine carcinoma arises from a biological pathway that is different from that of cutaneous Merkel cell carcinomas. Furthermore, viral testing may aid in distinguishing the 2 tumor types, as a positive result would favor a metastasis.

  14. Macroautophagy regulates energy metabolism during effector T cell activation.

    PubMed

    Hubbard, Vanessa M; Valdor, Rut; Patel, Bindi; Singh, Rajat; Cuervo, Ana Maria; Macian, Fernando

    2010-12-15

    Macroautophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a key role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins, and regulating protein levels in response to extracellular signals. We have found that macroautophagy is induced after effector T cell activation. Engagement of the TCR and CD28 results in enhanced microtubule-associated protein 1 light chain 3 (LC3) processing, increased numbers of LC3-containing vesicles, and increased LC3 flux, indicating active autophagosome formation and clearance. The autophagosomes formed in stimulated T cells actively fuse with lysosomes to degrade their cargo. Using a conditional KO mouse model where Atg7, a critical gene for macroautophagy, is specifically deleted in T cells, we have found that macroautophagy-deficient effector Th cells have defective IL-2 and IFN-γ production and reduced proliferation after stimulation, with no significant increase in apoptosis. We have found that ATP generation is decreased when autophagy is blocked, and defects in activation-induced cytokine production are restored when an exogenous energy source is added to macroautophagy-deficient T cells. Furthermore, we present evidence showing that the nature of the cargo inside autophagic vesicles found in resting T cells differs from the cargo of autophagosomes in activated T cells, where mitochondria and other organelles are selectively excluded. These results suggest that macroautophagy is an actively regulated process in T cells that can be induced in response to TCR engagement to accommodate the bioenergetic requirements of activated T cells.

  15. Correlation between immunophenotype classification and clinicopathological features in chinese patients with primary gastric diffuse large B-cell lymphoma.

    PubMed

    Zizhen, Zhang; Hui, Cao; Yanying, Shen; Danping, Shen; Jiahua, Liu; Chao, He; Xingzhi, Ni

    2013-04-01

    Recent studies have shown that diffuse large B-cell lymphoma (DLBCL) can be classified into germinal center B-cell-like (GCB) and non-GCB phenotypes by immunohistochemical staining. The aim of this study was to investigate the correlation of immunophenotypic classification with clinicopathological features in Chinese patients with primary gastric DLBCL to further our knowledge of this disease. Seventy-three patients with a histopathological diagnosis of primary gastric DLBCL were studied. Immunohistochemistry was carried out using the EnVision method to detect the expression of CD10, Bcl-6, and MUM1. The clinicopathologic features and follow-up data were analyzed using the Kaplan-Meier method, log-rank test, and χ (2) test. Expression of CD10 was observed in 21.9 % (16/73) of patients, Bcl-6 in 72.6 % (53/73), and MUM1 in 74.0 % (54/73). According to these data, 32.9 % (24/73) of the cases belonged to GCB subtype and 67.1 % (49/73) belonged to non-GCB subtype. There was a significant difference in tumor size and local lymph node metastasis between the GCB and non-GCB groups (P < 0.05). Complications in the GCB group (4.2 %) occurred less frequently than those in the non-GCB group (18.4 %); however, this difference was not significant (P > 0.05). Survival analysis revealed that patients in the GCB group had an increased 5-year survival rate compared to those in the non-GCB group (58.5 % vs 35.7 %, χ (2) = 3.939, P < 0.05). The 5-year survival rate of patients undergoing R-CHOP chemotherapy was significantly longer than that of patients in the CHOP group (74.7 % vs 37.5 %, χ (2) = 4.185, P < 0.05). The immunophenotype classification of primary gastric DLBCL, which is closely related to the tumor size and local lymph nodes metastasis, was found to have prognostic significance.

  16. Immunophenotypic characterization and quantification of neoplastic bone marrow plasma cells by multiparametric flow cytometry and its clinical significance in Korean myeloma patients.

    PubMed

    Cho, Young-Uk; Park, Chan-Jeoung; Park, Seo-Jin; Chi, Hyun-Sook; Jang, Seongsoo; Park, Sang Hyuk; Seo, Eul-Ju; Yoon, Dok Hyun; Lee, Jung-Hee; Suh, Cheolwon

    2013-04-01

    Multiparametric flow cytometry (MFC) allows discrimination between normal and neoplastic plasma cells (NeoPCs) within the bone marrow plasma cell (BMPC) compartment. This study sought to characterize immunophenotypes and quantitate the proportion of NeoPCs in BMPCs to diagnose plasma cell myeoma (PCM) and evaluate the prognostic impact of this method. We analyzed the MFC data of the bone marrow aspirates of 76 patients with PCM and 33 patients with reactive plasmacytosis. MFC analysis was performed using three combinations: CD38/CD138/-/CD45; CD56/CD20/CD138/CD19; and CD27/CD28/CD138/CD117. The plasma cells of patients with reactive plasmacytosis demonstrated normal immunophenotypic patterns. Aberrant marker expression was observed in NeoPCs, with negative CD19 expression observed in 100% of cases, CD56+ in 73.7%, CD117+ in 15.2%, CD27- in 10.5%, CD20+ in 9.2%, and CD28+ in 1.3%. In PCM patients, more than 20% of NeoPCs/BMPCs were significantly associated with factors suggestive of poor clinical outcomes. Patients who were CD27- or CD56+/CD27-, demonstrated shorter overall survival than patients of other CD56/CD27 combinations. Our results support the clinical value of immunophenotyping and quantifying NeoPCs in PCM patients. This strategy could help to reveal poor prognostic categories and delineate surrogate markers for risk stratification in PCM patients.

  17. Mantle cell lymphoma, blastoid variant, diagnosed on the basis of cytomorphology and flow cytometric immunophenotyping of the lymph node aspirate and peripheral blood.

    PubMed Central

    Lee, Mi-Ja; Kee, Keun-Hong; Jeon, Ho-Jong

    2002-01-01

    Mantle cell lymphoma, blastoid variant (B-MCL), is a very rare type of non-Hodgkin's lymphoma exhibiting an aggressive clinical course. We describe a case of B-MCL showing generalized lymphadenopathy and leukemic conversion in a 62-yr-old man. The case was diagnosed and subclassified as B-MCL on the basis of cyto-morphology and immunophenotype. Microscopic examination of the peripheral blood (PB) showed a spectrum of cells ranging from small mature lymphocytes to medium- and large-sized lymphocytes with blast-like chromatin and prominent nucleoli. The lymphoma cells were monoclonal B cells with moderately intense surface IgM. They were CD5 positive, cyclin D1 positive, CD10 negative, and CD23 negative. The flow cytometric immunophenotyping and DNA ploidy analysis of the PB and material obtained by aspiration cytology supported the diagnosis of B-MCL. These findings underline the utility of aspiration cytology in diagnosing B-MCL when cytomorphologic examination is combined with flow cytometric analysis of immuno-phenotype and demonstration of proliferation markers. PMID:11961299

  18. Mantle cell lymphoma, blastoid variant, diagnosed on the basis of cytomorphology and flow cytometric immunophenotyping of the lymph node aspirate and peripheral blood.

    PubMed

    Lee, Mi-Ja; Kee, Keun-Hong; Jeon, Ho-Jong

    2002-04-01

    Mantle cell lymphoma, blastoid variant (B-MCL), is a very rare type of non-Hodgkin's lymphoma exhibiting an aggressive clinical course. We describe a case of B-MCL showing generalized lymphadenopathy and leukemic conversion in a 62-yr-old man. The case was diagnosed and subclassified as B-MCL on the basis of cyto-morphology and immunophenotype. Microscopic examination of the peripheral blood (PB) showed a spectrum of cells ranging from small mature lymphocytes to medium- and large-sized lymphocytes with blast-like chromatin and prominent nucleoli. The lymphoma cells were monoclonal B cells with moderately intense surface IgM. They were CD5 positive, cyclin D1 positive, CD10 negative, and CD23 negative. The flow cytometric immunophenotyping and DNA ploidy analysis of the PB and material obtained by aspiration cytology supported the diagnosis of B-MCL. These findings underline the utility of aspiration cytology in diagnosing B-MCL when cytomorphologic examination is combined with flow cytometric analysis of immuno-phenotype and demonstration of proliferation markers.

  19. Immunophenotypic features of metastatic lymph node tumors to predict recurrence in N2 lung squamous cell carcinoma

    PubMed Central

    Matsuwaki, Rie; Ishii, Genichiro; Zenke, Yoshitaka; Neri, Shinya; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Fujii, Satoshi; Kondo, Haruhiko; Goya, Tomoyuki; Nagai, Kanji; Ochiai, Atsushi

    2014-01-01

    Patients with mediastinal lymph node metastasis (N2) in squamous cell carcinoma (SqCC) of the lung have poor prognosis after surgical resection of the primary tumor. The aim of this study was to clarify predictive factors of the recurrence of pathological lung SqCC with N2 focusing on the biological characteristics of both cancer cells and cancer-associated fibroblasts (CAFs) in primary and metastatic lymph node tumors. We selected 64 patients with pathological primary lung N2 SqCC who underwent surgical complete resection and investigated the expressions of four epithelial–mesenchymal transition-related markers (caveolin, clusterin, E-cadherin, ZEB2), three cancer stem cell-related markers (ALDH-1, CD44 variant6, podoplanin) of cancer cells, and four markers of CAFs (caveolin, CD90, clusterin, podoplanin) in both primary and matched metastatic lymph node tumors in the N2 area. In the primary tumors, the expressions of all the examined molecules were not related to recurrence. However, in the metastatic lymph node tumors, high clusterin and ZEB2 expressions in the cancer cells and high podoplanin expression in the CAFs were significantly correlated with recurrence (P = 0.03, 0.04, and 0.007, respectively). In a multivariate analysis, only podoplanin expression in the CAFs in metastatic lymph node tumors was identified as a significantly independent predictive factor of recurrence (P = 0.03). Our study indicated that the immunophenotypes of both cancer cells and CAFs in metastatic lymph node tumors, but not primary tumors, provide useful information for predicting the recurrence of pathological N2 lung SqCC. PMID:24814677

  20. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    PubMed

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-07-07

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  1. Molecular regulation of effector and memory T cell differentiation

    PubMed Central

    Chang, John T; Wherry, E John; Goldrath, Ananda W

    2015-01-01

    Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352

  2. Expression of epigenetic effectors in decidualizing human endometrial stromal cells.

    PubMed

    Grimaldi, Giulia; Christian, Mark; Quenby, Siobhan; Brosens, Jan J

    2012-09-01

    Cyclic differentiation of human endometrial stromal cells (HESCs) into decidual cells is a highly coordinated process essential for embryo implantation and pregnancy. This differentiation process is closely recapitulated in culture upon exposure of purified HESCs to cyclic AMP and progesterone signaling. Mining of gene expression data revealed that HESCs express 147 genes coding for epigenetic effectors, 33 (22%) of which are significantly regulated (P < 0.05) upon decidualization. Among these are genes encoding for histone-modifying proteins and their cofactors, histone-binding proteins, histone variants, CpG-binding proteins and DNA methyltransferases (DNMTs). Interestingly, more than two-thirds of differentially expressed chromatin-modifying genes are down-regulated upon the transition from a proliferative to a differentiated HESC phenotype. Despite the strong regulation of DNMTs, colorimetric and long interspersed nuclear element 1 methylation assays did not show global changes in DNA methylation levels upon differentiation of HESCs. Taken together, the coordinated regulation of diverse effector molecules suggests that complex epigenetic modification at specific loci underpins the acquisition of a decidual endometrial phenotype.

  3. Flow cytometric immunophenotyping is of great value to diagnosis of natural killer cell neoplasms involving bone marrow and peripheral blood.

    PubMed

    Jiang, Neng-Gang; Jin, Yong-Mei; Niu, Qian; Zeng, Ting-Ting; Su, Jun; Zhu, Huan-Ling

    2013-01-01

    Natural killer (NK) cell neoplasms are unusual disorders. In this study we compared results of flow cytometric immunophenotype (FCI) with cytomorphology, histopathology and clinical findings in a series of patients with NK cell neoplasms with peripheral blood and/or bone marrow involvement, and the FCI of neoplastic and normal NK cells were compared. Retrospective data and specimens (bone marrow aspiration or peripheral blood) from 71 cases of NK cell neoplasms were obtained. All patients have been demonstrated laboratory and clinical features consistent with NK cell neoplasms, and the subtypes were determined by integrated clinical estimation. Routine 4-color flow cytometry (FCM) using a NK/T cell related antibody panels was performed. NK cell neoplasms were divided into two major subtypes by FCI, namely malignant NK cell lymphoma, including extranodal nasal type NK cell lymphoma (ENKL, 11 cases) and aggressive NK cell lymphoma/leukemia (ANKL, 43 cases), and relative indolent chronic lymphoproliferative disorder of NK cell (CLPD-NK, 17 cases). The former exhibited stronger CD56-expressing, larger forward scatter (FSC) and more usually CD7- and CD16-missing. FCI of CLPD-NK was similar to normal NK cells, but CD56-expressing was abnormal, which was negative in five cases and partially or dimly expressed in eight cases. Cytomorphologic abnormal cells were found on bone marrow slides of 4 cases of ENKL and 30 cases of ANKL. Eight cases of ENKL were positive in bone marrow biopsies, and other three cases were negative. In 32 cases of ANKL which bone marrow biopsies were applied, 21 cases were positive in the first biopsies. Lymphocytosis was found only in six cases of CLPD-NK by cytomorphology, and biopsy pathology was not much useful for diagnosing CLPD-NK. These results suggest that FCM analysis of bone marrow and peripheral blood was superior to cytomorphology, bone marrow biopsy, and immunohistochemistry in sensitivity and early diagnosis for ANKL, stage III

  4. The immunophenotype of mast cells and its utility in the diagnostic work-up of systemic mastocytosis.

    PubMed

    Teodosio, Cristina; Mayado, Andrea; Sánchez-Muñoz, Laura; Morgado, José M; Jara-Acevedo, María; Álvarez-Twose, Ivan; García-Montero, Andrés C; Matito, Almudena; Caldas, Caldas; Escribano, Luis; Orfao, Alberto

    2015-01-01

    SM comprises a heterogeneous group of disorders, characterized by an abnormal accumulation of clonal MCs in 1 or more tissues, frequently involving the skin and BM. Despite the fact that most adult patients (>90%) carry the same genetic lesion (D816V KIT mutation), the disease presents with multiple variants with very distinct clinical and biologic features, a diverse prognosis, and different therapeutic requirements. Recent advances in the standardization of the study of BM MC by MFC allowed reproducible identification and characterization of normal/reactive MCs and their precursors, as well as the establishment of the normal MC maturational profiles. Analysis of large groups of patients versus normal/reactive samples has highlighted the existence of aberrant MC phenotypes in SM, which are essential for the diagnosis of the disease. In turn, 3 clearly distinct and altered maturation-associated immunophenotypic profiles have been reported recently in SM, which provide criteria for the distinction between ISM patients with MC-restricted and multilineage KIT mutation; thus, immunphenotyping also contributes to prognostic stratification of ISM, particularly when analysis of the KIT mutation on highly purified BM cells is not routinely available in the diagnostic work-up of the disease. © Society for Leukocyte Biology.

  5. Dendritic cell-derived nitric oxide inhibits the differentiation of effector dendritic cells

    PubMed Central

    Wu, Tianshu; Lu, Geming; Hu, Yuan; Zhang, Hui; Xu, Feihong; Wei, Peter; Chen, Kang; Tang, Hua; Yeretssian, Garabet; Xiong, Huabao

    2016-01-01

    Dendritic cells (DCs) play a pivotal role in the development of effective immune defense while avoiding detrimental inflammation and autoimmunity by regulating the balance of adaptive immunity and immune tolerance. However, the mechanisms that govern the effector and regulatory functions of DCs are incompletely understood. Here, we show that DC-derived nitric oxide (NO) controls the balance of effector and regulatory DC differentiation. Mice deficient in the NO-producing enzyme inducible nitric oxide synthase (iNOS) harbored increased effector DCs that produced interleukin-12, tumor necrosis factor (TNF) and IL-6 but normal numbers of regulatory DCs that expressed IL-10 and programmed cell death-1 (PD-1). Furthermore, an iNOS-specific inhibitor selectively enhanced effector DC differentiation, mimicking the effect of iNOS deficiency in mice. Conversely, an NO donor significantly suppressed effector DC development. Furthermore, iNOS−/− DCs supported enhanced T cell activation and proliferation. Finally iNOS−/− mice infected with the enteric pathogen Citrobacter rodentium suffered more severe intestinal inflammation with concomitant expansion of effector DCs in colon and spleen. Collectively, our results demonstrate that DC-derived iNOS restrains effector DC development, and offer the basis of therapeutic targeting of iNOS in DCs to treat autoimmune and inflammatory diseases. PMID:27556858

  6. Immunophenotypic and DNA genotypic analysis of T-cell and NK-cell subpopulations in patients with B-cell chronic lymphocytic leukaemia (B-CLL).

    PubMed

    Frolova, E A; Richards, S J; Jones, R A; Rawstron, A; Master, P S; Teasdale, J; Short, M; Jack, A S; Scott, C S

    1995-01-01

    Absolute numbers and distributions of peripheral blood T-cells and NK cells were immunophenotypically determined in 21 patients with B-CLL and compared with those obtained from a series of 13 elderly normal controls with an age range of 60-87 years. For absolute CD3+, CD4+ and CD8+ T-cell, and CD16+ NK subpopulation numbers, there were no consistent differences between the normal and B-CLL groups although some individual patient variation was seen. Immunophenotypic analyses did however reveal that CD3+ T-cells in almost half (10/21) of the B-CLL patients were Ia+ (defined as > 20% positive cells), compared to 0/13 of the elderly control group (p < 0.001), and that the proportions of CD4+ and CD8+ cells expressing membrane CD45RO were significantly increased compared to the control group. Subdivision of the B-CLL cases into those with low (< 20%) and high (> 20%) proportions of CD3+ T-cells co-expressing Ia further showed that CD45RO expression by CD4+ fractions was particularly prominent in the Ia+ subgroup, and that the relative increase of CD4+CD45RO+ cells was primarily a consequence of decreased absolute numbers of CD4+CD45RA+ lymphocytes. This study also examined extracted DNA from enriched CD3+ T-cell fractions (obtained by immunomagnetic bead selection in 9 of the B-CLL cases) by PCR analysis with two primers for the T-cell gamma gene locus. With the V gamma C (consensus) primer, 8/9 cases were polyclonal and the remaining case was oligoclonal. For comparison, 7/9 CD3+ fractions were oligoclonal with the V gamma 9 primer with the other two cases being polyclonal. No monoclonal CD3+ components were found. It is suggested that the observed increased Ia expression by CD3+ cells and the predominance of CD4+ cells expressing membrane CD45RO in patients with B-CLL may be of potential relevance to understanding the pathogenesis and patterns of disease progression.

  7. Autoimmune effector memory T cells: the bad and the good

    PubMed Central

    Devarajan, Priyadharshini; Chen, Zhibin

    2014-01-01

    Immunological memory is a hallmark of adaptive immunity, a defense mechanism endowed to vertebrates during evolution. However, an autoimmune pathogenic role of memory lymphocytes is also emerging with accumulating evidence, despite reasonable skepticism on their existence in a chronic setting of autoimmune damage. It is conceivable that autoimmune memory would be particularly harmful since memory cells would constantly “remember” and attack the body's healthy tissues. It is even more detrimental given the resistance of memory T cells to immunomodulatory therapies. In this review, we focus on self-antigen-reactive CD4+ effector memory T (TEM) cells, surveying the evidence for the role of the TEM compartment in autoimmune pathogenesis. We will also discuss the role of TEM cells in chronic and acute infectious disease settings and how they compare to their counterparts in autoimmune diseases. With their long-lasting potency, the autoimmune TEM cells could also play a critical role in anti-tumor immunity, which may be largely based on their reactivity to self-antigens. Therefore, although autoimmune TEM cells are “bad” due to their role in relentless perpetration of tissue damage in autoimmune disease settings, they are unlikely a by-product of industrial development along the modern surge of autoimmune disease prevalence. Rather, they may be a product of evolution for their “good” in clearing damaged host cells in chronic infections and malignant cells in cancer settings. PMID:24203440

  8. [Differential analysis of BM cell morphology, immunophenotypic, cytogenetic characters and prognosis between myeloblastic and lymphoblastic crisis of CML].

    PubMed

    Liu, Ya-Lin; Wang, Xiao-Ning; Liu, Hua-Sheng

    2014-06-01

    This study was purposed to investigate the difference of morphology, immunophenotype, cytogenetic features and prognosis between myeloid blast crisis and lymphoid blast crisis of chronic myelogenous leukemia (CML). A total of 31 patients with CML in blastic crisis in Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University school of Medicine from 2009 January to 2014 January were enrolled in this study. Out of 31 CML patients, 24 cases were patients with myeloid blast crisis and other 7 cases were patients with lymphoblastic crisis. The clinical data, blast cell percentage in peripheral blood and bone marrow, eosinophil and basophil percentage, immunophenotype, cytogenetic characteristics and prognosis were analyzed. The results indicated that there was no significant difference of blastic cell percentage in peripheral blood and bone marrow of CML with myeloid blast crisis, and the eosinophil and basophil cells could be easily detected. The ratio of blastic cells in BM was higher than that in PB in lymphoid blastic crisis of CML, eosinophil and basophil cells were rare. 7 cases of CML with lymphoid blastic crisis were B ALL with CD10, CD19, CD34, HLA-DR expression, and 2 cases with CD13 and CD33 expression. The lymphoid score was in all CML patients with lymphoid blastic crisis was greater than or equal to 1.5;and 2 patients with CD13 and CD33 expression, and with 1 myeloid score.24 cases of myeloid blastic crisis of CML patients mainly expressed CD33, CD13, CD38, CD34, CD11b and HLA-DR, and their myeloid score greater than or equal to 2, among them the lymphoid scores of 2 patients were 0.5 and 1 score, respectively. All the 31 patients showed 100% Ph(+) chromosome, among them 3 cases also showed other new chromosome aberrations. There was no significant difference of overall survival rate between lymphoid and myeloid blastic crisis of CML, but the overall survival rate of patients treated with tyrosine kinase inhibitor (TKI ) was

  9. Purification and immunophenotypic characterization of murine MZ and T2-MZP cells.

    PubMed

    Rosado, M Manuela; Scarsella, Marco; Cascioli, Simona; Giorda, Ezio; Carsetti, Rita

    2014-01-01

    B cells are generated every day in the bone marrow, but only a small fraction integrates the peripheral B-cell pool. In the murine spleen, we can find several B-cell subsets representing various maturation stages and/or cell functions. The spleen is a complex lymphoid organ organized in two main structures with different functions: the red and white pulp. The red pulp is flowed with blood while the white pulp is organized in primary follicles, with a B-cell area composed of follicular B cells and a T-cell area surrounding a periarterial lymphatic sheath. The frontier between the red and white pulp is defined as the marginal zone and contains the marginal zone B cells. Because B cells, localized in different areas, are characterized by distinct expression levels of B-cell receptor (BCR) and other surface markers, splenic B-cell subsets can be easily identified and purified by flow cytometry analyses and cell sorting (FACS).Here, we will focus on marginal zone B cells and their precursors giving some experimental hints to identify, generate, and isolate these cells. We will combine the use of FACS analysis and confocal microscopy to visualize marginal zone B cells in cell suspension and tissue sections, respectively.

  10. Tissue-specific effector functions of innate lymphoid cells

    PubMed Central

    Björkström, Niklas K; Kekäläinen, Eliisa; Mjösberg, Jenny

    2013-01-01

    Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans. PMID:23489335

  11. Epigenetic regulation of NK cell differentiation and effector functions

    PubMed Central

    Cichocki, Frank; Miller, Jeffrey S.; Anderson, Stephen K.; Bryceson, Yenan T.

    2013-01-01

    Upon maturation, natural killer (NK) cells acquire effector functions and regulatory receptors. New insights suggest a considerable functional heterogeneity and dynamic regulation of receptor expression in mature human NK cell subsets based on different developmental axes. Such processes include acquisition of lytic granules as well as regulation of cytokine production in response to exogenous cytokine stimulation or target cell interactions. One axis is regulated by expression of inhibitory receptors for self-MHC class I molecules, whereas other axes are less well defined but likely are driven by different activating receptor engagements or cytokines. Moreover, the recent identification of long-lived NK cell subsets in mice that are able to expand and respond rapidly following a secondary viral challenge suggest previously unappreciated plasticity in the programming of NK cell differentiation. Here, we review advances in our understanding of mature NK cell development and plasticity with regards to regulation of cellular function. Furthermore, we highlight some of the major questions that remain pertaining to the epigenetic changes that underlie the differentiation and functional specialization of NK cells and the regulation of their responses. PMID:23450696

  12. Thermoresponsive substrates used for the expansion of human mesenchymal stem cells and the preservation of immunophenotype.

    PubMed

    Nash, Maria E; Fan, Xingliang; Carroll, William M; Gorelov, Alexander V; Barry, Frank P; Shaw, Georgina; Rochev, Yury A

    2013-04-01

    The facile regeneration of undifferentiated human mesenchymal stem cells (hMSCs) from thermoresponsive surfaces facilitates the collection of stem cells avoiding the use of animal derived cell detachment agents commonly used in cell culture. This communication proposes a procedure to fabricate coatings from commercially available pNIPAm which is both affordable and a significant simplification on alternative approaches used elsewhere. Solvent casting was used to produce films in the micrometer range and successful cell adhesion and proliferation was highly dependent on the thickness of the coating produced with 1 μm thick coatings supporting cells to confluence. 3T3 cell sheets and hMSCs were successfully detached from the cast coatings upon temperature reduction. Furthermore, results indicate that the hMSCs remained undifferentiated as the surface receptor profile of hMSCs was not altered when cells were detached in this manner.

  13. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  14. Bcl-2 Allows Effector and Memory CD8+ T Cells To Tolerate Higher Expression of Bim

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Moreno-Fernandez, Maria E.; Sholl, Allyson; Katz, Jonathan D.; Grimes, H. Leighton; Hildeman, David A.

    2014-01-01

    As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate. PMID:21451108

  15. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    PubMed Central

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  16. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood.

    PubMed

    Mohanty, Niharika; Gulati, Baldev R; Kumar, Rajesh; Gera, Sandeep; Kumar, Pawan; Somasundaram, Rajesh K; Kumar, Sandeep

    2014-06-01

    Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.

  17. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells.

    PubMed

    Ochoa, Maria Carmen; Minute, Luna; Rodriguez, Inmaculada; Garasa, Saray; Perez-Ruiz, Elisabeth; Inogés, Susana; Melero, Ignacio; Berraondo, Pedro

    2017-02-21

    Antibody-dependent cellular cytotoxicity (ADCC) is a set of mechanisms that target cells coated with IgG antibodies of the proper subclasses (IgG1 in the human) to be the prey of cell-to-cell cytolysis executed by immune cells expressing FcRIIIA (CD16A). These effectors include not only natural killer (NK) cells but also other CD16(+) subsets such as monocyte/macrophages, NKT cells or γδ T cells. In cancer therapy, ADCC is exploited by antibodies that selectively recognize proteins on the surface of malignant cells. An approach to enhance antitumor activity is to act on effector cells so they are increased in their numbers or enhanced in their individual (on a cell per cell basis) ADCC performance. This enhancement can be therapeutically attained by cytokines (that is, interleukin (IL)-15, IL-21, IL-18, IL-2); immunostimulatory monoclonal antibodies (that is, anti-CD137, anti-CD96, anti-TIGIT, anti-KIR, anti-PD-1); TLR agonists or by adoptive infusions of ex vivo expanded NK cells which can be genetically engineered to become more efficient effectors. In conjunction with approaches optimizing IgG1 Fc affinity to CD16, acting on effector cells offers hope to achieve synergistic immunotherapy strategies.Immunology and Cell Biology advance online publication, 21 February 2017; doi:10.1038/icb.2017.6.

  18. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    PubMed

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-02-27

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29(+), CD44(+), CD73(+), CD90(+), CD34(-), CD45(-) and MHC-II(-) with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90(+), CD73(+), CD105(+), CD44(+), CD13(+), CD29(+), Oct-4(+) gene and CD31(-) and CD45(-) expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures.

  19. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry

    PubMed Central

    Fung, Erik; Esposito, Laura; Todd, John A.; Wicker, Linda S.

    2010-01-01

    We describe two modular protocols for immunostaining and multiparameter flow cytometric analysis of major human antigen-presenting cells (dendritic cells, monocytes, B lymphocytes) in minimally manipulated whole blood. Simultaneous detection of up to eight colors is enabled by careful selection and testing of cell-subset-defining monoclonal antibodies (anchor markers) in the appropriate fluorochrome combinations, to demonstrate the quantification of surface expression levels of molecules involved in chemotaxis (e.g. CX3CR1, CCR2), adhesion (e.g. CD11b, CD62L), antigen presentation (e.g. CD83, CD86, CD209) and immune regulation (e.g. CD101) on circulating antigen-presenting cells. Each immunostaining reaction requires as little as 50–100 μl of peripheral whole blood, no density-gradient separation, and the entire procedure from preparation of reagents to flow cytometry can be completed in <5 h. PMID:20134434

  20. Peripheral regulatory cells immunophenotyping in Primary Sjögren's Syndrome: a cross-sectional study

    PubMed Central

    2013-01-01

    Introduction IL-10--producing B cells, Foxp3-expressing T cells (Tregs) and the IDO-expressing dendritic cells (pDC) are able to modulate inflammatory processes, to induce immunological tolerance and, in turn, to inhibit the pathogenesis of autoimmune disease. The aim of the study was to characterize and to enumerate peripheral IL-10--producing B cells, Tregs and pDCregs in primary Sjögren's Syndrome (pSS) patients in regard of their clinical and serologic activity. Methods Fifty pSS patients and 25 healthy individuals were included in the study. CD19+--expressing peripheral B lymphocytes were purified by positive selection. CD19+/CD24hi/CD38hi/IL-10--producing B cells, CD4+/CD25hi/Foxp3+ and CD8+/CD28-/Foxp3+ Tregs, as well as CCR6+/CD123+/IDO+ DCs, were quantitated by flow cytometry. Results Immature/transitional circulating IgA+ IL-10--producing B cells had higher levels in pSS patients versus control group, whereas CD19+/CD38hi/IgG+/IL-10+ cells had lower percentage versus control. Indeed CD19+/CD24hi/CD38hi/CD5+/IL-10+, CD19+/CD24hi/CD38hi/CD10+/IL-10+, CD19+/CD24hi/CD38hi/CD20+/IL-10+, CD19+/CD24hi/CD38hi/CD27-/IL-10+, and CD19+/CD24hi/CD38hi/CXCR7+/IL-10+ cells had higher frequency in clinical inactive pSS patients when compared with control group. Remarkably, only percentages of CD19+/CD24hi/CD38hi/CD10+/IL-10+ and CD19+/CD24hi/CD38hi/CD27-/IL-10+ subsets were increased in pSS serologic inactive versus control group (P < 0.05). The percentage of IDO-expressing pDC cells was higher in pSS patients regardless of their clinical or serologic activity. There were no statistically significant differences in the percentage of CD4+/CD25hi/Foxp3+ Tregs between patient groups versus controls. Nonetheless, a decrease in the frequency of CD8+/CD28-/Foxp3+ Tregs was found in inactive pSS patients versus controls (P < 0.05). Conclusions The findings of this exploratory study show that clinical inactive pSS patients have an increased frequency of IL-10--producing B cells

  1. Glomeruloid hemangioma in POEMS syndrome shows two different immunophenotypic endothelial cells.

    PubMed

    Kishimoto, S; Takenaka, H; Shibagaki, R; Noda, Y; Yamamoto, M; Yasuno, H

    2000-02-01

    The case of a Japanese woman with glomeruloid hemangioma, an initial marker for POEMS syndrome, is reported. Her cutaneous lesions were multiple and consisted of glomeruloid hemangiomas, cherry-type capillary hemangiomas, and a mixture of both. The specimens of glomeruloid hemangiomas were studied by paraffin section immunohistochemistry with a large panel of antibodies and electron microscopy, respectively. The lesions, whose size ranged from minute foci to large nodules, were composed of anastomosing vascular channels resembling renal glomeruli and had irregular lumina, often featuring capillaries and sinusoid-like spaces. The vascular channels were lined by a single layer of endothelial cells, which showed two types of cells. The capillary-type endothelium possessed large vesicular nuclei with open chromatin and large amount of cytoplasm. The sinusoidal endothelium possessed small basal nuclei with dense chromatin as well as scant amount of cytoplasm. The former cells had a characteristic CD31+/CD34+/UEA I+/CD68- phenotype. Some of these cells ultrastructurally showed intracytoplasmic lumen formation. The latter cells had a characteristic CD31+/CD34-/UEA I-/CD68+ phenotype. The present study shows that glomeruloid hemangioma has unique morphologic and immunologic features that differ from the traditional hemangiomas as well as littoral cell angioma of the spleen.

  2. NK cell immunophenotypic and genotypic analysis of infants with severe respiratory syncytial virus infection.

    PubMed

    Noyola, Daniel E; Juárez-Vega, Guillermo; Monjarás-Ávila, César; Escalante-Padrón, Francisco; Rangel-Ramírez, Verónica; Cadena-Mota, Sandra; Monsiváis-Urenda, Adriana; García-Sepúlveda, Christian A; González-Amaro, Roberto

    2015-07-01

    Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants. Reduced numbers of NK cells have been reported in infants with severe RSV infection; however, the precise role of NK cells during acute RSV infection is unclear. In this study the NK and T cell phenotypes, LILRB1 gene polymorphisms and KIR genotypes of infants hospitalized with RSV infection were analyzed. Compared to controls, infants with acute RSV infection showed a higher proportion of LILRB1+ T cells; in addition, a subgroup of infants with RSV infection showed an increase in LILRB1+ NK cells. No differences in NKG2C, NKG2A, or CD161 expression between RSV infected infants and controls were observed. LILRB1 genotype distribution of the rs3760860 A>G, and rs3760861 A>G single nucleotide polymorphisms differed between infants with RSV infection and healthy donors, whereas no differences in any of the KIR genes were observed. Our results suggest that LILRB1 participates in the pathogenesis of RSV infection. Further studies are needed to define the role of LILRB1+ NK in response to RSV and to confirm an association between LILRB1 polymorphisms and the risk of severe RSV infection.

  3. Comparison of feto-maternal organ derived stem cells in facets of immunophenotype, proliferation and differentiation.

    PubMed

    Indumathi, S; Harikrishnan, R; Mishra, R; Rajkumar, J S; Padmapriya, V; Lissa, R P; Dhanasekaran, M

    2013-12-01

    Scientific explorations on feto-maternal organ stem cells revealed its possible applicability in treatment of various diseases. However, establishment of an ideal placental tissue stem cell source in regenerative application is inconclusive and arduous. Hence, this study aims to resolve this tribulation by comparison of mesenchymal stem cells (MSC) from fetal placenta - amniotic membrane (AM-MSC), chorionic plate (CP-MSC) tissue and the maternal placenta-Decidua (D-MSC), thereby facilitating the researchers to determine their pertinent source. The cells were expanded and scrutinized for expression profiling, proliferation and differentiation ability. Remarkable expressions of certain markers in addition to its prospective mesodermal differentiation confirmed their mesenchyme origin. Despite the specified alikeness among these sources, reliable and non-invasive procurement of AM-MSC coupled with its higher growth potency makes it the most constructive stem cell source. However, exhibited similarities demands further investigations on extensive expandability and cytogenetic stability of these sources prior to its therapeutic applicability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Peripheral blood T- and B-cell immunophenotypic abnormalities in selected women with unexplained recurrent miscarriage.

    PubMed

    Carbone, Javier; Sarmiento, Elizabeth; Gallego, Antonio; Lanio, Nallibe; Navarro, Joaquin; García, Sandra; Fernandez-Cruz, Eduardo

    2016-02-01

    We aimed to investigate if women with recurrent miscarriage disclosed abnormalities in the maturation and activation status of peripheral blood lymphocyte subsets. In a case control study, 24 women with recurrent miscarriage, 37 women with children but no history of miscarriage and 39 women without previous pregnancies were evaluated. Lymphocyte subsets were evaluated using three-colour flow-cytometry. Selected women with recurrent miscarriage had significantly higher absolute counts of central memory CD4+ T-cells, CD8+DR+ T-cells and memory non-switched B-cells than the control groups. Recurrent miscarriage may be associated with abnormalities of the maturation and activation status of peripheral blood T and B lymphocytes.

  5. Neuronal hypertrophy and mast cells in histologically negative, clinically diagnosed acute appendicitis: a quantitative immunophenotypical analysis.

    PubMed

    Amber, Safeena; Mathai, Alka Mary; Naik, Ramadas; Pai, Muktha R; Kumar, Suneet; Prasad, Keerthana

    2010-03-01

    In about 20-25% of appendicectomies performed for clinically suspected acute appendicitis, definite morphological changes are lacking on histopathological examination. The present study was done to investigate whether any changes in neurons and mast cells could be detected in patients presenting with clinical acute appendicitis but found to have normal appendix at histopathology. A descriptive study was conducted on 50 appendix specimens which were categorized as histology-positive acute appendicitis (HPAA), clinically acute appendicitis but histologically negative (HNAA), appendices resected for other causes and appendices from forensic autopsy. A morphometric and quantitative evaluation of nerve fibers and ganglion plexus and its relation to mast cell density were studied. All sections were subjected to hematoxylin and eosin stain, toluidine blue stain, S 100 protein and neuron specific enolase (NSE) immunostaining and a quantitative image analysis system. Mucosal and submucosal neuronal components highlighted by NSE and S100 immunostaining observed in cases of HNAA were comparable to cases of HPAA. With S 100 immunostaining in HNAA cases, the increase in number and size of myentric neuronal plexus were mild in 40% (10/25) cases, moderate in 40% (10/25) and marked in 20% (5/25) cases as compared to 66.7% (10/15) cases of HPAA showing moderate and 33.3% (5/15) cases showing marked increase (p = 0.018). The mean mast cell count was highest in the HNAA cases (2.74) in all the four layers as compared to the HPAA (1.85) and control group (2.05). There was no difference in the relationship of the size of ganglion cells and the mast cell concentration. Neuronal hypertrophy and mast cells may play a role in the pathogenesis of appendicitis-like pain in patients with histologically normal appendices.

  6. Study of the immunophenotype of the inflammatory cells in melanomas with regression and halo nevi.

    PubMed

    Botella-Estrada, Rafael; Kutzner, Heinz

    2015-05-01

    The pathogenesis and prognostic implications of regression in melanoma are not well understood. It has traditionally been considered an immunologically mediated phenomenon. Improvement in the knowledge of the mechanisms that lead to regression may prove to be of great value in an era in which treatments oriented to the augmentation of the host's immunity against melanoma have demonstrated excellent clinical results. This study was designed to improve the understanding of the mechanisms underlying melanoma regression and the differences between similar situations in benign melanocytic nevus. The study sample consisted of 77 lesions: 62 melanomas and 15 halo nevi. The following markers were included in the study: CD4, CD8, FoxP3, PD1, CD123, granzyme, and TIA-1. Staining was evaluated in 5 categories, according to the percentage of labeled cells. Granzyme, PD1, and TIA-1 stained significantly more cells in halo nevi than in melanomas with regression (P < 0.01). The ratio CD123/TIA-1 was higher in melanomas than in halo nevi (1 vs. 0.67, P < 0.05). Regression in the 62 melanomas was categorized as early in 14 cases and late in 48 cases. Early regression was associated with a higher percentage of CD123, CD4, and TIA-1 staining than late regression. The inflammatory infiltrate found in halo nevi is characterized by a higher number of active cytotoxic T cells and regulatory PD1-positive T cells than the infiltrate found in melanoma with regression. CD123 staining was higher in early regression than in late regression, suggesting the presence of a tolerogenic mechanism in this phenomenon's initiation phase.

  7. Blastoid and common variants of mantle cell lymphoma exhibit distinct immunophenotypic and interphase FISH features.

    PubMed

    Parrens, M; Belaud-Rotureau, M-A; Fitoussi, O; Carerre, N; Bouabdallah, K; Marit, G; Dubus, P; de Mascarel, A; Merlio, J-P

    2006-03-01

    The recognition of blastoid variant (BV) of mantle cell lymphoma (MCL) is based on morphological criteria. Our aim was to analyse 18 MCL cases including four BV-MCL for their clinicopathological features, proliferation index, cyclin D1 and CDK4 expression and interphase fluorescence in-situ hybridization (FISH) pattern. BV-MCL versus common MCL was characterized by a shorter overall duration of response after first-line therapy (11 months versus 28 months) and shorter overall survival (20 months versus 42 months). Interphase FISH showed a t(11;14) fusion pattern in all MCL tested cases. However, the four blastoid cases were characterized by extra copies of CCND1 signals. Using additional probes of chromosomes 11, 18, 21, these signals were shown to be the result of hypotetraploidy and not of a specific amplification of the normal or the translocated CCND1 allele. Moreover, the BV-MCL cases were characterized by a combined high percentage of cells expressing cyclin D1 and/or CDK4 with a proliferation (MIB-1-Ki67) index above 50%. Such features allowed the recognition of areas of large cell transformation in the case of secondary BV-MCL. Since distinction between BV and common MCL is of clinical relevance, our data underline the need to add phenotypic and cytogenetic criteria to cytomorphology for a better recognition of BV-MCL.

  8. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

    PubMed

    Van Acker, Heleen H; Beretta, Ottavio; Anguille, Sébastien; Caluwé, Lien De; Papagna, Angela; Van den Bergh, Johan M; Willemen, Yannick; Goossens, Herman; Berneman, Zwi N; Van Tendeloo, Viggo F; Smits, Evelien L; Foti, Maria; Lion, Eva

    2017-01-13

    Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.

  9. Blockade of TNF-α signaling benefits cancer therapy by suppressing effector regulatory T cell expansion.

    PubMed

    Chang, Li-Yuan; Lin, Yung-Chang; Chiang, Jy-Ming; Mahalingam, Jayashri; Su, Shih-Huan; Huang, Ching-Tai; Chen, Wei-Ting; Huang, Chien-Hao; Jeng, Wen-Juei; Chen, Yi-Cheng; Lin, Shi-Ming; Sheen, I-Shyan; Lin, Chun-Yen

    2015-10-01

    Effector but not naive regulatory T cells (Treg cells) can accumulate in the peripheral blood as well as the tumor microenvironment, expand during tumor progression and be one of the main suppressors for antitumor immunity. However, the underlying mechanisms for effector Treg cell expansion in tumor are still unknown. We demonstrate that effector Treg cell-mediated suppression of antitumor CD8(+) T cells is tumor-nonspecific. Furthermore, TNFR2 expression is increased in these Treg cells by Affymetrix chip analysis which was confirmed by monoclonal antibody staining in both hepatocellular carcinoma (HCC) and colorectal cancer (CRC) patients and murine models. Correspondingly, increased levels of TNF-α in both tissue and serum were also demonstrated. Interestingly, TNF-α could not only expand effector Treg cells through TNFR2 signaling, but also enhanced their suppressive activity against antitumor immunity of CD8(+) T cells. Furthermore, targeting TNFR2 signaling with a TNF-α inhibitor could selectively reduce rapid resurgence of effector Treg cells after cyclophosphamide-induced lymphodepletion and markedly inhibit the growth of established tumors. Herein, we propose a novel mechanism in which TNF-α could promote tumor-associated effector Treg cell expansion and suggest a new cancer immunotherapy strategy using TNF-α inhibitors to reduce effector Treg cells expansion after cyclophosphamide-induced lymphodepletion.

  10. The immunophenotypic spectrum of primary mediastinal large B-cell lymphoma reveals prognostic biomarkers associated with outcome.

    PubMed

    Bledsoe, Jacob R; Redd, Robert A; Hasserjian, Robert P; Soumerai, Jacob D; Nishino, Ha T; Boyer, Daniel F; Ferry, Judith A; Zukerberg, Lawrence R; Harris, Nancy Lee; Abramson, Jeremy S; Sohani, Aliyah R

    2016-10-01

    Primary mediastinal large B-cell lymphoma (PMBL) is a distinct subtype of diffuse large B-cell lymphoma (DLBCL) that shows overlap with classical Hodgkin lymphoma (CHL) and a favorable prognosis compared to mediastinal gray-zone lymphoma (MGZL). We performed immunohistochemistry on initial diagnostic specimens of 49 cases of uniformly treated PMBL to determine the frequency and clinical significance of expression of antigens commonly seen in CHL and MGZL, along with markers previously shown to be prognostic in DLBCL, not otherwise specified. The median age was 37 years with a female:male ratio of 2.3. After a median follow-up of 78 months, 24% of patients had relapsed or refractory disease and 22% had died; the 5-year PFS was 70%. Variable CD15 expression was seen in 31% of cases, but was not associated with adverse outcome. Hans cell-of-origin, proliferation index, and MYC/BCL2 coexpression were not associated with outcome, while low PDL1 (P = 0.011) and high MUM1 (P = 0.065) staining were each associated with shorter PFS. A biologic risk score (one point each for low PDL1 and high MUM1) stratified patients into three prognostic risk groups for PFS (P = 0.001) and OS (P = 0.032). On separate multivariate models, low PDL1 was independent of R-IPI risk group for PFS (HR 6.0, P = 0.023), as was a biologic risk score of 2 (HR 5.6, P = 0.011). Incorporation of the biologic risk score sub-stratified patients within R-IPI groups for both PFS (P < 0.001) and OS (P < 0.001). In summary, we characterize the immunophenotypic spectrum of PMBL and identify PDL1 and MUM1 as prognostic biomarkers for high-risk disease. Am. J. Hematol. 91:E436-E441, 2016. © 2016 Wiley Periodicals, Inc.

  11. Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy.

    PubMed

    Spranger, Stefani; Dai, Daisy; Horton, Brendan; Gajewski, Thomas F

    2017-05-08

    Effectorcells have the capability of recognizing and killing cancer cells. However, whether tumors can become immune resistant through exclusion of effectorcells from the tumor microenvironment is not known. By using a tumor model resembling non-T cell-inflamed human tumors, we assessed whether adoptive T cell transfer might overcome failed spontaneous priming. Flow cytometric assays combined with intra-vital imaging indicated failed trafficking of effectorcells into tumors. Mechanistically, this was due to the absence of CXCL9/10, which we found to be produced by CD103(+) dendritic cells (DCs) in T cell-inflamed tumors. Our data indicate that lack of CD103(+) DCs within the tumor microenvironment dominantly resists the effector phase of an anti-tumor T cell response, contributing to immune escape. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A recurrent pattern of chromosomal aberrations and immunophenotypic appearance defines anal squamous cell carcinomas.

    PubMed Central

    Heselmeyer, K.; du Manoir, S.; Blegen, H.; Friberg, B.; Svensson, C.; Schröck, E.; Veldman, T.; Shah, K.; Auer, G.; Ried, T.

    1997-01-01

    Squamous cell carcinomas of the anus are rare neoplasias that account for about 3% of large bowel tumours. Infections with human papillomaviruses are frequently detected in these cancers, suggesting that pathogenic pathways in anal carcinomas and in carcinomas of the uterine cervix are similar. Little is known regarding recurrent chromosomal aberrations in this subgroup of squamous cell carcinomas. We have applied comparative genomic hybridization to identify chromosomal gains and losses in 23 cases of anal carcinomas. A non-random copy number increase of chromosomes 17 and 19, and chromosome arm 3q was observed. Consistent losses were mapped to chromosome arms 4p, 11q, 13q and 18q. A majority of the tumours were aneuploid, and most of them showed increased proliferative activity as determined by staining for Ki-67 antigen. p53 expression was low or undetectable, and expression of p21/WAF-1 was increased in most tumours. Sixteen cancers were satisfactorily tested for the presence of HPV by consensus L1-primer polymerase chain reaction; nine were HPV positive, of which eight were positive for HPV 16. Images Figure 2 PMID:9374370

  13. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells1

    PubMed Central

    Matsumura, Satoko; Wang, Baomei; Kawashima, Noriko; Braunstein, Steve; Badura, Michelle; Cameron, Thomas O.; Babb, James S.; Schneider, Robert J.; Formenti, Silvia C.; Dustin, Michael L.; Demaria, Sandra

    2008-01-01

    Recruitment of effector T cells to inflamed peripheral tissues is regulated by chemokines and their receptors, but the factors regulating recruitment to tumors remain largely undefined. Ionizing radiation (IR) therapy is a common treatment modality for breast and other cancers. Used as a cytocidal agent for proliferating cancer cells, IR in combination with immunotherapy has been shown to promote immune-mediated tumor destruction in pre-clinical studies. Here we demonstrate that IR markedly enhanced the secretion by mouse and human breast cancer cells of CXCL16, a chemokine that binds to CXCR6 on Th1 and activated CD8 effector T cells, and plays an important role in their recruitment to sites of inflammation. Employing a poorly immunogenic mouse model of breast cancer, we found that irradiation increased the migration of CD8+CXCR6+ activated T cells to tumors in vitro and in vivo. CXCR6-deficient mice showed reduced infiltration of tumors by activated CD8 T cells and impaired tumor regression following treatment with local IR to the tumor and antibodies blocking the negative regulator of T cell activation CTLA-4. These results provide the first evidence that IR can induce the secretion by cancer cells of pro-inflammatory chemotactic factors that recruit anti-tumor effector T cells. The ability of IR to convert tumors into “inflamed” peripheral tissues could be exploited to overcome obstacles at the effector phase of the anti-tumor immune response and improve the therapeutic efficacy of immunotherapy. PMID:18713980

  14. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas.

    PubMed

    Attig, Sebastian; Hennenlotter, Jörg; Pawelec, Graham; Klein, Gerd; Koch, Sven D; Pircher, Hanspeter; Feyerabend, Susan; Wernet, Dorothee; Stenzl, Arnulf; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2009-11-01

    Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell tumors directly ex vivo following mechanical disaggregation and without any culture step. Subpopulations of memory and effector CD4(+) Th1, Th2, and Th17 and CD8(+) Tc1 cells were identified based on surface phenotype, activation potential, and multicytokine production. Compared with the same patient's peripheral blood, T lymphocytes present inside tumors were found to be enriched in functional CD4(+) cells of the Th1 lineage and in effector memory CD8(+) cells. Additionally, several populations of CD4(+) and CD8(+) regulatory T cells were identified that may synergize to locally dampen antitumor T-cell responses.

  15. Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy.

    PubMed

    Behbehani, Gregory K; Samusik, Nikolay; Bjornson, Zach B; Fantl, Wendy J; Medeiros, Bruno C; Nolan, Garry P

    2015-09-01

    Acute myeloid leukemia (AML) is characterized by a high relapse rate that has been attributed to the quiescence of leukemia stem cells (LSC), which renders them resistant to chemotherapy. However, this hypothesis is largely supported by indirect evidence and fails to explain the large differences in relapse rates across AML subtypes. To address this, bone marrow aspirates from 41 AML patients and five healthy donors were analyzed by high-dimensional mass cytometry. All patients displayed immunophenotypic and intracellular signaling abnormalities within CD34(+)CD38(lo) populations, and several karyotype- and genotype-specific surface marker patterns were identified. The immunophenotypic stem and early progenitor cell populations from patients with clinically favorable core-binding factor AML demonstrated a 5-fold higher fraction of cells in S-phase compared with other AML samples. Conversely, LSCs in less clinically favorable FLT3-ITD AML exhibited dramatic reductions in S-phase fraction. Mass cytometry also allowed direct observation of the in vivo effects of cytotoxic chemotherapy. The mechanisms underlying differences in relapse rates across AML subtypes are poorly understood. This study suggests that known chemotherapy sensitivities of common AML subsets are mediated by cell-cycle differences among LSCs and provides a basis for using in vivo functional characterization of AML cells to inform therapy selection. ©2015 American Association for Cancer Research.

  16. Stability of multiple antigen receptor gene rearrangements and immunophenotype in Hodgkin's disease-derived cell line L428 and variant subline L428KSA.

    PubMed

    Athan, E S; Paietta, E; Papenhausen, P R; Augenlicht, L; Wiernik, P H; Gallagher, R E

    1989-07-01

    The Hodgkin's disease (HD) derived cell line L428 and a phorbol ester-selected subline L428KSA, which have been independently passaged in tissue culture for several years, were studied for possible antigen receptor gene and immunophenotypic differences. Multiple but identical alterations of these genes were found, including: the deletion of one and rearrangement of the other immunoglobulin (Ig) heavy chain allele; the rearrangement of one kappa and one lambda light chain allele; and the rearrangement of one T cell receptor (TCR) beta allele. Restriction mapping of the Ig heavy chain locus indicated that rearrangement of the retained allele produced a JH-C gamma 4 fusion product by an isotype switch mechanism. The 14q+ chromosome [t(14q32;?)] present in both cell cultures derived either from translocation 5' (telomeric) to the rearranged JH allele or 3' (centromeric) to the deleted Ig heavy chain allele and did not involve detectable rearrangement of the c-myc, bcl 1, or bcl 2 oncogenes. No differences in the immunophenotype were found between the L428 and L428KSA cells: both expressed leukocyte activation antigens and some determinants associated with myelomonocytic cells but no lymphoid markers. It is postulated that these phenotypic characteristics derived from secondary genetic events/differentiative reprogramming which produced extinction of primary lymphoid characters, including terminal deoxynucleotidyl transferase (TdT) essential to generation of the Ig and TCR gene rearrangements, and expression of an incomplete set of myelomonocytic markers.

  17. Cell-mediated cytotoxicity. Characterization of the effector cells.

    PubMed Central

    De Bracco, M M; Isturiz, M A; Manni, J A

    1976-01-01

    Isolated human mononuclear cells were fractionated according to their membrane characteristics or physical properties. Adherent cells were depleted by filtration through glass columns; phagocytic cells were removed by iron treatment and cell subpopulations capable of forming rosettes with sheep erythrocytes (E), erythrocyte-antibody-complement (EAC) and chicken erythrocyte-antibody complexes (CEA) were separated by centrifugation of Ficoll-Hypaque gradients. The functional activity of the cell subpopulations obtained was assayed by testing PHA-induced cytoxicity (PIC), antibody-dependent cytoxicity (ADCC) and blast transformation by PHA. The results of this study demonstrate that: (1) cells reacting in PIC and ADCC assays are different, adherent and phagocytic cells being necessary for full expression of PIC and not for ADCC; (2) PHA induces direct blast transformation of purified E-RFC in the absence of PIC cytotoxic cells; (3) cell populations specifically enriched in E or EAC rosette-forming cells are not cytotoxic neither in the PHA nor in antibody mediated cytotoxic assays; (4) cells participating in ADCC can be selectively purified by centrifugation of CEA rosettes. PMID:1254320

  18. MiT Family Translocation-Associated Renal Cell Carcinoma: A Contemporary Update With Emphasis on Morphologic, Immunophenotypic, and Molecular Mimics.

    PubMed

    Magers, Martin J; Udager, Aaron M; Mehra, Rohit

    2015-10-01

    Translocation-associated renal cell carcinoma (t-RCC) is a relatively uncommon subtype of renal cell carcinoma characterized by recurrent gene rearrangements involving the TFE3 or TFEB loci. TFE3 and TFEB are members of the microphthalmia transcription factor (MiT) family, which regulates differentiation in melanocytes and osteoclasts, and MiT family gene fusions activate unique molecular programs that can be detected immunohistochemically. Although the overall clinical behavior of t-RCC is variable, emerging molecular data suggest the possibility of targeted approaches to advanced disease. Thus, distinguishing t-RCC from its morphologic, immunophenotypic, and molecular mimics may have important clinical implications. The differential diagnosis for t-RCC includes a variety of common renal neoplasms, particularly those demonstrating clear cell and papillary features; in addition, because of immunophenotypic overlap and/or shared molecular abnormalities (ie, TFE3 gene rearrangement), a distinctive set of nonepithelial renal tumors may also warrant consideration. Directed ancillary testing is an essential aspect to the workup of t-RCC cases and may include a panel of immunohistochemical stains, such as PAX8, pancytokeratins, epithelial membrane antigen, carbonic anhydrase IX, HMB-45, and Melan-A. Dual-color, break-apart fluorescent in situ hybridization for TFE3 or TFEB gene rearrangement may be helpful in diagnostically challenging cases or when molecular confirmation is needed.

  19. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    PubMed

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  20. Entry of oomycete and fungal effectors into plant and animal host cells.

    PubMed

    Kale, Shiv D; Tyler, Brett M

    2011-12-01

    Fungal and oomycete pathogens cause many destructive diseases of plants and important diseases of humans and other animals. Fungal and oomycete plant pathogens secrete numerous effector proteins that can enter inside host cells to condition susceptibility. Until recently it has been unknown if these effectors enter via pathogen-encoded translocons or via pathogen-independent mechanisms. Here we review recent evidence that many fungal and oomycete effectors enter via receptor-mediated endocytosis, and can do so in the absence of the pathogen. Surprisingly, a large number of these effectors utilize cell surface phosphatidyinositol-3-phosphate (PI-3-P) as a receptor, a molecule previously known only inside cells. Binding of effectors to PI-3-P appears to be mediated by the cell entry motif RXLR in oomycetes, and by diverse RXLR-like variants in fungi. PI-3-P appears to be present on the surface of animal cells also, suggesting that it may mediate entry of effectors of fungal and oomycete animal pathogens, for example, RXLR effectors found in the oomycete fish pathogen, Saprolegnia parasitica. Reagents that can block PI-3-P-mediated entry have been identified, suggesting new therapeutic strategies.

  1. ETV6/RUNX1-like acute lymphoblastic leukemia: A novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype.

    PubMed

    Zaliova, Marketa; Kotrova, Michaela; Bresolin, Silvia; Stuchly, Jan; Stary, Jan; Hrusak, Ondrej; Te Kronnie, Geertruy; Trka, Jan; Zuna, Jan; Vaskova, Martina

    2017-08-01

    We have shown previously that ETV6/RUNX1-positive acute lymphoblastic leukemia (ALL) is distinguishable from other ALL subtypes by CD27(pos) /CD44(low-neg) immunophenotype. During diagnostic immunophenotyping of 573 childhood B-cell precursor ALL (BCP-ALL), we identified eight cases with this immunophenotype among "B-other ALL" (BCP-ALL cases negative for routinely tested chromosomal/genetic aberrations). We aimed to elucidate whether these cases belong to the recently described ETV6/RUNX1-like ALL defined by the ETV6/RUNX1-specific gene expression profile (GEP), harboring concurrent ETV6 and IKZF1 lesions. We performed comprehensive genomic analysis using single nucleotide polymorphism arrays, whole exome and transcriptome sequencing and GEP on microarrays. In unsupervised hierarchical clustering based on GEP, five out of seven analyzed CD27(pos) /CD44(low-neg) B-other cases clustered with ETV6/RUNX1-positive ALL and were thus classified as ETV6/RUNX1-like ALL. The two cases clustering outside ETV6/RUNX1-positive ALL harbored a P2RY8/CRLF2 fusion with activating JAK2 mutations and a TCF3/ZNF384 fusion, respectively, assigning them to other ALL subtypes. All five ETV6/RUNX1-like cases harbored ETV6 deletions; uniform intragenic ARPP21 deletions and various IKZF1 lesions were each found in three ETV6/RUNX1-like cases. The frequency of ETV6 and ARPP21 deletions was significantly higher in ETV6/RUNX1-like ALL compared with a reference cohort of 42 B-other ALL. In conclusion, we show that ETV6/RUNX1-like ALL is associated with CD27(pos) /CD44(low-neg) immunophenotype and identify ARPP21 deletions to contribute to its specific genomic profile enriched for ETV6 and IKZF1 lesions. In conjunction with previously published data, our study identifies the ETV6 lesion as the only common genetic aberration and thus the most likely key driver of ETV6/RUNX1-like ALL. © 2017 Wiley Periodicals, Inc.

  2. Manipulation of plant cells by cyst and root-knot nematode effectors.

    PubMed

    Hewezi, Tarek; Baum, Thomas J

    2013-01-01

    A key feature of sedentary plant-parasitic nematodes is the release of effector proteins from their esophageal gland cells through their stylets into host roots. These proteinaceous stylet secretions have been shown to be crucial for successful parasitism by mediating the transition of normal root cells into specialized feeding sites and by negating plant defenses. Recent technical advances of purifying mRNA from esophageal gland cells of plant-parasitic nematodes coupled with emerging sequencing technologies is steadily expanding our knowledge of nematode effector repertoires. Host targets and biological activities of a number of nematode effectors are continuously being reported and, by now, a first picture of the complexity of sedentary nematode parasitism at the molecular level is starting to take shape. In this review, we highlight effector mechanisms that recently have been uncovered by studying the host-pathogen interaction. These mechanisms range from mediating susceptibility of host plants to the actual triggering of defense responses. In particular, we portray and discuss the mechanisms by which nematode effectors modify plant cell walls, negate host defense responses, alter auxin and polyamine signaling, mimic plant molecules, regulate stress signaling, and activate hypersensitive responses. Continuous molecular characterization of newly discovered nematode effectors will be needed to determine how these effectors orchestrate host signaling pathways and biological processes leading to successful parasitism.

  3. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy

    PubMed Central

    Powell, Daniel J.; Dudley, Mark E.; Robbins, Paul F.; Rosenberg, Steven A.

    2007-01-01

    In humans, the pathways of memory T-cell differentiation remain poorly defined. Recently, adoptive cell transfer (ACT) of tumor-reactive T lymphocytes to metastatic melanoma patients after nonmyeloablative chemotherapy has resulted in persistence of functional, tumor-reactive lymphocytes, regression of disease, and induction of melanocyte-directed autoimmunity in some responding patients. In the current study, longitudinal phenotypic analysis was performed on melanoma antigen–specific CD8+ T cells during their transition from in vitro cultured effector cells to long-term persistent memory cells following ACT to 6 responding patients. Tumor-reactive T cells used for therapy were generally late-stage effector cells with a CD27Lo CD28Lo CD45RA− CD62 ligand− (CD62L−) CC chemokine receptor 7− (CCR7−) interleukin-7 receptor αLo (IL-7RαLo) phenotype. After transfer, rapid up-regulation and continued expression of IL-7Rα in vivo suggested an important role for IL-7R in immediate and long-term T-cell survival. Although the tumor antigen–specific T-cell population contracted between 1 and 4 weeks after transfer, stable numbers of CD27+ CD28+ tumor-reactive T cells were maintained, demonstrating their contribution to the development of long-term, melanoma-reactive memory CD8+ T cells in vivo. At 2 months after transfer, melanoma-reactive T cells persisted at high levels and displayed an effector memory phenotype, including a CD27+ CD28+ CD62L− CCR7− profile, which may explain in part their ability to mediate tumor destruction. PMID:15345595

  4. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible.

    PubMed

    Tyler, Brett M; Kale, Shiv D; Wang, Qunqing; Tao, Kai; Clark, Helen R; Drews, Kelly; Antignani, Vincenzo; Rumore, Amanda; Hayes, Tristan; Plett, Jonathan M; Fudal, Isabelle; Gu, Biao; Chen, Qinghe; Affeldt, Katharyn J; Berthier, Erwin; Fischer, Gregory J; Dou, Daolong; Shan, Weixing; Keller, Nancy P; Martin, Francis; Rouxel, Thierry; Lawrence, Christopher B

    2013-06-01

    A wide diversity of pathogens and mutualists of plant and animal hosts, including oomycetes and fungi, produce effector proteins that enter the cytoplasm of host cells. A major question has been whether or not entry by these effectors can occur independently of the microbe or requires machinery provided by the microbe. Numerous publications have documented that oomycete RxLR effectors and fungal RxLR-like effectors can enter plant and animal cells independent of the microbe. A recent reexamination of whether the RxLR domain of oomycete RxLR effectors is sufficient for microbe-independent entry into host cells concluded that the RxLR domains of Phytophthora infestans Avr3a and of P. sojae Avr1b alone are NOT sufficient to enable microbe-independent entry of proteins into host and nonhost plant and animal cells. Here, we present new, more detailed data that unambiguously demonstrate that the RxLR domain of Avr1b does show efficient and specific entry into soybean root cells and also into wheat leaf cells, at levels well above background nonspecific entry. We also summarize host cell entry experiments with a wide diversity of oomycete and fungal effectors with RxLR or RxLR-like motifs that have been independently carried out by the seven different labs that coauthored this letter. Finally we discuss possible technical reasons why specific cell entry may have been not detected by Wawra et al. (2013).

  5. Mcl-1 regulates effector and memory CD8 T-cell differentiation during acute viral infection.

    PubMed

    Kim, Eui Ho; Neldner, Brandon; Gui, Jingang; Craig, Ruth W; Suresh, M

    2016-03-01

    Mcl-1, an anti-apoptotic member of Bcl-2 family maintains cell viability during clonal expansion of CD8 T cells, but the cell intrinsic role of Mcl-1 in contraction of effectors or the number of memory CD8 T cells is unknown. Mcl-1 levels decline during the contraction phase but rebound to high levels in memory CD8 T cells. Therefore, by overexpressing Mcl-1 in CD8 T cells we asked whether limiting levels of Mcl-1 promote contraction of effectors and constrain CD8 T-cell memory. Mcl-1 overexpression failed to affect CD8 T-cell expansion, contraction or the magnitude of CD8 T-cell memory. Strikingly, high Mcl-1 levels enhanced mTOR phosphorylation and augmented the differentiation of terminal effector cells and effector memory CD8 T cells to the detriment of poly-cytokine-producing central memory CD8 T cells. Taken together, these findings provided unexpected insights into the role of Mcl-1 in the differentiation of effector and memory CD8 T cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin

    PubMed Central

    Fallah-Arani, Farnaz; Conlan, Thomas; Trouillet, Celine; Goold, Hugh; Chorro, Laurent; Flutter, Barry; Means, Terry K.; Geissmann, Frédéric; Chakraverty, Ronjon

    2011-01-01

    Langerhans cells (LCs) are a distinct population of dendritic cells that form a contiguous network in the epidermis of the skin. Although LCs possess many of the properties of highly proficient dendritic cells, recent studies have indicated that they are not necessary to initiate cutaneous immunity. In this study, we used a tractable model of cutaneous GVHD, induced by topical application of a Toll-like receptor agonist, to explore the role of LCs in the development of tissue injury. By adapting this model to permit inducible and selective depletion of host LCs, we found that GVHD was significantly reduced when LCs were absent. However, LCs were not required either for CD8 T-cell activation within the draining lymph node or subsequent homing of effector cells to the epidermis. Instead, we found that LCs were necessary for inducing transcription of IFN-γ and other key effector molecules by donor CD8 cells in the epidermis, indicating that they license CD8 cells to induce epithelial injury. These data demonstrate a novel regulatory role for epidermal LCs during the effector phase of an inflammatory immune response in the skin. PMID:21566096

  7. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice

    PubMed Central

    Wang, Xiuli; Berger, Carolina; Wong, ChingLam W.; Forman, Stephen J.; Riddell, Stanley R.

    2011-01-01

    In clinical trials of adoptive T-cell therapy, the persistence of transferred cells correlates with therapeutic efficacy. However, properties of human T cells that enable their persistence in vivo are poorly understood, and model systems that enable investigation of the fate of human effector T cells (TE) have not been described. Here, we analyzed the engraftment of adoptively transferred human cytomegalovirus pp65-specific CD8+ TE cells derived from purified CD45RO+CD62L+ central memory (TCM) or CD45RO+CD62L− effector memory (TEM) precursors in an immunodeficient mouse model. The engraftment of TCM-derived effector cells (TCM/E) was dependent on human interleukin-15, and superior in magnitude and duration to TEM-derived effector cells (TEM/E). T-cell receptor Vβ analysis of persisting cells demonstrated that CD8+ TCM/E engraftment was polyclonal, suggesting that the ability to engraft is a general feature of TCM/E. CD8+ TEM/E proliferated extensively after transfer but underwent rapid apoptosis. In contrast, TCM/E were less prone to apoptosis and established a persistent reservoir of functional T cells in vivo characterized by higher CD28 expression. These studies predict that human CD8+ effector T cells derived from TCM precursors may be preferred for adoptive therapy based on superior engraftment fitness. PMID:21123821

  8. Pluripotent allospecific CD8+ effector T cells traffic to lung in murine obliterative airway disease.

    PubMed

    West, Erin E; Lavoie, Tera L; Orens, Jonathan B; Chen, Edward S; Ye, Shui Q; Finkelman, Fred D; Garcia, Joe G N; McDyer, John F

    2006-01-01

    Long-term success in lung transplantation is limited by obliterative bronchiolitis, whereas T cell effector mechanisms in this process remain incompletely understood. Using the mouse heterotopic allogeneic airway transplant model, we studied T cell effector responses during obliterative airways disease (OAD). Allospecific CD8+ IFN-gamma+ T cells were detected in airway allografts, with significant coexpression of TNF-alpha and granzyme B. Therefore, using IFN-gamma as a surrogate marker, we assessed the distribution and kinetics of extragraft allo-specific T cells during OAD. Robust allospecific IFN-gamma was produced by draining the lymph nodes, spleen, and lung mononuclear cells from allograft, but not isograft recipients by Day 14, and significantly decreased by Day 28. Although the majority of allospecific T cells were CD8+, allospecific CD4+ T cells were also detected in these compartments, with each employing distinct allorecognition pathways. An influx of pluripotent CD8+ effector cells with a memory phenotype were detected in the lung during OAD similar to those seen in the allografts and secondary lymphoid tissue. Antibody depletion of CD8+ T cells markedly reduced airway lumen obliteration and fibrosis at Day 28. Together, these data demonstrate that allospecific CD8+ effector T cells play an important role in OAD and traffic to the lung after heterotopic airway transplant, suggesting that the lung is an important immunologic site, and perhaps a reservoir, for effector cells during the rejection process.

  9. From GFP to β-lactamase: advancing intact cell imaging for toxins and effectors

    PubMed Central

    Zuverink, Madison; Barbieri, Joseph T.

    2015-01-01

    Canonical reporters such as green fluorescent protein (GFP) and luciferase have assisted researchers in probing cellular pathways and processes. Prior research in pathogenesis depended on sensitivity of biochemical and biophysical techniques to identify effectors and elucidate entry mechanisms. Recently, the β-lactamase (βlac) reporter system has advanced toxin and effector reporting by permitting measurement of βlac delivery into the cytosol or host βlac expression in intact cells. βlac measurement in cells was facilitated by the development of the fluorogenic substrate, CCF2-AM, to identify novel effectors, target cells, and domains involved in bacterial pathogenesis. The assay is also adaptable for high-throughput screening of small molecule inhibitors against toxins, providing information on mechanism and potential therapeutic agents. The versatility and limitations of the βlac reporter system as applied to toxins and effectors are discussed in this review. PMID:26500183

  10. Dendritic cell type-specific HIV-1 activation in effector T cells: implications for latent HIV-1 reservoir establishment.

    PubMed

    van der Sluis, Renée M; van Capel, Toni M M; Speijer, Dave; Sanders, Rogier W; Berkhout, Ben; de Jong, Esther C; Jeeninga, Rienk E; van Montfort, Thijs

    2015-06-01

    Latent HIV type I (HIV-1) infections can frequently occur in short-lived proliferating effector T lymphocytes. These latently infected cells could revert into resting T lymphocytes and thereby contribute to the establishment of the long-lived viral reservoir. Monocyte-derived dendritic cells can revert latency in effector T cells in vitro. Here we investigated the latency activation properties of tissue-specific immune cells, including a large panel of dendritic cell subsets, to explore in which body compartments effector T cells are most likely to maintain latent HIV-1 provirus and thus potentially contribute to the long-lived reservoir. Our results demonstrate that blood or genital tract dendritic cells do not activate latent provirus in effector T cells, whereas gut or lymphoid dendritic cells induce virus production from latently infected effector T cells in our in-vitro model for latency. Toll-like receptor 3-induced interferon production by myeloid dendritic cells abolished the dendritic cells' ability to induce viral gene expression. In this study, we show that HIV-1 provirus residing in effector T cells is activated from latency by tissue-specific dendritic cell subsets and other immune cells with remarkably different efficiencies.Our new assay system points to an important, neglected aspect of HIV-1 research: the ability of other immune cells, especially dendritic cells, to differentially affect latency establishment as well as virus reactivation.

  11. Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with Feraheme for cellular MRI.

    PubMed

    Siegers, Gabrielle M; Ribot, Emeline J; Keating, Armand; Foster, Paula J

    2013-03-01

    Gamma delta T cells (GDTc) comprise a small subset of cytolytic T cells shown to kill malignant cells in vitro and in vivo. We have developed a novel protocol to expand GDTc from human blood whereby GDTc were initially expanded in the presence of alpha beta T cells (ABTc) that were then depleted prior to use. We achieved clinically relevant expansions of up to 18,485-fold total GDTc, with 18,849-fold expansion of the Vδ1 GDTc subset over 21 days. ABTc depletion yielded 88.1 ± 4.2 % GDTc purity, and GDTc continued to expand after separation. Immunophenotyping revealed that expanded GDTc were mostly CD27-CD45RA- and CD27-CD45RA+ effector memory cells. GDTc cytotoxicity against PC-3M prostate cancer, U87 glioblastoma and EM-2 leukemia cells was confirmed. Both expanded Vδ1 and Vδ2 GDTc were cytotoxic to PC-3M in a T cell antigen receptor- and CD18-dependent manner. We are the first to label GDTc with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles for cellular MRI. Using protamine sulfate and magnetofection, we achieved up to 40 % labeling with clinically approved Feraheme (Ferumoxytol), as determined by enumeration of Perls' Prussian blue-stained cytospins. Electron microscopy at 2,800× magnification verified the presence of internalized clusters of iron oxide; however, high iron uptake correlated negatively with cell viability. We found improved USPIO uptake later in culture. MRI of GDTc in agarose phantoms was performed at 3 Tesla. The signal-to-noise ratios for unlabeled and labeled cells were 56 and 21, respectively. Thus, Feraheme-labeled GDTc could be readily detected in vitro via MRI.

  12. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells

    PubMed Central

    Jacobsen, Elizabeth A.; Ochkur, Sergei I.; Pero, Ralph S.; Taranova, Anna G.; Protheroe, Cheryl A.; Colbert, Dana C.; Lee, Nancy A.; Lee, James J.

    2008-01-01

    The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells. PMID:18316417

  13. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.

    PubMed

    Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J

    2014-09-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.

  14. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita

    PubMed Central

    Rutter, William B.; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R.; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S.; Baum, Thomas J.

    2014-01-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins, which M. incognita secretes into its host plants during infection, is an important step towards finding new ways to manage this pest. In this study we have identified the cDNAs for 18 putative effectors, i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants. These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically up-regulated during different stages of the nematode’s life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of Meloidogyne hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed, and reproduce on their host plants. Future studies investigating the roles these proteins play in planta will help mitigate the effects of this damaging pest. PMID:24875667

  15. Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells.

    PubMed

    Chung, Shan; Lin, Yuwen L; Reed, Chae; Ng, Carl; Cheng, Zhijie Jey; Malavasi, Fabio; Yang, Jihong; Quarmby, Valerie; Song, An

    2014-05-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action implicated in the clinical efficacy of several therapeutic antibodies. In vitro ADCC assays employing effector cells capable of inducing lysis of target cells bound by antibodies are routinely performed to support the research and development of therapeutic antibodies. ADCC assays are commonly performed using peripheral blood mononuclear cells (PBMCs), natural killer (NK) cells or engineered cell lines as effector cells. In this study we evaluated the impact of different effector cell types including primary PBMCs, primary NK cells, engineered NK cell lines, and an engineered reporter cell line, on the in vitro ADCC activity of two glycoforms of a humanized IgG1 antibody. The results of this study show the differential effects on both the efficacy and potency of the antibodies by different effector cells and the finding that both the allotype and the expression level of CD16a affect the potency of effector cells in ADCC assays. Our results also show that engineered NK or reporter cell lines provide reduced variability compared to primary effector cells for in vitro ADCC assays.

  16. Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay

    PubMed Central

    Shafer-Weaver, Kimberly A; Sayers, Thomas; Kuhns, Douglas B; Strobl, Susan L; Burkett, Mark W; Baseler, Michael; Malyguine, Anatoli

    2004-01-01

    Background This study assessed the Granzyme B (GrB) ELISPOT as a viable alternative to the 51Cr-release assay for measuring cytotoxic activity of innate immune effector cells. We strategically selected the GrB ELISPOT assay because GrB is a hallmark effector molecule of cell-mediated destruction of target cells. Methods We optimized the GrB ELISPOT assay using the human-derived TALL-104 cytotoxic cell line as effectors against K562 target cells. Titration studies were performed to assess whether the ELISPOT assay could accurately enumerate the number of GrB-secreting effector cells. TALL-104 were treated with various secretion inhibitors and utilized in the GrB ELISPOT to determine if GrB measured in the ELISPOT was due to degranulation of effector cells. Additionally, CD107a expression on effector cells after effector-target interaction was utilized to further confirm the mechanism of GrB release by TALL-104 and lymphokine-activated killer (LAK) cells. Direct comparisons between the GrB ELISPOT, the IFN-γ ELISPOT and the standard 51Cr-release assays were made using human LAK cells. Results Titration studies demonstrated a strong correlation between the number of TALL-104 and LAK effector cells and the number of GrB spots per well. GrB secretion was detectable within 10 min of effector-target contact with optimal secretion observed at 3–4 h; in contrast, optimal IFN-γ secretion was not observed until 24 h. The protein secretion inhibitor, brefeldin A, did not inhibit the release of GrB but did abrogate IFN-γ production by TALL-104 cells. GrB secretion was abrogated by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid tetra(acetoxymethyl) ester), which sequesters intracellular Ca2+, thereby preventing degranulation. The number of effector cells expressing the degranulation associated glycoprotein CD107a increased after interaction with target cells and correlated with the stimulated release of GrB measured in the ELISPOT assay. Conclusions

  17. Analysis of clinical and immunophenotypic features along with treatment outcomes of diffuse large B cell lymphoma patients, based on the involvement of nodal or extranodal primary sites.

    PubMed

    Wang, Cong; Li, Wei; Liu, Chunshui; He, Hua; Bai, Ou

    2016-03-01

    The aim of the present study was to elucidate the clinical features, immunophenotype and treatment outcomes of diffuse large B cell lymphoma (DLBCL) patients based on the involvement of the primary site i.e. lymph node or specific extranodal sites. We analyzed the clinical characteristics, immunophenotype and treatment outcomes of 207 DLBCL patients diagnosed in China between 2007 and 2014 based on the primary site of location. Based on the involvement of primary site of occurrence, DLBCL cases, were classified into different groups like, lymph node (60 cases, 28.98%), gastrointestinal tract (GI) (53 cases, 25.60%), Waldeyer's ring (WR) (31 cases, 14.97%), gland (25 cases, 12.08%), and other extranodal sites (38 cases, 18.36%). Patients with WR involvement were more frequently associated with early stage disease, favorable performance status, absence of bulky disease, normal LDH and ESR levels, and low- or low/intermediate-risk IPI than the other groups. The proportion of DLBCL patients with germinal center B cell (GCB) phenotype was 56.0% for WR, 46.5% for GI, 34.5% for lymph node, 27.8% for other extranodal sites, and 18.2% for gland (P=0.035). The 5-year overall survival (OS) of the entire patient population was 71.1%, and WR group showed a better outcome than nodal group (84.9% vs. 55.9%, P=0.015). In multivariate analysis, bulky disease, bone marrow infiltration, non-GCB phenotype, intermediate/high- or high-risk IPI and SD/PD/Death after first therapy were identified as independent factors for poor OS, while regular application of rituximab and remission after first therapy were identified as favorable prognostic factors for PFS. In this study, WR involvement was associated with more favorable clinical & pathological features along with better outcome than nodal lymphoma. The OS and PFS were largely dependent on other prognostic variables such as IPI or immunophenotype instead of the sites of involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    PubMed

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. © 2015 John Wiley & Sons Ltd.

  19. Cervical cancer cells suppress effector functions of cytotoxic T cells through the adenosinergic pathway.

    PubMed

    Mora-García, M L; Ávila-Ibarra, L R; García-Rocha, R; Weiss-Steider, B; Hernández-Montes, J; Don-López, C A; Gutiérrez-Serrano, V; Titla-Vilchis, I J; Fuentes-Castañeda, M C; Monroy-Mora, A; Jave-Suárez, L F; Chacón-Salinas, R; Vallejo-Castillo, L; Pérez-Tapia, S M; Monroy-García, A

    2017-09-07

    The expression of CD73 in tumor cells plays a significant role in the production of adenosine (Ado) that suppresses antitumor effector cells. In this study we analyzed the capability of HPV-positive (HPV+) cervical cancer (CeCa) cell lines CaSki, SiHa, HeLa, and RoVa; and HPV-negative (HPV-) cell lines C33A and ViBo to produce Ado and inhibit effector functions of CD8+ T cells. HPV+ CeCa cells expressed significantly higher levels of CD73 in the membrane (p<0.01) than HPV- CeCa cells and this expression was associated with the production of larger amounts of Ado (>400μM) compared to HPV-CeCa cells (<200μM) in the presence of AMP, as well asa stronger inhibition of (>50%) proliferation, activation, and cytotoxic activity of CD8+ T cells via interaction with A2A adenosine receptor. We also provide evidence that silenced E6/E7 expression in CeCa cells, strongly reduced its CD73 expression level and its capability to generate Ado. This results suggest that HPV infection, which is associated with more than 99% of CeCa cases, may present an increased constitutive expression of CD73 in cervical neoplasia to contribute to the suppression of the immune response mediated by the production of large amounts of Ado. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Role of effector cells (CCR7(-)CD27(-)) and effector-memory cells (CCR7(-)CD27(+)) in drug-induced maculopapular exanthema.

    PubMed

    Fernandez, T D; Torres, M J; Lopez, S; Antunez, C; Gomez, E; Del Prado, M F; Canto, G; Blanca, M; Mayorga, C

    2010-01-01

    Maculopapular exanthema (MPE) induced by drugs is a T-cell mediated reaction and effector cells may play an important role in its development. We assessed the effector and cutaneous homing phenotype in peripheral blood cells from allergic patients after drug stimulation. This study included 10 patients and 10 controls. The effector phenotype (CCR7(-)CD27(+/-)), chemokine receptors (CCR4 and CCR10), and activation (CD25(low)) and regulatory markers (CD25(high)) were measured by flow cytometry in both peripheral blood mononuclear cells (PBMCs) and CD4-T-lymphocytes. Proliferation was determined by 5-(-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) assay and the migratory capacity by a chemotaxis assay using CCL17 and CCL27. Compared to controls, CCR7(-)CD27(-) cells were increased in patients without (p=0.003) and with drug stimulation (p less than 0.001) and had significantly higher proliferation (p=0.010). CCR10 expression was increased in patients after drug stimulation in total and memory CD27(+) T-cells. Lymphocyte migration with CCL27 was higher in patients with drug stimulation (p=0.048), with a decrease in CCR7(-)CD27(-) (p less than 0.0001) and an increase in CCR7(-)CD27(+) (p=0.017). In patients, CD4-T-lymphocytes were significantly activated after drug stimulation (p less than 0.001). In conclusion, we show that effector memory CD4(+) T-cells (CCR7(-)CD27(+)) respond specifically to the drug responsible for MPE and confirm previous data about the involvement of CCR10 in cell trafficking to the skin.

  1. OX40 controls effector CD4+ T-cell expansion, not follicular T helper cell generation in acute Listeria infection.

    PubMed

    Marriott, Clare L; Mackley, Emma C; Ferreira, Cristina; Veldhoen, Marc; Yagita, Hideo; Withers, David R

    2014-08-01

    To investigate the importance of OX40 signals for physiological CD4(+) T-cell responses, an endogenous antigen-specific population of CD4(+) T cells that recognise the 2W1S peptide was assessed and temporal control of OX40 signals was achieved using blocking or agonistic antibodies (Abs) in vivo. Following infection with Listeria monocytogenes expressing 2W1S peptide, OX40 was briefly expressed by the responding 2W1S-specific CD4(+) T cells, but only on a subset that co-expressed effector cell markers. This population was specifically expanded by Ab-ligation of OX40 during priming, which also caused skewing of the memory response towards effector memory cells. Strikingly, this greatly enhanced effector response was accompanied by the loss of T follicular helper (TFH) cells and germinal centres. Mice deficient in OX40 and CD30 showed normal generation of TFH cells but impaired numbers of 2W1S-specific effector cells. OX40 was not expressed by 2W1S-specific memory cells, although it was rapidly up-regulated upon challenge whereupon Ab-ligation of OX40 specifically affected the effector subset. In summary, these data indicate that for CD4(+) T cells, OX40 signals are important for generation of effector T cells rather than TFH cells in this response to acute bacterial infection.

  2. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology.

    PubMed

    Fioravanti, Jessica; Di Lucia, Pietro; Magini, Diletta; Moalli, Federica; Boni, Carolina; Benechet, Alexandre Pierre; Fumagalli, Valeria; Inverso, Donato; Vecchi, Andrea; Fiocchi, Amleto; Wieland, Stefan; Purcell, Robert; Ferrari, Carlo; Chisari, Francis V; Guidotti, Luca G; Iannacone, Matteo

    2017-09-01

    Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8(+) T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8(+) T cell-derived IL-10 in liver immunopathology. Mouse HBV-specific effector CD8(+) T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8(+) T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8(+) T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8(+) T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8(+) T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. Effector CD8(+) T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8(+) T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8(+) T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage− cells

    PubMed Central

    Almeida, J; Bueno, C; Alguero, M C; Sanchez, M L; Cañizo, M C; Fernandez, M E; Vaquero, J M; Laso, F J; Escribano, L; San Miguel, J F; Orfao, A

    1999-01-01

    Dendritic cells (DC) represent the most powerful professional antigen-presenting cells (APC) in the immune system. The aim of the present study was to analyse, on a single-cell basis by multiparametric flow cytometry with simultaneous four-colour staining and a two-step acquisition procedure, the immunophenotypic profile and cytokine production of DC from 67 normal whole peripheral blood (PB) samples. Two clearly different subsets of HLA-II+/lineage− were identified on the basis of their distinct phenotypic characteristics: one DC subset was CD33strong+ and CD123dim+ (0.16 ± 0.06% of the PB nucleated cells and 55.9 ± 11.9% of all PB DC) and the other, CD33dim+ and CD123strong+ (0.12 ± 0.04% of PB nucleated cells and 44.53 ± 11.5% of all PB DC). Moreover, the former DC subpopulation clearly showed higher expression of the CD13 myeloid-associated antigen, the CD29 and CD58 adhesion molecules, the CD2, CD5 and CD86 costimulatory molecules, the CD32 IgG receptor and the CD11c complement receptor. In addition, these cells showed stronger HLA-DR and HLA-DQ expression and a higher reactivity for the IL-6 receptor α-chain (CD126) and for CD38. In contrast, the CD123strong+/CD33dim+ DC showed a stronger reactivity for the CD4 and CD45RA molecules, whereas they did not express the CD58, CD5, CD11c and CD13 antigens. Regarding cytokine production, our results show that while the CD33strong+/CD123dim+ DC are able to produce significant amounts of inflammatory cytokines, such as IL-1β (97 ± 5% of positive cells), IL-6 (96 ± 1.1% of positive cells), IL-12 (81.5 ± 15.5% of positive cells) and tumour necrosis factor-alpha (TNF-α) (84 ± 22.1% of positive cells) as well as chemokines such as IL-8 (99 ± 1% of positive cells), the functional ability of the CD123strong+/CD33dim+ DC subset to produce cytokines under the same conditions was almost null. Our results therefore clearly show the presence of two distinct subsets of DC in normal human PB, which differ not only in

  4. Studying the Human Immunome: The Complexity of Comprehensive Leukocyte Immunophenotyping

    PubMed Central

    Biancotto, Angélique

    2014-01-01

    A comprehensive study of the cellular components of the immune system requires both deep and broad immunophenotyping of numerous cell populations in an efficient and practical manner. In this chapter, we describe the technical aspects of studying the human immunome using high-dimensional (15 color) fluorescence-based immunophenotyping. We focus on the technical aspects of polychromatic flow cytometry and the initial stages in developing a panel for comprehensive leukocyte immunophenotyping (CLIP). We also briefly discuss how this panel is being used and the challenges of encyclopedic analysis of these rich data sets. PMID:23975032

  5. Studying the human immunome: the complexity of comprehensive leukocyte immunophenotyping.

    PubMed

    Biancotto, Angélique; McCoy, J Philip

    2014-01-01

    A comprehensive study of the cellular components of the immune system requires both deep and broad immunophenotyping of numerous cell populations in an efficient and practical manner. In this chapter, we describe the technical aspects of studying the human immunome using high-dimensional (15 color) fluorescence-based immunophenotyping. We focus on the technical aspects of polychromatic flow cytometry and the initial stages in developing a panel for comprehensive leukocyte immunophenotyping (CLIP). We also briefly discuss how this panel is being used and the challenges of encyclopedic analysis of these rich data sets.

  6. Pathogen induced inflammatory environment controls effector and memory CD8+ T cell differentiation1

    PubMed Central

    Obar, Joshua J.; Jellison, Evan R.; Sheridan, Brian S.; Blair, David A.; Pham, Quynh-Mai; Zickovich, Julianne M.; Lefrançois, Leo

    2011-01-01

    In response to infection CD8+ T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived (SLEC; CD127lowKLRG1high) and memory-precursor (MPEC; CD127highKLRG1low) effector cells from an early-effector cell (EEC) that is CD127lowKLRG1low in phenotype. CD8+ T cell differentiation during vesicular stomatitis virus (VSV) infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in EEC differentiation into SLECs. SLEC generationwas dependent on Ebi3 expression. Furthermore, SLEC differentiation during VSV infection wasenhanced by administration ofCpG-DNA, through an IL-12 dependent mechanism. Moreover, CpG-DNAtreatment enhanced effector CD8+ T cell functionality and memory subset distribution, but in an IL-12 independent manner. Population dynamics were dramatically different during secondary CD8+ T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127highKLRG1highmemory cells, both of which were intrinsic to the memory CD8+ T cell. These subsets persisted for several months, but were less effective in recall than MPECs. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8+ T cell differentiation. PMID:21987662

  7. Innate-like effector differentiation of human invariant NKT cells driven by IL-7.

    PubMed

    de Lalla, Claudia; Festuccia, Nicola; Albrecht, Inka; Chang, Hyun-Dong; Andolfi, Grazia; Benninghoff, Ulrike; Bombelli, Ferdinando; Borsellino, Giovanna; Aiuti, Alessandro; Radbruch, Andreas; Dellabona, Paolo; Casorati, Giulia

    2008-04-01

    Conventional MHC-restricted T lymphocytes leave thymus with a naive phenotype and require Ag-dependent stimulation coupled to proliferation to acquire effector functions. Invariant (i)NKT cells are a subset of T lymphocytes considered innate because they display an effector memory phenotype independent of TCR stimulation by foreign Ags. We investigated the effector differentiation program followed by human iNKT cells by studying cells from a relevant set of fetal thymi and umbilical cord blood samples. We find that human fetal iNKT cells have already started a differentiation program that activates the epigenetic and transcriptional control of ifng and il4 genes, leading at birth to cells that express these cytokines upon TCR signaling but independently of proliferation in vitro. Both ex vivo and in vitro analysis of fetal and neonatal iNKT cells delineate an effector differentiation program linked to cell division in vivo, and they identify IL-7 as one of the crucial signals driving this program in the apparent absence of Ag stimulation. Consistent with these data, human fetal and neonatal iNKT cells are hyperresponsive in vitro to IL-7 in comparison to conventional T cells, owing to an increased expression and signaling function of the IL-7 receptor alpha-chain. The innate nature of human iNKT cells could thus derive from lineage-specific developmental cues that selectively make these cells efficient IL-7 responders following thymic selection.

  8. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis.

    PubMed

    Ota, Yuri; Niiro, Hiroaki; Ota, Shun-Ichiro; Ueki, Naoko; Tsuzuki, Hirofumi; Nakayama, Tsuyoshi; Mishima, Koji; Higashioka, Kazuhiko; Jabbarzadeh-Tabrizi, Siamak; Mitoma, Hiroki; Akahoshi, Mitsuteru; Arinobu, Yojiro; Kukita, Akiko; Yamada, Hisakata; Tsukamoto, Hiroshi; Akashi, Koichi

    2016-03-16

    The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T-B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL(+) effector B cells and their impacts on osteoclast differentiation. Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. RANKL expression was accentuated in CD80(+)CD86(+) B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3(+)RANKL(+) effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL(+) effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Our current findings have shed light on the generation mechanism of pathogenic RANKL(+) effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future.

  9. Bacterial effectors target the plant cell nucleus to subvert host transcription

    PubMed Central

    Canonne, Joanne; Rivas, Susana

    2012-01-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) directly target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells. PMID:22353865

  10. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells.

    PubMed

    Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M

    2010-07-23

    Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues.

  11. Inhibition of murine nephritogenic effector T cells by a clone-specific suppressor factor.

    PubMed Central

    Meyers, C M; Kelly, C J

    1994-01-01

    We have used a murine model of organ-specific autoimmunity to characterize therapeutic modalities capable of down-regulating the cellular limb of the autoimmune response. Murine interstitial nephritis is an autoimmune disease mediated by tubular antigen-specific CD8+ nephritogenic effector T cells which are delayed-type hypersensitivity (DTH) reactive and cytotoxic to renal epithelial cells. Previous studies have demonstrated that disease can be suppressed with experimentally induced populations of T cells (Ts1 and Ts2 cells) obtained after injection of tubular antigen-coupled splenocytes into syngeneic mice. As the target of Ts2 is the CD8+ effector T cell, we have evaluated its effects on nephritogenic effector T cell clones isolated from diseased animals. Our studies demonstrate that soluble proteins expressed by Ts2 cells (TsF2) specifically abrogate the DTH, cytotoxic, and nephritogenic potential of M52 cells, although T cell receptor and IL-2 receptor expression are unchanged in these unresponsive M52 clones. TsF2-induced inhibition is dependent on new mRNA and protein synthesis. In a cytotoxic clone, M52.26, exposure to TsF2 induces expression of TGF-beta 1 which is, in turn, required for inhibition of cytotoxicity and nephritogenicity. Our studies are consistent with TGF-beta 1 behaving, at least in some T cells, as a nonspecific final effector of clone-specific suppression. Images PMID:7962556

  12. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection.

    PubMed

    Tubo, Noah J; Pagán, Antonio J; Taylor, Justin J; Nelson, Ryan W; Linehan, Jonathan L; Ertelt, James M; Huseby, Eric S; Way, Sing Sing; Jenkins, Marc K

    2013-05-09

    A naive CD4(+) T cell population specific for a microbial peptide:major histocompatibility complex II ligand (p:MHCII) typically consists of about 100 cells, each with a different T cell receptor (TCR). Following infection, this population produces a consistent ratio of effector cells that activate microbicidal functions of macrophages or help B cells make antibodies. We studied the mechanism that underlies this division of labor by tracking the progeny of single naive T cells. Different naive cells produced distinct ratios of macrophage and B cell helpers but yielded the characteristic ratio when averaged together. The effector cell pattern produced by a given naive cell correlated with the TCR-p:MHCII dwell time or the amount of p:MHCII. Thus, the consistent production of effector cell subsets by a polyclonal population of naive cells results from averaging the diverse behaviors of individual clones, which are instructed in part by the strength of TCR signaling.

  13. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    PubMed Central

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  14. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling.

    PubMed

    Robson, Neil C; Hidalgo, Laura; McAlpine, Tristan; Wei, Heng; Martínez, Víctor G; Entrena, Ana; Melen, Gustavo J; MacDonald, Andrew S; Phythian-Adams, Alexander; Sacedón, Rosa; Maraskovsky, Eugene; Cebon, Jonathan; Ramírez, Manuel; Vicente, Angeles; Varas, Alberto

    2014-09-15

    Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions that are inhibited by the prototypic Th2 cytokine IL4 and the TGFβ superfamily members TGFβ1 and activin-A. Interestingly, the largest subgroup of the TGFβ superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling on NK cell effector functions have not been evaluated. Here, we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8, which mediate BMP family member signaling. In opposition to the inhibitory effects of TGFβ1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L-activated NK cells revealed that BMP signaling optimized IFNγ and global cytokine and chemokine production, phenotypic activation and proliferation, and autologous dendritic cell activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one that might be therapeutically manipulated to help eradicate tumors. Cancer Res; 74(18); 5019-31. ©2014 AACR.

  15. The Cell Death Triggered by the Nuclear Localized RxLR Effector PITG_22798 from Phytophthora infestans Is Suppressed by the Effector AVR3b.

    PubMed

    Wang, Hongyang; Ren, Yajuan; Zhou, Jing; Du, Juan; Hou, Juan; Jiang, Rui; Wang, Haixia; Tian, Zhendong; Xie, Conghua

    2017-02-14

    Phytopathogenic oomycetes, such as Phytophthora infestans, potentially secrete many RxLR effector proteins into plant cells to modulate plant immune responses and promote colonization. However, the molecular mechanisms by which these RxLR effectors suppress plant immune responses are largely unknown. Here we describe an RxLR effector PITG_22798 (Gene accession: XM_002998349) that was upregulated during early infection of potato by P. infestans. By employment of agroinfiltration, we observed that PITG_22798 triggers cell death in Nicotiana benthamiana. Confocal microscopic examination showed that PITG_22798-GFP (Green Fluorescent Protein) located in the host nucleus when expressed transiently in N. benthamiana leaves. A nuclear localization signal (NLS) domain of PITG_22798 is important for nuclear localization and cell death-inducing activity. Sequence alignment and transient expression showed that PITG_22798 from diverse P. infestans isolates are conserved, and transient expression of PITG_22798 enhances P. infestans colonization of N. benthamiana leaves, which suggests that PITG_22798 contributes to P. infestans infection. PITG_22798-triggered cell death is dependent on SGT1-mediated signaling and is suppressed by the P. infestans avirulence effector 3b (AVR3b). The present research provides a clue for further investigation of how P. infestans effector PITG_22798 associates with and modulates host immunity.

  16. The Cell Death Triggered by the Nuclear Localized RxLR Effector PITG_22798 from Phytophthora infestans Is Suppressed by the Effector AVR3b

    PubMed Central

    Wang, Hongyang; Ren, Yajuan; Zhou, Jing; Du, Juan; Hou, Juan; Jiang, Rui; Wang, Haixia; Tian, Zhendong; Xie, Conghua

    2017-01-01

    Phytopathogenic oomycetes, such as Phytophthora infestans, potentially secrete many RxLR effector proteins into plant cells to modulate plant immune responses and promote colonization. However, the molecular mechanisms by which these RxLR effectors suppress plant immune responses are largely unknown. Here we describe an RxLR effector PITG_22798 (Gene accession: XM_002998349) that was upregulated during early infection of potato by P. infestans. By employment of agroinfiltration, we observed that PITG_22798 triggers cell death in Nicotiana benthamiana. Confocal microscopic examination showed that PITG_22798-GFP (Green Fluorescent Protein) located in the host nucleus when expressed transiently in N. benthamiana leaves. A nuclear localization signal (NLS) domain of PITG_22798 is important for nuclear localization and cell death-inducing activity. Sequence alignment and transient expression showed that PITG_22798 from diverse P. infestans isolates are conserved, and transient expression of PITG_22798 enhances P. infestans colonization of N. benthamiana leaves, which suggests that PITG_22798 contributes to P. infestans infection. PITG_22798-triggered cell death is dependent on SGT1-mediated signaling and is suppressed by the P. infestans avirulence effector 3b (AVR3b). The present research provides a clue for further investigation of how P. infestans effector PITG_22798 associates with and modulates host immunity. PMID:28216607

  17. Unraveling Effector Functions of B Cells During Infection: The Hidden World Beyond Antibody Production

    PubMed Central

    León, Beatriz; Ballesteros-Tato, André; Misra, Ravi S.; Wojciechowski, Wojciech; Lund, Frances E.

    2015-01-01

    Antibodies made by B cells are critically important for immune protection to a variety of infectious agents. However, it is becoming increasingly clear that B cells do more than make antibodies and that B cells can both enhance and suppress immune responses. Furthermore, there is growing evidence that B cells modulate cellular immune responses by antibody dependent and independent mechanisms. Although we have a good understanding of the roles played by antibody-secreting effector B cells during immune responses, we know very little about the Ab independent “effector” functions of B cells in either health or disease. Given the recent data suggesting that B cells may contribute to autoimmune disease pathogenesis via an antibody independent mechanism and the increasing use of B cell depletion therapy in autoimmune patients, investigators are beginning to reassess the multiple roles for B cells during immune responses. In this article, we review data describing how B cells mediate protection to pathogens independently of antibody production. In particular, we will focus on the role that B cells play in facilitating dendritic cell and T cell interactions in lymph nodes, the importance of antigen-presenting B cells in sustaining effector T cell and T follicular helper responses to pathogens and the relevance of cytokine-producing effector and regulatory B cells in immune responses. PMID:22394173

  18. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling

    PubMed Central

    Mc Alpine, Tristan; Wei, Heng; Martínez, Víctor G.; Entrena, Ana; Melen, Gustavo J; MacDonald, Andrew S.; Phythian-Adams, Alexander; Sacedón, Rosa; Maraskovsky, Eugene; Cebon, Jonathan; Ramírez, Manuel

    2014-01-01

    Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions which are inhibited by the prototypic Th-2 cytokine IL-4 and the TGF-β superfamily members TGF-β1 and activin-A. Interestingly, the largest subgroup of the TGF-β superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling to NK cell effector functions have not been evaluated. Here we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8 which mediate BMP family member signaling. In opposition to the inhibitory effects of TGF-β1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L activated NK cells revealed that BMP signaling optimized IFN-γ and global cytokine and chemokine production; phenotypic activation and proliferation; autologous DC activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one which might be therapeutically manipulated to help eradicate tumors. PMID:25038228

  19. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates.

    PubMed

    Berger, Carolina; Jensen, Michael C; Lansdorp, Peter M; Gough, Mike; Elliott, Carole; Riddell, Stanley R

    2008-01-01

    The adoptive transfer of antigen-specific T cells that have been expanded ex vivo is being actively pursued to treat infections and malignancy in humans. The T cell populations that are available for adoptive immunotherapy include both effector memory and central memory cells, and these differ in phenotype, function, and homing. The efficacy of adoptive immunotherapy requires that transferred T cells persist in vivo, but identifying T cells that can reproducibly survive in vivo after they have been numerically expanded by in vitro culture has proven difficult. Here we show that in macaques, antigen-specific CD8(+) T cell clones derived from central memory T cells, but not effector memory T cells, persisted long-term in vivo, reacquired phenotypic and functional properties of memory T cells, and occupied memory T cell niches. These results demonstrate that clonally derived CD8+ T cells isolated from central memory T cells are distinct from those derived from effector memory T cells and retain an intrinsic capacity that enables them to survive after adoptive transfer and revert to the memory cell pool. These results could have significant implications for the selection of T cells to expand or to engineer for adoptive immunotherapy of human infections or malignancy.

  20. T Cells: Soldiers and Spies--The Surveillance and Control of Effector T Cells by Regulatory T Cells.

    PubMed

    Hall, Bruce M

    2015-11-06

    Traditionally, T cells were CD4+ helper or CD8+ cytotoxic T cells, and with antibodies, they were the soldiers of immunity. Now, many functionally distinct subsets of activated CD4+ and CD8+ T cells have been described, each with distinct cytokine and transcription factor expression. For CD4+ T cells, these include Th1 cells expressing the transcription factor T-bet and cytokines IL-2, IFN-γ, and TNF-β; Th2 cells expressing GATA-3 and the cytokines IL-4, IL-5, and IL-13; and Th17 cells expressing RORγt and cytokines IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced determine the immune inflammation that they mediate. T cells of the effector lineage can be naïve T cells, recently activated T cells, or memory T cells that can be distinguished by cell surface markers. T regulatory cells or spies were characterized as CD8+ T cells expressing I-J in the 1970s. In the 1980s, suppressor cells fell into disrepute when the gene for I-J was not present in the mouse MHC I region. At that time, a CD4+ T cell expressing CD25, the IL-2 receptor-α, was identified to transfer transplant tolerance. This was the same phenotype of activated CD4+ CD25+ T cells that mediated rejection. Thus, the cells that could induce tolerance and undermine rejection had similar badges and uniforms as the cells effecting rejection. Later, FOXP3, a transcription factor that confers suppressor function, was described and distinguishes T regulatory cells from effector T cells. Many subtypes of T regulatory cells can be characterized by different expressions of cytokines and receptors for cytokines or chemokines. In intense immune inflammation, T regulatory cells express cytokines characteristic of effector cells; for example, Th1-like T regulatory cells express T-bet, and IFN-γ-like Th1 cells and effector T cells can change sides by converting to T regulatory cells. Effector T cells and T regulatory cells use similar molecules to be activated and mediate their function, and thus, it can be

  1. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana

    PubMed Central

    Pitino, Marco; Armstrong, Cheryl M.; Cano, Liliana M.; Duan, Yongping

    2016-01-01

    Candidatus Liberibacter asiaticus “Las” is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta. PMID:27458468

  2. Immunophenotypes of malignant lymphoma centroblastic-centrocytic and malignant lymphoma centrocytic: an immunohistologic study indicating a derivation from different stages of B cell differentiation.

    PubMed

    Hollema, H; Poppema, S

    1988-09-01

    Five cases of intermediate lymphocytic lymphoma (ILL), 13 cases of malignant lymphoma centrocytic (MLCC), and 27 cases of malignant lymphoma centroblastic centrocytic (MLCBCC) were studied morphologically and with the aid of a panel of monoclonal antibodies. The immunophenotypes of ILL and MLCC (IgM+/IgD+, MT1+, CALLA-) indicate a mantle zone or very early follicle center derivation. The immunophenotypes of MLCBCC (IgM+ or IgG/IgA+, MT1-, CALLA+) indicate a "true" follicle center derivation. The morphologic diversity of MLCBCC could not be related to specific immunophenotypes.

  3. Inflammatory cells in minor salivary glands of patients with chronic hepatitis C: immunophenotype, pattern of distribution, and comparison with liver samples.

    PubMed

    Caldeira, Patrícia Carlos; Oliveira e Silva, Karla Rachel; Vidigal, Paula Vieira Teixeira; Grossmann, Soraya de Mattos Camargo; do Carmo, Maria Auxiliadora Vieira

    2014-05-01

    To characterize the immunophenotype and the distribution of the inflammatory infiltrate (INF) in salivary glands (SG) of patients with chronic hepatitis C, comparing with laboratorial data (genotype, viral load, METAVIR, and HCV RNA in SG), and liver. INF was classified as diffuse or focal. Immunohistochemistry for CD3, CD20, CD8, CD4, CD57, CD68, and S100 was performed in 61 SG and 59 livers. Diffuse INF was more common in SG than in liver. CD3(+), CD20(+), and CD8(+) were the most frequent cells in both tissues, with few CD57(+), CD68(+), and S100(+) cells. CD4(+) cells were common in liver, but rare in SG. Liver presented higher indexes for all markers, except S100(+) (p<0.05). Higher CD3(+), CD20(+), and CD8(+) (p<0.05) were observed in SG with focal infiltrate than with diffuse infiltrate. In liver, CD20(+) and CD3(+) were higher in focal infiltrate, and CD68(+) in diffuse infiltrate (p<0.05). Comparisons with laboratorial data did not show statistical significance. The INF in SG was mainly composed by T and B lymphocytes, mostly cytotoxic T cells. The glandular INF can present differences in composition according to its distribution. A more intense inflammation was observed in liver, but similar cell types were identified in SG, except for CD4(+). Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  4. Canine epitheliotropic cutaneous T-cell lymphoma: an investigation of T-cell receptor immunophenotype, lesion topography and molecular clonality.

    PubMed

    Moore, Peter F; Affolter, Verena K; Graham, Petra S; Hirt, Barbara

    2009-10-01

    Canine epitheliotropic cutaneous T-cell lymphoma (CTCL) is a spontaneous neoplasm of the skin and mucous membranes of aged dogs. The WHO classification of tumours of haematopoietic and lymphoid tissues in human beings recognizes three forms of cutaneous epitheliotropic CTCL: mycosis fungoides (MF), Sézary syndrome and pagetoid reticulosis. In this series of dogs (n = 56), there were 39 cases of MF, 16 cases of pagetoid reticulosis and a single case of Sézary syndrome. Epitheliotropic T cells in CTCL lesions expressed CD8 in 44 of 55 dogs (80%) assessed; neither CD4 nor CD8 was expressed in the remainder. This contrasts with human MF in which alphabeta T-cell receptors (TCR) and CD4 are dominantly expressed. Molecular clonality assessment of canine epitheliotropic CTCL utilizing PCR primers specific for canine TCR gamma (TCRG) was performed. Of the 45 canine cases assessed, TCRG monoclonality was detected in 36 cases (80%). TCR typing of canine epitheliotropic CTCL revealed that TCRgammadelta was expressed in 60% of cases, including all cases of canine pagetoid reticulosis assessed. Either muco-cutaneous junctions or tissues of the oral cavity were the sites of lesions in 32 dogs (57%) with epitheliotropic CTCL. Analysis of the topography of lesions revealed an association with TCR type. If epitheliotropic CTCL lesions occurred in both locations, T cells were more likely to express TCRgammadelta (gammadelta : alphabeta = 2.0). These data establish that canine skin trafficking T cells have a far wider range than previously thought; this includes tongue, gingival, buccal and palatine mucosae.

  5. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum

    PubMed Central

    Vieira-de-Abreu, Adriana; Campbell, Robert A.; Weyrich, Andrew S.

    2015-01-01

    Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases. PMID:21818701

  6. Ionic immune suppression within the tumour microenvironment limits T cell effector function

    PubMed Central

    Eil, Robert; Vodnala, Suman K; Clever, David; Klebanoff, Christopher A; Sukumar, Madhusudhanan; Pan, Jenny H; Palmer, Douglas C; Gros, Alena; Yamamoto, Tori N; Patel, Shashank J; Guittard, Geoffrey C; Yu, Zhiya; Carbonaro, Valentina; Okkenhaug, Klaus; Schrump, David S; Linehan, W Marston; Roychoudhuri, Rahul; Restifo, Nicholas P

    2016-01-01

    Tumours progress despite being infiltrated by tumour-specific effector T cells1. Tumours contain areas of cellular necrosis, which is associated with poor survival in a variety of cancers2. Here, we show that necrosis releases an intracellular ion, potassium, into the extracellular fluid of mouse and human tumours causing profound suppression of T cell effector function. We find that elevations in the extracellular potassium concentration [K+]e act to impair T cell receptor (TCR)-driven Akt-mTOR phosphorylation and effector programmes, this potassium-mediated suppression of Akt-mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A3,4. While the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it does require an increase in intracellular potassium ([K+]i). Concordantly, ionic reprogramming of tumour-specific T cells through overexpression of the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo. Consequently, Kv1.3 T cell overexpression enhances tumour clearance and survival of melanoma-bearing mice. These results uncover a previously undescribed ionic checkpoint blocking T cell function within tumours and identify new strategies for cancer immunotherapy. PMID:27626381

  7. Evaluation of effector cell fate and function by in vivo bioluminescence imaging.

    PubMed

    Edinger, Matthias; Hoffmann, Petra; Contag, Christopher H; Negrin, Robert S

    2003-10-01

    The effector functions of immune cells have typically been examined using assays that require sampling of tissues or cells to reveal specific aspects of an immune response (e.g., antigen-specificity, cytokine expression or killing of target cells). The outcome of an immune response in vivo, however, is not solely determined by a single effector function of a specific cell population, but is the result of numerous cellular and molecular interactions that occur in the complex environment of intact organ systems. These interactions influence survival, migration, and activation, as well as final effector function of a given population of cells. Efforts to reveal the cellular and molecular basis of biological processes have resulted in a number of technologies that combine molecular biology and imaging sciences that are collectively termed as Molecular Imaging. This emerging field has developed to reveal functional aspects of cells, genes, and proteins in real time in living animals and humans and embraces multiple modalities, including established clinical imaging methods such as magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography, as well as novel methodologies specifically designed for research animals. Here, we highlight one of the newer modalities, in vivo bioluminescence imaging, as a method for evaluating effector T cell proliferation, migration, and function in model systems of malignant and non-malignant diseases.

  8. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    SciTech Connect

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resulted in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.

  9. The role of natural killer cells in tumor control--effectors and regulators of adaptive immunity.

    PubMed

    Wallace, Morgan E; Smyth, Mark J

    2005-06-01

    Natural killer (NK) cells are the primary effector cells of the innate immune system and have a well-established role in tumor rejection in a variety of spontaneous and induced cancer models. NK cell function is regulated by a complex balance of inhibitory and activating signals that allow them to selectively target and kill cells that display an abnormal pattern of cell surface molecules, while leaving normal healthy cells unharmed. In this review we discuss NK cell function, the role of NK cells in cancer therapies, the emerging concept of bi-directional cross-talk between NK cells and dendritic cells, and the implications of these interactions for tumor immunotherapy.

  10. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets.

    PubMed

    Willinger, Tim; Freeman, Tom; Hasegawa, Hitoshi; McMichael, Andrew J; Callan, Margaret F C

    2005-11-01

    Memory T cells are heterogeneous in terms of their phenotype and functional properties. We investigated the molecular profiles of human CD8 naive central memory (T(CM)), effector memory (T(EM)), and effector memory RA (T(EMRA)) T cells using gene expression microarrays and phospho-protein-specific intracellular flow cytometry. We demonstrate that T(CM) have a gene expression and cytokine signaling signature that lies between that of naive and T(EM) or T(EMRA) cells, whereas T(EM) and T(EMRA) are closely related. Our data define the molecular basis for the different functional properties of central and effector memory subsets. We show that T(EM) and T(EMRA) cells strongly express genes with known importance in CD8 T cell effector function. In contrast, T(CM) are characterized by high basal and cytokine-induced STAT5 phosphorylation, reflecting their capacity for self-renewal. Altogether, our results distinguish T(CM) and T(EM)/T(EMRA) at the molecular level and are consistent with the concept that T(CM) represent memory stem cells.

  11. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.

    PubMed

    Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide

    2015-01-01

    Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.

  12. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance.

    PubMed

    You, Sylvaine

    2015-01-01

    Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non-toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4(+)Foxp3(+) regulatory T cells (Tregs) to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool, which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this mini review, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.

  13. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-05

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A comprehensive immunophenotypic marker analysis of hairy cell leukemia in paraffin-embedded bone marrow trephine biopsies--a tissue microarray study.

    PubMed

    Tóth-Lipták, Judit; Piukovics, Klára; Borbényi, Zita; Demeter, Judit; Bagdi, Enikő; Krenács, László

    2015-01-01

    Hairy cell leukemia (HCL) is an uncommon B cell lymphoproliferation characterized by a unique immunophenotype. Due to low number of circulating neoplastic cells and 'dry tap' aspiration, the diagnosis is often based on BM trephine biopsy. We have performed a consecutive immunohistochemical analysis to evaluate diagnostic usefulness of various HCL markers (CD11c, CD25, CD68, CD103, CD123, CD200, annexin A1, cyclin D1, DBA.44, HBME-1, phospho-ERK1/2, TRAP, and T-bet) currently available against fixation resistant epitopes. We analyzed tissue microarrays consisting of samples gained from 73 small B-cell lymphoma cases, including hairy cell leukemia (HCL) (n = 32), HCL variant (HCL-v) (n = 4), B-cell chronic lymphocytic leukemia (B-CLL) (n = 11), lymphoplasmacytic lymphoma (LPL) (n = 3), mantle cell lymphoma (MCL) (n = 10), splenic diffuse red pulp small B cell lymphoma (SDRPL) (n = 2), splenic B cell marginal zone lymphoma (SMZL) (n = 8), and splenic B cell lymphoma/leukemia, unclassifiable (SBCL) (n = 3) cases. The HCL cases were 100% positive for all but 2 (DBA.44 and CD123) of these markers. Annexin A1 showed 100% specificity and accuracy, which was followed by CD123, pERK, CD103, HBME-1, CD11c, CD25, CD68, cyclin D1, CD200, T-bet, DBA.44, and TRAP, in decreasing order. In conclusion, our results reassured the high specificity of annexin A1 and pERK, as well as the diagnostic value of standard HCL markers of CD11c, CD25, CD103, and CD123 also in paraffin-embedded BM samples. Additional markers, including HBME-1, cyclin D1, CD200, and T-bet also represent valuable tools in the differential diagnosis of HCL and its mimics.

  15. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  16. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases.

  17. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    PubMed

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  18. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    PubMed Central

    Golubovskaya, Vita; Wu, Lijun

    2016-01-01

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors. PMID:26999211

  19. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment.

    PubMed

    Ponzetta, Andrea; Benigni, Giorgia; Antonangeli, Fabrizio; Sciumè, Giuseppe; Sanseviero, Emilio; Zingoni, Alessandra; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Santoni, Angela; Bernardini, Giovanni

    2015-11-15

    Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.

  20. Eighteen New Candidate Effectors of the Phytonematode Heterodera glycines Produced Specifically in the Secretory Esophageal Gland Cells During Parasitism.

    PubMed

    Noon, Jason B; Hewezi, Tarek; Maier, Thomas R; Simmons, Carl; Wei, Jun-Zhi; Wu, Gusui; Llaca, Victor; Deschamps, Stéphane; Davis, Eric L; Mitchum, Melissa G; Hussey, Richard S; Baum, Thomas J

    2015-10-01

    Heterodera glycines, the soybean cyst nematode, is the number one pathogen of soybean (Glycine max). This nematode infects soybean roots and forms an elaborate feeding site in the vascular cylinder. H. glycines produces an arsenal of effector proteins in the secretory esophageal gland cells. More than 60 H. glycines candidate effectors were identified in previous gland-cell-mining projects. However, it is likely that additional candidate effectors remained unidentified. With the goal of identifying remaining H. glycines candidate effectors, we constructed and sequenced a large gland cell cDNA library resulting in 11,814 expressed sequence tags. After bioinformatic filtering for candidate effectors using a number of criteria, in situ hybridizations were performed in H. glycines whole-mount specimens to identify candidate effectors whose mRNA exclusively accumulated in the esophageal gland cells, which is a hallmark of many nematode effectors. This approach resulted in the identification of 18 new H. glycines esophageal gland-cell-specific candidate effectors. Of these candidate effectors, 11 sequences were pioneers without similarities to known proteins while 7 sequences had similarities to functionally annotated proteins in databases. These putative homologies provided the bases for the development of hypotheses about potential functions in the parasitism process.

  1. Effector CD4 T cell transition to memory requires late cognate interactions that induce autocrine IL-2

    PubMed Central

    McKinstry, K. Kai; Strutt, Tara M.; Bautista, Bianca; Zhang, Wenliang; Kuang, Yi; Cooper, Andrea M.; Swain, Susan L.

    2014-01-01

    It is unclear how CD4 T cell memory formation is regulated following pathogen challenge, and when critical mechanisms act to determine effector T cell fate. Here, we report that following influenza infection most effectors require signals from major histocompatibility complex class II molecules and CD70 during a late window well after initial priming to become memory. During this timeframe, effector cells must produce IL-2 or be exposed to high levels of paracrine or exogenously added IL-2 to survive an otherwise rapid default contraction phase. Late IL-2 promotes survival through acute down regulation of apoptotic pathways in effector T cells and by permanently upregulating their IL-7 receptor expression, enabling IL-7 to sustain them as memory T cells. This new paradigm defines a late checkpoint during the effector phase at which cognate interactions direct CD4 T cell memory generation. PMID:25369785

  2. Potential effector and immunoregulatory functions of mast cells in mucosal immunity

    PubMed Central

    Reber, Laurent L; Sibilano, Riccardo; Mukai, Kaori; Galli, Stephen J

    2016-01-01

    Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs – such as secreting pre-formed and/or newly synthesized biologically active products – in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues. PMID:25669149

  3. Quantitative immunophenotypic analysis of antigen-presenting cells involved in ectromelia virus antigen presentation in BALB/c and C57BL/6 mice.

    PubMed

    Szulc-Dąbrowska, Lidia; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Martyniszyn, Lech; Winnicka, Anna; Niemiałtowski, Marek G

    2013-08-01

    During mousepox in resistant (C57BL/6) or susceptible (BALB/c) strains of mice, stimulation of Th1 or Th2 cytokine immune response, respectively, is observed. Because mechanisms of different polarization of T cells remain elusive, in this study, we quantitatively assessed the phenotype of antigen-presenting cells (APCs) involved in ectromelia virus (ECTV) antigen presentation and cluster formation with effector cells in secondary lymphoid organs of BALB/c and C57BL/6 mice. We showed that both strains of mice display similar dynamics and kinetics of viral antigen presentation by CD11c(+) , CD11b(+) , and CD19(+) cells. CD11c(+) and CD11b(+) cells highly participated in viral antigen presentation during all stages of mousepox, whereas CD19(+) cells presented viral peptides later in infection. The main population of dendritic cells (DCs) engaged in ECTV antigen presentation and cell junction formation with effector cells was a population of myeloid CD11b(+) DCs (mDCs). We suggest that, on the one hand, ECTV may differentially affect the functions of APCs depending on the strain of mice. On the other hand, we suggest that some types of APCs, such as mDCs or other DCs subsets, have different abilities to direct the shape of immune response depending on the host resistance to mousepox.

  4. Cytokines and effector T cell subsets causing autoimmune CNS disease.

    PubMed

    Petermann, Franziska; Korn, Thomas

    2011-12-01

    Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen specific T cells. EAE was also very useful to refute the idea that IFN-γ producing T helper type 1 (Th1) cells were the sole players within the pathogenic T cell response. Rather, "new" T cell lineages such as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine network that shapes T helper cell responses and lesion development in CNS specific autoimmunity.

  5. Antigen independent differentiation and maintenance of effector-like resident memory T cells in tissues

    PubMed Central

    Casey, Kerry A; Fraser, Kathryn A; Schenkel, Jason M; Moran, Amy; Abt, Michael C; Beura, Lalit K; Lucas, Philip J; Artis, David; Wherry, E John; Hogquist, Kristin; Vezys, Vaiva; Masopust, David

    2012-01-01

    Differentiation and maintenance of recirculating effector memory CD8 T cells (TEM) depends on prolonged cognate antigen stimulation. Whether similar pathways of differentiation exist for recently identified tissue-resident effector memory T cells (TRM), which contribute to rapid local protection upon pathogen re-exposure, is unknown. Memory CD8αβ+ T cells within small intestine epithelium are well-characterized examples of TRM and they maintain a long-lived effector-like phenotype that is highly suggestive of persistent antigen stimulation. This study sought to define the sources and requirements for prolonged Ag-stimulation in programming this differentiation state, including local stimulation via cognate or cross-reactive antigens derived from pathogens, microbial flora, or dietary proteins. Contrary to expectations, we found that prolonged cognate Ag-stimulation was dispensable for intestinal TRM ontogeny. In fact, chronic antigenic stimulation skewed differentiation away from the canonical intestinal T cell phenotype. Resident memory signatures, CD69 and CD103, were expressed in many non-lymphoid tissues including intestine, stomach, kidney, reproductive tract, pancreas, brain, heart, and salivary gland, and could be driven by cytokines. Moreover, TGFβ driven CD103 expression was required for TRM maintenance within intestinal epithelium in vivo. Thus, induction and maintenance of long-lived effector-like intestinal TRM differed from classic models of TEM ontogeny, and were programmed through a novel location-dependent pathway that was required for the persistence of local immunological memory. PMID:22504644

  6. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection

    PubMed Central

    Demers, Korey R.; Makedonas, George; Buggert, Marcus; Eller, Michael A.; Ratcliffe, Sarah J.; Goonetilleke, Nilu; Li, Chris K.; Eller, Leigh Anne; Rono, Kathleen; Maganga, Lucas; Nitayaphan, Sorachai; Kibuuka, Hannah; Routy, Jean-Pierre; Slifka, Mark K.; Haynes, Barton F.; Bernard, Nicole F.; Robb, Merlin L.; Betts, Michael R.

    2016-01-01

    The loss of HIV-specific CD8+ T cell cytolytic function is a primary factor underlying progressive HIV infection, but whether HIV-specific CD8+ T cells initially possess cytolytic effector capacity, and when and why this may be lost during infection, is unclear. Here, we assessed CD8+ T cell functional evolution from primary to chronic HIV infection. We observed a profound expansion of perforin+ CD8+ T cells immediately following HIV infection that quickly waned after acute viremia resolution. Selective expression of the effector-associated transcription factors T-bet and eomesodermin in cytokine-producing HIV-specific CD8+ T cells differentiated HIV-specific from bulk memory CD8+ T cell effector expansion. As infection progressed expression of perforin was maintained in HIV-specific CD8+ T cells with high levels of T-bet, but not necessarily in the population of T-betLo HIV-specific CD8+ T cells that expand as infection progresses. Together, these data demonstrate that while HIV-specific CD8+ T cells in acute HIV infection initially possess cytolytic potential, progressive transcriptional dysregulation leads to the reduced CD8+ T cell perforin expression characteristic of chronic HIV infection. PMID:27486665

  7. CXCR5+ CCR7- CD8 T cells are early effector memory cells that infiltrate tonsil B cell follicles.

    PubMed

    Quigley, Máire F; Gonzalez, Veronica D; Granath, Anna; Andersson, Jan; Sandberg, Johan K

    2007-12-01

    Naive and central memory CD8 T cells use CCR7 to recirculate through T cell zones of secondary lymphoid organs where they can encounter antigen. Here we describe a subset of human CD8 T cells expressing CXCR5 which enables homing in response to CXCL13 produced within B cell follicles. CXCR5+ CD8 T cells were found in tonsil B cell follicles, and isolated cells migrated towards CXCL13 in vitro. They expressed CD27, CD28, CD45RO, CD69, and were CD7low, and produced IFN-gamma and granzyme A but lacked perforin, a functional profile suggesting that these cells are early effector memory cells in the context of contemporary T cell differentiation models. Receptors important in the interaction with B cells, including CD70, OX40 and ICOS, were induced upon activation, and CXCR5+ CD8 T cells could to some extent support survival and IgG production in tonsil B cells. Furthermore, CXCR5+ CD8 T cells expressed CCR5 but no CCR7, suggesting a migration pattern distinct from that of follicular CD4 T cells. The finding that a subset of early effector memory CD8 T cells use CXCR5 to locate to B cell follicles indicates that MHC class I-restricted CD8 T cells are part of the follicular T cell population.

  8. Multiple layers of B cell memory with different effector functions.

    PubMed

    Dogan, Ismail; Bertocci, Barbara; Vilmont, Valérie; Delbos, Frédéric; Mégret, Jérome; Storck, Sébastien; Reynaud, Claude-Agnès; Weill, Jean-Claude

    2009-12-01

    Memory B cells are at the center of longstanding controversies regarding the presence of antigen for their survival and their re-engagement in germinal centers after secondary challenge. Using a new mouse model of memory B cell labeling dependent on the cytidine deaminase AID, we show that after immunization with a particulate antigen, B cell memory appeared in several subsets, comprising clusters of immunoglobulin M-positive (IgM(+)) and IgG1(+) B cells in germinal center-like structures that persisted up to 8 months after immunization, as well as IgM(+) and IgG1(+) B cells with a memory phenotype outside of B cell follicles. After challenge, the IgG subset differentiated into plasmocytes, whereas the IgM subset reinitiated a germinal center reaction. This model, in which B cell memory appears in several layers with different functions, reconciles previous conflicting propositions.

  9. Epstein-Barr virus (EBV) positive classical Hodgkin lymphoma of Iraqi children: an immunophenotypic and molecular characterization of Hodgkin/Reed-Sternberg cells.

    PubMed

    Di Napoli, Arianna; Al-Jadiri, Mazin F; Talerico, Caterina; Duranti, Enrico; Pilozzi, Emanuela; Trivedi, Pankaj; Anastasiadou, Eleni; Alsaadawi, Adel R; Al-Darraji, Amir F; Al-Hadad, Salma A; Testi, Anna Maria; Uccini, Stefania; Ruco, Luigi

    2013-12-01

    Classical Hodgkin lymphoma (cHL) in children is often associated with EBV infection, more commonly in developing countries. Here we describe the histological, immunohistochemical, and molecular features of 57 cases of HL affecting Iraqi children under 14 years of age. Histologically, 51 cases were classified as cHL of Mixed Cellularity and Nodular Sclerosis subtypes (MC = 69%; NS = 31%), and 6 cases as Nodular Lymphocyte Predominant HL (NLP-HL). EBV infection of H/RS cells was demonstrated in 44 of 51 cases of cHL (86%), and was more common in MC than in NS (97% vs. 63%; P = 0.0025). The immunophenotypic profile of H/RS cells was similar in MC and NS, and was not influenced by EBV infection; H/RS cells were consistently positive for PAX-5 and to a lesser degree for other B cell markers including CD20/CD79a, OCT-2, and BOB-1. Clonal IGH rearrangements were detected in 14 of 38 cHL (37%), with no significant difference between MC and NS cases, and with no association with the EBV status. Oligoclonal/monoclonal TCRγ rearrangements were present in 28 of 38 cases (74%), suggestive of restricted T cell responses. Our findings indicate that cHL occurring in Iraqi children is characterized by immunohistochemical and molecular features undistinguishable from those present in cHL occurring elsewhere in the world. Moreover, the high incidence of EBV-infected H/RS cells and frequent occurrence of restricted T cell responses might be indicative of a defective local immune response perhaps related to the very young age of the children. © 2013 Wiley Periodicals, Inc.

  10. Tailored Immune Responses: Novel Effector Helper T Cell Subsets in Protective Immunity

    PubMed Central

    Kara, Ervin E.; Comerford, Iain; Fenix, Kevin A.; Bastow, Cameron R.; Gregor, Carly E.; McKenzie, Duncan R.; McColl, Shaun R.

    2014-01-01

    Differentiation of naïve CD4+ cells into functionally distinct effector helper T cell subsets, characterised by distinct “cytokine signatures,” is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the TH1/TH2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered. PMID:24586147

  11. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions.

    PubMed

    Nascimbeni, Michelina; Shin, Eui-Cheol; Chiriboga, Luis; Kleiner, David E; Rehermann, Barbara

    2004-07-15

    Although an increased frequency of CD4(+)CD8(+) T cells has been observed in the peripheral blood during viral infections, their role, function, and biologic significance are still poorly understood. Here we demonstrate that the circulating CD4(+)CD8(+) T-cell population contains mature effector memory lymphocytes specific for antigens of multiple past, latent, and high-level persistent viral infections. Upon in vitro antigenic challenge, a higher frequency of CD4(+)CD8(+) than single-positive cells displayed a T helper 1/T cytotoxic 1 (Th1/Tc1) cytokine profile and proliferated. Ex vivo, more double-positive than single-positive cells exhibited a differentiated phenotype. Accordingly, their lower T-cell receptor excision circles (TREC) content and shorter telomeres proved they had divided more frequently than single-positive cells. Consistent with expression of the tissue-homing marker CXCR3, CD4(+)CD8(+) T cells were demonstrated in situ at the site of persistent viral infection (ie, in the liver during chronic hepatitis C). Finally, a prospective analysis of hepatitis C virus (HCV) infection in a chimpanzee, the only animal model for HCV infection, showed a close correlation between the frequency of activated CD4(+)CD8(+) T cells and viral kinetics. Collectively, these findings demonstrate that peripheral CD4(+)CD8(+) T cells take part in the adaptive immune response against infectious pathogens and broaden the perception of the T-cell populations involved in antiviral immune responses.

  12. NKG2D receptor regulates human effector T-cell cytokine production

    PubMed Central

    Barber, Amorette

    2011-01-01

    Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8+ T cells. Stimulation of CD8+ T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin–induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin– and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8+ T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex. PMID:21518928

  13. OX40-enhanced tumor rejection and effector T cell differentiation decreases with age.

    PubMed

    Ruby, Carl E; Weinberg, Andrew D

    2009-02-01

    OX40 agonists have potent immunotherapeutic effects against a variety of murine tumors, yet it is unclear the role that age-related immune senescence plays on their efficacy. We found that middle-aged and elderly tumor-bearing mice (12 and 20 mo old, respectively) treated with anti-OX40 were less responsive compared with young mice 6 mo or less of age. Decreased tumor-free survival was observed in both male and female mice, and was not due to changes in the surface expression of OX40 on T cells in older animals. Enumeration of cytokine-producing effector T cells in tumor-bearing mice revealed a significant decline in these cells in the older mice treated with anti-OX40 compared with their younger counterparts. The decrease of this critical T cell population in middle-aged mice was not a result of inherent T cell deficiencies, but was revealed to be T cell extrinsic. Finally, combining IL-12, an innate cytokine, with anti-OX40 boosted levels of differentiated effector T cells in the older anti-OX40-treated mice and partially restored the defective antitumor responses in the middle-aged mice. Our data show that the anti-OX40-enhancement of tumor immunity and effector T cell numbers is decreased in middle-aged mice and was partially reversed by coadministration of the proinflammatory cytokine IL-12.

  14. DOCK8 Drives Src-Dependent NK Cell Effector Function.

    PubMed

    Kearney, Conor J; Vervoort, Stephin J; Ramsbottom, Kelly M; Freeman, Andrew J; Michie, Jessica; Peake, Jane; Casanova, Jean-Laurent; Picard, Capucine; Tangye, Stuart G; Ma, Cindy S; Johnstone, Ricky W; Randall, Katrina L; Oliaro, Jane

    2017-08-09

    Mutations in the dedicator of cytokinesis 8 (DOCK8) gene cause an autosomal recessive form of hyper-IgE syndrome, characterized by chronic immunodeficiency with persistent microbial infection and increased incidence of malignancy. These manifestations suggest a defect in cytotoxic lymphocyte function and immune surveillance. However, how DOCK8 regulates NK cell-driven immune responses remains unclear. In this article, we demonstrate that DOCK8 regulates NK cell cytotoxicity and cytokine production in response to target cell engagement or receptor ligation. Genetic ablation of DOCK8 in human NK cells attenuated cytokine transcription and secretion through inhibition of Src family kinase activation, particularly Lck, downstream of target cell engagement or NKp30 ligation. PMA/Ionomycin treatment of DOCK8-deficient NK cells rescued cytokine production, indicating a defect proximal to receptor ligation. Importantly, NK cells from DOCK8-deficient patients had attenuated production of IFN-γ and TNF-α upon NKp30 stimulation. Taken together, we reveal a novel molecular mechanism by which DOCK8 regulates NK cell-driven immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1 inducers.

    PubMed

    Simon, Thomas; Pogu, Julien; Rémy, Séverine; Brau, Frédéric; Pogu, Sylvie; Maquigneau, Maud; Fonteneau, Jean-François; Poirier, Nicolas; Vanhove, Bernard; Blancho, Gilles; Piaggio, Eliane; Anegon, Ignacio; Blancou, Philippe

    2017-03-22

    Developing protocols aimed at inhibiting effector T cells would be key for the treatment of T cell-dependent autoimmune diseases including type 1 autoimmune diabetes (T1D) and multiple sclerosis (MS). While heme oxygenase-1 (HO-1) inducers are clinically approved drugs for non-immune-related diseases, they do have immunosuppressive properties when administered systemically in rodents. Here we show that HO-1 inducers inhibit antigen-specific effector T cells when injected intradermally together with the T cell cognate antigens in mice. This phenomenon was observed in both a CD8(+) T cell-mediated model of T1D and in a CD4(+) T cell-dependent MS model. Intradermal injection of HO-1 inducers induced the recruitment of HO-1(+) monocyte-derived dendritic cell (MoDCs) exclusively to the lymph nodes (LN) draining the site of intradermal injection. After encountering HO-1(+)MoDCs, effector T-cells exhibited a lower velocity and a reduced ability to migrate towards chemokine gradients resulting in impaired accumulation to the inflamed organ. Intradermal co-injection of a clinically approved HO-1 inducer and a specific antigen to non-human primates also induced HO-1(+) MoDCs to accumulate in dermal draining LN and to suppress delayed-type hypersensitivity. Therefore, in both mice and non-human primates, HO-1 inducers delivered locally inhibited effector T-cells in an antigen-specific manner, paving the way for repositioning these drugs for the treatment of immune-mediated diseases.

  16. Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.

    PubMed

    Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan

    2013-10-22

    Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.

  17. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells

  18. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells

    PubMed Central

    Kurachi, Makoto; Barnitz, R. Anthony; Yosef, Nir; Odorizzi, Pamela M.; Dilorio, Michael A.; Lemieux, Madeleine E.; Yates, Kathleen; Godec, Jernej; Klatt, Martin G.; Regev, Aviv; Wherry, E. John; Haining, W. Nicholas

    2014-01-01

    The transcription factor BATF is required for interleukin 17 (IL-17)-producing helper T cell (TH17) and follicular helper T cell (TFH) differentiation. Here, we show that BATF also has a fundamental role in regulating effector CD8+ T cell differentiation. BATF-deficient CD8+ T cells show profound defects in effector expansion and undergo proliferative and metabolic catastrophe early after antigen encounter. BATF, together with IRF4 and Jun proteins, binds to and promotes early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors, while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies TCR-dependent transcription factor expression and augments inflammatory signal propagation but restrains effector gene expression. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved. PMID:24584090

  19. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis.

    PubMed

    Nielsen, Birgitte Romme; Ratzer, Rikke; Börnsen, Lars; von Essen, Marina Rode; Christensen, Jeppe Romme; Sellebjerg, Finn

    2017-09-15

    We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4(+) and CD8(+) T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26(+) CD28(+) CD4(+) TEMRA T cells were increased in all subtypes of MS, and CD26(+) CD28(+) CD8(+) TEMRA T cells were increased in relapsing-remitting and secondary progressive MS. Conversely, in progressive MS, CD49d(+) CM T cells were decreased and natalizumab increased the circulating number of all six subsets but reduced the frequency of most subsets expressing CD49d and CD26. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation

    PubMed Central

    Ouyang, Wenjun; Kolls, Jay K.; Zheng, Yan

    2012-01-01

    T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity. PMID:18400188

  1. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses

    PubMed Central

    Chang, Jae-Hoon; Hu, Hongbo; Jin, Jin; Puebla-Osorio, Nahum; Xiao, Yichuan; Gilbert, Brian E.; Brink, Robert; Ullrich, Stephen E.

    2014-01-01

    Regulatory T cells (Treg cells) control different aspects of immune responses, but how the effector functions of Treg cells are regulated is incompletely understood. Here we identified TNF receptor–associated factor 3 (TRAF3) as a regulator of Treg cell function. Treg cell–specific ablation of TRAF3 impaired CD4 T cell homeostasis, characterized by an increase in the Th1 type of effector/memory T cells. Moreover, the ablation of TRAF3 in Treg cells resulted in increased antigen-stimulated activation of follicular T helper cells (TFH cells), coupled with heightened formation of germinal centers and production of high-affinity IgG antibodies. Although the loss of TRAF3 did not reduce the overall frequency of Treg cells, it attenuated the antigen-stimulated production of follicular Treg cells (TFR cells). TRAF3 signaling in Treg cells was required to maintain high level expression of inducible co-stimulator (ICOS), which in turn was required for TFR cell generation and inhibition of antibody responses. These findings establish TRAF3 as a mediator of Treg cell function in the regulation of antibody responses and suggest a role for TRAF3 in mediating ICOS expression in Treg cells. PMID:24378539

  2. Chronic alcohol consumption is associated with changes in the distribution, immunophenotype, and the inflammatory cytokine secretion profile of circulating dendritic cells.

    PubMed

    Laso, Francisco Javier; Vaquero, José Miguel; Almeida, Julia; Marcos, Miguel; Orfao, Alberto

    2007-05-01

    Alcoholism is frequently associated with altered immune responses, limited information being available on its effects on dendritic cells (DC). In the present study we analyze the effects of chronic alcoholism on circulating DC. For the first time we studied the numerical distribution of DC in peripheral blood (PB), their immunophenotype, and their ex vivo pattern of spontaneous cytokine secretion, in chronic alcoholic patients without liver disease (AWLD group; n=17) and active ethanol (EtOH) intake, as well as in subjects with alcohol liver cirrhosis (ALC group; n=21). A significantly decreased HLADR expression and an increased reactivity for CD123 was observed on PB DC from AWLD patients; additionally, increased secretion of interleukin (IL) 1beta, IL6, IL12, and tumor necrosis factor-alpha (TNFalpha) by DC was also noted in this group. Conversely, patients with ALC and at least 1 year of alcohol withdrawal (ALCAW group) showed a decreased number of total circulating DC, whereas ALC patients with active EtOH intake (ALCET group) had an abnormally low production of IL1beta and TNFalpha by PB DC. Chronic alcoholism in the absence of liver disease is associated with an increased secretion of inflammatory cytokines by PB DC, whereas ALCAW and ALCET patients show decreased numbers of circulating DC and reduced secretion of these cytokines, respectively.

  3. Uptake of the Fusarium Effector Avr2 by Tomato Is Not a Cell Autonomous Event

    PubMed Central

    Di, Xiaotang; Gomila, Jo; Ma, Lisong; van den Burg, Harrold A.; Takken, Frank L. W.

    2016-01-01

    Pathogens secrete effector proteins to manipulate the host for their own proliferation. Currently it is unclear whether the uptake of effector proteins from extracellular spaces is a host autonomous process. We study this process using the Avr2 effector protein from Fusarium oxysporum f. sp. lycopersici (Fol). Avr2 is an important virulence factor that is secreted into the xylem sap of tomato following infection. Besides that, it is also an avirulence factor triggering immune responses in plants carrying the I-2 resistance gene. Recognition of Avr2 by I-2 occurs inside the plant nucleus. Here, we show that pathogenicity of an Avr2 knockout Fusarium (FolΔAvr2) strain is fully complemented on transgenic tomato lines that express either a secreted (Avr2) or cytosolic Avr2 (ΔspAvr2) protein, indicating that Avr2 exerts its virulence functions inside the host cells. Furthermore, our data imply that secreted Avr2 is taken up from the extracellular spaces in the presence of the fungus. Grafting studies were performed in which scions of I-2 tomato plants were grafted onto either a ΔspAvr2 or on an Avr2 rootstock. Although the Avr2 protein could readily be detected in the xylem sap of the grafted plant tissues, no I-2-mediated immune responses were induced suggesting that I-2-expressing tomato cells cannot autonomously take up the effector protein from the xylem sap. Additionally, ΔspAvr2 and Avr2 plants were crossed with I-2 plants. Whereas ΔspAvr2/I-2 F1 plants showed a constitutive immune response, immunity was not triggered in the Avr2/I-2 plants confirming that Avr2 is not autonomously taken up from the extracellular spaces to trigger I-2. Intriguingly, infiltration of Agrobacterium tumefaciens in leaves of Avr2/I-2 plants triggered I-2 mediated cell death, which indicates that Agrobacterium triggers effector uptake. To test whether, besides Fol, effector uptake could also be induced by other fungal pathogens the ΔspAvr2 and Avr2 transgenic lines were inoculated

  4. Sequential actions of immune effector cells induced by viral activation of dendritic cells to eliminate murine neuroblastoma.

    PubMed

    Kawakubo, Naonori; Tanaka, Sakura; Kinoshita, Yoshiaki; Tajiri, Tatsuro; Yonemitsu, Yoshikazu; Taguchi, Tomoaki

    2017-08-26

    In preclinical trails, we reported the antitumor effect of dendritic cells activated with Sendai virus (rSeV/DC) combined with γ-irradiation against neuroblastoma. However, what kind of effector cells for the combined therapy were used to show the antitumor effect was unclear. In this study, we performed radiation and rSeV/DC therapy in vivo and examined the effector cells involved. Dendritic cells were cultured from bone marrow cells, activated with SeV and administered intratumorally at 10(6) weekly for 3weeks. Radiation was administered at 4Gy/time × 3 times. During the treatment, CD4+ and CD8+ cells and natural killer (NK) cells were removed by antibodies. Complete remission of neuroblastoma was observed in 62.5% of individuals in the combined therapy group. By depleting the effector cells using antibodies, the tumor increased in size from an early stage of treatment in the CD4+ and NK cell-depleted group. In contrast, the tumor increased in size in the late stage of treatment in the CD8+ cell-depleted group. The combination of radiation and rSeV/DC therapy induces different effector cells, depending on the time point during treatment. V. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cellular Neural Network Models of Growth and Immune of Effector Cells Response to Cancer

    NASA Astrophysics Data System (ADS)

    Su, Yongmei; Min, Lequan

    Four reaction-diffusion cellular neural network (R-D CNN) models are set up based on the differential equation models for the growths of effector cells and cancer cells, and the model of the immune response to cancer proposed by Allison et al. The CNN models have different reaction-diffusion coefficients and coupling parameters. The R-D CNN models may provide possible quantitative interpretations, and are good in agreement with the in vitro experiment data reported by Allison et al.

  6. Rapid and Continued T-Cell Differentiation into Long-term Effector and Memory Stem Cells in Vaccinated Melanoma Patients.

    PubMed

    Gannon, Philippe O; Baumgaertner, Petra; Huber, Alexandre; Iancu, Emanuela M; Cagnon, Laurène; Abed Maillard, Samia; Maby-El Hajjami, Hélène; Speiser, Daniel E; Rufer, Nathalie

    2016-11-21

    Purpose: Patients with cancer benefit increasingly from T-cell-based therapies, such as adoptive T-cell transfer, checkpoint blockade, or vaccination. We have previously shown that serial vaccinations with Melan-A(MART-1)26-35 peptide, CpG-B, and incomplete Freund adjuvant (IFA) generated robust tumor-specific CD8 T-cell responses in patients with melanoma. Here, we describe the detailed kinetics of early- and long-term establishment of T-cell frequency, differentiation (into memory and effector cells), polyfunctionality, and clonotype repertoire induced by vaccination.Experimental Design: Twenty-nine patients with melanoma were treated with multiple monthly subcutaneous vaccinations consisting of CpG-B, and either the native/EAA (n = 13) or the analogue/ELA (n = 16) Melan-A(MART-1)26-35 peptide emulsified in IFA. Phenotypes and functionality of circulating Melan-A-specific CD8 T cells were assessed directly ex vivo by multiparameter flow cytometry, and TCR clonotypes were determined ex vivo by mRNA transcript analyses of individually sorted cells.Results: Our results highlight the determining impact of the initial vaccine injections on the rapid and strong induction of differentiated effector T cells in both patient cohorts. Moreover, long-term polyfunctional effector T-cell responses were associated with expansion of stem cell-like memory T cells over time along vaccination. Dominant TCR clonotypes emerged early and persisted throughout the entire period of observation. Interestingly, one highly dominant clonotype was found shared between memory and effector subsets.Conclusions: Peptide/CpG-B/IFA vaccination induced powerful long-term T-cell responses with robust effector cells and stem cell-like memory cells. These results support the further development of CpG-B-based cancer vaccines, either alone or as specific component of combination therapies. Clin Cancer Res; 1-12. ©2016 AACR.

  7. An approach to the immunophenotypic features of circulating CD4⁺NKG2D⁺ T cells in invasive cervical carcinoma.

    PubMed

    Garcia-Chagollan, Mariel; Jave-Suarez, Luis Felipe; Haramati, Jesse; Bueno-Topete, Miriam Ruth; Aguilar-Lemarroy, Adriana; Estrada-Chavez, Ciro; Bastidas-Ramirez, Blanca Estela; Pereira-Suarez, Ana Laura; Del Toro-Arreola, Susana

    2015-10-20

    NKG2D, an activating immunoreceptor, is primarily restricted to NK cells and CD8(+) T cells. The existence of an atypical cytotoxic CD4(+)NKG2D(+) T cell population has also been found in patients with autoimmune dysfunctions. Nonetheless, contradictory evidence has categorized this population with a regulatory rather than cytotoxic role in other situations. These confounding data have led to the proposal that two distinct CD4(+)NKG2D(+) T cell subsets might exist. The immune response elicited in cervical cancer has been characterized by apparent contradictions concerning the role that T cells, in particular T-helper cells, might be playing in the control of the tumor growth. Interestingly, we recently reported a substantial increase in the frequency of CD4(+)NKG2D(+) T cells in patients with cervical intraepithelial neoplasia grade-1. However, whether this particular population is also found in patients with more advanced cervical lesions or whether they express a distinctive phenotype remains still to be clarified. In this urgent study, we focused our attention on the immunophenotypic characterization of CD4(+)NKG2D(+) T cells in patients with well-established cervical carcinoma and revealed the existence of at least two separate CD4(+)NKG2D(+) T cell subsets defined by the co-expression or absence of CD28. Patients with diagnosis of invasive cervical carcinoma were enrolled in the study. A group of healthy individuals was also included. Multicolor flow cytometry was used for exploration of TCR alpha/beta, CD28, CD158b, CD45RO, HLA-DR, CD161, and CD107a. A Luminex-based cytokine kit was used to quantify the levels of pro- and anti-inflammatory cytokines. We found an increased percentage of CD4(+)NKG2D(+) T cells in patients with cervical cancer when compared with controls. Accordingly with an increase of CD4(+)NKG2D(+) T cells, we found decreased CD28 expression. The activating or degranulation markers HLA-DR, CD161, and CD107a were heterogeneously expressed. The

  8. Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung

    PubMed Central

    Morabito, Kaitlyn M.; Ruckwardt, Tracy R.; Redwood, Alec J.; Moin, Syed M.; Price, David A.; Graham, Barney S.

    2016-01-01

    Cytomegalovirus vectors are promising delivery vehicles for vaccine strategies that aim to elicit effector CD8+ T cells. To determine how the route of immunization affects CD8+ T cell responses in the lungs of mice vaccinated with a murine cytomegalovirus vector expressing the respiratory syncytial virus matrix (M) protein, we infected CB6F1 mice via the intranasal or intraperitoneal route and evaluated the M-specific CD8+ T cell response at early and late time points. We found that intranasal vaccination generated robust and durable tissue-resident effector and effector memory CD8+ T cell populations that were undetectable after intraperitoneal vaccination. The generation of these antigen-experienced cells by intranasal vaccination resulted in earlier T cell responses, interferon gamma secretion, and viral clearance after respiratory syncytial virus challenge. Collectively, these findings validate a novel approach to vaccination that emphasizes the route of delivery as a key determinant of immune priming at the site of vulnerability. PMID:27220815

  9. Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung.

    PubMed

    Morabito, K M; Ruckwardt, T R; Redwood, A J; Moin, S M; Price, D A; Graham, B S

    2017-03-01

    Cytomegalovirus vectors are promising delivery vehicles for vaccine strategies that aim to elicit effector CD8+ T cells. To determine how the route of immunization affects CD8+ T-cell responses in the lungs of mice vaccinated with a murine cytomegalovirus vector expressing the respiratory syncytial virus matrix (M) protein, we infected CB6F1 mice via the intranasal or intraperitoneal route and evaluated the M-specific CD8+ T-cell response at early and late time points. We found that intranasal vaccination generated robust and durable tissue-resident effector and effector memory CD8+ T-cell populations that were undetectable after intraperitoneal vaccination. The generation of these antigen-experienced cells by intranasal vaccination resulted in earlier T-cell responses, interferon gamma secretion, and viral clearance after respiratory syncytial virus challenge. Collectively, these findings validate a novel approach to vaccination that emphasizes the route of delivery as a key determinant of immune priming at the site of vulnerability.

  10. Interleukin-21 triggers effector cell responses in the gut.

    PubMed

    De Nitto, Daniela; Sarra, Massimiliano; Pallone, Francesco; Monteleone, Giovanni

    2010-08-07

    In the gut of patients with Crohn's disease and patients with ulcerative colitis, the major forms of inflammatory bowel diseases (IBD) in humans, the tissue-damaging immune response is mediated by an active cross-talk between immune and non-immune cells. Accumulating evidence indicates also that cytokines produced by these cells play a major role in initiating and shaping this pathologic process. One such cytokine seems to be interleukin (IL)-21, a member of the common gamma-chain-receptor family. IL-21 is produced in excess in the inflamed intestine of patients with IBD mostly by activated CD4+ T helper cells co-expressing interferon-gamma and follicular T helper cells. Moreover, both in vitro and in vivo studies indicate that excessive IL-21 production leads to the activation of multiple signaling pathways that expand and sustain the ongoing mucosal inflammation. In this article, we review the available data supporting the pathogenic role of IL-21 in IBD.

  11. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell.

    PubMed

    Rolando, Monica; Buchrieser, Carmen

    2014-12-01

    Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses.

  12. Inflammation-induced effector CD4+ T cell interstitial migration is alpha-v integrin dependent

    PubMed Central

    Overstreet, Michael G.; Gaylo, Alison; Angermann, Bastian; Hughson, Angela; Hyun, Young-min; Lambert, Kris; Acharya, Mridu; Billroth-Maclurg, Alison C.; Rosenberg, Alexander F.; Topham, David J.; Yagita, Hideo; Kim, Minsoo; Lacy-Hulbert, Adam; Meier-Schellersheim, Martin; Fowell, Deborah J.

    2014-01-01

    Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues appears to be integrin-independent actin-myosin based, during inflammation changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that T cell interstitial motility was critically dependent on RGD-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to increased αv integrin expression on effector CD4+ T cells. Using intravital multi-photon imaging, we found that CD4+ T cell motility was dependent on αv expression. Selective αv blockade or knockdown arrested TH1 motility in the inflamed tissue and attenuated local effector function. These data show a context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity. PMID:23933892

  13. Cif type III effector protein: a smart hijacker of the host cell cycle.

    PubMed

    Samba-Louaka, Ascel; Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2009-09-01

    During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.

  14. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    PubMed Central

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.; Bryceson, Yenan T.

    2015-01-01

    SUMMARY The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets. PMID:25786176

  15. Global impact of Salmonella type III secretion effector SteA on host cells

    SciTech Connect

    Cardenal-Muñoz, Elena Gutiérrez, Gabriel Ramos-Morales, Francisco

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  16. Human dendritic cells and macrophages. In situ immunophenotypic definition of subsets that exhibit specific morphologic and microenvironmental characteristics.

    PubMed Central

    Wood, G. S.; Turner, R. R.; Shiurba, R. A.; Eng, L.; Warnke, R. A.

    1985-01-01

    Using a panel of monoclonal antibodies and antisera in situ, the authors have defined subsets of human dendritic cells and macrophages that exhibit specific morphologic and microenvironmental characteristics. All subsets contained cells that reacted with antibodies directed against HLA-A,B,C, HLA-Dr, leukocyte common, Leu-M3, and Leu-3(T4) antigens. R4/23 and anti-S100 defined three major subsets. R4/23+, S100- cells constituted the B-cell-related follicular dendritic cells, which were identified only within the germinal center/mantle microenvironment of lymphoid follicles. R4/23-, S100+ cells constituted the T-cell-related dendritic cell subset. Anti-Leu-6(T6) further subdivided this group into Leu-6(T6)- interdigitating cells within the T-cell microenvironments of lymphoid organs and Leu-6(T6)+ Langerhans cells found predominantly in epithelial microenvironments, especially the skin. R4/23-, S100- cells constituted the nondendritic tissue macrophage subset which was widely distributed, primarily outside of dendritic-cell microenvironments. These data indicate that although dendritic cells and macrophages share several common antigenic features, morphologically and microenvironmentally distinct subsets express distinct immunologic phenotypes. Such data may provide insight into the ontogeny and function of these subsets and constitute a basis for the comparison of normal dendritic cells and macrophages to various histiocytic proliferative disorders. Images Figure 1 Figure 2 p78-c Figure 3 Figure 4 Figure 5 PMID:3985124

  17. Interleukin-21 induces proliferation and modulates receptor expression and effector function in canine natural killer cells.

    PubMed

    Shin, Dong-Jun; Lee, Soo-Hyeon; Park, Ji-Yun; Kim, Ju-Sun; Lee, Je-Jung; Suh, Guk-Hyun; Lee, Youn-Kyung; Cho, Duck; Kim, Sang-Ki

    2015-05-15

    Interleukin (IL)-21 is an important modulator of natural killer (NK) cell function. However, little is known about IL-21 function in canine NK cells because the phenotype of these cells remains undefined. In this study, we selectively expanded non-B and non-T large granular NK lymphocytes (CD3(-)CD21(-)CD5(-)CD4(-)TCRαβ(-)TCRγδ(-)) ex vivo from the peripheral blood mononuclear cells (PBMCs) of healthy dogs using a combination of IL-2, IL-15, and IL-21 in the presence of 100 Gy-irradiated K562 cells. We investigated the effects of varying the duration and timing of IL-21 treatment on stimulation of proliferation, expression of NK-related receptors, anti-tumor activity and production of interferon (IFN)-γ. The expanded NK cells in each treatment group became enlarged and highly granular after 21 days in culture. NK cells proliferated rapidly in response to activation by IL-21 for 3 weeks, and IL-21 was able to induce changes in the mRNA expression of NK cell-related receptors and enhance the effector function of NK cells in perforin- and granzyme-B-dependent manners. The duration, frequency and timing of IL-21 stimulation during culture affected the rate of proliferation, patterns of receptor expression, cytokine production, and anti-tumor activity. The optimal conditions for maximizing the IL-21-induced proliferation and effector function of NK cells in the presence of IL-2 and IL-15 were seen in cells treated with IL-21 for the first 7 days of culture but without any further IL-21 stimulation other than an additional 2-day treatment prior to harvesting on day 21. The results of this study suggest that synergistic interactions of IL-21 with IL-2 and IL-15 play an important role in the proliferation, receptor expression, and effector function of canine NK cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    that can finely tune activities of T cells, B cells and regulatory cells by cognate interactions within lymphoid organs. The multivalent capacity to recognize and to react to internal and external dangers together with their ability to cross-talk with other immunocompetent cells make mast cells a unique effector cell of innate responses and a main bridge between innate and adaptive immunity.

  19. A translocation signal for delivery of oomycete effector proteins into host plant cells.

    PubMed

    Whisson, Stephen C; Boevink, Petra C; Moleleki, Lucy; Avrova, Anna O; Morales, Juan G; Gilroy, Eleanor M; Armstrong, Miles R; Grouffaud, Severine; van West, Pieter; Chapman, Sean; Hein, Ingo; Toth, Ian K; Pritchard, Leighton; Birch, Paul R J

    2007-11-01

    Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.

  20. Effects of aging on human leukocytes (part II): immunophenotyping of adaptive immune B and T cell subsets.

    PubMed

    Stervbo, Ulrik; Bozzetti, Cecilia; Baron, Udo; Jürchott, Karsten; Meier, Sarah; Mälzer, Julia Nora; Nienen, Mikalai; Olek, Sven; Rachwalik, Dominika; Schulz, Axel Ronald; Neumann, Avidan; Babel, Nina; Grützkau, Andreas; Thiel, Andreas

    2015-10-01

    Immunosenescence results from a continuous deterioration of immune responses resulting in a decreased response to vaccines. A well-described age-related alteration of the immune system is the decrease of de novo generation of T and B cells. In addition, the accumulation of memory cells and loss of diversity in antigen specificities resulting from a lifetime of exposure to pathogens has also been described. However, the effect of aging on subsets of γδTCR(+) T cells and Tregs has been poorly described, and the efficacy of the recall response to common persistent infections in the elderly remains obscure. Here, we investigated alterations in the subpopulations of the B and T cells among 24 healthy young (aged 19-30) and 26 healthy elderly (aged 53-67) individuals. The analysis was performed by flow cytometry using freshly collected peripheral blood. γδTCR(+) T cells were overall decreased, while CD4(+)CD8(-) cells among γδTCR(+) T cells were increased in the elderly. Helios(+)Foxp3(+) and Helios(-)Foxp3(+) Treg cells were unaffected with age. Recent thymic emigrants, based on CD31 expression, were decreased among the Helios(+)Foxp3(+), but not the Helios(-)Foxp3(+) cell populations. We observed a decrease in Adenovirus-specific CD4(+) and CD8(+) T cells and an increase in CMV-specific CD4(+) T cells in the elderly. Similarly, INFγ(+)TNFα(+) double-positive cells were decreased among activated T cells after Adenovirus stimulation but increased after CMV stimulation. The data presented here indicate that γδTCR(+) T cells might stabilize B cells, and functional senescence might dominate at higher ages than those studied here.

  1. Growth on poly(L-lactic acid) porous scaffold preserves CD73 and CD90 immunophenotype markers of rat bone marrow mesenchymal stromal cells.

    PubMed

    Zamparelli, Alessandra; Zini, Nicoletta; Cattini, Luca; Spaletta, Giulia; Dallatana, Davide; Bassi, Elena; Barbaro, Fulvio; Iafisco, Michele; Mosca, Salvatore; Parrilli, Annapaola; Fini, Milena; Giardino, Roberto; Sandri, Monica; Sprio, Simone; Tampieri, Anna; Maraldi, Nadir M; Toni, Roberto

    2014-10-01

    Few data are available on the effect of biomaterials on surface antigens of mammalian bone marrow-derived, adult mesenchymal stromal cells (MSCs). Since poly(L-lactic acid) or PLLA is largely used in tissue engineering of human bones, and we are developing a reverse engineering program to prototype with biomaterials the vascular architecture of bones for their bioartificial reconstruction, both in humans and animal models, we have studied the effect of porous, flat and smooth PLLA scaffolds on the immunophenotype of in vitro grown, rat MSCs in the absence of any coating, co-polymeric enrichment, and differentiation stimuli. Similar to controls on plastic, we show that our PLLA scaffold does not modify the distribution of some surface markers in rat MSCs. In particular, the maintained expression of CD73 and CD90 on two different subpopulations (small and large cells) is consistent with their adhesion to the PLLA scaffold through specialized appendages, and to their prominent content in actin. In addition, our PLLA scaffold favours retention of the intermediate filament desmin, believed a putative marker of undifferentiated state. Finally, it preserves all rat MSCs morphotypes, and allows for their survival, adhesion to the substrate, and replication. Remarkably, a subpopulation of rat MSCs grown on our PLLA scaffold exhibited formation of membrane protrusions of uncertain significance, although in a size range and morphology compatible with either motility blebs or shedding vesicles. In summary, our PLLA scaffold has no detrimental effect on a number of features of rat MSCs, primarily the expression of CD73 and CD90.

  2. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy.

    PubMed

    Vavrova, Katerina; Vrabcova, Petra; Filipp, Dominik; Bartunkova, Jirina; Horvath, Rudolf

    2016-12-01

    Adoptive T cell transfer has been shown to be an effective method used to boost tumor-specific immune responses in several types of malignancies. In this study, we set out to optimize the ACT protocol for the experimental treatment of prostate cancer. The protocol includes a pre-stimulation step whereby T cells were primed with autologous dendritic cells loaded with the high hydrostatic pressure-treated prostate cancer cell line, LNCaP. Primed T cells were further expanded in vitro with anti-CD3/CD28 Dynabeads in the WAVE bioreactor 2/10 system and tested for cytotoxicity. Our data indicates that the combination of pre-stimulation and expansion steps resulted in the induction and enrichment of tumor-responsive CD4(+) and CD8(+) T cells at clinically relevant numbers. The majority of both CD4(+) and CD8(+) IFN-γ producing cells were CD62L, CCR7 and CD57 negative but CD28 and CD27 positive, indicating an early antigen experienced phenotype in non-terminal differentiation phase. Expanded T cells showed significantly greater cytotoxicity against LNCaP cells compared to the control SKOV-3, an ovarian cancer line. In summary, our results suggest that the ACT approach together with LNCaP-loaded dendritic cells provides a viable way to generate prostate cancer reactive T cell effectors that are capable of mounting efficient and targeted antitumor responses and can be thus considered for further testing in a clinical setting.

  3. Immunophenotyping Reveals the Diversity of Human Dental Pulp Mesenchymal Stromal Cells In vivo and Their Evolution upon In vitro Amplification

    PubMed Central

    Ducret, Maxime; Fabre, Hugo; Degoul, Olivier; Atzeni, Gianluigi; McGuckin, Colin; Forraz, Nico; Mallein-Gerin, Frédéric; Perrier-Groult, Emeline; Alliot-Licht, Brigitte; Farges, Jean-Christophe

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) from human dental pulp (DP) can be expanded in vitro for cell-based and regenerative dentistry therapeutic purposes. However, their heterogeneity may be a hurdle to the achievement of reproducible and predictable therapeutic outcomes. To get a better knowledge about this heterogeneity, we designed a flow cytometric strategy to analyze the phenotype of DP cells in vivo and upon in vitro expansion with stem cell markers. We focused on the CD31− cell population to exclude endothelial and leukocytic cells. Results showed that the in vivo CD31− DP cell population contained 1.4% of CD56+, 1.5% of CD146+, 2.4% of CD271+ and 6.3% of MSCA-1+ cells but very few Stro-1+ cells (≤ 1%). CD56+, CD146+, CD271+, and MSCA-1+ cell subpopulations expressed various levels of these markers. CD146+MSCA-1+, CD271+MSCA-1+, and CD146+CD271+ cells were the most abundant DP-MSC populations. Analysis of DP-MSCs expanded in vitro with a medicinal manufacturing approach showed that CD146 was expressed by about 50% of CD56+, CD271+, MSCA-1+, and Stro-1+ cells, and MSCA-1 by 15–30% of CD56+, CD146+, CD271+, and Stro-1+ cells. These ratios remained stable with passages. CD271 and Stro-1 were expressed by <1% of the expanded cell populations. Interestingly, the percentage of CD56+ cells strongly increased from P1 (25%) to P4 (80%) both in all sub-populations studied. CD146+CD56+, MSCA-1+CD56+, and CD146+MSCA-1+ cells were the most abundant DP-MSCs at the end of P4. These results established that DP-MSCs constitute a heterogeneous mixture of cells in pulp tissue in vivo and in culture, and that their phenotype is modified upon in vitro expansion. Further studies are needed to determine whether co-expression of specific MSC markers confers DP cells specific properties that could be used for the regeneration of human tissues, including the dental pulp, with standardized cell-based medicinal products. PMID:27877132

  4. Functional in vitro assays for the isolation of cell transformation effector and suppressor genes.

    PubMed Central

    Zarbl, H; Kho, C J; Boylan, M O; Van Amsterdam, J; Sullivan, R C; Hoemann, C D; Afshani, V L

    1991-01-01

    Malignant transformation may be viewed as an imbalance between signals inducing cell growth and signals leading to growth inhibition, differentiation, or senescence. A basic understanding of how these counterbalancing forces interact to regulate normal cell growth is the prerequisite to comprehending the mechanisms of tumorigenesis. Identification and characterization of the gene products implicated in these regulatory pathways is the first step toward understanding the disease process. The studies outlined here provide the potential basis for isolating and molecularly characterizing transformation effector and suppressor genes, which must respectively function in the positive and negative regulation of normal cell growth. The general strategy used involves the isolation and molecular characterization of nontransformed variants (revertants) from populations of tumor cells. The selection of revertants is facilitated by the ability to separate normal from transformed cells by fluorescence-activated sorting. The basis for this separation is the differential retention of the fluorescent dye rhodamine 123 in the mitochondria of normal versus transformed cells. Using this approach, we have isolated revertants from a mutagenized population of v-fos-transformed Rat-1 fibroblasts. Characterization of these clones indicated that they had sustained causal mutations in transformation effector genes. The unmutated effector genes are being identified and molecularly cloned by isolating retransformed clones from revertant cell lines that have been transfected with DNA or cDNA from normal primary cells. The same selection protocol has also been used to isolate revertants from tumor cell lines that have been transfected with DNA or cDNA from primary cells. The putative tumor-suppressor genes present in these revertants are currently being analyzed. PMID:1685446

  5. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease.

    PubMed

    Zhang, Nan; Van Zele, Thibaut; Perez-Novo, Claudina; Van Bruaene, Nicholas; Holtappels, Gabriele; DeRuyck, Natalie; Van Cauwenberge, Paul; Bachert, Claus

    2008-11-01

    Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by the accumulation of inflammatory cells; however, an eosinophil predominance is seen in white (Belgian), but not Asian (south Chinese), patients with polyps. We sought to investigate the association of inflammatory cell predominance with regulatory T-cell and T-effector cell patterns. Nasal mucosal tissue was obtained from 26 consecutive Belgian patients with CRSwNP and 21 Belgian control subjects and 29 south Chinese patients with CRSwNP and 29 south Chinese control subjects, who all underwent phenotyping, including nasal endoscopy and computed tomographic scanning. Tissues were investigated for granulocytes and their products and T-effector/regulatory T cells and related cytokines. Both CRSwNP groups were comparable in terms of symptoms, computed tomographic scan results, and nasal endoscopy results, but asthma comorbidity was significantly higher in white patients. Tissue from white patients with CRSwNP was characterized by eosinophilic inflammation (eosinophil cationic protein/myeloperoxidase ratio > 2), whereas samples from Asian patients were biased toward neutrophilic inflammation (eosinophil cationic protein/myeloperoxidase ratio = 0.25). Both CRSwNP groups demonstrated significant upregulation of the T-cell activation marker soluble IL-2 receptor alpha and significant downregulation of Foxp3 expression and TGF-beta1 protein content versus their respective control groups. However, whereas white patients displayed a significant increase in T(H)2 cytokine and related marker levels versus control subjects and versus Asian patients, the latter showed a T(H)1/T(H)17 cell pattern versus control tissue. Nasal polyps (CRSwNP) from white and Asian patients are both characterized by T-cell activation and impaired regulatory T-cell function; however, T-effector cells in the samples from white patients were T(H)2-biased, whereas samples from their Asian counterparts demonstrated a T(H)1/T(H)17

  6. Primary cutaneous mantle cell lymphoma of the leg with blastoid morphology and aberrant immunophenotype: a diagnostic challenge.

    PubMed

    Cesinaro, Anna Maria; Bettelli, Stefania; Maccio, Livia; Milani, Marina

    2014-02-01

    Mantle cell lymphoma rarely affects the skin and is usually a secondary involvement. The present case illustrates a primary cutaneous mantle cell lymphoma of the leg, with blastoid morphology and aberrant expression of CD10 and bcl-6, which was misinterpreted at the beginning as diffuse large B-cell lymphoma. A larger panel of immunohistochemical markers, including cyclin-D1, and molecular investigation showing the typical translocation (t11;14), pointed toward the correct diagnosis. Cutaneous diffuse B-cell lymphomas with unusual morphology should be interpreted cautiously, and the diagnosis made on the basis of an appropriate panel of antibodies and molecular studies.

  7. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    PubMed

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts.

  8. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    PubMed

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  9. Abrogation of SHP-1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo

    PubMed Central

    Stromnes, Ingunn M.; Fowler, Carla; Casamina, Chanel C.; Georgopolos, Christina M.; McAfee, Megan S.; Schmitt, Thomas M.; Tan, Xiaoxia; Kim, Tae-Don; Choi, Inpyo; Blattman, Joseph N.; Greenberg, Philip D.

    2012-01-01

    T cell expression of inhibitory proteins can be a critical component for the regulation of immunopathology due to self-reactivity or potentially exuberant responses to pathogens, but may also limit T cell responses to some malignancies, particularly if the tumor antigen being targeted is a self-protein. We found that the abrogation of SHP-1, in tumor-reactive CD8+ T cells improves the therapeutic outcome of adoptive immunotherapy in a mouse model of disseminated leukemia, with benefit observed in therapy employing transfer of CD8+ T cells alone or in the context of also providing supplemental IL-2. SHP-1−/− and SHP-1+/+ effector T cells were expanded in vitro for immunotherapy. Following transfer in vivo, the SHP-1−/− effector T cells exhibited enhanced short-term accumulation, followed by greater contraction, and ultimately formed similar numbers of long-lived, functional memory cells. The increased therapeutic effectiveness of SHP-1−/− effector cells was also observed in recipients that expressed the tumor antigen as a self-antigen in the liver, without evidence of inducing autoimmune toxicity. SHP-1−/− effector CD8+ T cells expressed higher levels of Eomesodermin, which correlated with enhanced lysis of tumor cells. Furthermore, reduction of SHP-1 expression in tumor-reactive effector T cells by retroviral transduction with vectors that express SHP-1-specific siRNA, a translatable strategy, also exhibited enhanced anti-tumor activity in vivo. These studies suggest that abrogating SHP-1 in effector T cells may improve the efficacy of tumor elimination by T cell therapy without impacting the ability of the effector cells to persist and provide a long-term response. PMID:22798667

  10. Characterisation of blast cells during blastic phase of chronic myeloid leukaemia by immunophenotyping--experience in 60 patients.

    PubMed

    Saikia, T; Advani, S; Dasgupta, A; Ramakrishnan, G; Nair, C; Gladstone, B; Kumar, M S; Badrinath, Y; Dhond, S

    1988-01-01

    The blast cell population of 60 patients with chronic myeloid leukaemia in blast crisis (CML-BC) were analyzed with a panel of monoclonal antibodies to determine the cell surface antigen phenotypes. In addition, cytochemical stains periodic acid Schiff (PAS), myeloperoxidase (MP), Sudan black B (SBB) and terminal deoxynucleotidyl transferase (TdT) were also utilized for subtyping. Nineteen cases (31.6%) expressed lymphoid phenotypes characteristic of common ALL cells and one case with extramedullary lymph node crisis expressed T-cell surface phenotypes. Thirty cases (50%) expressed solely myelomonocytic surface antigens with significant TdT activity in three. Cytochemical stains contributed to recognize only 57% of these myeloid blasts. Seven cases (11.7%) were with a mixture of heterogenous group of cells expressing phenotypic characteristics for various haemopoietic cells of different lineage--five of them from the cells of non-lymphoid series (myelomono-erythromegakaryocytic series) and the other two with cells from both lymphoid and myeloid series. Additionally, in two cases (3.3%), the precursor cells reacted only with the erythroid monoclonals. Finally, in one case, the blast cells remained unclassified due to nonreactivity with any of the monoclonals used but expressed significant TdT positivity. The response to uniform vincristine and prednisolone (V + P) therapy has shown that lymphoid blast crisis cases were highly responsive in contrast to the cases with non-lymphoid blast crisis (complete remission rate 86 vs 21.4%). The results confirm the evidence of multilineage blast crisis involving either single or mixed haemopoietic differentiation pathway and the utility of having phenotypic characterisation for designing protocols for chemotherapy in the CML patients at the time of blast crisis.

  11. Tle4 regulates epigenetic silencing of gamma interferon expression during effector T helper cell tolerance.

    PubMed

    Bandyopadhyay, Sanmay; Valdor, Rut; Macian, Fernando

    2014-01-01

    In response to suboptimal activation, T cells become hyporesponsive, with a severely reduced capacity to proliferate and produce cytokines upon reencounter with antigen. Chromatin analysis of T cells made tolerant by use of different in vitro and in vivo approaches reveals that the expression of gamma interferon (IFN-γ) is epigenetically silenced in anergic effector TH1 cells. In those T cells, calcium signaling triggers the expression of Tle4, a member of the Groucho family of corepressors, which is then recruited to a distal regulatory element in the Ifng locus and causes the establishment of repressive epigenetic marks at the Ifng gene regulatory elements. Consequently, impaired Tle4 activity results in a markedly reduced capacity to inhibit IFN-γ production in tolerized T cells. We propose that Blimp1-dependent recruitment of Tle4 to the Ifng locus causes epigenetic silencing of the expression of the Ifng gene in anergic TH1 cells. These results define a novel function of Groucho family corepressors in peripheral T cells and demonstrate that specific mechanisms are activated in tolerant T helper cells to directly repress expression of effector cytokines, supporting the hypothesis that stable epigenetic imprinting contributes to the maintenance of the tolerance-associated hyporesponsive phenotype in T cells.

  12. Genome Modification of Pluripotent Cells by Using Transcription Activator-Like Effector Nucleases (TALENs).

    PubMed

    Taheri-Ghahfarokhi, Amir; Malaver-Ortega, Luis F; Sumer, Huseyin

    2015-01-01

    Interest is increasing in transcription activator-like effector nucleases (TALENs) as a tool to introduce targeted double-strand breaks into the large genomes of human and animal cell lines. The produced DNA lesions stimulate DNA repair pathways, error-prone but dominant non-homologous end joining (NHEJ) and accurate but less occurring homology-directed repair (HDR), and as a result targeted genes can be modified. Here, we describe a modified Golden-Gate cloning method for generating TALENs and also details for targeting genes in mouse embryonic stem cells. The protocol described here can be used for modifying the genome of a broad range of pluripotent cell lines.

  13. Significance of alterations in PBMC immunophenotype of children with chronic viral hepatitis C-- the role of dendritic cells.

    PubMed

    Mozer-Lisewska, I; Dworacki, G; Kaczmarek, E; Sluzewski, W; Kaczmarek, M; Woźniak, A; Zeromski, J

    2006-04-01

    There are differences in the clinical course of chronic viral hepatitis C between adults and children, but it is generally accepted that the disease has cell-mediated immune background. The aim of this study was to evaluate PBMC subsets in children with chronic hepatitis C before treatment in order to find some predictive factors, useful for patients management. Several PBMC subsets, in particular lymphoid and dendritic cell (DC) ones, were tested by flow cytometry in HCV(+) paediatric patients (n = 46) and in control children matched in terms of age and sex (n = 20). Data were subjected to extensive statistics. It was found that cells with cytotoxic potential such as CD8(+)CD28(-) T cells, NK and NKT cells as well as lineage(-)HLA-DR(+) DC were increased in per cent values, while CD4(+) T cells and CD4:CD8 ratio were decreased in hepatitis C group. In HCV(+) patients, CD4(+) T cells were inversely correlated with alanine aminotransferase (ALT) levels and with viraemia. DC subset of myeloid origin (CD11c(+)) assessed both in per cent values and as mean fluorescence intensity (MFI) of HLA-DR expression was shown to be downregulated in hepatitis patients, in spite of increased numbers. To conclude, PBMC subsets, and in particular DC, are affected by HCV chronic infection in children, reflected by the correlation with clinical parameters, such as ALT and viraemia.

  14. Role of Blimp-1 in programing Th effector cells into IL-10 producers.

    PubMed

    Neumann, Christian; Heinrich, Frederik; Neumann, Katrin; Junghans, Victoria; Mashreghi, Mir-Farzin; Ahlers, Jonas; Janke, Marko; Rudolph, Christine; Mockel-Tenbrinck, Nadine; Kühl, Anja A; Heimesaat, Markus M; Esser, Charlotte; Im, Sin-Hyeog; Radbruch, Andreas; Rutz, Sascha; Scheffold, Alexander

    2014-08-25

    Secretion of the immunosuppressive cytokine interleukin (IL) 10 by effector T cells is an essential mechanism of self-limitation during infection. However, the transcriptional regulation of IL-10 expression in proinflammatory T helper (Th) 1 cells is insufficiently understood. We report a crucial role for the transcriptional regulator Blimp-1, induced by IL-12 in a STAT4-dependent manner, in controlling IL-10 expression in Th1 cells. Blimp-1 deficiency led to excessive inflammation during Toxoplasma gondii infection with increased mortality. IL-10 production from Th1 cells was strictly dependent on Blimp-1 but was further enhanced by the synergistic function of c-Maf, a transcriptional regulator of IL-10 induced by multiple factors, such as the Notch pathway. We found Blimp-1 expression, which was also broadly induced by IL-27 in effector T cells, to be antagonized by transforming growth factor (TGF) β. While effectively blocking IL-10 production from Th1 cells, TGF-β shifted IL-10 regulation from a Blimp-1-dependent to a Blimp-1-independent pathway in IL-27-induced Tr1 (T regulatory 1) cells. Our findings further illustrate how IL-10 regulation in Th cells relies on several transcriptional programs that integrate various signals from the environment to fine-tune expression of this critical immunosuppressive cytokine. © 2014 Neumann et al.

  15. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus.

    PubMed

    Humrich, Jens Y; Morbach, Henner; Undeutsch, Reinmar; Enghard, Philipp; Rosenberger, Stefan; Weigert, Olivia; Kloke, Lutz; Heimann, Juliane; Gaber, Timo; Brandenburg, Susan; Scheffold, Alexander; Huehn, Jochen; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Riemekasten, Gabriela

    2010-01-05

    The origins and consequences of a regulatory T cell (Treg) disorder in systemic lupus erythematosus (SLE) are poorly understood. In the (NZBxNZW) F(1) mouse model of lupus, we found that CD4(+)Foxp3(+) Treg failed to maintain a competitive pool size in the peripheral lymphoid organs resulting in a progressive homeostatic imbalance of CD4(+)Foxp3(+) Treg and CD4(+)Foxp3(-) conventional T cells (Tcon). In addition, Treg acquired phenotypic changes that are reminiscent of IL-2 deficiency concomitantly to a progressive decline in IL-2-producing Tcon and an increase in activated, IFN-gamma-producing effector Tcon. Nonetheless, Treg from lupus-prone mice were functionally intact and capable to influence the course of disease. Systemic reduction of IL-2 levels early in disease promoted Tcon hyperactivity, induced the imbalance of Treg and effector Tcon, and strongly accelerated disease progression. In contrast, administration of IL-2 partially restored the balance of Treg and effector Tcon by promoting the homeostatic proliferation of endogenous Treg and impeded the progression of established disease. Thus, an acquired and self-amplifying disruption of the Treg-IL-2 axis contributed essentially to Tcon hyperactivity and the development of murine lupus. The reversibility of this homeostatic Treg disorder provides promising approaches for the treatment of SLE.

  16. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus

    PubMed Central

    Humrich, Jens Y.; Morbach, Henner; Undeutsch, Reinmar; Enghard, Philipp; Rosenberger, Stefan; Weigert, Olivia; Kloke, Lutz; Heimann, Juliane; Gaber, Timo; Brandenburg, Susan; Scheffold, Alexander; Huehn, Jochen; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Riemekasten, Gabriela

    2009-01-01

    The origins and consequences of a regulatory T cell (Treg) disorder in systemic lupus erythematosus (SLE) are poorly understood. In the (NZBxNZW) F1 mouse model of lupus, we found that CD4+Foxp3+ Treg failed to maintain a competitive pool size in the peripheral lymphoid organs resulting in a progressive homeostatic imbalance of CD4+Foxp3+ Treg and CD4+Foxp3− conventional T cells (Tcon). In addition, Treg acquired phenotypic changes that are reminiscent of IL-2 deficiency concomitantly to a progressive decline in IL-2-producing Tcon and an increase in activated, IFN-γ-producing effector Tcon. Nonetheless, Treg from lupus-prone mice were functionally intact and capable to influence the course of disease. Systemic reduction of IL-2 levels early in disease promoted Tcon hyperactivity, induced the imbalance of Treg and effector Tcon, and strongly accelerated disease progression. In contrast, administration of IL-2 partially restored the balance of Treg and effector Tcon by promoting the homeostatic proliferation of endogenous Treg and impeded the progression of established disease. Thus, an acquired and self-amplifying disruption of the Treg-IL-2 axis contributed essentially to Tcon hyperactivity and the development of murine lupus. The reversibility of this homeostatic Treg disorder provides promising approaches for the treatment of SLE. PMID:20018660

  17. NEPRO: a novel Notch effector for maintenance of neural progenitor cells in the neocortex.

    PubMed

    Saito, Tetsuichiro

    2012-01-01

    The Notch pathway is essential for maintaining neural progenitor cells (NPCs) in the developing brain. Activation of the pathway is sufficient to maintain NPCs, whereas loss-of-function mutations in the critical components of the pathway cause precocious neuronal differentiation and NPC depletion. Hairy and Enhancer of split (Hes)-type transcription factors have long been thought to be the only Notch effectors for the maintenance of NPCs. Recently, a novel nuclear protein, Nepro, has been identified as another critical effector of Notch. The Notch pathway is bifurcated into Nepro and Hes-type proteins in the early development of the neocortex. The combination of Nepro and Hes-type proteins is necessary and sufficient for maintaining NPCs downstream of Notch.

  18. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma.

    PubMed Central

    Ocqueteau, M.; Orfao, A.; Almeida, J.; Bladé, J.; González, M.; García-Sanz, R.; López-Berges, C.; Moro, M. J.; Hernández, J.; Escribano, L.; Caballero, D.; Rozman, M.; San Miguel, J. F.

    1998-01-01

    Although the immunophenotype of plasma cells (PCs) from multiple myeloma (MM) patients has been extensively explored, information on the phenotypic characteristics of PCs in monoclonal gammopathy of undetermined significance (MGUS) patients is scanty and frequently controversial. Thus, the question of whether or not PCs are phenotypically different in the two disorders and whether this criteria could be useful for the differential diagnosis between MGUS and MM remains to be explored. In the present study, the immunophenotypic profile of bone marrow PCs (BMPCs) from a group of 76 MGUS patients has been analyzed by flow cytometry and compared with that of BMPCs present in both MM patients (n = 65) and control subjects (n = 10). For that purpose, a large panel of monoclonal antibodies against PC-related antigens was used together with a sensitive methodology in which a minimum of 10(3) PCs were studied. In all MGUS cases studied, two clearly defined and distinct PC subpopulations could be identified. One PC subpopulation, population A (33 +/- 31% of total PCs), constantly displayed a high CD38 expression with low forward light scatter (FSC)/side light scatter (SSC) and was positive for CD19 and negative for CD56 (only a small proportion of these PCs were weakly positive for CD56). The other PC subpopulation, population B (67 +/- 31% of total PCs), showed the opposite pattern; the antigen CD56 was strongly positive and CD19 was constantly negative, and it showed a lower CD38 expression and higher FSC/SSC values than population A. Clonality studies (cytoplasmic light chain restriction, DNA content studies, and polymerase chain reaction assessment) confirmed the clonal nature of PCs from population B and the polyclonal origin of PCs from population A. Moreover, the polyclonal PCs from MGUS displayed a phenotypic profile identical to that found in PCs from healthy individuals. By contrast, clonal PCs from all MGUS patients displayed a similar antigenic profile to

  19. Aging disturbs the balance between effector and regulatory CD4+ T cells.

    PubMed

    van der Geest, Kornelis S M; Abdulahad, Wayel H; Tete, Sarah M; Lorencetti, Pedro G; Horst, Gerda; Bos, Nicolaas A; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2014-12-01

    Healthy aging requires an optimal balance between pro-inflammatory and anti-inflammatory immune responses. Although CD4+ T cells play an essential role in many immune responses, few studies have directly assessed the effect of aging on the balance between effector T (Teff) cells and regulatory T (Treg) cells. Here, we determined if and how aging affects the ratio between Treg and Teff cells. Percentages of both naive Treg (nTreg; CD45RA+CD25(int)FOXP3(low)) and memory Treg (memTreg; CD45RA-CD25(high)FOXP3(high)) cells were determined by flow cytometry in peripheral blood samples of healthy individuals of various ages (20-84 years). Circulating Th1, Th2 and Th17 effector cells were identified by intracellular staining for IFN-γ, IL-4 and IL-17, respectively, upon in vitro stimulation with PMA and calcium ionophore. Whereas proportions of nTreg cells declined with age, memTreg cells increased. Both Th1 and Th2 cells were largely maintained in the circulation of aged humans, whereas Th17 cells were decreased. Similar to memTreg cells, the 3 Teff subsets resided primarily in the memory CD4+ T cell compartment. Overall, Treg/Teff ratios were increased in the memory CD4+ T cell compartment of aged individuals when compared to that of young individuals. Finally, the relative increase of memTreg cells in elderly individuals was associated with poor responses to influenza vaccination. Taken together, our findings imply that aging disturbs the balance between Treg cells and Teff cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [ICO-63 monoclonal antibodies to the differentiation antigen of hemopoietic cells suitable for immunophenotyping of human solid tumors].

    PubMed

    Baryshnikov, A Iu; Kadyrov, Kh P; Tupitsyn, N N; Kadagidze, Z G; Petrovichev, N N

    1989-01-01

    ICO-63, new monoclonal antibodies (MCAB), used for immunodiagnosis, were produced by the standard hybridoma technique ICO-63 MCAB reacted with 50% granulocytes, 20% thrombocytes and endothelial cells, whereas they did not react with peripheral blood mononuclear cells, thymocytes and erythrocytes. The molecular weight of ICO-63 MCAB-identified antigen was about 100 kD. ICO-63 MCAB reacted with 12 out of 15 neuroblastomas, with some solid tissue sarcomas and melanomas, but did not react with tumours of the epithelial origin.

  1. mTORC1-dependent metabolic reprogramming is a prerequisite for Natural Killer cell effector function

    PubMed Central

    Donnelly, Raymond P.; Loftus, Róisín M.; Keating, Sinéad E.; Liou, Kevin T.; Biron, Christine A.; Gardiner, Clair M.; Finlay, David K.

    2014-01-01

    The mammalian target of rapamcyin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of natural killer (NK) cells, lymphocytes that play key roles in anti-viral and anti-tumour immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell pro-inflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFNγ, important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, up-regulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFNγ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions. PMID:25261477

  2. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis

    PubMed Central

    Kirshenbaum, Arnold S.; Cruse, Glenn; Desai, Avanti; Bandara, Geethani; Leerkes, Maarten; Lee, Chyi-Chia R.; Fischer, Elizabeth R.; O’Brien, Kevin J.; Gochuico, Bernadette R.; Stone, Kelly; Gahl, William A.; Metcalfe, Dean D.

    2016-01-01

    Hermansky-Pudlak Syndrome type-1 (HPS-1) is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO) transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs) is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM) cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF) alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients’ serum, in addition to IL-8, fibronectin-1 (FN-1) and galectin-3 (LGALS3). Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator content and

  3. Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow.

    PubMed

    Screven, Rudell; Kenyon, Elizabeth; Myers, Michael J; Yancy, Haile F; Skasko, Mark; Boxer, Lynne; Bigley, Elmer C; Borjesson, Dori L; Zhu, Min

    2014-09-15

    Veterinary adult stem cell therapy is an emerging area of basic and clinical research. Like their human counterparts, veterinary mesenchymal stem cells (MSCs) offer many potential therapeutic benefits. The characterization of canine-derived MSCs, however, is poorly defined compared to human MSCs. Furthermore, little consensus exists regarding the expression of canine MSC cell surface markers. To address this issue, this study investigated characteristics of cultured canine MSCs derived from both adipose tissue and bone marrow. The canine MSCs were obtained from donors of various breeds and ages. A panel of cell surface markers for canine MSCs was selected based on current human and canine literature and the availability of canine-reactive antibodies. Using flow cytometry, canine MSCs were defined to be CD90(+)CD44(+)MHC I(+)CD14(-)CD29(-)CD34(-)MHC II(-). Canine MSCs were further characterized using real-time RT-PCR as CD105(+)CD73(+)CD14(+)CD29(+)MHC II(+)CD45(-) at the mRNA level. Among these markers, canine MSCs differed from canine peripheral blood mononuclear cells (PBMCs) by the absence of CD45 expression at the mRNA level. A novel high-throughput canine-specific PCR array was developed and used to identify changes in the gene expression profiles of canine MSCs. Genes including PTPRC, TNF, β2M, TGFβ1, and PDGFRβ, were identified as unique to canine MSCs as compared to canine PBMCs. Our findings will facilitate characterization of canine MSCs for use in research and clinical trials. Moreover, the high-throughput PCR array is a novel tool for characterizing canine MSCs isolated from different tissues and potentially from different laboratories. Published by Elsevier B.V.

  4. Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells.

    PubMed

    Libro, Rosaliana; Scionti, Domenico; Diomede, Francesca; Marchisio, Marco; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-01-01

    Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy.

  5. Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells

    PubMed Central

    Libro, Rosaliana; Scionti, Domenico; Diomede, Francesca; Marchisio, Marco; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-01-01

    Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy. PMID:27932991

  6. Programmed death-1(+) T cells inhibit effector T cells at the pathological site of miliary tuberculosis.

    PubMed

    Singh, A; Mohan, A; Dey, A B; Mitra, D K

    2017-02-01

    Optimal T cell activation is vital for the successful resolution of microbial infections. Programmed death-1 (PD-1) is a key immune check-point receptor expressed by activated T cells. Aberrant/excessive inhibition mediated by PD-1 may impair host immunity to Mycobacterium tuberculosis infection, leading to disseminated disease such as miliary tuberculosis (MTB). PD-1 mediated inhibition of T cells in pulmonary tuberculosis and TB pleurisy is reported. However, their role in MTB, particularly at the pathological site, remains to be addressed. The objective of this study was to investigate the role of PD-1-PD-ligand 1 (PD-L1) in T cell responses at the pathological site from patients of TB pleurisy and MTB as clinical models of contained and disseminated forms of tuberculosis, respectively. We examined the expression and function of PD-1 and its ligands (PD-L1-PD-L2) on host immune cells among tuberculosis patients. Bronchoalveolar lavage-derived CD3 T cells in MTB expressed PD-1 (54·2 ± 27·4%, P ≥ 0·0009) with significantly higher PD-1 ligand-positive T cells (PD-L1: 19·8 ± 11·8%; P ≥ 0·019, PD-L2: 12·6 ± 6·2%; P ≥ 0·023), CD19(+) B cells (PD-L1: 14·4 ± 10·4%; P ≥ 0·042, PD-L2: 2·6 ± 1·43%; not significant) and CD14(+) monocytes (PD-L1: 40·2 ± 20·1%; P ≥ 0·047, PD-L2: 22·4 ± 15·6%; P ≥ 0·032) compared with peripheral blood (PB) of MTB and healthy controls. The expression of PD-1 was associated with a diminished number of cells producing effector cytokines interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-2 and elevated apoptosis. Locally accumulated T cells were predominantly PD-1(+) -PD-L1(+) , and blocking this pathway restores the protective T cell response. We conclude that M. tuberculosis exploits the PD-1 pathway to evade the host immune response by altering the T helper type 1 (Th1) and Th2 balance at the pathological site of MTB, thereby

  7. Identification of unsuspected PNH-type cells in flow cytometric immunophenotypic analysis of peripheral blood and bone marrow.

    PubMed

    Thomason, Ronald W; Papiez, Joseph; Lee, Ronald V; Szczarkowski, Wlodek

    2004-07-01

    In this report, the flow cytometric expression patterns for CD14 on monocytic cells and CD16 on granulocytic cells in peripheral blood or bone marrow specimens are illustratedfor 15 patients proven to have a paroxysmal nocturnal hemoglobinuria (PNH) phenotype by flow cytometric analysis for CD55 and CD59. The varied clinical manifestations of PNH and its rarity may make it difficult to recognize clinically. As a result, blood or bone marrow samples may be submitted for flow cytometric analysis to exclude bone marrow neoplasia or dysplasia in patients with cytopenias rather than to exclude PNH. This was true in 5 of 15 study cases. Unlike CD55 and CD59, CD14 and/or CD16 are assessed routinely in the flow cytometric analysis of blood and bone marrow samples. Recognition of abnormal patterns of CD14 and CD16 expression might permit the identification of clinically unsuspected PNH by routine flow cytometric analysis.

  8. Old Mice Accumulate Activated Effector CD4 T Cells Refractory to Regulatory T Cell-Induced Immunosuppression

    PubMed Central

    Harpaz, Idan; Bhattacharya, Udayan; Elyahu, Yehezqel; Strominger, Itai; Monsonego, Alon

    2017-01-01

    Chronic low-grade inflammation and reduced lymphocyte potency are implicated in the pathogenesis of major illnesses associated with aging. Whether this immune phenotype results from a loss of cell-mediated regulation or intrinsic dysregulated function of effector T cells (Teffs) requires further research. Here, we report that, as compared with young C57BL6 mice, old mice show an increased frequency of CD4+CD62L− Teffs with a dysregulated activated phenotype and markedly increased effector functions. Analysis of the frequency and suppressive function of CD4+FoxP3+ regulatory T cells (Tregs) indicates an increase in the frequency of FoxP3+ T cells with aging which, however, occurs within the CD4+CD25− T cells. Furthermore, whereas Tregs from young and old mice similarly suppress Teffs from young mice, both have a compromised suppressive capacity of Teffs from old mice, a phenomenon which is partially recovered in the presence of IL-2-producing CD4+CD62L+ non-Teffs. Finally, we observed that Teff subsets from old mice are enriched with IL-17A-producing T cells and exhibit intrinsically dysregulated expression of genes encoding cell-surface molecules and transcription factors, which play a key role in T-cell activation and regulation. We, thus, demonstrate an age-related impairment in the regulation of effector CD4 T cells, which may underlie the higher risk for destructive inflammation associated with aging. PMID:28382033

  9. Old Mice Accumulate Activated Effector CD4 T Cells Refractory to Regulatory T Cell-Induced Immunosuppression.

    PubMed

    Harpaz, Idan; Bhattacharya, Udayan; Elyahu, Yehezqel; Strominger, Itai; Monsonego, Alon

    2017-01-01

    Chronic low-grade inflammation and reduced lymphocyte potency are implicated in the pathogenesis of major illnesses associated with aging. Whether this immune phenotype results from a loss of cell-mediated regulation or intrinsic dysregulated function of effector T cells (Teffs) requires further research. Here, we report that, as compared with young C57BL6 mice, old mice show an increased frequency of CD4+CD62L- Teffs with a dysregulated activated phenotype and markedly increased effector functions. Analysis of the frequency and suppressive function of CD4+FoxP3+ regulatory T cells (Tregs) indicates an increase in the frequency of FoxP3+ T cells with aging which, however, occurs within the CD4+CD25- T cells. Furthermore, whereas Tregs from young and old mice similarly suppress Teffs from young mice, both have a compromised suppressive capacity of Teffs from old mice, a phenomenon which is partially recovered in the presence of IL-2-producing CD4+CD62L+ non-Teffs. Finally, we observed that Teff subsets from old mice are enriched with IL-17A-producing T cells and exhibit intrinsically dysregulated expression of genes encoding cell-surface molecules and transcription factors, which play a key role in T-cell activation and regulation. We, thus, demonstrate an age-related impairment in the regulation of effector CD4 T cells, which may underlie the higher risk for destructive inflammation associated with aging.

  10. Combined immunophenotyping and fluorescence in situ hybridization with chromosome-specific DNA probes allows quantification and differentiation of ex vivo generated dendritic cells, leukemia-derived dendritic cells and clonal leukemic cells in patients with acute myeloid leukemia.

    PubMed

    Kremser, Andreas; Kufner, Stefanie; Konhaeuser, Elke; Kroell, Tanja; Hausmann, Andreas; Tischer, Johanna; Kolb, Hans-Jochem; Zitzelsberger, Horst; Schmetzer, Helga

    2013-06-01

    Antileukemic T-cell responses induced by leukemia-derived dendritic cells (DC(leu)) are variable, due to varying DC/DC(leu) composition/quality. We studied DC/DC(leu) composition/quality after blast culture in four DC media by flow cytometry (FC) and combined fluorescence in situ hybridization/immunophenotyping analysis (FISH-IPA). Both methods showed that DC methods produce variable proportions of DC subtypes. FISH-IPA is an elaborate method to study clonal aberrations in blast/DC cells on slides, however without preselection of distinct cell populations for FISH analysis. FISH-IPA data proved previous FC data: not every clonal/blast cell is converted to DC(leu) (resulting in various proportions of DC(leu)) and not every detectable DC is of clonal/leukemic origin. Preselection of the best of four DC methods for "best" DC/DC(leu) generation is necessary. DC(leu) proportions correlate with the antileukemic functionality of DC/DC(leu)-stimulated T-cells, thereby proving the necessity of studying the quality of DC/DC(leu) after culture. FC is the superior method to quantify DC/DC(leu), since a blast phenotype is available in every given patient, even with low/no proportions of clonal aberrations, and can easily be used to study cellular compositions after DC culture.

  11. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages

    PubMed Central

    Baumann, Florian M.; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  12. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages.

    PubMed

    Baumann, Florian M; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation.

  13. Hobit and human effector T-cell differentiation: The beginning of a long journey.

    PubMed

    Braun, Julian; Frentsch, Marco; Thiel, Andreas

    2015-10-01

    Besides growing plants, eating a lot, and drinking beer, Tolkien's Hobbits enjoy maintaining a quiet state. Regarding the latter, the name chosen for a recently discovered transcription factor seems to be unintentionally appropriate. The zinc finger protein ZNF683 was originally named "Hobit" for Homolog of Blimp-1 in T cells. In this issue of the European Journal of Immunology, Braga et al. [Eur. J. Immunol. 2015. 45: 2945-2958] demonstrate that in humans, Hobit is almost exclusively expressed in effector T cells, in particular in quiescent and long-lived effector-type CD8(+) T cells. Hobit may initially appear as another "player" in the quest for transcription factors guiding T-cell differentiation; the discoveries of T-bet, Eomes, Blimp-1, and others have significantly contributed to our understanding of how this process is tightly regulated. However, Hobit may be special--the currently available results suggest substantial differences in Hobit's regulatory functions between mice and humans, such as expression patterns and IFN-γ regulation. And it may turn out that Hobit's function in human T cells is highly adapted to lifelong, periodic challenges with varying, physiological doses of pathogens. Thus, the new study about Hobit in human T cells may be the beginning of a long journey. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Transendothelial migration of effector T cells across inflamed endothelial barriers does not require heparan sulfate proteoglycans.

    PubMed

    Stoler-Barak, Liat; Barzilai, Sagi; Zauberman, Ayelet; Alon, Ronen

    2014-06-01

    Leukocyte diapedesis is a chemotactic multistep process that requires optimal chemoattractant presentation by the endothelial barrier. Recent studies have described a critical role for heparan sulfate glycosaminoglycans (HSGAGs) in the presentation and functions of chemokines essential for lymphocyte interactions with the lymph node vasculature. We wished to test whether HS expression by a prototypic endothelial cell type, i.e. human umbilical vein endothelial cells (HUVECs), is critical for their ability to support neutrophil and lymphocyte adhesion and transendothelial migration (TEM) under shear flow. We found that HUVECs deposit HS GAGs mainly at their basolateral compartments in both their resting and inflamed states. We next inactivated the key enzyme involved in HS biosynthesis, exostosin-1 (Ext1). Silencing Ext1 resulted in a complete loss of HS biosynthesis; nonetheless, TNF-α and IL-1β stimulation of key adhesion molecules and inflammatory chemokines necessary for neutrophil or lymphocyte adhesion and TEM remained intact. Ext1 silencing reduced neutrophil arrest and markedly impaired TEM, consistent with a role of basolateral HS GAGs in directing neutrophil crossing of inflamed endothelial barriers. Strikingly, however, the TEM of effector T cells across identically Ext1-silenced HUVECs remained normal. Importantly, the biosynthesis of the main promigratory chemokines for effector T cells and neutrophils, respectively, CCL2 and CXCL1, and their vesicle distributions were also Ext1 independent. These results suggest that transmigrating neutrophils must respond to chemokines transiently presented by apical and basolateral endothelial HS GAGs. In contrast, effector T cells can integrate chemotactic TEM signals directly from intra-endothelial chemokine stores rather than from externally deposited chemokines.

  15. Timing of CD8 T cell effector responses in viral infections

    PubMed Central

    Stipp, Shaun R.; Iniguez, Abdon; Wan, Frederic; Wodarz, Dominik

    2016-01-01

    CD8 T cell or cytotoxic T lymphocyte (CTL) responses are an important branch of the immune system in the fight against viral infections. The dynamics of anti-viral CTL responses have been characterized in some detail, both experimentally and with mathematical models. An interesting experimental observation concerns the timing of CTL responses. A recent study reported that in pneumonia virus of mice the effector CTL tended to arrive in the lung only after maximal virus loads had been achieved, an observation that seems at first counterintuitive because prevention of pathology would require earlier CTL-mediated activity. A delay in CTL-mediated effector activity has also been quoted as a possible explanation for the difficulties associated with CTL-based vaccines. This paper uses mathematical models to show that in specific parameter regimes, delayed CTL effector activity can be advantageous for the host in the sense that it can increase the chances of virus clearance. The increased ability of the CTL to clear the infection, however, is predicted to come at the cost of acute pathology, giving rise to a trade-off, which is discussed in the light of evolutionary processes. This work provides a theoretical basis for understanding the described experimental observations. PMID:26998338

  16. Effects of thermal stress on tumor antigenicity and recognition by immune effector cells.

    PubMed

    Milani, Valeria; Noessner, Elfriede

    2006-03-01

    The primary rationale for the application of clinical hyperthermia in the therapy of cancer is based on the direct cytotoxic effect of heat and the radio-chemosensitization of tumor cells. More recently, additional attention is given to the observation that heat and heat-shock proteins can activate the host's immune system. The expression of heat-shock genes and proteins provides an adaptive mechanism for stress tolerance, allowing cells to survive non-physiologic conditions. However, the same adaptive mechanism can ultimately favor malignant transformation by interfering with pathways that regulate cell growth and apoptosis. Cytoprotection and thermotolerance raised the concern that heat-treated tumor cells might also be resistant to attack by immune effector mechanisms. Many studies, including those from our group, address this concern and document that heat-exposure, although transiently modulating sensitivity to CTL, do not hinder CTL attack. Moreover, there are promising reports of heat-related upregulation of NK-activating ligands, rendering those tumors which have lost MHC class I molecules target for NK cell attack. Heat-induced cytoprotection, therefore, does not necessarily extend protection from cytotoxic immune mechanisms. When interpreting the effects of heat, it is important to keep in mind that thermal effects on cell physiology are strongly dependent on the thermal dose, which is a function of the magnitude of change in temperature and the duration of heat exposure. The thermal dose required to induce cell death in vitro strongly varies from cell type to cell type and depends on microenvironmental factors (Dewey 1994). Therefore, to dissect the immunological behaviour of a given tumor and its micro-environment at different thermal doses, it is essential to characterize the thermosensitivity of every single tumor type and assess the proportion of cells surviving a given heat treatment. In this review, we summarize the pleiotropic effects that heat

  17. Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture.

    PubMed

    Diaz-Romero, Jose; Gaillard, Jean Philippe; Grogan, Shawn Patrick; Nesic, Dobrila; Trub, Thomas; Mainil-Varlet, Pierre

    2005-03-01

    Cartilage tissue engineering relies on in vitro expansion of primary chondrocytes. Monolayer is the chosen culture model for chondrocyte expansion because in this system the proliferative capacity of chondrocytes is substantially higher compared to non-adherent systems. However, human articular chondrocytes (HACs) cultured as monolayers undergo changes in phenotype and gene expression known as "dedifferentiation." To gain a better understanding of the cellular mechanisms involved in the dedifferentiation process, our research focused on the characterization of the surface molecule phenotype of HACs in monolayer culture. Adult HACs were isolated by enzymatic digestion of cartilage samples obtained post-mortem. HACs cultured in monolayer for different time periods were analyzed by flow cytometry for the expression of cell surface markers with a panel of 52 antibodies. Our results show that HACs express surface molecules belonging to different categories: integrins and other adhesion molecules (CD49a, CD49b, CD49c, CD49e, CD49f, CD51/61, CD54, CD106, CD166, CD58, CD44), tetraspanins (CD9, CD63, CD81, CD82, CD151), receptors (CD105, CD119, CD130, CD140a, CD221, CD95, CD120a, CD71, CD14), ectoenzymes (CD10, CD26), and other surface molecules (CD90, CD99). Moreover, differential expression of certain markers in monolayer culture was identified. Up-regulation of markers on HACs regarded as distinctive for mesenchymal stem cells (CD10, CD90, CD105, CD166) during monolayer culture suggested that dedifferentiation leads to reversion to a primitive phenotype. This study contributes to the definition of HAC phenotype, and provides new potential markers to characterize chondrocyte differentiation stage in the context of tissue engineering applications. 2004 Wiley-Liss, Inc.

  18. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma.

    PubMed

    Flores-Montero, Juan; de Tute, Ruth; Paiva, Bruno; Perez, José Juan; Böttcher, Sebastian; Wind, Henk; Sanoja, Luzalba; Puig, Noemí; Lecrevisse, Quentin; Vidriales, María Belén; van Dongen, Jacques J M; Orfao, Alberto

    2016-01-01

    In recent years, several studies on large series of multiple myeloma (MM) patients have demonstrated the clinical utility of flow cytometry monitoring of minimal residual disease (flow-MRD) in bone marrow (BM), for improved assessment of response to therapy and prognostication. However, disturbing levels of variability exist regarding the specific protocols and antibody panels used in individual laboratories. Overall, consensus exists about the utility of combined assessment of CD38 and CD138 for the identification of BM plasma cells (PC); in contrast, more heterogeneous lists of markers are used to further distinguish between normal/reactive PCs and myeloma PCs in the MRD settings. Among the later markers, CD19, CD45, CD27, and CD81, together with CD56, CD117, CD200, and CD307, have emerged as particularly informative; however, no single marker provides enough specificity for clear discrimination between clonal PCs and normal PCs. Accordingly, multivariate analyses of single PCs from large series of normal/reactive vs. myeloma BM samples have shown that combined assessment of CD138 and CD38, together with CD45, CD19, CD56, CD27, CD81, and CD117 would be ideally suited for MRD monitoring in virtually every MM patient. However, the specific antibody clones, fluorochrome conjugates and sources of the individual markers determines its optimal (vs. suboptimal or poor) performance in an eight-color staining. Assessment of clonality, via additional cytoplasmic immunoglobulin (CyIg) κ vs. CyIgλ evaluation, may contribute to further establish the normal/reactive vs. clonal nature of small suspicious PC populations at high sensitivity levels, provided that enough cells are evaluated. © 2015 International Clinical Cytometry Society.

  19. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity.

    PubMed

    Tapia, Rocio; Kralicek, Sarah E; Hecht, Gail A

    2017-06-15

    Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na(+) /K(+) ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na(+) /K(+) ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na(+) /K(+) ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes. © 2017 John Wiley & Sons Ltd.

  20. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    PubMed Central

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291

  1. Inhibition of antiskin allograft immunity induced by infusions with photoinactivated effector T lymphocytes (PET cells).

    PubMed Central

    Perez, M. I.; Edelson, R. L.; John, L.; Laroche, L.; Berger, C. L.

    1989-01-01

    Induction of tolerance for skin allotransplantation requires selective suppression of the host response to foreign histocompatibility antigens. This report describes a new approach which employs pre-treatment with 8-methoxypsoralen (8-MOP) and ultraviolet A light (UVA) to render the effector cells of graft rejection immunogenic for the syngeneic recipient. Eight days after BALB/c mice received CBA/j skin grafts, their splenocytes were treated with 100 ng/ml 8-MOP and 1 J/cm2 UVA prior to reinfusion into naive BALB/c recipients. Recipient mice were tested for tolerance to alloantigens in mixed leukocyte culture (MLC), cytotoxicity (CTL), delayed-type hypersensitivity assays (DTH), and challenge with a fresh CBA/j graft. Splenocytes from BALB/c recipients of photoinactivated splenocytes containing the effector cells of CBA/j alloantigen rejection proliferated poorly in MLC and generated lower cytotoxic T-cell responses to CBA/j alloantigens in comparison with sensitized and naive controls and suppressed the MLC and CTL response to alloantigen from sensitized and naive BALB/c mice. In vivo, the DTH response was specifically suppressed to the relevant alloantigen in comparison with controls. BALB/c mice treated in this fashion retained a CBA/j skin graft for up to 42 days post-transplantation without visual evidence of rejection. These results showed that reinfusion of photoinactivated effector cells resulted in an immunosuppressive host response which specifically inhibited in vitro and in vivo responses that correlate with allograft rejection and permitted prolonged retention of histoincompatible skin grafts. PMID:2636801

  2. GITR ligand-costimulation activates effector and regulatory functions of CD4{sup +} T cells

    SciTech Connect

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-05-16

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25{sup -}CD4{sup +} effector (Teff) and CD25{sup +}CD4{sup +} regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4{sup +} T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4{sup +} T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists.

  3. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis

    PubMed Central

    Margoles, Lindsay M.; Mittal, Rohit; Klingensmith, Nathan J.; Lyons, John D.; Liang, Zhe; Serbanescu, Mara A.; Wagener, Maylene E.

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion. PMID:27861506

  4. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    PubMed

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  5. Identification of pertussis-specific effector memory T cells in preschool children.

    PubMed

    de Rond, Lia; Schure, Rose-Minke; Öztürk, Kemal; Berbers, Guy; Sanders, Elisabeth; van Twillert, Inonge; Carollo, Maria; Mascart, Françoise; Ausiello, Clara M; van Els, Cecile A C M; Smits, Kaat; Buisman, Anne-Marie

    2015-05-01

    Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4(+) and CD8(+) T-cell fractions (CFSE(dim)) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4(+) effector memory cells (CD45RA(-) CCR7(-)) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4(+) and CD8(+) effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Identification of Pertussis-Specific Effector Memory T Cells in Preschool Children

    PubMed Central

    Schure, Rose-Minke; Öztürk, Kemal; Berbers, Guy; Sanders, Elisabeth; van Twillert, Inonge; Carollo, Maria; Mascart, Françoise; Ausiello, Clara M.; van Els, Cecile A. C. M.; Smits, Kaat; Buisman, Anne-Marie

    2015-01-01

    Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4+ and CD8+ T-cell fractions (CFSEdim) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4+ effector memory cells (CD45RA− CCR7−) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4+ and CD8+ effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age. PMID:25787136

  7. miRNA Profiling of Naïve, Effector and Memory CD8 T Cells

    PubMed Central

    Wu, Haoquan; Neilson, Joel R.; Kumar, Priti; Manocha, Monika; Shankar, Premlata; Sharp, Phillip A.; Manjunath, N.

    2007-01-01

    microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific naïve, effector and memory CD8+ T cells using 3 different methods-small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f) alone accounted for ∼60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs) was observed in effector T cells compared to naïve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to naïve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3′end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function. PMID:17925868

  8. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  9. Effector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice

    PubMed Central

    Kaminitz, Ayelet; Yolcu, Esma S.; Askenasy, Enosh M.; Stein, Jerry; Yaniv, Isaac; Shirwan, Haval; Askenasy, Nadir

    2011-01-01

    Background Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. Principal Findings Both effector (CD25−, FoxP3−) and suppressor (CD25+, FoxP3+) CD4+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP tranegenes. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4+CD25− T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. Conclusion These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis. PMID:21738739

  10. Adiponectin-mediated changes in effector cells involved in the pathophysiology of rheumatoid arthritis.

    PubMed

    Frommer, Klaus W; Zimmermann, Birgit; Meier, Florian M P; Schröder, Dirk; Heil, Matthias; Schäffler, Andreas; Büchler, Christa; Steinmeyer, Jürgen; Brentano, Fabia; Gay, Steffen; Müller-Ladner, Ulf; Neumann, Elena

    2010-10-01

    Rheumatoid arthritis (RA) is associated with increased production of adipokines, which are cytokine-like mediators that are produced mainly in adipose tissue but also in synovial cells. Since RA synovial fibroblasts (RASFs), lymphocytes, endothelial cells, and chondrocytes are key players in the pathophysiology of RA, this study was undertaken to analyze the effects of the key adipokine adiponectin on proinflammatory and prodestructive synovial effector cells. Lymphocytes were activated in part prior to stimulation. All cells were stimulated with adiponectin, and changes in gene and protein expression were determined by Affymetrix and protein arrays. Messenger RNA and protein levels were confirmed using semiquantitative reverse transcription-polymerase chain reaction (PCR), real-time PCR, and immunoassays. Intracellular signal transduction was evaluated using chemical signaling inhibitors. Adiponectin stimulation of human RASFs predominantly induced the secretion of chemokines, as well as proinflammatory cytokines, prostaglandin synthases, growth factors, and factors of bone metabolism and matrix remodeling. Lymphocytes, endothelial cells, and chondrocytes responded to adiponectin stimulation with enhanced synthesis of cytokines and various chemokines. Additionally, chondrocytes released increased amounts of matrix metalloproteinases. In RASFs, adiponectin-mediated effects were p38 MAPK and protein kinase C dependent. Our previous findings indicated that adiponectin was present in inflamed synovium, at sites of cartilage invasion, in lymphocyte infiltrates, and in perivascular areas. The findings of the present study indicate that adiponectin induces gene expression and protein synthesis in human RASFs, lymphocytes, endothelial cells, and chondrocytes, supporting the concept of adiponectin being involved in the pathophysiologic modulation of RA effector cells. Adiponectin promotes inflammation through cytokine synthesis, attraction of inflammatory cells to the

  11. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    PubMed

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph

    2014-06-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  12. A Translocated Effector Required for Bartonella Dissemination from Derma to Blood Safeguards Migratory Host Cells from Damage by Co-translocated Effectors

    PubMed Central

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G.; Dehio, Christoph

    2014-01-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  13. Protocol for the clonal analysis of NK cell effector functions by multi-parameter flow cytometry.

    PubMed

    Schönberg, Kathrin; Hejazi, Maryam; Uhrberg, Markus

    2012-01-01

    Natural killer (NK) cells provide a first line of defense against viral infections and prepare the ground for subsequent action of virus-specific T cells in a concerted way. Human NK cells use a sophisticated system of inhibitory and stimulatory receptors of the killer cell immunoglobulin-like receptor (KIR) gene family, which are expressed in a clonally distributed manner. Several studies suggest that KIR play a critical role in NK cell-mediated protection against HCV and HIV infection. As each NK cell expresses an individual set of KIR receptors that enables them to sense differences in HLA class I expression, classical measurement of NK cell function by analysis of target cell killing does not enable one to define and isolate the clinically relevant NK cell effector subsets. Here, we have developed a flow cytometry-based protocol to measure cytolytic activity together with KIR expression at a clonal level. Combined analysis of KIR expression in conjunction with cell surface mobilization of CD107 enables precise enumeration of cytolytic NK cells with defined specificity for HLA class I. Moreover, via inclusion of intracellular perforin or alternatively granzyme B, NK cells with deficient loading of cytotoxic granula can be identified. The present protocol enables identification and isolation of cytotoxic NK cells on a clonal level and enables reliable measurement in healthy as well as in pathological settings such as virus infection and hematological disease.

  14. Curtailed T-cell activation curbs effector differentiation and generates CD8(+) T cells with a naturally-occurring memory stem cell phenotype.

    PubMed

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (TSCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8(+) T-cell differentiation and allows the generation of CD45RO(-) CD45RA(+) CCR7(+) CD27(+) CD95(+) -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human TSCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  15. Regulatory T Cells from Colon Cancer Patients Inhibit Effector T-cell Migration through an Adenosine-Dependent Mechanism.

    PubMed

    Sundström, Patrik; Stenstad, Hanna; Langenes, Veronica; Ahlmanner, Filip; Theander, Lisa; Ndah, Tapuka Gordon; Fredin, Kamilla; Börjesson, Lars; Gustavsson, Bengt; Bastid, Jérémy; Quiding-Järbrink, Marianne

    2016-03-01

    T cell-mediated immunity is a major component of antitumor immunity. In order to be efficient, effector T cells must leave the circulation and enter into the tumor tissue. Regulatory T cells (Treg) from gastric cancer patients, but not from healthy volunteers, potently inhibit migration of conventional T cells through activated endothelium. In this study, we compared T cells from colon cancer patients and healthy donors to determine the mechanisms used by Tregs from cancer patients to inhibit conventional T-cell migration. Our results showed that circulating Tregs from cancer patients expressed high levels of CD39, an ectoenzyme mediating hydrolysis of ATP to AMP, as a rate-determining first step in the generation of immunosuppressive adenosine. Tumor-associated Tregs expressed even more CD39, and we therefore examined the importance of adenosine in Treg-mediated inhibition of T-cell transendothelial migration in vitro. Exogenous adenosine significantly reduced migration of conventional T cells from healthy volunteers, and blocking either adenosine receptors or CD39 enzymatic activity during transmigration restored the ability of conventional T cells from cancer patients to migrate. Adenosine did not directly affect T cells or endothelial cells, but reduced the ability of monocytes to activate the endothelium. Taken together, our results indicate that Treg-derived adenosine acts on monocytes and contributes to reduced transendothelial migration of effector T cells into tumors. This effect of Tregs is specific for cancer patients, and our results indicate that Tregs may affect not only T-cell effector functions but also their migration into tumors.

  16. B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome.

    PubMed

    Li, Shaoying; Lin, Pei; Fayad, Luis E; Lennon, Patrick A; Miranda, Roberto N; Yin, C Cameron; Lin, E; Medeiros, L Jeffrey

    2012-01-01

    B-cell lymphomas with MYC/8q24 rearrangement and IGH@BCL2/t(14;18)(q32;q21), also known as double-hit or MYC/BCL2 B-cell lymphomas, are uncommon neoplasms. We report our experience with 60 cases: 52 MYC/BCL2 B-cell lymphomas and 8 tumors with extra MYC signals plus IGH@BCL2 or MYC rearrangement plus extra BCL2 signals/copies. There were 38 men and 22 women with a median age of 55 years. In all, 10 patients had antecedent/concurrent follicular lymphoma. Using the 2008 World Health Organization classification, there were 33 B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma (henceforth referred to as unclassifiable, aggressive B-cell lymphoma), 23 diffuse large B-cell lymphoma, 1 follicular lymphoma grade 3B, 1 follicular lymphoma plus diffuse large B-cell lymphoma, 1 B-lymphoblastic lymphoma, and 1 composite diffuse large B-cell lymphoma with B-lymphoblastic lymphoma. Using older classification systems, the 33 unclassifiable, aggressive B-cell lymphomas most closely resembled Burkitt-like lymphoma (n=24) or atypical Burkitt lymphoma with BCL2 expression (n=9). Of 48 cases assessed, 47 (98%) had a germinal center B-cell immunophenotype. Patients were treated with standard (n=23) or more aggressive chemotherapy regimens (n=34). Adequate follow-up was available for 57 patients: 26 died and 31 were alive. For the 52 patients with MYC/BCL2 lymphoma, the median overall survival was 18.6 months. Patients with antecedent/concurrent follicular lymphoma had median overall survival of 7.8 months. Elevated serum lactate dehydrogenase level, ≥2 extranodal sites, bone marrow or central nervous system involvement, and International Prognostic Index >2 were associated with worse overall survival (P<0.05). Morphological features did not correlate with prognosis. Patients with neoplasms characterized by extra MYC signals plus IGH@BCL2 (n=6) or MYC rearrangement with extra BCL2 signals (n=2) had overall survival

  17. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function.

    PubMed

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D; Han, Hongya; Chiang, Samuel C C; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S; Bryceson, Yenan T

    2015-03-17

    The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Transcription Factor Bcl11b Controls Effector and Memory CD8 T cell Fate Decision and Function during Poxvirus Infection

    PubMed Central

    Abboud, Georges; Stanfield, Jessica; Tahiliani, Vikas; Desai, Pritesh; Hutchinson, Tarun E.; Lorentsen, Kyle J.; Cho, Jonathan J.; Avram, Dorina; Salek-Ardakani, Shahram

    2016-01-01

    CD8+ T cells play an important role in host resistance to many viral infections, but the underlying transcriptional mechanisms governing their differentiation and functionality remain poorly defined. By using a highly virulent systemic and respiratory poxvirus infection in mice, we show that the transcription factor Bcl11b provides a dual trigger that sustains the clonal expansion of virus-specific effector CD8+ T cells, while simultaneously suppressing the expression of surface markers associated with short-lived effector cell (SLEC) differentiation. Additionally, we demonstrate that Bcl11b supports the acquisition of memory precursor effector cell (MPEC) phenotype and, thus, its absence causes near complete loss of lymphoid and lung-resident memory cells. Interestingly, despite having normal levels of T-bet and Eomesodermin, Bcl11b-deficient CD8+ T cells failed to execute effector differentiation needed for anti-viral cytokine production and degranulation, suggesting a non-redundant role of Bcl11b in regulation of this program. Thus, Bcl11b is a critical player in fate decision of SLECs and MPECs, as well as effector function and memory formation. PMID:27790219

  19. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice.

    PubMed

    Chen, Songbiao; Songkumarn, Pattavipha; Venu, R C; Gowda, Malali; Bellizzi, Maria; Hu, Jinnan; Liu, Wende; Ebbole, Daniel; Meyers, Blake; Mitchell, Thomas; Wang, Guo-Liang

    2013-02-01

    Interactions between rice and Magnaporthe oryzae involve the recognition of cellular components and the exchange of complex molecular signals from both partners. How these interactions occur in rice cells is still elusive. We employed robust-long serial analysis of gene expression, massively parallel signature sequencing, and sequencing by synthesis to examine transcriptome profiles of infected rice leaves. A total of 6,413 in planta-expressed fungal genes, including 851 genes encoding predicted effector proteins, were identified. We used a protoplast transient expression system to assess 42 of the predicted effector proteins for the ability to induce plant cell death. Ectopic expression assays identified five novel effectors that induced host cell death only when they contained the signal peptide for secretion to the extracellular space. Four of them induced cell death in Nicotiana benthamiana. Although the five effectors are highly diverse in their sequences, the physiological basis of cell death induced by each was similar. This study demonstrates that our integrative genomic approach is effective for the identification of in planta-expressed cell death-inducing effectors from M. oryzae that may play an important role facilitating colonization and fungal growth during infection.

  20. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation.

    PubMed

    Askenasy, Nadir

    2016-04-01

    Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.

  1. Persistent expansion of CD4+ effector memory T cells in Wegener's granulomatosis.

    PubMed

    Abdulahad, W H; van der Geld, Y M; Stegeman, C A; Kallenberg, C G M

    2006-09-01

    In order to test the hypothesis that Wegener's granulomatosis (WG) is associated with an ongoing immune effector response, even in remission, we examined the distribution of peripheral naive and memory T-lymphocytes in this disease, and analyzed the function-related phenotypes of the memory T-cell population. Peripheral blood mononuclear cells (PBMCs) were freshly isolated from WG-patients in remission (R-WG, n=40), active WG-patients (A-WG, n=17), and age-matched healthy controls (HCs, n=21). Expression of CD4, CD8, CD45RO, CCR7, interleukin (IL)-18Ralpha, ST2L, and FoxP3 were determined by four-color flow cytometric analysis. CD45RO and CCR7 were used for distinction between naive and memory T cells, IL-18Ralpha, ST2L, and FoxP3 for the assessment of Type1, Type2, and regulatory T-cells, respectively. In R-WG, the CD4+CD45RO+CCR7- effector memory T-cell subpopulation (TEM) was relatively increased, whereas the CD4+CD45RO-CCR7+ naive T-cell population (TNaive) was decreased as compared to HC. The distribution of naive and memory CD8+T cells did not differ between R-WG, A-WG, and HC, nor did CD4+CD45RO+CCR7+ central memory T cells (TCM). In contrast to HC, the percentage of CD4+TNaive cells in R-WG correlated negatively with age, whereas CD4+TEM cells showed a positive correlation. In R-WG, a skewing towards Type2 T cells was observed in CD4+TEM cells. No differences were detected in FoxP3+CD4+TEM cells between R-WG and A-WG, whereas the FoxP3-CD4+TEM cells were increased in R-WG and decreased in A-WG as compared to HC. Collectively, peripheral blood homeostasis of CD4+T cells is disturbed in R-WG with the persistent expansion of non-regulatory CD4+TEM cells. These cells might be involved in relapse and may constitute a target for therapy.

  2. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    PubMed

    Yao, Xin; Jennings, Scott; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Davis, Mya; Chen, Renwei; Davenport, Ian; Biliran, Hector

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

  3. ACTIVATED NOTCH SUPPORTS DEVELOPMENT OF CYTOKINE PRODUCING NK CELLS WHICH ARE HYPORESPONSIVE AND FAIL TO ACQUIRE NK CELL EFFECTOR FUNCTIONS

    PubMed Central

    Bachanova, Veronika; McCullar, Valarie; Lenvik, Todd; Wangen, Rosanna; Peterson, Karen A.; Ankarlo, Dave EM.; Panoskaltsis-Mortari, Angela; Wagner, John E.; Miller, Jeffrey S.

    2009-01-01

    Natural Killer (NK) cells are powerful effectors of cytotoxicity against “stressed” cells. They also produce cytokines and chemokines to activate the adaptive immune response. Understanding NK cell development and maturation may have implications for cancer therapy and for immunity against infections. We hypothesized that Notch signaling, critical for hematopoesis, would be involved in NK cell development. The role of constitutively activated Notch1 (ICN) on NK cell maturation was studied using human umbilical cord blood (UCB) progenitors cultured on a murine embryonic liver stroma cell line (EL08-1D2) and human cytokines. UCB CD34+/ICN+ sorted cells resulted in a population of CD7+ early lymphoid precursors and subsequent NK lineage commitment independent of stroma or IL-15. Early expression of L-selectin on ICN+ precursors suggested their homing competence. These precursors further committed to the NK lineage, and were capable of producing cytokines and chemokines such as IL-13, GM-CSF, TNF-α, yet poorly acquired NK inhibitory receptors and cytotoxic effector function. In the presence of stroma, ICN+ precursors also gave rise to a population of early T lineage committed cells characterized by expression of cytoplasmic CD3 γ, ε, δ chains, RAG1/2 and production of IL-2, suggesting bona fide Th1 commitment. Importantly, signals from EL08-1D2 stroma were required for this development process. In conclusion, sustained Notch signaling can replace stroma in differentiation of a common CD7+ lymphoid precursor from UCB CD34+ progenitors and induce NK cell commitment. However, these NK cells are immature in their cytokine production profile, are hyporesponsive and poorly acquire NK cell receptors involved in self tolerance and effector function. PMID:19167678

  4. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2.

    PubMed

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-11-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients.

  5. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    PubMed Central

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  6. Antigen-specific CD4{sup +} effector T cells: Analysis of factors regulating clonal expansion and cytokine production

    SciTech Connect

    Ohnuki, Kazunobu; Watanabe, Yuri; Takahashi, Yusuke; Kobayashi, Sakiko; Watanabe, Shiho; Ogawa, Shuhei; Kotani, Motoko; Kozono, Haruo; Tanabe, Kazunari; Abe, Ryo

    2009-03-20

    In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4{sup +} antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4{sup +} T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCR{beta} crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high 'avidity' effector and memory T cells in response to pathogen are discussed.

  7. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8(+) T Cell Terminal Differentiation and Loss of Multipotency.

    PubMed

    Gray, Simon M; Amezquita, Robert A; Guan, Tianxia; Kleinstein, Steven H; Kaech, Susan M

    2017-04-04

    Understanding immunological memory formation depends on elucidating how multipotent memory precursor (MP) cells maintain developmental plasticity and longevity to provide long-term immunity while other effector cells develop into terminally differentiated effector (TE) cells with limited survival. Profiling active (H3K27ac) and repressed (H3K27me3) chromatin in naive, MP, and TE CD8(+) T cells during viral infection revealed increased H3K27me3 deposition at numerous pro-memory and pro-survival genes in TE relative to MP cells, indicative of fate restriction, but permissive chromatin at both pro-memory and pro-effector genes in MP cells, indicative of multipotency. Polycomb repressive complex 2 deficiency impaired clonal expansion and TE cell differentiation, but minimally impacted CD8(+) memory T cell maturation. Abundant H3K27me3 deposition at pro-memory genes occurred late during TE cell development, probably from diminished transcription factor FOXO1 expression. These results outline a temporal model for loss of memory cell potential through selective epigenetic silencing of pro-memory genes in effectorcells.

  8. Th1, Th2 and Th17 Effector T Cell-Induced Autoimmune Gastritis Differs in Pathological Pattern and in Susceptibility to Suppression by Regulatory T Cells

    PubMed Central

    Stummvoll, Georg H.; DiPaolo, Richard J.; Huter, Eva N.; Davidson, Todd S.; Glass, Deborah; Ward, Jerrold M.; Shevach, Ethan M.

    2008-01-01

    Th cells can be subdivided into IFNγ-secreting Th1, IL-4/IL-5 secreting Th2, and IL-17 secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H/K ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, moderately suppress Th2 cells, but could only suppress Th17 induced disease at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in man. PMID:18641328

  9. Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells.

    PubMed

    Stummvoll, Georg H; DiPaolo, Richard J; Huter, Eva N; Davidson, Todd S; Glass, Deborah; Ward, Jerrold M; Shevach, Ethan M

    2008-08-01

    Th cells can be subdivided into IFN-gamma-secreting Th1, IL-4/IL-5-secreting Th2, and IL-17-secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H(+)K(+)-ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, could moderately suppress Th2 cells, but could suppress Th17-induced disease only at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in humans.

  10. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells.

    PubMed

    Sharma, Shailendra; Sharma, Shiveta; Hirabuchi, Akiko; Yoshida, Kentaro; Fujisaki, Koki; Ito, Akiko; Uemura, Aiko; Terauchi, Ryohei; Kamoun, Sophien; Sohn, Kee Hoon; Jones, Jonathan D G; Saitoh, Hiromasa

    2013-05-01

    Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Immunophenotyping pediatric leukemias in Kelantan, Malaysia.

    PubMed

    Menon, B S; Dasgupta, A; Jackson, N

    1998-01-01

    This study reviewed the immunophenotyping results of children with acute leukemia in Kelantan, Malaysia. In the 3.5-year period (January 1994 to June 1997), 45 cases were identified. All children were under the age of 12 years and the predominant ethnic group was Malay. Thirty-six cases (80%) were acute lymphoblastic leukemia (ALL) and 9 cases (20%) were acute myeloblastic leukemia (AML). Of the ALL cases, 3% were of B-cell and 22% of T-cell origin, and 96% of the B-lineage ALL were CD10 positive. All the AML cases expressed CD33 and 78% were positive for CD13. The incidence of mixed-lineage leukemias was 13.8% for My+ ALL and 11.1% for Ly+ AML.

  12. Two Cytoplasmic Effectors of Phytophthora sojae Regulate Plant Cell Death via Interactions with Plant Catalases1

    PubMed Central

    Zhang, Meixiang; Li, Qi; Liu, Tingli; Liu, Li; Shen, Danyu; Zhu, Ye; Liu, Peihan; Zhou, Jian-Min; Dou, Daolong

    2015-01-01

    Plant pathogenic oomycetes, such as Phytophthora sojae, secrete an arsenal of host cytoplasmic effectors to promote infection. We have shown previously that P. sojae PsCRN63 (for crinkling- and necrosis-inducing proteins) induces programmed cell death (PCD) while PsCRN115 blocks PCD in planta; however, they are jointly required for full pathogenesis. Here, we find that PsCRN63 alone or PsCRN63 and PsCRN115 together might suppress the immune responses of Nicotiana benthamiana and demonstrate that these two cytoplasmic effectors interact with catalases from N. benthamiana and soybean (Glycine max). Transient expression of PsCRN63 increases hydrogen peroxide (H2O2) accumulation, whereas PsCRN115 suppresses this process. Transient overexpression of NbCAT1 (for N. benthamiana CATALASE1) or GmCAT1 specifically alleviates PsCRN63-induced PCD. Suppression of the PsCRN63-induced PCD by PsCRN115 is compromised when catalases are silenced in N. benthamiana. Interestingly, the NbCAT1 is recruited into the plant nucleus in the presence of PsCRN63 or PsCRN115; NbCAT1 and GmCAT1 are destabilized when PsCRN63 is coexpressed, and PsCRN115 inhibits the processes. Thus, PsCRN63/115 manipulates plant PCD through interfering with catalases and perturbing H2O2 homeostasis. Furthermore, silencing of catalase genes enhances susceptibility to Phytophthora capsici, indicating that catalases are essential for plant resistance. Taken together, we suggest that P. sojae secretes these two effectors to regulate plant PCD and H2O2 homeostasis through direct interaction with catalases and, therefore, overcome host immune responses. PMID:25424308

  13. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    PubMed

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  14. Metalloproteases regulate T-cell proliferation and effector function via LAG-3

    PubMed Central

    Li, Nianyu; Wang, Yao; Forbes, Karen; Vignali, Kate M; Heale, Bret S; Saftig, Paul; Hartmann, Dieter; Black, Roy A; Rossi, John J; Blobel, Carl P; Dempsey, Peter J; Workman, Creg J; Vignali, Dario A A

    2007-01-01

    Tight control of T-cell proliferation and effector function is essential to ensure an effective but appropriate immune response. Here, we reveal that this is controlled by the metalloprotease-mediated cleavage of LAG-3, a negative regulatory protein expressed by all activated T cells. We show that LAG-3 cleavage is mediated by two transmembrane metalloproteases, ADAM10 and ADAM17, with the activity of both modulated by two distinct T-cell receptor (TCR) signaling-dependent mechanisms. ADAM10 mediates constitutive LAG-3 cleavage but increases ∼12-fold following T-cell activation, whereas LAG-3 shedding by ADAM17 is induced by TCR signaling in a PKCθ-dependent manner. LAG-3 must be cleaved from the cell surface to allow for normal T-cell activation as noncleavable LAG-3 mutants prevented proliferation and cytokine production. Lastly, ADAM10 knockdown reduced wild-type but not LAG-3−/− T-cell proliferation. These data demonstrate that LAG-3 must be cleaved to allow efficient T-cell proliferation and cytokine production and establish a novel paradigm in which T-cell expansion and function are regulated by metalloprotease cleavage with LAG-3 as its sole molecular target. PMID:17245433

  15. Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer.

    PubMed

    Kang, Chiao-Wen; Dutta, Avijit; Chang, Li-Yuan; Mahalingam, Jayashri; Lin, Yung-Chang; Chiang, Jy-Ming; Hsu, Chen-Yu; Huang, Ching-Tai; Su, Wan-Ting; Chu, Yu-Yi; Lin, Chun-Yen

    2015-10-23

    TIM-3 functions to enforce CD8+ T cell exhaustion, a dysfunctional state associated with the tolerization of tumor microenvironment. Here we report apoptosis of IFN-γ competent TIM-3+ population of tumor-infiltrating CD8+ T cells in colon cancer. In humans suffering from colorectal cancer, TIM-3+ population is higher in cancer tissue-resident relative to peripheral blood CD8+ T cells. Both the TIM-3+ and TIM-3- cancer tissue-resident CD8+ T cells secrete IFN-γ of comparable levels, although apoptotic cells are more in TIM-3+ compared to TIM-3- population. In mouse CT26 colon tumor model, majority of tumor-infiltrating CD8+ T cells express TIM-3 and execute cytolysis function with higher effector cytokine secretion and apoptosis in TIM-3+ compared to TIM-3- population. The tumor cells secrete galectin-9, which increases apoptosis of tumor-infiltrating CD8+ T cells. Galectin-9/TIM-3 signaling blockade with anti-TIM-3 antibody reduces the apoptosis and in addition, inhibits tumor growth in mice. The blockade increases therapeutic efficacy of cyclophosphamide to treat tumor in mice as well. These results reveal a previously unexplored role of TIM-3 on tumor-infiltrating CD8+ T cells in vivo.

  16. Expansion of EBNA1-specific effector T cells in posttransplantation lymphoproliferative disorders.

    PubMed

    Jones, Kimberley; Nourse, Jamie P; Morrison, Leanne; Nguyen-Van, Do; Moss, Denis J; Burrows, Scott R; Gandhi, Maher K

    2010-09-30

    Immunosuppression resulting in impaired Epstein-Barr virus (EBV)-specific T-cell immunity is involved in the pathogenesis of EBV-positive post-transplantation lymphoproliferative disorder (EBV(+) PTLD). Restoration of EBV-specific T-cell immunity by adoptive immunotherapy can induce remission. EBV-nuclear antigen-1 (EBNA1) is unique in being expressed in all cases of EBV(+) PTLD. Recent data demonstrate that EBNA1 is not immunologically silent and can be exploited as a T-cell target. There are no data on EBNA1-specific T cells in PTLD. EBNA1-specific T cells capable of proliferation, interferon-γ release, and CD107a/b degranulation were assayed in 14 EBV(+) PTLD diagnostic blood samples and 19 healthy controls. EBNA1-specific CD4(+) T cells predominated and were expanded in 10 of 14 patients and 19 of 19 controls. Although human leukocyte antigen class I alleles influenced the magnitude of the response, EBNA1-specific CD8(+) effector T cells were successfully generated in 9 of 14 EBV(+) PTLD patients and 16 of 19 controls. The majority of PTLD patients had a polymorphism in an EBNA1 epitope, and T-cell recognition was greatly enhanced when EBNA1 peptides derived from the polymorphic epitope were used. These results indicate that EBNA1-specific T cells should be included in adoptive immunotherapy for PTLD. Furthermore, expansion protocols should use antigenic sequences from relevant EBV strains.

  17. [Significance of CD138/syndecan-1 for multiple myeloma immunophenotypes].

    PubMed

    Zhuang, Jun-Ling; Wang, Xuan; Wu, Yong-Ji

    2005-12-01

    To establish the method of immunophenotyping testing for patients with multiple myeloma (MM), to analyze the characteristics of antigen expression on myeloma cells, and to purify primary myeloma cells, CD45/side scatter (SSC) gating tri-color immunofluorescence (IF) flow cytometry (FCM) was used to test immunophenotype of 18 patients with MM, 20 patients with acute leukemia (AL) and 7 normal controls. Purified primary myeloma cells were obtained by means of anti-CD138 monoclonal antibody and immunomagnetic microbeads. The results showed that myeloma cells displayed a CD45 negative/low positive expression, and SSC was located between nucleated red blood cells and neutrophils. Both CD138 and CD38 were positive while most antigens of T cell, B cell and myeloid cell were negative. Positive rate of CD56 was 83.3% and HLA-DR was 44.4% positive. Compared with MM patients, CD138 was negative and CD38 was 100% positive in AL patients. CD56 was 25% positive. In normal controls, neither CD138 nor CD56 was positive. The positive rate of primary myeloma cells after purification was 73%-95% with a mean of 86%. It is concluded that CD45/SSC gating procedure is a stable and reliable method to detect immunophenotype of MM. CD138 is a correspondingly special antigen for myeloma cells. Highly enriched primary myeloma cells can be obtained by anti-CD138 antibody and immunomagnetic microbeads.

  18. The role of complement in CD4⁺ T cell homeostasis and effector functions.

    PubMed

    Kolev, Martin; Le Friec, Gaëlle; Kemper, Claudia

    2013-02-01

    The complement system is among the evolutionary oldest 'players' of the immune system. It was discovered in 1896 by Jules Bordet as a heat-labile fraction of the serum responsible for the opsonisation and subsequent killing of bacteria. The decades between the 1920s and 1990s then marked the discovery and biochemical characterization of the proteins comprising the complement system. Today, complement is defined as a complex system consisting of more than 30 membrane-bound and soluble plasma proteins, which are activated in a cascade-like manner, very similarly to the caspase proteases and blood coagulation systems. Complement is engrained in the immunologist's mind as a serum-effective, quintessential part of innate immunity, vitally required for the detection and removal of pathogens or other dangerous entities. Three decades ago, this rather confined definition was challenged and then refined when it was shown that complement participates vitally in the induction and regulation of B cell responses, thus adaptive immunity. Similarly, research work published in more recent years supports an equally important role for the complement system in shaping T cell responses. Today, we are again facing paradigm shifts in the field: complement is actively involved in the negative control of T cell effector immune responses, and thus, by definition in immune homeostasis. Further, while serum complement activity is without doubt fundamental in the defence against invading pathogens, local immune cell-derived production of complement emerges as key mediator of complement's impact on adaptive immune responses. And finally, the impact of complement on metabolic pathways and the crosstalk between complement and other immune effector systems is likely more extensive than previously anticipated and is fertile ground for future discoveries. In this review, we will discuss these emerging new roles of complement, with a focus on Th1 cell biology.

  19. Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility

    PubMed Central

    Kölsch, Verena; Shen, Zhouxin; Lee, Susan; Plak, Katarzyna; Lotfi, Pouya; Chang, Jessica; Charest, Pascale G.; Romero, Jesus Lacal; Jeon, Taeck J.; Kortholt, Arjan; Briggs, Steven P.; Firtel, Richard A.

    2013-01-01

    How independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis. dydA− cells exhibit elevated F-actin and assembled myosin II (MyoII), increased and extended phosphoinositide-3-kinase (PI3K) activity, and extended phosphorylation of the activation loop of PKB and PKBR1, suggesting that DydA is involved in the negative regulation of these pathways. DydA is phosphorylated by glycogen synthase kinase-3 (GSK-3), which is required for some, but not all, of DydA's functions, including the proper regulation of PKB and PKBR1 and MyoII assembly. gskA− cells exhibit very strong chemotactic phenotypes, as previously described, but exhibit an increased rate of random motility. gskA− cells have a reduced MyoII response and a reduced level of phosphatidylinositol (3,4,5)-triphosphate production, but a highly extended recruitment of PI3K to the plasma membrane and highly extended kinetics of PKB and PKBR1 activation. Our results demonstrate that GSK-3 function is essential for chemotaxis, regulating multiple substrates, and that one of these effectors, DydA, plays a key function in the dynamic regulation of chemotaxis. PMID:23135995

  20. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    SciTech Connect

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  1. The P2Y6 Receptor Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation1

    PubMed Central

    Giannattasio, Giorgio; Ohta, Shin; Boyce, Joshua R.; Xing, Wei; Balestrieri, Barbara; Boyce, Joshua A.

    2011-01-01

    We show that the P2Y6 receptor, a G-protein-coupled receptor with high affinity for the nucleotide uridine diphosphate, is an important endogenous inhibitor of T cell function in allergic pulmonary inflammation. Mice conditionally deficient in P2Y6 receptors [p2ry6 (flox/flox);cre/+ mice] exhibited severe airway and tissue pathology relative to P2Y6-sufficient [p2ry6 (flox/flox)] littermates (+/+ mice) when treated intranasally with an extract (Df) of the dust mite Dermatophagoides farinae. P2Y6 receptors were inducibly expressed by lung, lymph node and splenic CD4+ and CD8+ T cells of Df-treated +/+ mice. Df-restimulated P2Y6-deficient lymph node cells produced higher levels of Th1 and Th2 cytokines, and polyclonally-stimulated P2Y6-deficient CD4+ T cells proliferated faster than comparably stimulated P2Y6-sufficient cells. The absence of P2Y6 receptors on CD4+ cells, but not antigen presenting cells, was sufficient to amplify cytokine generation. Thus, P2Y6 receptors protect the lung against exuberant allergen-induced pulmonary inflammation by inhibiting the activation of effector T cells. PMID:21724990

  2. Restoring oxidant signaling suppresses pro-arthritogenic T-cell effector functions in rheumatoid arthritis

    PubMed Central

    Yang, Zhen; Shen, Yi; Oishi, Hisashi; Matteson, Eric L.; Tian, Lu; Goronzy, Jörg J.; Weyand, Cornelia M.

    2016-01-01

    To promote their pathology, CD4 T-cells from patients with rheumatoid arthritis (RA) have to clonally expand and differentiate into cytokine-producing effector cells. In contrast to healthy T-cells, naïve RA T-cells have a defect in glycolytic flux due to upregulation of glucose-6-phosphate dehydrogenase (G6PD). Excess G6PD shunts glucose into the pentose phosphate pathway (PPP), resulting in NADPH accumulation and ROS consumption. With surplus reductive equivalents, RA T-cells insufficiently activate the redox-sensitive kinase ATM; bypass the G2/M cell cycle checkpoint and hyperproliferate. Insufficient ATM activation biases T-cell differentiation towards the Th1 and Th17 lineages, imposing a hyper-inflammatory phenotype. We have identified several interventions that replenishing intracellular ROS, correct the abnormal proliferative behavior of RA T-cells and successfully suppress synovial inflammation. Rebalancing glucose utilization and restoring oxidant signaling may provide a novel therapeutic strategy to prevent autoimmunity in RA. PMID:27009267

  3. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    SciTech Connect

    Rouse, B.T.; Hartley, D.; Doherty, P.C. )

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  4. Myosin 1b functions as an effector of EphB signaling to control cell repulsion

    PubMed Central

    Prospéri, Marie-Thérèse; Lépine, Priscilla; Dingli, Florent; Paul-Gilloteaux, Perrine; Martin, René; Loew, Damarys; Knölker, Hans-Joachim

    2015-01-01

    Eph receptors and their membrane-tethered ligands, the ephrins, have important functions in embryo morphogenesis and in adult tissue homeostasis. Eph/ephrin signaling is essential for cell segregation and cell repulsion. This process is accompanied by morphological changes and actin remodeling that drives cell segregation and tissue patterning. The actin cortex must be mechanically coupled to the plasma membrane to orchestrate the cell morphology changes. Here, we demonstrate that myosin 1b that can mechanically link the membrane to the actin cytoskeleton interacts with EphB2 receptors via its tail and is tyrosine phosphorylated on its tail in an EphB2-dependent manner. Myosin 1b regulates the redistribution of myosin II in actomyosin fibers and the formation of filopodia at the interface of ephrinB1 and EphB2 cells, which are two processes mediated by EphB2 signaling that contribute to cell repulsion. Together, our results provide the first evidence that a myosin 1 functions as an effector of EphB2/ephrinB signaling, controls cell morphology, and thereby cell repulsion. PMID:26195670

  5. TCR(+)CD3(+)CD4(-)CD8(-) effector T cells in psoriasis.

    PubMed

    Brandt, D; Sergon, M; Abraham, S; Mäbert, K; Hedrich, C M

    2017-08-01

    The autoimmune/inflammatory disorder psoriasis is characterized by keratinocyte proliferation and immune cell infiltration of the skin. TCR(+)CD3(+)CD4(-)CD8(-) "double negative" (DN) T cells can derive from CD8(+) T cells through the down-regulation of CD8. The inhibitory molecule programmed death (PD-)1 is expressed on activated T cells and plays a role in the maintenance of peripheral tolerance. A subset of DN T cells, characterized by the expression of PD-1, has recently been demonstrated to be self-reactive. We demonstrate that a majority of DN T cells exhibits effector memory phenotypes, express IFN-γ, and fail to proliferate. DN T cells from psoriasis patients are characterized by reduced DNA methylation of the IFNG gene and increased PD-1 expression. Furthermore, PD-1 positive DN T cells infiltrate the epidermis in psoriatic skin lesions. Our observations offer additional insight into the molecular pathophysiology of plaque psoriasis and show promise as potential disease biomarkers and/or therapeutic targets for future interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases

    PubMed Central

    Riese, Matthew J.; Wang, Liang-Chuan S.; Moon, Edmund K.; Joshi, Rohan P.; Ranganathan, Anjana; June, Carl H.; Koretzky, Gary A.; Albelda, Steven M.

    2013-01-01

    Recent clinical trials have shown promise in the use of chimeric antigen receptor(CAR)-transduced T cells; however, augmentation of their activity may broaden their clinical utility and improve their efficacy. We hypothesized that, since CAR action requires proteins essential for TCR signal transduction, deletion of negative regulators of these signaling pathways would enhance CAR signaling and effector T cell function. We tested CAR activity and function in T cells that lacked one or both isoforms of diacylglycerol kinase (dgk) expressed highly in T cells, dgkα and dgkζ, enzymes that metabolize the second messenger diacylglycerol (DAG) and limit Ras/ERK activation. We found that primary murine T cells transduced with CARs specific for the human tumor antigen mesothelin demonstrated greatly enhanced cytokine production and cytotoxicity when co-cultured with a murine mesothelioma line that stably expresses mesothelin. Additionally, we found that dgk-deficient CAR-transduced T cells were more effective in limiting the growth of implanted tumors, both concurrent with and after establishment of tumor. Consistent with our studies in mice, pharmacologic inhibition of dgks also augments function of primary human T cells transduced with CARs. These results suggest that deletion of negative regulators of TCR signaling enhances the activity and function of CAR-expressing T cells and identify dgks as potential targets for improving the clinical potential of CARs. PMID:23576561

  7. UK NEQAS for leucocyte immunophenotyping: the first 10 years

    PubMed Central

    Reilly, J; Barnett, D

    2001-01-01

    In the past decade, cellular immunophenotyping has become a new discipline in diagnostic haematology and immunology, and is invaluable in the rapid diagnosis of leukaemia and monitoring disease progression in human immunodeficiency virus infected individuals. The introduction of bench top flow cytometers has meant that immunophenotyping is now also used for the quantitation of CD34+ peripheral blood stem cells (PBSCs) to ensure the correct timing and adequacy of haematopoietic progenitor cell harvests. Furthermore, flow cytometry has become an important tool for the counting of leucocytes in blood components after leucocyte depletion. Because this new discipline is now such a major diagnostic and prognostic tool in the clinical arena, its use must be subject to both internal and external quality control. Such a requirement was first recognised as early as 1986 when an Inter-Regional Quality Assessment Scheme (IRQAS) was initiated for laboratories that undertook the immunocytochemical diagnosis of leukaemia using the alkaline phosphates anti-alkaline phosphatase technique. This programme began with around 25 UK laboratories. In 1990, after the introduction of two more programmes (one for leukaemia diagnosis using UV microscopy and latterly flow cytometry, and one for the enumeration of CD4+ T cells) the IRQAS achieved UK National External Quality Assessment Scheme (UK NEQAS) status and changed its title to UK NEQAS for Leucocyte Immunophenotyping. In the past decade the once small IRQAS programme has evolved into the largest international scheme of its kind, providing EQA to over 650 laboratories world wide for leukaemia immunophenotyping, lymphocyte subset analysis, PBSCs, and more recently low level leucocyte counting. Over the years, this EQA programme has highlighted important problems, such as the inappropriate use of fluorochromes and antibody titre, and the identification of effective gating strategies, all of which have contributed directly to the high

  8. The transcription factor Runx3 guards cytotoxic CD8(+) effector T cells against deviation towards follicular helper T cell lineage.

    PubMed

    Shan, Qiang; Zeng, Zhouhao; Xing, Shaojun; Li, Fengyin; Hartwig, Stacey M; Gullicksrud, Jodi A; Kurup, Samarchith P; Van Braeckel-Budimir, Natalija; Su, Yao; Martin, Matthew D; Varga, Steven M; Taniuchi, Ichiro; Harty, John T; Peng, Weiqun; Badovinac, Vladimir P; Xue, Hai-Hui

    2017-08-01

    Activated CD8(+) T cells differentiate into cytotoxic effector (TEFF) cells that eliminate target cells. How TEFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in TEFF cells. Runx3-deficient CD8(+) TEFF cells aberrantly upregulated genes characteristic of follicular helper T (TFH) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the TFH program. Ablating Tcf7 in Runx3-deficient CD8(+) TEFF cells prevented the upregulation of TFH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing TFH-lineage deviation.

  9. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid.

    PubMed

    Schläger, Christian; Körner, Henrike; Krueger, Martin; Vidoli, Stefano; Haberl, Michael; Mielke, Dorothee; Brylla, Elke; Issekutz, Thomas; Cabañas, Carlos; Nelson, Peter J; Ziemssen, Tjalf; Rohde, Veit; Bechmann, Ingo; Lodygin, Dmitri; Odoardi, Francesca; Flügel, Alexander

    2016-02-18

    In multiple sclerosis, brain-reactive T cells invade the central nervous system (CNS) and induce a self-destructive inflammatory process. T-cell infiltrates are not only found within the parenchyma and the meninges, but also in the cerebrospinal fluid (CSF) that bathes the entire CNS tissue. How the T cells reach the CSF, their functionality, and whether they traffic between the CSF and other CNS compartments remains hypothetical. Here we show that effector T cells enter the CSF from the leptomeninges during Lewis rat experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. While moving through the three-dimensional leptomeningeal network of collagen fibres in a random Brownian walk, T cells were flushed from the surface by the flow of the CSF. The detached cells displayed significantly lower activation levels compared to T cells from the leptomeninges and CNS parenchyma. However, they did not represent a specialized non-pathogenic cellular sub-fraction, as their gene expression profile strongly resembled that of tissue-derived T cells and they fully retained their encephalitogenic potential. T-cell detachment from the leptomeninges was counteracted by integrins VLA-4 and LFA-1 binding to their respective ligands produced by resident macrophages. Chemokine signalling via CCR5/CXCR3 and antigenic stimulation of T cells in contact with the leptomeningeal macrophages enforced their adhesiveness. T cells floating in the CSF were able to reattach to the leptomeninges through steps reminiscent of vascular adhesion in CNS blood vessels, and invade the parenchyma. The molecular/cellular conditions for T-cell reattachment were the same as the requirements for detachment from the leptomeningeal milieu. Our data indicate that the leptomeninges represent a checkpoint at which activated T cells are licensed to enter the CNS parenchyma and non-activated T cells are preferentially released into the CSF, from where they can reach areas of antigen

  10. Serine Protease Inhibitor-6 Differentially Affects the Survival of Effector and Memory Alloreactive CD8-T Cells

    PubMed Central

    Azzi, J.; Ohori, S.; Ting, C.; Uehara, M.; Abdoli, R.; Smith, B. D.; Safa, K.; Solhjou, Z.; Lukyanchykov, P.; Patel, J.; McGrath, M.; Abdi, R.

    2016-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6−/− mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6−/− CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells. PMID:25534448

  11. Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets.

    PubMed

    Ma, Cindy S; Wong, Natalie; Rao, Geetha; Nguyen, Akira; Avery, Danielle T; Payne, Kathryn; Torpy, James; O'Young, Patrick; Deenick, Elissa; Bustamante, Jacinta; Puel, Anne; Okada, Satoshi; Kobayashi, Masao; Martinez-Barricarte, Ruben; Elliott, Michael; Sebnem Kilic, Sara; El Baghdadi, Jamila; Minegishi, Yoshiyuki; Bousfiha, Aziz; Robertson, Nic; Hambleton, Sophie; Arkwright, Peter D; French, Martyn; Blincoe, Annaliesse K; Hsu, Peter; Campbell, Dianne E; Stormon, Michael O; Wong, Melanie; Adelstein, Stephen; Fulcher, David A; Cook, Matthew C; Stepensky, Polina; Boztug, Kaan; Beier, Rita; Ikincioğullari, Aydan; Ziegler, John B; Gray, Paul; Picard, Capucine; Boisson-Dupuis, Stéphanie; Phan, Tri Giang; Grimbacher, Bodo; Warnatz, Klaus; Holland, Steven M; Uzel, Gulbu; Casanova, Jean-Laurent; Tangye, Stuart G

    2016-07-25

    Naive CD4(+) T cells differentiate into specific effector subsets-Th1, Th2, Th17, and T follicular helper (Tfh)-that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4(+) T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10-secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4(+) T cell effector function in the settings of infection, vaccination, or immune dysregulation. © 2016 Ma et al.

  12. Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets

    PubMed Central

    Wong, Natalie; Rao, Geetha; Nguyen, Akira; Avery, Danielle T.; Payne, Kathryn; Torpy, James; O’Young, Patrick; Deenick, Elissa; Bustamante, Jacinta; Puel, Anne; Okada, Satoshi; Kobayashi, Masao; Martinez-Barricarte, Ruben; Elliott, Michael; Sebnem Kilic, Sara; El Baghdadi, Jamila; Minegishi, Yoshiyuki; Bousfiha, Aziz; Robertson, Nic; Hambleton, Sophie; Arkwright, Peter D.; French, Martyn; Blincoe, Annaliesse K.; Hsu, Peter; Campbell, Dianne E.; Stormon, Michael O.; Wong, Melanie; Adelstein, Stephen; Fulcher, David A.; Cook, Matthew C.; Stepensky, Polina; Boztug, Kaan; Beier, Rita; Ikincioğullari, Aydan; Ziegler, John B.; Gray, Paul; Picard, Capucine; Boisson-Dupuis, Stéphanie; Phan, Tri Giang; Grimbacher, Bodo; Warnatz, Klaus; Holland, Steven M.; Uzel, Gulbu; Casanova, Jean-Laurent; Tangye, Stuart G.

    2016-01-01

    Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation. PMID:27401342

  13. Constitutive Glycolytic Metabolism Supports CD8(+) T Cell Effector Memory Differentiation during Viral Infection.

    PubMed

    Phan, Anthony T; Doedens, Andrew L; Palazon, Asis; Tyrakis, Petros A; Cheung, Kitty P; Johnson, Randall S; Goldrath, Ananda W

    2016-11-15

    Extensive metabolic changes accompany T cell activation, including a switch to glycolytic energy production and increased biosynthesis. Recent studies suggest that subsequent return to reliance on oxidative phosphorylation and increasing spare respiratory capacity are essential for the differentiation of memory CD8(+) T cells. In contrast, we found that constitutive glycolytic metabolism and suppression of oxidative phosphorylation in CD8(+) T cells, achieved by conditional deletion of hypoxia-inducible factor regulator Vhl, accelerated CD8(+) memory cell differentiation during viral infection. Despite sustained glycolysis, CD8(+) memory cells emerged that upregulated key memory-associated cytokine receptors and transcription factors and showed a heightened response to secondary challenge. In addition, increased glycolysis not only permitted memory formation, but it also favored the formation of long-lived effector-memory CD8(+) T cells. These data redefine the role of cellular metabolism in memory cell differentiation, showing that reliance on glycolytic metabolism does not hinder formation of a protective memory population. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response.

    PubMed

    Reiser, John; Banerjee, Arnob

    2016-01-01

    The adaptive immune system plays a pivotal role in the host's ability to mount an effective, antigen-specific immune response against tumors. CD8(+) tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host's ability to eradicate the tumor. In addition to effector and memory CD8(+) T cells, populations described as exhausted, anergic, senescent, and regulatory CD8(+) T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8(+) T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8(+) T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8(+) T cell dysfunction.

  15. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants.

    PubMed

    Gibbons, Deena; Fleming, Paul; Virasami, Alex; Michel, Marie-Laure; Sebire, Neil J; Costeloe, Kate; Carr, Robert; Klein, Nigel; Hayday, Adrian

    2014-10-01

    In spite of their precipitous encounter with the environment, newborn infants cannot readily mount T helper type 1 (TH1) cell antibacterial and antiviral responses. Instead, they show skewing toward TH2 responses, which, together with immunoregulatory functions, are thought to limit the potential for inflammatory damage, while simultaneously permitting intestinal colonization by commensals. However, these collective capabilities account for relatively few T cells. Here we demonstrate that a major T cell effector function in human newborns is interleukin-8 (CXCL8) production, which has the potential to activate antimicrobial neutrophils and γδ T cells. CXCL8 production was provoked by antigen receptor engagement of T cells that are distinct from those few cells producing TH1, TH2 and TH17 cytokines, was co-stimulated by Toll-like receptor signaling, and was readily apparent in preterm babies, particularly those experiencing neonatal infections and severe pathology. By contrast, CXCL8-producing T cells were rare in adults, and no equivalent function was evident in neonatal mice. CXCL8 production counters the widely held view that T lymphocytes in very early life are intrinsically anti-inflammatory, with implications for immune monitoring, immune interventions (including vaccination) and immunopathologies. It also emphasizes qualitative distinctions between infants' and adults' immune systems.

  16. Programmed Death 1 Regulates Memory Phenotype CD4 T Cell Accumulation, Inhibits Expansion of the Effector Memory Phenotype Subset and Modulates Production of Effector Cytokines

    PubMed Central

    Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis

    2015-01-01

    Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808

  17. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    PubMed Central

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous sclerosis 1 (TSC1) is an important negative regulator of mTOR signaling, which regulates T cell differentiation, function, and trafficking. Here, we determined that mice lacking TSC1 exhibit a developmental block of iNKT differentiation at stage 2 and skew from a predominantly iNKT-1 population toward a predominantly iNKT-17 population, leading to enhanced airway hypersensitivity. Evaluation of purified iNKT cells revealed that TSC1 promotes T-bet, which regulates iNKT maturation, but downregulates ICOS expression in iNKT cells by inhibiting mTOR complex 1 (mTORC1). Furthermore, mice lacking T-bet exhibited both a terminal maturation defect of iNKT cells and a predominance of iNKT-17 cells, and increased ICOS expression was required for the predominance of iNKT-17 cells in the population of TSC1-deficient iNKT cells. Our data indicate that TSC1-dependent control of mTORC1 is crucial for terminal iNKT maturation and effector lineage decisions, resulting in the predominance of iNKT-1 cells. PMID:24614103

  18. Flow cytometric determination of quantitative immunophenotypes

    NASA Astrophysics Data System (ADS)

    Redelman, Douglas; Ensign, Wayne; Roberts, Don

    2001-05-01

    Immunofluorescent flow cytometric analysis of peripheral blood leucocytes is most commonly used to identify and enumerate cells defined by one or more clusters of differentiation (CD) antigens. Although less widely employed, quantitative tests that measure the amounts of CD antigens expressed per cell are used in some situations such as the characterization of lymphomas and leukocytes or the measurement of CD38 on CD3plu8pluT cells in HIV infected individuals. The CD antigens used to identify leukocyte populations are functionally important molecules and it is known that under- or over-expression of some CD antigens can affect cellular responses. For example, high or low expression of CD19 on B cells is associated with autoimmune conditions or depressed antibody responses, respectively. In the current studies, the quantitative expression of CD antigens on T cells, B cells and monocytes was determined in a group of age and sex-matched Marines at several times before and after training exercises. There was substantial variation among these individuals in the quantitative expression of CD antigens and in the number of cells in various populations. However, there was relatively little variation within individuals during the two months they were examined. Thus, the number of cells in leukocyte sub-populations and the amount of CD antigens expressed per cell appear to comprise a characteristic quantitative immunophenotype.

  19. Translocated effectors of Yersinia

    PubMed Central

    Matsumoto, Hiroyuki; Young, Glenn M.

    2009-01-01

    Summary Currently, all known translocated effectors of Yersinia are delivered into host cells by type III secretion systems (T3SSs). Pathogenic Yersinia maintain the plasmid-encoded Ysc T3SS for the specific delivery of the well-studied Yop effectors. New horizons for effector biology have opened with the discovery of the Ysps of Y. enterocolitica Biovar 1B, which are translocated into host cells by the chromosome-endoded Ysa T3SS. The reported arsenal of effectors is likely to expand since genomic analysis has revealed gene-clusters in some Yersinia that code for other T3SSs. These efforts also revealed possible type VI secretion (T6S) systems, which may indicate translocation of effectors occurs by multiple mechanisms. PMID:19185531

  20. Addition of rituximab to a CEOP regimen improved the outcome in the treatment of non-germinal center immunophenotype diffuse large B cell lymphoma cells with high Bcl-2 expression.

    PubMed

    Li, Yan; Yimamu, Maimaitili; Wang, Xiaomin; Zhang, Xiaoyan; Mao, Min; Fu, Ling; Aisimitula, Aihemaitijiang; Nie, Yuling; Huang, Qin

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) cells can be sub-classified into germinal center B cells (GCB) and non-GCB immunophenotypes. In the present study, we treated 161 newly diagnosed DLBCL patients with cyclophosphamide, epirubicin, vincristine, and prednisolone (CEOP) regimen with or without rituximab, and retrospectively investigated DLBCL sub-classifications combined with assessment of B cell lymphoma 2 (Bcl-2) expression level for their utility in the prediction of clinical efficacy. Survival analyses showed that non-GCB patients treated with R-CEOP regimen had significantly higher 5-year OS rates than the CEOP group (P = 0.033), while no statistically significant difference was observed between R-CEOP and CEOP treatments in GCB patients (P = 0.317). Prognosis was poorest for high Bcl-2 expressing non-GCB subgroup patients treated with CEOP, compared with Bcl-2 negative non-GCB CEOP patients (P = 0.044). In the R-CEOP group, Bcl-2 expression had no significant effect on prognosis for both GCB and non-GCB patients. The addition of rituximab to CEOP chemotherapy negates the adverse prognostic influence of Bcl-2 protein expression on overall survival in non-GCB DLBCL.

  1. Lethal giant larvae-1 deficiency enhances the CD8(+) effector T-cell response to antigen challenge in vivo.

    PubMed

    Ramsbottom, Kelly M; Sacirbegovic, Faruk; Hawkins, Edwin D; Kallies, Axel; Belz, Gabrielle T; Van Ham, Vanessa; Haynes, Nicole M; Durrant, Michael J; Humbert, Patrick O; Russell, Sarah M; Oliaro, Jane

    2016-03-01

    Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8(+) T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8(+) T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.

  2. Profound early control of highly pathogenic SIV by an effector-memory T cell vaccine

    PubMed Central

    Hansen, Scott G.; Ford, Julia C.; Lewis, Matthew S.; Ventura, Abigail B.; Hughes, Colette M.; Coyne-Johnson, Lia; Whizin, Nathan; Oswald, Kelli; Shoemaker, Rebecca; Swanson, Tonya; Legasse, Alfred W.; Chiuchiolo, Maria J.; Parks, Christopher L.; Axthelm, Michael K.; Nelson, Jay A.; Jarvis, Michael A.; Piatak, Michael; Lifson, Jeffrey D.; Picker, Louis J.

    2011-01-01

    The AIDS-causing lentiviruses HIV and SIV effectively evade host immunity, and once established, infections with these viruses are only rarely controlled by immunologic mechanisms1-3. However, the initial establishment of infection in the first few days after mucosal exposure, prior to viral dissemination and massive replication, may be more vulnerable to immune control4. Here, we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors5 establish indefinitely persistent, high frequency, SIV-specific effector-memory T cell (TEM) responses at potential sites of SIV replication in rhesus macaques (RM) and stringently control highly pathogenic SIVmac239 infection early after mucosal challenge. Thirteen of 24 RM receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (vs. 0 of 9 DNA/Ad5-vaccinated RM) manifested early complete control of SIV (undetectable plasma virus), and in 12/13 of these RM, we observed long-term (≥1 year) protection characterized by: 1) occasional blips of plasma viremia that ultimately waned; 2) predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; 3) no depletion of effector site CD4+ memory T cells; 4) no induction or boosting of SIVenv-specific antibodies (Abs); and 5) induction and then loss of T cell responses to an SIV protein (vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8+ T cell responses in the vaccine phase, and occurred without anamnestic T cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8+ or CD4+ lymphocyte depletion, and at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations suggesting the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated TEM responses might significantly contribute to an

  3. Short-Lived Effector CD8 T Cells Induced by Genetically Attenuated Malaria Parasite Vaccination Express CD11c

    PubMed Central

    Cooney, Laura A.; Gupta, Megha; Thomas, Sunil; Mikolajczak, Sebastian; Choi, Kimberly Y.; Gibson, Claire; Jang, Ihn K.; Danziger, Sam; Aitchison, John; Gardner, Malcolm J.; Kappe, Stefan H. I.

    2013-01-01

    Vaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodent Plasmodium yoelii model. Protection is dependent on CD8+ T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8+ T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8+ T cell phenotype and demonstrated significant upregulation of CD11c on CD3+ CD8b+ T cells in the liver, spleen, and peripheral blood. CD11c+ CD8+ T cells are predominantly CD11ahi CD44hi CD62L−, indicative of antigen-experienced effector cells. Following in vitro restimulation with malaria-infected hepatocytes, CD11c+ CD8+ T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c− CD8+ T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8+ T cells. Coculture of CD11c+, but not CD11c−, CD8+ T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8+ T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c+ CD8+ T cell response, but CD11c expression was lost as the CD8+ T cells entered the memory phase. Further analyses showed that CD11c+ CD8+ T cells are primarily KLRG1+ CD127− terminal effectors, whereas all KLRG1− CD127+ memory precursor effector cells are CD11c− CD8+ T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected hepatocytes. PMID:23980113

  4. Short-lived effector CD8 T cells induced by genetically attenuated malaria parasite vaccination express CD11c.

    PubMed

    Cooney, Laura A; Gupta, Megha; Thomas, Sunil; Mikolajczak, Sebastian; Choi, Kimberly Y; Gibson, Claire; Jang, Ihn K; Danziger, Sam; Aitchison, John; Gardner, Malcolm J; Kappe, Stefan H I; Wang, Ruobing

    2013-11-01

    Vaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodent Plasmodium yoelii model. Protection is dependent on CD8(+) T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8(+) T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8(+) T cell phenotype and demonstrated significant upregulation of CD11c on CD3(+) CD8b(+) T cells in the liver, spleen, and peripheral blood. CD11c(+) CD8(+) T cells are predominantly CD11a(hi) CD44(hi) CD62L(-), indicative of antigen-experienced effector cells. Following in vitro restimulation with malaria-infected hepatocytes, CD11c(+) CD8(+) T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c(-) CD8(+) T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8(+) T cells. Coculture of CD11c(+), but not CD11c(-), CD8(+) T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8(+) T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c(+) CD8(+) T cell response, but CD11c expression was lost as the CD8(+) T cells entered the memory phase. Further analyses showed that CD11c(+) CD8(+) T cells are primarily KLRG1(+) CD127(-) terminal effectors, whereas all KLRG1(-) CD127(+) memory precursor effector cells are CD11c(-) CD8(+) T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected

  5. Regulation of the T-cell response to ectromelia virus infection. I. Feedback suppression by effector T cells.

    PubMed

    Pang, T; Blanden, R V

    1976-03-01

    Spleen cells and serum from mice immunized with ectromelia virus suppressed the immune response to infectious virus when transferred intravenously into recipient mice given an immunizing virus dose. The suppression was reflected in decreased cytotoxic T-cell activity directed against H-2 compatible virus-infected target cells in the spleens of recipients. Suppression was observed when immune cells or serum were transferred 1-2 h or 1 day after immunization of recipients, but not 2 days after, and was maximal when 6-day immune spleen cells were used as suppressor cells. H-2 compatibility between donor and recipient mice was necessary for suppression to be expressed. Use of recombinant mice showed that I-region compatibility was neither sufficient nor necessary, and that D-region compatibility was sufficient. Specificity of suppression was suggested by the finding that cells and serum from mice immunized with Listeria monocytogenes, a bacterium, had no suppressive activity on the antiviral response. Anti-theta treatment eliminated the ability of immune cells to suppress, and the suppressive effect was not markedly dose-dependent with respect to both cell dose and virus dose under the conditions employed. Virus levels in the spleens of recipients were significantly reduced after injection of immune cells. Adult thymectomy had no effect on the primary immune response to ectromelia virus infection, thus indicating no role for T1 cells in the suppressive mechanism. The results obtained therefore suggested that suppression in this system was due to effector T cells which triggered clearance of virus (and thus, of virus-induced antigens) necessary for the induction of precursors of effector T cells, and that this simple feed-back mechanism normally plays an important role in the regulation of the primary immune response to ectromelia infection at the level of precursor induction. The existence of other postinduction regulatory mechanisms, however, is unknown and under

  6. Regulation of the T-cell response to ectromelia virus infection. I. Feedback suppression by effector T cells

    PubMed Central

    1976-01-01

    Spleen cells and serum from mice immunized with ectromelia virus suppressed the immune response to infectious virus when transferred intravenously into recipient mice given an immunizing virus dose. The suppression was reflected in decreased cytotoxic T-cell activity directed against H-2 compatible virus-infected target cells in the spleens of recipients. Suppression was observed when immune cells or serum were transferred 1-2 h or 1 day after immunization of recipients, but not 2 days after, and was maximal when 6-day immune spleen cells were used as suppressor cells. H-2 compatibility between donor and recipient mice was necessary for suppression to be expressed. Use of recombinant mice showed that I-region compatibility was neither sufficient nor necessary, and that D-region compatibility was sufficient. Specificity of suppression was suggested by the finding that cells and serum from mice immunized with Listeria monocytogenes, a bacterium, had no suppressive activity on the antiviral response. Anti- theta treatment eliminated the ability of immune cells to suppress, and the suppressive effect was not markedly dose-dependent with respect to both cell dose and virus dose under the conditions employed. Virus levels in the spleens of recipients were significantly reduced after injection of immune cells. Adult thymectomy had no effect on the primary immune response to ectromelia virus infection, thus indicating no role for T1 cells in the suppressive mechanism. The results obtained therefore suggested that suppression in this system was due to effector T cells which triggered clearance of virus (and thus, of virus-induced antigens) necessary for the induction of precursors of effector T cells, and that this simple feed-back mechanism normally plays an important role in the regulation of the primary immune response to ectromelia infection at the level of precursor induction. The existence of other postinduction regulatory mechanisms, however, is unknown and under

  7. Phenotype and functional evaluation of ex vivo generated antigen-specific immune effector cells with potential for therapeutic applications.

    PubMed

    Han, Shuhong; Huang, Yuju; Liang, Yin; Ho, Yuchin; Wang, Yichen; Chang, Lung-Ji

    2009-08-06

    Ex vivo activation and expansion of lymphocytes for adoptive cell therapy has demonstrated great success. To improve safety and therapeutic efficacy, increased antigen specificity and reduced non-specific response of the ex vivo generated immune cells are necessary. Here, using a complete protein-spanning pool of pentadecapeptides of the latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV), a weak viral antigen which is associated with EBV lymphoproliferative diseases, we investigated the phenotype and function of immune effector cells generated based on IFN-gamma or CD137 activation marker selection and dendritic cell (DC) activation. These ex vivo prepared immune cells exhibited a donor- and antigen-dependent T cell response; the IFN-gamma-selected immune cells displayed a donor-related CD4- or CD8-dominant T cell phenotype; however, the CD137-enriched cells showed an increased ratio of CD4 T cells. Importantly, the pentadecapeptide antigens accessed both class II and class I MHC antigen processing machineries and effectively activated EBV-specific CD4 and CD8 T cells. Phenotype and kinetic analyses revealed that the IFN-gamma and the CD137 selections enriched more central memory T (Tcm) cells than did the DC-activation approach, and after expansion, the IFN-gamma-selected effector cells showed the highest level of antigen-specificity and effector activities. While all three approaches generated immune cells with comparable antigen-specific activities, the IFN-gamma selection followed by ex vivo expansion produced high quality and quantity of antigen-specific effector cells. Our studies presented the optimal approach for generating therapeutic immune cells with potential for emergency and routine clinical applications.

  8. Quantitative proteomic analysis identifies new effectors of FOXM1 involved in breast cancer cell migration

    PubMed Central

    Ye, Xiaojuan; Zhang, Yi; He, Bin; Meng, Yuesheng; Li, Yandong; Gao, Yong

    2015-01-01

    The Forkhead Box M1 (FOXM1) transcription factor plays important roles in tumorigenesis and tumor metastasis in multiple human carcinomas. However, the underlying mechanisms for FOXM1 function remain to be classified. In the present study, we employed quantitative proteomic approach to search new downstream targets of FOXM1 in breast cancer MDA-MB-231 cells. A total of 4125 proteins were identified and quantified by label-free quantitation, of which 318 proteins were significantly changed (with P-value <0.05) between FOXM1 knockdown cells and control cells. Among them, three proteins ACSL4, CGGBP1 and PGRMC2 were significantly downregulated with FOXM1 reduction by western blot analysis. Further functional assays revealed that knockdown of the three proteins in MDA-MB-231 cells attenuated the ability of cell migration, consistent with the phenotype of FOXM1 knockdown. These results suggest that new potential downstream effectors of FOXM1 were identified by proteomic approach, and may provide new potential therapeutic targets in breast cancer. PMID:26884854

  9. PKC-Theta in Regulatory and Effector T-cell Functions

    PubMed Central

    Brezar, Vedran; Tu, Wen Juan; Seddiki, Nabila

    2015-01-01

    One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs. PMID:26528291

  10. Expression of membrane-bound burst-promoting activity is mediated by allogeneic effector cells.

    PubMed

    Guha, A; Tuck, D; Sorba, S; Dainiak, N

    1993-09-01

    To investigate whether "self" and "non-self" recognition processes are involved in murine erythropoiesis, the expression of membrane-bound burst-promoting activity (mBPA) was determined for B lymphocytes purified from spleens of CF-1, C57 BL/6J, B6021-7115, and CAF-1J mice using syngeneic and allogeneic bone marrow cultures. Addition of B lymphocyte conditioned medium (LCM), shed membrane-derived vesicles, or intact plasma membranes prepared from syngeneic murine cells stimulated erythroid burst-forming unit (BFU-E) proliferation by two- to three-fold above control levels. BFU-E proliferation was increased by six- to eight-fold, however, when LCM, shed membrane vesicles, or plasma membranes purified from allogenic B lymphocytes were used as sources of growth-stimulatory activity. Bioactivity was immunoprecipitated from detergent extracts of membranes purified from both allogeneic and syngeneic lymphocytes with a monoclonal antibody that specifically recognizes mBPA, suggesting that the factors expressed by these cells share antigenic determinants. The results indicate that allogeneic effector cells are a more potent source of mBPA-like molecules than are syngeneic cells, suggesting that immune mechanisms may be involved in inducing erythroid growth factor expression at the B cell surface.

  11. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    PubMed

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  12. Trans-presentation of IL-15 dictates IFN-producing killer dendritic cells effector functions.

    PubMed

    Ullrich, Evelyn; Bonmort, Mathieu; Mignot, Gregoire; Jacobs, Benedikt; Bosisio, Daniela; Sozzani, Silvano; Jalil, Abdelali; Louache, Fawzia; Bulanova, Elena; Geissman, Frederic; Ryffel, Bernard; Chaput, Nathalie; Bulfone-Paus, Silvia; Zitvogel, Laurence

    2008-06-15

    IFN-producing killer dendritic cells (IKDC) were initially described as B220(+)CD11c(+)CD3(-)NK1.1(+) tumor-infiltrating cells that mediated part of the antitumor effects of the combination therapy with imatinib mesylate and IL-2. In this study, we show their functional dependency on IL-15 during homeostasis and inflammatory processes. Trans-presentation of IL-15 by IL-15Ralpha allows dramatic expansion of IKDC in vitro and in vivo, licenses IKDC for TRAIL-dependent killing and endows IKDC with immunizing potential, all three biological attributes not shared by B220(-)NK cells. However, IL-15 down-regulates the capacity of IKDC to induce MHC class I- or II-restricted T cell activation in vitro. Trans-presentation of IL-15 by IL-15Ralpha allows IKDC to respond to TLR3 and TLR4 ligands for the production of CCL2, a chemokine that is critical for IKDC trafficking into tumor beds (as described recently). We conclude that IKDC represent a unique subset of innate effectors functionally distinguishable from conventional NK cells in their ability to promptly respond to IL-15-driven inflammatory processes.

  13. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses

    PubMed Central

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses. PMID:25873668

  14. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-06-01

    Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses.

  15. Defect in recruiting effector memory CD8+ T-cells in malignant pleural effusions compared to normal pleural fluid

    PubMed Central

    2013-01-01

    Background Malignant pleural effusions (MPE) are a common and fatal complication in cancers including lung or breast cancers, or malignant pleural mesothelioma (MPM). MPE animal models and immunotherapy trials in MPM patients previously suggested defects of the cellular immunity in MPE. However only few observational studies of the immune response were done in MPM patients, using questionable control groups (transudate…). Methods We compared T cell populations evaluated by flow cytometry from blood and pleural effusion of untreated patients with MPM (n = 58), pleural metastasis of adenocarcinoma (n = 30) or with benign pleural lesions associated with asbestos exposure (n = 23). Blood and pleural fluid were also obtained from healthy subjects, providing normal values for T cell populations. Results Blood CD4+ or CD8+ T cells percentages were similar in all groups of patients or healthy subjects. Whereas pleural fluid from healthy controls contained mainly CD8+ T cells, benign or malignant pleural effusions included mainly CD4+ T cells. Effector memory T cells were the main T cell subpopulation in pleural fluid from healthy subjects. In contrast, there was a striking and selective recruitment of central memory CD4+ T cells in MPE, but not of effector cells CD8+ T cells or NK cells in the pleural fluid as one would expect in order to obtain an efficient immune response. Conclusions Comparing for the first time MPE to pleural fluid from healthy subjects, we found a local defect in recruiting effector CD8+ T cells, which may be involved in the escape of tumor cells from immune response. Further studies are needed to characterize which subtypes of effector CD8+ T cells are involved, opening prospects for cell therapy in MPE and MPM. PMID:23816056

  16. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium.

    PubMed

    Finak, Greg; Langweiler, Marc; Jaimes, Maria; Malek, Mehrnoush; Taghiyar, Jafar; Korin, Yael; Raddassi, Khadir; Devine, Lesley; Obermoser, Gerlinde; Pekalski, Marcin L; Pontikos, Nikolas; Diaz, Alain; Heck, Susanne; Villanova, Federica; Terrazzini, Nadia; Kern, Florian; Qian, Yu; Stanton, Rick; Wang, Kui; Brandes, Aaron; Ramey, John; Aghaeepour, Nima; Mosmann, Tim; Scheuermann, Richard H; Reed, Elaine; Palucka, Karolina; Pascual, Virginia; Blomberg, Bonnie B; Nestle, Frank; Nussenblatt, Robert B; Brinkman, Ryan Remy; Gottardo, Raphael; Maecker, Holden; McCoy, J Philip

    2016-02-10

    Standardization of immunophenotyping requires careful attention to reagents, sample handling, instrument setup, and data analysis, and is essential for successful cross-study and cross-center comparison of data. Experts developed five standardized, eight-color panels for identification of major immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories using these panels with standardized operating procedures (SOPs). Manual gating was performed by each site and by a central site. Automated gating algorithms were developed and tested by the FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought to determine whether automated methods could streamline and standardize the analysis. Within-site variability was low in all experiments, but cross-site variability was lower when central analysis was performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets than those based on dim markers and for rare populations. Automated gating was able to match the performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable variability. Standardized staining, data collection, and automated gating can increase power, reduce variability, and streamline analysis for immunophenotyping.

  17. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium

    PubMed Central

    Finak, Greg; Langweiler, Marc; Jaimes, Maria; Malek, Mehrnoush; Taghiyar, Jafar; Korin, Yael; Raddassi, Khadir; Devine, Lesley; Obermoser, Gerlinde; Pekalski, Marcin L.; Pontikos, Nikolas; Diaz, Alain; Heck, Susanne; Villanova, Federica; Terrazzini, Nadia; Kern, Florian; Qian, Yu; Stanton, Rick; Wang, Kui; Brandes, Aaron; Ramey, John; Aghaeepour, Nima; Mosmann, Tim; Scheuermann, Richard H.; Reed, Elaine; Palucka, Karolina; Pascual, Virginia; Blomberg, Bonnie B.; Nestle, Frank; Nussenblatt, Robert B.; Brinkman, Ryan Remy; Gottardo, Raphael; Maecker, Holden; McCoy, J Philip

    2016-01-01

    Standardization of immunophenotyping requires careful attention to reagents, sample handling, instrument setup, and data analysis, and is essential for successful cross-study and cross-center comparison of data. Experts developed five standardized, eight-color panels for identification of major immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories using these panels with standardized operating procedures (SOPs). Manual gating was performed by each site and by a central site. Automated gating algorithms were developed and tested by the FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought to determine whether automated methods could streamline and standardize the analysis. Within-site variability was low in all experiments, but cross-site variability was lower when central analysis was performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets than those based on dim markers and for rare populations. Automated gating was able to match the performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable variability. Standardized staining, data collection, and automated gating can increase power, reduce variability, and streamline analysis for immunophenotyping. PMID:26861911

  18. CD161 DEFINES EFFECTOR T CELLS THAT EXPRESS LIGHT AND RESPOND TO TL1A-DR3 SIGNALING.

    PubMed

    Cohavy, O; Shih, D Q; Doherty, T M; Ware, C F; Targan, S R

    2011-03-01

    Expression of NK cell markers identifies pro-inflammatory T cell subsets in the liver and intestinal immune compartments. Specifically, CD161 is expressed on Th17 cells which play an important role in the regulation of mucosal inflammation. In this study, we characterized human peripheral blood CD161+ T cells as an effector population partially resembling a gut T cell phenotype. CD161+ CD4+ T cells express the gut-associated TNF family member, LIGHT, and respond to crosslinking of DR3, a receptor to another gut-associated cytokine, TL1A. Robust IFN-γ production in response to DR3 signaling correlated with enhanced expression of surface DR3 on CD161+ T cells and co-stimulation with IL12 and IL18. CD161+ T cell effector function was directly demonstrated by activation of responder monocytes in co-culture leading to CD40 upregulation and CD14 downregulation. CD161+ T cells reciprocally responded to activated monocytes, inducing expression of activation marker, CD69, and production of IL2 and IFN-γ, further demonstrating effective CD161+ T cell cross-talk with monocytes. Finally, CD161 defined a subset of T cells that co-express CD56, a second NK marker. Our findings implicate human CD161+ T cells in gut-associated signaling mechanisms, and suggest a monocyte mediated effector function in mucosal inflammation.

  19. CD161 defines effector T cells that express light and respond to TL1A-DR3 signaling

    PubMed Central

    Cohavy, O.; Shih, D. Q.; Doherty, T. M.; Ware, C. F.

    2011-01-01

    Expression of NK cell markers identifies pro-inflammatory T cell subsets in the liver and intestinal immune compartments. Specifically, CD161 is expressed on Th17 cells which play an important role in the regulation of mucosal inflammation. In this study, we characterized human peripheral blood CD161+ T cells as an effector population partially resembling a gut T cell phenotype. CD161+ CD4+ T cells express the gut-associated TNF family member, LIGHT, and respond to crosslinking of DR3, a receptor to another gut-associated cytokine, TL1A. Robust IFN-γ production in response to DR3 signaling correlated with enhanced expression of surface DR3 on CD161+ T cells and co-stimulation with IL12 and IL18. CD161+ T cell effector function was directly demonstrated by activation of responder monocytes in co-culture leading to CD40 upregulation and CD14 downregulation. CD161+ T cells reciprocally responded to activated monocytes, inducing expression of activation marker, CD69, and production of IL2 and IFN-γ, further demonstrating effective CD161+ T cell cross-talk with monocytes. Finally, CD161 defined a subset of T cells that co-express CD56, a second NK marker. Our findings implicate human CD161+ T cells in gut-associated signaling mechanisms, and suggest a monocyte mediated effector function in mucosal inflammation. PMID:22348196

  20. PRC2 Epigenetically Silences Th1-Type Chemokines to Suppress Effector T-Cell Trafficking in Colon Cancer.

    PubMed

    Nagarsheth, Nisha; Peng, Dongjun; Kryczek, Ilona; Wu, Ke; Li, Wei; Zhao, Ende; Zhao, Lili; Wei, Shuang; Frankel, Timothy; Vatan, Linda; Szeliga, Wojciech; Dou, Yali; Owens, Scott; Marquez, Victor; Tao, Kaixiong; Huang, Emina; Wang, Guobin; Zou, Weiping

    2016-01-15

    Infiltration of tumors with effector T cells is positively associated with therapeutic efficacy and patient survival. However, the mechanisms underlying effector T-cell trafficking to the tumor microenvironment remain poorly understood in patients with colon cancer. The polycomb repressive complex 2 (PRC2) is involved in cancer progression, but the regulation of tumor immunity by epigenetic mechanisms has yet to be investigated. In this study, we examined the relationship between the repressive PRC2 machinery and effector T-cell trafficking. We found that PRC2 components and demethylase JMJD3-mediated histone H3 lysine 27 trimethylation (H3K27me3) repress the expression and subsequent production of Th1-type chemokines CXCL9 and CXCL10, mediators of effector T-cell trafficking. Moreover, the expression levels of PRC2 components, including EZH2, SUZ12, and EED, were inversely associated with those of CD4, CD8, and Th1-type chemokines in human colon cancer tissue, and this expression pattern was significantly associated with patient survival. Collectively, our findings reveal that PRC2-mediated epigenetic silencing is not only a crucial oncogenic mechanism, but also a key circuit controlling tumor immunosuppression. Therefore, targeting epigenetic programs may have significant implications for improving the efficacy of current cancer immunotherapies relying on effective T-cell-mediated immunity at the tumor site.

  1. An extrafollicular pathway for the generation of effector CD8+ T cells driven by the proinflammatory cytokine, IL-12

    PubMed Central

    Shah, Suhagi; Grotenbreg, Gijsbert M; Rivera, Amariliz; Yap, George S

    2015-01-01

    The proinflammatory cytokine IL-12 drives the generation of terminally differentiated KLRG1+ effector CD8+ T cells. Using a Toxoplasma vaccination model, we delineate the sequence of events that naïve CD8+ T cells undergo to become terminal effectors and the differentiation steps controlled by IL-12. We demonstrate that direct IL-12 signaling on CD8+ T cells is essential for the induction of KLRG1 and IFN-γ, but the subsequent downregulation of CXCR3 is controlled by IL-12 indirectly through the actions of IFN-γ and IFN-γ-inducible chemokines. Differentiation of nascent effectors occurs in an extrafollicular splenic compartment and is driven by late IL-12 production by DCs distinct from the classical CD8α+ DC. Unexpectedly, we also found extensive proliferation of both KLRG1− and KLRG1+ CD8+ T cells in the marginal zone and red pulp, which ceases prior to the final KLRG1Hi CXCR3Lo stage. Our findings highlight the notion of an extrafollicular pathway for effector T cell generation. DOI: http://dx.doi.org/10.7554/eLife.09017.001 PMID:26244629

  2. Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification.

    PubMed

    Maier, Tom R; Hewezi, Tarek; Peng, Jiqing; Baum, Thomas J

    2013-01-01

    Esophageal glands of plant-parasitic nematodes are highly specialized cells whose gene expression products include secreted effector proteins, which govern nematode parasitism of host plants. Therefore, elucidating the transcriptomes of esophageal glands with the goal of identifying nematode effectors is a promising avenue to understanding nematode parasitism and its evolutionary origins as well as to devising nematode control strategies. We have developed a method to separate and isolate individual esophageal gland cells from multiple species of plant-parasitic nematodes while preserving RNA quality. We have used such isolated gland cells for transcriptome analysis via high-throughput DNA sequencing. This method relies on the differential histochemical staining of the gland cells after homogenization of phytonematode tissues. Total RNA was extracted from whole gland cells isolated from eight different plant-parasitic nematode species. To validate this approach, the isolated RNA from three plant-parasitic nematode species-Globodera rostochiensis, Pratylenchus penetrans, and Radopholus similis-was amplified, gel purified, and used for 454 sequencing. We obtained 456,801 total reads with an average read length of 409 bp. Sequence analyses revealed the presence of homologs of previously known nematode effectors in these libraries, thus validating our approach. These data provide compelling evidence that this technical advance can be used to relatively easily and expediently discover effector repertoires of plant-parasitic nematodes.

  3. Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina.

    PubMed

    Kelly, Michelle N; Zheng, Mingquan; Ruan, Sanbao; Kolls, Jay; D'Souza, Alain; Shellito, Judd E

    2013-01-01

    Little is known about the role of NK cells or their interplay with other immune cells during opportunistic infections. Using our murine model of Pneumocystis pneumonia, we found that loss of NK cells during immunosuppression results in substantial Pneumocystis lung burden. During early infection of C57B/6 CD4(+) T cell-depleted mice, there were significantly fewer NK cells in the lung tissue compared with CD4(+) T cell-intact animals, and the NK cells present demonstrated decreased upregulation of the activation marker NKp46 and production of the effector cytokine, IFN-γ. Furthermore, coincubation studies revealed a significant increase in fungal killing when NK cells were combined with CD4(+) T cells compared with either cell alone, which was coincident with a significant increase in perforin production by NK cells. Finally, however, we found through adoptive transfer that memory CD4(+) T cells are required for significant NK cell upregulation of the activation marker NK group 2D and production of IFN-γ, granzyme B, and perforin during Pneumocystis infection. To the best of our knowledge, this study is the first to demonstrate a role for NK cells in immunity to Pneumocystis pneumonia, as well as to establish a functional relationship between CD4(+) T cells and NK cells in the host response to an opportunistic fungal pathogen.

  4. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging

    PubMed Central

    Michel, Joshua J.; Griffin, Patricia; Vallejo, Abbe N.

    2016-01-01

    The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population. PMID:27933066

  5. Chemokine receptor co-expression reveals aberrantly distributed TH effector memory cells in GPA patients.

    PubMed

    Lintermans, Lucas L; Rutgers, Abraham; Stegeman, Coen A; Heeringa, Peter; Abdulahad, Wayel H

    2017-06-14

    Persistent expansion of circulating CD4(+) effector memory T cells (TEM) in patients with granulomatosis with polyangiitis (GPA) suggests their fundamental role in disease pathogenesis. Recent studies have shown that distinct functional CD4(+) TEM cell subsets can be identified based on expression patterns of chemokine receptors. The current study aimed to determine different CD4(+) TEM cell subsets based on chemokine receptor expression in peripheral blood of GPA patients. Identification of particular circulating CD4(+) TEM cells subsets may reveal distinct contributions of specific CD4(+) TEM subsets to the disease pathogenesis in GPA. Peripheral blood of 63 GPA patients in remission and 42 age- and sex-matched healthy controls was stained immediately after blood withdrawal with fluorochrome-conjugated antibodies for cell surface markers (CD3, CD4, CD45RO) and chemokine receptors (CCR4, CCR6, CCR7, CRTh2, CXCR3) followed by flow cytometry analysis. CD4(+) TEM memory cells (CD3(+)CD4(+)CD45RO(+)CCR7(-)) were gated, and the expression patterns of chemokine receptors CXCR3(+)CCR4(-)CCR6(-)CRTh2(-), CXCR3(-)CCR4(+)CCR6(-)CRTh2(+), CXCR3(-)CCR4(+)CCR6(+)CRTh2(-), and CXCR3(+)CCR4(-)CCR6(+)CRTh2(-) were used to distinguish TEM1, TEM2, TEM17, and TEM17.1 cells, respectively. The percentage of CD4(+) TEM cells was significantly increased in GPA patients in remission compared to HCs. Chemokine receptor co-expression analysis within the CD4(+) TEM cell population demonstrated a significant increase in the proportion of TEM17 cells with a concomitant significant decrease in the TEM1 cells in GPA patients compared to HC. The percentage of TEM17 cells correlated negatively with TEM1 cells in GPA patients. Moreover, the circulating proportion of TEM17 cells showed a positive correlation with the number of organs involved and an association with the tendency to relapse in GPA patients. Interestingly, the aberrant distribution of TEM1 and TEM17 cells is modulated in CMV

  6. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    PubMed Central

    Paul, Dirk S.; Teschendorff, Andrew E.; Dang, Mary A.N.; Lowe, Robert; Hawa, Mohammed I.; Ecker, Simone; Beyan, Huriya; Cunningham, Stephanie; Fouts, Alexandra R.; Ramelius, Anita; Burden, Frances; Farrow, Samantha; Rowlston, Sophia; Rehnstrom, Karola; Frontini, Mattia; Downes, Kate; Busche, Stephan; Cheung, Warren A.; Ge, Bing; Simon, Marie-Michelle; Bujold, David; Kwan, Tony; Bourque, Guillaume; Datta, Avik; Lowy, Ernesto; Clarke, Laura; Flicek, Paul; Libertini, Emanuele; Heath, Simon; Gut, Marta; Gut, Ivo G; Ouwehand, Willem H.; Pastinen, Tomi; Soranzo, Nicole; Hofer, Sabine E.; Karges, Beate; Meissner, Thomas; Boehm, Bernhard O.; Cilio, Corrado; Elding Larsson, Helena; Lernmark, Åke; Steck, Andrea K.; Rakyan, Vardhman K.; Beck, Stephan; Leslie, R. David

    2016-01-01

    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D. PMID:27898055

  7. Lung epithelial cells are essential effectors of inducible resistance to pneumonia

    PubMed Central

    Cleaver, Jeffrey O.; You, Dahui; Michaud, Danielle R.; Guzmán Pruneda, Francisco A.; Leiva Juarez, Miguel M.; Zhang, Jiexin; Weill, Patrick M.; Adachi, Roberto; Gong, Lei; Moghaddam, Seyed; Poynter, Matthew E.; Tuvim, Michael J.; Evans, Scott E.

    2013-01-01

    Infectious pneumonias are a leading cause of death worldwide, particularly among immunocompromised patients. Therapeutic stimulation of the lungs’ intrinsic defenses with a unique combination of inhaled Toll-like receptor agonists broadly protects mice against otherwise lethal pneumonias. As the survival benefit persists despite cytotoxic chemotherapy-related neutropenia, the cells required for protection were investigated. The inducibility of resistance was tested in mice with deficiencies of leukocyte lineages due to genetic deletions and in wild type mice with leukocyte populations significantly reduced by antibodies or toxins. Surprisingly, these serial reductions in leukocyte lineages did not appreciably impair inducible resistance, but targeted disruption of Toll-like receptor signaling in the lung epithelium resulted in complete abrogation of the protective effect. Isolated lung epithelial cells were also induced to kill pathogens in the absence of leukocytes. Proteomic and gene expression analyses of isolated epithelial cells and whole lungs revealed highly congruent antimicrobial responses. Taken together, these data indicate that lung epithelial cells are necessary and sufficient effectors of inducible resistance. These findings challenge conventional paradigms about the role of epithelia in antimicrobial defense and offer a novel potential intervention to protect patients with impaired leukocyte-mediated immunity from fatal pneumonias. PMID:23632328

  8. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma.

    PubMed

    Schuberth, P C; Jakka, G; Jensen, S M; Wadle, A; Gautschi, F; Haley, D; Haile, S; Mischo, A; Held, G; Thiel, M; Tinguely, M; Bifulco, C B; Fox, B A; Renner, C; Petrausch, U

    2013-04-01

    The cancer-testis antigen NY-ESO-1 is a potential target antigen for immune therapy expressed in a subset of patients with multiple myeloma. We generated chimeric antigen receptors (CARs) recognizing the immunodominant NY-ESO-1 peptide 157-165 in the context of HLA-A*02:01 to re-direct autologous CD8(+) T cells towards NY-ESO-1(+) myeloma cells. These re-directed T cells specifically lysed NY-ESO-1(157-165)/HLA-A*02:01-positive cells and secreted IFNγ. A total of 40% of CCR7(-) re-directed T cells had an effector memory phenotype and 5% a central memory phenotype. Based on CCR7 cell sorting, effector and memory CAR-positive T cells were separated and CCR7(+) memory cells demonstrated after antigen-specific re-stimulation downregulation of CCR7 as sign of differentiation towards effector cells accompanied by an increased secretion of memory signature cytokines such as IL-2. To evaluate NY-ESO-1 as potential target antigen, we screened 78 bone marrow biopsies of multiple myeloma patients where NY-ESO-1 protein was found to be expressed by immunohistochemistry in 9.7% of samples. Adoptively transferred NY-ESO-1-specific re-directed T cells protected mice against challenge with endogenously NY-ESO-1-positive myeloma cells in a xenograft model. In conclusion, re-directed effector- and central memory T cells specifically recognized NY-ESO-1(157-165)/ HLA-A*02:01-positive cells resulting in antigen-specific functionality in vitro and in vivo.

  9. Interleukin-17: the missing link between T-cell accumulation and effector cell actions in rheumatoid arthritis?

    PubMed

    Stamp, Lisa K; James, Michael J; Cleland, Leslie G

    2004-02-01

    The prominence of T cells and monocyte/macrophages in rheumatoid synovium suggests T cells may localize and amplify the effector functions of monocyte/macrophages in rheumatoid disease. However, while T cells are abundant in rheumatoid joints, classic T-cell derived cytokines are scarce, especially when compared to the levels of monokines IL-1 beta and TNF-alpha. For this reason, it has been speculated that monocyte/macrophages may act independently of T cells in rheumatoid disease and that the role of T cells may be more or less irrelevant to core disease mechanisms. The question of T-cell influence requires re-evaluation in light of the characterization of IL-17, a T-cell derived cytokine that is abundant in rheumatoid synovium and synovial fluid. IL-17 has a number of pro-inflammatory effects, both directly and through amplification of the effects of IL-1 beta and TNF-alpha. IL-17 is able to induce expression of pro-inflammatory cytokines and stimulate release of eicosanoids by monocytes and synoviocytes. Furthermore, IL-17 has been implicated in the pathogenesis of inflammatory bone and joint damage through induction of matrix metalloproteinases and osteoclasts, as well as inhibition of proteoglycan synthesis. In animal models of arthritis, intra-articular injection of IL-17 results in joint inflammation and damage. The recognition of IL-17 as a pro-inflammatory T cell derived cytokine, and its abundance within rheumatoid joints, provides the strongest candidate mechanism to date through which T cells can capture and localize macrophage effector functions in rheumatoid arthritis. As such, IL-17 warrants consideration for its potential as a therapeutic target in rheumatoid arthritis.

  10. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4⁺ effector memory T cells.

    PubMed

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo.

  11. A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus

    PubMed Central

    Mafurah, Joseph Juma; Ma, Huifei; Zhang, Meixiang; Xu, Jing; He, Feng; Ye, Tingyue; Shen, Danyu; Chen, Yanyu; Rajput, Nasir Ahmed; Dou, Daolong

    2015-01-01

    Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses. PMID:26011314

  12. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  13. IL-15-Independent Maintenance of Tissue-Resident and Boosted Effector Memory CD8 T Cells.

    PubMed

    Schenkel, Jason M; Fraser, Kathryn A; Casey, Kerry A; Beura, Lalit K; Pauken, Kristen E; Vezys, Vaiva; Masopust, David

    2016-05-01

    IL-15 regulates central and effector memory CD8 T cell (TCM and TEM, respectively) homeostatic proliferation, maintenance, and longevity. Consequently, IL-15 availability hypothetically defines the carrying capacity for total memory CD8 T cells within the host. In conflict with this hypothesis, previous observations demonstrated that boosting generates preternaturally abundant TEM that increases the total quantity of memory CD8 T cells in mice. In this article, we provide a potential mechanistic explanation by reporting that boosted circulating TEM do not require IL-15 for maintenance. We also investigated tissue-resident memory CD8 T cells (TRM), which protect nonlymphoid tissues from reinfection. We observed up to a 50-fold increase in the total magnitude of TRM in mouse mucosal tissues after boosting, suggesting that the memory T cell capacity in tissues is flexible and that TRM may not be under the same homeostatic regulation as primary central memory CD8 T cells and TEM Further analysis identified distinct TRM populations that depended on IL-15 for homeostatic proliferation and survival, depended on IL-15 for homeostatic proliferation but not for survival, or did not depend on IL-15 for either process. These observations on the numerical regulation of T cell memory indicate that there may be significant heterogeneity among distinct TRM populations and also argue against the common perception that developing vaccines that confer protection by establishing abundant TEM and TRM will necessarily erode immunity to previously encountered pathogens as the result of competition for IL-15. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection.

    PubMed

    Moorman, Jonathan P; Wang, Jia M; Zhang, Ying; Ji, Xiao J; Ma, Cheng J; Wu, Xiao Y; Jia, Zhan S; Wang, Ke S; Yao, Zhi Q

    2012-07-15

    Hepatitis C virus (HCV) is remarkable at disrupting human immunity to establish chronic infection. Upregulation of inhibitory signaling pathways (such as T cell Ig and mucin domain protein-3 [Tim-3]) and accumulation of regulatory T cells (Tregs) play pivotal roles in suppressing antiviral effector T cell (Teff) responses that are essential for viral clearance. Although the Tim-3 pathway has been shown to negatively regulate Teffs, its role in regulating Foxp3(+) Tregs is poorly explored. In this study, we investigated whether and how the Tim-3 pathway alters Foxp3(+) Treg development and function in patients with chronic HCV infection. We found that Tim-3 was upregulated, not only on IL-2-producing CD4(+)CD25(+)Foxp3(-) Teffs, but also on CD4(+)CD25(+)Foxp3(+) Tregs, which accumulate in the peripheral blood of chronically HCV-infected individuals when compared with healthy subjects. Tim-3 expression on Foxp3(+) Tregs positively correlated with expression of the proliferation marker Ki67 on Tregs, but it was inversely associated with proliferation of IL-2-producing Teffs. Moreover, Foxp3(+) Tregs were found to be more resistant to, and Foxp3(-) Teffs more sensitive to, TCR activation-induced cell apoptosis, which was reversible by blocking Tim-3 signaling. Consistent with its role in T cell proliferation and apoptosis, blockade of Tim-3 on CD4(+)CD25(+) T cells promoted expansion of Teffs more substantially than Tregs through improving STAT-5 signaling, thus correcting the imbalance of Foxp3(+) Tregs/Foxp3(-) Teffs that was induced by HCV infection. Taken together, the Tim-3 pathway appears to control Treg and Teff balance through altering cell proliferation and apoptosis during HCV infection.

  15. Expression changes and novel interaction partners of talin 1 in effector cells of autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Hauck, Stefanie M; Treutlein, Gudrun; Amann, Barbara; Fröhlich, Kristina J H; Kremmer, Elisabeth; Merl, Juliane; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A

    2013-12-06

    Autoimmune uveitis is characterized by crossing of blood-retinal barrier (BRB) by autoaggressive immune cells. Equine recurrent uveitis (ERU) is a valuable spontaneous model for autoimmune uveitis and analyses of differentially expressed proteins in ERU unraveled changed protein clusters in target tissues and immune system. Healthy eyes are devoid of leukocytes. In ERU, however, leukocytes enter the inner eye and subsequently destroy it. Molecular mechanisms enabling cell migration through BRB still remain elusive. Previously, we detected decreased talin 1 expression in blood-derived granulocytes of ERU cases, linking the innate immune system to ERU. Because changes in leukocyte protein expression pattern may play a role in pathological abnormalities leading to migration ability, we aimed at identifying interactors of talin 1 in leukocytes with immunoprecipitation, followed by LC-MS/MS for candidate identification. This enabled us to identify CD90 (Thy1) as novel interactor of talin 1 besides several other interactors. In blood-derived granulocytes from healthy individuals, CD90 was highly abundant and significantly reduced in ERU, especially in effector cells. Connection between talin 1 and CD90 and their expression differences in inflammation is an interesting novel finding allowing deeper insight into immune response of innate immune system and granulocyte migration ability in this organ-specific autoimmune disease.

  16. Expanded CD8+ T cells of murine and human CLL are driven into a senescent KLRG1+ effector memory phenotype.

    PubMed

    Göthert, Joachim Rudolf; Eisele, Lewin; Klein-Hitpass, Ludger; Weber, Stefanie; Zesewitz, Marie-Louise; Sellmann, Ludger; Röth, Alexander; Pircher, Hanspeter; Dührsen, Ulrich; Dürig, Jan

    2013-11-01

    Altered numbers and functions of T cells have previously been demonstrated in chronic lymphocytic leukemia (CLL) patients. However, dynamics and specific T-cell subset alterations have not been studied in great detail. Therefore, we studied CLL blood lymphocyte subsets of individual patients in a longitudinal manner. Dynamic expansions of blood CD4 + and CD8 + T-cell numbers were consistently associated with a progressively increasing CLL leukemic compartment. Interestingly, the T-cell subset expansion over time was more pronounced in CD38 + CLL. Additionally, we performed gene expression profiling of CD3 + T cells of CLL patients and normal donors. Using gene set enrichment analysis, we found significant enrichment of genes with higher expression in CLL T cells within CD8+ effector memory and terminal effector T-cell gene signatures. In agreement with these data, we observed a marked expansion of phenotypic CD8 + effector memory T cells in CLL by flow cytometry. Moreover, we observed that increments of CD8 + effector memory T cells in human CLL and also mouse CLL (Eμ-TCL1 model) were due to an expansion of the inhibitory killer cell lectin-like receptor G1 (KLRG1) expressing cellular subset. Furthermore, higher plasma levels of the natural KLRG1 ligand E-cadherin were detected in CLL patients compared to normal donor controls. The predominance of KLRG1+ expression within CD8+ T cells in conjunction with increased systemic soluble E-cadherin might significantly contribute to CLL immune dysfunction and might additionally represent an important component of the CLL microenvironment.

  17. Correlation between invasive pattern and immunophenotypic alterations in endocervical adenocarcinoma.

    PubMed

    Stewart, Colin J R; Crook, Maxine L; Little, Leonie; Louwen, Kathryn

    2011-04-01

    To assess the immunophenotypic changes associated with epithelial-mesenchymal transition (EMT) in endocervical adenocarcinoma, and correlate the findings with tumour morphology including growth pattern. Twenty-seven endocervical adenocarcinomas were studied using a panel of immunohistochemical markers to vimentin, cyclin D1, E-cadherin, beta-catenin, p16 protein and cytokeratin 7. There were 24 moderately differentiated and three poorly differentiated tumours. Fourteen of the moderately differentiated carcinomas showed a focal infiltrative component, typically towards the deep tumour margin (invasive front), comprising attenuated glands, small cell clusters and single cells. These foci typically showed cytological alteration including loss of cellular polarity and cytoplasmic eosinophilia, while immunohistochemistry demonstrated reduced cell membrane E-cadherin and beta catenin labelling, and expression of cyclin D1 and, in some cases, vimentin. Similar immunophenotypic changes were focally observed at the deep aspect of some larger 'conventional' tumour glands. No consistent changes were observed in the poorly differentiated carcinomas. Endocervical adenocarcinomas that demonstrate an infiltrative growth pattern show immunophenotypic changes consistent with EMT. Frequently, these are accompanied by a morphological alteration in the tumour cells and the changes exhibit a specific micro-anatomical distribution. Epithelial-mesenchymal transition may represent an important mechanism in the progression of some endocervical neoplasms. © 2011 Blackwell Publishing Limited.

  18. Generation of non-MHC restricted killing in cultures stimulated with B cells from chronic lymphocytic leukaemia patients: phenotypic characterization of the precursor and effector cells.

    PubMed Central

    Matera, L; Foa, R; Malavasi, F; Bellone, G; Funaro, A; Veglia, F; Santoli, D

    1988-01-01

    Freshly isolated B cells from chronic lymphocytic leukaemia patients (B-CLL) have been previously shown to induce a strong proliferative response and high levels of NK-like activity in lymphocytes from healthy donors. The present paper deals with the origin, mitotic state, target spectrum and cell surface phenotype of the NK-like effectors generated after stimulation with B-CLL. Experiments using large granular lymphocytes (LGL) and T cells as responders demonstrated that most of the precursors of the newly generated NK-like effectors express the CD3 antigen. The induction of NK-like activity paralleled cell activation, as judged by blast transformation, thymidine uptake and appearance of cell surface activation markers. The newly generated NK-like effectors displayed a T cell phenotype and a broader target repertoire than native NK cells. PMID:3261664

  19. Adoptive Transfer of Tumor-Specific Tc17 Effector T Cells Controls the Growth of B16 Melanoma in Mice

    PubMed Central

    de la Luz Garcia-Hernandez, Maria; Hamada, Hiromasa; Reome, Joyce B.; Misra, Sara K.; Tighe, Michael P.; Dutton, Richard W.

    2010-01-01

    In vitro generated OVA-specific IL-17–producing CD8 T effector cells (Tc17) from OT-1 mice, adoptively transferred into B16-OVA tumor-bearing mice, controlled tumor growth in early and late stage melanoma. IL-17, TNF, and IFN-γ from the Tc17 effectors all played a role in an enhanced recruitment of T cells, neutrophils, and macrophages to the tumor. In addition, Tc17 cells and recently recruited, activated neutrophils produced further chemokines, including CCL3, CCL4, CCL5, CXCL9, and CXCL10, responsible for the attraction of type 1 lymphocytes (Th1 and Tc1) and additional neutrophils. Neutrophils were rapidly attracted to the tumor site by an IL-17 dependent mechanism, but at later stages the induction of the chemokine CXCL2 by Tc17-derived TNF and IFN-γ contributed to sustain neutrophil recruitment. Approximately 10–50 times as many Tc17 effectors were required compared with Tc1 effectors to exert the same level of control over tumor growth. The recruitment of neutrophils was more prominent when Tc17 rather than Tc1 were used to control tumor and depletion of neutrophils resulted in a diminished capacity to control tumor growth. PMID:20237297

  20. Limited Effector Memory B-Cell Response to Envelope Glycoprotein B During Primary Human Cytomegalovirus Infection.

    PubMed

    Dauby, Nicolas; Sartori, Delphine; Kummert, Caroline; Lecomte, Sandra; Haelterman, Edwige; Delforge, Marie-Luce; Donner, Catherine; Mach, Michael; Marchant, Arnaud

    2016-05-15

    Following primary human cytomegalovirus (HCMV) infection, the production of antibodies against envelope glycoprotein B (gB) is delayed, compared with production of antibodies against tegument proteins, and this likely reduces the control of HCMV dissemination. The frequency and the phenotype of gB-specific and tegument protein-specific B cells were studied in a cohort of pregnant women with primary HCMV infection. Healthy adults who had chronic HCMV infection or were recently immunized with tetanus toxoid (TT) were included as controls. Primary HCMV infection was associated with high and similar frequencies of gB-specific and tegument protein-specific B cells following primary HCMV infection. During primary infection, tegument protein-specific B cells expressed an activated (CD21(low)) memory B-cell (MBC) phenotype. Activated MBCs were also induced by TT booster immunization, indicating that the expansion of this subset is part of the physiological B-cell response to protein antigens. In contrast, gB-specific B cells had a predominant classical (CD21(+)) MBC phenotype during both primary and chronic infections. The delayed production of gB-specific immunoglobulin G (IgG) during primary HCMV infection is associated with a limited induction of MBCs with effector potential. This novel mechanism by which HCMV may interfere with the production of neutralizing antibodies could represent a target for therapeutic immunization. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness.

    PubMed

    Ziblat, Andrea; Domaica, Carolina I; Spallanzani, Raúl G; Iraolagoitia, Ximena L Raffo; Rossi, Lucas E; Avila, Damián E; Torres, Nicolás I; Fuertes, Mercedes B; Zwirner, Norberto W

    2015-01-01

    IL-27, a member of the IL-12 family of cytokines, is produced by APCs, and displays pro- and anti-inflammatory effects. How IL-27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL-27 and that blockade of IL-27R (CD130) reduced the amount of IFN-γ produced by NK cells during their coculture, showing the importance of IL-27 during DC-NK-cell crosstalk. Accordingly, human rIL-27 stimulated IFN-γ secretion by NK cells in a STAT1-dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL-18. Preincubation experiments demonstrated that IL-27 primed NK cells for IL-18-induced IFN-γ secretion, which was associated with an IL-27-driven upregulation of T-bet expression. Also, IL-27 triggered NKp46-dependent NK-cell-mediated cytotoxicity against Raji, T-47D, and HCT116 cells, and IL-18 enhanced this cytotoxic response. Such NK-cell-mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL-mediated cytotoxicity but not Fas-FasL interaction. Moreover, IL-27 also potentiated Ab-dependent cell-mediated cytotoxicity against mAb-coated target cells. Taken together, IL-27 stimulates NK-cell effector functions, which might be relevant in different physiological and pathological situations.

  2. Specificity and Dynamics of Effector and Memory CD8 T Cell Responses in Human Tick-Borne Encephalitis Virus Infection

    PubMed Central

    Blom, Kim; Braun, Monika; Pakalniene, Jolita; Dailidyte, Laura; Béziat, Vivien; Lampen, Margit H.; Klingström, Jonas; Lagerqvist, Nina; Kjerstadius, Torbjörn; Michaëlsson, Jakob; Lindquist, Lars; Ljunggren, Hans-Gustaf; Sandberg, Johan K.; Mickiene, Aukse; Gredmark-Russ, Sara

    2015-01-01

    Tick-borne encephalitis virus (TBEV) is transferred to humans by ticks. The virus causes tick-borne encephalitis (TBE) with symptoms such as meningitis and meningoencephalitis. About one third of the patients suffer from long-lasting sequelae after clearance of the infection. Studies of the immune response during TBEV-infection are essential to the understanding of host responses to TBEV-infection and for the development of therapeutics. Here, we studied in detail the primary CD8 T cell response to TBEV in patients with acute TBE. Peripheral blood CD8 T cells mounted a considerable response to TBEV-infection as assessed by Ki67 and CD38 co-expression. These activated cells showed a CD45RA-CCR7-CD127- phenotype at day 7 after hospitalization, phenotypically defining them as effector cells. An immunodominant HLA-A2-restricted TBEV epitope was identified and utilized to study the characteristics and temporal dynamics of the antigen-specific response. The functional profile of TBEV-specific CD8 T cells was dominated by variants of mono-functional cells as the effector response matured. Antigen-specific CD8 T cells predominantly displayed a distinct Eomes+Ki67+T-bet+ effector phenotype at the peak of the response, which transitioned to an Eomes-Ki67-T-bet+ phenotype as the infection resolved and memory was established. These transcription factors thus characterize and discriminate stages of the antigen-specific T cell response during acute TBEV-infection. Altogether, CD8 T cells responded strongly to acute TBEV infection and passed through an effector phase, prior to gradual differentiation into memory cells with distinct transcription factor expression-patterns throughout the different phases. PMID:25611738

  3. Targeting antigen to diverse APCs inactivates memory CD8+ T cells without eliciting tissue-destructive effector function.

    PubMed

    Kenna, Tony J; Waldie, Tanya; McNally, Alice; Thomson, Meagan; Yagita, Hideo; Thomas, Ranjeny; Steptoe, Raymond J

    2010-01-15

    Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases.

  4. Developmentally determined reduction in CD31 during gestation is associated with CD8+ T cell effector differentiation in preterm infants.

    PubMed

    Scheible, Kristin M; Emo, Jason; Yang, Hongmei; Holden-Wiltse, Jeanne; Straw, Andrew; Huyck, Heidie; Misra, Sara; Topham, David J; Ryan, Rita M; Reynolds, Anne Marie; Mariani, Thomas J; Pryhuber, Gloria S

    2015-12-01

    Homeostatic T cell proliferation is more robust during human fetal development. In order to understand the relative effect of normal fetal homeostasis and perinatal exposures on CD8+ T cell behavior in PT infants, we characterized umbilical cord blood CD8+ T cells from infants born between 23-42weeks gestation. Subjects were recruited as part of the NHLBI-sponsored Prematurity and Respiratory Outcomes Program. Cord blood from PT infants had fewer naïve CD8+ T cells and lower regulatory CD31 expression on both naïve and effector, independent of prenatal exposures. CD8+ T cell in vitro effector function was greater at younger gestational ages, an effect that was exaggerated in infants with prior inflammatory exposures. These results suggest that CD8+ T cells earlier in gestation have loss of regulatory co-receptor CD31 and greater effector differentiation, which may place PT neonates at unique risk for CD8+ T cell-mediated inflammation and impaired T cell memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Developmentally determined reduction in CD31 during gestation is associated with CD8+ T cell effector differentiation in preterm infants

    PubMed Central

    Scheible, Kristin M.; Emo, Jason; Yang, Hongmei; Holden-Wiltse, Jeanne; Straw, Andrew; Huyck, Heidie; Misra, Sara; Topham, David J.; Ryan, Rita M.; Reynolds, Anne Marie; Mariani, Thomas J.; Pryhuber, Gloria S.

    2015-01-01

    Homeostatic T cell proliferation is more robust during human fetal development. In order to understand the relative effect of normal fetal homeostasis and perinatal exposures on CD8+ T cell behavior in PT infants, we characterized umbilical cord blood CD8+ T cells from infants born between 23–42 weeks gestation. Subjects were recruited as part of the NHLBI-sponsored Prematurity and Respiratory Outcomes Program. Cord blood from PT infants had fewer naïve CD8+ T cells and lower regulatory CD31 expression on both naïve and effector, independent of prenatal exposures. CD8+ T cell in vitro effector function was greater at younger gestational ages, an effect that was exaggerated in infants with prior inflammatory exposures. These results suggest that CD8+ T cells earlier in gestation have loss of regulatory co-receptor CD31 and greater effector differentiation, which may place PT neonates at unique risk for CD8+ T cell-mediated inflammation and impaired T cell memory formation. PMID:26232733

  6. T Cell Receptor Activation of NF-κB in Effector T Cells: Visualizing Signaling Events Within and Beyond the Cytoplasmic Domain of the Immunological Synapse.

    PubMed

    Traver, Maria K; Paul, Suman; Schaefer, Brian C

    2017-01-01

    The T cell receptor (TCR) to NF-κB signaling pathway plays a critical role in regulation of proliferation and effector T cell differentiation and function. In naïve T cells, data suggest that most or all key cytoplasmic NF-κB signaling occurs in a TCR-proximal manner at the immunological synapse (IS). However, the subcellular organization of cytoplasmic NF-κB-activating complexes in effector T cells is more complex, involving signaling molecules and regulatory mechanisms beyond those operative in naïve cells. Additionally, in effector T cells, much signaling occurs at cytoplasmic locations distant from the IS. Visualization of these cytoplasmic signaling complexes has provided key insights into the complex and dynamic regulation of NF-κB signal transduction in effector T cells. In this chapter, we provide in-depth protocols for activating and preparing effector T cells for fluorescence imaging, as well as a discussion of the effective application of distinct imaging methodologies, including confocal and super-resolution microscopy and imaging flow cytometry.

  7. The sterol regulatory element binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity

    PubMed Central

    Kidani, Yoko; Elsaesser, Heidi; Hock, M Benjamin; Vergnes, Laurent; Williams, Kevin J; Argus, Joseph P; Marbois, Beth N; Komisopoulou, Evangelia; Wilson, Elizabeth B; Osborne, Timothy F; Graeber, Thomas G; Reue, Karen; Brooks, David G; Bensinger, Steven J

    2013-01-01

    Newly activated CD8+ T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals mediating metabolic reprogramming remain poorly defined. Herein, we demonstrate an essential role for sterol regulatory element binding proteins (SREBPs) in the acquisition of effector cell metabolism. Without SREBP signaling, CD8+ T cells are unable to blast, resulting in markedly attenuated clonal expansion during viral infection. Mechanistic studies indicate that SREBPs are essential to meet the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs are dispensable for homeostatic proliferation, indicating a context-specific requirement for SREBPs in effector responses. These studies provide insights into the molecular signals underlying metabolic reprogramming of CD8+ T cells during the transition from quiescence to activation. PMID:23563690

  8. Transfer of in vitro-expanded naïve T cells after lymphodepletion enhances antitumor immunity through the induction of polyclonal antitumor effector T cells.

    PubMed

    Tanaka, Tomohiro; Watanabe, Satoshi; Takahashi, Miho; Sato, Ko; Saida, Yu; Baba, Junko; Arita, Masashi; Sato, Miyuki; Ohtsubo, Aya; Shoji, Satoshi; Nozaki, Koichiro; Ichikawa, Kosuke; Kondo, Rie; Aoki, Nobumasa; Ohshima, Yasuyoshi; Sakagami, Takuro; Abe, Tetsuya; Moro, Hiroshi; Koya, Toshiyuki; Tanaka, Junta; Kagamu, Hiroshi; Yoshizawa, Hirohisa; Kikuchi, Toshiaki

    2017-01-01

    The adoptive transfer of effector T cells combined with lymphodepletion has demonstrated promising antitumor effects in mice and humans, although the availability of tumor-specific T cells is limited. We and others have also demonstrated that the transfer of polyclonal naïve T cells induces tumor-specific effector T cells and enhances antitumor immunity after lymphodepletion. Because tumors have been demonstrated to induce immunosuppressive networks and regulate the function of T cells, obtaining a sufficient number of fully functional naïve T cells that are able to differentiate into tumor-specific effector T cells remains difficult. To establish culture methods to obtain a large number of polyclonal T cells that are capable of differentiating into tumor-specific effector T cells, naïve T cells were activated with anti-CD3 mAbs in vitro. These cells were stimulated with IL-2 and IL-7 for the CD8 subset or with IL-7 and IL-23 for the CD4 subset. Transfer of these hyperexpanded T cells after lymphodepletion showed significant antitumor efficacy, and tumor-specific effector T cells were primed from these expanded T cells in tumor-bearing hosts. Moreover, these ex vivo-expanded T cells maintained T cell receptor diversity and showed long-term persistence of memory against specific tumors. Further analyses revealed that combination therapy consisting of vaccination with dendritic cells that were co-cultured with irradiated whole tumor cells and the transfer of ex vivo-expanded T cells significantly enhanced antitumor immunity. These results indicate that the transfer of ex vivo-expanded polyclonal T cells can be combined with other immunotherapies and augment antitumor effects.

  9. Rapid clearance of herpes simplex virus type 2 by CD8+ T cells requires high level expression of effector T cell functions

    PubMed Central

    Nelson, Michelle H.; Bird, Melanie D.; Chu, Chin-Fun; Johnson, Alison J.; Friedrich, Brian M.; Allman, Windy R.; Milligan, Gregg N.

    2011-01-01

    CD8+ T cells are important for resolution of HSV-2 lesions from the female genital epithelium. It is uncertain whether optimal clearance of viruses such as HSV-2 that cause a limited, non-systemic infection solely requires expression of effector functions by infiltrating CD8+ T lymphocytes, or if the clearance rate is reflective of the expression level of critical effector functions. To address this, CD8+ T cells from normal OT-I mice or OT-I mice deficient in IFNγ (IFNγ−/−) or the IFNγ receptor (IFNγR−/−) were activated in vitro in the presence of IFNγ or IL-4 to generate a series of effector populations (Tc1 and Tc2-like respectively) that secreted different levels of IFNγ and expressed different levels of HSV-specific cytolytic function. Compared with Tc1 cells, Tc2-like cells produced the type 2 cytokines IL-4 and IL-5, exhibited decreased IFNγ secretion, diminished proliferation in vitro, and decreased antigen-specific cytolysis in vivo. Clearance of an ovalbumin-expressing HSV-2 strain (HSV-2 tk− OVA) by adoptively transferred Tc2-like cells was delayed relative to Tc1 cell recipients. Because donor Tc2-like cells proliferated in vivo and infiltrated the infected genital epithelium similar to Tc1 cells, the diminished virus clearance by Tc2-like effector cells correlated with reduced expression of critical effector functions. Together, these results suggest that high level expression of protective T cell functions by effector T cells is necessary for optimal clearance of HSV-2 from the genital epithelium. These results have important implications for vaccines designed to elicit CD8+ T cells against viruses such as HSV-2 that infect the genital tract. PMID:21444117

  10. Rapid clearance of herpes simplex virus type 2 by CD8+ T cells requires high level expression of effector T cell functions.

    PubMed

    Nelson, Michelle H; Bird, Melanie D; Chu, Chin-Fun; Johnson, Alison J; Friedrich, Brian M; Allman, Windy R; Milligan, Gregg N

    2011-04-01

    CD8(+) T cells are important for resolution of HSV-2 lesions from the female genital epithelium. It is uncertain whether optimal clearance of viruses such as HSV-2 that cause a limited, non-systemic infection solely requires expression of effector functions by infiltrating CD8(+) T lymphocytes, or if the clearance rate is reflective of the expression level of critical effector functions. To address this, CD8(+) T cells from normal OT-I mice or OT-I mice deficient in IFNγ (IFNγ(-/-)) or the IFNγ receptor (IFNγR(-/-)) were activated in vitro in the presence of IFNγ or IL-4 to generate a series of effector populations (Tc1 and Tc2-like respectively) that secreted different levels of IFNγ and expressed different levels of HSV-specific cytolytic function. Compared with Tc1 cells, Tc2-like cells produced the type 2 cytokines IL-4 and IL-5, exhibited decreased IFNγ secretion, diminished proliferation in vitro, and decreased antigen-specific cytolysis in vivo. Clearance of an ovalbumin-expressing HSV-2 strain (HSV-2 tk(-) OVA) by adoptively transferred Tc2-like cells was delayed relative to Tc1 cell recipients. Because donor Tc2-like cells proliferated in vivo and infiltrated the infected genital epithelium similar to Tc1 cells, the diminished virus clearance by Tc2-like effector cells correlated with reduced expression of critical effector functions. Together, these results suggest that high level expression of protective T cell functions by effector T cells is necessary for optimal clearance of HSV-2 from the genital epithelium. These results have important implications for vaccines designed to elicit CD8(+) T cells against viruses such as HSV-2 that infect the genital tract.

  11. Flow cytometric immunophenotyping in posttransplant lymphoproliferative disorders.

    PubMed

    Dunphy, Cherie H; Gardner, Laura J; Grosso, Leonard E; Evans, H Lance

    2002-01-01

    We studied the flow cytometric immunophenotyping (FCI) and genotypic data of 11 specimens from 10 transplant recipients and categorized them based on a scheme for posttransplant lymphoproliferative disorders (PTLDs). Specimens had been analyzed by polymerase chain reaction and/or Southern blot for T-cell and B-cell (immunoglobulin heavy chain and light chain genes) gene rearrangements (BGR). The categories for PTLDs were as follows: 1, 1; 2, 6; and 3, 4. The plasmacytic and polymorphic B-cell hyperplasias (PBCHs) revealed no monoclonal/aberrant cells by FCI or genotypic studies (GS). Three of 4 polymorphic B-cell lymphomas (PBCLs) revealed monoclonal or aberrant (no surface light chain) B cells by FCI; 1 of 3 revealed a BGR. However, the 1 case with no monoclonal/aberrant B cells by FCI revealed a BGR. Both immunoblastic lymphomas revealed monoclonal or aberrant B cells by FCI; 1 revealed a BGR. Both multiple myelomas revealed monoclonal plasma cells by FCI; 1 revealed a BGR. In the 4 PTLDs with monoclonal/aberrant B cells by FCI and no clonality detected by GS, the GS were performed on fresh and paraffin-embedded tissue samples. FCI of the plasmacytic and PBCHs supported no clonal process by GS. FCI defined a clonal process in 2 PBCLs, I immunoblastic lymphoma, and 1 multiple myeloma that were negative by GS. However, 1 PBCL that was polyclonal by FCI was monoclonal by GS. Thus, FCI is useful for identifying a clonal process in PTLDs with negative results by GS; FCI and GS should be performed routinely in PTLDs to detect a clonal process.

  12. TGF-β1 Attenuates the Acquisition and Expression of Effector Function by Tumor Antigen-Specific Human Memory CD8 T Cells

    PubMed Central

    Ahmadzadeh, Mojgan; Rosenberg, Steven A.

    2008-01-01

    TGF-β1 is a potent immunoregulatory cytokine. However, its impact on the generation and effector function of Ag-specific human effector memory CD8 T cells had not been evaluated. Using Ag-specific CD8 T cells derived from melanoma patients immunized with the gp100 melanoma Ag, we demonstrate that the addition of TGF-β1 to the initial Ag activation cultures attenuated the gain of effector function by Ag-specific memory CD8 T cells while the phenotypic changes associated with activation and differentiation into effector memory were comparable to control cultures. These activated memory CD8 T cells consistently expressed lower mRNA levels for T-bet, suggesting a mechanism for TGF-β1-mediated suppression of gain of effector function in memory T cells. Moreover, TGF-β1 induced a modest expression of CCR7 on Ag-activated memory CD8 T cells. TGF-β1 also suppressed cytokine secretion by Ag-specific effector memory CD8 T cells, as well as melanoma-reactive tumor-infiltrating lymphocytes and CD8 T cell clones. These results demonstrate that TGF-β1 suppresses not only the acquisition but also expression of effector function on human memory CD8 T cells and tumor-infiltrating lymphocytes reactive against melanoma, suggesting that TGF-β1-mediated suppression can hinder the therapeutic benefits of vaccination, as well as immunotherapy in cancer patients. PMID:15843517

  13. Planar Cell Polarity Effector Fritz Interacts with Dishevelled and Has Multiple Functions in Regulating PCP

    PubMed Central

    Wang, Ying; Naturale, Victor F.; Adler, Paul N.

    2017-01-01

    The Planar cell Polarity Effector (PPE) genes inturned, fuzzy, and fritz are downstream components in the frizzled/starry night signaling pathway, and their function is instructed by upstream Planar Cell Polarity (PCP) core genes such as frizzled and dishevelled. PPE proteins accumulate asymmetrically in wing cells and function in a protein complex mediated by direct interactions between In and Frtz and In and Fy. How the PCP proteins instruct the accumulation of PPE protein is unknown. We found a likely direct interaction between Dishevelled and Fritz and Dishevelled and Fuzzy that could play a role in this. We previously found that mild overexpression of frtz rescued a weak in allele. To determine if this was due to extra Frtz stabilizing mutant In or due to Frtz being able to bypass the need for In we generate a precise deletion of the inturned gene (inPD). We found that mild overexpression of Fritz partially rescued inPD, indicating that fritz has In independent activity in PCP. Previous studies of PPE proteins used fixed tissues, and did not provide any insights into the dynamic properties of PPE proteins. We used CRISPR/Cas9 genome editing technology to edit the fritz gene to add a green fluorescent protein tag. fritzmNeonGreen provides complete rescue activity and works well for in vivo imaging. Our data showed that Fritz is very dynamic in epidermal cells and preferentially distributed to discrete membrane subdomains (“puncta”). Surprisingly, we found it in stripes in developing bristles. PMID:28258110

  14. Planar Cell Polarity Effector Fritz Interacts with Dishevelled and Has Multiple Functions in Regulating PCP.

    PubMed

    Wang, Ying; Naturale, Victor F; Adler, Paul N

    2017-04-03

    The Planar cell Polarity Effector (PPE) genes inturned, fuzzy, and fritz are downstream components in the frizzled/starry night signaling pathway, and their function is instructed by upstream Planar Cell Polarity (PCP) core genes such as frizzled and dishevelled PPE proteins accumulate asymmetrically in wing cells and function in a protein complex mediated by direct interactions between In and Frtz and In and Fy. How the PCP proteins instruct the accumulation of PPE protein is unknown. We found a likely direct interaction between Dishevelled and Fritz and Dishevelled and Fuzzy that could play a role in this. We previously found that mild overexpression of frtz rescued a weak in allele. To determine if this was due to extra Frtz stabilizing mutant In or due to Frtz being able to bypass the need for In we generate a precise deletion of the inturned gene (in(PD) ). We found that mild overexpression of Fritz partially rescued in(PD) , indicating that fritz has In independent activity in PCP. Previous studies of PPE proteins used fixed tissues, and did not provide any insights into the dynamic properties of PPE proteins. We used CRISPR/Cas9 genome editing technology to edit the fritz gene to add a green fluorescent protein tag. fritz(m)(NeonGreen) provides complete rescue activity and works well for in vivo imaging. Our data showed that Fritz is very dynamic in epidermal cells and preferentially distributed to discrete membrane subdomains ("puncta"). Surprisingly, we found it in stripes in developing bristles. Copyright © 2017 Wang et al.

  15. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells?

    PubMed

    Askenasy, Nadir

    2016-02-01

    Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.

  16. A repertoire-independent and cell-intrinsic defect in murine GVHD induction by effector memory T cells

    PubMed Central

    Juchem, Kathryn W.; Anderson, Britt E.; Zhang, Cuiling; McNiff, Jennifer M.; Demetris, Anthony J.; Farber, Donna L.; Caton, Andrew J.; Shlomchik, Warren D.

    2011-01-01

    Effector memory T cells (TEM) do not cause graft-versus-host disease (GVHD), though why this is has not been elucidated. To compare the fates of alloreactive naive (TN) or memory (TM) T cells, we developed a model of GVHD in which donor T cells express a transgene-encoded TCR specific for an antigenic peptide that is ubiquitously expressed in the recipient. Small numbers of naive TCR transgenic (Tg) T cells induced a robust syndrome of GVHD in transplanted recipients. We then used an established method to convert TCR Tg cells to TM and tested these for GVHD induction. This allowed us to control for the potentially different frequencies of alloreactive T cells among TN and TM, and to track fates of alloreactive T cells after transplantation. TEM caused minimal, transient GVHD whereas central memory T cells (TCM) caused potent GVHD. Surprisingly, TEM were not inert: they, engrafted, homed to target tissues, and proliferated extensively, but they produced less IFN-γ and their expansion in target tissues was limited at later time points, and local proliferation was reduced. Thus, cell-intrinsic properties independent of repertoire explain the impairment of TEM, which can initiate but cannot sustain expansion and tissue damage. PMID:21768295

  17. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma.

    PubMed

    Lin, Pei; Owens, Rebecca; Tricot, Guido; Wilson, Carla S

    2004-04-01

    Bone marrow aspirates from 306 patients with multiple myeloma were analyzed by flow cytometric immunophenotyping. The plasma cells (PCs) were identified by their characteristic light scatter distribution and reactivity patterns to CD138, CD38, and CD45. Monoclonality was confirmed by immunoglobulin light chain analysis. The immunophenotypic profile of the PCs was determined with a panel of antibodies. Moderate to bright expression of CD56, CD117, CD20, CD45, and CD52 was detected in 71.7%, 17.8%, 9.3%, 8.8%, and 5.2% of cases, respectively. These antigens were expressed by a distinct subpopulation of the PCs in 6.3%, 2.2%, 3.7%, 2.9%, and 2.6% of additional cases. CD19 was negative in more than 99% of cases. The combination of CD38 and CD138 was superior to CD38 alone for identifying CD45+ myeloma and separating CD20+ myeloma from B-cell lymphoma. PC immunophenotyping might be useful for detecting minimal residual disease in cases with aberrant antigen expression and for selection of therapeutic agents that have specific membrane targets.

  18. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire.

    PubMed

    Dimova, Tanya; Brouwer, Margreet; Gosselin, Françoise; Tassignon, Joël; Leo, Oberdan; Donner, Catherine; Marchant, Arnaud; Vermijlen, David

    2015-02-10

    γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1(+) and Vδ3(+) γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.

  19. Immunophenotypic criteria for the diagnosis of non-Hodgkin's lymphoma.

    PubMed Central

    Picker, L. J.; Weiss, L. M.; Medeiros, L. J.; Wood, G. S.; Warnke, R. A.

    1987-01-01

    This study examines the immunohistologic profiles of a large series of histologically proven benign and malignant lymphoproliferative processes in order to define immunophenotypic criteria useful in the diagnosis of non-Hodgkin's lymphoma. Using a method of analysis relying solely on immunoarchitectural features of a given case, the authors were able to define immunologic criteria capable of differentiating benign from malignant lymphoid processes independent from conventional morphologic analysis. In general, these criteria involved identification of abnormal expression or loss of antigens in B- and T-lineage populations. Among B-lineage populations the following features were associated with malignant histology: 1) light-chain-restricted B lineage, 2) light chain -B lineage, 3) Leu-1+ B lineage, 4) L60+ B lineage, 5) 41H+, Ki-67+ B lineage, 6) loss of pan-B antigens, and 7) LFA-1-B lineage. Among T-cell populations outside the thymus, phenotypes associated with malignancy included 1) loss of pan-T antigens (including loss of the beta chain of the T-cell antigen receptor), 2) coexpression or loss of T-subset antigens, 3) Leu-6+ T-lineage, and 4) MB-1+ T lineage. Application of these criteria to a series of nearly 500 cases of lymphoma indicated that over 90% of B-lineage and about 80% of T-lineage neoplasms manifested immunophenotypic abnormalities that could distinguish them from benign, reactive lymphoid processes. It is concluded that immunophenotypic analysis of lymphoproliferative lesions is sufficiently sensitive and specific to confirm the histologic diagnosis of lymphoma in the vast majority of cases seen in clinical practice. Furthermore, in difficult cases or those with limited material or poor histology, immunophenotypic analysis may be the only means of making a definitive diagnosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:3111266

  20. Renegade homeostatic cytokine responses in T1D: drivers of regulatory/effector T cell imbalance.

    PubMed

    Gupta, Shipra; Cerosaletti, Karen; Long, S Alice

    2014-04-01

    Homeostatic cytokines contribute to the balance between regulatory and effector T cells (Tregs and Teffs respectively) and are necessary to maintain peripheral tolerance. These cytokines include IL-2 that supports Treg and IL-7 and IL-15 that drive Teff. In overt settings of lost tolerance (i.e. graft rejection), IL-2 Treg signatures are decreased while IL-7 and IL-15 Teff signatures are often enhanced. Similar cytokine profile imbalances also occur in some autoimmune diseases. In type 1 diabetes (T1D), there are underlying defects in the IL-2 pathway and Teff cytokine blockade can prevent and treat diabetes in NOD mice. In this review, we summarize evidence of IL-2, IL-7 and IL-15 genetic and cellular alterations in T1D patients. We then discuss how the combined effect of these cytokine profiles may together contribute to altered Treg/Teff ratios and functions in T1D. Implications for combination therapies and suggestions for integrated cytokine and Treg/Teff biomarker development are then proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. PRDM1/Blimp-1 Controls Effector Cytokine Production in Human NK Cells

    PubMed Central

    Smith, Matthew A.; Maurin, Michelle; Cho, Hyun Il; Becknell, Brian; Freud, Aharon G.; Yu, Jianhua; Wei, Sheng; Djeu, Julie; Celis, Esteban; Caligiuri, Michael A.; Wright, Kenneth L.

    2013-01-01

    NK cells are major effectors of the innate immune response through cytolysis and bridge to the adaptive immune response through cytokine release. The mediators of activation are well studied however little is known about the mechanisms which restrain activation. In this report, we demonstrate that the transcriptional repressor PRDM1 (also known as Blimp-1 or PRDI-BF1) is a critical negative regulator of NK function. Three distinct PRDM1 isoforms are selectively induced in the CD56dim NK population in response to activation. PRDM1 coordinately suppresses release of IFNγ, TNFα and TNFβ through direct binding to multiple conserved regulatory regions. Ablation of PRDM1 expression leads to enhanced production of IFNγ and TNFα but does not alter cytotoxicity, while overexpression blocks cytokine production. Novel PRDM1 response elements are defined at both the IFNG and TNF loci. Collectively, these data demonstrate a key role for PRDM1 in the negative regulation of NK activation and position PRDM1 as a common regulator of both the adaptive and innate immune response. PMID:20944005

  2. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells.

    PubMed

    Owens, Jesse B; Mauro, Damiano; Stoytchev, Ilko; Bhakta, Mital S; Kim, Moon-Soo; Segal, David J; Moisyadi, Stefan

    2013-10-01

    Insertional therapies have shown great potential for combating genetic disease and safer methods would undoubtedly broaden the variety of possible illness that can be treated. A major challenge that remains is reducing the risk of insertional mutagenesis due to random insertion by both viral and non-viral vectors. Targetable nucleases are capable of inducing double-stranded breaks to enhance homologous recombination for the introduction of transgenes at specific sequences. However, off-target DNA cleavages at unknown sites can lead to mutations that are difficult to detect. Alternatively, the piggyBac transposase is able perform all of the steps required for integration; therefore,